1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmstat.h> 23 #include <linux/file.h> 24 #include <linux/writeback.h> 25 #include <linux/blkdev.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page(), 27 buffer_heads_over_limit */ 28 #include <linux/mm_inline.h> 29 #include <linux/pagevec.h> 30 #include <linux/backing-dev.h> 31 #include <linux/rmap.h> 32 #include <linux/topology.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/notifier.h> 36 #include <linux/rwsem.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/freezer.h> 40 #include <linux/memcontrol.h> 41 #include <linux/delayacct.h> 42 43 #include <asm/tlbflush.h> 44 #include <asm/div64.h> 45 46 #include <linux/swapops.h> 47 48 #include "internal.h" 49 50 struct scan_control { 51 /* Incremented by the number of inactive pages that were scanned */ 52 unsigned long nr_scanned; 53 54 /* This context's GFP mask */ 55 gfp_t gfp_mask; 56 57 int may_writepage; 58 59 /* Can pages be swapped as part of reclaim? */ 60 int may_swap; 61 62 /* This context's SWAP_CLUSTER_MAX. If freeing memory for 63 * suspend, we effectively ignore SWAP_CLUSTER_MAX. 64 * In this context, it doesn't matter that we scan the 65 * whole list at once. */ 66 int swap_cluster_max; 67 68 int swappiness; 69 70 int all_unreclaimable; 71 72 int order; 73 74 /* Which cgroup do we reclaim from */ 75 struct mem_cgroup *mem_cgroup; 76 77 /* Pluggable isolate pages callback */ 78 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst, 79 unsigned long *scanned, int order, int mode, 80 struct zone *z, struct mem_cgroup *mem_cont, 81 int active); 82 }; 83 84 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 85 86 #ifdef ARCH_HAS_PREFETCH 87 #define prefetch_prev_lru_page(_page, _base, _field) \ 88 do { \ 89 if ((_page)->lru.prev != _base) { \ 90 struct page *prev; \ 91 \ 92 prev = lru_to_page(&(_page->lru)); \ 93 prefetch(&prev->_field); \ 94 } \ 95 } while (0) 96 #else 97 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 98 #endif 99 100 #ifdef ARCH_HAS_PREFETCHW 101 #define prefetchw_prev_lru_page(_page, _base, _field) \ 102 do { \ 103 if ((_page)->lru.prev != _base) { \ 104 struct page *prev; \ 105 \ 106 prev = lru_to_page(&(_page->lru)); \ 107 prefetchw(&prev->_field); \ 108 } \ 109 } while (0) 110 #else 111 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 112 #endif 113 114 /* 115 * From 0 .. 100. Higher means more swappy. 116 */ 117 int vm_swappiness = 60; 118 long vm_total_pages; /* The total number of pages which the VM controls */ 119 120 static LIST_HEAD(shrinker_list); 121 static DECLARE_RWSEM(shrinker_rwsem); 122 123 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 124 #define scan_global_lru(sc) (!(sc)->mem_cgroup) 125 #else 126 #define scan_global_lru(sc) (1) 127 #endif 128 129 /* 130 * Add a shrinker callback to be called from the vm 131 */ 132 void register_shrinker(struct shrinker *shrinker) 133 { 134 shrinker->nr = 0; 135 down_write(&shrinker_rwsem); 136 list_add_tail(&shrinker->list, &shrinker_list); 137 up_write(&shrinker_rwsem); 138 } 139 EXPORT_SYMBOL(register_shrinker); 140 141 /* 142 * Remove one 143 */ 144 void unregister_shrinker(struct shrinker *shrinker) 145 { 146 down_write(&shrinker_rwsem); 147 list_del(&shrinker->list); 148 up_write(&shrinker_rwsem); 149 } 150 EXPORT_SYMBOL(unregister_shrinker); 151 152 #define SHRINK_BATCH 128 153 /* 154 * Call the shrink functions to age shrinkable caches 155 * 156 * Here we assume it costs one seek to replace a lru page and that it also 157 * takes a seek to recreate a cache object. With this in mind we age equal 158 * percentages of the lru and ageable caches. This should balance the seeks 159 * generated by these structures. 160 * 161 * If the vm encountered mapped pages on the LRU it increase the pressure on 162 * slab to avoid swapping. 163 * 164 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 165 * 166 * `lru_pages' represents the number of on-LRU pages in all the zones which 167 * are eligible for the caller's allocation attempt. It is used for balancing 168 * slab reclaim versus page reclaim. 169 * 170 * Returns the number of slab objects which we shrunk. 171 */ 172 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 173 unsigned long lru_pages) 174 { 175 struct shrinker *shrinker; 176 unsigned long ret = 0; 177 178 if (scanned == 0) 179 scanned = SWAP_CLUSTER_MAX; 180 181 if (!down_read_trylock(&shrinker_rwsem)) 182 return 1; /* Assume we'll be able to shrink next time */ 183 184 list_for_each_entry(shrinker, &shrinker_list, list) { 185 unsigned long long delta; 186 unsigned long total_scan; 187 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask); 188 189 delta = (4 * scanned) / shrinker->seeks; 190 delta *= max_pass; 191 do_div(delta, lru_pages + 1); 192 shrinker->nr += delta; 193 if (shrinker->nr < 0) { 194 printk(KERN_ERR "%s: nr=%ld\n", 195 __func__, shrinker->nr); 196 shrinker->nr = max_pass; 197 } 198 199 /* 200 * Avoid risking looping forever due to too large nr value: 201 * never try to free more than twice the estimate number of 202 * freeable entries. 203 */ 204 if (shrinker->nr > max_pass * 2) 205 shrinker->nr = max_pass * 2; 206 207 total_scan = shrinker->nr; 208 shrinker->nr = 0; 209 210 while (total_scan >= SHRINK_BATCH) { 211 long this_scan = SHRINK_BATCH; 212 int shrink_ret; 213 int nr_before; 214 215 nr_before = (*shrinker->shrink)(0, gfp_mask); 216 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask); 217 if (shrink_ret == -1) 218 break; 219 if (shrink_ret < nr_before) 220 ret += nr_before - shrink_ret; 221 count_vm_events(SLABS_SCANNED, this_scan); 222 total_scan -= this_scan; 223 224 cond_resched(); 225 } 226 227 shrinker->nr += total_scan; 228 } 229 up_read(&shrinker_rwsem); 230 return ret; 231 } 232 233 /* Called without lock on whether page is mapped, so answer is unstable */ 234 static inline int page_mapping_inuse(struct page *page) 235 { 236 struct address_space *mapping; 237 238 /* Page is in somebody's page tables. */ 239 if (page_mapped(page)) 240 return 1; 241 242 /* Be more reluctant to reclaim swapcache than pagecache */ 243 if (PageSwapCache(page)) 244 return 1; 245 246 mapping = page_mapping(page); 247 if (!mapping) 248 return 0; 249 250 /* File is mmap'd by somebody? */ 251 return mapping_mapped(mapping); 252 } 253 254 static inline int is_page_cache_freeable(struct page *page) 255 { 256 return page_count(page) - !!PagePrivate(page) == 2; 257 } 258 259 static int may_write_to_queue(struct backing_dev_info *bdi) 260 { 261 if (current->flags & PF_SWAPWRITE) 262 return 1; 263 if (!bdi_write_congested(bdi)) 264 return 1; 265 if (bdi == current->backing_dev_info) 266 return 1; 267 return 0; 268 } 269 270 /* 271 * We detected a synchronous write error writing a page out. Probably 272 * -ENOSPC. We need to propagate that into the address_space for a subsequent 273 * fsync(), msync() or close(). 274 * 275 * The tricky part is that after writepage we cannot touch the mapping: nothing 276 * prevents it from being freed up. But we have a ref on the page and once 277 * that page is locked, the mapping is pinned. 278 * 279 * We're allowed to run sleeping lock_page() here because we know the caller has 280 * __GFP_FS. 281 */ 282 static void handle_write_error(struct address_space *mapping, 283 struct page *page, int error) 284 { 285 lock_page(page); 286 if (page_mapping(page) == mapping) 287 mapping_set_error(mapping, error); 288 unlock_page(page); 289 } 290 291 /* Request for sync pageout. */ 292 enum pageout_io { 293 PAGEOUT_IO_ASYNC, 294 PAGEOUT_IO_SYNC, 295 }; 296 297 /* possible outcome of pageout() */ 298 typedef enum { 299 /* failed to write page out, page is locked */ 300 PAGE_KEEP, 301 /* move page to the active list, page is locked */ 302 PAGE_ACTIVATE, 303 /* page has been sent to the disk successfully, page is unlocked */ 304 PAGE_SUCCESS, 305 /* page is clean and locked */ 306 PAGE_CLEAN, 307 } pageout_t; 308 309 /* 310 * pageout is called by shrink_page_list() for each dirty page. 311 * Calls ->writepage(). 312 */ 313 static pageout_t pageout(struct page *page, struct address_space *mapping, 314 enum pageout_io sync_writeback) 315 { 316 /* 317 * If the page is dirty, only perform writeback if that write 318 * will be non-blocking. To prevent this allocation from being 319 * stalled by pagecache activity. But note that there may be 320 * stalls if we need to run get_block(). We could test 321 * PagePrivate for that. 322 * 323 * If this process is currently in generic_file_write() against 324 * this page's queue, we can perform writeback even if that 325 * will block. 326 * 327 * If the page is swapcache, write it back even if that would 328 * block, for some throttling. This happens by accident, because 329 * swap_backing_dev_info is bust: it doesn't reflect the 330 * congestion state of the swapdevs. Easy to fix, if needed. 331 * See swapfile.c:page_queue_congested(). 332 */ 333 if (!is_page_cache_freeable(page)) 334 return PAGE_KEEP; 335 if (!mapping) { 336 /* 337 * Some data journaling orphaned pages can have 338 * page->mapping == NULL while being dirty with clean buffers. 339 */ 340 if (PagePrivate(page)) { 341 if (try_to_free_buffers(page)) { 342 ClearPageDirty(page); 343 printk("%s: orphaned page\n", __func__); 344 return PAGE_CLEAN; 345 } 346 } 347 return PAGE_KEEP; 348 } 349 if (mapping->a_ops->writepage == NULL) 350 return PAGE_ACTIVATE; 351 if (!may_write_to_queue(mapping->backing_dev_info)) 352 return PAGE_KEEP; 353 354 if (clear_page_dirty_for_io(page)) { 355 int res; 356 struct writeback_control wbc = { 357 .sync_mode = WB_SYNC_NONE, 358 .nr_to_write = SWAP_CLUSTER_MAX, 359 .range_start = 0, 360 .range_end = LLONG_MAX, 361 .nonblocking = 1, 362 .for_reclaim = 1, 363 }; 364 365 SetPageReclaim(page); 366 res = mapping->a_ops->writepage(page, &wbc); 367 if (res < 0) 368 handle_write_error(mapping, page, res); 369 if (res == AOP_WRITEPAGE_ACTIVATE) { 370 ClearPageReclaim(page); 371 return PAGE_ACTIVATE; 372 } 373 374 /* 375 * Wait on writeback if requested to. This happens when 376 * direct reclaiming a large contiguous area and the 377 * first attempt to free a range of pages fails. 378 */ 379 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC) 380 wait_on_page_writeback(page); 381 382 if (!PageWriteback(page)) { 383 /* synchronous write or broken a_ops? */ 384 ClearPageReclaim(page); 385 } 386 inc_zone_page_state(page, NR_VMSCAN_WRITE); 387 return PAGE_SUCCESS; 388 } 389 390 return PAGE_CLEAN; 391 } 392 393 /* 394 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 395 * someone else has a ref on the page, abort and return 0. If it was 396 * successfully detached, return 1. Assumes the caller has a single ref on 397 * this page. 398 */ 399 int remove_mapping(struct address_space *mapping, struct page *page) 400 { 401 BUG_ON(!PageLocked(page)); 402 BUG_ON(mapping != page_mapping(page)); 403 404 write_lock_irq(&mapping->tree_lock); 405 /* 406 * The non racy check for a busy page. 407 * 408 * Must be careful with the order of the tests. When someone has 409 * a ref to the page, it may be possible that they dirty it then 410 * drop the reference. So if PageDirty is tested before page_count 411 * here, then the following race may occur: 412 * 413 * get_user_pages(&page); 414 * [user mapping goes away] 415 * write_to(page); 416 * !PageDirty(page) [good] 417 * SetPageDirty(page); 418 * put_page(page); 419 * !page_count(page) [good, discard it] 420 * 421 * [oops, our write_to data is lost] 422 * 423 * Reversing the order of the tests ensures such a situation cannot 424 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 425 * load is not satisfied before that of page->_count. 426 * 427 * Note that if SetPageDirty is always performed via set_page_dirty, 428 * and thus under tree_lock, then this ordering is not required. 429 */ 430 if (unlikely(page_count(page) != 2)) 431 goto cannot_free; 432 smp_rmb(); 433 if (unlikely(PageDirty(page))) 434 goto cannot_free; 435 436 if (PageSwapCache(page)) { 437 swp_entry_t swap = { .val = page_private(page) }; 438 __delete_from_swap_cache(page); 439 write_unlock_irq(&mapping->tree_lock); 440 swap_free(swap); 441 __put_page(page); /* The pagecache ref */ 442 return 1; 443 } 444 445 __remove_from_page_cache(page); 446 write_unlock_irq(&mapping->tree_lock); 447 __put_page(page); 448 return 1; 449 450 cannot_free: 451 write_unlock_irq(&mapping->tree_lock); 452 return 0; 453 } 454 455 /* 456 * shrink_page_list() returns the number of reclaimed pages 457 */ 458 static unsigned long shrink_page_list(struct list_head *page_list, 459 struct scan_control *sc, 460 enum pageout_io sync_writeback) 461 { 462 LIST_HEAD(ret_pages); 463 struct pagevec freed_pvec; 464 int pgactivate = 0; 465 unsigned long nr_reclaimed = 0; 466 467 cond_resched(); 468 469 pagevec_init(&freed_pvec, 1); 470 while (!list_empty(page_list)) { 471 struct address_space *mapping; 472 struct page *page; 473 int may_enter_fs; 474 int referenced; 475 476 cond_resched(); 477 478 page = lru_to_page(page_list); 479 list_del(&page->lru); 480 481 if (TestSetPageLocked(page)) 482 goto keep; 483 484 VM_BUG_ON(PageActive(page)); 485 486 sc->nr_scanned++; 487 488 if (!sc->may_swap && page_mapped(page)) 489 goto keep_locked; 490 491 /* Double the slab pressure for mapped and swapcache pages */ 492 if (page_mapped(page) || PageSwapCache(page)) 493 sc->nr_scanned++; 494 495 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 496 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 497 498 if (PageWriteback(page)) { 499 /* 500 * Synchronous reclaim is performed in two passes, 501 * first an asynchronous pass over the list to 502 * start parallel writeback, and a second synchronous 503 * pass to wait for the IO to complete. Wait here 504 * for any page for which writeback has already 505 * started. 506 */ 507 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs) 508 wait_on_page_writeback(page); 509 else 510 goto keep_locked; 511 } 512 513 referenced = page_referenced(page, 1, sc->mem_cgroup); 514 /* In active use or really unfreeable? Activate it. */ 515 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && 516 referenced && page_mapping_inuse(page)) 517 goto activate_locked; 518 519 #ifdef CONFIG_SWAP 520 /* 521 * Anonymous process memory has backing store? 522 * Try to allocate it some swap space here. 523 */ 524 if (PageAnon(page) && !PageSwapCache(page)) 525 if (!add_to_swap(page, GFP_ATOMIC)) 526 goto activate_locked; 527 #endif /* CONFIG_SWAP */ 528 529 mapping = page_mapping(page); 530 531 /* 532 * The page is mapped into the page tables of one or more 533 * processes. Try to unmap it here. 534 */ 535 if (page_mapped(page) && mapping) { 536 switch (try_to_unmap(page, 0)) { 537 case SWAP_FAIL: 538 goto activate_locked; 539 case SWAP_AGAIN: 540 goto keep_locked; 541 case SWAP_SUCCESS: 542 ; /* try to free the page below */ 543 } 544 } 545 546 if (PageDirty(page)) { 547 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced) 548 goto keep_locked; 549 if (!may_enter_fs) 550 goto keep_locked; 551 if (!sc->may_writepage) 552 goto keep_locked; 553 554 /* Page is dirty, try to write it out here */ 555 switch (pageout(page, mapping, sync_writeback)) { 556 case PAGE_KEEP: 557 goto keep_locked; 558 case PAGE_ACTIVATE: 559 goto activate_locked; 560 case PAGE_SUCCESS: 561 if (PageWriteback(page) || PageDirty(page)) 562 goto keep; 563 /* 564 * A synchronous write - probably a ramdisk. Go 565 * ahead and try to reclaim the page. 566 */ 567 if (TestSetPageLocked(page)) 568 goto keep; 569 if (PageDirty(page) || PageWriteback(page)) 570 goto keep_locked; 571 mapping = page_mapping(page); 572 case PAGE_CLEAN: 573 ; /* try to free the page below */ 574 } 575 } 576 577 /* 578 * If the page has buffers, try to free the buffer mappings 579 * associated with this page. If we succeed we try to free 580 * the page as well. 581 * 582 * We do this even if the page is PageDirty(). 583 * try_to_release_page() does not perform I/O, but it is 584 * possible for a page to have PageDirty set, but it is actually 585 * clean (all its buffers are clean). This happens if the 586 * buffers were written out directly, with submit_bh(). ext3 587 * will do this, as well as the blockdev mapping. 588 * try_to_release_page() will discover that cleanness and will 589 * drop the buffers and mark the page clean - it can be freed. 590 * 591 * Rarely, pages can have buffers and no ->mapping. These are 592 * the pages which were not successfully invalidated in 593 * truncate_complete_page(). We try to drop those buffers here 594 * and if that worked, and the page is no longer mapped into 595 * process address space (page_count == 1) it can be freed. 596 * Otherwise, leave the page on the LRU so it is swappable. 597 */ 598 if (PagePrivate(page)) { 599 if (!try_to_release_page(page, sc->gfp_mask)) 600 goto activate_locked; 601 if (!mapping && page_count(page) == 1) 602 goto free_it; 603 } 604 605 if (!mapping || !remove_mapping(mapping, page)) 606 goto keep_locked; 607 608 free_it: 609 unlock_page(page); 610 nr_reclaimed++; 611 if (!pagevec_add(&freed_pvec, page)) 612 __pagevec_release_nonlru(&freed_pvec); 613 continue; 614 615 activate_locked: 616 SetPageActive(page); 617 pgactivate++; 618 keep_locked: 619 unlock_page(page); 620 keep: 621 list_add(&page->lru, &ret_pages); 622 VM_BUG_ON(PageLRU(page)); 623 } 624 list_splice(&ret_pages, page_list); 625 if (pagevec_count(&freed_pvec)) 626 __pagevec_release_nonlru(&freed_pvec); 627 count_vm_events(PGACTIVATE, pgactivate); 628 return nr_reclaimed; 629 } 630 631 /* LRU Isolation modes. */ 632 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */ 633 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */ 634 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */ 635 636 /* 637 * Attempt to remove the specified page from its LRU. Only take this page 638 * if it is of the appropriate PageActive status. Pages which are being 639 * freed elsewhere are also ignored. 640 * 641 * page: page to consider 642 * mode: one of the LRU isolation modes defined above 643 * 644 * returns 0 on success, -ve errno on failure. 645 */ 646 int __isolate_lru_page(struct page *page, int mode) 647 { 648 int ret = -EINVAL; 649 650 /* Only take pages on the LRU. */ 651 if (!PageLRU(page)) 652 return ret; 653 654 /* 655 * When checking the active state, we need to be sure we are 656 * dealing with comparible boolean values. Take the logical not 657 * of each. 658 */ 659 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode)) 660 return ret; 661 662 ret = -EBUSY; 663 if (likely(get_page_unless_zero(page))) { 664 /* 665 * Be careful not to clear PageLRU until after we're 666 * sure the page is not being freed elsewhere -- the 667 * page release code relies on it. 668 */ 669 ClearPageLRU(page); 670 ret = 0; 671 } 672 673 return ret; 674 } 675 676 /* 677 * zone->lru_lock is heavily contended. Some of the functions that 678 * shrink the lists perform better by taking out a batch of pages 679 * and working on them outside the LRU lock. 680 * 681 * For pagecache intensive workloads, this function is the hottest 682 * spot in the kernel (apart from copy_*_user functions). 683 * 684 * Appropriate locks must be held before calling this function. 685 * 686 * @nr_to_scan: The number of pages to look through on the list. 687 * @src: The LRU list to pull pages off. 688 * @dst: The temp list to put pages on to. 689 * @scanned: The number of pages that were scanned. 690 * @order: The caller's attempted allocation order 691 * @mode: One of the LRU isolation modes 692 * 693 * returns how many pages were moved onto *@dst. 694 */ 695 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 696 struct list_head *src, struct list_head *dst, 697 unsigned long *scanned, int order, int mode) 698 { 699 unsigned long nr_taken = 0; 700 unsigned long scan; 701 702 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 703 struct page *page; 704 unsigned long pfn; 705 unsigned long end_pfn; 706 unsigned long page_pfn; 707 int zone_id; 708 709 page = lru_to_page(src); 710 prefetchw_prev_lru_page(page, src, flags); 711 712 VM_BUG_ON(!PageLRU(page)); 713 714 switch (__isolate_lru_page(page, mode)) { 715 case 0: 716 list_move(&page->lru, dst); 717 nr_taken++; 718 break; 719 720 case -EBUSY: 721 /* else it is being freed elsewhere */ 722 list_move(&page->lru, src); 723 continue; 724 725 default: 726 BUG(); 727 } 728 729 if (!order) 730 continue; 731 732 /* 733 * Attempt to take all pages in the order aligned region 734 * surrounding the tag page. Only take those pages of 735 * the same active state as that tag page. We may safely 736 * round the target page pfn down to the requested order 737 * as the mem_map is guarenteed valid out to MAX_ORDER, 738 * where that page is in a different zone we will detect 739 * it from its zone id and abort this block scan. 740 */ 741 zone_id = page_zone_id(page); 742 page_pfn = page_to_pfn(page); 743 pfn = page_pfn & ~((1 << order) - 1); 744 end_pfn = pfn + (1 << order); 745 for (; pfn < end_pfn; pfn++) { 746 struct page *cursor_page; 747 748 /* The target page is in the block, ignore it. */ 749 if (unlikely(pfn == page_pfn)) 750 continue; 751 752 /* Avoid holes within the zone. */ 753 if (unlikely(!pfn_valid_within(pfn))) 754 break; 755 756 cursor_page = pfn_to_page(pfn); 757 /* Check that we have not crossed a zone boundary. */ 758 if (unlikely(page_zone_id(cursor_page) != zone_id)) 759 continue; 760 switch (__isolate_lru_page(cursor_page, mode)) { 761 case 0: 762 list_move(&cursor_page->lru, dst); 763 nr_taken++; 764 scan++; 765 break; 766 767 case -EBUSY: 768 /* else it is being freed elsewhere */ 769 list_move(&cursor_page->lru, src); 770 default: 771 break; 772 } 773 } 774 } 775 776 *scanned = scan; 777 return nr_taken; 778 } 779 780 static unsigned long isolate_pages_global(unsigned long nr, 781 struct list_head *dst, 782 unsigned long *scanned, int order, 783 int mode, struct zone *z, 784 struct mem_cgroup *mem_cont, 785 int active) 786 { 787 if (active) 788 return isolate_lru_pages(nr, &z->active_list, dst, 789 scanned, order, mode); 790 else 791 return isolate_lru_pages(nr, &z->inactive_list, dst, 792 scanned, order, mode); 793 } 794 795 /* 796 * clear_active_flags() is a helper for shrink_active_list(), clearing 797 * any active bits from the pages in the list. 798 */ 799 static unsigned long clear_active_flags(struct list_head *page_list) 800 { 801 int nr_active = 0; 802 struct page *page; 803 804 list_for_each_entry(page, page_list, lru) 805 if (PageActive(page)) { 806 ClearPageActive(page); 807 nr_active++; 808 } 809 810 return nr_active; 811 } 812 813 /* 814 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 815 * of reclaimed pages 816 */ 817 static unsigned long shrink_inactive_list(unsigned long max_scan, 818 struct zone *zone, struct scan_control *sc) 819 { 820 LIST_HEAD(page_list); 821 struct pagevec pvec; 822 unsigned long nr_scanned = 0; 823 unsigned long nr_reclaimed = 0; 824 825 pagevec_init(&pvec, 1); 826 827 lru_add_drain(); 828 spin_lock_irq(&zone->lru_lock); 829 do { 830 struct page *page; 831 unsigned long nr_taken; 832 unsigned long nr_scan; 833 unsigned long nr_freed; 834 unsigned long nr_active; 835 836 nr_taken = sc->isolate_pages(sc->swap_cluster_max, 837 &page_list, &nr_scan, sc->order, 838 (sc->order > PAGE_ALLOC_COSTLY_ORDER)? 839 ISOLATE_BOTH : ISOLATE_INACTIVE, 840 zone, sc->mem_cgroup, 0); 841 nr_active = clear_active_flags(&page_list); 842 __count_vm_events(PGDEACTIVATE, nr_active); 843 844 __mod_zone_page_state(zone, NR_ACTIVE, -nr_active); 845 __mod_zone_page_state(zone, NR_INACTIVE, 846 -(nr_taken - nr_active)); 847 if (scan_global_lru(sc)) 848 zone->pages_scanned += nr_scan; 849 spin_unlock_irq(&zone->lru_lock); 850 851 nr_scanned += nr_scan; 852 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC); 853 854 /* 855 * If we are direct reclaiming for contiguous pages and we do 856 * not reclaim everything in the list, try again and wait 857 * for IO to complete. This will stall high-order allocations 858 * but that should be acceptable to the caller 859 */ 860 if (nr_freed < nr_taken && !current_is_kswapd() && 861 sc->order > PAGE_ALLOC_COSTLY_ORDER) { 862 congestion_wait(WRITE, HZ/10); 863 864 /* 865 * The attempt at page out may have made some 866 * of the pages active, mark them inactive again. 867 */ 868 nr_active = clear_active_flags(&page_list); 869 count_vm_events(PGDEACTIVATE, nr_active); 870 871 nr_freed += shrink_page_list(&page_list, sc, 872 PAGEOUT_IO_SYNC); 873 } 874 875 nr_reclaimed += nr_freed; 876 local_irq_disable(); 877 if (current_is_kswapd()) { 878 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan); 879 __count_vm_events(KSWAPD_STEAL, nr_freed); 880 } else if (scan_global_lru(sc)) 881 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan); 882 883 __count_zone_vm_events(PGSTEAL, zone, nr_freed); 884 885 if (nr_taken == 0) 886 goto done; 887 888 spin_lock(&zone->lru_lock); 889 /* 890 * Put back any unfreeable pages. 891 */ 892 while (!list_empty(&page_list)) { 893 page = lru_to_page(&page_list); 894 VM_BUG_ON(PageLRU(page)); 895 SetPageLRU(page); 896 list_del(&page->lru); 897 if (PageActive(page)) 898 add_page_to_active_list(zone, page); 899 else 900 add_page_to_inactive_list(zone, page); 901 if (!pagevec_add(&pvec, page)) { 902 spin_unlock_irq(&zone->lru_lock); 903 __pagevec_release(&pvec); 904 spin_lock_irq(&zone->lru_lock); 905 } 906 } 907 } while (nr_scanned < max_scan); 908 spin_unlock(&zone->lru_lock); 909 done: 910 local_irq_enable(); 911 pagevec_release(&pvec); 912 return nr_reclaimed; 913 } 914 915 /* 916 * We are about to scan this zone at a certain priority level. If that priority 917 * level is smaller (ie: more urgent) than the previous priority, then note 918 * that priority level within the zone. This is done so that when the next 919 * process comes in to scan this zone, it will immediately start out at this 920 * priority level rather than having to build up its own scanning priority. 921 * Here, this priority affects only the reclaim-mapped threshold. 922 */ 923 static inline void note_zone_scanning_priority(struct zone *zone, int priority) 924 { 925 if (priority < zone->prev_priority) 926 zone->prev_priority = priority; 927 } 928 929 static inline int zone_is_near_oom(struct zone *zone) 930 { 931 return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE) 932 + zone_page_state(zone, NR_INACTIVE))*3; 933 } 934 935 /* 936 * Determine we should try to reclaim mapped pages. 937 * This is called only when sc->mem_cgroup is NULL. 938 */ 939 static int calc_reclaim_mapped(struct scan_control *sc, struct zone *zone, 940 int priority) 941 { 942 long mapped_ratio; 943 long distress; 944 long swap_tendency; 945 long imbalance; 946 int reclaim_mapped = 0; 947 int prev_priority; 948 949 if (scan_global_lru(sc) && zone_is_near_oom(zone)) 950 return 1; 951 /* 952 * `distress' is a measure of how much trouble we're having 953 * reclaiming pages. 0 -> no problems. 100 -> great trouble. 954 */ 955 if (scan_global_lru(sc)) 956 prev_priority = zone->prev_priority; 957 else 958 prev_priority = mem_cgroup_get_reclaim_priority(sc->mem_cgroup); 959 960 distress = 100 >> min(prev_priority, priority); 961 962 /* 963 * The point of this algorithm is to decide when to start 964 * reclaiming mapped memory instead of just pagecache. Work out 965 * how much memory 966 * is mapped. 967 */ 968 if (scan_global_lru(sc)) 969 mapped_ratio = ((global_page_state(NR_FILE_MAPPED) + 970 global_page_state(NR_ANON_PAGES)) * 100) / 971 vm_total_pages; 972 else 973 mapped_ratio = mem_cgroup_calc_mapped_ratio(sc->mem_cgroup); 974 975 /* 976 * Now decide how much we really want to unmap some pages. The 977 * mapped ratio is downgraded - just because there's a lot of 978 * mapped memory doesn't necessarily mean that page reclaim 979 * isn't succeeding. 980 * 981 * The distress ratio is important - we don't want to start 982 * going oom. 983 * 984 * A 100% value of vm_swappiness overrides this algorithm 985 * altogether. 986 */ 987 swap_tendency = mapped_ratio / 2 + distress + sc->swappiness; 988 989 /* 990 * If there's huge imbalance between active and inactive 991 * (think active 100 times larger than inactive) we should 992 * become more permissive, or the system will take too much 993 * cpu before it start swapping during memory pressure. 994 * Distress is about avoiding early-oom, this is about 995 * making swappiness graceful despite setting it to low 996 * values. 997 * 998 * Avoid div by zero with nr_inactive+1, and max resulting 999 * value is vm_total_pages. 1000 */ 1001 if (scan_global_lru(sc)) { 1002 imbalance = zone_page_state(zone, NR_ACTIVE); 1003 imbalance /= zone_page_state(zone, NR_INACTIVE) + 1; 1004 } else 1005 imbalance = mem_cgroup_reclaim_imbalance(sc->mem_cgroup); 1006 1007 /* 1008 * Reduce the effect of imbalance if swappiness is low, 1009 * this means for a swappiness very low, the imbalance 1010 * must be much higher than 100 for this logic to make 1011 * the difference. 1012 * 1013 * Max temporary value is vm_total_pages*100. 1014 */ 1015 imbalance *= (vm_swappiness + 1); 1016 imbalance /= 100; 1017 1018 /* 1019 * If not much of the ram is mapped, makes the imbalance 1020 * less relevant, it's high priority we refill the inactive 1021 * list with mapped pages only in presence of high ratio of 1022 * mapped pages. 1023 * 1024 * Max temporary value is vm_total_pages*100. 1025 */ 1026 imbalance *= mapped_ratio; 1027 imbalance /= 100; 1028 1029 /* apply imbalance feedback to swap_tendency */ 1030 swap_tendency += imbalance; 1031 1032 /* 1033 * Now use this metric to decide whether to start moving mapped 1034 * memory onto the inactive list. 1035 */ 1036 if (swap_tendency >= 100) 1037 reclaim_mapped = 1; 1038 1039 return reclaim_mapped; 1040 } 1041 1042 /* 1043 * This moves pages from the active list to the inactive list. 1044 * 1045 * We move them the other way if the page is referenced by one or more 1046 * processes, from rmap. 1047 * 1048 * If the pages are mostly unmapped, the processing is fast and it is 1049 * appropriate to hold zone->lru_lock across the whole operation. But if 1050 * the pages are mapped, the processing is slow (page_referenced()) so we 1051 * should drop zone->lru_lock around each page. It's impossible to balance 1052 * this, so instead we remove the pages from the LRU while processing them. 1053 * It is safe to rely on PG_active against the non-LRU pages in here because 1054 * nobody will play with that bit on a non-LRU page. 1055 * 1056 * The downside is that we have to touch page->_count against each page. 1057 * But we had to alter page->flags anyway. 1058 */ 1059 1060 1061 static void shrink_active_list(unsigned long nr_pages, struct zone *zone, 1062 struct scan_control *sc, int priority) 1063 { 1064 unsigned long pgmoved; 1065 int pgdeactivate = 0; 1066 unsigned long pgscanned; 1067 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1068 LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */ 1069 LIST_HEAD(l_active); /* Pages to go onto the active_list */ 1070 struct page *page; 1071 struct pagevec pvec; 1072 int reclaim_mapped = 0; 1073 1074 if (sc->may_swap) 1075 reclaim_mapped = calc_reclaim_mapped(sc, zone, priority); 1076 1077 lru_add_drain(); 1078 spin_lock_irq(&zone->lru_lock); 1079 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order, 1080 ISOLATE_ACTIVE, zone, 1081 sc->mem_cgroup, 1); 1082 /* 1083 * zone->pages_scanned is used for detect zone's oom 1084 * mem_cgroup remembers nr_scan by itself. 1085 */ 1086 if (scan_global_lru(sc)) 1087 zone->pages_scanned += pgscanned; 1088 1089 __mod_zone_page_state(zone, NR_ACTIVE, -pgmoved); 1090 spin_unlock_irq(&zone->lru_lock); 1091 1092 while (!list_empty(&l_hold)) { 1093 cond_resched(); 1094 page = lru_to_page(&l_hold); 1095 list_del(&page->lru); 1096 if (page_mapped(page)) { 1097 if (!reclaim_mapped || 1098 (total_swap_pages == 0 && PageAnon(page)) || 1099 page_referenced(page, 0, sc->mem_cgroup)) { 1100 list_add(&page->lru, &l_active); 1101 continue; 1102 } 1103 } 1104 list_add(&page->lru, &l_inactive); 1105 } 1106 1107 pagevec_init(&pvec, 1); 1108 pgmoved = 0; 1109 spin_lock_irq(&zone->lru_lock); 1110 while (!list_empty(&l_inactive)) { 1111 page = lru_to_page(&l_inactive); 1112 prefetchw_prev_lru_page(page, &l_inactive, flags); 1113 VM_BUG_ON(PageLRU(page)); 1114 SetPageLRU(page); 1115 VM_BUG_ON(!PageActive(page)); 1116 ClearPageActive(page); 1117 1118 list_move(&page->lru, &zone->inactive_list); 1119 mem_cgroup_move_lists(page, false); 1120 pgmoved++; 1121 if (!pagevec_add(&pvec, page)) { 1122 __mod_zone_page_state(zone, NR_INACTIVE, pgmoved); 1123 spin_unlock_irq(&zone->lru_lock); 1124 pgdeactivate += pgmoved; 1125 pgmoved = 0; 1126 if (buffer_heads_over_limit) 1127 pagevec_strip(&pvec); 1128 __pagevec_release(&pvec); 1129 spin_lock_irq(&zone->lru_lock); 1130 } 1131 } 1132 __mod_zone_page_state(zone, NR_INACTIVE, pgmoved); 1133 pgdeactivate += pgmoved; 1134 if (buffer_heads_over_limit) { 1135 spin_unlock_irq(&zone->lru_lock); 1136 pagevec_strip(&pvec); 1137 spin_lock_irq(&zone->lru_lock); 1138 } 1139 1140 pgmoved = 0; 1141 while (!list_empty(&l_active)) { 1142 page = lru_to_page(&l_active); 1143 prefetchw_prev_lru_page(page, &l_active, flags); 1144 VM_BUG_ON(PageLRU(page)); 1145 SetPageLRU(page); 1146 VM_BUG_ON(!PageActive(page)); 1147 1148 list_move(&page->lru, &zone->active_list); 1149 mem_cgroup_move_lists(page, true); 1150 pgmoved++; 1151 if (!pagevec_add(&pvec, page)) { 1152 __mod_zone_page_state(zone, NR_ACTIVE, pgmoved); 1153 pgmoved = 0; 1154 spin_unlock_irq(&zone->lru_lock); 1155 __pagevec_release(&pvec); 1156 spin_lock_irq(&zone->lru_lock); 1157 } 1158 } 1159 __mod_zone_page_state(zone, NR_ACTIVE, pgmoved); 1160 1161 __count_zone_vm_events(PGREFILL, zone, pgscanned); 1162 __count_vm_events(PGDEACTIVATE, pgdeactivate); 1163 spin_unlock_irq(&zone->lru_lock); 1164 1165 pagevec_release(&pvec); 1166 } 1167 1168 /* 1169 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 1170 */ 1171 static unsigned long shrink_zone(int priority, struct zone *zone, 1172 struct scan_control *sc) 1173 { 1174 unsigned long nr_active; 1175 unsigned long nr_inactive; 1176 unsigned long nr_to_scan; 1177 unsigned long nr_reclaimed = 0; 1178 1179 if (scan_global_lru(sc)) { 1180 /* 1181 * Add one to nr_to_scan just to make sure that the kernel 1182 * will slowly sift through the active list. 1183 */ 1184 zone->nr_scan_active += 1185 (zone_page_state(zone, NR_ACTIVE) >> priority) + 1; 1186 nr_active = zone->nr_scan_active; 1187 zone->nr_scan_inactive += 1188 (zone_page_state(zone, NR_INACTIVE) >> priority) + 1; 1189 nr_inactive = zone->nr_scan_inactive; 1190 if (nr_inactive >= sc->swap_cluster_max) 1191 zone->nr_scan_inactive = 0; 1192 else 1193 nr_inactive = 0; 1194 1195 if (nr_active >= sc->swap_cluster_max) 1196 zone->nr_scan_active = 0; 1197 else 1198 nr_active = 0; 1199 } else { 1200 /* 1201 * This reclaim occurs not because zone memory shortage but 1202 * because memory controller hits its limit. 1203 * Then, don't modify zone reclaim related data. 1204 */ 1205 nr_active = mem_cgroup_calc_reclaim_active(sc->mem_cgroup, 1206 zone, priority); 1207 1208 nr_inactive = mem_cgroup_calc_reclaim_inactive(sc->mem_cgroup, 1209 zone, priority); 1210 } 1211 1212 1213 while (nr_active || nr_inactive) { 1214 if (nr_active) { 1215 nr_to_scan = min(nr_active, 1216 (unsigned long)sc->swap_cluster_max); 1217 nr_active -= nr_to_scan; 1218 shrink_active_list(nr_to_scan, zone, sc, priority); 1219 } 1220 1221 if (nr_inactive) { 1222 nr_to_scan = min(nr_inactive, 1223 (unsigned long)sc->swap_cluster_max); 1224 nr_inactive -= nr_to_scan; 1225 nr_reclaimed += shrink_inactive_list(nr_to_scan, zone, 1226 sc); 1227 } 1228 } 1229 1230 throttle_vm_writeout(sc->gfp_mask); 1231 return nr_reclaimed; 1232 } 1233 1234 /* 1235 * This is the direct reclaim path, for page-allocating processes. We only 1236 * try to reclaim pages from zones which will satisfy the caller's allocation 1237 * request. 1238 * 1239 * We reclaim from a zone even if that zone is over pages_high. Because: 1240 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 1241 * allocation or 1242 * b) The zones may be over pages_high but they must go *over* pages_high to 1243 * satisfy the `incremental min' zone defense algorithm. 1244 * 1245 * Returns the number of reclaimed pages. 1246 * 1247 * If a zone is deemed to be full of pinned pages then just give it a light 1248 * scan then give up on it. 1249 */ 1250 static unsigned long shrink_zones(int priority, struct zonelist *zonelist, 1251 struct scan_control *sc) 1252 { 1253 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); 1254 unsigned long nr_reclaimed = 0; 1255 struct zoneref *z; 1256 struct zone *zone; 1257 1258 sc->all_unreclaimable = 1; 1259 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1260 if (!populated_zone(zone)) 1261 continue; 1262 /* 1263 * Take care memory controller reclaiming has small influence 1264 * to global LRU. 1265 */ 1266 if (scan_global_lru(sc)) { 1267 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1268 continue; 1269 note_zone_scanning_priority(zone, priority); 1270 1271 if (zone_is_all_unreclaimable(zone) && 1272 priority != DEF_PRIORITY) 1273 continue; /* Let kswapd poll it */ 1274 sc->all_unreclaimable = 0; 1275 } else { 1276 /* 1277 * Ignore cpuset limitation here. We just want to reduce 1278 * # of used pages by us regardless of memory shortage. 1279 */ 1280 sc->all_unreclaimable = 0; 1281 mem_cgroup_note_reclaim_priority(sc->mem_cgroup, 1282 priority); 1283 } 1284 1285 nr_reclaimed += shrink_zone(priority, zone, sc); 1286 } 1287 1288 return nr_reclaimed; 1289 } 1290 1291 /* 1292 * This is the main entry point to direct page reclaim. 1293 * 1294 * If a full scan of the inactive list fails to free enough memory then we 1295 * are "out of memory" and something needs to be killed. 1296 * 1297 * If the caller is !__GFP_FS then the probability of a failure is reasonably 1298 * high - the zone may be full of dirty or under-writeback pages, which this 1299 * caller can't do much about. We kick pdflush and take explicit naps in the 1300 * hope that some of these pages can be written. But if the allocating task 1301 * holds filesystem locks which prevent writeout this might not work, and the 1302 * allocation attempt will fail. 1303 * 1304 * returns: 0, if no pages reclaimed 1305 * else, the number of pages reclaimed 1306 */ 1307 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 1308 struct scan_control *sc) 1309 { 1310 int priority; 1311 unsigned long ret = 0; 1312 unsigned long total_scanned = 0; 1313 unsigned long nr_reclaimed = 0; 1314 struct reclaim_state *reclaim_state = current->reclaim_state; 1315 unsigned long lru_pages = 0; 1316 struct zoneref *z; 1317 struct zone *zone; 1318 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); 1319 1320 delayacct_freepages_start(); 1321 1322 if (scan_global_lru(sc)) 1323 count_vm_event(ALLOCSTALL); 1324 /* 1325 * mem_cgroup will not do shrink_slab. 1326 */ 1327 if (scan_global_lru(sc)) { 1328 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1329 1330 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1331 continue; 1332 1333 lru_pages += zone_page_state(zone, NR_ACTIVE) 1334 + zone_page_state(zone, NR_INACTIVE); 1335 } 1336 } 1337 1338 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1339 sc->nr_scanned = 0; 1340 if (!priority) 1341 disable_swap_token(); 1342 nr_reclaimed += shrink_zones(priority, zonelist, sc); 1343 /* 1344 * Don't shrink slabs when reclaiming memory from 1345 * over limit cgroups 1346 */ 1347 if (scan_global_lru(sc)) { 1348 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages); 1349 if (reclaim_state) { 1350 nr_reclaimed += reclaim_state->reclaimed_slab; 1351 reclaim_state->reclaimed_slab = 0; 1352 } 1353 } 1354 total_scanned += sc->nr_scanned; 1355 if (nr_reclaimed >= sc->swap_cluster_max) { 1356 ret = nr_reclaimed; 1357 goto out; 1358 } 1359 1360 /* 1361 * Try to write back as many pages as we just scanned. This 1362 * tends to cause slow streaming writers to write data to the 1363 * disk smoothly, at the dirtying rate, which is nice. But 1364 * that's undesirable in laptop mode, where we *want* lumpy 1365 * writeout. So in laptop mode, write out the whole world. 1366 */ 1367 if (total_scanned > sc->swap_cluster_max + 1368 sc->swap_cluster_max / 2) { 1369 wakeup_pdflush(laptop_mode ? 0 : total_scanned); 1370 sc->may_writepage = 1; 1371 } 1372 1373 /* Take a nap, wait for some writeback to complete */ 1374 if (sc->nr_scanned && priority < DEF_PRIORITY - 2) 1375 congestion_wait(WRITE, HZ/10); 1376 } 1377 /* top priority shrink_caches still had more to do? don't OOM, then */ 1378 if (!sc->all_unreclaimable && scan_global_lru(sc)) 1379 ret = nr_reclaimed; 1380 out: 1381 /* 1382 * Now that we've scanned all the zones at this priority level, note 1383 * that level within the zone so that the next thread which performs 1384 * scanning of this zone will immediately start out at this priority 1385 * level. This affects only the decision whether or not to bring 1386 * mapped pages onto the inactive list. 1387 */ 1388 if (priority < 0) 1389 priority = 0; 1390 1391 if (scan_global_lru(sc)) { 1392 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1393 1394 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1395 continue; 1396 1397 zone->prev_priority = priority; 1398 } 1399 } else 1400 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority); 1401 1402 delayacct_freepages_end(); 1403 1404 return ret; 1405 } 1406 1407 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 1408 gfp_t gfp_mask) 1409 { 1410 struct scan_control sc = { 1411 .gfp_mask = gfp_mask, 1412 .may_writepage = !laptop_mode, 1413 .swap_cluster_max = SWAP_CLUSTER_MAX, 1414 .may_swap = 1, 1415 .swappiness = vm_swappiness, 1416 .order = order, 1417 .mem_cgroup = NULL, 1418 .isolate_pages = isolate_pages_global, 1419 }; 1420 1421 return do_try_to_free_pages(zonelist, &sc); 1422 } 1423 1424 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 1425 1426 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont, 1427 gfp_t gfp_mask) 1428 { 1429 struct scan_control sc = { 1430 .may_writepage = !laptop_mode, 1431 .may_swap = 1, 1432 .swap_cluster_max = SWAP_CLUSTER_MAX, 1433 .swappiness = vm_swappiness, 1434 .order = 0, 1435 .mem_cgroup = mem_cont, 1436 .isolate_pages = mem_cgroup_isolate_pages, 1437 }; 1438 struct zonelist *zonelist; 1439 1440 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 1441 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 1442 zonelist = NODE_DATA(numa_node_id())->node_zonelists; 1443 return do_try_to_free_pages(zonelist, &sc); 1444 } 1445 #endif 1446 1447 /* 1448 * For kswapd, balance_pgdat() will work across all this node's zones until 1449 * they are all at pages_high. 1450 * 1451 * Returns the number of pages which were actually freed. 1452 * 1453 * There is special handling here for zones which are full of pinned pages. 1454 * This can happen if the pages are all mlocked, or if they are all used by 1455 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 1456 * What we do is to detect the case where all pages in the zone have been 1457 * scanned twice and there has been zero successful reclaim. Mark the zone as 1458 * dead and from now on, only perform a short scan. Basically we're polling 1459 * the zone for when the problem goes away. 1460 * 1461 * kswapd scans the zones in the highmem->normal->dma direction. It skips 1462 * zones which have free_pages > pages_high, but once a zone is found to have 1463 * free_pages <= pages_high, we scan that zone and the lower zones regardless 1464 * of the number of free pages in the lower zones. This interoperates with 1465 * the page allocator fallback scheme to ensure that aging of pages is balanced 1466 * across the zones. 1467 */ 1468 static unsigned long balance_pgdat(pg_data_t *pgdat, int order) 1469 { 1470 int all_zones_ok; 1471 int priority; 1472 int i; 1473 unsigned long total_scanned; 1474 unsigned long nr_reclaimed; 1475 struct reclaim_state *reclaim_state = current->reclaim_state; 1476 struct scan_control sc = { 1477 .gfp_mask = GFP_KERNEL, 1478 .may_swap = 1, 1479 .swap_cluster_max = SWAP_CLUSTER_MAX, 1480 .swappiness = vm_swappiness, 1481 .order = order, 1482 .mem_cgroup = NULL, 1483 .isolate_pages = isolate_pages_global, 1484 }; 1485 /* 1486 * temp_priority is used to remember the scanning priority at which 1487 * this zone was successfully refilled to free_pages == pages_high. 1488 */ 1489 int temp_priority[MAX_NR_ZONES]; 1490 1491 loop_again: 1492 total_scanned = 0; 1493 nr_reclaimed = 0; 1494 sc.may_writepage = !laptop_mode; 1495 count_vm_event(PAGEOUTRUN); 1496 1497 for (i = 0; i < pgdat->nr_zones; i++) 1498 temp_priority[i] = DEF_PRIORITY; 1499 1500 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1501 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 1502 unsigned long lru_pages = 0; 1503 1504 /* The swap token gets in the way of swapout... */ 1505 if (!priority) 1506 disable_swap_token(); 1507 1508 all_zones_ok = 1; 1509 1510 /* 1511 * Scan in the highmem->dma direction for the highest 1512 * zone which needs scanning 1513 */ 1514 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 1515 struct zone *zone = pgdat->node_zones + i; 1516 1517 if (!populated_zone(zone)) 1518 continue; 1519 1520 if (zone_is_all_unreclaimable(zone) && 1521 priority != DEF_PRIORITY) 1522 continue; 1523 1524 if (!zone_watermark_ok(zone, order, zone->pages_high, 1525 0, 0)) { 1526 end_zone = i; 1527 break; 1528 } 1529 } 1530 if (i < 0) 1531 goto out; 1532 1533 for (i = 0; i <= end_zone; i++) { 1534 struct zone *zone = pgdat->node_zones + i; 1535 1536 lru_pages += zone_page_state(zone, NR_ACTIVE) 1537 + zone_page_state(zone, NR_INACTIVE); 1538 } 1539 1540 /* 1541 * Now scan the zone in the dma->highmem direction, stopping 1542 * at the last zone which needs scanning. 1543 * 1544 * We do this because the page allocator works in the opposite 1545 * direction. This prevents the page allocator from allocating 1546 * pages behind kswapd's direction of progress, which would 1547 * cause too much scanning of the lower zones. 1548 */ 1549 for (i = 0; i <= end_zone; i++) { 1550 struct zone *zone = pgdat->node_zones + i; 1551 int nr_slab; 1552 1553 if (!populated_zone(zone)) 1554 continue; 1555 1556 if (zone_is_all_unreclaimable(zone) && 1557 priority != DEF_PRIORITY) 1558 continue; 1559 1560 if (!zone_watermark_ok(zone, order, zone->pages_high, 1561 end_zone, 0)) 1562 all_zones_ok = 0; 1563 temp_priority[i] = priority; 1564 sc.nr_scanned = 0; 1565 note_zone_scanning_priority(zone, priority); 1566 /* 1567 * We put equal pressure on every zone, unless one 1568 * zone has way too many pages free already. 1569 */ 1570 if (!zone_watermark_ok(zone, order, 8*zone->pages_high, 1571 end_zone, 0)) 1572 nr_reclaimed += shrink_zone(priority, zone, &sc); 1573 reclaim_state->reclaimed_slab = 0; 1574 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, 1575 lru_pages); 1576 nr_reclaimed += reclaim_state->reclaimed_slab; 1577 total_scanned += sc.nr_scanned; 1578 if (zone_is_all_unreclaimable(zone)) 1579 continue; 1580 if (nr_slab == 0 && zone->pages_scanned >= 1581 (zone_page_state(zone, NR_ACTIVE) 1582 + zone_page_state(zone, NR_INACTIVE)) * 6) 1583 zone_set_flag(zone, 1584 ZONE_ALL_UNRECLAIMABLE); 1585 /* 1586 * If we've done a decent amount of scanning and 1587 * the reclaim ratio is low, start doing writepage 1588 * even in laptop mode 1589 */ 1590 if (total_scanned > SWAP_CLUSTER_MAX * 2 && 1591 total_scanned > nr_reclaimed + nr_reclaimed / 2) 1592 sc.may_writepage = 1; 1593 } 1594 if (all_zones_ok) 1595 break; /* kswapd: all done */ 1596 /* 1597 * OK, kswapd is getting into trouble. Take a nap, then take 1598 * another pass across the zones. 1599 */ 1600 if (total_scanned && priority < DEF_PRIORITY - 2) 1601 congestion_wait(WRITE, HZ/10); 1602 1603 /* 1604 * We do this so kswapd doesn't build up large priorities for 1605 * example when it is freeing in parallel with allocators. It 1606 * matches the direct reclaim path behaviour in terms of impact 1607 * on zone->*_priority. 1608 */ 1609 if (nr_reclaimed >= SWAP_CLUSTER_MAX) 1610 break; 1611 } 1612 out: 1613 /* 1614 * Note within each zone the priority level at which this zone was 1615 * brought into a happy state. So that the next thread which scans this 1616 * zone will start out at that priority level. 1617 */ 1618 for (i = 0; i < pgdat->nr_zones; i++) { 1619 struct zone *zone = pgdat->node_zones + i; 1620 1621 zone->prev_priority = temp_priority[i]; 1622 } 1623 if (!all_zones_ok) { 1624 cond_resched(); 1625 1626 try_to_freeze(); 1627 1628 goto loop_again; 1629 } 1630 1631 return nr_reclaimed; 1632 } 1633 1634 /* 1635 * The background pageout daemon, started as a kernel thread 1636 * from the init process. 1637 * 1638 * This basically trickles out pages so that we have _some_ 1639 * free memory available even if there is no other activity 1640 * that frees anything up. This is needed for things like routing 1641 * etc, where we otherwise might have all activity going on in 1642 * asynchronous contexts that cannot page things out. 1643 * 1644 * If there are applications that are active memory-allocators 1645 * (most normal use), this basically shouldn't matter. 1646 */ 1647 static int kswapd(void *p) 1648 { 1649 unsigned long order; 1650 pg_data_t *pgdat = (pg_data_t*)p; 1651 struct task_struct *tsk = current; 1652 DEFINE_WAIT(wait); 1653 struct reclaim_state reclaim_state = { 1654 .reclaimed_slab = 0, 1655 }; 1656 node_to_cpumask_ptr(cpumask, pgdat->node_id); 1657 1658 if (!cpus_empty(*cpumask)) 1659 set_cpus_allowed_ptr(tsk, cpumask); 1660 current->reclaim_state = &reclaim_state; 1661 1662 /* 1663 * Tell the memory management that we're a "memory allocator", 1664 * and that if we need more memory we should get access to it 1665 * regardless (see "__alloc_pages()"). "kswapd" should 1666 * never get caught in the normal page freeing logic. 1667 * 1668 * (Kswapd normally doesn't need memory anyway, but sometimes 1669 * you need a small amount of memory in order to be able to 1670 * page out something else, and this flag essentially protects 1671 * us from recursively trying to free more memory as we're 1672 * trying to free the first piece of memory in the first place). 1673 */ 1674 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 1675 set_freezable(); 1676 1677 order = 0; 1678 for ( ; ; ) { 1679 unsigned long new_order; 1680 1681 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 1682 new_order = pgdat->kswapd_max_order; 1683 pgdat->kswapd_max_order = 0; 1684 if (order < new_order) { 1685 /* 1686 * Don't sleep if someone wants a larger 'order' 1687 * allocation 1688 */ 1689 order = new_order; 1690 } else { 1691 if (!freezing(current)) 1692 schedule(); 1693 1694 order = pgdat->kswapd_max_order; 1695 } 1696 finish_wait(&pgdat->kswapd_wait, &wait); 1697 1698 if (!try_to_freeze()) { 1699 /* We can speed up thawing tasks if we don't call 1700 * balance_pgdat after returning from the refrigerator 1701 */ 1702 balance_pgdat(pgdat, order); 1703 } 1704 } 1705 return 0; 1706 } 1707 1708 /* 1709 * A zone is low on free memory, so wake its kswapd task to service it. 1710 */ 1711 void wakeup_kswapd(struct zone *zone, int order) 1712 { 1713 pg_data_t *pgdat; 1714 1715 if (!populated_zone(zone)) 1716 return; 1717 1718 pgdat = zone->zone_pgdat; 1719 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0)) 1720 return; 1721 if (pgdat->kswapd_max_order < order) 1722 pgdat->kswapd_max_order = order; 1723 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1724 return; 1725 if (!waitqueue_active(&pgdat->kswapd_wait)) 1726 return; 1727 wake_up_interruptible(&pgdat->kswapd_wait); 1728 } 1729 1730 #ifdef CONFIG_PM 1731 /* 1732 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages 1733 * from LRU lists system-wide, for given pass and priority, and returns the 1734 * number of reclaimed pages 1735 * 1736 * For pass > 3 we also try to shrink the LRU lists that contain a few pages 1737 */ 1738 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio, 1739 int pass, struct scan_control *sc) 1740 { 1741 struct zone *zone; 1742 unsigned long nr_to_scan, ret = 0; 1743 1744 for_each_zone(zone) { 1745 1746 if (!populated_zone(zone)) 1747 continue; 1748 1749 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY) 1750 continue; 1751 1752 /* For pass = 0 we don't shrink the active list */ 1753 if (pass > 0) { 1754 zone->nr_scan_active += 1755 (zone_page_state(zone, NR_ACTIVE) >> prio) + 1; 1756 if (zone->nr_scan_active >= nr_pages || pass > 3) { 1757 zone->nr_scan_active = 0; 1758 nr_to_scan = min(nr_pages, 1759 zone_page_state(zone, NR_ACTIVE)); 1760 shrink_active_list(nr_to_scan, zone, sc, prio); 1761 } 1762 } 1763 1764 zone->nr_scan_inactive += 1765 (zone_page_state(zone, NR_INACTIVE) >> prio) + 1; 1766 if (zone->nr_scan_inactive >= nr_pages || pass > 3) { 1767 zone->nr_scan_inactive = 0; 1768 nr_to_scan = min(nr_pages, 1769 zone_page_state(zone, NR_INACTIVE)); 1770 ret += shrink_inactive_list(nr_to_scan, zone, sc); 1771 if (ret >= nr_pages) 1772 return ret; 1773 } 1774 } 1775 1776 return ret; 1777 } 1778 1779 static unsigned long count_lru_pages(void) 1780 { 1781 return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE); 1782 } 1783 1784 /* 1785 * Try to free `nr_pages' of memory, system-wide, and return the number of 1786 * freed pages. 1787 * 1788 * Rather than trying to age LRUs the aim is to preserve the overall 1789 * LRU order by reclaiming preferentially 1790 * inactive > active > active referenced > active mapped 1791 */ 1792 unsigned long shrink_all_memory(unsigned long nr_pages) 1793 { 1794 unsigned long lru_pages, nr_slab; 1795 unsigned long ret = 0; 1796 int pass; 1797 struct reclaim_state reclaim_state; 1798 struct scan_control sc = { 1799 .gfp_mask = GFP_KERNEL, 1800 .may_swap = 0, 1801 .swap_cluster_max = nr_pages, 1802 .may_writepage = 1, 1803 .swappiness = vm_swappiness, 1804 .isolate_pages = isolate_pages_global, 1805 }; 1806 1807 current->reclaim_state = &reclaim_state; 1808 1809 lru_pages = count_lru_pages(); 1810 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE); 1811 /* If slab caches are huge, it's better to hit them first */ 1812 while (nr_slab >= lru_pages) { 1813 reclaim_state.reclaimed_slab = 0; 1814 shrink_slab(nr_pages, sc.gfp_mask, lru_pages); 1815 if (!reclaim_state.reclaimed_slab) 1816 break; 1817 1818 ret += reclaim_state.reclaimed_slab; 1819 if (ret >= nr_pages) 1820 goto out; 1821 1822 nr_slab -= reclaim_state.reclaimed_slab; 1823 } 1824 1825 /* 1826 * We try to shrink LRUs in 5 passes: 1827 * 0 = Reclaim from inactive_list only 1828 * 1 = Reclaim from active list but don't reclaim mapped 1829 * 2 = 2nd pass of type 1 1830 * 3 = Reclaim mapped (normal reclaim) 1831 * 4 = 2nd pass of type 3 1832 */ 1833 for (pass = 0; pass < 5; pass++) { 1834 int prio; 1835 1836 /* Force reclaiming mapped pages in the passes #3 and #4 */ 1837 if (pass > 2) { 1838 sc.may_swap = 1; 1839 sc.swappiness = 100; 1840 } 1841 1842 for (prio = DEF_PRIORITY; prio >= 0; prio--) { 1843 unsigned long nr_to_scan = nr_pages - ret; 1844 1845 sc.nr_scanned = 0; 1846 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc); 1847 if (ret >= nr_pages) 1848 goto out; 1849 1850 reclaim_state.reclaimed_slab = 0; 1851 shrink_slab(sc.nr_scanned, sc.gfp_mask, 1852 count_lru_pages()); 1853 ret += reclaim_state.reclaimed_slab; 1854 if (ret >= nr_pages) 1855 goto out; 1856 1857 if (sc.nr_scanned && prio < DEF_PRIORITY - 2) 1858 congestion_wait(WRITE, HZ / 10); 1859 } 1860 } 1861 1862 /* 1863 * If ret = 0, we could not shrink LRUs, but there may be something 1864 * in slab caches 1865 */ 1866 if (!ret) { 1867 do { 1868 reclaim_state.reclaimed_slab = 0; 1869 shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages()); 1870 ret += reclaim_state.reclaimed_slab; 1871 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0); 1872 } 1873 1874 out: 1875 current->reclaim_state = NULL; 1876 1877 return ret; 1878 } 1879 #endif 1880 1881 /* It's optimal to keep kswapds on the same CPUs as their memory, but 1882 not required for correctness. So if the last cpu in a node goes 1883 away, we get changed to run anywhere: as the first one comes back, 1884 restore their cpu bindings. */ 1885 static int __devinit cpu_callback(struct notifier_block *nfb, 1886 unsigned long action, void *hcpu) 1887 { 1888 int nid; 1889 1890 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 1891 for_each_node_state(nid, N_HIGH_MEMORY) { 1892 pg_data_t *pgdat = NODE_DATA(nid); 1893 node_to_cpumask_ptr(mask, pgdat->node_id); 1894 1895 if (any_online_cpu(*mask) < nr_cpu_ids) 1896 /* One of our CPUs online: restore mask */ 1897 set_cpus_allowed_ptr(pgdat->kswapd, mask); 1898 } 1899 } 1900 return NOTIFY_OK; 1901 } 1902 1903 /* 1904 * This kswapd start function will be called by init and node-hot-add. 1905 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 1906 */ 1907 int kswapd_run(int nid) 1908 { 1909 pg_data_t *pgdat = NODE_DATA(nid); 1910 int ret = 0; 1911 1912 if (pgdat->kswapd) 1913 return 0; 1914 1915 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 1916 if (IS_ERR(pgdat->kswapd)) { 1917 /* failure at boot is fatal */ 1918 BUG_ON(system_state == SYSTEM_BOOTING); 1919 printk("Failed to start kswapd on node %d\n",nid); 1920 ret = -1; 1921 } 1922 return ret; 1923 } 1924 1925 static int __init kswapd_init(void) 1926 { 1927 int nid; 1928 1929 swap_setup(); 1930 for_each_node_state(nid, N_HIGH_MEMORY) 1931 kswapd_run(nid); 1932 hotcpu_notifier(cpu_callback, 0); 1933 return 0; 1934 } 1935 1936 module_init(kswapd_init) 1937 1938 #ifdef CONFIG_NUMA 1939 /* 1940 * Zone reclaim mode 1941 * 1942 * If non-zero call zone_reclaim when the number of free pages falls below 1943 * the watermarks. 1944 */ 1945 int zone_reclaim_mode __read_mostly; 1946 1947 #define RECLAIM_OFF 0 1948 #define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */ 1949 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 1950 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 1951 1952 /* 1953 * Priority for ZONE_RECLAIM. This determines the fraction of pages 1954 * of a node considered for each zone_reclaim. 4 scans 1/16th of 1955 * a zone. 1956 */ 1957 #define ZONE_RECLAIM_PRIORITY 4 1958 1959 /* 1960 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 1961 * occur. 1962 */ 1963 int sysctl_min_unmapped_ratio = 1; 1964 1965 /* 1966 * If the number of slab pages in a zone grows beyond this percentage then 1967 * slab reclaim needs to occur. 1968 */ 1969 int sysctl_min_slab_ratio = 5; 1970 1971 /* 1972 * Try to free up some pages from this zone through reclaim. 1973 */ 1974 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 1975 { 1976 /* Minimum pages needed in order to stay on node */ 1977 const unsigned long nr_pages = 1 << order; 1978 struct task_struct *p = current; 1979 struct reclaim_state reclaim_state; 1980 int priority; 1981 unsigned long nr_reclaimed = 0; 1982 struct scan_control sc = { 1983 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 1984 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP), 1985 .swap_cluster_max = max_t(unsigned long, nr_pages, 1986 SWAP_CLUSTER_MAX), 1987 .gfp_mask = gfp_mask, 1988 .swappiness = vm_swappiness, 1989 .isolate_pages = isolate_pages_global, 1990 }; 1991 unsigned long slab_reclaimable; 1992 1993 disable_swap_token(); 1994 cond_resched(); 1995 /* 1996 * We need to be able to allocate from the reserves for RECLAIM_SWAP 1997 * and we also need to be able to write out pages for RECLAIM_WRITE 1998 * and RECLAIM_SWAP. 1999 */ 2000 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 2001 reclaim_state.reclaimed_slab = 0; 2002 p->reclaim_state = &reclaim_state; 2003 2004 if (zone_page_state(zone, NR_FILE_PAGES) - 2005 zone_page_state(zone, NR_FILE_MAPPED) > 2006 zone->min_unmapped_pages) { 2007 /* 2008 * Free memory by calling shrink zone with increasing 2009 * priorities until we have enough memory freed. 2010 */ 2011 priority = ZONE_RECLAIM_PRIORITY; 2012 do { 2013 note_zone_scanning_priority(zone, priority); 2014 nr_reclaimed += shrink_zone(priority, zone, &sc); 2015 priority--; 2016 } while (priority >= 0 && nr_reclaimed < nr_pages); 2017 } 2018 2019 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2020 if (slab_reclaimable > zone->min_slab_pages) { 2021 /* 2022 * shrink_slab() does not currently allow us to determine how 2023 * many pages were freed in this zone. So we take the current 2024 * number of slab pages and shake the slab until it is reduced 2025 * by the same nr_pages that we used for reclaiming unmapped 2026 * pages. 2027 * 2028 * Note that shrink_slab will free memory on all zones and may 2029 * take a long time. 2030 */ 2031 while (shrink_slab(sc.nr_scanned, gfp_mask, order) && 2032 zone_page_state(zone, NR_SLAB_RECLAIMABLE) > 2033 slab_reclaimable - nr_pages) 2034 ; 2035 2036 /* 2037 * Update nr_reclaimed by the number of slab pages we 2038 * reclaimed from this zone. 2039 */ 2040 nr_reclaimed += slab_reclaimable - 2041 zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2042 } 2043 2044 p->reclaim_state = NULL; 2045 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 2046 return nr_reclaimed >= nr_pages; 2047 } 2048 2049 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2050 { 2051 int node_id; 2052 int ret; 2053 2054 /* 2055 * Zone reclaim reclaims unmapped file backed pages and 2056 * slab pages if we are over the defined limits. 2057 * 2058 * A small portion of unmapped file backed pages is needed for 2059 * file I/O otherwise pages read by file I/O will be immediately 2060 * thrown out if the zone is overallocated. So we do not reclaim 2061 * if less than a specified percentage of the zone is used by 2062 * unmapped file backed pages. 2063 */ 2064 if (zone_page_state(zone, NR_FILE_PAGES) - 2065 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages 2066 && zone_page_state(zone, NR_SLAB_RECLAIMABLE) 2067 <= zone->min_slab_pages) 2068 return 0; 2069 2070 if (zone_is_all_unreclaimable(zone)) 2071 return 0; 2072 2073 /* 2074 * Do not scan if the allocation should not be delayed. 2075 */ 2076 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 2077 return 0; 2078 2079 /* 2080 * Only run zone reclaim on the local zone or on zones that do not 2081 * have associated processors. This will favor the local processor 2082 * over remote processors and spread off node memory allocations 2083 * as wide as possible. 2084 */ 2085 node_id = zone_to_nid(zone); 2086 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 2087 return 0; 2088 2089 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 2090 return 0; 2091 ret = __zone_reclaim(zone, gfp_mask, order); 2092 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 2093 2094 return ret; 2095 } 2096 #endif 2097