1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/pagevec.h> 50 #include <linux/prefetch.h> 51 #include <linux/printk.h> 52 #include <linux/dax.h> 53 #include <linux/psi.h> 54 55 #include <asm/tlbflush.h> 56 #include <asm/div64.h> 57 58 #include <linux/swapops.h> 59 #include <linux/balloon_compaction.h> 60 61 #include "internal.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/vmscan.h> 65 66 struct scan_control { 67 /* How many pages shrink_list() should reclaim */ 68 unsigned long nr_to_reclaim; 69 70 /* 71 * Nodemask of nodes allowed by the caller. If NULL, all nodes 72 * are scanned. 73 */ 74 nodemask_t *nodemask; 75 76 /* 77 * The memory cgroup that hit its limit and as a result is the 78 * primary target of this reclaim invocation. 79 */ 80 struct mem_cgroup *target_mem_cgroup; 81 82 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 83 unsigned int may_writepage:1; 84 85 /* Can mapped pages be reclaimed? */ 86 unsigned int may_unmap:1; 87 88 /* Can pages be swapped as part of reclaim? */ 89 unsigned int may_swap:1; 90 91 /* e.g. boosted watermark reclaim leaves slabs alone */ 92 unsigned int may_shrinkslab:1; 93 94 /* 95 * Cgroups are not reclaimed below their configured memory.low, 96 * unless we threaten to OOM. If any cgroups are skipped due to 97 * memory.low and nothing was reclaimed, go back for memory.low. 98 */ 99 unsigned int memcg_low_reclaim:1; 100 unsigned int memcg_low_skipped:1; 101 102 unsigned int hibernation_mode:1; 103 104 /* One of the zones is ready for compaction */ 105 unsigned int compaction_ready:1; 106 107 /* Allocation order */ 108 s8 order; 109 110 /* Scan (total_size >> priority) pages at once */ 111 s8 priority; 112 113 /* The highest zone to isolate pages for reclaim from */ 114 s8 reclaim_idx; 115 116 /* This context's GFP mask */ 117 gfp_t gfp_mask; 118 119 /* Incremented by the number of inactive pages that were scanned */ 120 unsigned long nr_scanned; 121 122 /* Number of pages freed so far during a call to shrink_zones() */ 123 unsigned long nr_reclaimed; 124 125 struct { 126 unsigned int dirty; 127 unsigned int unqueued_dirty; 128 unsigned int congested; 129 unsigned int writeback; 130 unsigned int immediate; 131 unsigned int file_taken; 132 unsigned int taken; 133 } nr; 134 }; 135 136 #ifdef ARCH_HAS_PREFETCH 137 #define prefetch_prev_lru_page(_page, _base, _field) \ 138 do { \ 139 if ((_page)->lru.prev != _base) { \ 140 struct page *prev; \ 141 \ 142 prev = lru_to_page(&(_page->lru)); \ 143 prefetch(&prev->_field); \ 144 } \ 145 } while (0) 146 #else 147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 148 #endif 149 150 #ifdef ARCH_HAS_PREFETCHW 151 #define prefetchw_prev_lru_page(_page, _base, _field) \ 152 do { \ 153 if ((_page)->lru.prev != _base) { \ 154 struct page *prev; \ 155 \ 156 prev = lru_to_page(&(_page->lru)); \ 157 prefetchw(&prev->_field); \ 158 } \ 159 } while (0) 160 #else 161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 162 #endif 163 164 /* 165 * From 0 .. 100. Higher means more swappy. 166 */ 167 int vm_swappiness = 60; 168 /* 169 * The total number of pages which are beyond the high watermark within all 170 * zones. 171 */ 172 unsigned long vm_total_pages; 173 174 static LIST_HEAD(shrinker_list); 175 static DECLARE_RWSEM(shrinker_rwsem); 176 177 #ifdef CONFIG_MEMCG_KMEM 178 179 /* 180 * We allow subsystems to populate their shrinker-related 181 * LRU lists before register_shrinker_prepared() is called 182 * for the shrinker, since we don't want to impose 183 * restrictions on their internal registration order. 184 * In this case shrink_slab_memcg() may find corresponding 185 * bit is set in the shrinkers map. 186 * 187 * This value is used by the function to detect registering 188 * shrinkers and to skip do_shrink_slab() calls for them. 189 */ 190 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) 191 192 static DEFINE_IDR(shrinker_idr); 193 static int shrinker_nr_max; 194 195 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 196 { 197 int id, ret = -ENOMEM; 198 199 down_write(&shrinker_rwsem); 200 /* This may call shrinker, so it must use down_read_trylock() */ 201 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); 202 if (id < 0) 203 goto unlock; 204 205 if (id >= shrinker_nr_max) { 206 if (memcg_expand_shrinker_maps(id)) { 207 idr_remove(&shrinker_idr, id); 208 goto unlock; 209 } 210 211 shrinker_nr_max = id + 1; 212 } 213 shrinker->id = id; 214 ret = 0; 215 unlock: 216 up_write(&shrinker_rwsem); 217 return ret; 218 } 219 220 static void unregister_memcg_shrinker(struct shrinker *shrinker) 221 { 222 int id = shrinker->id; 223 224 BUG_ON(id < 0); 225 226 down_write(&shrinker_rwsem); 227 idr_remove(&shrinker_idr, id); 228 up_write(&shrinker_rwsem); 229 } 230 #else /* CONFIG_MEMCG_KMEM */ 231 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 232 { 233 return 0; 234 } 235 236 static void unregister_memcg_shrinker(struct shrinker *shrinker) 237 { 238 } 239 #endif /* CONFIG_MEMCG_KMEM */ 240 241 #ifdef CONFIG_MEMCG 242 static bool global_reclaim(struct scan_control *sc) 243 { 244 return !sc->target_mem_cgroup; 245 } 246 247 /** 248 * sane_reclaim - is the usual dirty throttling mechanism operational? 249 * @sc: scan_control in question 250 * 251 * The normal page dirty throttling mechanism in balance_dirty_pages() is 252 * completely broken with the legacy memcg and direct stalling in 253 * shrink_page_list() is used for throttling instead, which lacks all the 254 * niceties such as fairness, adaptive pausing, bandwidth proportional 255 * allocation and configurability. 256 * 257 * This function tests whether the vmscan currently in progress can assume 258 * that the normal dirty throttling mechanism is operational. 259 */ 260 static bool sane_reclaim(struct scan_control *sc) 261 { 262 struct mem_cgroup *memcg = sc->target_mem_cgroup; 263 264 if (!memcg) 265 return true; 266 #ifdef CONFIG_CGROUP_WRITEBACK 267 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 268 return true; 269 #endif 270 return false; 271 } 272 273 static void set_memcg_congestion(pg_data_t *pgdat, 274 struct mem_cgroup *memcg, 275 bool congested) 276 { 277 struct mem_cgroup_per_node *mn; 278 279 if (!memcg) 280 return; 281 282 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 283 WRITE_ONCE(mn->congested, congested); 284 } 285 286 static bool memcg_congested(pg_data_t *pgdat, 287 struct mem_cgroup *memcg) 288 { 289 struct mem_cgroup_per_node *mn; 290 291 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 292 return READ_ONCE(mn->congested); 293 294 } 295 #else 296 static bool global_reclaim(struct scan_control *sc) 297 { 298 return true; 299 } 300 301 static bool sane_reclaim(struct scan_control *sc) 302 { 303 return true; 304 } 305 306 static inline void set_memcg_congestion(struct pglist_data *pgdat, 307 struct mem_cgroup *memcg, bool congested) 308 { 309 } 310 311 static inline bool memcg_congested(struct pglist_data *pgdat, 312 struct mem_cgroup *memcg) 313 { 314 return false; 315 316 } 317 #endif 318 319 /* 320 * This misses isolated pages which are not accounted for to save counters. 321 * As the data only determines if reclaim or compaction continues, it is 322 * not expected that isolated pages will be a dominating factor. 323 */ 324 unsigned long zone_reclaimable_pages(struct zone *zone) 325 { 326 unsigned long nr; 327 328 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 329 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 330 if (get_nr_swap_pages() > 0) 331 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 332 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 333 334 return nr; 335 } 336 337 /** 338 * lruvec_lru_size - Returns the number of pages on the given LRU list. 339 * @lruvec: lru vector 340 * @lru: lru to use 341 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 342 */ 343 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 344 { 345 unsigned long lru_size; 346 int zid; 347 348 if (!mem_cgroup_disabled()) 349 lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 350 else 351 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 352 353 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { 354 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 355 unsigned long size; 356 357 if (!managed_zone(zone)) 358 continue; 359 360 if (!mem_cgroup_disabled()) 361 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 362 else 363 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], 364 NR_ZONE_LRU_BASE + lru); 365 lru_size -= min(size, lru_size); 366 } 367 368 return lru_size; 369 370 } 371 372 /* 373 * Add a shrinker callback to be called from the vm. 374 */ 375 int prealloc_shrinker(struct shrinker *shrinker) 376 { 377 unsigned int size = sizeof(*shrinker->nr_deferred); 378 379 if (shrinker->flags & SHRINKER_NUMA_AWARE) 380 size *= nr_node_ids; 381 382 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 383 if (!shrinker->nr_deferred) 384 return -ENOMEM; 385 386 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 387 if (prealloc_memcg_shrinker(shrinker)) 388 goto free_deferred; 389 } 390 391 return 0; 392 393 free_deferred: 394 kfree(shrinker->nr_deferred); 395 shrinker->nr_deferred = NULL; 396 return -ENOMEM; 397 } 398 399 void free_prealloced_shrinker(struct shrinker *shrinker) 400 { 401 if (!shrinker->nr_deferred) 402 return; 403 404 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 405 unregister_memcg_shrinker(shrinker); 406 407 kfree(shrinker->nr_deferred); 408 shrinker->nr_deferred = NULL; 409 } 410 411 void register_shrinker_prepared(struct shrinker *shrinker) 412 { 413 down_write(&shrinker_rwsem); 414 list_add_tail(&shrinker->list, &shrinker_list); 415 #ifdef CONFIG_MEMCG_KMEM 416 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 417 idr_replace(&shrinker_idr, shrinker, shrinker->id); 418 #endif 419 up_write(&shrinker_rwsem); 420 } 421 422 int register_shrinker(struct shrinker *shrinker) 423 { 424 int err = prealloc_shrinker(shrinker); 425 426 if (err) 427 return err; 428 register_shrinker_prepared(shrinker); 429 return 0; 430 } 431 EXPORT_SYMBOL(register_shrinker); 432 433 /* 434 * Remove one 435 */ 436 void unregister_shrinker(struct shrinker *shrinker) 437 { 438 if (!shrinker->nr_deferred) 439 return; 440 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 441 unregister_memcg_shrinker(shrinker); 442 down_write(&shrinker_rwsem); 443 list_del(&shrinker->list); 444 up_write(&shrinker_rwsem); 445 kfree(shrinker->nr_deferred); 446 shrinker->nr_deferred = NULL; 447 } 448 EXPORT_SYMBOL(unregister_shrinker); 449 450 #define SHRINK_BATCH 128 451 452 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 453 struct shrinker *shrinker, int priority) 454 { 455 unsigned long freed = 0; 456 unsigned long long delta; 457 long total_scan; 458 long freeable; 459 long nr; 460 long new_nr; 461 int nid = shrinkctl->nid; 462 long batch_size = shrinker->batch ? shrinker->batch 463 : SHRINK_BATCH; 464 long scanned = 0, next_deferred; 465 466 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 467 nid = 0; 468 469 freeable = shrinker->count_objects(shrinker, shrinkctl); 470 if (freeable == 0 || freeable == SHRINK_EMPTY) 471 return freeable; 472 473 /* 474 * copy the current shrinker scan count into a local variable 475 * and zero it so that other concurrent shrinker invocations 476 * don't also do this scanning work. 477 */ 478 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 479 480 total_scan = nr; 481 if (shrinker->seeks) { 482 delta = freeable >> priority; 483 delta *= 4; 484 do_div(delta, shrinker->seeks); 485 } else { 486 /* 487 * These objects don't require any IO to create. Trim 488 * them aggressively under memory pressure to keep 489 * them from causing refetches in the IO caches. 490 */ 491 delta = freeable / 2; 492 } 493 494 total_scan += delta; 495 if (total_scan < 0) { 496 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n", 497 shrinker->scan_objects, total_scan); 498 total_scan = freeable; 499 next_deferred = nr; 500 } else 501 next_deferred = total_scan; 502 503 /* 504 * We need to avoid excessive windup on filesystem shrinkers 505 * due to large numbers of GFP_NOFS allocations causing the 506 * shrinkers to return -1 all the time. This results in a large 507 * nr being built up so when a shrink that can do some work 508 * comes along it empties the entire cache due to nr >>> 509 * freeable. This is bad for sustaining a working set in 510 * memory. 511 * 512 * Hence only allow the shrinker to scan the entire cache when 513 * a large delta change is calculated directly. 514 */ 515 if (delta < freeable / 4) 516 total_scan = min(total_scan, freeable / 2); 517 518 /* 519 * Avoid risking looping forever due to too large nr value: 520 * never try to free more than twice the estimate number of 521 * freeable entries. 522 */ 523 if (total_scan > freeable * 2) 524 total_scan = freeable * 2; 525 526 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 527 freeable, delta, total_scan, priority); 528 529 /* 530 * Normally, we should not scan less than batch_size objects in one 531 * pass to avoid too frequent shrinker calls, but if the slab has less 532 * than batch_size objects in total and we are really tight on memory, 533 * we will try to reclaim all available objects, otherwise we can end 534 * up failing allocations although there are plenty of reclaimable 535 * objects spread over several slabs with usage less than the 536 * batch_size. 537 * 538 * We detect the "tight on memory" situations by looking at the total 539 * number of objects we want to scan (total_scan). If it is greater 540 * than the total number of objects on slab (freeable), we must be 541 * scanning at high prio and therefore should try to reclaim as much as 542 * possible. 543 */ 544 while (total_scan >= batch_size || 545 total_scan >= freeable) { 546 unsigned long ret; 547 unsigned long nr_to_scan = min(batch_size, total_scan); 548 549 shrinkctl->nr_to_scan = nr_to_scan; 550 shrinkctl->nr_scanned = nr_to_scan; 551 ret = shrinker->scan_objects(shrinker, shrinkctl); 552 if (ret == SHRINK_STOP) 553 break; 554 freed += ret; 555 556 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 557 total_scan -= shrinkctl->nr_scanned; 558 scanned += shrinkctl->nr_scanned; 559 560 cond_resched(); 561 } 562 563 if (next_deferred >= scanned) 564 next_deferred -= scanned; 565 else 566 next_deferred = 0; 567 /* 568 * move the unused scan count back into the shrinker in a 569 * manner that handles concurrent updates. If we exhausted the 570 * scan, there is no need to do an update. 571 */ 572 if (next_deferred > 0) 573 new_nr = atomic_long_add_return(next_deferred, 574 &shrinker->nr_deferred[nid]); 575 else 576 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 577 578 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 579 return freed; 580 } 581 582 #ifdef CONFIG_MEMCG_KMEM 583 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 584 struct mem_cgroup *memcg, int priority) 585 { 586 struct memcg_shrinker_map *map; 587 unsigned long ret, freed = 0; 588 int i; 589 590 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)) 591 return 0; 592 593 if (!down_read_trylock(&shrinker_rwsem)) 594 return 0; 595 596 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, 597 true); 598 if (unlikely(!map)) 599 goto unlock; 600 601 for_each_set_bit(i, map->map, shrinker_nr_max) { 602 struct shrink_control sc = { 603 .gfp_mask = gfp_mask, 604 .nid = nid, 605 .memcg = memcg, 606 }; 607 struct shrinker *shrinker; 608 609 shrinker = idr_find(&shrinker_idr, i); 610 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { 611 if (!shrinker) 612 clear_bit(i, map->map); 613 continue; 614 } 615 616 ret = do_shrink_slab(&sc, shrinker, priority); 617 if (ret == SHRINK_EMPTY) { 618 clear_bit(i, map->map); 619 /* 620 * After the shrinker reported that it had no objects to 621 * free, but before we cleared the corresponding bit in 622 * the memcg shrinker map, a new object might have been 623 * added. To make sure, we have the bit set in this 624 * case, we invoke the shrinker one more time and reset 625 * the bit if it reports that it is not empty anymore. 626 * The memory barrier here pairs with the barrier in 627 * memcg_set_shrinker_bit(): 628 * 629 * list_lru_add() shrink_slab_memcg() 630 * list_add_tail() clear_bit() 631 * <MB> <MB> 632 * set_bit() do_shrink_slab() 633 */ 634 smp_mb__after_atomic(); 635 ret = do_shrink_slab(&sc, shrinker, priority); 636 if (ret == SHRINK_EMPTY) 637 ret = 0; 638 else 639 memcg_set_shrinker_bit(memcg, nid, i); 640 } 641 freed += ret; 642 643 if (rwsem_is_contended(&shrinker_rwsem)) { 644 freed = freed ? : 1; 645 break; 646 } 647 } 648 unlock: 649 up_read(&shrinker_rwsem); 650 return freed; 651 } 652 #else /* CONFIG_MEMCG_KMEM */ 653 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 654 struct mem_cgroup *memcg, int priority) 655 { 656 return 0; 657 } 658 #endif /* CONFIG_MEMCG_KMEM */ 659 660 /** 661 * shrink_slab - shrink slab caches 662 * @gfp_mask: allocation context 663 * @nid: node whose slab caches to target 664 * @memcg: memory cgroup whose slab caches to target 665 * @priority: the reclaim priority 666 * 667 * Call the shrink functions to age shrinkable caches. 668 * 669 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 670 * unaware shrinkers will receive a node id of 0 instead. 671 * 672 * @memcg specifies the memory cgroup to target. Unaware shrinkers 673 * are called only if it is the root cgroup. 674 * 675 * @priority is sc->priority, we take the number of objects and >> by priority 676 * in order to get the scan target. 677 * 678 * Returns the number of reclaimed slab objects. 679 */ 680 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 681 struct mem_cgroup *memcg, 682 int priority) 683 { 684 unsigned long ret, freed = 0; 685 struct shrinker *shrinker; 686 687 if (!mem_cgroup_is_root(memcg)) 688 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 689 690 if (!down_read_trylock(&shrinker_rwsem)) 691 goto out; 692 693 list_for_each_entry(shrinker, &shrinker_list, list) { 694 struct shrink_control sc = { 695 .gfp_mask = gfp_mask, 696 .nid = nid, 697 .memcg = memcg, 698 }; 699 700 ret = do_shrink_slab(&sc, shrinker, priority); 701 if (ret == SHRINK_EMPTY) 702 ret = 0; 703 freed += ret; 704 /* 705 * Bail out if someone want to register a new shrinker to 706 * prevent the regsitration from being stalled for long periods 707 * by parallel ongoing shrinking. 708 */ 709 if (rwsem_is_contended(&shrinker_rwsem)) { 710 freed = freed ? : 1; 711 break; 712 } 713 } 714 715 up_read(&shrinker_rwsem); 716 out: 717 cond_resched(); 718 return freed; 719 } 720 721 void drop_slab_node(int nid) 722 { 723 unsigned long freed; 724 725 do { 726 struct mem_cgroup *memcg = NULL; 727 728 freed = 0; 729 memcg = mem_cgroup_iter(NULL, NULL, NULL); 730 do { 731 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 732 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 733 } while (freed > 10); 734 } 735 736 void drop_slab(void) 737 { 738 int nid; 739 740 for_each_online_node(nid) 741 drop_slab_node(nid); 742 } 743 744 static inline int is_page_cache_freeable(struct page *page) 745 { 746 /* 747 * A freeable page cache page is referenced only by the caller 748 * that isolated the page, the page cache and optional buffer 749 * heads at page->private. 750 */ 751 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ? 752 HPAGE_PMD_NR : 1; 753 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 754 } 755 756 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 757 { 758 if (current->flags & PF_SWAPWRITE) 759 return 1; 760 if (!inode_write_congested(inode)) 761 return 1; 762 if (inode_to_bdi(inode) == current->backing_dev_info) 763 return 1; 764 return 0; 765 } 766 767 /* 768 * We detected a synchronous write error writing a page out. Probably 769 * -ENOSPC. We need to propagate that into the address_space for a subsequent 770 * fsync(), msync() or close(). 771 * 772 * The tricky part is that after writepage we cannot touch the mapping: nothing 773 * prevents it from being freed up. But we have a ref on the page and once 774 * that page is locked, the mapping is pinned. 775 * 776 * We're allowed to run sleeping lock_page() here because we know the caller has 777 * __GFP_FS. 778 */ 779 static void handle_write_error(struct address_space *mapping, 780 struct page *page, int error) 781 { 782 lock_page(page); 783 if (page_mapping(page) == mapping) 784 mapping_set_error(mapping, error); 785 unlock_page(page); 786 } 787 788 /* possible outcome of pageout() */ 789 typedef enum { 790 /* failed to write page out, page is locked */ 791 PAGE_KEEP, 792 /* move page to the active list, page is locked */ 793 PAGE_ACTIVATE, 794 /* page has been sent to the disk successfully, page is unlocked */ 795 PAGE_SUCCESS, 796 /* page is clean and locked */ 797 PAGE_CLEAN, 798 } pageout_t; 799 800 /* 801 * pageout is called by shrink_page_list() for each dirty page. 802 * Calls ->writepage(). 803 */ 804 static pageout_t pageout(struct page *page, struct address_space *mapping, 805 struct scan_control *sc) 806 { 807 /* 808 * If the page is dirty, only perform writeback if that write 809 * will be non-blocking. To prevent this allocation from being 810 * stalled by pagecache activity. But note that there may be 811 * stalls if we need to run get_block(). We could test 812 * PagePrivate for that. 813 * 814 * If this process is currently in __generic_file_write_iter() against 815 * this page's queue, we can perform writeback even if that 816 * will block. 817 * 818 * If the page is swapcache, write it back even if that would 819 * block, for some throttling. This happens by accident, because 820 * swap_backing_dev_info is bust: it doesn't reflect the 821 * congestion state of the swapdevs. Easy to fix, if needed. 822 */ 823 if (!is_page_cache_freeable(page)) 824 return PAGE_KEEP; 825 if (!mapping) { 826 /* 827 * Some data journaling orphaned pages can have 828 * page->mapping == NULL while being dirty with clean buffers. 829 */ 830 if (page_has_private(page)) { 831 if (try_to_free_buffers(page)) { 832 ClearPageDirty(page); 833 pr_info("%s: orphaned page\n", __func__); 834 return PAGE_CLEAN; 835 } 836 } 837 return PAGE_KEEP; 838 } 839 if (mapping->a_ops->writepage == NULL) 840 return PAGE_ACTIVATE; 841 if (!may_write_to_inode(mapping->host, sc)) 842 return PAGE_KEEP; 843 844 if (clear_page_dirty_for_io(page)) { 845 int res; 846 struct writeback_control wbc = { 847 .sync_mode = WB_SYNC_NONE, 848 .nr_to_write = SWAP_CLUSTER_MAX, 849 .range_start = 0, 850 .range_end = LLONG_MAX, 851 .for_reclaim = 1, 852 }; 853 854 SetPageReclaim(page); 855 res = mapping->a_ops->writepage(page, &wbc); 856 if (res < 0) 857 handle_write_error(mapping, page, res); 858 if (res == AOP_WRITEPAGE_ACTIVATE) { 859 ClearPageReclaim(page); 860 return PAGE_ACTIVATE; 861 } 862 863 if (!PageWriteback(page)) { 864 /* synchronous write or broken a_ops? */ 865 ClearPageReclaim(page); 866 } 867 trace_mm_vmscan_writepage(page); 868 inc_node_page_state(page, NR_VMSCAN_WRITE); 869 return PAGE_SUCCESS; 870 } 871 872 return PAGE_CLEAN; 873 } 874 875 /* 876 * Same as remove_mapping, but if the page is removed from the mapping, it 877 * gets returned with a refcount of 0. 878 */ 879 static int __remove_mapping(struct address_space *mapping, struct page *page, 880 bool reclaimed) 881 { 882 unsigned long flags; 883 int refcount; 884 885 BUG_ON(!PageLocked(page)); 886 BUG_ON(mapping != page_mapping(page)); 887 888 xa_lock_irqsave(&mapping->i_pages, flags); 889 /* 890 * The non racy check for a busy page. 891 * 892 * Must be careful with the order of the tests. When someone has 893 * a ref to the page, it may be possible that they dirty it then 894 * drop the reference. So if PageDirty is tested before page_count 895 * here, then the following race may occur: 896 * 897 * get_user_pages(&page); 898 * [user mapping goes away] 899 * write_to(page); 900 * !PageDirty(page) [good] 901 * SetPageDirty(page); 902 * put_page(page); 903 * !page_count(page) [good, discard it] 904 * 905 * [oops, our write_to data is lost] 906 * 907 * Reversing the order of the tests ensures such a situation cannot 908 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 909 * load is not satisfied before that of page->_refcount. 910 * 911 * Note that if SetPageDirty is always performed via set_page_dirty, 912 * and thus under the i_pages lock, then this ordering is not required. 913 */ 914 if (unlikely(PageTransHuge(page)) && PageSwapCache(page)) 915 refcount = 1 + HPAGE_PMD_NR; 916 else 917 refcount = 2; 918 if (!page_ref_freeze(page, refcount)) 919 goto cannot_free; 920 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 921 if (unlikely(PageDirty(page))) { 922 page_ref_unfreeze(page, refcount); 923 goto cannot_free; 924 } 925 926 if (PageSwapCache(page)) { 927 swp_entry_t swap = { .val = page_private(page) }; 928 mem_cgroup_swapout(page, swap); 929 __delete_from_swap_cache(page, swap); 930 xa_unlock_irqrestore(&mapping->i_pages, flags); 931 put_swap_page(page, swap); 932 } else { 933 void (*freepage)(struct page *); 934 void *shadow = NULL; 935 936 freepage = mapping->a_ops->freepage; 937 /* 938 * Remember a shadow entry for reclaimed file cache in 939 * order to detect refaults, thus thrashing, later on. 940 * 941 * But don't store shadows in an address space that is 942 * already exiting. This is not just an optizimation, 943 * inode reclaim needs to empty out the radix tree or 944 * the nodes are lost. Don't plant shadows behind its 945 * back. 946 * 947 * We also don't store shadows for DAX mappings because the 948 * only page cache pages found in these are zero pages 949 * covering holes, and because we don't want to mix DAX 950 * exceptional entries and shadow exceptional entries in the 951 * same address_space. 952 */ 953 if (reclaimed && page_is_file_cache(page) && 954 !mapping_exiting(mapping) && !dax_mapping(mapping)) 955 shadow = workingset_eviction(page); 956 __delete_from_page_cache(page, shadow); 957 xa_unlock_irqrestore(&mapping->i_pages, flags); 958 959 if (freepage != NULL) 960 freepage(page); 961 } 962 963 return 1; 964 965 cannot_free: 966 xa_unlock_irqrestore(&mapping->i_pages, flags); 967 return 0; 968 } 969 970 /* 971 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 972 * someone else has a ref on the page, abort and return 0. If it was 973 * successfully detached, return 1. Assumes the caller has a single ref on 974 * this page. 975 */ 976 int remove_mapping(struct address_space *mapping, struct page *page) 977 { 978 if (__remove_mapping(mapping, page, false)) { 979 /* 980 * Unfreezing the refcount with 1 rather than 2 effectively 981 * drops the pagecache ref for us without requiring another 982 * atomic operation. 983 */ 984 page_ref_unfreeze(page, 1); 985 return 1; 986 } 987 return 0; 988 } 989 990 /** 991 * putback_lru_page - put previously isolated page onto appropriate LRU list 992 * @page: page to be put back to appropriate lru list 993 * 994 * Add previously isolated @page to appropriate LRU list. 995 * Page may still be unevictable for other reasons. 996 * 997 * lru_lock must not be held, interrupts must be enabled. 998 */ 999 void putback_lru_page(struct page *page) 1000 { 1001 lru_cache_add(page); 1002 put_page(page); /* drop ref from isolate */ 1003 } 1004 1005 enum page_references { 1006 PAGEREF_RECLAIM, 1007 PAGEREF_RECLAIM_CLEAN, 1008 PAGEREF_KEEP, 1009 PAGEREF_ACTIVATE, 1010 }; 1011 1012 static enum page_references page_check_references(struct page *page, 1013 struct scan_control *sc) 1014 { 1015 int referenced_ptes, referenced_page; 1016 unsigned long vm_flags; 1017 1018 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1019 &vm_flags); 1020 referenced_page = TestClearPageReferenced(page); 1021 1022 /* 1023 * Mlock lost the isolation race with us. Let try_to_unmap() 1024 * move the page to the unevictable list. 1025 */ 1026 if (vm_flags & VM_LOCKED) 1027 return PAGEREF_RECLAIM; 1028 1029 if (referenced_ptes) { 1030 if (PageSwapBacked(page)) 1031 return PAGEREF_ACTIVATE; 1032 /* 1033 * All mapped pages start out with page table 1034 * references from the instantiating fault, so we need 1035 * to look twice if a mapped file page is used more 1036 * than once. 1037 * 1038 * Mark it and spare it for another trip around the 1039 * inactive list. Another page table reference will 1040 * lead to its activation. 1041 * 1042 * Note: the mark is set for activated pages as well 1043 * so that recently deactivated but used pages are 1044 * quickly recovered. 1045 */ 1046 SetPageReferenced(page); 1047 1048 if (referenced_page || referenced_ptes > 1) 1049 return PAGEREF_ACTIVATE; 1050 1051 /* 1052 * Activate file-backed executable pages after first usage. 1053 */ 1054 if (vm_flags & VM_EXEC) 1055 return PAGEREF_ACTIVATE; 1056 1057 return PAGEREF_KEEP; 1058 } 1059 1060 /* Reclaim if clean, defer dirty pages to writeback */ 1061 if (referenced_page && !PageSwapBacked(page)) 1062 return PAGEREF_RECLAIM_CLEAN; 1063 1064 return PAGEREF_RECLAIM; 1065 } 1066 1067 /* Check if a page is dirty or under writeback */ 1068 static void page_check_dirty_writeback(struct page *page, 1069 bool *dirty, bool *writeback) 1070 { 1071 struct address_space *mapping; 1072 1073 /* 1074 * Anonymous pages are not handled by flushers and must be written 1075 * from reclaim context. Do not stall reclaim based on them 1076 */ 1077 if (!page_is_file_cache(page) || 1078 (PageAnon(page) && !PageSwapBacked(page))) { 1079 *dirty = false; 1080 *writeback = false; 1081 return; 1082 } 1083 1084 /* By default assume that the page flags are accurate */ 1085 *dirty = PageDirty(page); 1086 *writeback = PageWriteback(page); 1087 1088 /* Verify dirty/writeback state if the filesystem supports it */ 1089 if (!page_has_private(page)) 1090 return; 1091 1092 mapping = page_mapping(page); 1093 if (mapping && mapping->a_ops->is_dirty_writeback) 1094 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1095 } 1096 1097 /* 1098 * shrink_page_list() returns the number of reclaimed pages 1099 */ 1100 static unsigned long shrink_page_list(struct list_head *page_list, 1101 struct pglist_data *pgdat, 1102 struct scan_control *sc, 1103 enum ttu_flags ttu_flags, 1104 struct reclaim_stat *stat, 1105 bool force_reclaim) 1106 { 1107 LIST_HEAD(ret_pages); 1108 LIST_HEAD(free_pages); 1109 unsigned nr_reclaimed = 0; 1110 unsigned pgactivate = 0; 1111 1112 memset(stat, 0, sizeof(*stat)); 1113 cond_resched(); 1114 1115 while (!list_empty(page_list)) { 1116 struct address_space *mapping; 1117 struct page *page; 1118 int may_enter_fs; 1119 enum page_references references = PAGEREF_RECLAIM_CLEAN; 1120 bool dirty, writeback; 1121 1122 cond_resched(); 1123 1124 page = lru_to_page(page_list); 1125 list_del(&page->lru); 1126 1127 if (!trylock_page(page)) 1128 goto keep; 1129 1130 VM_BUG_ON_PAGE(PageActive(page), page); 1131 1132 sc->nr_scanned++; 1133 1134 if (unlikely(!page_evictable(page))) 1135 goto activate_locked; 1136 1137 if (!sc->may_unmap && page_mapped(page)) 1138 goto keep_locked; 1139 1140 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1141 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1142 1143 /* 1144 * The number of dirty pages determines if a node is marked 1145 * reclaim_congested which affects wait_iff_congested. kswapd 1146 * will stall and start writing pages if the tail of the LRU 1147 * is all dirty unqueued pages. 1148 */ 1149 page_check_dirty_writeback(page, &dirty, &writeback); 1150 if (dirty || writeback) 1151 stat->nr_dirty++; 1152 1153 if (dirty && !writeback) 1154 stat->nr_unqueued_dirty++; 1155 1156 /* 1157 * Treat this page as congested if the underlying BDI is or if 1158 * pages are cycling through the LRU so quickly that the 1159 * pages marked for immediate reclaim are making it to the 1160 * end of the LRU a second time. 1161 */ 1162 mapping = page_mapping(page); 1163 if (((dirty || writeback) && mapping && 1164 inode_write_congested(mapping->host)) || 1165 (writeback && PageReclaim(page))) 1166 stat->nr_congested++; 1167 1168 /* 1169 * If a page at the tail of the LRU is under writeback, there 1170 * are three cases to consider. 1171 * 1172 * 1) If reclaim is encountering an excessive number of pages 1173 * under writeback and this page is both under writeback and 1174 * PageReclaim then it indicates that pages are being queued 1175 * for IO but are being recycled through the LRU before the 1176 * IO can complete. Waiting on the page itself risks an 1177 * indefinite stall if it is impossible to writeback the 1178 * page due to IO error or disconnected storage so instead 1179 * note that the LRU is being scanned too quickly and the 1180 * caller can stall after page list has been processed. 1181 * 1182 * 2) Global or new memcg reclaim encounters a page that is 1183 * not marked for immediate reclaim, or the caller does not 1184 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1185 * not to fs). In this case mark the page for immediate 1186 * reclaim and continue scanning. 1187 * 1188 * Require may_enter_fs because we would wait on fs, which 1189 * may not have submitted IO yet. And the loop driver might 1190 * enter reclaim, and deadlock if it waits on a page for 1191 * which it is needed to do the write (loop masks off 1192 * __GFP_IO|__GFP_FS for this reason); but more thought 1193 * would probably show more reasons. 1194 * 1195 * 3) Legacy memcg encounters a page that is already marked 1196 * PageReclaim. memcg does not have any dirty pages 1197 * throttling so we could easily OOM just because too many 1198 * pages are in writeback and there is nothing else to 1199 * reclaim. Wait for the writeback to complete. 1200 * 1201 * In cases 1) and 2) we activate the pages to get them out of 1202 * the way while we continue scanning for clean pages on the 1203 * inactive list and refilling from the active list. The 1204 * observation here is that waiting for disk writes is more 1205 * expensive than potentially causing reloads down the line. 1206 * Since they're marked for immediate reclaim, they won't put 1207 * memory pressure on the cache working set any longer than it 1208 * takes to write them to disk. 1209 */ 1210 if (PageWriteback(page)) { 1211 /* Case 1 above */ 1212 if (current_is_kswapd() && 1213 PageReclaim(page) && 1214 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1215 stat->nr_immediate++; 1216 goto activate_locked; 1217 1218 /* Case 2 above */ 1219 } else if (sane_reclaim(sc) || 1220 !PageReclaim(page) || !may_enter_fs) { 1221 /* 1222 * This is slightly racy - end_page_writeback() 1223 * might have just cleared PageReclaim, then 1224 * setting PageReclaim here end up interpreted 1225 * as PageReadahead - but that does not matter 1226 * enough to care. What we do want is for this 1227 * page to have PageReclaim set next time memcg 1228 * reclaim reaches the tests above, so it will 1229 * then wait_on_page_writeback() to avoid OOM; 1230 * and it's also appropriate in global reclaim. 1231 */ 1232 SetPageReclaim(page); 1233 stat->nr_writeback++; 1234 goto activate_locked; 1235 1236 /* Case 3 above */ 1237 } else { 1238 unlock_page(page); 1239 wait_on_page_writeback(page); 1240 /* then go back and try same page again */ 1241 list_add_tail(&page->lru, page_list); 1242 continue; 1243 } 1244 } 1245 1246 if (!force_reclaim) 1247 references = page_check_references(page, sc); 1248 1249 switch (references) { 1250 case PAGEREF_ACTIVATE: 1251 goto activate_locked; 1252 case PAGEREF_KEEP: 1253 stat->nr_ref_keep++; 1254 goto keep_locked; 1255 case PAGEREF_RECLAIM: 1256 case PAGEREF_RECLAIM_CLEAN: 1257 ; /* try to reclaim the page below */ 1258 } 1259 1260 /* 1261 * Anonymous process memory has backing store? 1262 * Try to allocate it some swap space here. 1263 * Lazyfree page could be freed directly 1264 */ 1265 if (PageAnon(page) && PageSwapBacked(page)) { 1266 if (!PageSwapCache(page)) { 1267 if (!(sc->gfp_mask & __GFP_IO)) 1268 goto keep_locked; 1269 if (PageTransHuge(page)) { 1270 /* cannot split THP, skip it */ 1271 if (!can_split_huge_page(page, NULL)) 1272 goto activate_locked; 1273 /* 1274 * Split pages without a PMD map right 1275 * away. Chances are some or all of the 1276 * tail pages can be freed without IO. 1277 */ 1278 if (!compound_mapcount(page) && 1279 split_huge_page_to_list(page, 1280 page_list)) 1281 goto activate_locked; 1282 } 1283 if (!add_to_swap(page)) { 1284 if (!PageTransHuge(page)) 1285 goto activate_locked; 1286 /* Fallback to swap normal pages */ 1287 if (split_huge_page_to_list(page, 1288 page_list)) 1289 goto activate_locked; 1290 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1291 count_vm_event(THP_SWPOUT_FALLBACK); 1292 #endif 1293 if (!add_to_swap(page)) 1294 goto activate_locked; 1295 } 1296 1297 may_enter_fs = 1; 1298 1299 /* Adding to swap updated mapping */ 1300 mapping = page_mapping(page); 1301 } 1302 } else if (unlikely(PageTransHuge(page))) { 1303 /* Split file THP */ 1304 if (split_huge_page_to_list(page, page_list)) 1305 goto keep_locked; 1306 } 1307 1308 /* 1309 * The page is mapped into the page tables of one or more 1310 * processes. Try to unmap it here. 1311 */ 1312 if (page_mapped(page)) { 1313 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1314 1315 if (unlikely(PageTransHuge(page))) 1316 flags |= TTU_SPLIT_HUGE_PMD; 1317 if (!try_to_unmap(page, flags)) { 1318 stat->nr_unmap_fail++; 1319 goto activate_locked; 1320 } 1321 } 1322 1323 if (PageDirty(page)) { 1324 /* 1325 * Only kswapd can writeback filesystem pages 1326 * to avoid risk of stack overflow. But avoid 1327 * injecting inefficient single-page IO into 1328 * flusher writeback as much as possible: only 1329 * write pages when we've encountered many 1330 * dirty pages, and when we've already scanned 1331 * the rest of the LRU for clean pages and see 1332 * the same dirty pages again (PageReclaim). 1333 */ 1334 if (page_is_file_cache(page) && 1335 (!current_is_kswapd() || !PageReclaim(page) || 1336 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1337 /* 1338 * Immediately reclaim when written back. 1339 * Similar in principal to deactivate_page() 1340 * except we already have the page isolated 1341 * and know it's dirty 1342 */ 1343 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1344 SetPageReclaim(page); 1345 1346 goto activate_locked; 1347 } 1348 1349 if (references == PAGEREF_RECLAIM_CLEAN) 1350 goto keep_locked; 1351 if (!may_enter_fs) 1352 goto keep_locked; 1353 if (!sc->may_writepage) 1354 goto keep_locked; 1355 1356 /* 1357 * Page is dirty. Flush the TLB if a writable entry 1358 * potentially exists to avoid CPU writes after IO 1359 * starts and then write it out here. 1360 */ 1361 try_to_unmap_flush_dirty(); 1362 switch (pageout(page, mapping, sc)) { 1363 case PAGE_KEEP: 1364 goto keep_locked; 1365 case PAGE_ACTIVATE: 1366 goto activate_locked; 1367 case PAGE_SUCCESS: 1368 if (PageWriteback(page)) 1369 goto keep; 1370 if (PageDirty(page)) 1371 goto keep; 1372 1373 /* 1374 * A synchronous write - probably a ramdisk. Go 1375 * ahead and try to reclaim the page. 1376 */ 1377 if (!trylock_page(page)) 1378 goto keep; 1379 if (PageDirty(page) || PageWriteback(page)) 1380 goto keep_locked; 1381 mapping = page_mapping(page); 1382 case PAGE_CLEAN: 1383 ; /* try to free the page below */ 1384 } 1385 } 1386 1387 /* 1388 * If the page has buffers, try to free the buffer mappings 1389 * associated with this page. If we succeed we try to free 1390 * the page as well. 1391 * 1392 * We do this even if the page is PageDirty(). 1393 * try_to_release_page() does not perform I/O, but it is 1394 * possible for a page to have PageDirty set, but it is actually 1395 * clean (all its buffers are clean). This happens if the 1396 * buffers were written out directly, with submit_bh(). ext3 1397 * will do this, as well as the blockdev mapping. 1398 * try_to_release_page() will discover that cleanness and will 1399 * drop the buffers and mark the page clean - it can be freed. 1400 * 1401 * Rarely, pages can have buffers and no ->mapping. These are 1402 * the pages which were not successfully invalidated in 1403 * truncate_complete_page(). We try to drop those buffers here 1404 * and if that worked, and the page is no longer mapped into 1405 * process address space (page_count == 1) it can be freed. 1406 * Otherwise, leave the page on the LRU so it is swappable. 1407 */ 1408 if (page_has_private(page)) { 1409 if (!try_to_release_page(page, sc->gfp_mask)) 1410 goto activate_locked; 1411 if (!mapping && page_count(page) == 1) { 1412 unlock_page(page); 1413 if (put_page_testzero(page)) 1414 goto free_it; 1415 else { 1416 /* 1417 * rare race with speculative reference. 1418 * the speculative reference will free 1419 * this page shortly, so we may 1420 * increment nr_reclaimed here (and 1421 * leave it off the LRU). 1422 */ 1423 nr_reclaimed++; 1424 continue; 1425 } 1426 } 1427 } 1428 1429 if (PageAnon(page) && !PageSwapBacked(page)) { 1430 /* follow __remove_mapping for reference */ 1431 if (!page_ref_freeze(page, 1)) 1432 goto keep_locked; 1433 if (PageDirty(page)) { 1434 page_ref_unfreeze(page, 1); 1435 goto keep_locked; 1436 } 1437 1438 count_vm_event(PGLAZYFREED); 1439 count_memcg_page_event(page, PGLAZYFREED); 1440 } else if (!mapping || !__remove_mapping(mapping, page, true)) 1441 goto keep_locked; 1442 1443 unlock_page(page); 1444 free_it: 1445 nr_reclaimed++; 1446 1447 /* 1448 * Is there need to periodically free_page_list? It would 1449 * appear not as the counts should be low 1450 */ 1451 if (unlikely(PageTransHuge(page))) { 1452 mem_cgroup_uncharge(page); 1453 (*get_compound_page_dtor(page))(page); 1454 } else 1455 list_add(&page->lru, &free_pages); 1456 continue; 1457 1458 activate_locked: 1459 /* Not a candidate for swapping, so reclaim swap space. */ 1460 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1461 PageMlocked(page))) 1462 try_to_free_swap(page); 1463 VM_BUG_ON_PAGE(PageActive(page), page); 1464 if (!PageMlocked(page)) { 1465 int type = page_is_file_cache(page); 1466 SetPageActive(page); 1467 pgactivate++; 1468 stat->nr_activate[type] += hpage_nr_pages(page); 1469 count_memcg_page_event(page, PGACTIVATE); 1470 } 1471 keep_locked: 1472 unlock_page(page); 1473 keep: 1474 list_add(&page->lru, &ret_pages); 1475 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1476 } 1477 1478 mem_cgroup_uncharge_list(&free_pages); 1479 try_to_unmap_flush(); 1480 free_unref_page_list(&free_pages); 1481 1482 list_splice(&ret_pages, page_list); 1483 count_vm_events(PGACTIVATE, pgactivate); 1484 1485 return nr_reclaimed; 1486 } 1487 1488 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1489 struct list_head *page_list) 1490 { 1491 struct scan_control sc = { 1492 .gfp_mask = GFP_KERNEL, 1493 .priority = DEF_PRIORITY, 1494 .may_unmap = 1, 1495 }; 1496 struct reclaim_stat dummy_stat; 1497 unsigned long ret; 1498 struct page *page, *next; 1499 LIST_HEAD(clean_pages); 1500 1501 list_for_each_entry_safe(page, next, page_list, lru) { 1502 if (page_is_file_cache(page) && !PageDirty(page) && 1503 !__PageMovable(page) && !PageUnevictable(page)) { 1504 ClearPageActive(page); 1505 list_move(&page->lru, &clean_pages); 1506 } 1507 } 1508 1509 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1510 TTU_IGNORE_ACCESS, &dummy_stat, true); 1511 list_splice(&clean_pages, page_list); 1512 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1513 return ret; 1514 } 1515 1516 /* 1517 * Attempt to remove the specified page from its LRU. Only take this page 1518 * if it is of the appropriate PageActive status. Pages which are being 1519 * freed elsewhere are also ignored. 1520 * 1521 * page: page to consider 1522 * mode: one of the LRU isolation modes defined above 1523 * 1524 * returns 0 on success, -ve errno on failure. 1525 */ 1526 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1527 { 1528 int ret = -EINVAL; 1529 1530 /* Only take pages on the LRU. */ 1531 if (!PageLRU(page)) 1532 return ret; 1533 1534 /* Compaction should not handle unevictable pages but CMA can do so */ 1535 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1536 return ret; 1537 1538 ret = -EBUSY; 1539 1540 /* 1541 * To minimise LRU disruption, the caller can indicate that it only 1542 * wants to isolate pages it will be able to operate on without 1543 * blocking - clean pages for the most part. 1544 * 1545 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1546 * that it is possible to migrate without blocking 1547 */ 1548 if (mode & ISOLATE_ASYNC_MIGRATE) { 1549 /* All the caller can do on PageWriteback is block */ 1550 if (PageWriteback(page)) 1551 return ret; 1552 1553 if (PageDirty(page)) { 1554 struct address_space *mapping; 1555 bool migrate_dirty; 1556 1557 /* 1558 * Only pages without mappings or that have a 1559 * ->migratepage callback are possible to migrate 1560 * without blocking. However, we can be racing with 1561 * truncation so it's necessary to lock the page 1562 * to stabilise the mapping as truncation holds 1563 * the page lock until after the page is removed 1564 * from the page cache. 1565 */ 1566 if (!trylock_page(page)) 1567 return ret; 1568 1569 mapping = page_mapping(page); 1570 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1571 unlock_page(page); 1572 if (!migrate_dirty) 1573 return ret; 1574 } 1575 } 1576 1577 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1578 return ret; 1579 1580 if (likely(get_page_unless_zero(page))) { 1581 /* 1582 * Be careful not to clear PageLRU until after we're 1583 * sure the page is not being freed elsewhere -- the 1584 * page release code relies on it. 1585 */ 1586 ClearPageLRU(page); 1587 ret = 0; 1588 } 1589 1590 return ret; 1591 } 1592 1593 1594 /* 1595 * Update LRU sizes after isolating pages. The LRU size updates must 1596 * be complete before mem_cgroup_update_lru_size due to a santity check. 1597 */ 1598 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1599 enum lru_list lru, unsigned long *nr_zone_taken) 1600 { 1601 int zid; 1602 1603 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1604 if (!nr_zone_taken[zid]) 1605 continue; 1606 1607 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1608 #ifdef CONFIG_MEMCG 1609 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1610 #endif 1611 } 1612 1613 } 1614 1615 /** 1616 * pgdat->lru_lock is heavily contended. Some of the functions that 1617 * shrink the lists perform better by taking out a batch of pages 1618 * and working on them outside the LRU lock. 1619 * 1620 * For pagecache intensive workloads, this function is the hottest 1621 * spot in the kernel (apart from copy_*_user functions). 1622 * 1623 * Appropriate locks must be held before calling this function. 1624 * 1625 * @nr_to_scan: The number of eligible pages to look through on the list. 1626 * @lruvec: The LRU vector to pull pages from. 1627 * @dst: The temp list to put pages on to. 1628 * @nr_scanned: The number of pages that were scanned. 1629 * @sc: The scan_control struct for this reclaim session 1630 * @mode: One of the LRU isolation modes 1631 * @lru: LRU list id for isolating 1632 * 1633 * returns how many pages were moved onto *@dst. 1634 */ 1635 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1636 struct lruvec *lruvec, struct list_head *dst, 1637 unsigned long *nr_scanned, struct scan_control *sc, 1638 enum lru_list lru) 1639 { 1640 struct list_head *src = &lruvec->lists[lru]; 1641 unsigned long nr_taken = 0; 1642 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1643 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1644 unsigned long skipped = 0; 1645 unsigned long scan, total_scan, nr_pages; 1646 LIST_HEAD(pages_skipped); 1647 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1648 1649 scan = 0; 1650 for (total_scan = 0; 1651 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src); 1652 total_scan++) { 1653 struct page *page; 1654 1655 page = lru_to_page(src); 1656 prefetchw_prev_lru_page(page, src, flags); 1657 1658 VM_BUG_ON_PAGE(!PageLRU(page), page); 1659 1660 if (page_zonenum(page) > sc->reclaim_idx) { 1661 list_move(&page->lru, &pages_skipped); 1662 nr_skipped[page_zonenum(page)]++; 1663 continue; 1664 } 1665 1666 /* 1667 * Do not count skipped pages because that makes the function 1668 * return with no isolated pages if the LRU mostly contains 1669 * ineligible pages. This causes the VM to not reclaim any 1670 * pages, triggering a premature OOM. 1671 */ 1672 scan++; 1673 switch (__isolate_lru_page(page, mode)) { 1674 case 0: 1675 nr_pages = hpage_nr_pages(page); 1676 nr_taken += nr_pages; 1677 nr_zone_taken[page_zonenum(page)] += nr_pages; 1678 list_move(&page->lru, dst); 1679 break; 1680 1681 case -EBUSY: 1682 /* else it is being freed elsewhere */ 1683 list_move(&page->lru, src); 1684 continue; 1685 1686 default: 1687 BUG(); 1688 } 1689 } 1690 1691 /* 1692 * Splice any skipped pages to the start of the LRU list. Note that 1693 * this disrupts the LRU order when reclaiming for lower zones but 1694 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1695 * scanning would soon rescan the same pages to skip and put the 1696 * system at risk of premature OOM. 1697 */ 1698 if (!list_empty(&pages_skipped)) { 1699 int zid; 1700 1701 list_splice(&pages_skipped, src); 1702 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1703 if (!nr_skipped[zid]) 1704 continue; 1705 1706 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1707 skipped += nr_skipped[zid]; 1708 } 1709 } 1710 *nr_scanned = total_scan; 1711 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1712 total_scan, skipped, nr_taken, mode, lru); 1713 update_lru_sizes(lruvec, lru, nr_zone_taken); 1714 return nr_taken; 1715 } 1716 1717 /** 1718 * isolate_lru_page - tries to isolate a page from its LRU list 1719 * @page: page to isolate from its LRU list 1720 * 1721 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1722 * vmstat statistic corresponding to whatever LRU list the page was on. 1723 * 1724 * Returns 0 if the page was removed from an LRU list. 1725 * Returns -EBUSY if the page was not on an LRU list. 1726 * 1727 * The returned page will have PageLRU() cleared. If it was found on 1728 * the active list, it will have PageActive set. If it was found on 1729 * the unevictable list, it will have the PageUnevictable bit set. That flag 1730 * may need to be cleared by the caller before letting the page go. 1731 * 1732 * The vmstat statistic corresponding to the list on which the page was 1733 * found will be decremented. 1734 * 1735 * Restrictions: 1736 * 1737 * (1) Must be called with an elevated refcount on the page. This is a 1738 * fundamentnal difference from isolate_lru_pages (which is called 1739 * without a stable reference). 1740 * (2) the lru_lock must not be held. 1741 * (3) interrupts must be enabled. 1742 */ 1743 int isolate_lru_page(struct page *page) 1744 { 1745 int ret = -EBUSY; 1746 1747 VM_BUG_ON_PAGE(!page_count(page), page); 1748 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1749 1750 if (PageLRU(page)) { 1751 pg_data_t *pgdat = page_pgdat(page); 1752 struct lruvec *lruvec; 1753 1754 spin_lock_irq(&pgdat->lru_lock); 1755 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1756 if (PageLRU(page)) { 1757 int lru = page_lru(page); 1758 get_page(page); 1759 ClearPageLRU(page); 1760 del_page_from_lru_list(page, lruvec, lru); 1761 ret = 0; 1762 } 1763 spin_unlock_irq(&pgdat->lru_lock); 1764 } 1765 return ret; 1766 } 1767 1768 /* 1769 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1770 * then get resheduled. When there are massive number of tasks doing page 1771 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1772 * the LRU list will go small and be scanned faster than necessary, leading to 1773 * unnecessary swapping, thrashing and OOM. 1774 */ 1775 static int too_many_isolated(struct pglist_data *pgdat, int file, 1776 struct scan_control *sc) 1777 { 1778 unsigned long inactive, isolated; 1779 1780 if (current_is_kswapd()) 1781 return 0; 1782 1783 if (!sane_reclaim(sc)) 1784 return 0; 1785 1786 if (file) { 1787 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1788 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1789 } else { 1790 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1791 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1792 } 1793 1794 /* 1795 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1796 * won't get blocked by normal direct-reclaimers, forming a circular 1797 * deadlock. 1798 */ 1799 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1800 inactive >>= 3; 1801 1802 return isolated > inactive; 1803 } 1804 1805 /* 1806 * This moves pages from @list to corresponding LRU list. 1807 * 1808 * We move them the other way if the page is referenced by one or more 1809 * processes, from rmap. 1810 * 1811 * If the pages are mostly unmapped, the processing is fast and it is 1812 * appropriate to hold zone_lru_lock across the whole operation. But if 1813 * the pages are mapped, the processing is slow (page_referenced()) so we 1814 * should drop zone_lru_lock around each page. It's impossible to balance 1815 * this, so instead we remove the pages from the LRU while processing them. 1816 * It is safe to rely on PG_active against the non-LRU pages in here because 1817 * nobody will play with that bit on a non-LRU page. 1818 * 1819 * The downside is that we have to touch page->_refcount against each page. 1820 * But we had to alter page->flags anyway. 1821 * 1822 * Returns the number of pages moved to the given lruvec. 1823 */ 1824 1825 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec, 1826 struct list_head *list) 1827 { 1828 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1829 int nr_pages, nr_moved = 0; 1830 LIST_HEAD(pages_to_free); 1831 struct page *page; 1832 enum lru_list lru; 1833 1834 while (!list_empty(list)) { 1835 page = lru_to_page(list); 1836 VM_BUG_ON_PAGE(PageLRU(page), page); 1837 if (unlikely(!page_evictable(page))) { 1838 list_del(&page->lru); 1839 spin_unlock_irq(&pgdat->lru_lock); 1840 putback_lru_page(page); 1841 spin_lock_irq(&pgdat->lru_lock); 1842 continue; 1843 } 1844 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1845 1846 SetPageLRU(page); 1847 lru = page_lru(page); 1848 1849 nr_pages = hpage_nr_pages(page); 1850 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1851 list_move(&page->lru, &lruvec->lists[lru]); 1852 1853 if (put_page_testzero(page)) { 1854 __ClearPageLRU(page); 1855 __ClearPageActive(page); 1856 del_page_from_lru_list(page, lruvec, lru); 1857 1858 if (unlikely(PageCompound(page))) { 1859 spin_unlock_irq(&pgdat->lru_lock); 1860 mem_cgroup_uncharge(page); 1861 (*get_compound_page_dtor(page))(page); 1862 spin_lock_irq(&pgdat->lru_lock); 1863 } else 1864 list_add(&page->lru, &pages_to_free); 1865 } else { 1866 nr_moved += nr_pages; 1867 } 1868 } 1869 1870 /* 1871 * To save our caller's stack, now use input list for pages to free. 1872 */ 1873 list_splice(&pages_to_free, list); 1874 1875 return nr_moved; 1876 } 1877 1878 /* 1879 * If a kernel thread (such as nfsd for loop-back mounts) services 1880 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1881 * In that case we should only throttle if the backing device it is 1882 * writing to is congested. In other cases it is safe to throttle. 1883 */ 1884 static int current_may_throttle(void) 1885 { 1886 return !(current->flags & PF_LESS_THROTTLE) || 1887 current->backing_dev_info == NULL || 1888 bdi_write_congested(current->backing_dev_info); 1889 } 1890 1891 /* 1892 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1893 * of reclaimed pages 1894 */ 1895 static noinline_for_stack unsigned long 1896 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1897 struct scan_control *sc, enum lru_list lru) 1898 { 1899 LIST_HEAD(page_list); 1900 unsigned long nr_scanned; 1901 unsigned long nr_reclaimed = 0; 1902 unsigned long nr_taken; 1903 struct reclaim_stat stat; 1904 int file = is_file_lru(lru); 1905 enum vm_event_item item; 1906 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1907 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1908 bool stalled = false; 1909 1910 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1911 if (stalled) 1912 return 0; 1913 1914 /* wait a bit for the reclaimer. */ 1915 msleep(100); 1916 stalled = true; 1917 1918 /* We are about to die and free our memory. Return now. */ 1919 if (fatal_signal_pending(current)) 1920 return SWAP_CLUSTER_MAX; 1921 } 1922 1923 lru_add_drain(); 1924 1925 spin_lock_irq(&pgdat->lru_lock); 1926 1927 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1928 &nr_scanned, sc, lru); 1929 1930 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1931 reclaim_stat->recent_scanned[file] += nr_taken; 1932 1933 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 1934 if (global_reclaim(sc)) 1935 __count_vm_events(item, nr_scanned); 1936 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1937 spin_unlock_irq(&pgdat->lru_lock); 1938 1939 if (nr_taken == 0) 1940 return 0; 1941 1942 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1943 &stat, false); 1944 1945 spin_lock_irq(&pgdat->lru_lock); 1946 1947 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 1948 if (global_reclaim(sc)) 1949 __count_vm_events(item, nr_reclaimed); 1950 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 1951 reclaim_stat->recent_rotated[0] += stat.nr_activate[0]; 1952 reclaim_stat->recent_rotated[1] += stat.nr_activate[1]; 1953 1954 move_pages_to_lru(lruvec, &page_list); 1955 1956 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1957 1958 spin_unlock_irq(&pgdat->lru_lock); 1959 1960 mem_cgroup_uncharge_list(&page_list); 1961 free_unref_page_list(&page_list); 1962 1963 /* 1964 * If dirty pages are scanned that are not queued for IO, it 1965 * implies that flushers are not doing their job. This can 1966 * happen when memory pressure pushes dirty pages to the end of 1967 * the LRU before the dirty limits are breached and the dirty 1968 * data has expired. It can also happen when the proportion of 1969 * dirty pages grows not through writes but through memory 1970 * pressure reclaiming all the clean cache. And in some cases, 1971 * the flushers simply cannot keep up with the allocation 1972 * rate. Nudge the flusher threads in case they are asleep. 1973 */ 1974 if (stat.nr_unqueued_dirty == nr_taken) 1975 wakeup_flusher_threads(WB_REASON_VMSCAN); 1976 1977 sc->nr.dirty += stat.nr_dirty; 1978 sc->nr.congested += stat.nr_congested; 1979 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 1980 sc->nr.writeback += stat.nr_writeback; 1981 sc->nr.immediate += stat.nr_immediate; 1982 sc->nr.taken += nr_taken; 1983 if (file) 1984 sc->nr.file_taken += nr_taken; 1985 1986 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1987 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 1988 return nr_reclaimed; 1989 } 1990 1991 static void shrink_active_list(unsigned long nr_to_scan, 1992 struct lruvec *lruvec, 1993 struct scan_control *sc, 1994 enum lru_list lru) 1995 { 1996 unsigned long nr_taken; 1997 unsigned long nr_scanned; 1998 unsigned long vm_flags; 1999 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2000 LIST_HEAD(l_active); 2001 LIST_HEAD(l_inactive); 2002 struct page *page; 2003 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2004 unsigned nr_deactivate, nr_activate; 2005 unsigned nr_rotated = 0; 2006 int file = is_file_lru(lru); 2007 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2008 2009 lru_add_drain(); 2010 2011 spin_lock_irq(&pgdat->lru_lock); 2012 2013 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2014 &nr_scanned, sc, lru); 2015 2016 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2017 reclaim_stat->recent_scanned[file] += nr_taken; 2018 2019 __count_vm_events(PGREFILL, nr_scanned); 2020 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2021 2022 spin_unlock_irq(&pgdat->lru_lock); 2023 2024 while (!list_empty(&l_hold)) { 2025 cond_resched(); 2026 page = lru_to_page(&l_hold); 2027 list_del(&page->lru); 2028 2029 if (unlikely(!page_evictable(page))) { 2030 putback_lru_page(page); 2031 continue; 2032 } 2033 2034 if (unlikely(buffer_heads_over_limit)) { 2035 if (page_has_private(page) && trylock_page(page)) { 2036 if (page_has_private(page)) 2037 try_to_release_page(page, 0); 2038 unlock_page(page); 2039 } 2040 } 2041 2042 if (page_referenced(page, 0, sc->target_mem_cgroup, 2043 &vm_flags)) { 2044 nr_rotated += hpage_nr_pages(page); 2045 /* 2046 * Identify referenced, file-backed active pages and 2047 * give them one more trip around the active list. So 2048 * that executable code get better chances to stay in 2049 * memory under moderate memory pressure. Anon pages 2050 * are not likely to be evicted by use-once streaming 2051 * IO, plus JVM can create lots of anon VM_EXEC pages, 2052 * so we ignore them here. 2053 */ 2054 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 2055 list_add(&page->lru, &l_active); 2056 continue; 2057 } 2058 } 2059 2060 ClearPageActive(page); /* we are de-activating */ 2061 SetPageWorkingset(page); 2062 list_add(&page->lru, &l_inactive); 2063 } 2064 2065 /* 2066 * Move pages back to the lru list. 2067 */ 2068 spin_lock_irq(&pgdat->lru_lock); 2069 /* 2070 * Count referenced pages from currently used mappings as rotated, 2071 * even though only some of them are actually re-activated. This 2072 * helps balance scan pressure between file and anonymous pages in 2073 * get_scan_count. 2074 */ 2075 reclaim_stat->recent_rotated[file] += nr_rotated; 2076 2077 nr_activate = move_pages_to_lru(lruvec, &l_active); 2078 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2079 /* Keep all free pages in l_active list */ 2080 list_splice(&l_inactive, &l_active); 2081 2082 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2083 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2084 2085 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2086 spin_unlock_irq(&pgdat->lru_lock); 2087 2088 mem_cgroup_uncharge_list(&l_active); 2089 free_unref_page_list(&l_active); 2090 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2091 nr_deactivate, nr_rotated, sc->priority, file); 2092 } 2093 2094 /* 2095 * The inactive anon list should be small enough that the VM never has 2096 * to do too much work. 2097 * 2098 * The inactive file list should be small enough to leave most memory 2099 * to the established workingset on the scan-resistant active list, 2100 * but large enough to avoid thrashing the aggregate readahead window. 2101 * 2102 * Both inactive lists should also be large enough that each inactive 2103 * page has a chance to be referenced again before it is reclaimed. 2104 * 2105 * If that fails and refaulting is observed, the inactive list grows. 2106 * 2107 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2108 * on this LRU, maintained by the pageout code. An inactive_ratio 2109 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2110 * 2111 * total target max 2112 * memory ratio inactive 2113 * ------------------------------------- 2114 * 10MB 1 5MB 2115 * 100MB 1 50MB 2116 * 1GB 3 250MB 2117 * 10GB 10 0.9GB 2118 * 100GB 31 3GB 2119 * 1TB 101 10GB 2120 * 10TB 320 32GB 2121 */ 2122 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2123 struct scan_control *sc, bool trace) 2124 { 2125 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; 2126 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2127 enum lru_list inactive_lru = file * LRU_FILE; 2128 unsigned long inactive, active; 2129 unsigned long inactive_ratio; 2130 unsigned long refaults; 2131 unsigned long gb; 2132 2133 /* 2134 * If we don't have swap space, anonymous page deactivation 2135 * is pointless. 2136 */ 2137 if (!file && !total_swap_pages) 2138 return false; 2139 2140 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); 2141 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); 2142 2143 /* 2144 * When refaults are being observed, it means a new workingset 2145 * is being established. Disable active list protection to get 2146 * rid of the stale workingset quickly. 2147 */ 2148 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE); 2149 if (file && lruvec->refaults != refaults) { 2150 inactive_ratio = 0; 2151 } else { 2152 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2153 if (gb) 2154 inactive_ratio = int_sqrt(10 * gb); 2155 else 2156 inactive_ratio = 1; 2157 } 2158 2159 if (trace) 2160 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, 2161 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, 2162 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, 2163 inactive_ratio, file); 2164 2165 return inactive * inactive_ratio < active; 2166 } 2167 2168 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2169 struct lruvec *lruvec, struct scan_control *sc) 2170 { 2171 if (is_active_lru(lru)) { 2172 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true)) 2173 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2174 return 0; 2175 } 2176 2177 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2178 } 2179 2180 enum scan_balance { 2181 SCAN_EQUAL, 2182 SCAN_FRACT, 2183 SCAN_ANON, 2184 SCAN_FILE, 2185 }; 2186 2187 /* 2188 * Determine how aggressively the anon and file LRU lists should be 2189 * scanned. The relative value of each set of LRU lists is determined 2190 * by looking at the fraction of the pages scanned we did rotate back 2191 * onto the active list instead of evict. 2192 * 2193 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2194 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2195 */ 2196 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2197 struct scan_control *sc, unsigned long *nr, 2198 unsigned long *lru_pages) 2199 { 2200 int swappiness = mem_cgroup_swappiness(memcg); 2201 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2202 u64 fraction[2]; 2203 u64 denominator = 0; /* gcc */ 2204 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2205 unsigned long anon_prio, file_prio; 2206 enum scan_balance scan_balance; 2207 unsigned long anon, file; 2208 unsigned long ap, fp; 2209 enum lru_list lru; 2210 2211 /* If we have no swap space, do not bother scanning anon pages. */ 2212 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2213 scan_balance = SCAN_FILE; 2214 goto out; 2215 } 2216 2217 /* 2218 * Global reclaim will swap to prevent OOM even with no 2219 * swappiness, but memcg users want to use this knob to 2220 * disable swapping for individual groups completely when 2221 * using the memory controller's swap limit feature would be 2222 * too expensive. 2223 */ 2224 if (!global_reclaim(sc) && !swappiness) { 2225 scan_balance = SCAN_FILE; 2226 goto out; 2227 } 2228 2229 /* 2230 * Do not apply any pressure balancing cleverness when the 2231 * system is close to OOM, scan both anon and file equally 2232 * (unless the swappiness setting disagrees with swapping). 2233 */ 2234 if (!sc->priority && swappiness) { 2235 scan_balance = SCAN_EQUAL; 2236 goto out; 2237 } 2238 2239 /* 2240 * Prevent the reclaimer from falling into the cache trap: as 2241 * cache pages start out inactive, every cache fault will tip 2242 * the scan balance towards the file LRU. And as the file LRU 2243 * shrinks, so does the window for rotation from references. 2244 * This means we have a runaway feedback loop where a tiny 2245 * thrashing file LRU becomes infinitely more attractive than 2246 * anon pages. Try to detect this based on file LRU size. 2247 */ 2248 if (global_reclaim(sc)) { 2249 unsigned long pgdatfile; 2250 unsigned long pgdatfree; 2251 int z; 2252 unsigned long total_high_wmark = 0; 2253 2254 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2255 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2256 node_page_state(pgdat, NR_INACTIVE_FILE); 2257 2258 for (z = 0; z < MAX_NR_ZONES; z++) { 2259 struct zone *zone = &pgdat->node_zones[z]; 2260 if (!managed_zone(zone)) 2261 continue; 2262 2263 total_high_wmark += high_wmark_pages(zone); 2264 } 2265 2266 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2267 /* 2268 * Force SCAN_ANON if there are enough inactive 2269 * anonymous pages on the LRU in eligible zones. 2270 * Otherwise, the small LRU gets thrashed. 2271 */ 2272 if (!inactive_list_is_low(lruvec, false, sc, false) && 2273 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx) 2274 >> sc->priority) { 2275 scan_balance = SCAN_ANON; 2276 goto out; 2277 } 2278 } 2279 } 2280 2281 /* 2282 * If there is enough inactive page cache, i.e. if the size of the 2283 * inactive list is greater than that of the active list *and* the 2284 * inactive list actually has some pages to scan on this priority, we 2285 * do not reclaim anything from the anonymous working set right now. 2286 * Without the second condition we could end up never scanning an 2287 * lruvec even if it has plenty of old anonymous pages unless the 2288 * system is under heavy pressure. 2289 */ 2290 if (!inactive_list_is_low(lruvec, true, sc, false) && 2291 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { 2292 scan_balance = SCAN_FILE; 2293 goto out; 2294 } 2295 2296 scan_balance = SCAN_FRACT; 2297 2298 /* 2299 * With swappiness at 100, anonymous and file have the same priority. 2300 * This scanning priority is essentially the inverse of IO cost. 2301 */ 2302 anon_prio = swappiness; 2303 file_prio = 200 - anon_prio; 2304 2305 /* 2306 * OK, so we have swap space and a fair amount of page cache 2307 * pages. We use the recently rotated / recently scanned 2308 * ratios to determine how valuable each cache is. 2309 * 2310 * Because workloads change over time (and to avoid overflow) 2311 * we keep these statistics as a floating average, which ends 2312 * up weighing recent references more than old ones. 2313 * 2314 * anon in [0], file in [1] 2315 */ 2316 2317 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2318 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2319 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2320 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2321 2322 spin_lock_irq(&pgdat->lru_lock); 2323 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2324 reclaim_stat->recent_scanned[0] /= 2; 2325 reclaim_stat->recent_rotated[0] /= 2; 2326 } 2327 2328 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2329 reclaim_stat->recent_scanned[1] /= 2; 2330 reclaim_stat->recent_rotated[1] /= 2; 2331 } 2332 2333 /* 2334 * The amount of pressure on anon vs file pages is inversely 2335 * proportional to the fraction of recently scanned pages on 2336 * each list that were recently referenced and in active use. 2337 */ 2338 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2339 ap /= reclaim_stat->recent_rotated[0] + 1; 2340 2341 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2342 fp /= reclaim_stat->recent_rotated[1] + 1; 2343 spin_unlock_irq(&pgdat->lru_lock); 2344 2345 fraction[0] = ap; 2346 fraction[1] = fp; 2347 denominator = ap + fp + 1; 2348 out: 2349 *lru_pages = 0; 2350 for_each_evictable_lru(lru) { 2351 int file = is_file_lru(lru); 2352 unsigned long size; 2353 unsigned long scan; 2354 2355 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2356 scan = size >> sc->priority; 2357 /* 2358 * If the cgroup's already been deleted, make sure to 2359 * scrape out the remaining cache. 2360 */ 2361 if (!scan && !mem_cgroup_online(memcg)) 2362 scan = min(size, SWAP_CLUSTER_MAX); 2363 2364 switch (scan_balance) { 2365 case SCAN_EQUAL: 2366 /* Scan lists relative to size */ 2367 break; 2368 case SCAN_FRACT: 2369 /* 2370 * Scan types proportional to swappiness and 2371 * their relative recent reclaim efficiency. 2372 * Make sure we don't miss the last page 2373 * because of a round-off error. 2374 */ 2375 scan = DIV64_U64_ROUND_UP(scan * fraction[file], 2376 denominator); 2377 break; 2378 case SCAN_FILE: 2379 case SCAN_ANON: 2380 /* Scan one type exclusively */ 2381 if ((scan_balance == SCAN_FILE) != file) { 2382 size = 0; 2383 scan = 0; 2384 } 2385 break; 2386 default: 2387 /* Look ma, no brain */ 2388 BUG(); 2389 } 2390 2391 *lru_pages += size; 2392 nr[lru] = scan; 2393 } 2394 } 2395 2396 /* 2397 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2398 */ 2399 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2400 struct scan_control *sc, unsigned long *lru_pages) 2401 { 2402 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2403 unsigned long nr[NR_LRU_LISTS]; 2404 unsigned long targets[NR_LRU_LISTS]; 2405 unsigned long nr_to_scan; 2406 enum lru_list lru; 2407 unsigned long nr_reclaimed = 0; 2408 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2409 struct blk_plug plug; 2410 bool scan_adjusted; 2411 2412 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2413 2414 /* Record the original scan target for proportional adjustments later */ 2415 memcpy(targets, nr, sizeof(nr)); 2416 2417 /* 2418 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2419 * event that can occur when there is little memory pressure e.g. 2420 * multiple streaming readers/writers. Hence, we do not abort scanning 2421 * when the requested number of pages are reclaimed when scanning at 2422 * DEF_PRIORITY on the assumption that the fact we are direct 2423 * reclaiming implies that kswapd is not keeping up and it is best to 2424 * do a batch of work at once. For memcg reclaim one check is made to 2425 * abort proportional reclaim if either the file or anon lru has already 2426 * dropped to zero at the first pass. 2427 */ 2428 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2429 sc->priority == DEF_PRIORITY); 2430 2431 blk_start_plug(&plug); 2432 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2433 nr[LRU_INACTIVE_FILE]) { 2434 unsigned long nr_anon, nr_file, percentage; 2435 unsigned long nr_scanned; 2436 2437 for_each_evictable_lru(lru) { 2438 if (nr[lru]) { 2439 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2440 nr[lru] -= nr_to_scan; 2441 2442 nr_reclaimed += shrink_list(lru, nr_to_scan, 2443 lruvec, sc); 2444 } 2445 } 2446 2447 cond_resched(); 2448 2449 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2450 continue; 2451 2452 /* 2453 * For kswapd and memcg, reclaim at least the number of pages 2454 * requested. Ensure that the anon and file LRUs are scanned 2455 * proportionally what was requested by get_scan_count(). We 2456 * stop reclaiming one LRU and reduce the amount scanning 2457 * proportional to the original scan target. 2458 */ 2459 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2460 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2461 2462 /* 2463 * It's just vindictive to attack the larger once the smaller 2464 * has gone to zero. And given the way we stop scanning the 2465 * smaller below, this makes sure that we only make one nudge 2466 * towards proportionality once we've got nr_to_reclaim. 2467 */ 2468 if (!nr_file || !nr_anon) 2469 break; 2470 2471 if (nr_file > nr_anon) { 2472 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2473 targets[LRU_ACTIVE_ANON] + 1; 2474 lru = LRU_BASE; 2475 percentage = nr_anon * 100 / scan_target; 2476 } else { 2477 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2478 targets[LRU_ACTIVE_FILE] + 1; 2479 lru = LRU_FILE; 2480 percentage = nr_file * 100 / scan_target; 2481 } 2482 2483 /* Stop scanning the smaller of the LRU */ 2484 nr[lru] = 0; 2485 nr[lru + LRU_ACTIVE] = 0; 2486 2487 /* 2488 * Recalculate the other LRU scan count based on its original 2489 * scan target and the percentage scanning already complete 2490 */ 2491 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2492 nr_scanned = targets[lru] - nr[lru]; 2493 nr[lru] = targets[lru] * (100 - percentage) / 100; 2494 nr[lru] -= min(nr[lru], nr_scanned); 2495 2496 lru += LRU_ACTIVE; 2497 nr_scanned = targets[lru] - nr[lru]; 2498 nr[lru] = targets[lru] * (100 - percentage) / 100; 2499 nr[lru] -= min(nr[lru], nr_scanned); 2500 2501 scan_adjusted = true; 2502 } 2503 blk_finish_plug(&plug); 2504 sc->nr_reclaimed += nr_reclaimed; 2505 2506 /* 2507 * Even if we did not try to evict anon pages at all, we want to 2508 * rebalance the anon lru active/inactive ratio. 2509 */ 2510 if (inactive_list_is_low(lruvec, false, sc, true)) 2511 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2512 sc, LRU_ACTIVE_ANON); 2513 } 2514 2515 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2516 static bool in_reclaim_compaction(struct scan_control *sc) 2517 { 2518 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2519 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2520 sc->priority < DEF_PRIORITY - 2)) 2521 return true; 2522 2523 return false; 2524 } 2525 2526 /* 2527 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2528 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2529 * true if more pages should be reclaimed such that when the page allocator 2530 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2531 * It will give up earlier than that if there is difficulty reclaiming pages. 2532 */ 2533 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2534 unsigned long nr_reclaimed, 2535 unsigned long nr_scanned, 2536 struct scan_control *sc) 2537 { 2538 unsigned long pages_for_compaction; 2539 unsigned long inactive_lru_pages; 2540 int z; 2541 2542 /* If not in reclaim/compaction mode, stop */ 2543 if (!in_reclaim_compaction(sc)) 2544 return false; 2545 2546 /* Consider stopping depending on scan and reclaim activity */ 2547 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) { 2548 /* 2549 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the 2550 * full LRU list has been scanned and we are still failing 2551 * to reclaim pages. This full LRU scan is potentially 2552 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed 2553 */ 2554 if (!nr_reclaimed && !nr_scanned) 2555 return false; 2556 } else { 2557 /* 2558 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably 2559 * fail without consequence, stop if we failed to reclaim 2560 * any pages from the last SWAP_CLUSTER_MAX number of 2561 * pages that were scanned. This will return to the 2562 * caller faster at the risk reclaim/compaction and 2563 * the resulting allocation attempt fails 2564 */ 2565 if (!nr_reclaimed) 2566 return false; 2567 } 2568 2569 /* 2570 * If we have not reclaimed enough pages for compaction and the 2571 * inactive lists are large enough, continue reclaiming 2572 */ 2573 pages_for_compaction = compact_gap(sc->order); 2574 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2575 if (get_nr_swap_pages() > 0) 2576 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2577 if (sc->nr_reclaimed < pages_for_compaction && 2578 inactive_lru_pages > pages_for_compaction) 2579 return true; 2580 2581 /* If compaction would go ahead or the allocation would succeed, stop */ 2582 for (z = 0; z <= sc->reclaim_idx; z++) { 2583 struct zone *zone = &pgdat->node_zones[z]; 2584 if (!managed_zone(zone)) 2585 continue; 2586 2587 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2588 case COMPACT_SUCCESS: 2589 case COMPACT_CONTINUE: 2590 return false; 2591 default: 2592 /* check next zone */ 2593 ; 2594 } 2595 } 2596 return true; 2597 } 2598 2599 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg) 2600 { 2601 return test_bit(PGDAT_CONGESTED, &pgdat->flags) || 2602 (memcg && memcg_congested(pgdat, memcg)); 2603 } 2604 2605 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2606 { 2607 struct reclaim_state *reclaim_state = current->reclaim_state; 2608 unsigned long nr_reclaimed, nr_scanned; 2609 bool reclaimable = false; 2610 2611 do { 2612 struct mem_cgroup *root = sc->target_mem_cgroup; 2613 struct mem_cgroup_reclaim_cookie reclaim = { 2614 .pgdat = pgdat, 2615 .priority = sc->priority, 2616 }; 2617 unsigned long node_lru_pages = 0; 2618 struct mem_cgroup *memcg; 2619 2620 memset(&sc->nr, 0, sizeof(sc->nr)); 2621 2622 nr_reclaimed = sc->nr_reclaimed; 2623 nr_scanned = sc->nr_scanned; 2624 2625 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2626 do { 2627 unsigned long lru_pages; 2628 unsigned long reclaimed; 2629 unsigned long scanned; 2630 2631 switch (mem_cgroup_protected(root, memcg)) { 2632 case MEMCG_PROT_MIN: 2633 /* 2634 * Hard protection. 2635 * If there is no reclaimable memory, OOM. 2636 */ 2637 continue; 2638 case MEMCG_PROT_LOW: 2639 /* 2640 * Soft protection. 2641 * Respect the protection only as long as 2642 * there is an unprotected supply 2643 * of reclaimable memory from other cgroups. 2644 */ 2645 if (!sc->memcg_low_reclaim) { 2646 sc->memcg_low_skipped = 1; 2647 continue; 2648 } 2649 memcg_memory_event(memcg, MEMCG_LOW); 2650 break; 2651 case MEMCG_PROT_NONE: 2652 break; 2653 } 2654 2655 reclaimed = sc->nr_reclaimed; 2656 scanned = sc->nr_scanned; 2657 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2658 node_lru_pages += lru_pages; 2659 2660 if (sc->may_shrinkslab) { 2661 shrink_slab(sc->gfp_mask, pgdat->node_id, 2662 memcg, sc->priority); 2663 } 2664 2665 /* Record the group's reclaim efficiency */ 2666 vmpressure(sc->gfp_mask, memcg, false, 2667 sc->nr_scanned - scanned, 2668 sc->nr_reclaimed - reclaimed); 2669 2670 /* 2671 * Kswapd have to scan all memory cgroups to fulfill 2672 * the overall scan target for the node. 2673 * 2674 * Limit reclaim, on the other hand, only cares about 2675 * nr_to_reclaim pages to be reclaimed and it will 2676 * retry with decreasing priority if one round over the 2677 * whole hierarchy is not sufficient. 2678 */ 2679 if (!current_is_kswapd() && 2680 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2681 mem_cgroup_iter_break(root, memcg); 2682 break; 2683 } 2684 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2685 2686 if (reclaim_state) { 2687 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2688 reclaim_state->reclaimed_slab = 0; 2689 } 2690 2691 /* Record the subtree's reclaim efficiency */ 2692 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2693 sc->nr_scanned - nr_scanned, 2694 sc->nr_reclaimed - nr_reclaimed); 2695 2696 if (sc->nr_reclaimed - nr_reclaimed) 2697 reclaimable = true; 2698 2699 if (current_is_kswapd()) { 2700 /* 2701 * If reclaim is isolating dirty pages under writeback, 2702 * it implies that the long-lived page allocation rate 2703 * is exceeding the page laundering rate. Either the 2704 * global limits are not being effective at throttling 2705 * processes due to the page distribution throughout 2706 * zones or there is heavy usage of a slow backing 2707 * device. The only option is to throttle from reclaim 2708 * context which is not ideal as there is no guarantee 2709 * the dirtying process is throttled in the same way 2710 * balance_dirty_pages() manages. 2711 * 2712 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2713 * count the number of pages under pages flagged for 2714 * immediate reclaim and stall if any are encountered 2715 * in the nr_immediate check below. 2716 */ 2717 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2718 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2719 2720 /* 2721 * Tag a node as congested if all the dirty pages 2722 * scanned were backed by a congested BDI and 2723 * wait_iff_congested will stall. 2724 */ 2725 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2726 set_bit(PGDAT_CONGESTED, &pgdat->flags); 2727 2728 /* Allow kswapd to start writing pages during reclaim.*/ 2729 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2730 set_bit(PGDAT_DIRTY, &pgdat->flags); 2731 2732 /* 2733 * If kswapd scans pages marked marked for immediate 2734 * reclaim and under writeback (nr_immediate), it 2735 * implies that pages are cycling through the LRU 2736 * faster than they are written so also forcibly stall. 2737 */ 2738 if (sc->nr.immediate) 2739 congestion_wait(BLK_RW_ASYNC, HZ/10); 2740 } 2741 2742 /* 2743 * Legacy memcg will stall in page writeback so avoid forcibly 2744 * stalling in wait_iff_congested(). 2745 */ 2746 if (!global_reclaim(sc) && sane_reclaim(sc) && 2747 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2748 set_memcg_congestion(pgdat, root, true); 2749 2750 /* 2751 * Stall direct reclaim for IO completions if underlying BDIs 2752 * and node is congested. Allow kswapd to continue until it 2753 * starts encountering unqueued dirty pages or cycling through 2754 * the LRU too quickly. 2755 */ 2756 if (!sc->hibernation_mode && !current_is_kswapd() && 2757 current_may_throttle() && pgdat_memcg_congested(pgdat, root)) 2758 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2759 2760 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2761 sc->nr_scanned - nr_scanned, sc)); 2762 2763 /* 2764 * Kswapd gives up on balancing particular nodes after too 2765 * many failures to reclaim anything from them and goes to 2766 * sleep. On reclaim progress, reset the failure counter. A 2767 * successful direct reclaim run will revive a dormant kswapd. 2768 */ 2769 if (reclaimable) 2770 pgdat->kswapd_failures = 0; 2771 2772 return reclaimable; 2773 } 2774 2775 /* 2776 * Returns true if compaction should go ahead for a costly-order request, or 2777 * the allocation would already succeed without compaction. Return false if we 2778 * should reclaim first. 2779 */ 2780 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2781 { 2782 unsigned long watermark; 2783 enum compact_result suitable; 2784 2785 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2786 if (suitable == COMPACT_SUCCESS) 2787 /* Allocation should succeed already. Don't reclaim. */ 2788 return true; 2789 if (suitable == COMPACT_SKIPPED) 2790 /* Compaction cannot yet proceed. Do reclaim. */ 2791 return false; 2792 2793 /* 2794 * Compaction is already possible, but it takes time to run and there 2795 * are potentially other callers using the pages just freed. So proceed 2796 * with reclaim to make a buffer of free pages available to give 2797 * compaction a reasonable chance of completing and allocating the page. 2798 * Note that we won't actually reclaim the whole buffer in one attempt 2799 * as the target watermark in should_continue_reclaim() is lower. But if 2800 * we are already above the high+gap watermark, don't reclaim at all. 2801 */ 2802 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2803 2804 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2805 } 2806 2807 /* 2808 * This is the direct reclaim path, for page-allocating processes. We only 2809 * try to reclaim pages from zones which will satisfy the caller's allocation 2810 * request. 2811 * 2812 * If a zone is deemed to be full of pinned pages then just give it a light 2813 * scan then give up on it. 2814 */ 2815 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2816 { 2817 struct zoneref *z; 2818 struct zone *zone; 2819 unsigned long nr_soft_reclaimed; 2820 unsigned long nr_soft_scanned; 2821 gfp_t orig_mask; 2822 pg_data_t *last_pgdat = NULL; 2823 2824 /* 2825 * If the number of buffer_heads in the machine exceeds the maximum 2826 * allowed level, force direct reclaim to scan the highmem zone as 2827 * highmem pages could be pinning lowmem pages storing buffer_heads 2828 */ 2829 orig_mask = sc->gfp_mask; 2830 if (buffer_heads_over_limit) { 2831 sc->gfp_mask |= __GFP_HIGHMEM; 2832 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2833 } 2834 2835 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2836 sc->reclaim_idx, sc->nodemask) { 2837 /* 2838 * Take care memory controller reclaiming has small influence 2839 * to global LRU. 2840 */ 2841 if (global_reclaim(sc)) { 2842 if (!cpuset_zone_allowed(zone, 2843 GFP_KERNEL | __GFP_HARDWALL)) 2844 continue; 2845 2846 /* 2847 * If we already have plenty of memory free for 2848 * compaction in this zone, don't free any more. 2849 * Even though compaction is invoked for any 2850 * non-zero order, only frequent costly order 2851 * reclamation is disruptive enough to become a 2852 * noticeable problem, like transparent huge 2853 * page allocations. 2854 */ 2855 if (IS_ENABLED(CONFIG_COMPACTION) && 2856 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2857 compaction_ready(zone, sc)) { 2858 sc->compaction_ready = true; 2859 continue; 2860 } 2861 2862 /* 2863 * Shrink each node in the zonelist once. If the 2864 * zonelist is ordered by zone (not the default) then a 2865 * node may be shrunk multiple times but in that case 2866 * the user prefers lower zones being preserved. 2867 */ 2868 if (zone->zone_pgdat == last_pgdat) 2869 continue; 2870 2871 /* 2872 * This steals pages from memory cgroups over softlimit 2873 * and returns the number of reclaimed pages and 2874 * scanned pages. This works for global memory pressure 2875 * and balancing, not for a memcg's limit. 2876 */ 2877 nr_soft_scanned = 0; 2878 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2879 sc->order, sc->gfp_mask, 2880 &nr_soft_scanned); 2881 sc->nr_reclaimed += nr_soft_reclaimed; 2882 sc->nr_scanned += nr_soft_scanned; 2883 /* need some check for avoid more shrink_zone() */ 2884 } 2885 2886 /* See comment about same check for global reclaim above */ 2887 if (zone->zone_pgdat == last_pgdat) 2888 continue; 2889 last_pgdat = zone->zone_pgdat; 2890 shrink_node(zone->zone_pgdat, sc); 2891 } 2892 2893 /* 2894 * Restore to original mask to avoid the impact on the caller if we 2895 * promoted it to __GFP_HIGHMEM. 2896 */ 2897 sc->gfp_mask = orig_mask; 2898 } 2899 2900 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) 2901 { 2902 struct mem_cgroup *memcg; 2903 2904 memcg = mem_cgroup_iter(root_memcg, NULL, NULL); 2905 do { 2906 unsigned long refaults; 2907 struct lruvec *lruvec; 2908 2909 lruvec = mem_cgroup_lruvec(pgdat, memcg); 2910 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE); 2911 lruvec->refaults = refaults; 2912 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); 2913 } 2914 2915 /* 2916 * This is the main entry point to direct page reclaim. 2917 * 2918 * If a full scan of the inactive list fails to free enough memory then we 2919 * are "out of memory" and something needs to be killed. 2920 * 2921 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2922 * high - the zone may be full of dirty or under-writeback pages, which this 2923 * caller can't do much about. We kick the writeback threads and take explicit 2924 * naps in the hope that some of these pages can be written. But if the 2925 * allocating task holds filesystem locks which prevent writeout this might not 2926 * work, and the allocation attempt will fail. 2927 * 2928 * returns: 0, if no pages reclaimed 2929 * else, the number of pages reclaimed 2930 */ 2931 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2932 struct scan_control *sc) 2933 { 2934 int initial_priority = sc->priority; 2935 pg_data_t *last_pgdat; 2936 struct zoneref *z; 2937 struct zone *zone; 2938 retry: 2939 delayacct_freepages_start(); 2940 2941 if (global_reclaim(sc)) 2942 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 2943 2944 do { 2945 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2946 sc->priority); 2947 sc->nr_scanned = 0; 2948 shrink_zones(zonelist, sc); 2949 2950 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2951 break; 2952 2953 if (sc->compaction_ready) 2954 break; 2955 2956 /* 2957 * If we're getting trouble reclaiming, start doing 2958 * writepage even in laptop mode. 2959 */ 2960 if (sc->priority < DEF_PRIORITY - 2) 2961 sc->may_writepage = 1; 2962 } while (--sc->priority >= 0); 2963 2964 last_pgdat = NULL; 2965 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 2966 sc->nodemask) { 2967 if (zone->zone_pgdat == last_pgdat) 2968 continue; 2969 last_pgdat = zone->zone_pgdat; 2970 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 2971 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false); 2972 } 2973 2974 delayacct_freepages_end(); 2975 2976 if (sc->nr_reclaimed) 2977 return sc->nr_reclaimed; 2978 2979 /* Aborted reclaim to try compaction? don't OOM, then */ 2980 if (sc->compaction_ready) 2981 return 1; 2982 2983 /* Untapped cgroup reserves? Don't OOM, retry. */ 2984 if (sc->memcg_low_skipped) { 2985 sc->priority = initial_priority; 2986 sc->memcg_low_reclaim = 1; 2987 sc->memcg_low_skipped = 0; 2988 goto retry; 2989 } 2990 2991 return 0; 2992 } 2993 2994 static bool allow_direct_reclaim(pg_data_t *pgdat) 2995 { 2996 struct zone *zone; 2997 unsigned long pfmemalloc_reserve = 0; 2998 unsigned long free_pages = 0; 2999 int i; 3000 bool wmark_ok; 3001 3002 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3003 return true; 3004 3005 for (i = 0; i <= ZONE_NORMAL; i++) { 3006 zone = &pgdat->node_zones[i]; 3007 if (!managed_zone(zone)) 3008 continue; 3009 3010 if (!zone_reclaimable_pages(zone)) 3011 continue; 3012 3013 pfmemalloc_reserve += min_wmark_pages(zone); 3014 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3015 } 3016 3017 /* If there are no reserves (unexpected config) then do not throttle */ 3018 if (!pfmemalloc_reserve) 3019 return true; 3020 3021 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3022 3023 /* kswapd must be awake if processes are being throttled */ 3024 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3025 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 3026 (enum zone_type)ZONE_NORMAL); 3027 wake_up_interruptible(&pgdat->kswapd_wait); 3028 } 3029 3030 return wmark_ok; 3031 } 3032 3033 /* 3034 * Throttle direct reclaimers if backing storage is backed by the network 3035 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3036 * depleted. kswapd will continue to make progress and wake the processes 3037 * when the low watermark is reached. 3038 * 3039 * Returns true if a fatal signal was delivered during throttling. If this 3040 * happens, the page allocator should not consider triggering the OOM killer. 3041 */ 3042 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3043 nodemask_t *nodemask) 3044 { 3045 struct zoneref *z; 3046 struct zone *zone; 3047 pg_data_t *pgdat = NULL; 3048 3049 /* 3050 * Kernel threads should not be throttled as they may be indirectly 3051 * responsible for cleaning pages necessary for reclaim to make forward 3052 * progress. kjournald for example may enter direct reclaim while 3053 * committing a transaction where throttling it could forcing other 3054 * processes to block on log_wait_commit(). 3055 */ 3056 if (current->flags & PF_KTHREAD) 3057 goto out; 3058 3059 /* 3060 * If a fatal signal is pending, this process should not throttle. 3061 * It should return quickly so it can exit and free its memory 3062 */ 3063 if (fatal_signal_pending(current)) 3064 goto out; 3065 3066 /* 3067 * Check if the pfmemalloc reserves are ok by finding the first node 3068 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3069 * GFP_KERNEL will be required for allocating network buffers when 3070 * swapping over the network so ZONE_HIGHMEM is unusable. 3071 * 3072 * Throttling is based on the first usable node and throttled processes 3073 * wait on a queue until kswapd makes progress and wakes them. There 3074 * is an affinity then between processes waking up and where reclaim 3075 * progress has been made assuming the process wakes on the same node. 3076 * More importantly, processes running on remote nodes will not compete 3077 * for remote pfmemalloc reserves and processes on different nodes 3078 * should make reasonable progress. 3079 */ 3080 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3081 gfp_zone(gfp_mask), nodemask) { 3082 if (zone_idx(zone) > ZONE_NORMAL) 3083 continue; 3084 3085 /* Throttle based on the first usable node */ 3086 pgdat = zone->zone_pgdat; 3087 if (allow_direct_reclaim(pgdat)) 3088 goto out; 3089 break; 3090 } 3091 3092 /* If no zone was usable by the allocation flags then do not throttle */ 3093 if (!pgdat) 3094 goto out; 3095 3096 /* Account for the throttling */ 3097 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3098 3099 /* 3100 * If the caller cannot enter the filesystem, it's possible that it 3101 * is due to the caller holding an FS lock or performing a journal 3102 * transaction in the case of a filesystem like ext[3|4]. In this case, 3103 * it is not safe to block on pfmemalloc_wait as kswapd could be 3104 * blocked waiting on the same lock. Instead, throttle for up to a 3105 * second before continuing. 3106 */ 3107 if (!(gfp_mask & __GFP_FS)) { 3108 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3109 allow_direct_reclaim(pgdat), HZ); 3110 3111 goto check_pending; 3112 } 3113 3114 /* Throttle until kswapd wakes the process */ 3115 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3116 allow_direct_reclaim(pgdat)); 3117 3118 check_pending: 3119 if (fatal_signal_pending(current)) 3120 return true; 3121 3122 out: 3123 return false; 3124 } 3125 3126 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3127 gfp_t gfp_mask, nodemask_t *nodemask) 3128 { 3129 unsigned long nr_reclaimed; 3130 struct scan_control sc = { 3131 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3132 .gfp_mask = current_gfp_context(gfp_mask), 3133 .reclaim_idx = gfp_zone(gfp_mask), 3134 .order = order, 3135 .nodemask = nodemask, 3136 .priority = DEF_PRIORITY, 3137 .may_writepage = !laptop_mode, 3138 .may_unmap = 1, 3139 .may_swap = 1, 3140 .may_shrinkslab = 1, 3141 }; 3142 3143 /* 3144 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3145 * Confirm they are large enough for max values. 3146 */ 3147 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3148 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3149 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3150 3151 /* 3152 * Do not enter reclaim if fatal signal was delivered while throttled. 3153 * 1 is returned so that the page allocator does not OOM kill at this 3154 * point. 3155 */ 3156 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3157 return 1; 3158 3159 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3160 3161 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3162 3163 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3164 3165 return nr_reclaimed; 3166 } 3167 3168 #ifdef CONFIG_MEMCG 3169 3170 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3171 gfp_t gfp_mask, bool noswap, 3172 pg_data_t *pgdat, 3173 unsigned long *nr_scanned) 3174 { 3175 struct scan_control sc = { 3176 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3177 .target_mem_cgroup = memcg, 3178 .may_writepage = !laptop_mode, 3179 .may_unmap = 1, 3180 .reclaim_idx = MAX_NR_ZONES - 1, 3181 .may_swap = !noswap, 3182 .may_shrinkslab = 1, 3183 }; 3184 unsigned long lru_pages; 3185 3186 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3187 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3188 3189 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3190 sc.gfp_mask); 3191 3192 /* 3193 * NOTE: Although we can get the priority field, using it 3194 * here is not a good idea, since it limits the pages we can scan. 3195 * if we don't reclaim here, the shrink_node from balance_pgdat 3196 * will pick up pages from other mem cgroup's as well. We hack 3197 * the priority and make it zero. 3198 */ 3199 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3200 3201 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3202 3203 *nr_scanned = sc.nr_scanned; 3204 return sc.nr_reclaimed; 3205 } 3206 3207 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3208 unsigned long nr_pages, 3209 gfp_t gfp_mask, 3210 bool may_swap) 3211 { 3212 struct zonelist *zonelist; 3213 unsigned long nr_reclaimed; 3214 unsigned long pflags; 3215 int nid; 3216 unsigned int noreclaim_flag; 3217 struct scan_control sc = { 3218 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3219 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3220 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3221 .reclaim_idx = MAX_NR_ZONES - 1, 3222 .target_mem_cgroup = memcg, 3223 .priority = DEF_PRIORITY, 3224 .may_writepage = !laptop_mode, 3225 .may_unmap = 1, 3226 .may_swap = may_swap, 3227 .may_shrinkslab = 1, 3228 }; 3229 3230 /* 3231 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3232 * take care of from where we get pages. So the node where we start the 3233 * scan does not need to be the current node. 3234 */ 3235 nid = mem_cgroup_select_victim_node(memcg); 3236 3237 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3238 3239 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3240 3241 psi_memstall_enter(&pflags); 3242 noreclaim_flag = memalloc_noreclaim_save(); 3243 3244 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3245 3246 memalloc_noreclaim_restore(noreclaim_flag); 3247 psi_memstall_leave(&pflags); 3248 3249 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3250 3251 return nr_reclaimed; 3252 } 3253 #endif 3254 3255 static void age_active_anon(struct pglist_data *pgdat, 3256 struct scan_control *sc) 3257 { 3258 struct mem_cgroup *memcg; 3259 3260 if (!total_swap_pages) 3261 return; 3262 3263 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3264 do { 3265 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3266 3267 if (inactive_list_is_low(lruvec, false, sc, true)) 3268 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3269 sc, LRU_ACTIVE_ANON); 3270 3271 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3272 } while (memcg); 3273 } 3274 3275 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx) 3276 { 3277 int i; 3278 struct zone *zone; 3279 3280 /* 3281 * Check for watermark boosts top-down as the higher zones 3282 * are more likely to be boosted. Both watermarks and boosts 3283 * should not be checked at the time time as reclaim would 3284 * start prematurely when there is no boosting and a lower 3285 * zone is balanced. 3286 */ 3287 for (i = classzone_idx; i >= 0; i--) { 3288 zone = pgdat->node_zones + i; 3289 if (!managed_zone(zone)) 3290 continue; 3291 3292 if (zone->watermark_boost) 3293 return true; 3294 } 3295 3296 return false; 3297 } 3298 3299 /* 3300 * Returns true if there is an eligible zone balanced for the request order 3301 * and classzone_idx 3302 */ 3303 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3304 { 3305 int i; 3306 unsigned long mark = -1; 3307 struct zone *zone; 3308 3309 /* 3310 * Check watermarks bottom-up as lower zones are more likely to 3311 * meet watermarks. 3312 */ 3313 for (i = 0; i <= classzone_idx; i++) { 3314 zone = pgdat->node_zones + i; 3315 3316 if (!managed_zone(zone)) 3317 continue; 3318 3319 mark = high_wmark_pages(zone); 3320 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3321 return true; 3322 } 3323 3324 /* 3325 * If a node has no populated zone within classzone_idx, it does not 3326 * need balancing by definition. This can happen if a zone-restricted 3327 * allocation tries to wake a remote kswapd. 3328 */ 3329 if (mark == -1) 3330 return true; 3331 3332 return false; 3333 } 3334 3335 /* Clear pgdat state for congested, dirty or under writeback. */ 3336 static void clear_pgdat_congested(pg_data_t *pgdat) 3337 { 3338 clear_bit(PGDAT_CONGESTED, &pgdat->flags); 3339 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3340 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3341 } 3342 3343 /* 3344 * Prepare kswapd for sleeping. This verifies that there are no processes 3345 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3346 * 3347 * Returns true if kswapd is ready to sleep 3348 */ 3349 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3350 { 3351 /* 3352 * The throttled processes are normally woken up in balance_pgdat() as 3353 * soon as allow_direct_reclaim() is true. But there is a potential 3354 * race between when kswapd checks the watermarks and a process gets 3355 * throttled. There is also a potential race if processes get 3356 * throttled, kswapd wakes, a large process exits thereby balancing the 3357 * zones, which causes kswapd to exit balance_pgdat() before reaching 3358 * the wake up checks. If kswapd is going to sleep, no process should 3359 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3360 * the wake up is premature, processes will wake kswapd and get 3361 * throttled again. The difference from wake ups in balance_pgdat() is 3362 * that here we are under prepare_to_wait(). 3363 */ 3364 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3365 wake_up_all(&pgdat->pfmemalloc_wait); 3366 3367 /* Hopeless node, leave it to direct reclaim */ 3368 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3369 return true; 3370 3371 if (pgdat_balanced(pgdat, order, classzone_idx)) { 3372 clear_pgdat_congested(pgdat); 3373 return true; 3374 } 3375 3376 return false; 3377 } 3378 3379 /* 3380 * kswapd shrinks a node of pages that are at or below the highest usable 3381 * zone that is currently unbalanced. 3382 * 3383 * Returns true if kswapd scanned at least the requested number of pages to 3384 * reclaim or if the lack of progress was due to pages under writeback. 3385 * This is used to determine if the scanning priority needs to be raised. 3386 */ 3387 static bool kswapd_shrink_node(pg_data_t *pgdat, 3388 struct scan_control *sc) 3389 { 3390 struct zone *zone; 3391 int z; 3392 3393 /* Reclaim a number of pages proportional to the number of zones */ 3394 sc->nr_to_reclaim = 0; 3395 for (z = 0; z <= sc->reclaim_idx; z++) { 3396 zone = pgdat->node_zones + z; 3397 if (!managed_zone(zone)) 3398 continue; 3399 3400 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3401 } 3402 3403 /* 3404 * Historically care was taken to put equal pressure on all zones but 3405 * now pressure is applied based on node LRU order. 3406 */ 3407 shrink_node(pgdat, sc); 3408 3409 /* 3410 * Fragmentation may mean that the system cannot be rebalanced for 3411 * high-order allocations. If twice the allocation size has been 3412 * reclaimed then recheck watermarks only at order-0 to prevent 3413 * excessive reclaim. Assume that a process requested a high-order 3414 * can direct reclaim/compact. 3415 */ 3416 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3417 sc->order = 0; 3418 3419 return sc->nr_scanned >= sc->nr_to_reclaim; 3420 } 3421 3422 /* 3423 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3424 * that are eligible for use by the caller until at least one zone is 3425 * balanced. 3426 * 3427 * Returns the order kswapd finished reclaiming at. 3428 * 3429 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3430 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3431 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3432 * or lower is eligible for reclaim until at least one usable zone is 3433 * balanced. 3434 */ 3435 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3436 { 3437 int i; 3438 unsigned long nr_soft_reclaimed; 3439 unsigned long nr_soft_scanned; 3440 unsigned long pflags; 3441 unsigned long nr_boost_reclaim; 3442 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3443 bool boosted; 3444 struct zone *zone; 3445 struct scan_control sc = { 3446 .gfp_mask = GFP_KERNEL, 3447 .order = order, 3448 .may_unmap = 1, 3449 }; 3450 3451 psi_memstall_enter(&pflags); 3452 __fs_reclaim_acquire(); 3453 3454 count_vm_event(PAGEOUTRUN); 3455 3456 /* 3457 * Account for the reclaim boost. Note that the zone boost is left in 3458 * place so that parallel allocations that are near the watermark will 3459 * stall or direct reclaim until kswapd is finished. 3460 */ 3461 nr_boost_reclaim = 0; 3462 for (i = 0; i <= classzone_idx; i++) { 3463 zone = pgdat->node_zones + i; 3464 if (!managed_zone(zone)) 3465 continue; 3466 3467 nr_boost_reclaim += zone->watermark_boost; 3468 zone_boosts[i] = zone->watermark_boost; 3469 } 3470 boosted = nr_boost_reclaim; 3471 3472 restart: 3473 sc.priority = DEF_PRIORITY; 3474 do { 3475 unsigned long nr_reclaimed = sc.nr_reclaimed; 3476 bool raise_priority = true; 3477 bool balanced; 3478 bool ret; 3479 3480 sc.reclaim_idx = classzone_idx; 3481 3482 /* 3483 * If the number of buffer_heads exceeds the maximum allowed 3484 * then consider reclaiming from all zones. This has a dual 3485 * purpose -- on 64-bit systems it is expected that 3486 * buffer_heads are stripped during active rotation. On 32-bit 3487 * systems, highmem pages can pin lowmem memory and shrinking 3488 * buffers can relieve lowmem pressure. Reclaim may still not 3489 * go ahead if all eligible zones for the original allocation 3490 * request are balanced to avoid excessive reclaim from kswapd. 3491 */ 3492 if (buffer_heads_over_limit) { 3493 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3494 zone = pgdat->node_zones + i; 3495 if (!managed_zone(zone)) 3496 continue; 3497 3498 sc.reclaim_idx = i; 3499 break; 3500 } 3501 } 3502 3503 /* 3504 * If the pgdat is imbalanced then ignore boosting and preserve 3505 * the watermarks for a later time and restart. Note that the 3506 * zone watermarks will be still reset at the end of balancing 3507 * on the grounds that the normal reclaim should be enough to 3508 * re-evaluate if boosting is required when kswapd next wakes. 3509 */ 3510 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx); 3511 if (!balanced && nr_boost_reclaim) { 3512 nr_boost_reclaim = 0; 3513 goto restart; 3514 } 3515 3516 /* 3517 * If boosting is not active then only reclaim if there are no 3518 * eligible zones. Note that sc.reclaim_idx is not used as 3519 * buffer_heads_over_limit may have adjusted it. 3520 */ 3521 if (!nr_boost_reclaim && balanced) 3522 goto out; 3523 3524 /* Limit the priority of boosting to avoid reclaim writeback */ 3525 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 3526 raise_priority = false; 3527 3528 /* 3529 * Do not writeback or swap pages for boosted reclaim. The 3530 * intent is to relieve pressure not issue sub-optimal IO 3531 * from reclaim context. If no pages are reclaimed, the 3532 * reclaim will be aborted. 3533 */ 3534 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 3535 sc.may_swap = !nr_boost_reclaim; 3536 sc.may_shrinkslab = !nr_boost_reclaim; 3537 3538 /* 3539 * Do some background aging of the anon list, to give 3540 * pages a chance to be referenced before reclaiming. All 3541 * pages are rotated regardless of classzone as this is 3542 * about consistent aging. 3543 */ 3544 age_active_anon(pgdat, &sc); 3545 3546 /* 3547 * If we're getting trouble reclaiming, start doing writepage 3548 * even in laptop mode. 3549 */ 3550 if (sc.priority < DEF_PRIORITY - 2) 3551 sc.may_writepage = 1; 3552 3553 /* Call soft limit reclaim before calling shrink_node. */ 3554 sc.nr_scanned = 0; 3555 nr_soft_scanned = 0; 3556 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3557 sc.gfp_mask, &nr_soft_scanned); 3558 sc.nr_reclaimed += nr_soft_reclaimed; 3559 3560 /* 3561 * There should be no need to raise the scanning priority if 3562 * enough pages are already being scanned that that high 3563 * watermark would be met at 100% efficiency. 3564 */ 3565 if (kswapd_shrink_node(pgdat, &sc)) 3566 raise_priority = false; 3567 3568 /* 3569 * If the low watermark is met there is no need for processes 3570 * to be throttled on pfmemalloc_wait as they should not be 3571 * able to safely make forward progress. Wake them 3572 */ 3573 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3574 allow_direct_reclaim(pgdat)) 3575 wake_up_all(&pgdat->pfmemalloc_wait); 3576 3577 /* Check if kswapd should be suspending */ 3578 __fs_reclaim_release(); 3579 ret = try_to_freeze(); 3580 __fs_reclaim_acquire(); 3581 if (ret || kthread_should_stop()) 3582 break; 3583 3584 /* 3585 * Raise priority if scanning rate is too low or there was no 3586 * progress in reclaiming pages 3587 */ 3588 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3589 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 3590 3591 /* 3592 * If reclaim made no progress for a boost, stop reclaim as 3593 * IO cannot be queued and it could be an infinite loop in 3594 * extreme circumstances. 3595 */ 3596 if (nr_boost_reclaim && !nr_reclaimed) 3597 break; 3598 3599 if (raise_priority || !nr_reclaimed) 3600 sc.priority--; 3601 } while (sc.priority >= 1); 3602 3603 if (!sc.nr_reclaimed) 3604 pgdat->kswapd_failures++; 3605 3606 out: 3607 /* If reclaim was boosted, account for the reclaim done in this pass */ 3608 if (boosted) { 3609 unsigned long flags; 3610 3611 for (i = 0; i <= classzone_idx; i++) { 3612 if (!zone_boosts[i]) 3613 continue; 3614 3615 /* Increments are under the zone lock */ 3616 zone = pgdat->node_zones + i; 3617 spin_lock_irqsave(&zone->lock, flags); 3618 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 3619 spin_unlock_irqrestore(&zone->lock, flags); 3620 } 3621 3622 /* 3623 * As there is now likely space, wakeup kcompact to defragment 3624 * pageblocks. 3625 */ 3626 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx); 3627 } 3628 3629 snapshot_refaults(NULL, pgdat); 3630 __fs_reclaim_release(); 3631 psi_memstall_leave(&pflags); 3632 /* 3633 * Return the order kswapd stopped reclaiming at as 3634 * prepare_kswapd_sleep() takes it into account. If another caller 3635 * entered the allocator slow path while kswapd was awake, order will 3636 * remain at the higher level. 3637 */ 3638 return sc.order; 3639 } 3640 3641 /* 3642 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be 3643 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not 3644 * a valid index then either kswapd runs for first time or kswapd couldn't sleep 3645 * after previous reclaim attempt (node is still unbalanced). In that case 3646 * return the zone index of the previous kswapd reclaim cycle. 3647 */ 3648 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, 3649 enum zone_type prev_classzone_idx) 3650 { 3651 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3652 return prev_classzone_idx; 3653 return pgdat->kswapd_classzone_idx; 3654 } 3655 3656 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3657 unsigned int classzone_idx) 3658 { 3659 long remaining = 0; 3660 DEFINE_WAIT(wait); 3661 3662 if (freezing(current) || kthread_should_stop()) 3663 return; 3664 3665 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3666 3667 /* 3668 * Try to sleep for a short interval. Note that kcompactd will only be 3669 * woken if it is possible to sleep for a short interval. This is 3670 * deliberate on the assumption that if reclaim cannot keep an 3671 * eligible zone balanced that it's also unlikely that compaction will 3672 * succeed. 3673 */ 3674 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3675 /* 3676 * Compaction records what page blocks it recently failed to 3677 * isolate pages from and skips them in the future scanning. 3678 * When kswapd is going to sleep, it is reasonable to assume 3679 * that pages and compaction may succeed so reset the cache. 3680 */ 3681 reset_isolation_suitable(pgdat); 3682 3683 /* 3684 * We have freed the memory, now we should compact it to make 3685 * allocation of the requested order possible. 3686 */ 3687 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3688 3689 remaining = schedule_timeout(HZ/10); 3690 3691 /* 3692 * If woken prematurely then reset kswapd_classzone_idx and 3693 * order. The values will either be from a wakeup request or 3694 * the previous request that slept prematurely. 3695 */ 3696 if (remaining) { 3697 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3698 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3699 } 3700 3701 finish_wait(&pgdat->kswapd_wait, &wait); 3702 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3703 } 3704 3705 /* 3706 * After a short sleep, check if it was a premature sleep. If not, then 3707 * go fully to sleep until explicitly woken up. 3708 */ 3709 if (!remaining && 3710 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3711 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3712 3713 /* 3714 * vmstat counters are not perfectly accurate and the estimated 3715 * value for counters such as NR_FREE_PAGES can deviate from the 3716 * true value by nr_online_cpus * threshold. To avoid the zone 3717 * watermarks being breached while under pressure, we reduce the 3718 * per-cpu vmstat threshold while kswapd is awake and restore 3719 * them before going back to sleep. 3720 */ 3721 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3722 3723 if (!kthread_should_stop()) 3724 schedule(); 3725 3726 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3727 } else { 3728 if (remaining) 3729 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3730 else 3731 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3732 } 3733 finish_wait(&pgdat->kswapd_wait, &wait); 3734 } 3735 3736 /* 3737 * The background pageout daemon, started as a kernel thread 3738 * from the init process. 3739 * 3740 * This basically trickles out pages so that we have _some_ 3741 * free memory available even if there is no other activity 3742 * that frees anything up. This is needed for things like routing 3743 * etc, where we otherwise might have all activity going on in 3744 * asynchronous contexts that cannot page things out. 3745 * 3746 * If there are applications that are active memory-allocators 3747 * (most normal use), this basically shouldn't matter. 3748 */ 3749 static int kswapd(void *p) 3750 { 3751 unsigned int alloc_order, reclaim_order; 3752 unsigned int classzone_idx = MAX_NR_ZONES - 1; 3753 pg_data_t *pgdat = (pg_data_t*)p; 3754 struct task_struct *tsk = current; 3755 3756 struct reclaim_state reclaim_state = { 3757 .reclaimed_slab = 0, 3758 }; 3759 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3760 3761 if (!cpumask_empty(cpumask)) 3762 set_cpus_allowed_ptr(tsk, cpumask); 3763 current->reclaim_state = &reclaim_state; 3764 3765 /* 3766 * Tell the memory management that we're a "memory allocator", 3767 * and that if we need more memory we should get access to it 3768 * regardless (see "__alloc_pages()"). "kswapd" should 3769 * never get caught in the normal page freeing logic. 3770 * 3771 * (Kswapd normally doesn't need memory anyway, but sometimes 3772 * you need a small amount of memory in order to be able to 3773 * page out something else, and this flag essentially protects 3774 * us from recursively trying to free more memory as we're 3775 * trying to free the first piece of memory in the first place). 3776 */ 3777 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3778 set_freezable(); 3779 3780 pgdat->kswapd_order = 0; 3781 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3782 for ( ; ; ) { 3783 bool ret; 3784 3785 alloc_order = reclaim_order = pgdat->kswapd_order; 3786 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3787 3788 kswapd_try_sleep: 3789 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3790 classzone_idx); 3791 3792 /* Read the new order and classzone_idx */ 3793 alloc_order = reclaim_order = pgdat->kswapd_order; 3794 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3795 pgdat->kswapd_order = 0; 3796 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3797 3798 ret = try_to_freeze(); 3799 if (kthread_should_stop()) 3800 break; 3801 3802 /* 3803 * We can speed up thawing tasks if we don't call balance_pgdat 3804 * after returning from the refrigerator 3805 */ 3806 if (ret) 3807 continue; 3808 3809 /* 3810 * Reclaim begins at the requested order but if a high-order 3811 * reclaim fails then kswapd falls back to reclaiming for 3812 * order-0. If that happens, kswapd will consider sleeping 3813 * for the order it finished reclaiming at (reclaim_order) 3814 * but kcompactd is woken to compact for the original 3815 * request (alloc_order). 3816 */ 3817 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3818 alloc_order); 3819 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3820 if (reclaim_order < alloc_order) 3821 goto kswapd_try_sleep; 3822 } 3823 3824 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3825 current->reclaim_state = NULL; 3826 3827 return 0; 3828 } 3829 3830 /* 3831 * A zone is low on free memory or too fragmented for high-order memory. If 3832 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3833 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3834 * has failed or is not needed, still wake up kcompactd if only compaction is 3835 * needed. 3836 */ 3837 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3838 enum zone_type classzone_idx) 3839 { 3840 pg_data_t *pgdat; 3841 3842 if (!managed_zone(zone)) 3843 return; 3844 3845 if (!cpuset_zone_allowed(zone, gfp_flags)) 3846 return; 3847 pgdat = zone->zone_pgdat; 3848 3849 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3850 pgdat->kswapd_classzone_idx = classzone_idx; 3851 else 3852 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, 3853 classzone_idx); 3854 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3855 if (!waitqueue_active(&pgdat->kswapd_wait)) 3856 return; 3857 3858 /* Hopeless node, leave it to direct reclaim if possible */ 3859 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 3860 (pgdat_balanced(pgdat, order, classzone_idx) && 3861 !pgdat_watermark_boosted(pgdat, classzone_idx))) { 3862 /* 3863 * There may be plenty of free memory available, but it's too 3864 * fragmented for high-order allocations. Wake up kcompactd 3865 * and rely on compaction_suitable() to determine if it's 3866 * needed. If it fails, it will defer subsequent attempts to 3867 * ratelimit its work. 3868 */ 3869 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 3870 wakeup_kcompactd(pgdat, order, classzone_idx); 3871 return; 3872 } 3873 3874 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order, 3875 gfp_flags); 3876 wake_up_interruptible(&pgdat->kswapd_wait); 3877 } 3878 3879 #ifdef CONFIG_HIBERNATION 3880 /* 3881 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3882 * freed pages. 3883 * 3884 * Rather than trying to age LRUs the aim is to preserve the overall 3885 * LRU order by reclaiming preferentially 3886 * inactive > active > active referenced > active mapped 3887 */ 3888 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3889 { 3890 struct reclaim_state reclaim_state; 3891 struct scan_control sc = { 3892 .nr_to_reclaim = nr_to_reclaim, 3893 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3894 .reclaim_idx = MAX_NR_ZONES - 1, 3895 .priority = DEF_PRIORITY, 3896 .may_writepage = 1, 3897 .may_unmap = 1, 3898 .may_swap = 1, 3899 .hibernation_mode = 1, 3900 }; 3901 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3902 struct task_struct *p = current; 3903 unsigned long nr_reclaimed; 3904 unsigned int noreclaim_flag; 3905 3906 fs_reclaim_acquire(sc.gfp_mask); 3907 noreclaim_flag = memalloc_noreclaim_save(); 3908 reclaim_state.reclaimed_slab = 0; 3909 p->reclaim_state = &reclaim_state; 3910 3911 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3912 3913 p->reclaim_state = NULL; 3914 memalloc_noreclaim_restore(noreclaim_flag); 3915 fs_reclaim_release(sc.gfp_mask); 3916 3917 return nr_reclaimed; 3918 } 3919 #endif /* CONFIG_HIBERNATION */ 3920 3921 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3922 not required for correctness. So if the last cpu in a node goes 3923 away, we get changed to run anywhere: as the first one comes back, 3924 restore their cpu bindings. */ 3925 static int kswapd_cpu_online(unsigned int cpu) 3926 { 3927 int nid; 3928 3929 for_each_node_state(nid, N_MEMORY) { 3930 pg_data_t *pgdat = NODE_DATA(nid); 3931 const struct cpumask *mask; 3932 3933 mask = cpumask_of_node(pgdat->node_id); 3934 3935 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3936 /* One of our CPUs online: restore mask */ 3937 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3938 } 3939 return 0; 3940 } 3941 3942 /* 3943 * This kswapd start function will be called by init and node-hot-add. 3944 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3945 */ 3946 int kswapd_run(int nid) 3947 { 3948 pg_data_t *pgdat = NODE_DATA(nid); 3949 int ret = 0; 3950 3951 if (pgdat->kswapd) 3952 return 0; 3953 3954 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3955 if (IS_ERR(pgdat->kswapd)) { 3956 /* failure at boot is fatal */ 3957 BUG_ON(system_state < SYSTEM_RUNNING); 3958 pr_err("Failed to start kswapd on node %d\n", nid); 3959 ret = PTR_ERR(pgdat->kswapd); 3960 pgdat->kswapd = NULL; 3961 } 3962 return ret; 3963 } 3964 3965 /* 3966 * Called by memory hotplug when all memory in a node is offlined. Caller must 3967 * hold mem_hotplug_begin/end(). 3968 */ 3969 void kswapd_stop(int nid) 3970 { 3971 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3972 3973 if (kswapd) { 3974 kthread_stop(kswapd); 3975 NODE_DATA(nid)->kswapd = NULL; 3976 } 3977 } 3978 3979 static int __init kswapd_init(void) 3980 { 3981 int nid, ret; 3982 3983 swap_setup(); 3984 for_each_node_state(nid, N_MEMORY) 3985 kswapd_run(nid); 3986 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3987 "mm/vmscan:online", kswapd_cpu_online, 3988 NULL); 3989 WARN_ON(ret < 0); 3990 return 0; 3991 } 3992 3993 module_init(kswapd_init) 3994 3995 #ifdef CONFIG_NUMA 3996 /* 3997 * Node reclaim mode 3998 * 3999 * If non-zero call node_reclaim when the number of free pages falls below 4000 * the watermarks. 4001 */ 4002 int node_reclaim_mode __read_mostly; 4003 4004 #define RECLAIM_OFF 0 4005 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 4006 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 4007 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 4008 4009 /* 4010 * Priority for NODE_RECLAIM. This determines the fraction of pages 4011 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4012 * a zone. 4013 */ 4014 #define NODE_RECLAIM_PRIORITY 4 4015 4016 /* 4017 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4018 * occur. 4019 */ 4020 int sysctl_min_unmapped_ratio = 1; 4021 4022 /* 4023 * If the number of slab pages in a zone grows beyond this percentage then 4024 * slab reclaim needs to occur. 4025 */ 4026 int sysctl_min_slab_ratio = 5; 4027 4028 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4029 { 4030 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4031 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4032 node_page_state(pgdat, NR_ACTIVE_FILE); 4033 4034 /* 4035 * It's possible for there to be more file mapped pages than 4036 * accounted for by the pages on the file LRU lists because 4037 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4038 */ 4039 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4040 } 4041 4042 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4043 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4044 { 4045 unsigned long nr_pagecache_reclaimable; 4046 unsigned long delta = 0; 4047 4048 /* 4049 * If RECLAIM_UNMAP is set, then all file pages are considered 4050 * potentially reclaimable. Otherwise, we have to worry about 4051 * pages like swapcache and node_unmapped_file_pages() provides 4052 * a better estimate 4053 */ 4054 if (node_reclaim_mode & RECLAIM_UNMAP) 4055 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4056 else 4057 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4058 4059 /* If we can't clean pages, remove dirty pages from consideration */ 4060 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4061 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4062 4063 /* Watch for any possible underflows due to delta */ 4064 if (unlikely(delta > nr_pagecache_reclaimable)) 4065 delta = nr_pagecache_reclaimable; 4066 4067 return nr_pagecache_reclaimable - delta; 4068 } 4069 4070 /* 4071 * Try to free up some pages from this node through reclaim. 4072 */ 4073 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4074 { 4075 /* Minimum pages needed in order to stay on node */ 4076 const unsigned long nr_pages = 1 << order; 4077 struct task_struct *p = current; 4078 struct reclaim_state reclaim_state; 4079 unsigned int noreclaim_flag; 4080 struct scan_control sc = { 4081 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4082 .gfp_mask = current_gfp_context(gfp_mask), 4083 .order = order, 4084 .priority = NODE_RECLAIM_PRIORITY, 4085 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4086 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4087 .may_swap = 1, 4088 .reclaim_idx = gfp_zone(gfp_mask), 4089 }; 4090 4091 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4092 sc.gfp_mask); 4093 4094 cond_resched(); 4095 fs_reclaim_acquire(sc.gfp_mask); 4096 /* 4097 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4098 * and we also need to be able to write out pages for RECLAIM_WRITE 4099 * and RECLAIM_UNMAP. 4100 */ 4101 noreclaim_flag = memalloc_noreclaim_save(); 4102 p->flags |= PF_SWAPWRITE; 4103 reclaim_state.reclaimed_slab = 0; 4104 p->reclaim_state = &reclaim_state; 4105 4106 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4107 /* 4108 * Free memory by calling shrink node with increasing 4109 * priorities until we have enough memory freed. 4110 */ 4111 do { 4112 shrink_node(pgdat, &sc); 4113 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4114 } 4115 4116 p->reclaim_state = NULL; 4117 current->flags &= ~PF_SWAPWRITE; 4118 memalloc_noreclaim_restore(noreclaim_flag); 4119 fs_reclaim_release(sc.gfp_mask); 4120 4121 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4122 4123 return sc.nr_reclaimed >= nr_pages; 4124 } 4125 4126 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4127 { 4128 int ret; 4129 4130 /* 4131 * Node reclaim reclaims unmapped file backed pages and 4132 * slab pages if we are over the defined limits. 4133 * 4134 * A small portion of unmapped file backed pages is needed for 4135 * file I/O otherwise pages read by file I/O will be immediately 4136 * thrown out if the node is overallocated. So we do not reclaim 4137 * if less than a specified percentage of the node is used by 4138 * unmapped file backed pages. 4139 */ 4140 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4141 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 4142 return NODE_RECLAIM_FULL; 4143 4144 /* 4145 * Do not scan if the allocation should not be delayed. 4146 */ 4147 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4148 return NODE_RECLAIM_NOSCAN; 4149 4150 /* 4151 * Only run node reclaim on the local node or on nodes that do not 4152 * have associated processors. This will favor the local processor 4153 * over remote processors and spread off node memory allocations 4154 * as wide as possible. 4155 */ 4156 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4157 return NODE_RECLAIM_NOSCAN; 4158 4159 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4160 return NODE_RECLAIM_NOSCAN; 4161 4162 ret = __node_reclaim(pgdat, gfp_mask, order); 4163 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4164 4165 if (!ret) 4166 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4167 4168 return ret; 4169 } 4170 #endif 4171 4172 /* 4173 * page_evictable - test whether a page is evictable 4174 * @page: the page to test 4175 * 4176 * Test whether page is evictable--i.e., should be placed on active/inactive 4177 * lists vs unevictable list. 4178 * 4179 * Reasons page might not be evictable: 4180 * (1) page's mapping marked unevictable 4181 * (2) page is part of an mlocked VMA 4182 * 4183 */ 4184 int page_evictable(struct page *page) 4185 { 4186 int ret; 4187 4188 /* Prevent address_space of inode and swap cache from being freed */ 4189 rcu_read_lock(); 4190 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 4191 rcu_read_unlock(); 4192 return ret; 4193 } 4194 4195 /** 4196 * check_move_unevictable_pages - check pages for evictability and move to 4197 * appropriate zone lru list 4198 * @pvec: pagevec with lru pages to check 4199 * 4200 * Checks pages for evictability, if an evictable page is in the unevictable 4201 * lru list, moves it to the appropriate evictable lru list. This function 4202 * should be only used for lru pages. 4203 */ 4204 void check_move_unevictable_pages(struct pagevec *pvec) 4205 { 4206 struct lruvec *lruvec; 4207 struct pglist_data *pgdat = NULL; 4208 int pgscanned = 0; 4209 int pgrescued = 0; 4210 int i; 4211 4212 for (i = 0; i < pvec->nr; i++) { 4213 struct page *page = pvec->pages[i]; 4214 struct pglist_data *pagepgdat = page_pgdat(page); 4215 4216 pgscanned++; 4217 if (pagepgdat != pgdat) { 4218 if (pgdat) 4219 spin_unlock_irq(&pgdat->lru_lock); 4220 pgdat = pagepgdat; 4221 spin_lock_irq(&pgdat->lru_lock); 4222 } 4223 lruvec = mem_cgroup_page_lruvec(page, pgdat); 4224 4225 if (!PageLRU(page) || !PageUnevictable(page)) 4226 continue; 4227 4228 if (page_evictable(page)) { 4229 enum lru_list lru = page_lru_base_type(page); 4230 4231 VM_BUG_ON_PAGE(PageActive(page), page); 4232 ClearPageUnevictable(page); 4233 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 4234 add_page_to_lru_list(page, lruvec, lru); 4235 pgrescued++; 4236 } 4237 } 4238 4239 if (pgdat) { 4240 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4241 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4242 spin_unlock_irq(&pgdat->lru_lock); 4243 } 4244 } 4245 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4246