xref: /openbmc/linux/mm/vmscan.c (revision c3cc99ff5d24e2eeaf7ec2032e720681916990e3)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 
43 #include <asm/tlbflush.h>
44 #include <asm/div64.h>
45 
46 #include <linux/swapops.h>
47 
48 #include "internal.h"
49 
50 struct scan_control {
51 	/* Incremented by the number of inactive pages that were scanned */
52 	unsigned long nr_scanned;
53 
54 	/* This context's GFP mask */
55 	gfp_t gfp_mask;
56 
57 	int may_writepage;
58 
59 	/* Can pages be swapped as part of reclaim? */
60 	int may_swap;
61 
62 	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
63 	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
64 	 * In this context, it doesn't matter that we scan the
65 	 * whole list at once. */
66 	int swap_cluster_max;
67 
68 	int swappiness;
69 
70 	int all_unreclaimable;
71 
72 	int order;
73 
74 	/* Which cgroup do we reclaim from */
75 	struct mem_cgroup *mem_cgroup;
76 
77 	/* Pluggable isolate pages callback */
78 	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
79 			unsigned long *scanned, int order, int mode,
80 			struct zone *z, struct mem_cgroup *mem_cont,
81 			int active);
82 };
83 
84 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
85 
86 #ifdef ARCH_HAS_PREFETCH
87 #define prefetch_prev_lru_page(_page, _base, _field)			\
88 	do {								\
89 		if ((_page)->lru.prev != _base) {			\
90 			struct page *prev;				\
91 									\
92 			prev = lru_to_page(&(_page->lru));		\
93 			prefetch(&prev->_field);			\
94 		}							\
95 	} while (0)
96 #else
97 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
98 #endif
99 
100 #ifdef ARCH_HAS_PREFETCHW
101 #define prefetchw_prev_lru_page(_page, _base, _field)			\
102 	do {								\
103 		if ((_page)->lru.prev != _base) {			\
104 			struct page *prev;				\
105 									\
106 			prev = lru_to_page(&(_page->lru));		\
107 			prefetchw(&prev->_field);			\
108 		}							\
109 	} while (0)
110 #else
111 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113 
114 /*
115  * From 0 .. 100.  Higher means more swappy.
116  */
117 int vm_swappiness = 60;
118 long vm_total_pages;	/* The total number of pages which the VM controls */
119 
120 static LIST_HEAD(shrinker_list);
121 static DECLARE_RWSEM(shrinker_rwsem);
122 
123 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
124 #define scan_global_lru(sc)	(!(sc)->mem_cgroup)
125 #else
126 #define scan_global_lru(sc)	(1)
127 #endif
128 
129 /*
130  * Add a shrinker callback to be called from the vm
131  */
132 void register_shrinker(struct shrinker *shrinker)
133 {
134 	shrinker->nr = 0;
135 	down_write(&shrinker_rwsem);
136 	list_add_tail(&shrinker->list, &shrinker_list);
137 	up_write(&shrinker_rwsem);
138 }
139 EXPORT_SYMBOL(register_shrinker);
140 
141 /*
142  * Remove one
143  */
144 void unregister_shrinker(struct shrinker *shrinker)
145 {
146 	down_write(&shrinker_rwsem);
147 	list_del(&shrinker->list);
148 	up_write(&shrinker_rwsem);
149 }
150 EXPORT_SYMBOL(unregister_shrinker);
151 
152 #define SHRINK_BATCH 128
153 /*
154  * Call the shrink functions to age shrinkable caches
155  *
156  * Here we assume it costs one seek to replace a lru page and that it also
157  * takes a seek to recreate a cache object.  With this in mind we age equal
158  * percentages of the lru and ageable caches.  This should balance the seeks
159  * generated by these structures.
160  *
161  * If the vm encountered mapped pages on the LRU it increase the pressure on
162  * slab to avoid swapping.
163  *
164  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
165  *
166  * `lru_pages' represents the number of on-LRU pages in all the zones which
167  * are eligible for the caller's allocation attempt.  It is used for balancing
168  * slab reclaim versus page reclaim.
169  *
170  * Returns the number of slab objects which we shrunk.
171  */
172 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
173 			unsigned long lru_pages)
174 {
175 	struct shrinker *shrinker;
176 	unsigned long ret = 0;
177 
178 	if (scanned == 0)
179 		scanned = SWAP_CLUSTER_MAX;
180 
181 	if (!down_read_trylock(&shrinker_rwsem))
182 		return 1;	/* Assume we'll be able to shrink next time */
183 
184 	list_for_each_entry(shrinker, &shrinker_list, list) {
185 		unsigned long long delta;
186 		unsigned long total_scan;
187 		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
188 
189 		delta = (4 * scanned) / shrinker->seeks;
190 		delta *= max_pass;
191 		do_div(delta, lru_pages + 1);
192 		shrinker->nr += delta;
193 		if (shrinker->nr < 0) {
194 			printk(KERN_ERR "%s: nr=%ld\n",
195 					__func__, shrinker->nr);
196 			shrinker->nr = max_pass;
197 		}
198 
199 		/*
200 		 * Avoid risking looping forever due to too large nr value:
201 		 * never try to free more than twice the estimate number of
202 		 * freeable entries.
203 		 */
204 		if (shrinker->nr > max_pass * 2)
205 			shrinker->nr = max_pass * 2;
206 
207 		total_scan = shrinker->nr;
208 		shrinker->nr = 0;
209 
210 		while (total_scan >= SHRINK_BATCH) {
211 			long this_scan = SHRINK_BATCH;
212 			int shrink_ret;
213 			int nr_before;
214 
215 			nr_before = (*shrinker->shrink)(0, gfp_mask);
216 			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
217 			if (shrink_ret == -1)
218 				break;
219 			if (shrink_ret < nr_before)
220 				ret += nr_before - shrink_ret;
221 			count_vm_events(SLABS_SCANNED, this_scan);
222 			total_scan -= this_scan;
223 
224 			cond_resched();
225 		}
226 
227 		shrinker->nr += total_scan;
228 	}
229 	up_read(&shrinker_rwsem);
230 	return ret;
231 }
232 
233 /* Called without lock on whether page is mapped, so answer is unstable */
234 static inline int page_mapping_inuse(struct page *page)
235 {
236 	struct address_space *mapping;
237 
238 	/* Page is in somebody's page tables. */
239 	if (page_mapped(page))
240 		return 1;
241 
242 	/* Be more reluctant to reclaim swapcache than pagecache */
243 	if (PageSwapCache(page))
244 		return 1;
245 
246 	mapping = page_mapping(page);
247 	if (!mapping)
248 		return 0;
249 
250 	/* File is mmap'd by somebody? */
251 	return mapping_mapped(mapping);
252 }
253 
254 static inline int is_page_cache_freeable(struct page *page)
255 {
256 	return page_count(page) - !!PagePrivate(page) == 2;
257 }
258 
259 static int may_write_to_queue(struct backing_dev_info *bdi)
260 {
261 	if (current->flags & PF_SWAPWRITE)
262 		return 1;
263 	if (!bdi_write_congested(bdi))
264 		return 1;
265 	if (bdi == current->backing_dev_info)
266 		return 1;
267 	return 0;
268 }
269 
270 /*
271  * We detected a synchronous write error writing a page out.  Probably
272  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
273  * fsync(), msync() or close().
274  *
275  * The tricky part is that after writepage we cannot touch the mapping: nothing
276  * prevents it from being freed up.  But we have a ref on the page and once
277  * that page is locked, the mapping is pinned.
278  *
279  * We're allowed to run sleeping lock_page() here because we know the caller has
280  * __GFP_FS.
281  */
282 static void handle_write_error(struct address_space *mapping,
283 				struct page *page, int error)
284 {
285 	lock_page(page);
286 	if (page_mapping(page) == mapping)
287 		mapping_set_error(mapping, error);
288 	unlock_page(page);
289 }
290 
291 /* Request for sync pageout. */
292 enum pageout_io {
293 	PAGEOUT_IO_ASYNC,
294 	PAGEOUT_IO_SYNC,
295 };
296 
297 /* possible outcome of pageout() */
298 typedef enum {
299 	/* failed to write page out, page is locked */
300 	PAGE_KEEP,
301 	/* move page to the active list, page is locked */
302 	PAGE_ACTIVATE,
303 	/* page has been sent to the disk successfully, page is unlocked */
304 	PAGE_SUCCESS,
305 	/* page is clean and locked */
306 	PAGE_CLEAN,
307 } pageout_t;
308 
309 /*
310  * pageout is called by shrink_page_list() for each dirty page.
311  * Calls ->writepage().
312  */
313 static pageout_t pageout(struct page *page, struct address_space *mapping,
314 						enum pageout_io sync_writeback)
315 {
316 	/*
317 	 * If the page is dirty, only perform writeback if that write
318 	 * will be non-blocking.  To prevent this allocation from being
319 	 * stalled by pagecache activity.  But note that there may be
320 	 * stalls if we need to run get_block().  We could test
321 	 * PagePrivate for that.
322 	 *
323 	 * If this process is currently in generic_file_write() against
324 	 * this page's queue, we can perform writeback even if that
325 	 * will block.
326 	 *
327 	 * If the page is swapcache, write it back even if that would
328 	 * block, for some throttling. This happens by accident, because
329 	 * swap_backing_dev_info is bust: it doesn't reflect the
330 	 * congestion state of the swapdevs.  Easy to fix, if needed.
331 	 * See swapfile.c:page_queue_congested().
332 	 */
333 	if (!is_page_cache_freeable(page))
334 		return PAGE_KEEP;
335 	if (!mapping) {
336 		/*
337 		 * Some data journaling orphaned pages can have
338 		 * page->mapping == NULL while being dirty with clean buffers.
339 		 */
340 		if (PagePrivate(page)) {
341 			if (try_to_free_buffers(page)) {
342 				ClearPageDirty(page);
343 				printk("%s: orphaned page\n", __func__);
344 				return PAGE_CLEAN;
345 			}
346 		}
347 		return PAGE_KEEP;
348 	}
349 	if (mapping->a_ops->writepage == NULL)
350 		return PAGE_ACTIVATE;
351 	if (!may_write_to_queue(mapping->backing_dev_info))
352 		return PAGE_KEEP;
353 
354 	if (clear_page_dirty_for_io(page)) {
355 		int res;
356 		struct writeback_control wbc = {
357 			.sync_mode = WB_SYNC_NONE,
358 			.nr_to_write = SWAP_CLUSTER_MAX,
359 			.range_start = 0,
360 			.range_end = LLONG_MAX,
361 			.nonblocking = 1,
362 			.for_reclaim = 1,
363 		};
364 
365 		SetPageReclaim(page);
366 		res = mapping->a_ops->writepage(page, &wbc);
367 		if (res < 0)
368 			handle_write_error(mapping, page, res);
369 		if (res == AOP_WRITEPAGE_ACTIVATE) {
370 			ClearPageReclaim(page);
371 			return PAGE_ACTIVATE;
372 		}
373 
374 		/*
375 		 * Wait on writeback if requested to. This happens when
376 		 * direct reclaiming a large contiguous area and the
377 		 * first attempt to free a range of pages fails.
378 		 */
379 		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
380 			wait_on_page_writeback(page);
381 
382 		if (!PageWriteback(page)) {
383 			/* synchronous write or broken a_ops? */
384 			ClearPageReclaim(page);
385 		}
386 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
387 		return PAGE_SUCCESS;
388 	}
389 
390 	return PAGE_CLEAN;
391 }
392 
393 /*
394  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
395  * someone else has a ref on the page, abort and return 0.  If it was
396  * successfully detached, return 1.  Assumes the caller has a single ref on
397  * this page.
398  */
399 int remove_mapping(struct address_space *mapping, struct page *page)
400 {
401 	BUG_ON(!PageLocked(page));
402 	BUG_ON(mapping != page_mapping(page));
403 
404 	write_lock_irq(&mapping->tree_lock);
405 	/*
406 	 * The non racy check for a busy page.
407 	 *
408 	 * Must be careful with the order of the tests. When someone has
409 	 * a ref to the page, it may be possible that they dirty it then
410 	 * drop the reference. So if PageDirty is tested before page_count
411 	 * here, then the following race may occur:
412 	 *
413 	 * get_user_pages(&page);
414 	 * [user mapping goes away]
415 	 * write_to(page);
416 	 *				!PageDirty(page)    [good]
417 	 * SetPageDirty(page);
418 	 * put_page(page);
419 	 *				!page_count(page)   [good, discard it]
420 	 *
421 	 * [oops, our write_to data is lost]
422 	 *
423 	 * Reversing the order of the tests ensures such a situation cannot
424 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
425 	 * load is not satisfied before that of page->_count.
426 	 *
427 	 * Note that if SetPageDirty is always performed via set_page_dirty,
428 	 * and thus under tree_lock, then this ordering is not required.
429 	 */
430 	if (unlikely(page_count(page) != 2))
431 		goto cannot_free;
432 	smp_rmb();
433 	if (unlikely(PageDirty(page)))
434 		goto cannot_free;
435 
436 	if (PageSwapCache(page)) {
437 		swp_entry_t swap = { .val = page_private(page) };
438 		__delete_from_swap_cache(page);
439 		write_unlock_irq(&mapping->tree_lock);
440 		swap_free(swap);
441 		__put_page(page);	/* The pagecache ref */
442 		return 1;
443 	}
444 
445 	__remove_from_page_cache(page);
446 	write_unlock_irq(&mapping->tree_lock);
447 	__put_page(page);
448 	return 1;
449 
450 cannot_free:
451 	write_unlock_irq(&mapping->tree_lock);
452 	return 0;
453 }
454 
455 /*
456  * shrink_page_list() returns the number of reclaimed pages
457  */
458 static unsigned long shrink_page_list(struct list_head *page_list,
459 					struct scan_control *sc,
460 					enum pageout_io sync_writeback)
461 {
462 	LIST_HEAD(ret_pages);
463 	struct pagevec freed_pvec;
464 	int pgactivate = 0;
465 	unsigned long nr_reclaimed = 0;
466 
467 	cond_resched();
468 
469 	pagevec_init(&freed_pvec, 1);
470 	while (!list_empty(page_list)) {
471 		struct address_space *mapping;
472 		struct page *page;
473 		int may_enter_fs;
474 		int referenced;
475 
476 		cond_resched();
477 
478 		page = lru_to_page(page_list);
479 		list_del(&page->lru);
480 
481 		if (TestSetPageLocked(page))
482 			goto keep;
483 
484 		VM_BUG_ON(PageActive(page));
485 
486 		sc->nr_scanned++;
487 
488 		if (!sc->may_swap && page_mapped(page))
489 			goto keep_locked;
490 
491 		/* Double the slab pressure for mapped and swapcache pages */
492 		if (page_mapped(page) || PageSwapCache(page))
493 			sc->nr_scanned++;
494 
495 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
496 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
497 
498 		if (PageWriteback(page)) {
499 			/*
500 			 * Synchronous reclaim is performed in two passes,
501 			 * first an asynchronous pass over the list to
502 			 * start parallel writeback, and a second synchronous
503 			 * pass to wait for the IO to complete.  Wait here
504 			 * for any page for which writeback has already
505 			 * started.
506 			 */
507 			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
508 				wait_on_page_writeback(page);
509 			else
510 				goto keep_locked;
511 		}
512 
513 		referenced = page_referenced(page, 1, sc->mem_cgroup);
514 		/* In active use or really unfreeable?  Activate it. */
515 		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
516 					referenced && page_mapping_inuse(page))
517 			goto activate_locked;
518 
519 #ifdef CONFIG_SWAP
520 		/*
521 		 * Anonymous process memory has backing store?
522 		 * Try to allocate it some swap space here.
523 		 */
524 		if (PageAnon(page) && !PageSwapCache(page))
525 			if (!add_to_swap(page, GFP_ATOMIC))
526 				goto activate_locked;
527 #endif /* CONFIG_SWAP */
528 
529 		mapping = page_mapping(page);
530 
531 		/*
532 		 * The page is mapped into the page tables of one or more
533 		 * processes. Try to unmap it here.
534 		 */
535 		if (page_mapped(page) && mapping) {
536 			switch (try_to_unmap(page, 0)) {
537 			case SWAP_FAIL:
538 				goto activate_locked;
539 			case SWAP_AGAIN:
540 				goto keep_locked;
541 			case SWAP_SUCCESS:
542 				; /* try to free the page below */
543 			}
544 		}
545 
546 		if (PageDirty(page)) {
547 			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
548 				goto keep_locked;
549 			if (!may_enter_fs)
550 				goto keep_locked;
551 			if (!sc->may_writepage)
552 				goto keep_locked;
553 
554 			/* Page is dirty, try to write it out here */
555 			switch (pageout(page, mapping, sync_writeback)) {
556 			case PAGE_KEEP:
557 				goto keep_locked;
558 			case PAGE_ACTIVATE:
559 				goto activate_locked;
560 			case PAGE_SUCCESS:
561 				if (PageWriteback(page) || PageDirty(page))
562 					goto keep;
563 				/*
564 				 * A synchronous write - probably a ramdisk.  Go
565 				 * ahead and try to reclaim the page.
566 				 */
567 				if (TestSetPageLocked(page))
568 					goto keep;
569 				if (PageDirty(page) || PageWriteback(page))
570 					goto keep_locked;
571 				mapping = page_mapping(page);
572 			case PAGE_CLEAN:
573 				; /* try to free the page below */
574 			}
575 		}
576 
577 		/*
578 		 * If the page has buffers, try to free the buffer mappings
579 		 * associated with this page. If we succeed we try to free
580 		 * the page as well.
581 		 *
582 		 * We do this even if the page is PageDirty().
583 		 * try_to_release_page() does not perform I/O, but it is
584 		 * possible for a page to have PageDirty set, but it is actually
585 		 * clean (all its buffers are clean).  This happens if the
586 		 * buffers were written out directly, with submit_bh(). ext3
587 		 * will do this, as well as the blockdev mapping.
588 		 * try_to_release_page() will discover that cleanness and will
589 		 * drop the buffers and mark the page clean - it can be freed.
590 		 *
591 		 * Rarely, pages can have buffers and no ->mapping.  These are
592 		 * the pages which were not successfully invalidated in
593 		 * truncate_complete_page().  We try to drop those buffers here
594 		 * and if that worked, and the page is no longer mapped into
595 		 * process address space (page_count == 1) it can be freed.
596 		 * Otherwise, leave the page on the LRU so it is swappable.
597 		 */
598 		if (PagePrivate(page)) {
599 			if (!try_to_release_page(page, sc->gfp_mask))
600 				goto activate_locked;
601 			if (!mapping && page_count(page) == 1)
602 				goto free_it;
603 		}
604 
605 		if (!mapping || !remove_mapping(mapping, page))
606 			goto keep_locked;
607 
608 free_it:
609 		unlock_page(page);
610 		nr_reclaimed++;
611 		if (!pagevec_add(&freed_pvec, page))
612 			__pagevec_release_nonlru(&freed_pvec);
613 		continue;
614 
615 activate_locked:
616 		SetPageActive(page);
617 		pgactivate++;
618 keep_locked:
619 		unlock_page(page);
620 keep:
621 		list_add(&page->lru, &ret_pages);
622 		VM_BUG_ON(PageLRU(page));
623 	}
624 	list_splice(&ret_pages, page_list);
625 	if (pagevec_count(&freed_pvec))
626 		__pagevec_release_nonlru(&freed_pvec);
627 	count_vm_events(PGACTIVATE, pgactivate);
628 	return nr_reclaimed;
629 }
630 
631 /* LRU Isolation modes. */
632 #define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
633 #define ISOLATE_ACTIVE 1	/* Isolate active pages. */
634 #define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */
635 
636 /*
637  * Attempt to remove the specified page from its LRU.  Only take this page
638  * if it is of the appropriate PageActive status.  Pages which are being
639  * freed elsewhere are also ignored.
640  *
641  * page:	page to consider
642  * mode:	one of the LRU isolation modes defined above
643  *
644  * returns 0 on success, -ve errno on failure.
645  */
646 int __isolate_lru_page(struct page *page, int mode)
647 {
648 	int ret = -EINVAL;
649 
650 	/* Only take pages on the LRU. */
651 	if (!PageLRU(page))
652 		return ret;
653 
654 	/*
655 	 * When checking the active state, we need to be sure we are
656 	 * dealing with comparible boolean values.  Take the logical not
657 	 * of each.
658 	 */
659 	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
660 		return ret;
661 
662 	ret = -EBUSY;
663 	if (likely(get_page_unless_zero(page))) {
664 		/*
665 		 * Be careful not to clear PageLRU until after we're
666 		 * sure the page is not being freed elsewhere -- the
667 		 * page release code relies on it.
668 		 */
669 		ClearPageLRU(page);
670 		ret = 0;
671 	}
672 
673 	return ret;
674 }
675 
676 /*
677  * zone->lru_lock is heavily contended.  Some of the functions that
678  * shrink the lists perform better by taking out a batch of pages
679  * and working on them outside the LRU lock.
680  *
681  * For pagecache intensive workloads, this function is the hottest
682  * spot in the kernel (apart from copy_*_user functions).
683  *
684  * Appropriate locks must be held before calling this function.
685  *
686  * @nr_to_scan:	The number of pages to look through on the list.
687  * @src:	The LRU list to pull pages off.
688  * @dst:	The temp list to put pages on to.
689  * @scanned:	The number of pages that were scanned.
690  * @order:	The caller's attempted allocation order
691  * @mode:	One of the LRU isolation modes
692  *
693  * returns how many pages were moved onto *@dst.
694  */
695 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
696 		struct list_head *src, struct list_head *dst,
697 		unsigned long *scanned, int order, int mode)
698 {
699 	unsigned long nr_taken = 0;
700 	unsigned long scan;
701 
702 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
703 		struct page *page;
704 		unsigned long pfn;
705 		unsigned long end_pfn;
706 		unsigned long page_pfn;
707 		int zone_id;
708 
709 		page = lru_to_page(src);
710 		prefetchw_prev_lru_page(page, src, flags);
711 
712 		VM_BUG_ON(!PageLRU(page));
713 
714 		switch (__isolate_lru_page(page, mode)) {
715 		case 0:
716 			list_move(&page->lru, dst);
717 			nr_taken++;
718 			break;
719 
720 		case -EBUSY:
721 			/* else it is being freed elsewhere */
722 			list_move(&page->lru, src);
723 			continue;
724 
725 		default:
726 			BUG();
727 		}
728 
729 		if (!order)
730 			continue;
731 
732 		/*
733 		 * Attempt to take all pages in the order aligned region
734 		 * surrounding the tag page.  Only take those pages of
735 		 * the same active state as that tag page.  We may safely
736 		 * round the target page pfn down to the requested order
737 		 * as the mem_map is guarenteed valid out to MAX_ORDER,
738 		 * where that page is in a different zone we will detect
739 		 * it from its zone id and abort this block scan.
740 		 */
741 		zone_id = page_zone_id(page);
742 		page_pfn = page_to_pfn(page);
743 		pfn = page_pfn & ~((1 << order) - 1);
744 		end_pfn = pfn + (1 << order);
745 		for (; pfn < end_pfn; pfn++) {
746 			struct page *cursor_page;
747 
748 			/* The target page is in the block, ignore it. */
749 			if (unlikely(pfn == page_pfn))
750 				continue;
751 
752 			/* Avoid holes within the zone. */
753 			if (unlikely(!pfn_valid_within(pfn)))
754 				break;
755 
756 			cursor_page = pfn_to_page(pfn);
757 			/* Check that we have not crossed a zone boundary. */
758 			if (unlikely(page_zone_id(cursor_page) != zone_id))
759 				continue;
760 			switch (__isolate_lru_page(cursor_page, mode)) {
761 			case 0:
762 				list_move(&cursor_page->lru, dst);
763 				nr_taken++;
764 				scan++;
765 				break;
766 
767 			case -EBUSY:
768 				/* else it is being freed elsewhere */
769 				list_move(&cursor_page->lru, src);
770 			default:
771 				break;
772 			}
773 		}
774 	}
775 
776 	*scanned = scan;
777 	return nr_taken;
778 }
779 
780 static unsigned long isolate_pages_global(unsigned long nr,
781 					struct list_head *dst,
782 					unsigned long *scanned, int order,
783 					int mode, struct zone *z,
784 					struct mem_cgroup *mem_cont,
785 					int active)
786 {
787 	if (active)
788 		return isolate_lru_pages(nr, &z->active_list, dst,
789 						scanned, order, mode);
790 	else
791 		return isolate_lru_pages(nr, &z->inactive_list, dst,
792 						scanned, order, mode);
793 }
794 
795 /*
796  * clear_active_flags() is a helper for shrink_active_list(), clearing
797  * any active bits from the pages in the list.
798  */
799 static unsigned long clear_active_flags(struct list_head *page_list)
800 {
801 	int nr_active = 0;
802 	struct page *page;
803 
804 	list_for_each_entry(page, page_list, lru)
805 		if (PageActive(page)) {
806 			ClearPageActive(page);
807 			nr_active++;
808 		}
809 
810 	return nr_active;
811 }
812 
813 /*
814  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
815  * of reclaimed pages
816  */
817 static unsigned long shrink_inactive_list(unsigned long max_scan,
818 				struct zone *zone, struct scan_control *sc)
819 {
820 	LIST_HEAD(page_list);
821 	struct pagevec pvec;
822 	unsigned long nr_scanned = 0;
823 	unsigned long nr_reclaimed = 0;
824 
825 	pagevec_init(&pvec, 1);
826 
827 	lru_add_drain();
828 	spin_lock_irq(&zone->lru_lock);
829 	do {
830 		struct page *page;
831 		unsigned long nr_taken;
832 		unsigned long nr_scan;
833 		unsigned long nr_freed;
834 		unsigned long nr_active;
835 
836 		nr_taken = sc->isolate_pages(sc->swap_cluster_max,
837 			     &page_list, &nr_scan, sc->order,
838 			     (sc->order > PAGE_ALLOC_COSTLY_ORDER)?
839 					     ISOLATE_BOTH : ISOLATE_INACTIVE,
840 				zone, sc->mem_cgroup, 0);
841 		nr_active = clear_active_flags(&page_list);
842 		__count_vm_events(PGDEACTIVATE, nr_active);
843 
844 		__mod_zone_page_state(zone, NR_ACTIVE, -nr_active);
845 		__mod_zone_page_state(zone, NR_INACTIVE,
846 						-(nr_taken - nr_active));
847 		if (scan_global_lru(sc))
848 			zone->pages_scanned += nr_scan;
849 		spin_unlock_irq(&zone->lru_lock);
850 
851 		nr_scanned += nr_scan;
852 		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
853 
854 		/*
855 		 * If we are direct reclaiming for contiguous pages and we do
856 		 * not reclaim everything in the list, try again and wait
857 		 * for IO to complete. This will stall high-order allocations
858 		 * but that should be acceptable to the caller
859 		 */
860 		if (nr_freed < nr_taken && !current_is_kswapd() &&
861 					sc->order > PAGE_ALLOC_COSTLY_ORDER) {
862 			congestion_wait(WRITE, HZ/10);
863 
864 			/*
865 			 * The attempt at page out may have made some
866 			 * of the pages active, mark them inactive again.
867 			 */
868 			nr_active = clear_active_flags(&page_list);
869 			count_vm_events(PGDEACTIVATE, nr_active);
870 
871 			nr_freed += shrink_page_list(&page_list, sc,
872 							PAGEOUT_IO_SYNC);
873 		}
874 
875 		nr_reclaimed += nr_freed;
876 		local_irq_disable();
877 		if (current_is_kswapd()) {
878 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
879 			__count_vm_events(KSWAPD_STEAL, nr_freed);
880 		} else if (scan_global_lru(sc))
881 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
882 
883 		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
884 
885 		if (nr_taken == 0)
886 			goto done;
887 
888 		spin_lock(&zone->lru_lock);
889 		/*
890 		 * Put back any unfreeable pages.
891 		 */
892 		while (!list_empty(&page_list)) {
893 			page = lru_to_page(&page_list);
894 			VM_BUG_ON(PageLRU(page));
895 			SetPageLRU(page);
896 			list_del(&page->lru);
897 			if (PageActive(page))
898 				add_page_to_active_list(zone, page);
899 			else
900 				add_page_to_inactive_list(zone, page);
901 			if (!pagevec_add(&pvec, page)) {
902 				spin_unlock_irq(&zone->lru_lock);
903 				__pagevec_release(&pvec);
904 				spin_lock_irq(&zone->lru_lock);
905 			}
906 		}
907   	} while (nr_scanned < max_scan);
908 	spin_unlock(&zone->lru_lock);
909 done:
910 	local_irq_enable();
911 	pagevec_release(&pvec);
912 	return nr_reclaimed;
913 }
914 
915 /*
916  * We are about to scan this zone at a certain priority level.  If that priority
917  * level is smaller (ie: more urgent) than the previous priority, then note
918  * that priority level within the zone.  This is done so that when the next
919  * process comes in to scan this zone, it will immediately start out at this
920  * priority level rather than having to build up its own scanning priority.
921  * Here, this priority affects only the reclaim-mapped threshold.
922  */
923 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
924 {
925 	if (priority < zone->prev_priority)
926 		zone->prev_priority = priority;
927 }
928 
929 static inline int zone_is_near_oom(struct zone *zone)
930 {
931 	return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE)
932 				+ zone_page_state(zone, NR_INACTIVE))*3;
933 }
934 
935 /*
936  * Determine we should try to reclaim mapped pages.
937  * This is called only when sc->mem_cgroup is NULL.
938  */
939 static int calc_reclaim_mapped(struct scan_control *sc, struct zone *zone,
940 				int priority)
941 {
942 	long mapped_ratio;
943 	long distress;
944 	long swap_tendency;
945 	long imbalance;
946 	int reclaim_mapped = 0;
947 	int prev_priority;
948 
949 	if (scan_global_lru(sc) && zone_is_near_oom(zone))
950 		return 1;
951 	/*
952 	 * `distress' is a measure of how much trouble we're having
953 	 * reclaiming pages.  0 -> no problems.  100 -> great trouble.
954 	 */
955 	if (scan_global_lru(sc))
956 		prev_priority = zone->prev_priority;
957 	else
958 		prev_priority = mem_cgroup_get_reclaim_priority(sc->mem_cgroup);
959 
960 	distress = 100 >> min(prev_priority, priority);
961 
962 	/*
963 	 * The point of this algorithm is to decide when to start
964 	 * reclaiming mapped memory instead of just pagecache.  Work out
965 	 * how much memory
966 	 * is mapped.
967 	 */
968 	if (scan_global_lru(sc))
969 		mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
970 				global_page_state(NR_ANON_PAGES)) * 100) /
971 					vm_total_pages;
972 	else
973 		mapped_ratio = mem_cgroup_calc_mapped_ratio(sc->mem_cgroup);
974 
975 	/*
976 	 * Now decide how much we really want to unmap some pages.  The
977 	 * mapped ratio is downgraded - just because there's a lot of
978 	 * mapped memory doesn't necessarily mean that page reclaim
979 	 * isn't succeeding.
980 	 *
981 	 * The distress ratio is important - we don't want to start
982 	 * going oom.
983 	 *
984 	 * A 100% value of vm_swappiness overrides this algorithm
985 	 * altogether.
986 	 */
987 	swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
988 
989 	/*
990 	 * If there's huge imbalance between active and inactive
991 	 * (think active 100 times larger than inactive) we should
992 	 * become more permissive, or the system will take too much
993 	 * cpu before it start swapping during memory pressure.
994 	 * Distress is about avoiding early-oom, this is about
995 	 * making swappiness graceful despite setting it to low
996 	 * values.
997 	 *
998 	 * Avoid div by zero with nr_inactive+1, and max resulting
999 	 * value is vm_total_pages.
1000 	 */
1001 	if (scan_global_lru(sc)) {
1002 		imbalance  = zone_page_state(zone, NR_ACTIVE);
1003 		imbalance /= zone_page_state(zone, NR_INACTIVE) + 1;
1004 	} else
1005 		imbalance = mem_cgroup_reclaim_imbalance(sc->mem_cgroup);
1006 
1007 	/*
1008 	 * Reduce the effect of imbalance if swappiness is low,
1009 	 * this means for a swappiness very low, the imbalance
1010 	 * must be much higher than 100 for this logic to make
1011 	 * the difference.
1012 	 *
1013 	 * Max temporary value is vm_total_pages*100.
1014 	 */
1015 	imbalance *= (vm_swappiness + 1);
1016 	imbalance /= 100;
1017 
1018 	/*
1019 	 * If not much of the ram is mapped, makes the imbalance
1020 	 * less relevant, it's high priority we refill the inactive
1021 	 * list with mapped pages only in presence of high ratio of
1022 	 * mapped pages.
1023 	 *
1024 	 * Max temporary value is vm_total_pages*100.
1025 	 */
1026 	imbalance *= mapped_ratio;
1027 	imbalance /= 100;
1028 
1029 	/* apply imbalance feedback to swap_tendency */
1030 	swap_tendency += imbalance;
1031 
1032 	/*
1033 	 * Now use this metric to decide whether to start moving mapped
1034 	 * memory onto the inactive list.
1035 	 */
1036 	if (swap_tendency >= 100)
1037 		reclaim_mapped = 1;
1038 
1039 	return reclaim_mapped;
1040 }
1041 
1042 /*
1043  * This moves pages from the active list to the inactive list.
1044  *
1045  * We move them the other way if the page is referenced by one or more
1046  * processes, from rmap.
1047  *
1048  * If the pages are mostly unmapped, the processing is fast and it is
1049  * appropriate to hold zone->lru_lock across the whole operation.  But if
1050  * the pages are mapped, the processing is slow (page_referenced()) so we
1051  * should drop zone->lru_lock around each page.  It's impossible to balance
1052  * this, so instead we remove the pages from the LRU while processing them.
1053  * It is safe to rely on PG_active against the non-LRU pages in here because
1054  * nobody will play with that bit on a non-LRU page.
1055  *
1056  * The downside is that we have to touch page->_count against each page.
1057  * But we had to alter page->flags anyway.
1058  */
1059 
1060 
1061 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1062 				struct scan_control *sc, int priority)
1063 {
1064 	unsigned long pgmoved;
1065 	int pgdeactivate = 0;
1066 	unsigned long pgscanned;
1067 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1068 	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
1069 	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
1070 	struct page *page;
1071 	struct pagevec pvec;
1072 	int reclaim_mapped = 0;
1073 
1074 	if (sc->may_swap)
1075 		reclaim_mapped = calc_reclaim_mapped(sc, zone, priority);
1076 
1077 	lru_add_drain();
1078 	spin_lock_irq(&zone->lru_lock);
1079 	pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1080 					ISOLATE_ACTIVE, zone,
1081 					sc->mem_cgroup, 1);
1082 	/*
1083 	 * zone->pages_scanned is used for detect zone's oom
1084 	 * mem_cgroup remembers nr_scan by itself.
1085 	 */
1086 	if (scan_global_lru(sc))
1087 		zone->pages_scanned += pgscanned;
1088 
1089 	__mod_zone_page_state(zone, NR_ACTIVE, -pgmoved);
1090 	spin_unlock_irq(&zone->lru_lock);
1091 
1092 	while (!list_empty(&l_hold)) {
1093 		cond_resched();
1094 		page = lru_to_page(&l_hold);
1095 		list_del(&page->lru);
1096 		if (page_mapped(page)) {
1097 			if (!reclaim_mapped ||
1098 			    (total_swap_pages == 0 && PageAnon(page)) ||
1099 			    page_referenced(page, 0, sc->mem_cgroup)) {
1100 				list_add(&page->lru, &l_active);
1101 				continue;
1102 			}
1103 		}
1104 		list_add(&page->lru, &l_inactive);
1105 	}
1106 
1107 	pagevec_init(&pvec, 1);
1108 	pgmoved = 0;
1109 	spin_lock_irq(&zone->lru_lock);
1110 	while (!list_empty(&l_inactive)) {
1111 		page = lru_to_page(&l_inactive);
1112 		prefetchw_prev_lru_page(page, &l_inactive, flags);
1113 		VM_BUG_ON(PageLRU(page));
1114 		SetPageLRU(page);
1115 		VM_BUG_ON(!PageActive(page));
1116 		ClearPageActive(page);
1117 
1118 		list_move(&page->lru, &zone->inactive_list);
1119 		mem_cgroup_move_lists(page, false);
1120 		pgmoved++;
1121 		if (!pagevec_add(&pvec, page)) {
1122 			__mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
1123 			spin_unlock_irq(&zone->lru_lock);
1124 			pgdeactivate += pgmoved;
1125 			pgmoved = 0;
1126 			if (buffer_heads_over_limit)
1127 				pagevec_strip(&pvec);
1128 			__pagevec_release(&pvec);
1129 			spin_lock_irq(&zone->lru_lock);
1130 		}
1131 	}
1132 	__mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
1133 	pgdeactivate += pgmoved;
1134 	if (buffer_heads_over_limit) {
1135 		spin_unlock_irq(&zone->lru_lock);
1136 		pagevec_strip(&pvec);
1137 		spin_lock_irq(&zone->lru_lock);
1138 	}
1139 
1140 	pgmoved = 0;
1141 	while (!list_empty(&l_active)) {
1142 		page = lru_to_page(&l_active);
1143 		prefetchw_prev_lru_page(page, &l_active, flags);
1144 		VM_BUG_ON(PageLRU(page));
1145 		SetPageLRU(page);
1146 		VM_BUG_ON(!PageActive(page));
1147 
1148 		list_move(&page->lru, &zone->active_list);
1149 		mem_cgroup_move_lists(page, true);
1150 		pgmoved++;
1151 		if (!pagevec_add(&pvec, page)) {
1152 			__mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
1153 			pgmoved = 0;
1154 			spin_unlock_irq(&zone->lru_lock);
1155 			__pagevec_release(&pvec);
1156 			spin_lock_irq(&zone->lru_lock);
1157 		}
1158 	}
1159 	__mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
1160 
1161 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1162 	__count_vm_events(PGDEACTIVATE, pgdeactivate);
1163 	spin_unlock_irq(&zone->lru_lock);
1164 
1165 	pagevec_release(&pvec);
1166 }
1167 
1168 /*
1169  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1170  */
1171 static unsigned long shrink_zone(int priority, struct zone *zone,
1172 				struct scan_control *sc)
1173 {
1174 	unsigned long nr_active;
1175 	unsigned long nr_inactive;
1176 	unsigned long nr_to_scan;
1177 	unsigned long nr_reclaimed = 0;
1178 
1179 	if (scan_global_lru(sc)) {
1180 		/*
1181 		 * Add one to nr_to_scan just to make sure that the kernel
1182 		 * will slowly sift through the active list.
1183 		 */
1184 		zone->nr_scan_active +=
1185 			(zone_page_state(zone, NR_ACTIVE) >> priority) + 1;
1186 		nr_active = zone->nr_scan_active;
1187 		zone->nr_scan_inactive +=
1188 			(zone_page_state(zone, NR_INACTIVE) >> priority) + 1;
1189 		nr_inactive = zone->nr_scan_inactive;
1190 		if (nr_inactive >= sc->swap_cluster_max)
1191 			zone->nr_scan_inactive = 0;
1192 		else
1193 			nr_inactive = 0;
1194 
1195 		if (nr_active >= sc->swap_cluster_max)
1196 			zone->nr_scan_active = 0;
1197 		else
1198 			nr_active = 0;
1199 	} else {
1200 		/*
1201 		 * This reclaim occurs not because zone memory shortage but
1202 		 * because memory controller hits its limit.
1203 		 * Then, don't modify zone reclaim related data.
1204 		 */
1205 		nr_active = mem_cgroup_calc_reclaim_active(sc->mem_cgroup,
1206 					zone, priority);
1207 
1208 		nr_inactive = mem_cgroup_calc_reclaim_inactive(sc->mem_cgroup,
1209 					zone, priority);
1210 	}
1211 
1212 
1213 	while (nr_active || nr_inactive) {
1214 		if (nr_active) {
1215 			nr_to_scan = min(nr_active,
1216 					(unsigned long)sc->swap_cluster_max);
1217 			nr_active -= nr_to_scan;
1218 			shrink_active_list(nr_to_scan, zone, sc, priority);
1219 		}
1220 
1221 		if (nr_inactive) {
1222 			nr_to_scan = min(nr_inactive,
1223 					(unsigned long)sc->swap_cluster_max);
1224 			nr_inactive -= nr_to_scan;
1225 			nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
1226 								sc);
1227 		}
1228 	}
1229 
1230 	throttle_vm_writeout(sc->gfp_mask);
1231 	return nr_reclaimed;
1232 }
1233 
1234 /*
1235  * This is the direct reclaim path, for page-allocating processes.  We only
1236  * try to reclaim pages from zones which will satisfy the caller's allocation
1237  * request.
1238  *
1239  * We reclaim from a zone even if that zone is over pages_high.  Because:
1240  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1241  *    allocation or
1242  * b) The zones may be over pages_high but they must go *over* pages_high to
1243  *    satisfy the `incremental min' zone defense algorithm.
1244  *
1245  * Returns the number of reclaimed pages.
1246  *
1247  * If a zone is deemed to be full of pinned pages then just give it a light
1248  * scan then give up on it.
1249  */
1250 static unsigned long shrink_zones(int priority, struct zonelist *zonelist,
1251 					struct scan_control *sc)
1252 {
1253 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1254 	unsigned long nr_reclaimed = 0;
1255 	struct zoneref *z;
1256 	struct zone *zone;
1257 
1258 	sc->all_unreclaimable = 1;
1259 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1260 		if (!populated_zone(zone))
1261 			continue;
1262 		/*
1263 		 * Take care memory controller reclaiming has small influence
1264 		 * to global LRU.
1265 		 */
1266 		if (scan_global_lru(sc)) {
1267 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1268 				continue;
1269 			note_zone_scanning_priority(zone, priority);
1270 
1271 			if (zone_is_all_unreclaimable(zone) &&
1272 						priority != DEF_PRIORITY)
1273 				continue;	/* Let kswapd poll it */
1274 			sc->all_unreclaimable = 0;
1275 		} else {
1276 			/*
1277 			 * Ignore cpuset limitation here. We just want to reduce
1278 			 * # of used pages by us regardless of memory shortage.
1279 			 */
1280 			sc->all_unreclaimable = 0;
1281 			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1282 							priority);
1283 		}
1284 
1285 		nr_reclaimed += shrink_zone(priority, zone, sc);
1286 	}
1287 
1288 	return nr_reclaimed;
1289 }
1290 
1291 /*
1292  * This is the main entry point to direct page reclaim.
1293  *
1294  * If a full scan of the inactive list fails to free enough memory then we
1295  * are "out of memory" and something needs to be killed.
1296  *
1297  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1298  * high - the zone may be full of dirty or under-writeback pages, which this
1299  * caller can't do much about.  We kick pdflush and take explicit naps in the
1300  * hope that some of these pages can be written.  But if the allocating task
1301  * holds filesystem locks which prevent writeout this might not work, and the
1302  * allocation attempt will fail.
1303  *
1304  * returns:	0, if no pages reclaimed
1305  * 		else, the number of pages reclaimed
1306  */
1307 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1308 					struct scan_control *sc)
1309 {
1310 	int priority;
1311 	unsigned long ret = 0;
1312 	unsigned long total_scanned = 0;
1313 	unsigned long nr_reclaimed = 0;
1314 	struct reclaim_state *reclaim_state = current->reclaim_state;
1315 	unsigned long lru_pages = 0;
1316 	struct zoneref *z;
1317 	struct zone *zone;
1318 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1319 
1320 	delayacct_freepages_start();
1321 
1322 	if (scan_global_lru(sc))
1323 		count_vm_event(ALLOCSTALL);
1324 	/*
1325 	 * mem_cgroup will not do shrink_slab.
1326 	 */
1327 	if (scan_global_lru(sc)) {
1328 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1329 
1330 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1331 				continue;
1332 
1333 			lru_pages += zone_page_state(zone, NR_ACTIVE)
1334 					+ zone_page_state(zone, NR_INACTIVE);
1335 		}
1336 	}
1337 
1338 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1339 		sc->nr_scanned = 0;
1340 		if (!priority)
1341 			disable_swap_token();
1342 		nr_reclaimed += shrink_zones(priority, zonelist, sc);
1343 		/*
1344 		 * Don't shrink slabs when reclaiming memory from
1345 		 * over limit cgroups
1346 		 */
1347 		if (scan_global_lru(sc)) {
1348 			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1349 			if (reclaim_state) {
1350 				nr_reclaimed += reclaim_state->reclaimed_slab;
1351 				reclaim_state->reclaimed_slab = 0;
1352 			}
1353 		}
1354 		total_scanned += sc->nr_scanned;
1355 		if (nr_reclaimed >= sc->swap_cluster_max) {
1356 			ret = nr_reclaimed;
1357 			goto out;
1358 		}
1359 
1360 		/*
1361 		 * Try to write back as many pages as we just scanned.  This
1362 		 * tends to cause slow streaming writers to write data to the
1363 		 * disk smoothly, at the dirtying rate, which is nice.   But
1364 		 * that's undesirable in laptop mode, where we *want* lumpy
1365 		 * writeout.  So in laptop mode, write out the whole world.
1366 		 */
1367 		if (total_scanned > sc->swap_cluster_max +
1368 					sc->swap_cluster_max / 2) {
1369 			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1370 			sc->may_writepage = 1;
1371 		}
1372 
1373 		/* Take a nap, wait for some writeback to complete */
1374 		if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1375 			congestion_wait(WRITE, HZ/10);
1376 	}
1377 	/* top priority shrink_caches still had more to do? don't OOM, then */
1378 	if (!sc->all_unreclaimable && scan_global_lru(sc))
1379 		ret = nr_reclaimed;
1380 out:
1381 	/*
1382 	 * Now that we've scanned all the zones at this priority level, note
1383 	 * that level within the zone so that the next thread which performs
1384 	 * scanning of this zone will immediately start out at this priority
1385 	 * level.  This affects only the decision whether or not to bring
1386 	 * mapped pages onto the inactive list.
1387 	 */
1388 	if (priority < 0)
1389 		priority = 0;
1390 
1391 	if (scan_global_lru(sc)) {
1392 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1393 
1394 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1395 				continue;
1396 
1397 			zone->prev_priority = priority;
1398 		}
1399 	} else
1400 		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1401 
1402 	delayacct_freepages_end();
1403 
1404 	return ret;
1405 }
1406 
1407 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1408 								gfp_t gfp_mask)
1409 {
1410 	struct scan_control sc = {
1411 		.gfp_mask = gfp_mask,
1412 		.may_writepage = !laptop_mode,
1413 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1414 		.may_swap = 1,
1415 		.swappiness = vm_swappiness,
1416 		.order = order,
1417 		.mem_cgroup = NULL,
1418 		.isolate_pages = isolate_pages_global,
1419 	};
1420 
1421 	return do_try_to_free_pages(zonelist, &sc);
1422 }
1423 
1424 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1425 
1426 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1427 						gfp_t gfp_mask)
1428 {
1429 	struct scan_control sc = {
1430 		.may_writepage = !laptop_mode,
1431 		.may_swap = 1,
1432 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1433 		.swappiness = vm_swappiness,
1434 		.order = 0,
1435 		.mem_cgroup = mem_cont,
1436 		.isolate_pages = mem_cgroup_isolate_pages,
1437 	};
1438 	struct zonelist *zonelist;
1439 
1440 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1441 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1442 	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1443 	return do_try_to_free_pages(zonelist, &sc);
1444 }
1445 #endif
1446 
1447 /*
1448  * For kswapd, balance_pgdat() will work across all this node's zones until
1449  * they are all at pages_high.
1450  *
1451  * Returns the number of pages which were actually freed.
1452  *
1453  * There is special handling here for zones which are full of pinned pages.
1454  * This can happen if the pages are all mlocked, or if they are all used by
1455  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1456  * What we do is to detect the case where all pages in the zone have been
1457  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1458  * dead and from now on, only perform a short scan.  Basically we're polling
1459  * the zone for when the problem goes away.
1460  *
1461  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1462  * zones which have free_pages > pages_high, but once a zone is found to have
1463  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1464  * of the number of free pages in the lower zones.  This interoperates with
1465  * the page allocator fallback scheme to ensure that aging of pages is balanced
1466  * across the zones.
1467  */
1468 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1469 {
1470 	int all_zones_ok;
1471 	int priority;
1472 	int i;
1473 	unsigned long total_scanned;
1474 	unsigned long nr_reclaimed;
1475 	struct reclaim_state *reclaim_state = current->reclaim_state;
1476 	struct scan_control sc = {
1477 		.gfp_mask = GFP_KERNEL,
1478 		.may_swap = 1,
1479 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1480 		.swappiness = vm_swappiness,
1481 		.order = order,
1482 		.mem_cgroup = NULL,
1483 		.isolate_pages = isolate_pages_global,
1484 	};
1485 	/*
1486 	 * temp_priority is used to remember the scanning priority at which
1487 	 * this zone was successfully refilled to free_pages == pages_high.
1488 	 */
1489 	int temp_priority[MAX_NR_ZONES];
1490 
1491 loop_again:
1492 	total_scanned = 0;
1493 	nr_reclaimed = 0;
1494 	sc.may_writepage = !laptop_mode;
1495 	count_vm_event(PAGEOUTRUN);
1496 
1497 	for (i = 0; i < pgdat->nr_zones; i++)
1498 		temp_priority[i] = DEF_PRIORITY;
1499 
1500 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1501 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1502 		unsigned long lru_pages = 0;
1503 
1504 		/* The swap token gets in the way of swapout... */
1505 		if (!priority)
1506 			disable_swap_token();
1507 
1508 		all_zones_ok = 1;
1509 
1510 		/*
1511 		 * Scan in the highmem->dma direction for the highest
1512 		 * zone which needs scanning
1513 		 */
1514 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1515 			struct zone *zone = pgdat->node_zones + i;
1516 
1517 			if (!populated_zone(zone))
1518 				continue;
1519 
1520 			if (zone_is_all_unreclaimable(zone) &&
1521 			    priority != DEF_PRIORITY)
1522 				continue;
1523 
1524 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1525 					       0, 0)) {
1526 				end_zone = i;
1527 				break;
1528 			}
1529 		}
1530 		if (i < 0)
1531 			goto out;
1532 
1533 		for (i = 0; i <= end_zone; i++) {
1534 			struct zone *zone = pgdat->node_zones + i;
1535 
1536 			lru_pages += zone_page_state(zone, NR_ACTIVE)
1537 					+ zone_page_state(zone, NR_INACTIVE);
1538 		}
1539 
1540 		/*
1541 		 * Now scan the zone in the dma->highmem direction, stopping
1542 		 * at the last zone which needs scanning.
1543 		 *
1544 		 * We do this because the page allocator works in the opposite
1545 		 * direction.  This prevents the page allocator from allocating
1546 		 * pages behind kswapd's direction of progress, which would
1547 		 * cause too much scanning of the lower zones.
1548 		 */
1549 		for (i = 0; i <= end_zone; i++) {
1550 			struct zone *zone = pgdat->node_zones + i;
1551 			int nr_slab;
1552 
1553 			if (!populated_zone(zone))
1554 				continue;
1555 
1556 			if (zone_is_all_unreclaimable(zone) &&
1557 					priority != DEF_PRIORITY)
1558 				continue;
1559 
1560 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1561 					       end_zone, 0))
1562 				all_zones_ok = 0;
1563 			temp_priority[i] = priority;
1564 			sc.nr_scanned = 0;
1565 			note_zone_scanning_priority(zone, priority);
1566 			/*
1567 			 * We put equal pressure on every zone, unless one
1568 			 * zone has way too many pages free already.
1569 			 */
1570 			if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1571 						end_zone, 0))
1572 				nr_reclaimed += shrink_zone(priority, zone, &sc);
1573 			reclaim_state->reclaimed_slab = 0;
1574 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1575 						lru_pages);
1576 			nr_reclaimed += reclaim_state->reclaimed_slab;
1577 			total_scanned += sc.nr_scanned;
1578 			if (zone_is_all_unreclaimable(zone))
1579 				continue;
1580 			if (nr_slab == 0 && zone->pages_scanned >=
1581 				(zone_page_state(zone, NR_ACTIVE)
1582 				+ zone_page_state(zone, NR_INACTIVE)) * 6)
1583 					zone_set_flag(zone,
1584 						      ZONE_ALL_UNRECLAIMABLE);
1585 			/*
1586 			 * If we've done a decent amount of scanning and
1587 			 * the reclaim ratio is low, start doing writepage
1588 			 * even in laptop mode
1589 			 */
1590 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1591 			    total_scanned > nr_reclaimed + nr_reclaimed / 2)
1592 				sc.may_writepage = 1;
1593 		}
1594 		if (all_zones_ok)
1595 			break;		/* kswapd: all done */
1596 		/*
1597 		 * OK, kswapd is getting into trouble.  Take a nap, then take
1598 		 * another pass across the zones.
1599 		 */
1600 		if (total_scanned && priority < DEF_PRIORITY - 2)
1601 			congestion_wait(WRITE, HZ/10);
1602 
1603 		/*
1604 		 * We do this so kswapd doesn't build up large priorities for
1605 		 * example when it is freeing in parallel with allocators. It
1606 		 * matches the direct reclaim path behaviour in terms of impact
1607 		 * on zone->*_priority.
1608 		 */
1609 		if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1610 			break;
1611 	}
1612 out:
1613 	/*
1614 	 * Note within each zone the priority level at which this zone was
1615 	 * brought into a happy state.  So that the next thread which scans this
1616 	 * zone will start out at that priority level.
1617 	 */
1618 	for (i = 0; i < pgdat->nr_zones; i++) {
1619 		struct zone *zone = pgdat->node_zones + i;
1620 
1621 		zone->prev_priority = temp_priority[i];
1622 	}
1623 	if (!all_zones_ok) {
1624 		cond_resched();
1625 
1626 		try_to_freeze();
1627 
1628 		goto loop_again;
1629 	}
1630 
1631 	return nr_reclaimed;
1632 }
1633 
1634 /*
1635  * The background pageout daemon, started as a kernel thread
1636  * from the init process.
1637  *
1638  * This basically trickles out pages so that we have _some_
1639  * free memory available even if there is no other activity
1640  * that frees anything up. This is needed for things like routing
1641  * etc, where we otherwise might have all activity going on in
1642  * asynchronous contexts that cannot page things out.
1643  *
1644  * If there are applications that are active memory-allocators
1645  * (most normal use), this basically shouldn't matter.
1646  */
1647 static int kswapd(void *p)
1648 {
1649 	unsigned long order;
1650 	pg_data_t *pgdat = (pg_data_t*)p;
1651 	struct task_struct *tsk = current;
1652 	DEFINE_WAIT(wait);
1653 	struct reclaim_state reclaim_state = {
1654 		.reclaimed_slab = 0,
1655 	};
1656 	node_to_cpumask_ptr(cpumask, pgdat->node_id);
1657 
1658 	if (!cpus_empty(*cpumask))
1659 		set_cpus_allowed_ptr(tsk, cpumask);
1660 	current->reclaim_state = &reclaim_state;
1661 
1662 	/*
1663 	 * Tell the memory management that we're a "memory allocator",
1664 	 * and that if we need more memory we should get access to it
1665 	 * regardless (see "__alloc_pages()"). "kswapd" should
1666 	 * never get caught in the normal page freeing logic.
1667 	 *
1668 	 * (Kswapd normally doesn't need memory anyway, but sometimes
1669 	 * you need a small amount of memory in order to be able to
1670 	 * page out something else, and this flag essentially protects
1671 	 * us from recursively trying to free more memory as we're
1672 	 * trying to free the first piece of memory in the first place).
1673 	 */
1674 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1675 	set_freezable();
1676 
1677 	order = 0;
1678 	for ( ; ; ) {
1679 		unsigned long new_order;
1680 
1681 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1682 		new_order = pgdat->kswapd_max_order;
1683 		pgdat->kswapd_max_order = 0;
1684 		if (order < new_order) {
1685 			/*
1686 			 * Don't sleep if someone wants a larger 'order'
1687 			 * allocation
1688 			 */
1689 			order = new_order;
1690 		} else {
1691 			if (!freezing(current))
1692 				schedule();
1693 
1694 			order = pgdat->kswapd_max_order;
1695 		}
1696 		finish_wait(&pgdat->kswapd_wait, &wait);
1697 
1698 		if (!try_to_freeze()) {
1699 			/* We can speed up thawing tasks if we don't call
1700 			 * balance_pgdat after returning from the refrigerator
1701 			 */
1702 			balance_pgdat(pgdat, order);
1703 		}
1704 	}
1705 	return 0;
1706 }
1707 
1708 /*
1709  * A zone is low on free memory, so wake its kswapd task to service it.
1710  */
1711 void wakeup_kswapd(struct zone *zone, int order)
1712 {
1713 	pg_data_t *pgdat;
1714 
1715 	if (!populated_zone(zone))
1716 		return;
1717 
1718 	pgdat = zone->zone_pgdat;
1719 	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1720 		return;
1721 	if (pgdat->kswapd_max_order < order)
1722 		pgdat->kswapd_max_order = order;
1723 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1724 		return;
1725 	if (!waitqueue_active(&pgdat->kswapd_wait))
1726 		return;
1727 	wake_up_interruptible(&pgdat->kswapd_wait);
1728 }
1729 
1730 #ifdef CONFIG_PM
1731 /*
1732  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
1733  * from LRU lists system-wide, for given pass and priority, and returns the
1734  * number of reclaimed pages
1735  *
1736  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1737  */
1738 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1739 				      int pass, struct scan_control *sc)
1740 {
1741 	struct zone *zone;
1742 	unsigned long nr_to_scan, ret = 0;
1743 
1744 	for_each_zone(zone) {
1745 
1746 		if (!populated_zone(zone))
1747 			continue;
1748 
1749 		if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
1750 			continue;
1751 
1752 		/* For pass = 0 we don't shrink the active list */
1753 		if (pass > 0) {
1754 			zone->nr_scan_active +=
1755 				(zone_page_state(zone, NR_ACTIVE) >> prio) + 1;
1756 			if (zone->nr_scan_active >= nr_pages || pass > 3) {
1757 				zone->nr_scan_active = 0;
1758 				nr_to_scan = min(nr_pages,
1759 					zone_page_state(zone, NR_ACTIVE));
1760 				shrink_active_list(nr_to_scan, zone, sc, prio);
1761 			}
1762 		}
1763 
1764 		zone->nr_scan_inactive +=
1765 			(zone_page_state(zone, NR_INACTIVE) >> prio) + 1;
1766 		if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1767 			zone->nr_scan_inactive = 0;
1768 			nr_to_scan = min(nr_pages,
1769 				zone_page_state(zone, NR_INACTIVE));
1770 			ret += shrink_inactive_list(nr_to_scan, zone, sc);
1771 			if (ret >= nr_pages)
1772 				return ret;
1773 		}
1774 	}
1775 
1776 	return ret;
1777 }
1778 
1779 static unsigned long count_lru_pages(void)
1780 {
1781 	return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE);
1782 }
1783 
1784 /*
1785  * Try to free `nr_pages' of memory, system-wide, and return the number of
1786  * freed pages.
1787  *
1788  * Rather than trying to age LRUs the aim is to preserve the overall
1789  * LRU order by reclaiming preferentially
1790  * inactive > active > active referenced > active mapped
1791  */
1792 unsigned long shrink_all_memory(unsigned long nr_pages)
1793 {
1794 	unsigned long lru_pages, nr_slab;
1795 	unsigned long ret = 0;
1796 	int pass;
1797 	struct reclaim_state reclaim_state;
1798 	struct scan_control sc = {
1799 		.gfp_mask = GFP_KERNEL,
1800 		.may_swap = 0,
1801 		.swap_cluster_max = nr_pages,
1802 		.may_writepage = 1,
1803 		.swappiness = vm_swappiness,
1804 		.isolate_pages = isolate_pages_global,
1805 	};
1806 
1807 	current->reclaim_state = &reclaim_state;
1808 
1809 	lru_pages = count_lru_pages();
1810 	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
1811 	/* If slab caches are huge, it's better to hit them first */
1812 	while (nr_slab >= lru_pages) {
1813 		reclaim_state.reclaimed_slab = 0;
1814 		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1815 		if (!reclaim_state.reclaimed_slab)
1816 			break;
1817 
1818 		ret += reclaim_state.reclaimed_slab;
1819 		if (ret >= nr_pages)
1820 			goto out;
1821 
1822 		nr_slab -= reclaim_state.reclaimed_slab;
1823 	}
1824 
1825 	/*
1826 	 * We try to shrink LRUs in 5 passes:
1827 	 * 0 = Reclaim from inactive_list only
1828 	 * 1 = Reclaim from active list but don't reclaim mapped
1829 	 * 2 = 2nd pass of type 1
1830 	 * 3 = Reclaim mapped (normal reclaim)
1831 	 * 4 = 2nd pass of type 3
1832 	 */
1833 	for (pass = 0; pass < 5; pass++) {
1834 		int prio;
1835 
1836 		/* Force reclaiming mapped pages in the passes #3 and #4 */
1837 		if (pass > 2) {
1838 			sc.may_swap = 1;
1839 			sc.swappiness = 100;
1840 		}
1841 
1842 		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1843 			unsigned long nr_to_scan = nr_pages - ret;
1844 
1845 			sc.nr_scanned = 0;
1846 			ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1847 			if (ret >= nr_pages)
1848 				goto out;
1849 
1850 			reclaim_state.reclaimed_slab = 0;
1851 			shrink_slab(sc.nr_scanned, sc.gfp_mask,
1852 					count_lru_pages());
1853 			ret += reclaim_state.reclaimed_slab;
1854 			if (ret >= nr_pages)
1855 				goto out;
1856 
1857 			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1858 				congestion_wait(WRITE, HZ / 10);
1859 		}
1860 	}
1861 
1862 	/*
1863 	 * If ret = 0, we could not shrink LRUs, but there may be something
1864 	 * in slab caches
1865 	 */
1866 	if (!ret) {
1867 		do {
1868 			reclaim_state.reclaimed_slab = 0;
1869 			shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages());
1870 			ret += reclaim_state.reclaimed_slab;
1871 		} while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1872 	}
1873 
1874 out:
1875 	current->reclaim_state = NULL;
1876 
1877 	return ret;
1878 }
1879 #endif
1880 
1881 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1882    not required for correctness.  So if the last cpu in a node goes
1883    away, we get changed to run anywhere: as the first one comes back,
1884    restore their cpu bindings. */
1885 static int __devinit cpu_callback(struct notifier_block *nfb,
1886 				  unsigned long action, void *hcpu)
1887 {
1888 	int nid;
1889 
1890 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
1891 		for_each_node_state(nid, N_HIGH_MEMORY) {
1892 			pg_data_t *pgdat = NODE_DATA(nid);
1893 			node_to_cpumask_ptr(mask, pgdat->node_id);
1894 
1895 			if (any_online_cpu(*mask) < nr_cpu_ids)
1896 				/* One of our CPUs online: restore mask */
1897 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
1898 		}
1899 	}
1900 	return NOTIFY_OK;
1901 }
1902 
1903 /*
1904  * This kswapd start function will be called by init and node-hot-add.
1905  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1906  */
1907 int kswapd_run(int nid)
1908 {
1909 	pg_data_t *pgdat = NODE_DATA(nid);
1910 	int ret = 0;
1911 
1912 	if (pgdat->kswapd)
1913 		return 0;
1914 
1915 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
1916 	if (IS_ERR(pgdat->kswapd)) {
1917 		/* failure at boot is fatal */
1918 		BUG_ON(system_state == SYSTEM_BOOTING);
1919 		printk("Failed to start kswapd on node %d\n",nid);
1920 		ret = -1;
1921 	}
1922 	return ret;
1923 }
1924 
1925 static int __init kswapd_init(void)
1926 {
1927 	int nid;
1928 
1929 	swap_setup();
1930 	for_each_node_state(nid, N_HIGH_MEMORY)
1931  		kswapd_run(nid);
1932 	hotcpu_notifier(cpu_callback, 0);
1933 	return 0;
1934 }
1935 
1936 module_init(kswapd_init)
1937 
1938 #ifdef CONFIG_NUMA
1939 /*
1940  * Zone reclaim mode
1941  *
1942  * If non-zero call zone_reclaim when the number of free pages falls below
1943  * the watermarks.
1944  */
1945 int zone_reclaim_mode __read_mostly;
1946 
1947 #define RECLAIM_OFF 0
1948 #define RECLAIM_ZONE (1<<0)	/* Run shrink_cache on the zone */
1949 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
1950 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
1951 
1952 /*
1953  * Priority for ZONE_RECLAIM. This determines the fraction of pages
1954  * of a node considered for each zone_reclaim. 4 scans 1/16th of
1955  * a zone.
1956  */
1957 #define ZONE_RECLAIM_PRIORITY 4
1958 
1959 /*
1960  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1961  * occur.
1962  */
1963 int sysctl_min_unmapped_ratio = 1;
1964 
1965 /*
1966  * If the number of slab pages in a zone grows beyond this percentage then
1967  * slab reclaim needs to occur.
1968  */
1969 int sysctl_min_slab_ratio = 5;
1970 
1971 /*
1972  * Try to free up some pages from this zone through reclaim.
1973  */
1974 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1975 {
1976 	/* Minimum pages needed in order to stay on node */
1977 	const unsigned long nr_pages = 1 << order;
1978 	struct task_struct *p = current;
1979 	struct reclaim_state reclaim_state;
1980 	int priority;
1981 	unsigned long nr_reclaimed = 0;
1982 	struct scan_control sc = {
1983 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1984 		.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1985 		.swap_cluster_max = max_t(unsigned long, nr_pages,
1986 					SWAP_CLUSTER_MAX),
1987 		.gfp_mask = gfp_mask,
1988 		.swappiness = vm_swappiness,
1989 		.isolate_pages = isolate_pages_global,
1990 	};
1991 	unsigned long slab_reclaimable;
1992 
1993 	disable_swap_token();
1994 	cond_resched();
1995 	/*
1996 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1997 	 * and we also need to be able to write out pages for RECLAIM_WRITE
1998 	 * and RECLAIM_SWAP.
1999 	 */
2000 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2001 	reclaim_state.reclaimed_slab = 0;
2002 	p->reclaim_state = &reclaim_state;
2003 
2004 	if (zone_page_state(zone, NR_FILE_PAGES) -
2005 		zone_page_state(zone, NR_FILE_MAPPED) >
2006 		zone->min_unmapped_pages) {
2007 		/*
2008 		 * Free memory by calling shrink zone with increasing
2009 		 * priorities until we have enough memory freed.
2010 		 */
2011 		priority = ZONE_RECLAIM_PRIORITY;
2012 		do {
2013 			note_zone_scanning_priority(zone, priority);
2014 			nr_reclaimed += shrink_zone(priority, zone, &sc);
2015 			priority--;
2016 		} while (priority >= 0 && nr_reclaimed < nr_pages);
2017 	}
2018 
2019 	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2020 	if (slab_reclaimable > zone->min_slab_pages) {
2021 		/*
2022 		 * shrink_slab() does not currently allow us to determine how
2023 		 * many pages were freed in this zone. So we take the current
2024 		 * number of slab pages and shake the slab until it is reduced
2025 		 * by the same nr_pages that we used for reclaiming unmapped
2026 		 * pages.
2027 		 *
2028 		 * Note that shrink_slab will free memory on all zones and may
2029 		 * take a long time.
2030 		 */
2031 		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2032 			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2033 				slab_reclaimable - nr_pages)
2034 			;
2035 
2036 		/*
2037 		 * Update nr_reclaimed by the number of slab pages we
2038 		 * reclaimed from this zone.
2039 		 */
2040 		nr_reclaimed += slab_reclaimable -
2041 			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2042 	}
2043 
2044 	p->reclaim_state = NULL;
2045 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2046 	return nr_reclaimed >= nr_pages;
2047 }
2048 
2049 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2050 {
2051 	int node_id;
2052 	int ret;
2053 
2054 	/*
2055 	 * Zone reclaim reclaims unmapped file backed pages and
2056 	 * slab pages if we are over the defined limits.
2057 	 *
2058 	 * A small portion of unmapped file backed pages is needed for
2059 	 * file I/O otherwise pages read by file I/O will be immediately
2060 	 * thrown out if the zone is overallocated. So we do not reclaim
2061 	 * if less than a specified percentage of the zone is used by
2062 	 * unmapped file backed pages.
2063 	 */
2064 	if (zone_page_state(zone, NR_FILE_PAGES) -
2065 	    zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2066 	    && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2067 			<= zone->min_slab_pages)
2068 		return 0;
2069 
2070 	if (zone_is_all_unreclaimable(zone))
2071 		return 0;
2072 
2073 	/*
2074 	 * Do not scan if the allocation should not be delayed.
2075 	 */
2076 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2077 			return 0;
2078 
2079 	/*
2080 	 * Only run zone reclaim on the local zone or on zones that do not
2081 	 * have associated processors. This will favor the local processor
2082 	 * over remote processors and spread off node memory allocations
2083 	 * as wide as possible.
2084 	 */
2085 	node_id = zone_to_nid(zone);
2086 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2087 		return 0;
2088 
2089 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2090 		return 0;
2091 	ret = __zone_reclaim(zone, gfp_mask, order);
2092 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2093 
2094 	return ret;
2095 }
2096 #endif
2097