xref: /openbmc/linux/mm/vmscan.c (revision af5d440365894b5ca51f29866c1a01496dce52c4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57 
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60 
61 #include "internal.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65 
66 struct scan_control {
67 	/* How many pages shrink_list() should reclaim */
68 	unsigned long nr_to_reclaim;
69 
70 	/*
71 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 	 * are scanned.
73 	 */
74 	nodemask_t	*nodemask;
75 
76 	/*
77 	 * The memory cgroup that hit its limit and as a result is the
78 	 * primary target of this reclaim invocation.
79 	 */
80 	struct mem_cgroup *target_mem_cgroup;
81 
82 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
83 	unsigned int may_writepage:1;
84 
85 	/* Can mapped pages be reclaimed? */
86 	unsigned int may_unmap:1;
87 
88 	/* Can pages be swapped as part of reclaim? */
89 	unsigned int may_swap:1;
90 
91 	/* e.g. boosted watermark reclaim leaves slabs alone */
92 	unsigned int may_shrinkslab:1;
93 
94 	/*
95 	 * Cgroups are not reclaimed below their configured memory.low,
96 	 * unless we threaten to OOM. If any cgroups are skipped due to
97 	 * memory.low and nothing was reclaimed, go back for memory.low.
98 	 */
99 	unsigned int memcg_low_reclaim:1;
100 	unsigned int memcg_low_skipped:1;
101 
102 	unsigned int hibernation_mode:1;
103 
104 	/* One of the zones is ready for compaction */
105 	unsigned int compaction_ready:1;
106 
107 	/* Allocation order */
108 	s8 order;
109 
110 	/* Scan (total_size >> priority) pages at once */
111 	s8 priority;
112 
113 	/* The highest zone to isolate pages for reclaim from */
114 	s8 reclaim_idx;
115 
116 	/* This context's GFP mask */
117 	gfp_t gfp_mask;
118 
119 	/* Incremented by the number of inactive pages that were scanned */
120 	unsigned long nr_scanned;
121 
122 	/* Number of pages freed so far during a call to shrink_zones() */
123 	unsigned long nr_reclaimed;
124 
125 	struct {
126 		unsigned int dirty;
127 		unsigned int unqueued_dirty;
128 		unsigned int congested;
129 		unsigned int writeback;
130 		unsigned int immediate;
131 		unsigned int file_taken;
132 		unsigned int taken;
133 	} nr;
134 };
135 
136 #ifdef ARCH_HAS_PREFETCH
137 #define prefetch_prev_lru_page(_page, _base, _field)			\
138 	do {								\
139 		if ((_page)->lru.prev != _base) {			\
140 			struct page *prev;				\
141 									\
142 			prev = lru_to_page(&(_page->lru));		\
143 			prefetch(&prev->_field);			\
144 		}							\
145 	} while (0)
146 #else
147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
148 #endif
149 
150 #ifdef ARCH_HAS_PREFETCHW
151 #define prefetchw_prev_lru_page(_page, _base, _field)			\
152 	do {								\
153 		if ((_page)->lru.prev != _base) {			\
154 			struct page *prev;				\
155 									\
156 			prev = lru_to_page(&(_page->lru));		\
157 			prefetchw(&prev->_field);			\
158 		}							\
159 	} while (0)
160 #else
161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
162 #endif
163 
164 /*
165  * From 0 .. 100.  Higher means more swappy.
166  */
167 int vm_swappiness = 60;
168 /*
169  * The total number of pages which are beyond the high watermark within all
170  * zones.
171  */
172 unsigned long vm_total_pages;
173 
174 static LIST_HEAD(shrinker_list);
175 static DECLARE_RWSEM(shrinker_rwsem);
176 
177 #ifdef CONFIG_MEMCG_KMEM
178 
179 /*
180  * We allow subsystems to populate their shrinker-related
181  * LRU lists before register_shrinker_prepared() is called
182  * for the shrinker, since we don't want to impose
183  * restrictions on their internal registration order.
184  * In this case shrink_slab_memcg() may find corresponding
185  * bit is set in the shrinkers map.
186  *
187  * This value is used by the function to detect registering
188  * shrinkers and to skip do_shrink_slab() calls for them.
189  */
190 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
191 
192 static DEFINE_IDR(shrinker_idr);
193 static int shrinker_nr_max;
194 
195 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
196 {
197 	int id, ret = -ENOMEM;
198 
199 	down_write(&shrinker_rwsem);
200 	/* This may call shrinker, so it must use down_read_trylock() */
201 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
202 	if (id < 0)
203 		goto unlock;
204 
205 	if (id >= shrinker_nr_max) {
206 		if (memcg_expand_shrinker_maps(id)) {
207 			idr_remove(&shrinker_idr, id);
208 			goto unlock;
209 		}
210 
211 		shrinker_nr_max = id + 1;
212 	}
213 	shrinker->id = id;
214 	ret = 0;
215 unlock:
216 	up_write(&shrinker_rwsem);
217 	return ret;
218 }
219 
220 static void unregister_memcg_shrinker(struct shrinker *shrinker)
221 {
222 	int id = shrinker->id;
223 
224 	BUG_ON(id < 0);
225 
226 	down_write(&shrinker_rwsem);
227 	idr_remove(&shrinker_idr, id);
228 	up_write(&shrinker_rwsem);
229 }
230 #else /* CONFIG_MEMCG_KMEM */
231 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
232 {
233 	return 0;
234 }
235 
236 static void unregister_memcg_shrinker(struct shrinker *shrinker)
237 {
238 }
239 #endif /* CONFIG_MEMCG_KMEM */
240 
241 #ifdef CONFIG_MEMCG
242 static bool global_reclaim(struct scan_control *sc)
243 {
244 	return !sc->target_mem_cgroup;
245 }
246 
247 /**
248  * sane_reclaim - is the usual dirty throttling mechanism operational?
249  * @sc: scan_control in question
250  *
251  * The normal page dirty throttling mechanism in balance_dirty_pages() is
252  * completely broken with the legacy memcg and direct stalling in
253  * shrink_page_list() is used for throttling instead, which lacks all the
254  * niceties such as fairness, adaptive pausing, bandwidth proportional
255  * allocation and configurability.
256  *
257  * This function tests whether the vmscan currently in progress can assume
258  * that the normal dirty throttling mechanism is operational.
259  */
260 static bool sane_reclaim(struct scan_control *sc)
261 {
262 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
263 
264 	if (!memcg)
265 		return true;
266 #ifdef CONFIG_CGROUP_WRITEBACK
267 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
268 		return true;
269 #endif
270 	return false;
271 }
272 
273 static void set_memcg_congestion(pg_data_t *pgdat,
274 				struct mem_cgroup *memcg,
275 				bool congested)
276 {
277 	struct mem_cgroup_per_node *mn;
278 
279 	if (!memcg)
280 		return;
281 
282 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
283 	WRITE_ONCE(mn->congested, congested);
284 }
285 
286 static bool memcg_congested(pg_data_t *pgdat,
287 			struct mem_cgroup *memcg)
288 {
289 	struct mem_cgroup_per_node *mn;
290 
291 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
292 	return READ_ONCE(mn->congested);
293 
294 }
295 #else
296 static bool global_reclaim(struct scan_control *sc)
297 {
298 	return true;
299 }
300 
301 static bool sane_reclaim(struct scan_control *sc)
302 {
303 	return true;
304 }
305 
306 static inline void set_memcg_congestion(struct pglist_data *pgdat,
307 				struct mem_cgroup *memcg, bool congested)
308 {
309 }
310 
311 static inline bool memcg_congested(struct pglist_data *pgdat,
312 			struct mem_cgroup *memcg)
313 {
314 	return false;
315 
316 }
317 #endif
318 
319 /*
320  * This misses isolated pages which are not accounted for to save counters.
321  * As the data only determines if reclaim or compaction continues, it is
322  * not expected that isolated pages will be a dominating factor.
323  */
324 unsigned long zone_reclaimable_pages(struct zone *zone)
325 {
326 	unsigned long nr;
327 
328 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
329 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
330 	if (get_nr_swap_pages() > 0)
331 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
332 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
333 
334 	return nr;
335 }
336 
337 /**
338  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
339  * @lruvec: lru vector
340  * @lru: lru to use
341  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
342  */
343 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
344 {
345 	unsigned long lru_size;
346 	int zid;
347 
348 	if (!mem_cgroup_disabled())
349 		lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
350 	else
351 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
352 
353 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
354 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
355 		unsigned long size;
356 
357 		if (!managed_zone(zone))
358 			continue;
359 
360 		if (!mem_cgroup_disabled())
361 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
362 		else
363 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
364 				       NR_ZONE_LRU_BASE + lru);
365 		lru_size -= min(size, lru_size);
366 	}
367 
368 	return lru_size;
369 
370 }
371 
372 /*
373  * Add a shrinker callback to be called from the vm.
374  */
375 int prealloc_shrinker(struct shrinker *shrinker)
376 {
377 	unsigned int size = sizeof(*shrinker->nr_deferred);
378 
379 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
380 		size *= nr_node_ids;
381 
382 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
383 	if (!shrinker->nr_deferred)
384 		return -ENOMEM;
385 
386 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
387 		if (prealloc_memcg_shrinker(shrinker))
388 			goto free_deferred;
389 	}
390 
391 	return 0;
392 
393 free_deferred:
394 	kfree(shrinker->nr_deferred);
395 	shrinker->nr_deferred = NULL;
396 	return -ENOMEM;
397 }
398 
399 void free_prealloced_shrinker(struct shrinker *shrinker)
400 {
401 	if (!shrinker->nr_deferred)
402 		return;
403 
404 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
405 		unregister_memcg_shrinker(shrinker);
406 
407 	kfree(shrinker->nr_deferred);
408 	shrinker->nr_deferred = NULL;
409 }
410 
411 void register_shrinker_prepared(struct shrinker *shrinker)
412 {
413 	down_write(&shrinker_rwsem);
414 	list_add_tail(&shrinker->list, &shrinker_list);
415 #ifdef CONFIG_MEMCG_KMEM
416 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
417 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
418 #endif
419 	up_write(&shrinker_rwsem);
420 }
421 
422 int register_shrinker(struct shrinker *shrinker)
423 {
424 	int err = prealloc_shrinker(shrinker);
425 
426 	if (err)
427 		return err;
428 	register_shrinker_prepared(shrinker);
429 	return 0;
430 }
431 EXPORT_SYMBOL(register_shrinker);
432 
433 /*
434  * Remove one
435  */
436 void unregister_shrinker(struct shrinker *shrinker)
437 {
438 	if (!shrinker->nr_deferred)
439 		return;
440 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
441 		unregister_memcg_shrinker(shrinker);
442 	down_write(&shrinker_rwsem);
443 	list_del(&shrinker->list);
444 	up_write(&shrinker_rwsem);
445 	kfree(shrinker->nr_deferred);
446 	shrinker->nr_deferred = NULL;
447 }
448 EXPORT_SYMBOL(unregister_shrinker);
449 
450 #define SHRINK_BATCH 128
451 
452 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
453 				    struct shrinker *shrinker, int priority)
454 {
455 	unsigned long freed = 0;
456 	unsigned long long delta;
457 	long total_scan;
458 	long freeable;
459 	long nr;
460 	long new_nr;
461 	int nid = shrinkctl->nid;
462 	long batch_size = shrinker->batch ? shrinker->batch
463 					  : SHRINK_BATCH;
464 	long scanned = 0, next_deferred;
465 
466 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
467 		nid = 0;
468 
469 	freeable = shrinker->count_objects(shrinker, shrinkctl);
470 	if (freeable == 0 || freeable == SHRINK_EMPTY)
471 		return freeable;
472 
473 	/*
474 	 * copy the current shrinker scan count into a local variable
475 	 * and zero it so that other concurrent shrinker invocations
476 	 * don't also do this scanning work.
477 	 */
478 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
479 
480 	total_scan = nr;
481 	if (shrinker->seeks) {
482 		delta = freeable >> priority;
483 		delta *= 4;
484 		do_div(delta, shrinker->seeks);
485 	} else {
486 		/*
487 		 * These objects don't require any IO to create. Trim
488 		 * them aggressively under memory pressure to keep
489 		 * them from causing refetches in the IO caches.
490 		 */
491 		delta = freeable / 2;
492 	}
493 
494 	total_scan += delta;
495 	if (total_scan < 0) {
496 		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
497 		       shrinker->scan_objects, total_scan);
498 		total_scan = freeable;
499 		next_deferred = nr;
500 	} else
501 		next_deferred = total_scan;
502 
503 	/*
504 	 * We need to avoid excessive windup on filesystem shrinkers
505 	 * due to large numbers of GFP_NOFS allocations causing the
506 	 * shrinkers to return -1 all the time. This results in a large
507 	 * nr being built up so when a shrink that can do some work
508 	 * comes along it empties the entire cache due to nr >>>
509 	 * freeable. This is bad for sustaining a working set in
510 	 * memory.
511 	 *
512 	 * Hence only allow the shrinker to scan the entire cache when
513 	 * a large delta change is calculated directly.
514 	 */
515 	if (delta < freeable / 4)
516 		total_scan = min(total_scan, freeable / 2);
517 
518 	/*
519 	 * Avoid risking looping forever due to too large nr value:
520 	 * never try to free more than twice the estimate number of
521 	 * freeable entries.
522 	 */
523 	if (total_scan > freeable * 2)
524 		total_scan = freeable * 2;
525 
526 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
527 				   freeable, delta, total_scan, priority);
528 
529 	/*
530 	 * Normally, we should not scan less than batch_size objects in one
531 	 * pass to avoid too frequent shrinker calls, but if the slab has less
532 	 * than batch_size objects in total and we are really tight on memory,
533 	 * we will try to reclaim all available objects, otherwise we can end
534 	 * up failing allocations although there are plenty of reclaimable
535 	 * objects spread over several slabs with usage less than the
536 	 * batch_size.
537 	 *
538 	 * We detect the "tight on memory" situations by looking at the total
539 	 * number of objects we want to scan (total_scan). If it is greater
540 	 * than the total number of objects on slab (freeable), we must be
541 	 * scanning at high prio and therefore should try to reclaim as much as
542 	 * possible.
543 	 */
544 	while (total_scan >= batch_size ||
545 	       total_scan >= freeable) {
546 		unsigned long ret;
547 		unsigned long nr_to_scan = min(batch_size, total_scan);
548 
549 		shrinkctl->nr_to_scan = nr_to_scan;
550 		shrinkctl->nr_scanned = nr_to_scan;
551 		ret = shrinker->scan_objects(shrinker, shrinkctl);
552 		if (ret == SHRINK_STOP)
553 			break;
554 		freed += ret;
555 
556 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
557 		total_scan -= shrinkctl->nr_scanned;
558 		scanned += shrinkctl->nr_scanned;
559 
560 		cond_resched();
561 	}
562 
563 	if (next_deferred >= scanned)
564 		next_deferred -= scanned;
565 	else
566 		next_deferred = 0;
567 	/*
568 	 * move the unused scan count back into the shrinker in a
569 	 * manner that handles concurrent updates. If we exhausted the
570 	 * scan, there is no need to do an update.
571 	 */
572 	if (next_deferred > 0)
573 		new_nr = atomic_long_add_return(next_deferred,
574 						&shrinker->nr_deferred[nid]);
575 	else
576 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
577 
578 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
579 	return freed;
580 }
581 
582 #ifdef CONFIG_MEMCG_KMEM
583 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
584 			struct mem_cgroup *memcg, int priority)
585 {
586 	struct memcg_shrinker_map *map;
587 	unsigned long ret, freed = 0;
588 	int i;
589 
590 	if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
591 		return 0;
592 
593 	if (!down_read_trylock(&shrinker_rwsem))
594 		return 0;
595 
596 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
597 					true);
598 	if (unlikely(!map))
599 		goto unlock;
600 
601 	for_each_set_bit(i, map->map, shrinker_nr_max) {
602 		struct shrink_control sc = {
603 			.gfp_mask = gfp_mask,
604 			.nid = nid,
605 			.memcg = memcg,
606 		};
607 		struct shrinker *shrinker;
608 
609 		shrinker = idr_find(&shrinker_idr, i);
610 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
611 			if (!shrinker)
612 				clear_bit(i, map->map);
613 			continue;
614 		}
615 
616 		ret = do_shrink_slab(&sc, shrinker, priority);
617 		if (ret == SHRINK_EMPTY) {
618 			clear_bit(i, map->map);
619 			/*
620 			 * After the shrinker reported that it had no objects to
621 			 * free, but before we cleared the corresponding bit in
622 			 * the memcg shrinker map, a new object might have been
623 			 * added. To make sure, we have the bit set in this
624 			 * case, we invoke the shrinker one more time and reset
625 			 * the bit if it reports that it is not empty anymore.
626 			 * The memory barrier here pairs with the barrier in
627 			 * memcg_set_shrinker_bit():
628 			 *
629 			 * list_lru_add()     shrink_slab_memcg()
630 			 *   list_add_tail()    clear_bit()
631 			 *   <MB>               <MB>
632 			 *   set_bit()          do_shrink_slab()
633 			 */
634 			smp_mb__after_atomic();
635 			ret = do_shrink_slab(&sc, shrinker, priority);
636 			if (ret == SHRINK_EMPTY)
637 				ret = 0;
638 			else
639 				memcg_set_shrinker_bit(memcg, nid, i);
640 		}
641 		freed += ret;
642 
643 		if (rwsem_is_contended(&shrinker_rwsem)) {
644 			freed = freed ? : 1;
645 			break;
646 		}
647 	}
648 unlock:
649 	up_read(&shrinker_rwsem);
650 	return freed;
651 }
652 #else /* CONFIG_MEMCG_KMEM */
653 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
654 			struct mem_cgroup *memcg, int priority)
655 {
656 	return 0;
657 }
658 #endif /* CONFIG_MEMCG_KMEM */
659 
660 /**
661  * shrink_slab - shrink slab caches
662  * @gfp_mask: allocation context
663  * @nid: node whose slab caches to target
664  * @memcg: memory cgroup whose slab caches to target
665  * @priority: the reclaim priority
666  *
667  * Call the shrink functions to age shrinkable caches.
668  *
669  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
670  * unaware shrinkers will receive a node id of 0 instead.
671  *
672  * @memcg specifies the memory cgroup to target. Unaware shrinkers
673  * are called only if it is the root cgroup.
674  *
675  * @priority is sc->priority, we take the number of objects and >> by priority
676  * in order to get the scan target.
677  *
678  * Returns the number of reclaimed slab objects.
679  */
680 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
681 				 struct mem_cgroup *memcg,
682 				 int priority)
683 {
684 	unsigned long ret, freed = 0;
685 	struct shrinker *shrinker;
686 
687 	if (!mem_cgroup_is_root(memcg))
688 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
689 
690 	if (!down_read_trylock(&shrinker_rwsem))
691 		goto out;
692 
693 	list_for_each_entry(shrinker, &shrinker_list, list) {
694 		struct shrink_control sc = {
695 			.gfp_mask = gfp_mask,
696 			.nid = nid,
697 			.memcg = memcg,
698 		};
699 
700 		ret = do_shrink_slab(&sc, shrinker, priority);
701 		if (ret == SHRINK_EMPTY)
702 			ret = 0;
703 		freed += ret;
704 		/*
705 		 * Bail out if someone want to register a new shrinker to
706 		 * prevent the regsitration from being stalled for long periods
707 		 * by parallel ongoing shrinking.
708 		 */
709 		if (rwsem_is_contended(&shrinker_rwsem)) {
710 			freed = freed ? : 1;
711 			break;
712 		}
713 	}
714 
715 	up_read(&shrinker_rwsem);
716 out:
717 	cond_resched();
718 	return freed;
719 }
720 
721 void drop_slab_node(int nid)
722 {
723 	unsigned long freed;
724 
725 	do {
726 		struct mem_cgroup *memcg = NULL;
727 
728 		freed = 0;
729 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
730 		do {
731 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
732 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
733 	} while (freed > 10);
734 }
735 
736 void drop_slab(void)
737 {
738 	int nid;
739 
740 	for_each_online_node(nid)
741 		drop_slab_node(nid);
742 }
743 
744 static inline int is_page_cache_freeable(struct page *page)
745 {
746 	/*
747 	 * A freeable page cache page is referenced only by the caller
748 	 * that isolated the page, the page cache and optional buffer
749 	 * heads at page->private.
750 	 */
751 	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
752 		HPAGE_PMD_NR : 1;
753 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
754 }
755 
756 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
757 {
758 	if (current->flags & PF_SWAPWRITE)
759 		return 1;
760 	if (!inode_write_congested(inode))
761 		return 1;
762 	if (inode_to_bdi(inode) == current->backing_dev_info)
763 		return 1;
764 	return 0;
765 }
766 
767 /*
768  * We detected a synchronous write error writing a page out.  Probably
769  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
770  * fsync(), msync() or close().
771  *
772  * The tricky part is that after writepage we cannot touch the mapping: nothing
773  * prevents it from being freed up.  But we have a ref on the page and once
774  * that page is locked, the mapping is pinned.
775  *
776  * We're allowed to run sleeping lock_page() here because we know the caller has
777  * __GFP_FS.
778  */
779 static void handle_write_error(struct address_space *mapping,
780 				struct page *page, int error)
781 {
782 	lock_page(page);
783 	if (page_mapping(page) == mapping)
784 		mapping_set_error(mapping, error);
785 	unlock_page(page);
786 }
787 
788 /* possible outcome of pageout() */
789 typedef enum {
790 	/* failed to write page out, page is locked */
791 	PAGE_KEEP,
792 	/* move page to the active list, page is locked */
793 	PAGE_ACTIVATE,
794 	/* page has been sent to the disk successfully, page is unlocked */
795 	PAGE_SUCCESS,
796 	/* page is clean and locked */
797 	PAGE_CLEAN,
798 } pageout_t;
799 
800 /*
801  * pageout is called by shrink_page_list() for each dirty page.
802  * Calls ->writepage().
803  */
804 static pageout_t pageout(struct page *page, struct address_space *mapping,
805 			 struct scan_control *sc)
806 {
807 	/*
808 	 * If the page is dirty, only perform writeback if that write
809 	 * will be non-blocking.  To prevent this allocation from being
810 	 * stalled by pagecache activity.  But note that there may be
811 	 * stalls if we need to run get_block().  We could test
812 	 * PagePrivate for that.
813 	 *
814 	 * If this process is currently in __generic_file_write_iter() against
815 	 * this page's queue, we can perform writeback even if that
816 	 * will block.
817 	 *
818 	 * If the page is swapcache, write it back even if that would
819 	 * block, for some throttling. This happens by accident, because
820 	 * swap_backing_dev_info is bust: it doesn't reflect the
821 	 * congestion state of the swapdevs.  Easy to fix, if needed.
822 	 */
823 	if (!is_page_cache_freeable(page))
824 		return PAGE_KEEP;
825 	if (!mapping) {
826 		/*
827 		 * Some data journaling orphaned pages can have
828 		 * page->mapping == NULL while being dirty with clean buffers.
829 		 */
830 		if (page_has_private(page)) {
831 			if (try_to_free_buffers(page)) {
832 				ClearPageDirty(page);
833 				pr_info("%s: orphaned page\n", __func__);
834 				return PAGE_CLEAN;
835 			}
836 		}
837 		return PAGE_KEEP;
838 	}
839 	if (mapping->a_ops->writepage == NULL)
840 		return PAGE_ACTIVATE;
841 	if (!may_write_to_inode(mapping->host, sc))
842 		return PAGE_KEEP;
843 
844 	if (clear_page_dirty_for_io(page)) {
845 		int res;
846 		struct writeback_control wbc = {
847 			.sync_mode = WB_SYNC_NONE,
848 			.nr_to_write = SWAP_CLUSTER_MAX,
849 			.range_start = 0,
850 			.range_end = LLONG_MAX,
851 			.for_reclaim = 1,
852 		};
853 
854 		SetPageReclaim(page);
855 		res = mapping->a_ops->writepage(page, &wbc);
856 		if (res < 0)
857 			handle_write_error(mapping, page, res);
858 		if (res == AOP_WRITEPAGE_ACTIVATE) {
859 			ClearPageReclaim(page);
860 			return PAGE_ACTIVATE;
861 		}
862 
863 		if (!PageWriteback(page)) {
864 			/* synchronous write or broken a_ops? */
865 			ClearPageReclaim(page);
866 		}
867 		trace_mm_vmscan_writepage(page);
868 		inc_node_page_state(page, NR_VMSCAN_WRITE);
869 		return PAGE_SUCCESS;
870 	}
871 
872 	return PAGE_CLEAN;
873 }
874 
875 /*
876  * Same as remove_mapping, but if the page is removed from the mapping, it
877  * gets returned with a refcount of 0.
878  */
879 static int __remove_mapping(struct address_space *mapping, struct page *page,
880 			    bool reclaimed)
881 {
882 	unsigned long flags;
883 	int refcount;
884 
885 	BUG_ON(!PageLocked(page));
886 	BUG_ON(mapping != page_mapping(page));
887 
888 	xa_lock_irqsave(&mapping->i_pages, flags);
889 	/*
890 	 * The non racy check for a busy page.
891 	 *
892 	 * Must be careful with the order of the tests. When someone has
893 	 * a ref to the page, it may be possible that they dirty it then
894 	 * drop the reference. So if PageDirty is tested before page_count
895 	 * here, then the following race may occur:
896 	 *
897 	 * get_user_pages(&page);
898 	 * [user mapping goes away]
899 	 * write_to(page);
900 	 *				!PageDirty(page)    [good]
901 	 * SetPageDirty(page);
902 	 * put_page(page);
903 	 *				!page_count(page)   [good, discard it]
904 	 *
905 	 * [oops, our write_to data is lost]
906 	 *
907 	 * Reversing the order of the tests ensures such a situation cannot
908 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
909 	 * load is not satisfied before that of page->_refcount.
910 	 *
911 	 * Note that if SetPageDirty is always performed via set_page_dirty,
912 	 * and thus under the i_pages lock, then this ordering is not required.
913 	 */
914 	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
915 		refcount = 1 + HPAGE_PMD_NR;
916 	else
917 		refcount = 2;
918 	if (!page_ref_freeze(page, refcount))
919 		goto cannot_free;
920 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
921 	if (unlikely(PageDirty(page))) {
922 		page_ref_unfreeze(page, refcount);
923 		goto cannot_free;
924 	}
925 
926 	if (PageSwapCache(page)) {
927 		swp_entry_t swap = { .val = page_private(page) };
928 		mem_cgroup_swapout(page, swap);
929 		__delete_from_swap_cache(page, swap);
930 		xa_unlock_irqrestore(&mapping->i_pages, flags);
931 		put_swap_page(page, swap);
932 	} else {
933 		void (*freepage)(struct page *);
934 		void *shadow = NULL;
935 
936 		freepage = mapping->a_ops->freepage;
937 		/*
938 		 * Remember a shadow entry for reclaimed file cache in
939 		 * order to detect refaults, thus thrashing, later on.
940 		 *
941 		 * But don't store shadows in an address space that is
942 		 * already exiting.  This is not just an optizimation,
943 		 * inode reclaim needs to empty out the radix tree or
944 		 * the nodes are lost.  Don't plant shadows behind its
945 		 * back.
946 		 *
947 		 * We also don't store shadows for DAX mappings because the
948 		 * only page cache pages found in these are zero pages
949 		 * covering holes, and because we don't want to mix DAX
950 		 * exceptional entries and shadow exceptional entries in the
951 		 * same address_space.
952 		 */
953 		if (reclaimed && page_is_file_cache(page) &&
954 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
955 			shadow = workingset_eviction(page);
956 		__delete_from_page_cache(page, shadow);
957 		xa_unlock_irqrestore(&mapping->i_pages, flags);
958 
959 		if (freepage != NULL)
960 			freepage(page);
961 	}
962 
963 	return 1;
964 
965 cannot_free:
966 	xa_unlock_irqrestore(&mapping->i_pages, flags);
967 	return 0;
968 }
969 
970 /*
971  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
972  * someone else has a ref on the page, abort and return 0.  If it was
973  * successfully detached, return 1.  Assumes the caller has a single ref on
974  * this page.
975  */
976 int remove_mapping(struct address_space *mapping, struct page *page)
977 {
978 	if (__remove_mapping(mapping, page, false)) {
979 		/*
980 		 * Unfreezing the refcount with 1 rather than 2 effectively
981 		 * drops the pagecache ref for us without requiring another
982 		 * atomic operation.
983 		 */
984 		page_ref_unfreeze(page, 1);
985 		return 1;
986 	}
987 	return 0;
988 }
989 
990 /**
991  * putback_lru_page - put previously isolated page onto appropriate LRU list
992  * @page: page to be put back to appropriate lru list
993  *
994  * Add previously isolated @page to appropriate LRU list.
995  * Page may still be unevictable for other reasons.
996  *
997  * lru_lock must not be held, interrupts must be enabled.
998  */
999 void putback_lru_page(struct page *page)
1000 {
1001 	lru_cache_add(page);
1002 	put_page(page);		/* drop ref from isolate */
1003 }
1004 
1005 enum page_references {
1006 	PAGEREF_RECLAIM,
1007 	PAGEREF_RECLAIM_CLEAN,
1008 	PAGEREF_KEEP,
1009 	PAGEREF_ACTIVATE,
1010 };
1011 
1012 static enum page_references page_check_references(struct page *page,
1013 						  struct scan_control *sc)
1014 {
1015 	int referenced_ptes, referenced_page;
1016 	unsigned long vm_flags;
1017 
1018 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1019 					  &vm_flags);
1020 	referenced_page = TestClearPageReferenced(page);
1021 
1022 	/*
1023 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1024 	 * move the page to the unevictable list.
1025 	 */
1026 	if (vm_flags & VM_LOCKED)
1027 		return PAGEREF_RECLAIM;
1028 
1029 	if (referenced_ptes) {
1030 		if (PageSwapBacked(page))
1031 			return PAGEREF_ACTIVATE;
1032 		/*
1033 		 * All mapped pages start out with page table
1034 		 * references from the instantiating fault, so we need
1035 		 * to look twice if a mapped file page is used more
1036 		 * than once.
1037 		 *
1038 		 * Mark it and spare it for another trip around the
1039 		 * inactive list.  Another page table reference will
1040 		 * lead to its activation.
1041 		 *
1042 		 * Note: the mark is set for activated pages as well
1043 		 * so that recently deactivated but used pages are
1044 		 * quickly recovered.
1045 		 */
1046 		SetPageReferenced(page);
1047 
1048 		if (referenced_page || referenced_ptes > 1)
1049 			return PAGEREF_ACTIVATE;
1050 
1051 		/*
1052 		 * Activate file-backed executable pages after first usage.
1053 		 */
1054 		if (vm_flags & VM_EXEC)
1055 			return PAGEREF_ACTIVATE;
1056 
1057 		return PAGEREF_KEEP;
1058 	}
1059 
1060 	/* Reclaim if clean, defer dirty pages to writeback */
1061 	if (referenced_page && !PageSwapBacked(page))
1062 		return PAGEREF_RECLAIM_CLEAN;
1063 
1064 	return PAGEREF_RECLAIM;
1065 }
1066 
1067 /* Check if a page is dirty or under writeback */
1068 static void page_check_dirty_writeback(struct page *page,
1069 				       bool *dirty, bool *writeback)
1070 {
1071 	struct address_space *mapping;
1072 
1073 	/*
1074 	 * Anonymous pages are not handled by flushers and must be written
1075 	 * from reclaim context. Do not stall reclaim based on them
1076 	 */
1077 	if (!page_is_file_cache(page) ||
1078 	    (PageAnon(page) && !PageSwapBacked(page))) {
1079 		*dirty = false;
1080 		*writeback = false;
1081 		return;
1082 	}
1083 
1084 	/* By default assume that the page flags are accurate */
1085 	*dirty = PageDirty(page);
1086 	*writeback = PageWriteback(page);
1087 
1088 	/* Verify dirty/writeback state if the filesystem supports it */
1089 	if (!page_has_private(page))
1090 		return;
1091 
1092 	mapping = page_mapping(page);
1093 	if (mapping && mapping->a_ops->is_dirty_writeback)
1094 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1095 }
1096 
1097 /*
1098  * shrink_page_list() returns the number of reclaimed pages
1099  */
1100 static unsigned long shrink_page_list(struct list_head *page_list,
1101 				      struct pglist_data *pgdat,
1102 				      struct scan_control *sc,
1103 				      enum ttu_flags ttu_flags,
1104 				      struct reclaim_stat *stat,
1105 				      bool force_reclaim)
1106 {
1107 	LIST_HEAD(ret_pages);
1108 	LIST_HEAD(free_pages);
1109 	unsigned nr_reclaimed = 0;
1110 	unsigned pgactivate = 0;
1111 
1112 	memset(stat, 0, sizeof(*stat));
1113 	cond_resched();
1114 
1115 	while (!list_empty(page_list)) {
1116 		struct address_space *mapping;
1117 		struct page *page;
1118 		int may_enter_fs;
1119 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
1120 		bool dirty, writeback;
1121 
1122 		cond_resched();
1123 
1124 		page = lru_to_page(page_list);
1125 		list_del(&page->lru);
1126 
1127 		if (!trylock_page(page))
1128 			goto keep;
1129 
1130 		VM_BUG_ON_PAGE(PageActive(page), page);
1131 
1132 		sc->nr_scanned++;
1133 
1134 		if (unlikely(!page_evictable(page)))
1135 			goto activate_locked;
1136 
1137 		if (!sc->may_unmap && page_mapped(page))
1138 			goto keep_locked;
1139 
1140 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1141 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1142 
1143 		/*
1144 		 * The number of dirty pages determines if a node is marked
1145 		 * reclaim_congested which affects wait_iff_congested. kswapd
1146 		 * will stall and start writing pages if the tail of the LRU
1147 		 * is all dirty unqueued pages.
1148 		 */
1149 		page_check_dirty_writeback(page, &dirty, &writeback);
1150 		if (dirty || writeback)
1151 			stat->nr_dirty++;
1152 
1153 		if (dirty && !writeback)
1154 			stat->nr_unqueued_dirty++;
1155 
1156 		/*
1157 		 * Treat this page as congested if the underlying BDI is or if
1158 		 * pages are cycling through the LRU so quickly that the
1159 		 * pages marked for immediate reclaim are making it to the
1160 		 * end of the LRU a second time.
1161 		 */
1162 		mapping = page_mapping(page);
1163 		if (((dirty || writeback) && mapping &&
1164 		     inode_write_congested(mapping->host)) ||
1165 		    (writeback && PageReclaim(page)))
1166 			stat->nr_congested++;
1167 
1168 		/*
1169 		 * If a page at the tail of the LRU is under writeback, there
1170 		 * are three cases to consider.
1171 		 *
1172 		 * 1) If reclaim is encountering an excessive number of pages
1173 		 *    under writeback and this page is both under writeback and
1174 		 *    PageReclaim then it indicates that pages are being queued
1175 		 *    for IO but are being recycled through the LRU before the
1176 		 *    IO can complete. Waiting on the page itself risks an
1177 		 *    indefinite stall if it is impossible to writeback the
1178 		 *    page due to IO error or disconnected storage so instead
1179 		 *    note that the LRU is being scanned too quickly and the
1180 		 *    caller can stall after page list has been processed.
1181 		 *
1182 		 * 2) Global or new memcg reclaim encounters a page that is
1183 		 *    not marked for immediate reclaim, or the caller does not
1184 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1185 		 *    not to fs). In this case mark the page for immediate
1186 		 *    reclaim and continue scanning.
1187 		 *
1188 		 *    Require may_enter_fs because we would wait on fs, which
1189 		 *    may not have submitted IO yet. And the loop driver might
1190 		 *    enter reclaim, and deadlock if it waits on a page for
1191 		 *    which it is needed to do the write (loop masks off
1192 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1193 		 *    would probably show more reasons.
1194 		 *
1195 		 * 3) Legacy memcg encounters a page that is already marked
1196 		 *    PageReclaim. memcg does not have any dirty pages
1197 		 *    throttling so we could easily OOM just because too many
1198 		 *    pages are in writeback and there is nothing else to
1199 		 *    reclaim. Wait for the writeback to complete.
1200 		 *
1201 		 * In cases 1) and 2) we activate the pages to get them out of
1202 		 * the way while we continue scanning for clean pages on the
1203 		 * inactive list and refilling from the active list. The
1204 		 * observation here is that waiting for disk writes is more
1205 		 * expensive than potentially causing reloads down the line.
1206 		 * Since they're marked for immediate reclaim, they won't put
1207 		 * memory pressure on the cache working set any longer than it
1208 		 * takes to write them to disk.
1209 		 */
1210 		if (PageWriteback(page)) {
1211 			/* Case 1 above */
1212 			if (current_is_kswapd() &&
1213 			    PageReclaim(page) &&
1214 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1215 				stat->nr_immediate++;
1216 				goto activate_locked;
1217 
1218 			/* Case 2 above */
1219 			} else if (sane_reclaim(sc) ||
1220 			    !PageReclaim(page) || !may_enter_fs) {
1221 				/*
1222 				 * This is slightly racy - end_page_writeback()
1223 				 * might have just cleared PageReclaim, then
1224 				 * setting PageReclaim here end up interpreted
1225 				 * as PageReadahead - but that does not matter
1226 				 * enough to care.  What we do want is for this
1227 				 * page to have PageReclaim set next time memcg
1228 				 * reclaim reaches the tests above, so it will
1229 				 * then wait_on_page_writeback() to avoid OOM;
1230 				 * and it's also appropriate in global reclaim.
1231 				 */
1232 				SetPageReclaim(page);
1233 				stat->nr_writeback++;
1234 				goto activate_locked;
1235 
1236 			/* Case 3 above */
1237 			} else {
1238 				unlock_page(page);
1239 				wait_on_page_writeback(page);
1240 				/* then go back and try same page again */
1241 				list_add_tail(&page->lru, page_list);
1242 				continue;
1243 			}
1244 		}
1245 
1246 		if (!force_reclaim)
1247 			references = page_check_references(page, sc);
1248 
1249 		switch (references) {
1250 		case PAGEREF_ACTIVATE:
1251 			goto activate_locked;
1252 		case PAGEREF_KEEP:
1253 			stat->nr_ref_keep++;
1254 			goto keep_locked;
1255 		case PAGEREF_RECLAIM:
1256 		case PAGEREF_RECLAIM_CLEAN:
1257 			; /* try to reclaim the page below */
1258 		}
1259 
1260 		/*
1261 		 * Anonymous process memory has backing store?
1262 		 * Try to allocate it some swap space here.
1263 		 * Lazyfree page could be freed directly
1264 		 */
1265 		if (PageAnon(page) && PageSwapBacked(page)) {
1266 			if (!PageSwapCache(page)) {
1267 				if (!(sc->gfp_mask & __GFP_IO))
1268 					goto keep_locked;
1269 				if (PageTransHuge(page)) {
1270 					/* cannot split THP, skip it */
1271 					if (!can_split_huge_page(page, NULL))
1272 						goto activate_locked;
1273 					/*
1274 					 * Split pages without a PMD map right
1275 					 * away. Chances are some or all of the
1276 					 * tail pages can be freed without IO.
1277 					 */
1278 					if (!compound_mapcount(page) &&
1279 					    split_huge_page_to_list(page,
1280 								    page_list))
1281 						goto activate_locked;
1282 				}
1283 				if (!add_to_swap(page)) {
1284 					if (!PageTransHuge(page))
1285 						goto activate_locked;
1286 					/* Fallback to swap normal pages */
1287 					if (split_huge_page_to_list(page,
1288 								    page_list))
1289 						goto activate_locked;
1290 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1291 					count_vm_event(THP_SWPOUT_FALLBACK);
1292 #endif
1293 					if (!add_to_swap(page))
1294 						goto activate_locked;
1295 				}
1296 
1297 				may_enter_fs = 1;
1298 
1299 				/* Adding to swap updated mapping */
1300 				mapping = page_mapping(page);
1301 			}
1302 		} else if (unlikely(PageTransHuge(page))) {
1303 			/* Split file THP */
1304 			if (split_huge_page_to_list(page, page_list))
1305 				goto keep_locked;
1306 		}
1307 
1308 		/*
1309 		 * The page is mapped into the page tables of one or more
1310 		 * processes. Try to unmap it here.
1311 		 */
1312 		if (page_mapped(page)) {
1313 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1314 
1315 			if (unlikely(PageTransHuge(page)))
1316 				flags |= TTU_SPLIT_HUGE_PMD;
1317 			if (!try_to_unmap(page, flags)) {
1318 				stat->nr_unmap_fail++;
1319 				goto activate_locked;
1320 			}
1321 		}
1322 
1323 		if (PageDirty(page)) {
1324 			/*
1325 			 * Only kswapd can writeback filesystem pages
1326 			 * to avoid risk of stack overflow. But avoid
1327 			 * injecting inefficient single-page IO into
1328 			 * flusher writeback as much as possible: only
1329 			 * write pages when we've encountered many
1330 			 * dirty pages, and when we've already scanned
1331 			 * the rest of the LRU for clean pages and see
1332 			 * the same dirty pages again (PageReclaim).
1333 			 */
1334 			if (page_is_file_cache(page) &&
1335 			    (!current_is_kswapd() || !PageReclaim(page) ||
1336 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1337 				/*
1338 				 * Immediately reclaim when written back.
1339 				 * Similar in principal to deactivate_page()
1340 				 * except we already have the page isolated
1341 				 * and know it's dirty
1342 				 */
1343 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1344 				SetPageReclaim(page);
1345 
1346 				goto activate_locked;
1347 			}
1348 
1349 			if (references == PAGEREF_RECLAIM_CLEAN)
1350 				goto keep_locked;
1351 			if (!may_enter_fs)
1352 				goto keep_locked;
1353 			if (!sc->may_writepage)
1354 				goto keep_locked;
1355 
1356 			/*
1357 			 * Page is dirty. Flush the TLB if a writable entry
1358 			 * potentially exists to avoid CPU writes after IO
1359 			 * starts and then write it out here.
1360 			 */
1361 			try_to_unmap_flush_dirty();
1362 			switch (pageout(page, mapping, sc)) {
1363 			case PAGE_KEEP:
1364 				goto keep_locked;
1365 			case PAGE_ACTIVATE:
1366 				goto activate_locked;
1367 			case PAGE_SUCCESS:
1368 				if (PageWriteback(page))
1369 					goto keep;
1370 				if (PageDirty(page))
1371 					goto keep;
1372 
1373 				/*
1374 				 * A synchronous write - probably a ramdisk.  Go
1375 				 * ahead and try to reclaim the page.
1376 				 */
1377 				if (!trylock_page(page))
1378 					goto keep;
1379 				if (PageDirty(page) || PageWriteback(page))
1380 					goto keep_locked;
1381 				mapping = page_mapping(page);
1382 			case PAGE_CLEAN:
1383 				; /* try to free the page below */
1384 			}
1385 		}
1386 
1387 		/*
1388 		 * If the page has buffers, try to free the buffer mappings
1389 		 * associated with this page. If we succeed we try to free
1390 		 * the page as well.
1391 		 *
1392 		 * We do this even if the page is PageDirty().
1393 		 * try_to_release_page() does not perform I/O, but it is
1394 		 * possible for a page to have PageDirty set, but it is actually
1395 		 * clean (all its buffers are clean).  This happens if the
1396 		 * buffers were written out directly, with submit_bh(). ext3
1397 		 * will do this, as well as the blockdev mapping.
1398 		 * try_to_release_page() will discover that cleanness and will
1399 		 * drop the buffers and mark the page clean - it can be freed.
1400 		 *
1401 		 * Rarely, pages can have buffers and no ->mapping.  These are
1402 		 * the pages which were not successfully invalidated in
1403 		 * truncate_complete_page().  We try to drop those buffers here
1404 		 * and if that worked, and the page is no longer mapped into
1405 		 * process address space (page_count == 1) it can be freed.
1406 		 * Otherwise, leave the page on the LRU so it is swappable.
1407 		 */
1408 		if (page_has_private(page)) {
1409 			if (!try_to_release_page(page, sc->gfp_mask))
1410 				goto activate_locked;
1411 			if (!mapping && page_count(page) == 1) {
1412 				unlock_page(page);
1413 				if (put_page_testzero(page))
1414 					goto free_it;
1415 				else {
1416 					/*
1417 					 * rare race with speculative reference.
1418 					 * the speculative reference will free
1419 					 * this page shortly, so we may
1420 					 * increment nr_reclaimed here (and
1421 					 * leave it off the LRU).
1422 					 */
1423 					nr_reclaimed++;
1424 					continue;
1425 				}
1426 			}
1427 		}
1428 
1429 		if (PageAnon(page) && !PageSwapBacked(page)) {
1430 			/* follow __remove_mapping for reference */
1431 			if (!page_ref_freeze(page, 1))
1432 				goto keep_locked;
1433 			if (PageDirty(page)) {
1434 				page_ref_unfreeze(page, 1);
1435 				goto keep_locked;
1436 			}
1437 
1438 			count_vm_event(PGLAZYFREED);
1439 			count_memcg_page_event(page, PGLAZYFREED);
1440 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1441 			goto keep_locked;
1442 
1443 		unlock_page(page);
1444 free_it:
1445 		nr_reclaimed++;
1446 
1447 		/*
1448 		 * Is there need to periodically free_page_list? It would
1449 		 * appear not as the counts should be low
1450 		 */
1451 		if (unlikely(PageTransHuge(page))) {
1452 			mem_cgroup_uncharge(page);
1453 			(*get_compound_page_dtor(page))(page);
1454 		} else
1455 			list_add(&page->lru, &free_pages);
1456 		continue;
1457 
1458 activate_locked:
1459 		/* Not a candidate for swapping, so reclaim swap space. */
1460 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1461 						PageMlocked(page)))
1462 			try_to_free_swap(page);
1463 		VM_BUG_ON_PAGE(PageActive(page), page);
1464 		if (!PageMlocked(page)) {
1465 			int type = page_is_file_cache(page);
1466 			SetPageActive(page);
1467 			pgactivate++;
1468 			stat->nr_activate[type] += hpage_nr_pages(page);
1469 			count_memcg_page_event(page, PGACTIVATE);
1470 		}
1471 keep_locked:
1472 		unlock_page(page);
1473 keep:
1474 		list_add(&page->lru, &ret_pages);
1475 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1476 	}
1477 
1478 	mem_cgroup_uncharge_list(&free_pages);
1479 	try_to_unmap_flush();
1480 	free_unref_page_list(&free_pages);
1481 
1482 	list_splice(&ret_pages, page_list);
1483 	count_vm_events(PGACTIVATE, pgactivate);
1484 
1485 	return nr_reclaimed;
1486 }
1487 
1488 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1489 					    struct list_head *page_list)
1490 {
1491 	struct scan_control sc = {
1492 		.gfp_mask = GFP_KERNEL,
1493 		.priority = DEF_PRIORITY,
1494 		.may_unmap = 1,
1495 	};
1496 	struct reclaim_stat dummy_stat;
1497 	unsigned long ret;
1498 	struct page *page, *next;
1499 	LIST_HEAD(clean_pages);
1500 
1501 	list_for_each_entry_safe(page, next, page_list, lru) {
1502 		if (page_is_file_cache(page) && !PageDirty(page) &&
1503 		    !__PageMovable(page) && !PageUnevictable(page)) {
1504 			ClearPageActive(page);
1505 			list_move(&page->lru, &clean_pages);
1506 		}
1507 	}
1508 
1509 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1510 			TTU_IGNORE_ACCESS, &dummy_stat, true);
1511 	list_splice(&clean_pages, page_list);
1512 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1513 	return ret;
1514 }
1515 
1516 /*
1517  * Attempt to remove the specified page from its LRU.  Only take this page
1518  * if it is of the appropriate PageActive status.  Pages which are being
1519  * freed elsewhere are also ignored.
1520  *
1521  * page:	page to consider
1522  * mode:	one of the LRU isolation modes defined above
1523  *
1524  * returns 0 on success, -ve errno on failure.
1525  */
1526 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1527 {
1528 	int ret = -EINVAL;
1529 
1530 	/* Only take pages on the LRU. */
1531 	if (!PageLRU(page))
1532 		return ret;
1533 
1534 	/* Compaction should not handle unevictable pages but CMA can do so */
1535 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1536 		return ret;
1537 
1538 	ret = -EBUSY;
1539 
1540 	/*
1541 	 * To minimise LRU disruption, the caller can indicate that it only
1542 	 * wants to isolate pages it will be able to operate on without
1543 	 * blocking - clean pages for the most part.
1544 	 *
1545 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1546 	 * that it is possible to migrate without blocking
1547 	 */
1548 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1549 		/* All the caller can do on PageWriteback is block */
1550 		if (PageWriteback(page))
1551 			return ret;
1552 
1553 		if (PageDirty(page)) {
1554 			struct address_space *mapping;
1555 			bool migrate_dirty;
1556 
1557 			/*
1558 			 * Only pages without mappings or that have a
1559 			 * ->migratepage callback are possible to migrate
1560 			 * without blocking. However, we can be racing with
1561 			 * truncation so it's necessary to lock the page
1562 			 * to stabilise the mapping as truncation holds
1563 			 * the page lock until after the page is removed
1564 			 * from the page cache.
1565 			 */
1566 			if (!trylock_page(page))
1567 				return ret;
1568 
1569 			mapping = page_mapping(page);
1570 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1571 			unlock_page(page);
1572 			if (!migrate_dirty)
1573 				return ret;
1574 		}
1575 	}
1576 
1577 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1578 		return ret;
1579 
1580 	if (likely(get_page_unless_zero(page))) {
1581 		/*
1582 		 * Be careful not to clear PageLRU until after we're
1583 		 * sure the page is not being freed elsewhere -- the
1584 		 * page release code relies on it.
1585 		 */
1586 		ClearPageLRU(page);
1587 		ret = 0;
1588 	}
1589 
1590 	return ret;
1591 }
1592 
1593 
1594 /*
1595  * Update LRU sizes after isolating pages. The LRU size updates must
1596  * be complete before mem_cgroup_update_lru_size due to a santity check.
1597  */
1598 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1599 			enum lru_list lru, unsigned long *nr_zone_taken)
1600 {
1601 	int zid;
1602 
1603 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1604 		if (!nr_zone_taken[zid])
1605 			continue;
1606 
1607 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1608 #ifdef CONFIG_MEMCG
1609 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1610 #endif
1611 	}
1612 
1613 }
1614 
1615 /**
1616  * pgdat->lru_lock is heavily contended.  Some of the functions that
1617  * shrink the lists perform better by taking out a batch of pages
1618  * and working on them outside the LRU lock.
1619  *
1620  * For pagecache intensive workloads, this function is the hottest
1621  * spot in the kernel (apart from copy_*_user functions).
1622  *
1623  * Appropriate locks must be held before calling this function.
1624  *
1625  * @nr_to_scan:	The number of eligible pages to look through on the list.
1626  * @lruvec:	The LRU vector to pull pages from.
1627  * @dst:	The temp list to put pages on to.
1628  * @nr_scanned:	The number of pages that were scanned.
1629  * @sc:		The scan_control struct for this reclaim session
1630  * @mode:	One of the LRU isolation modes
1631  * @lru:	LRU list id for isolating
1632  *
1633  * returns how many pages were moved onto *@dst.
1634  */
1635 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1636 		struct lruvec *lruvec, struct list_head *dst,
1637 		unsigned long *nr_scanned, struct scan_control *sc,
1638 		enum lru_list lru)
1639 {
1640 	struct list_head *src = &lruvec->lists[lru];
1641 	unsigned long nr_taken = 0;
1642 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1643 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1644 	unsigned long skipped = 0;
1645 	unsigned long scan, total_scan, nr_pages;
1646 	LIST_HEAD(pages_skipped);
1647 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1648 
1649 	scan = 0;
1650 	for (total_scan = 0;
1651 	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1652 	     total_scan++) {
1653 		struct page *page;
1654 
1655 		page = lru_to_page(src);
1656 		prefetchw_prev_lru_page(page, src, flags);
1657 
1658 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1659 
1660 		if (page_zonenum(page) > sc->reclaim_idx) {
1661 			list_move(&page->lru, &pages_skipped);
1662 			nr_skipped[page_zonenum(page)]++;
1663 			continue;
1664 		}
1665 
1666 		/*
1667 		 * Do not count skipped pages because that makes the function
1668 		 * return with no isolated pages if the LRU mostly contains
1669 		 * ineligible pages.  This causes the VM to not reclaim any
1670 		 * pages, triggering a premature OOM.
1671 		 */
1672 		scan++;
1673 		switch (__isolate_lru_page(page, mode)) {
1674 		case 0:
1675 			nr_pages = hpage_nr_pages(page);
1676 			nr_taken += nr_pages;
1677 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1678 			list_move(&page->lru, dst);
1679 			break;
1680 
1681 		case -EBUSY:
1682 			/* else it is being freed elsewhere */
1683 			list_move(&page->lru, src);
1684 			continue;
1685 
1686 		default:
1687 			BUG();
1688 		}
1689 	}
1690 
1691 	/*
1692 	 * Splice any skipped pages to the start of the LRU list. Note that
1693 	 * this disrupts the LRU order when reclaiming for lower zones but
1694 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1695 	 * scanning would soon rescan the same pages to skip and put the
1696 	 * system at risk of premature OOM.
1697 	 */
1698 	if (!list_empty(&pages_skipped)) {
1699 		int zid;
1700 
1701 		list_splice(&pages_skipped, src);
1702 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1703 			if (!nr_skipped[zid])
1704 				continue;
1705 
1706 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1707 			skipped += nr_skipped[zid];
1708 		}
1709 	}
1710 	*nr_scanned = total_scan;
1711 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1712 				    total_scan, skipped, nr_taken, mode, lru);
1713 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1714 	return nr_taken;
1715 }
1716 
1717 /**
1718  * isolate_lru_page - tries to isolate a page from its LRU list
1719  * @page: page to isolate from its LRU list
1720  *
1721  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1722  * vmstat statistic corresponding to whatever LRU list the page was on.
1723  *
1724  * Returns 0 if the page was removed from an LRU list.
1725  * Returns -EBUSY if the page was not on an LRU list.
1726  *
1727  * The returned page will have PageLRU() cleared.  If it was found on
1728  * the active list, it will have PageActive set.  If it was found on
1729  * the unevictable list, it will have the PageUnevictable bit set. That flag
1730  * may need to be cleared by the caller before letting the page go.
1731  *
1732  * The vmstat statistic corresponding to the list on which the page was
1733  * found will be decremented.
1734  *
1735  * Restrictions:
1736  *
1737  * (1) Must be called with an elevated refcount on the page. This is a
1738  *     fundamentnal difference from isolate_lru_pages (which is called
1739  *     without a stable reference).
1740  * (2) the lru_lock must not be held.
1741  * (3) interrupts must be enabled.
1742  */
1743 int isolate_lru_page(struct page *page)
1744 {
1745 	int ret = -EBUSY;
1746 
1747 	VM_BUG_ON_PAGE(!page_count(page), page);
1748 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1749 
1750 	if (PageLRU(page)) {
1751 		pg_data_t *pgdat = page_pgdat(page);
1752 		struct lruvec *lruvec;
1753 
1754 		spin_lock_irq(&pgdat->lru_lock);
1755 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1756 		if (PageLRU(page)) {
1757 			int lru = page_lru(page);
1758 			get_page(page);
1759 			ClearPageLRU(page);
1760 			del_page_from_lru_list(page, lruvec, lru);
1761 			ret = 0;
1762 		}
1763 		spin_unlock_irq(&pgdat->lru_lock);
1764 	}
1765 	return ret;
1766 }
1767 
1768 /*
1769  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1770  * then get resheduled. When there are massive number of tasks doing page
1771  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1772  * the LRU list will go small and be scanned faster than necessary, leading to
1773  * unnecessary swapping, thrashing and OOM.
1774  */
1775 static int too_many_isolated(struct pglist_data *pgdat, int file,
1776 		struct scan_control *sc)
1777 {
1778 	unsigned long inactive, isolated;
1779 
1780 	if (current_is_kswapd())
1781 		return 0;
1782 
1783 	if (!sane_reclaim(sc))
1784 		return 0;
1785 
1786 	if (file) {
1787 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1788 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1789 	} else {
1790 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1791 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1792 	}
1793 
1794 	/*
1795 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1796 	 * won't get blocked by normal direct-reclaimers, forming a circular
1797 	 * deadlock.
1798 	 */
1799 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1800 		inactive >>= 3;
1801 
1802 	return isolated > inactive;
1803 }
1804 
1805 /*
1806  * This moves pages from @list to corresponding LRU list.
1807  *
1808  * We move them the other way if the page is referenced by one or more
1809  * processes, from rmap.
1810  *
1811  * If the pages are mostly unmapped, the processing is fast and it is
1812  * appropriate to hold zone_lru_lock across the whole operation.  But if
1813  * the pages are mapped, the processing is slow (page_referenced()) so we
1814  * should drop zone_lru_lock around each page.  It's impossible to balance
1815  * this, so instead we remove the pages from the LRU while processing them.
1816  * It is safe to rely on PG_active against the non-LRU pages in here because
1817  * nobody will play with that bit on a non-LRU page.
1818  *
1819  * The downside is that we have to touch page->_refcount against each page.
1820  * But we had to alter page->flags anyway.
1821  *
1822  * Returns the number of pages moved to the given lruvec.
1823  */
1824 
1825 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1826 						     struct list_head *list)
1827 {
1828 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1829 	int nr_pages, nr_moved = 0;
1830 	LIST_HEAD(pages_to_free);
1831 	struct page *page;
1832 	enum lru_list lru;
1833 
1834 	while (!list_empty(list)) {
1835 		page = lru_to_page(list);
1836 		VM_BUG_ON_PAGE(PageLRU(page), page);
1837 		if (unlikely(!page_evictable(page))) {
1838 			list_del(&page->lru);
1839 			spin_unlock_irq(&pgdat->lru_lock);
1840 			putback_lru_page(page);
1841 			spin_lock_irq(&pgdat->lru_lock);
1842 			continue;
1843 		}
1844 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1845 
1846 		SetPageLRU(page);
1847 		lru = page_lru(page);
1848 
1849 		nr_pages = hpage_nr_pages(page);
1850 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1851 		list_move(&page->lru, &lruvec->lists[lru]);
1852 
1853 		if (put_page_testzero(page)) {
1854 			__ClearPageLRU(page);
1855 			__ClearPageActive(page);
1856 			del_page_from_lru_list(page, lruvec, lru);
1857 
1858 			if (unlikely(PageCompound(page))) {
1859 				spin_unlock_irq(&pgdat->lru_lock);
1860 				mem_cgroup_uncharge(page);
1861 				(*get_compound_page_dtor(page))(page);
1862 				spin_lock_irq(&pgdat->lru_lock);
1863 			} else
1864 				list_add(&page->lru, &pages_to_free);
1865 		} else {
1866 			nr_moved += nr_pages;
1867 		}
1868 	}
1869 
1870 	/*
1871 	 * To save our caller's stack, now use input list for pages to free.
1872 	 */
1873 	list_splice(&pages_to_free, list);
1874 
1875 	return nr_moved;
1876 }
1877 
1878 /*
1879  * If a kernel thread (such as nfsd for loop-back mounts) services
1880  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1881  * In that case we should only throttle if the backing device it is
1882  * writing to is congested.  In other cases it is safe to throttle.
1883  */
1884 static int current_may_throttle(void)
1885 {
1886 	return !(current->flags & PF_LESS_THROTTLE) ||
1887 		current->backing_dev_info == NULL ||
1888 		bdi_write_congested(current->backing_dev_info);
1889 }
1890 
1891 /*
1892  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1893  * of reclaimed pages
1894  */
1895 static noinline_for_stack unsigned long
1896 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1897 		     struct scan_control *sc, enum lru_list lru)
1898 {
1899 	LIST_HEAD(page_list);
1900 	unsigned long nr_scanned;
1901 	unsigned long nr_reclaimed = 0;
1902 	unsigned long nr_taken;
1903 	struct reclaim_stat stat;
1904 	int file = is_file_lru(lru);
1905 	enum vm_event_item item;
1906 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1907 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1908 	bool stalled = false;
1909 
1910 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1911 		if (stalled)
1912 			return 0;
1913 
1914 		/* wait a bit for the reclaimer. */
1915 		msleep(100);
1916 		stalled = true;
1917 
1918 		/* We are about to die and free our memory. Return now. */
1919 		if (fatal_signal_pending(current))
1920 			return SWAP_CLUSTER_MAX;
1921 	}
1922 
1923 	lru_add_drain();
1924 
1925 	spin_lock_irq(&pgdat->lru_lock);
1926 
1927 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1928 				     &nr_scanned, sc, lru);
1929 
1930 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1931 	reclaim_stat->recent_scanned[file] += nr_taken;
1932 
1933 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1934 	if (global_reclaim(sc))
1935 		__count_vm_events(item, nr_scanned);
1936 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1937 	spin_unlock_irq(&pgdat->lru_lock);
1938 
1939 	if (nr_taken == 0)
1940 		return 0;
1941 
1942 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1943 				&stat, false);
1944 
1945 	spin_lock_irq(&pgdat->lru_lock);
1946 
1947 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1948 	if (global_reclaim(sc))
1949 		__count_vm_events(item, nr_reclaimed);
1950 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1951 	reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
1952 	reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
1953 
1954 	move_pages_to_lru(lruvec, &page_list);
1955 
1956 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1957 
1958 	spin_unlock_irq(&pgdat->lru_lock);
1959 
1960 	mem_cgroup_uncharge_list(&page_list);
1961 	free_unref_page_list(&page_list);
1962 
1963 	/*
1964 	 * If dirty pages are scanned that are not queued for IO, it
1965 	 * implies that flushers are not doing their job. This can
1966 	 * happen when memory pressure pushes dirty pages to the end of
1967 	 * the LRU before the dirty limits are breached and the dirty
1968 	 * data has expired. It can also happen when the proportion of
1969 	 * dirty pages grows not through writes but through memory
1970 	 * pressure reclaiming all the clean cache. And in some cases,
1971 	 * the flushers simply cannot keep up with the allocation
1972 	 * rate. Nudge the flusher threads in case they are asleep.
1973 	 */
1974 	if (stat.nr_unqueued_dirty == nr_taken)
1975 		wakeup_flusher_threads(WB_REASON_VMSCAN);
1976 
1977 	sc->nr.dirty += stat.nr_dirty;
1978 	sc->nr.congested += stat.nr_congested;
1979 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1980 	sc->nr.writeback += stat.nr_writeback;
1981 	sc->nr.immediate += stat.nr_immediate;
1982 	sc->nr.taken += nr_taken;
1983 	if (file)
1984 		sc->nr.file_taken += nr_taken;
1985 
1986 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1987 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1988 	return nr_reclaimed;
1989 }
1990 
1991 static void shrink_active_list(unsigned long nr_to_scan,
1992 			       struct lruvec *lruvec,
1993 			       struct scan_control *sc,
1994 			       enum lru_list lru)
1995 {
1996 	unsigned long nr_taken;
1997 	unsigned long nr_scanned;
1998 	unsigned long vm_flags;
1999 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2000 	LIST_HEAD(l_active);
2001 	LIST_HEAD(l_inactive);
2002 	struct page *page;
2003 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2004 	unsigned nr_deactivate, nr_activate;
2005 	unsigned nr_rotated = 0;
2006 	int file = is_file_lru(lru);
2007 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2008 
2009 	lru_add_drain();
2010 
2011 	spin_lock_irq(&pgdat->lru_lock);
2012 
2013 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2014 				     &nr_scanned, sc, lru);
2015 
2016 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2017 	reclaim_stat->recent_scanned[file] += nr_taken;
2018 
2019 	__count_vm_events(PGREFILL, nr_scanned);
2020 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2021 
2022 	spin_unlock_irq(&pgdat->lru_lock);
2023 
2024 	while (!list_empty(&l_hold)) {
2025 		cond_resched();
2026 		page = lru_to_page(&l_hold);
2027 		list_del(&page->lru);
2028 
2029 		if (unlikely(!page_evictable(page))) {
2030 			putback_lru_page(page);
2031 			continue;
2032 		}
2033 
2034 		if (unlikely(buffer_heads_over_limit)) {
2035 			if (page_has_private(page) && trylock_page(page)) {
2036 				if (page_has_private(page))
2037 					try_to_release_page(page, 0);
2038 				unlock_page(page);
2039 			}
2040 		}
2041 
2042 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2043 				    &vm_flags)) {
2044 			nr_rotated += hpage_nr_pages(page);
2045 			/*
2046 			 * Identify referenced, file-backed active pages and
2047 			 * give them one more trip around the active list. So
2048 			 * that executable code get better chances to stay in
2049 			 * memory under moderate memory pressure.  Anon pages
2050 			 * are not likely to be evicted by use-once streaming
2051 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2052 			 * so we ignore them here.
2053 			 */
2054 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2055 				list_add(&page->lru, &l_active);
2056 				continue;
2057 			}
2058 		}
2059 
2060 		ClearPageActive(page);	/* we are de-activating */
2061 		SetPageWorkingset(page);
2062 		list_add(&page->lru, &l_inactive);
2063 	}
2064 
2065 	/*
2066 	 * Move pages back to the lru list.
2067 	 */
2068 	spin_lock_irq(&pgdat->lru_lock);
2069 	/*
2070 	 * Count referenced pages from currently used mappings as rotated,
2071 	 * even though only some of them are actually re-activated.  This
2072 	 * helps balance scan pressure between file and anonymous pages in
2073 	 * get_scan_count.
2074 	 */
2075 	reclaim_stat->recent_rotated[file] += nr_rotated;
2076 
2077 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2078 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2079 	/* Keep all free pages in l_active list */
2080 	list_splice(&l_inactive, &l_active);
2081 
2082 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2083 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2084 
2085 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2086 	spin_unlock_irq(&pgdat->lru_lock);
2087 
2088 	mem_cgroup_uncharge_list(&l_active);
2089 	free_unref_page_list(&l_active);
2090 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2091 			nr_deactivate, nr_rotated, sc->priority, file);
2092 }
2093 
2094 /*
2095  * The inactive anon list should be small enough that the VM never has
2096  * to do too much work.
2097  *
2098  * The inactive file list should be small enough to leave most memory
2099  * to the established workingset on the scan-resistant active list,
2100  * but large enough to avoid thrashing the aggregate readahead window.
2101  *
2102  * Both inactive lists should also be large enough that each inactive
2103  * page has a chance to be referenced again before it is reclaimed.
2104  *
2105  * If that fails and refaulting is observed, the inactive list grows.
2106  *
2107  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2108  * on this LRU, maintained by the pageout code. An inactive_ratio
2109  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2110  *
2111  * total     target    max
2112  * memory    ratio     inactive
2113  * -------------------------------------
2114  *   10MB       1         5MB
2115  *  100MB       1        50MB
2116  *    1GB       3       250MB
2117  *   10GB      10       0.9GB
2118  *  100GB      31         3GB
2119  *    1TB     101        10GB
2120  *   10TB     320        32GB
2121  */
2122 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2123 				 struct scan_control *sc, bool trace)
2124 {
2125 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2126 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2127 	enum lru_list inactive_lru = file * LRU_FILE;
2128 	unsigned long inactive, active;
2129 	unsigned long inactive_ratio;
2130 	unsigned long refaults;
2131 	unsigned long gb;
2132 
2133 	/*
2134 	 * If we don't have swap space, anonymous page deactivation
2135 	 * is pointless.
2136 	 */
2137 	if (!file && !total_swap_pages)
2138 		return false;
2139 
2140 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2141 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2142 
2143 	/*
2144 	 * When refaults are being observed, it means a new workingset
2145 	 * is being established. Disable active list protection to get
2146 	 * rid of the stale workingset quickly.
2147 	 */
2148 	refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2149 	if (file && lruvec->refaults != refaults) {
2150 		inactive_ratio = 0;
2151 	} else {
2152 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2153 		if (gb)
2154 			inactive_ratio = int_sqrt(10 * gb);
2155 		else
2156 			inactive_ratio = 1;
2157 	}
2158 
2159 	if (trace)
2160 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2161 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2162 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2163 			inactive_ratio, file);
2164 
2165 	return inactive * inactive_ratio < active;
2166 }
2167 
2168 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2169 				 struct lruvec *lruvec, struct scan_control *sc)
2170 {
2171 	if (is_active_lru(lru)) {
2172 		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2173 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2174 		return 0;
2175 	}
2176 
2177 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2178 }
2179 
2180 enum scan_balance {
2181 	SCAN_EQUAL,
2182 	SCAN_FRACT,
2183 	SCAN_ANON,
2184 	SCAN_FILE,
2185 };
2186 
2187 /*
2188  * Determine how aggressively the anon and file LRU lists should be
2189  * scanned.  The relative value of each set of LRU lists is determined
2190  * by looking at the fraction of the pages scanned we did rotate back
2191  * onto the active list instead of evict.
2192  *
2193  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2194  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2195  */
2196 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2197 			   struct scan_control *sc, unsigned long *nr,
2198 			   unsigned long *lru_pages)
2199 {
2200 	int swappiness = mem_cgroup_swappiness(memcg);
2201 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2202 	u64 fraction[2];
2203 	u64 denominator = 0;	/* gcc */
2204 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2205 	unsigned long anon_prio, file_prio;
2206 	enum scan_balance scan_balance;
2207 	unsigned long anon, file;
2208 	unsigned long ap, fp;
2209 	enum lru_list lru;
2210 
2211 	/* If we have no swap space, do not bother scanning anon pages. */
2212 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2213 		scan_balance = SCAN_FILE;
2214 		goto out;
2215 	}
2216 
2217 	/*
2218 	 * Global reclaim will swap to prevent OOM even with no
2219 	 * swappiness, but memcg users want to use this knob to
2220 	 * disable swapping for individual groups completely when
2221 	 * using the memory controller's swap limit feature would be
2222 	 * too expensive.
2223 	 */
2224 	if (!global_reclaim(sc) && !swappiness) {
2225 		scan_balance = SCAN_FILE;
2226 		goto out;
2227 	}
2228 
2229 	/*
2230 	 * Do not apply any pressure balancing cleverness when the
2231 	 * system is close to OOM, scan both anon and file equally
2232 	 * (unless the swappiness setting disagrees with swapping).
2233 	 */
2234 	if (!sc->priority && swappiness) {
2235 		scan_balance = SCAN_EQUAL;
2236 		goto out;
2237 	}
2238 
2239 	/*
2240 	 * Prevent the reclaimer from falling into the cache trap: as
2241 	 * cache pages start out inactive, every cache fault will tip
2242 	 * the scan balance towards the file LRU.  And as the file LRU
2243 	 * shrinks, so does the window for rotation from references.
2244 	 * This means we have a runaway feedback loop where a tiny
2245 	 * thrashing file LRU becomes infinitely more attractive than
2246 	 * anon pages.  Try to detect this based on file LRU size.
2247 	 */
2248 	if (global_reclaim(sc)) {
2249 		unsigned long pgdatfile;
2250 		unsigned long pgdatfree;
2251 		int z;
2252 		unsigned long total_high_wmark = 0;
2253 
2254 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2255 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2256 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2257 
2258 		for (z = 0; z < MAX_NR_ZONES; z++) {
2259 			struct zone *zone = &pgdat->node_zones[z];
2260 			if (!managed_zone(zone))
2261 				continue;
2262 
2263 			total_high_wmark += high_wmark_pages(zone);
2264 		}
2265 
2266 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2267 			/*
2268 			 * Force SCAN_ANON if there are enough inactive
2269 			 * anonymous pages on the LRU in eligible zones.
2270 			 * Otherwise, the small LRU gets thrashed.
2271 			 */
2272 			if (!inactive_list_is_low(lruvec, false, sc, false) &&
2273 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2274 					>> sc->priority) {
2275 				scan_balance = SCAN_ANON;
2276 				goto out;
2277 			}
2278 		}
2279 	}
2280 
2281 	/*
2282 	 * If there is enough inactive page cache, i.e. if the size of the
2283 	 * inactive list is greater than that of the active list *and* the
2284 	 * inactive list actually has some pages to scan on this priority, we
2285 	 * do not reclaim anything from the anonymous working set right now.
2286 	 * Without the second condition we could end up never scanning an
2287 	 * lruvec even if it has plenty of old anonymous pages unless the
2288 	 * system is under heavy pressure.
2289 	 */
2290 	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2291 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2292 		scan_balance = SCAN_FILE;
2293 		goto out;
2294 	}
2295 
2296 	scan_balance = SCAN_FRACT;
2297 
2298 	/*
2299 	 * With swappiness at 100, anonymous and file have the same priority.
2300 	 * This scanning priority is essentially the inverse of IO cost.
2301 	 */
2302 	anon_prio = swappiness;
2303 	file_prio = 200 - anon_prio;
2304 
2305 	/*
2306 	 * OK, so we have swap space and a fair amount of page cache
2307 	 * pages.  We use the recently rotated / recently scanned
2308 	 * ratios to determine how valuable each cache is.
2309 	 *
2310 	 * Because workloads change over time (and to avoid overflow)
2311 	 * we keep these statistics as a floating average, which ends
2312 	 * up weighing recent references more than old ones.
2313 	 *
2314 	 * anon in [0], file in [1]
2315 	 */
2316 
2317 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2318 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2319 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2320 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2321 
2322 	spin_lock_irq(&pgdat->lru_lock);
2323 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2324 		reclaim_stat->recent_scanned[0] /= 2;
2325 		reclaim_stat->recent_rotated[0] /= 2;
2326 	}
2327 
2328 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2329 		reclaim_stat->recent_scanned[1] /= 2;
2330 		reclaim_stat->recent_rotated[1] /= 2;
2331 	}
2332 
2333 	/*
2334 	 * The amount of pressure on anon vs file pages is inversely
2335 	 * proportional to the fraction of recently scanned pages on
2336 	 * each list that were recently referenced and in active use.
2337 	 */
2338 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2339 	ap /= reclaim_stat->recent_rotated[0] + 1;
2340 
2341 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2342 	fp /= reclaim_stat->recent_rotated[1] + 1;
2343 	spin_unlock_irq(&pgdat->lru_lock);
2344 
2345 	fraction[0] = ap;
2346 	fraction[1] = fp;
2347 	denominator = ap + fp + 1;
2348 out:
2349 	*lru_pages = 0;
2350 	for_each_evictable_lru(lru) {
2351 		int file = is_file_lru(lru);
2352 		unsigned long size;
2353 		unsigned long scan;
2354 
2355 		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2356 		scan = size >> sc->priority;
2357 		/*
2358 		 * If the cgroup's already been deleted, make sure to
2359 		 * scrape out the remaining cache.
2360 		 */
2361 		if (!scan && !mem_cgroup_online(memcg))
2362 			scan = min(size, SWAP_CLUSTER_MAX);
2363 
2364 		switch (scan_balance) {
2365 		case SCAN_EQUAL:
2366 			/* Scan lists relative to size */
2367 			break;
2368 		case SCAN_FRACT:
2369 			/*
2370 			 * Scan types proportional to swappiness and
2371 			 * their relative recent reclaim efficiency.
2372 			 * Make sure we don't miss the last page
2373 			 * because of a round-off error.
2374 			 */
2375 			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2376 						  denominator);
2377 			break;
2378 		case SCAN_FILE:
2379 		case SCAN_ANON:
2380 			/* Scan one type exclusively */
2381 			if ((scan_balance == SCAN_FILE) != file) {
2382 				size = 0;
2383 				scan = 0;
2384 			}
2385 			break;
2386 		default:
2387 			/* Look ma, no brain */
2388 			BUG();
2389 		}
2390 
2391 		*lru_pages += size;
2392 		nr[lru] = scan;
2393 	}
2394 }
2395 
2396 /*
2397  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2398  */
2399 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2400 			      struct scan_control *sc, unsigned long *lru_pages)
2401 {
2402 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2403 	unsigned long nr[NR_LRU_LISTS];
2404 	unsigned long targets[NR_LRU_LISTS];
2405 	unsigned long nr_to_scan;
2406 	enum lru_list lru;
2407 	unsigned long nr_reclaimed = 0;
2408 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2409 	struct blk_plug plug;
2410 	bool scan_adjusted;
2411 
2412 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2413 
2414 	/* Record the original scan target for proportional adjustments later */
2415 	memcpy(targets, nr, sizeof(nr));
2416 
2417 	/*
2418 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2419 	 * event that can occur when there is little memory pressure e.g.
2420 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2421 	 * when the requested number of pages are reclaimed when scanning at
2422 	 * DEF_PRIORITY on the assumption that the fact we are direct
2423 	 * reclaiming implies that kswapd is not keeping up and it is best to
2424 	 * do a batch of work at once. For memcg reclaim one check is made to
2425 	 * abort proportional reclaim if either the file or anon lru has already
2426 	 * dropped to zero at the first pass.
2427 	 */
2428 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2429 			 sc->priority == DEF_PRIORITY);
2430 
2431 	blk_start_plug(&plug);
2432 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2433 					nr[LRU_INACTIVE_FILE]) {
2434 		unsigned long nr_anon, nr_file, percentage;
2435 		unsigned long nr_scanned;
2436 
2437 		for_each_evictable_lru(lru) {
2438 			if (nr[lru]) {
2439 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2440 				nr[lru] -= nr_to_scan;
2441 
2442 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2443 							    lruvec, sc);
2444 			}
2445 		}
2446 
2447 		cond_resched();
2448 
2449 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2450 			continue;
2451 
2452 		/*
2453 		 * For kswapd and memcg, reclaim at least the number of pages
2454 		 * requested. Ensure that the anon and file LRUs are scanned
2455 		 * proportionally what was requested by get_scan_count(). We
2456 		 * stop reclaiming one LRU and reduce the amount scanning
2457 		 * proportional to the original scan target.
2458 		 */
2459 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2460 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2461 
2462 		/*
2463 		 * It's just vindictive to attack the larger once the smaller
2464 		 * has gone to zero.  And given the way we stop scanning the
2465 		 * smaller below, this makes sure that we only make one nudge
2466 		 * towards proportionality once we've got nr_to_reclaim.
2467 		 */
2468 		if (!nr_file || !nr_anon)
2469 			break;
2470 
2471 		if (nr_file > nr_anon) {
2472 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2473 						targets[LRU_ACTIVE_ANON] + 1;
2474 			lru = LRU_BASE;
2475 			percentage = nr_anon * 100 / scan_target;
2476 		} else {
2477 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2478 						targets[LRU_ACTIVE_FILE] + 1;
2479 			lru = LRU_FILE;
2480 			percentage = nr_file * 100 / scan_target;
2481 		}
2482 
2483 		/* Stop scanning the smaller of the LRU */
2484 		nr[lru] = 0;
2485 		nr[lru + LRU_ACTIVE] = 0;
2486 
2487 		/*
2488 		 * Recalculate the other LRU scan count based on its original
2489 		 * scan target and the percentage scanning already complete
2490 		 */
2491 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2492 		nr_scanned = targets[lru] - nr[lru];
2493 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2494 		nr[lru] -= min(nr[lru], nr_scanned);
2495 
2496 		lru += LRU_ACTIVE;
2497 		nr_scanned = targets[lru] - nr[lru];
2498 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2499 		nr[lru] -= min(nr[lru], nr_scanned);
2500 
2501 		scan_adjusted = true;
2502 	}
2503 	blk_finish_plug(&plug);
2504 	sc->nr_reclaimed += nr_reclaimed;
2505 
2506 	/*
2507 	 * Even if we did not try to evict anon pages at all, we want to
2508 	 * rebalance the anon lru active/inactive ratio.
2509 	 */
2510 	if (inactive_list_is_low(lruvec, false, sc, true))
2511 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2512 				   sc, LRU_ACTIVE_ANON);
2513 }
2514 
2515 /* Use reclaim/compaction for costly allocs or under memory pressure */
2516 static bool in_reclaim_compaction(struct scan_control *sc)
2517 {
2518 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2519 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2520 			 sc->priority < DEF_PRIORITY - 2))
2521 		return true;
2522 
2523 	return false;
2524 }
2525 
2526 /*
2527  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2528  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2529  * true if more pages should be reclaimed such that when the page allocator
2530  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2531  * It will give up earlier than that if there is difficulty reclaiming pages.
2532  */
2533 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2534 					unsigned long nr_reclaimed,
2535 					unsigned long nr_scanned,
2536 					struct scan_control *sc)
2537 {
2538 	unsigned long pages_for_compaction;
2539 	unsigned long inactive_lru_pages;
2540 	int z;
2541 
2542 	/* If not in reclaim/compaction mode, stop */
2543 	if (!in_reclaim_compaction(sc))
2544 		return false;
2545 
2546 	/* Consider stopping depending on scan and reclaim activity */
2547 	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2548 		/*
2549 		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2550 		 * full LRU list has been scanned and we are still failing
2551 		 * to reclaim pages. This full LRU scan is potentially
2552 		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2553 		 */
2554 		if (!nr_reclaimed && !nr_scanned)
2555 			return false;
2556 	} else {
2557 		/*
2558 		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2559 		 * fail without consequence, stop if we failed to reclaim
2560 		 * any pages from the last SWAP_CLUSTER_MAX number of
2561 		 * pages that were scanned. This will return to the
2562 		 * caller faster at the risk reclaim/compaction and
2563 		 * the resulting allocation attempt fails
2564 		 */
2565 		if (!nr_reclaimed)
2566 			return false;
2567 	}
2568 
2569 	/*
2570 	 * If we have not reclaimed enough pages for compaction and the
2571 	 * inactive lists are large enough, continue reclaiming
2572 	 */
2573 	pages_for_compaction = compact_gap(sc->order);
2574 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2575 	if (get_nr_swap_pages() > 0)
2576 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2577 	if (sc->nr_reclaimed < pages_for_compaction &&
2578 			inactive_lru_pages > pages_for_compaction)
2579 		return true;
2580 
2581 	/* If compaction would go ahead or the allocation would succeed, stop */
2582 	for (z = 0; z <= sc->reclaim_idx; z++) {
2583 		struct zone *zone = &pgdat->node_zones[z];
2584 		if (!managed_zone(zone))
2585 			continue;
2586 
2587 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2588 		case COMPACT_SUCCESS:
2589 		case COMPACT_CONTINUE:
2590 			return false;
2591 		default:
2592 			/* check next zone */
2593 			;
2594 		}
2595 	}
2596 	return true;
2597 }
2598 
2599 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2600 {
2601 	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2602 		(memcg && memcg_congested(pgdat, memcg));
2603 }
2604 
2605 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2606 {
2607 	struct reclaim_state *reclaim_state = current->reclaim_state;
2608 	unsigned long nr_reclaimed, nr_scanned;
2609 	bool reclaimable = false;
2610 
2611 	do {
2612 		struct mem_cgroup *root = sc->target_mem_cgroup;
2613 		struct mem_cgroup_reclaim_cookie reclaim = {
2614 			.pgdat = pgdat,
2615 			.priority = sc->priority,
2616 		};
2617 		unsigned long node_lru_pages = 0;
2618 		struct mem_cgroup *memcg;
2619 
2620 		memset(&sc->nr, 0, sizeof(sc->nr));
2621 
2622 		nr_reclaimed = sc->nr_reclaimed;
2623 		nr_scanned = sc->nr_scanned;
2624 
2625 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2626 		do {
2627 			unsigned long lru_pages;
2628 			unsigned long reclaimed;
2629 			unsigned long scanned;
2630 
2631 			switch (mem_cgroup_protected(root, memcg)) {
2632 			case MEMCG_PROT_MIN:
2633 				/*
2634 				 * Hard protection.
2635 				 * If there is no reclaimable memory, OOM.
2636 				 */
2637 				continue;
2638 			case MEMCG_PROT_LOW:
2639 				/*
2640 				 * Soft protection.
2641 				 * Respect the protection only as long as
2642 				 * there is an unprotected supply
2643 				 * of reclaimable memory from other cgroups.
2644 				 */
2645 				if (!sc->memcg_low_reclaim) {
2646 					sc->memcg_low_skipped = 1;
2647 					continue;
2648 				}
2649 				memcg_memory_event(memcg, MEMCG_LOW);
2650 				break;
2651 			case MEMCG_PROT_NONE:
2652 				break;
2653 			}
2654 
2655 			reclaimed = sc->nr_reclaimed;
2656 			scanned = sc->nr_scanned;
2657 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2658 			node_lru_pages += lru_pages;
2659 
2660 			if (sc->may_shrinkslab) {
2661 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2662 				    memcg, sc->priority);
2663 			}
2664 
2665 			/* Record the group's reclaim efficiency */
2666 			vmpressure(sc->gfp_mask, memcg, false,
2667 				   sc->nr_scanned - scanned,
2668 				   sc->nr_reclaimed - reclaimed);
2669 
2670 			/*
2671 			 * Kswapd have to scan all memory cgroups to fulfill
2672 			 * the overall scan target for the node.
2673 			 *
2674 			 * Limit reclaim, on the other hand, only cares about
2675 			 * nr_to_reclaim pages to be reclaimed and it will
2676 			 * retry with decreasing priority if one round over the
2677 			 * whole hierarchy is not sufficient.
2678 			 */
2679 			if (!current_is_kswapd() &&
2680 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2681 				mem_cgroup_iter_break(root, memcg);
2682 				break;
2683 			}
2684 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2685 
2686 		if (reclaim_state) {
2687 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2688 			reclaim_state->reclaimed_slab = 0;
2689 		}
2690 
2691 		/* Record the subtree's reclaim efficiency */
2692 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2693 			   sc->nr_scanned - nr_scanned,
2694 			   sc->nr_reclaimed - nr_reclaimed);
2695 
2696 		if (sc->nr_reclaimed - nr_reclaimed)
2697 			reclaimable = true;
2698 
2699 		if (current_is_kswapd()) {
2700 			/*
2701 			 * If reclaim is isolating dirty pages under writeback,
2702 			 * it implies that the long-lived page allocation rate
2703 			 * is exceeding the page laundering rate. Either the
2704 			 * global limits are not being effective at throttling
2705 			 * processes due to the page distribution throughout
2706 			 * zones or there is heavy usage of a slow backing
2707 			 * device. The only option is to throttle from reclaim
2708 			 * context which is not ideal as there is no guarantee
2709 			 * the dirtying process is throttled in the same way
2710 			 * balance_dirty_pages() manages.
2711 			 *
2712 			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2713 			 * count the number of pages under pages flagged for
2714 			 * immediate reclaim and stall if any are encountered
2715 			 * in the nr_immediate check below.
2716 			 */
2717 			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2718 				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2719 
2720 			/*
2721 			 * Tag a node as congested if all the dirty pages
2722 			 * scanned were backed by a congested BDI and
2723 			 * wait_iff_congested will stall.
2724 			 */
2725 			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2726 				set_bit(PGDAT_CONGESTED, &pgdat->flags);
2727 
2728 			/* Allow kswapd to start writing pages during reclaim.*/
2729 			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2730 				set_bit(PGDAT_DIRTY, &pgdat->flags);
2731 
2732 			/*
2733 			 * If kswapd scans pages marked marked for immediate
2734 			 * reclaim and under writeback (nr_immediate), it
2735 			 * implies that pages are cycling through the LRU
2736 			 * faster than they are written so also forcibly stall.
2737 			 */
2738 			if (sc->nr.immediate)
2739 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2740 		}
2741 
2742 		/*
2743 		 * Legacy memcg will stall in page writeback so avoid forcibly
2744 		 * stalling in wait_iff_congested().
2745 		 */
2746 		if (!global_reclaim(sc) && sane_reclaim(sc) &&
2747 		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2748 			set_memcg_congestion(pgdat, root, true);
2749 
2750 		/*
2751 		 * Stall direct reclaim for IO completions if underlying BDIs
2752 		 * and node is congested. Allow kswapd to continue until it
2753 		 * starts encountering unqueued dirty pages or cycling through
2754 		 * the LRU too quickly.
2755 		 */
2756 		if (!sc->hibernation_mode && !current_is_kswapd() &&
2757 		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2758 			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2759 
2760 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2761 					 sc->nr_scanned - nr_scanned, sc));
2762 
2763 	/*
2764 	 * Kswapd gives up on balancing particular nodes after too
2765 	 * many failures to reclaim anything from them and goes to
2766 	 * sleep. On reclaim progress, reset the failure counter. A
2767 	 * successful direct reclaim run will revive a dormant kswapd.
2768 	 */
2769 	if (reclaimable)
2770 		pgdat->kswapd_failures = 0;
2771 
2772 	return reclaimable;
2773 }
2774 
2775 /*
2776  * Returns true if compaction should go ahead for a costly-order request, or
2777  * the allocation would already succeed without compaction. Return false if we
2778  * should reclaim first.
2779  */
2780 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2781 {
2782 	unsigned long watermark;
2783 	enum compact_result suitable;
2784 
2785 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2786 	if (suitable == COMPACT_SUCCESS)
2787 		/* Allocation should succeed already. Don't reclaim. */
2788 		return true;
2789 	if (suitable == COMPACT_SKIPPED)
2790 		/* Compaction cannot yet proceed. Do reclaim. */
2791 		return false;
2792 
2793 	/*
2794 	 * Compaction is already possible, but it takes time to run and there
2795 	 * are potentially other callers using the pages just freed. So proceed
2796 	 * with reclaim to make a buffer of free pages available to give
2797 	 * compaction a reasonable chance of completing and allocating the page.
2798 	 * Note that we won't actually reclaim the whole buffer in one attempt
2799 	 * as the target watermark in should_continue_reclaim() is lower. But if
2800 	 * we are already above the high+gap watermark, don't reclaim at all.
2801 	 */
2802 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2803 
2804 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2805 }
2806 
2807 /*
2808  * This is the direct reclaim path, for page-allocating processes.  We only
2809  * try to reclaim pages from zones which will satisfy the caller's allocation
2810  * request.
2811  *
2812  * If a zone is deemed to be full of pinned pages then just give it a light
2813  * scan then give up on it.
2814  */
2815 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2816 {
2817 	struct zoneref *z;
2818 	struct zone *zone;
2819 	unsigned long nr_soft_reclaimed;
2820 	unsigned long nr_soft_scanned;
2821 	gfp_t orig_mask;
2822 	pg_data_t *last_pgdat = NULL;
2823 
2824 	/*
2825 	 * If the number of buffer_heads in the machine exceeds the maximum
2826 	 * allowed level, force direct reclaim to scan the highmem zone as
2827 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2828 	 */
2829 	orig_mask = sc->gfp_mask;
2830 	if (buffer_heads_over_limit) {
2831 		sc->gfp_mask |= __GFP_HIGHMEM;
2832 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2833 	}
2834 
2835 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2836 					sc->reclaim_idx, sc->nodemask) {
2837 		/*
2838 		 * Take care memory controller reclaiming has small influence
2839 		 * to global LRU.
2840 		 */
2841 		if (global_reclaim(sc)) {
2842 			if (!cpuset_zone_allowed(zone,
2843 						 GFP_KERNEL | __GFP_HARDWALL))
2844 				continue;
2845 
2846 			/*
2847 			 * If we already have plenty of memory free for
2848 			 * compaction in this zone, don't free any more.
2849 			 * Even though compaction is invoked for any
2850 			 * non-zero order, only frequent costly order
2851 			 * reclamation is disruptive enough to become a
2852 			 * noticeable problem, like transparent huge
2853 			 * page allocations.
2854 			 */
2855 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2856 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2857 			    compaction_ready(zone, sc)) {
2858 				sc->compaction_ready = true;
2859 				continue;
2860 			}
2861 
2862 			/*
2863 			 * Shrink each node in the zonelist once. If the
2864 			 * zonelist is ordered by zone (not the default) then a
2865 			 * node may be shrunk multiple times but in that case
2866 			 * the user prefers lower zones being preserved.
2867 			 */
2868 			if (zone->zone_pgdat == last_pgdat)
2869 				continue;
2870 
2871 			/*
2872 			 * This steals pages from memory cgroups over softlimit
2873 			 * and returns the number of reclaimed pages and
2874 			 * scanned pages. This works for global memory pressure
2875 			 * and balancing, not for a memcg's limit.
2876 			 */
2877 			nr_soft_scanned = 0;
2878 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2879 						sc->order, sc->gfp_mask,
2880 						&nr_soft_scanned);
2881 			sc->nr_reclaimed += nr_soft_reclaimed;
2882 			sc->nr_scanned += nr_soft_scanned;
2883 			/* need some check for avoid more shrink_zone() */
2884 		}
2885 
2886 		/* See comment about same check for global reclaim above */
2887 		if (zone->zone_pgdat == last_pgdat)
2888 			continue;
2889 		last_pgdat = zone->zone_pgdat;
2890 		shrink_node(zone->zone_pgdat, sc);
2891 	}
2892 
2893 	/*
2894 	 * Restore to original mask to avoid the impact on the caller if we
2895 	 * promoted it to __GFP_HIGHMEM.
2896 	 */
2897 	sc->gfp_mask = orig_mask;
2898 }
2899 
2900 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2901 {
2902 	struct mem_cgroup *memcg;
2903 
2904 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2905 	do {
2906 		unsigned long refaults;
2907 		struct lruvec *lruvec;
2908 
2909 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2910 		refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2911 		lruvec->refaults = refaults;
2912 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2913 }
2914 
2915 /*
2916  * This is the main entry point to direct page reclaim.
2917  *
2918  * If a full scan of the inactive list fails to free enough memory then we
2919  * are "out of memory" and something needs to be killed.
2920  *
2921  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2922  * high - the zone may be full of dirty or under-writeback pages, which this
2923  * caller can't do much about.  We kick the writeback threads and take explicit
2924  * naps in the hope that some of these pages can be written.  But if the
2925  * allocating task holds filesystem locks which prevent writeout this might not
2926  * work, and the allocation attempt will fail.
2927  *
2928  * returns:	0, if no pages reclaimed
2929  * 		else, the number of pages reclaimed
2930  */
2931 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2932 					  struct scan_control *sc)
2933 {
2934 	int initial_priority = sc->priority;
2935 	pg_data_t *last_pgdat;
2936 	struct zoneref *z;
2937 	struct zone *zone;
2938 retry:
2939 	delayacct_freepages_start();
2940 
2941 	if (global_reclaim(sc))
2942 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2943 
2944 	do {
2945 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2946 				sc->priority);
2947 		sc->nr_scanned = 0;
2948 		shrink_zones(zonelist, sc);
2949 
2950 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2951 			break;
2952 
2953 		if (sc->compaction_ready)
2954 			break;
2955 
2956 		/*
2957 		 * If we're getting trouble reclaiming, start doing
2958 		 * writepage even in laptop mode.
2959 		 */
2960 		if (sc->priority < DEF_PRIORITY - 2)
2961 			sc->may_writepage = 1;
2962 	} while (--sc->priority >= 0);
2963 
2964 	last_pgdat = NULL;
2965 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2966 					sc->nodemask) {
2967 		if (zone->zone_pgdat == last_pgdat)
2968 			continue;
2969 		last_pgdat = zone->zone_pgdat;
2970 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2971 		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
2972 	}
2973 
2974 	delayacct_freepages_end();
2975 
2976 	if (sc->nr_reclaimed)
2977 		return sc->nr_reclaimed;
2978 
2979 	/* Aborted reclaim to try compaction? don't OOM, then */
2980 	if (sc->compaction_ready)
2981 		return 1;
2982 
2983 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2984 	if (sc->memcg_low_skipped) {
2985 		sc->priority = initial_priority;
2986 		sc->memcg_low_reclaim = 1;
2987 		sc->memcg_low_skipped = 0;
2988 		goto retry;
2989 	}
2990 
2991 	return 0;
2992 }
2993 
2994 static bool allow_direct_reclaim(pg_data_t *pgdat)
2995 {
2996 	struct zone *zone;
2997 	unsigned long pfmemalloc_reserve = 0;
2998 	unsigned long free_pages = 0;
2999 	int i;
3000 	bool wmark_ok;
3001 
3002 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3003 		return true;
3004 
3005 	for (i = 0; i <= ZONE_NORMAL; i++) {
3006 		zone = &pgdat->node_zones[i];
3007 		if (!managed_zone(zone))
3008 			continue;
3009 
3010 		if (!zone_reclaimable_pages(zone))
3011 			continue;
3012 
3013 		pfmemalloc_reserve += min_wmark_pages(zone);
3014 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3015 	}
3016 
3017 	/* If there are no reserves (unexpected config) then do not throttle */
3018 	if (!pfmemalloc_reserve)
3019 		return true;
3020 
3021 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3022 
3023 	/* kswapd must be awake if processes are being throttled */
3024 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3025 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3026 						(enum zone_type)ZONE_NORMAL);
3027 		wake_up_interruptible(&pgdat->kswapd_wait);
3028 	}
3029 
3030 	return wmark_ok;
3031 }
3032 
3033 /*
3034  * Throttle direct reclaimers if backing storage is backed by the network
3035  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3036  * depleted. kswapd will continue to make progress and wake the processes
3037  * when the low watermark is reached.
3038  *
3039  * Returns true if a fatal signal was delivered during throttling. If this
3040  * happens, the page allocator should not consider triggering the OOM killer.
3041  */
3042 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3043 					nodemask_t *nodemask)
3044 {
3045 	struct zoneref *z;
3046 	struct zone *zone;
3047 	pg_data_t *pgdat = NULL;
3048 
3049 	/*
3050 	 * Kernel threads should not be throttled as they may be indirectly
3051 	 * responsible for cleaning pages necessary for reclaim to make forward
3052 	 * progress. kjournald for example may enter direct reclaim while
3053 	 * committing a transaction where throttling it could forcing other
3054 	 * processes to block on log_wait_commit().
3055 	 */
3056 	if (current->flags & PF_KTHREAD)
3057 		goto out;
3058 
3059 	/*
3060 	 * If a fatal signal is pending, this process should not throttle.
3061 	 * It should return quickly so it can exit and free its memory
3062 	 */
3063 	if (fatal_signal_pending(current))
3064 		goto out;
3065 
3066 	/*
3067 	 * Check if the pfmemalloc reserves are ok by finding the first node
3068 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3069 	 * GFP_KERNEL will be required for allocating network buffers when
3070 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3071 	 *
3072 	 * Throttling is based on the first usable node and throttled processes
3073 	 * wait on a queue until kswapd makes progress and wakes them. There
3074 	 * is an affinity then between processes waking up and where reclaim
3075 	 * progress has been made assuming the process wakes on the same node.
3076 	 * More importantly, processes running on remote nodes will not compete
3077 	 * for remote pfmemalloc reserves and processes on different nodes
3078 	 * should make reasonable progress.
3079 	 */
3080 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3081 					gfp_zone(gfp_mask), nodemask) {
3082 		if (zone_idx(zone) > ZONE_NORMAL)
3083 			continue;
3084 
3085 		/* Throttle based on the first usable node */
3086 		pgdat = zone->zone_pgdat;
3087 		if (allow_direct_reclaim(pgdat))
3088 			goto out;
3089 		break;
3090 	}
3091 
3092 	/* If no zone was usable by the allocation flags then do not throttle */
3093 	if (!pgdat)
3094 		goto out;
3095 
3096 	/* Account for the throttling */
3097 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3098 
3099 	/*
3100 	 * If the caller cannot enter the filesystem, it's possible that it
3101 	 * is due to the caller holding an FS lock or performing a journal
3102 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3103 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3104 	 * blocked waiting on the same lock. Instead, throttle for up to a
3105 	 * second before continuing.
3106 	 */
3107 	if (!(gfp_mask & __GFP_FS)) {
3108 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3109 			allow_direct_reclaim(pgdat), HZ);
3110 
3111 		goto check_pending;
3112 	}
3113 
3114 	/* Throttle until kswapd wakes the process */
3115 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3116 		allow_direct_reclaim(pgdat));
3117 
3118 check_pending:
3119 	if (fatal_signal_pending(current))
3120 		return true;
3121 
3122 out:
3123 	return false;
3124 }
3125 
3126 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3127 				gfp_t gfp_mask, nodemask_t *nodemask)
3128 {
3129 	unsigned long nr_reclaimed;
3130 	struct scan_control sc = {
3131 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3132 		.gfp_mask = current_gfp_context(gfp_mask),
3133 		.reclaim_idx = gfp_zone(gfp_mask),
3134 		.order = order,
3135 		.nodemask = nodemask,
3136 		.priority = DEF_PRIORITY,
3137 		.may_writepage = !laptop_mode,
3138 		.may_unmap = 1,
3139 		.may_swap = 1,
3140 		.may_shrinkslab = 1,
3141 	};
3142 
3143 	/*
3144 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3145 	 * Confirm they are large enough for max values.
3146 	 */
3147 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3148 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3149 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3150 
3151 	/*
3152 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3153 	 * 1 is returned so that the page allocator does not OOM kill at this
3154 	 * point.
3155 	 */
3156 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3157 		return 1;
3158 
3159 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3160 
3161 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3162 
3163 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3164 
3165 	return nr_reclaimed;
3166 }
3167 
3168 #ifdef CONFIG_MEMCG
3169 
3170 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3171 						gfp_t gfp_mask, bool noswap,
3172 						pg_data_t *pgdat,
3173 						unsigned long *nr_scanned)
3174 {
3175 	struct scan_control sc = {
3176 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3177 		.target_mem_cgroup = memcg,
3178 		.may_writepage = !laptop_mode,
3179 		.may_unmap = 1,
3180 		.reclaim_idx = MAX_NR_ZONES - 1,
3181 		.may_swap = !noswap,
3182 		.may_shrinkslab = 1,
3183 	};
3184 	unsigned long lru_pages;
3185 
3186 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3187 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3188 
3189 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3190 						      sc.gfp_mask);
3191 
3192 	/*
3193 	 * NOTE: Although we can get the priority field, using it
3194 	 * here is not a good idea, since it limits the pages we can scan.
3195 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3196 	 * will pick up pages from other mem cgroup's as well. We hack
3197 	 * the priority and make it zero.
3198 	 */
3199 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3200 
3201 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3202 
3203 	*nr_scanned = sc.nr_scanned;
3204 	return sc.nr_reclaimed;
3205 }
3206 
3207 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3208 					   unsigned long nr_pages,
3209 					   gfp_t gfp_mask,
3210 					   bool may_swap)
3211 {
3212 	struct zonelist *zonelist;
3213 	unsigned long nr_reclaimed;
3214 	unsigned long pflags;
3215 	int nid;
3216 	unsigned int noreclaim_flag;
3217 	struct scan_control sc = {
3218 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3219 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3220 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3221 		.reclaim_idx = MAX_NR_ZONES - 1,
3222 		.target_mem_cgroup = memcg,
3223 		.priority = DEF_PRIORITY,
3224 		.may_writepage = !laptop_mode,
3225 		.may_unmap = 1,
3226 		.may_swap = may_swap,
3227 		.may_shrinkslab = 1,
3228 	};
3229 
3230 	/*
3231 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3232 	 * take care of from where we get pages. So the node where we start the
3233 	 * scan does not need to be the current node.
3234 	 */
3235 	nid = mem_cgroup_select_victim_node(memcg);
3236 
3237 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3238 
3239 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3240 
3241 	psi_memstall_enter(&pflags);
3242 	noreclaim_flag = memalloc_noreclaim_save();
3243 
3244 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3245 
3246 	memalloc_noreclaim_restore(noreclaim_flag);
3247 	psi_memstall_leave(&pflags);
3248 
3249 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3250 
3251 	return nr_reclaimed;
3252 }
3253 #endif
3254 
3255 static void age_active_anon(struct pglist_data *pgdat,
3256 				struct scan_control *sc)
3257 {
3258 	struct mem_cgroup *memcg;
3259 
3260 	if (!total_swap_pages)
3261 		return;
3262 
3263 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3264 	do {
3265 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3266 
3267 		if (inactive_list_is_low(lruvec, false, sc, true))
3268 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3269 					   sc, LRU_ACTIVE_ANON);
3270 
3271 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3272 	} while (memcg);
3273 }
3274 
3275 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3276 {
3277 	int i;
3278 	struct zone *zone;
3279 
3280 	/*
3281 	 * Check for watermark boosts top-down as the higher zones
3282 	 * are more likely to be boosted. Both watermarks and boosts
3283 	 * should not be checked at the time time as reclaim would
3284 	 * start prematurely when there is no boosting and a lower
3285 	 * zone is balanced.
3286 	 */
3287 	for (i = classzone_idx; i >= 0; i--) {
3288 		zone = pgdat->node_zones + i;
3289 		if (!managed_zone(zone))
3290 			continue;
3291 
3292 		if (zone->watermark_boost)
3293 			return true;
3294 	}
3295 
3296 	return false;
3297 }
3298 
3299 /*
3300  * Returns true if there is an eligible zone balanced for the request order
3301  * and classzone_idx
3302  */
3303 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3304 {
3305 	int i;
3306 	unsigned long mark = -1;
3307 	struct zone *zone;
3308 
3309 	/*
3310 	 * Check watermarks bottom-up as lower zones are more likely to
3311 	 * meet watermarks.
3312 	 */
3313 	for (i = 0; i <= classzone_idx; i++) {
3314 		zone = pgdat->node_zones + i;
3315 
3316 		if (!managed_zone(zone))
3317 			continue;
3318 
3319 		mark = high_wmark_pages(zone);
3320 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3321 			return true;
3322 	}
3323 
3324 	/*
3325 	 * If a node has no populated zone within classzone_idx, it does not
3326 	 * need balancing by definition. This can happen if a zone-restricted
3327 	 * allocation tries to wake a remote kswapd.
3328 	 */
3329 	if (mark == -1)
3330 		return true;
3331 
3332 	return false;
3333 }
3334 
3335 /* Clear pgdat state for congested, dirty or under writeback. */
3336 static void clear_pgdat_congested(pg_data_t *pgdat)
3337 {
3338 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3339 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3340 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3341 }
3342 
3343 /*
3344  * Prepare kswapd for sleeping. This verifies that there are no processes
3345  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3346  *
3347  * Returns true if kswapd is ready to sleep
3348  */
3349 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3350 {
3351 	/*
3352 	 * The throttled processes are normally woken up in balance_pgdat() as
3353 	 * soon as allow_direct_reclaim() is true. But there is a potential
3354 	 * race between when kswapd checks the watermarks and a process gets
3355 	 * throttled. There is also a potential race if processes get
3356 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3357 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3358 	 * the wake up checks. If kswapd is going to sleep, no process should
3359 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3360 	 * the wake up is premature, processes will wake kswapd and get
3361 	 * throttled again. The difference from wake ups in balance_pgdat() is
3362 	 * that here we are under prepare_to_wait().
3363 	 */
3364 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3365 		wake_up_all(&pgdat->pfmemalloc_wait);
3366 
3367 	/* Hopeless node, leave it to direct reclaim */
3368 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3369 		return true;
3370 
3371 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3372 		clear_pgdat_congested(pgdat);
3373 		return true;
3374 	}
3375 
3376 	return false;
3377 }
3378 
3379 /*
3380  * kswapd shrinks a node of pages that are at or below the highest usable
3381  * zone that is currently unbalanced.
3382  *
3383  * Returns true if kswapd scanned at least the requested number of pages to
3384  * reclaim or if the lack of progress was due to pages under writeback.
3385  * This is used to determine if the scanning priority needs to be raised.
3386  */
3387 static bool kswapd_shrink_node(pg_data_t *pgdat,
3388 			       struct scan_control *sc)
3389 {
3390 	struct zone *zone;
3391 	int z;
3392 
3393 	/* Reclaim a number of pages proportional to the number of zones */
3394 	sc->nr_to_reclaim = 0;
3395 	for (z = 0; z <= sc->reclaim_idx; z++) {
3396 		zone = pgdat->node_zones + z;
3397 		if (!managed_zone(zone))
3398 			continue;
3399 
3400 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3401 	}
3402 
3403 	/*
3404 	 * Historically care was taken to put equal pressure on all zones but
3405 	 * now pressure is applied based on node LRU order.
3406 	 */
3407 	shrink_node(pgdat, sc);
3408 
3409 	/*
3410 	 * Fragmentation may mean that the system cannot be rebalanced for
3411 	 * high-order allocations. If twice the allocation size has been
3412 	 * reclaimed then recheck watermarks only at order-0 to prevent
3413 	 * excessive reclaim. Assume that a process requested a high-order
3414 	 * can direct reclaim/compact.
3415 	 */
3416 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3417 		sc->order = 0;
3418 
3419 	return sc->nr_scanned >= sc->nr_to_reclaim;
3420 }
3421 
3422 /*
3423  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3424  * that are eligible for use by the caller until at least one zone is
3425  * balanced.
3426  *
3427  * Returns the order kswapd finished reclaiming at.
3428  *
3429  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3430  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3431  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3432  * or lower is eligible for reclaim until at least one usable zone is
3433  * balanced.
3434  */
3435 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3436 {
3437 	int i;
3438 	unsigned long nr_soft_reclaimed;
3439 	unsigned long nr_soft_scanned;
3440 	unsigned long pflags;
3441 	unsigned long nr_boost_reclaim;
3442 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3443 	bool boosted;
3444 	struct zone *zone;
3445 	struct scan_control sc = {
3446 		.gfp_mask = GFP_KERNEL,
3447 		.order = order,
3448 		.may_unmap = 1,
3449 	};
3450 
3451 	psi_memstall_enter(&pflags);
3452 	__fs_reclaim_acquire();
3453 
3454 	count_vm_event(PAGEOUTRUN);
3455 
3456 	/*
3457 	 * Account for the reclaim boost. Note that the zone boost is left in
3458 	 * place so that parallel allocations that are near the watermark will
3459 	 * stall or direct reclaim until kswapd is finished.
3460 	 */
3461 	nr_boost_reclaim = 0;
3462 	for (i = 0; i <= classzone_idx; i++) {
3463 		zone = pgdat->node_zones + i;
3464 		if (!managed_zone(zone))
3465 			continue;
3466 
3467 		nr_boost_reclaim += zone->watermark_boost;
3468 		zone_boosts[i] = zone->watermark_boost;
3469 	}
3470 	boosted = nr_boost_reclaim;
3471 
3472 restart:
3473 	sc.priority = DEF_PRIORITY;
3474 	do {
3475 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3476 		bool raise_priority = true;
3477 		bool balanced;
3478 		bool ret;
3479 
3480 		sc.reclaim_idx = classzone_idx;
3481 
3482 		/*
3483 		 * If the number of buffer_heads exceeds the maximum allowed
3484 		 * then consider reclaiming from all zones. This has a dual
3485 		 * purpose -- on 64-bit systems it is expected that
3486 		 * buffer_heads are stripped during active rotation. On 32-bit
3487 		 * systems, highmem pages can pin lowmem memory and shrinking
3488 		 * buffers can relieve lowmem pressure. Reclaim may still not
3489 		 * go ahead if all eligible zones for the original allocation
3490 		 * request are balanced to avoid excessive reclaim from kswapd.
3491 		 */
3492 		if (buffer_heads_over_limit) {
3493 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3494 				zone = pgdat->node_zones + i;
3495 				if (!managed_zone(zone))
3496 					continue;
3497 
3498 				sc.reclaim_idx = i;
3499 				break;
3500 			}
3501 		}
3502 
3503 		/*
3504 		 * If the pgdat is imbalanced then ignore boosting and preserve
3505 		 * the watermarks for a later time and restart. Note that the
3506 		 * zone watermarks will be still reset at the end of balancing
3507 		 * on the grounds that the normal reclaim should be enough to
3508 		 * re-evaluate if boosting is required when kswapd next wakes.
3509 		 */
3510 		balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3511 		if (!balanced && nr_boost_reclaim) {
3512 			nr_boost_reclaim = 0;
3513 			goto restart;
3514 		}
3515 
3516 		/*
3517 		 * If boosting is not active then only reclaim if there are no
3518 		 * eligible zones. Note that sc.reclaim_idx is not used as
3519 		 * buffer_heads_over_limit may have adjusted it.
3520 		 */
3521 		if (!nr_boost_reclaim && balanced)
3522 			goto out;
3523 
3524 		/* Limit the priority of boosting to avoid reclaim writeback */
3525 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3526 			raise_priority = false;
3527 
3528 		/*
3529 		 * Do not writeback or swap pages for boosted reclaim. The
3530 		 * intent is to relieve pressure not issue sub-optimal IO
3531 		 * from reclaim context. If no pages are reclaimed, the
3532 		 * reclaim will be aborted.
3533 		 */
3534 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3535 		sc.may_swap = !nr_boost_reclaim;
3536 		sc.may_shrinkslab = !nr_boost_reclaim;
3537 
3538 		/*
3539 		 * Do some background aging of the anon list, to give
3540 		 * pages a chance to be referenced before reclaiming. All
3541 		 * pages are rotated regardless of classzone as this is
3542 		 * about consistent aging.
3543 		 */
3544 		age_active_anon(pgdat, &sc);
3545 
3546 		/*
3547 		 * If we're getting trouble reclaiming, start doing writepage
3548 		 * even in laptop mode.
3549 		 */
3550 		if (sc.priority < DEF_PRIORITY - 2)
3551 			sc.may_writepage = 1;
3552 
3553 		/* Call soft limit reclaim before calling shrink_node. */
3554 		sc.nr_scanned = 0;
3555 		nr_soft_scanned = 0;
3556 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3557 						sc.gfp_mask, &nr_soft_scanned);
3558 		sc.nr_reclaimed += nr_soft_reclaimed;
3559 
3560 		/*
3561 		 * There should be no need to raise the scanning priority if
3562 		 * enough pages are already being scanned that that high
3563 		 * watermark would be met at 100% efficiency.
3564 		 */
3565 		if (kswapd_shrink_node(pgdat, &sc))
3566 			raise_priority = false;
3567 
3568 		/*
3569 		 * If the low watermark is met there is no need for processes
3570 		 * to be throttled on pfmemalloc_wait as they should not be
3571 		 * able to safely make forward progress. Wake them
3572 		 */
3573 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3574 				allow_direct_reclaim(pgdat))
3575 			wake_up_all(&pgdat->pfmemalloc_wait);
3576 
3577 		/* Check if kswapd should be suspending */
3578 		__fs_reclaim_release();
3579 		ret = try_to_freeze();
3580 		__fs_reclaim_acquire();
3581 		if (ret || kthread_should_stop())
3582 			break;
3583 
3584 		/*
3585 		 * Raise priority if scanning rate is too low or there was no
3586 		 * progress in reclaiming pages
3587 		 */
3588 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3589 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3590 
3591 		/*
3592 		 * If reclaim made no progress for a boost, stop reclaim as
3593 		 * IO cannot be queued and it could be an infinite loop in
3594 		 * extreme circumstances.
3595 		 */
3596 		if (nr_boost_reclaim && !nr_reclaimed)
3597 			break;
3598 
3599 		if (raise_priority || !nr_reclaimed)
3600 			sc.priority--;
3601 	} while (sc.priority >= 1);
3602 
3603 	if (!sc.nr_reclaimed)
3604 		pgdat->kswapd_failures++;
3605 
3606 out:
3607 	/* If reclaim was boosted, account for the reclaim done in this pass */
3608 	if (boosted) {
3609 		unsigned long flags;
3610 
3611 		for (i = 0; i <= classzone_idx; i++) {
3612 			if (!zone_boosts[i])
3613 				continue;
3614 
3615 			/* Increments are under the zone lock */
3616 			zone = pgdat->node_zones + i;
3617 			spin_lock_irqsave(&zone->lock, flags);
3618 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3619 			spin_unlock_irqrestore(&zone->lock, flags);
3620 		}
3621 
3622 		/*
3623 		 * As there is now likely space, wakeup kcompact to defragment
3624 		 * pageblocks.
3625 		 */
3626 		wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3627 	}
3628 
3629 	snapshot_refaults(NULL, pgdat);
3630 	__fs_reclaim_release();
3631 	psi_memstall_leave(&pflags);
3632 	/*
3633 	 * Return the order kswapd stopped reclaiming at as
3634 	 * prepare_kswapd_sleep() takes it into account. If another caller
3635 	 * entered the allocator slow path while kswapd was awake, order will
3636 	 * remain at the higher level.
3637 	 */
3638 	return sc.order;
3639 }
3640 
3641 /*
3642  * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3643  * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3644  * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3645  * after previous reclaim attempt (node is still unbalanced). In that case
3646  * return the zone index of the previous kswapd reclaim cycle.
3647  */
3648 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3649 					   enum zone_type prev_classzone_idx)
3650 {
3651 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3652 		return prev_classzone_idx;
3653 	return pgdat->kswapd_classzone_idx;
3654 }
3655 
3656 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3657 				unsigned int classzone_idx)
3658 {
3659 	long remaining = 0;
3660 	DEFINE_WAIT(wait);
3661 
3662 	if (freezing(current) || kthread_should_stop())
3663 		return;
3664 
3665 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3666 
3667 	/*
3668 	 * Try to sleep for a short interval. Note that kcompactd will only be
3669 	 * woken if it is possible to sleep for a short interval. This is
3670 	 * deliberate on the assumption that if reclaim cannot keep an
3671 	 * eligible zone balanced that it's also unlikely that compaction will
3672 	 * succeed.
3673 	 */
3674 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3675 		/*
3676 		 * Compaction records what page blocks it recently failed to
3677 		 * isolate pages from and skips them in the future scanning.
3678 		 * When kswapd is going to sleep, it is reasonable to assume
3679 		 * that pages and compaction may succeed so reset the cache.
3680 		 */
3681 		reset_isolation_suitable(pgdat);
3682 
3683 		/*
3684 		 * We have freed the memory, now we should compact it to make
3685 		 * allocation of the requested order possible.
3686 		 */
3687 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3688 
3689 		remaining = schedule_timeout(HZ/10);
3690 
3691 		/*
3692 		 * If woken prematurely then reset kswapd_classzone_idx and
3693 		 * order. The values will either be from a wakeup request or
3694 		 * the previous request that slept prematurely.
3695 		 */
3696 		if (remaining) {
3697 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3698 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3699 		}
3700 
3701 		finish_wait(&pgdat->kswapd_wait, &wait);
3702 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3703 	}
3704 
3705 	/*
3706 	 * After a short sleep, check if it was a premature sleep. If not, then
3707 	 * go fully to sleep until explicitly woken up.
3708 	 */
3709 	if (!remaining &&
3710 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3711 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3712 
3713 		/*
3714 		 * vmstat counters are not perfectly accurate and the estimated
3715 		 * value for counters such as NR_FREE_PAGES can deviate from the
3716 		 * true value by nr_online_cpus * threshold. To avoid the zone
3717 		 * watermarks being breached while under pressure, we reduce the
3718 		 * per-cpu vmstat threshold while kswapd is awake and restore
3719 		 * them before going back to sleep.
3720 		 */
3721 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3722 
3723 		if (!kthread_should_stop())
3724 			schedule();
3725 
3726 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3727 	} else {
3728 		if (remaining)
3729 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3730 		else
3731 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3732 	}
3733 	finish_wait(&pgdat->kswapd_wait, &wait);
3734 }
3735 
3736 /*
3737  * The background pageout daemon, started as a kernel thread
3738  * from the init process.
3739  *
3740  * This basically trickles out pages so that we have _some_
3741  * free memory available even if there is no other activity
3742  * that frees anything up. This is needed for things like routing
3743  * etc, where we otherwise might have all activity going on in
3744  * asynchronous contexts that cannot page things out.
3745  *
3746  * If there are applications that are active memory-allocators
3747  * (most normal use), this basically shouldn't matter.
3748  */
3749 static int kswapd(void *p)
3750 {
3751 	unsigned int alloc_order, reclaim_order;
3752 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3753 	pg_data_t *pgdat = (pg_data_t*)p;
3754 	struct task_struct *tsk = current;
3755 
3756 	struct reclaim_state reclaim_state = {
3757 		.reclaimed_slab = 0,
3758 	};
3759 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3760 
3761 	if (!cpumask_empty(cpumask))
3762 		set_cpus_allowed_ptr(tsk, cpumask);
3763 	current->reclaim_state = &reclaim_state;
3764 
3765 	/*
3766 	 * Tell the memory management that we're a "memory allocator",
3767 	 * and that if we need more memory we should get access to it
3768 	 * regardless (see "__alloc_pages()"). "kswapd" should
3769 	 * never get caught in the normal page freeing logic.
3770 	 *
3771 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3772 	 * you need a small amount of memory in order to be able to
3773 	 * page out something else, and this flag essentially protects
3774 	 * us from recursively trying to free more memory as we're
3775 	 * trying to free the first piece of memory in the first place).
3776 	 */
3777 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3778 	set_freezable();
3779 
3780 	pgdat->kswapd_order = 0;
3781 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3782 	for ( ; ; ) {
3783 		bool ret;
3784 
3785 		alloc_order = reclaim_order = pgdat->kswapd_order;
3786 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3787 
3788 kswapd_try_sleep:
3789 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3790 					classzone_idx);
3791 
3792 		/* Read the new order and classzone_idx */
3793 		alloc_order = reclaim_order = pgdat->kswapd_order;
3794 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3795 		pgdat->kswapd_order = 0;
3796 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3797 
3798 		ret = try_to_freeze();
3799 		if (kthread_should_stop())
3800 			break;
3801 
3802 		/*
3803 		 * We can speed up thawing tasks if we don't call balance_pgdat
3804 		 * after returning from the refrigerator
3805 		 */
3806 		if (ret)
3807 			continue;
3808 
3809 		/*
3810 		 * Reclaim begins at the requested order but if a high-order
3811 		 * reclaim fails then kswapd falls back to reclaiming for
3812 		 * order-0. If that happens, kswapd will consider sleeping
3813 		 * for the order it finished reclaiming at (reclaim_order)
3814 		 * but kcompactd is woken to compact for the original
3815 		 * request (alloc_order).
3816 		 */
3817 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3818 						alloc_order);
3819 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3820 		if (reclaim_order < alloc_order)
3821 			goto kswapd_try_sleep;
3822 	}
3823 
3824 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3825 	current->reclaim_state = NULL;
3826 
3827 	return 0;
3828 }
3829 
3830 /*
3831  * A zone is low on free memory or too fragmented for high-order memory.  If
3832  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3833  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3834  * has failed or is not needed, still wake up kcompactd if only compaction is
3835  * needed.
3836  */
3837 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3838 		   enum zone_type classzone_idx)
3839 {
3840 	pg_data_t *pgdat;
3841 
3842 	if (!managed_zone(zone))
3843 		return;
3844 
3845 	if (!cpuset_zone_allowed(zone, gfp_flags))
3846 		return;
3847 	pgdat = zone->zone_pgdat;
3848 
3849 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3850 		pgdat->kswapd_classzone_idx = classzone_idx;
3851 	else
3852 		pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3853 						  classzone_idx);
3854 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3855 	if (!waitqueue_active(&pgdat->kswapd_wait))
3856 		return;
3857 
3858 	/* Hopeless node, leave it to direct reclaim if possible */
3859 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3860 	    (pgdat_balanced(pgdat, order, classzone_idx) &&
3861 	     !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3862 		/*
3863 		 * There may be plenty of free memory available, but it's too
3864 		 * fragmented for high-order allocations.  Wake up kcompactd
3865 		 * and rely on compaction_suitable() to determine if it's
3866 		 * needed.  If it fails, it will defer subsequent attempts to
3867 		 * ratelimit its work.
3868 		 */
3869 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3870 			wakeup_kcompactd(pgdat, order, classzone_idx);
3871 		return;
3872 	}
3873 
3874 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3875 				      gfp_flags);
3876 	wake_up_interruptible(&pgdat->kswapd_wait);
3877 }
3878 
3879 #ifdef CONFIG_HIBERNATION
3880 /*
3881  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3882  * freed pages.
3883  *
3884  * Rather than trying to age LRUs the aim is to preserve the overall
3885  * LRU order by reclaiming preferentially
3886  * inactive > active > active referenced > active mapped
3887  */
3888 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3889 {
3890 	struct reclaim_state reclaim_state;
3891 	struct scan_control sc = {
3892 		.nr_to_reclaim = nr_to_reclaim,
3893 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3894 		.reclaim_idx = MAX_NR_ZONES - 1,
3895 		.priority = DEF_PRIORITY,
3896 		.may_writepage = 1,
3897 		.may_unmap = 1,
3898 		.may_swap = 1,
3899 		.hibernation_mode = 1,
3900 	};
3901 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3902 	struct task_struct *p = current;
3903 	unsigned long nr_reclaimed;
3904 	unsigned int noreclaim_flag;
3905 
3906 	fs_reclaim_acquire(sc.gfp_mask);
3907 	noreclaim_flag = memalloc_noreclaim_save();
3908 	reclaim_state.reclaimed_slab = 0;
3909 	p->reclaim_state = &reclaim_state;
3910 
3911 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3912 
3913 	p->reclaim_state = NULL;
3914 	memalloc_noreclaim_restore(noreclaim_flag);
3915 	fs_reclaim_release(sc.gfp_mask);
3916 
3917 	return nr_reclaimed;
3918 }
3919 #endif /* CONFIG_HIBERNATION */
3920 
3921 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3922    not required for correctness.  So if the last cpu in a node goes
3923    away, we get changed to run anywhere: as the first one comes back,
3924    restore their cpu bindings. */
3925 static int kswapd_cpu_online(unsigned int cpu)
3926 {
3927 	int nid;
3928 
3929 	for_each_node_state(nid, N_MEMORY) {
3930 		pg_data_t *pgdat = NODE_DATA(nid);
3931 		const struct cpumask *mask;
3932 
3933 		mask = cpumask_of_node(pgdat->node_id);
3934 
3935 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3936 			/* One of our CPUs online: restore mask */
3937 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3938 	}
3939 	return 0;
3940 }
3941 
3942 /*
3943  * This kswapd start function will be called by init and node-hot-add.
3944  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3945  */
3946 int kswapd_run(int nid)
3947 {
3948 	pg_data_t *pgdat = NODE_DATA(nid);
3949 	int ret = 0;
3950 
3951 	if (pgdat->kswapd)
3952 		return 0;
3953 
3954 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3955 	if (IS_ERR(pgdat->kswapd)) {
3956 		/* failure at boot is fatal */
3957 		BUG_ON(system_state < SYSTEM_RUNNING);
3958 		pr_err("Failed to start kswapd on node %d\n", nid);
3959 		ret = PTR_ERR(pgdat->kswapd);
3960 		pgdat->kswapd = NULL;
3961 	}
3962 	return ret;
3963 }
3964 
3965 /*
3966  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3967  * hold mem_hotplug_begin/end().
3968  */
3969 void kswapd_stop(int nid)
3970 {
3971 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3972 
3973 	if (kswapd) {
3974 		kthread_stop(kswapd);
3975 		NODE_DATA(nid)->kswapd = NULL;
3976 	}
3977 }
3978 
3979 static int __init kswapd_init(void)
3980 {
3981 	int nid, ret;
3982 
3983 	swap_setup();
3984 	for_each_node_state(nid, N_MEMORY)
3985  		kswapd_run(nid);
3986 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3987 					"mm/vmscan:online", kswapd_cpu_online,
3988 					NULL);
3989 	WARN_ON(ret < 0);
3990 	return 0;
3991 }
3992 
3993 module_init(kswapd_init)
3994 
3995 #ifdef CONFIG_NUMA
3996 /*
3997  * Node reclaim mode
3998  *
3999  * If non-zero call node_reclaim when the number of free pages falls below
4000  * the watermarks.
4001  */
4002 int node_reclaim_mode __read_mostly;
4003 
4004 #define RECLAIM_OFF 0
4005 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4006 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4007 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4008 
4009 /*
4010  * Priority for NODE_RECLAIM. This determines the fraction of pages
4011  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4012  * a zone.
4013  */
4014 #define NODE_RECLAIM_PRIORITY 4
4015 
4016 /*
4017  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4018  * occur.
4019  */
4020 int sysctl_min_unmapped_ratio = 1;
4021 
4022 /*
4023  * If the number of slab pages in a zone grows beyond this percentage then
4024  * slab reclaim needs to occur.
4025  */
4026 int sysctl_min_slab_ratio = 5;
4027 
4028 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4029 {
4030 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4031 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4032 		node_page_state(pgdat, NR_ACTIVE_FILE);
4033 
4034 	/*
4035 	 * It's possible for there to be more file mapped pages than
4036 	 * accounted for by the pages on the file LRU lists because
4037 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4038 	 */
4039 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4040 }
4041 
4042 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4043 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4044 {
4045 	unsigned long nr_pagecache_reclaimable;
4046 	unsigned long delta = 0;
4047 
4048 	/*
4049 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4050 	 * potentially reclaimable. Otherwise, we have to worry about
4051 	 * pages like swapcache and node_unmapped_file_pages() provides
4052 	 * a better estimate
4053 	 */
4054 	if (node_reclaim_mode & RECLAIM_UNMAP)
4055 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4056 	else
4057 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4058 
4059 	/* If we can't clean pages, remove dirty pages from consideration */
4060 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4061 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4062 
4063 	/* Watch for any possible underflows due to delta */
4064 	if (unlikely(delta > nr_pagecache_reclaimable))
4065 		delta = nr_pagecache_reclaimable;
4066 
4067 	return nr_pagecache_reclaimable - delta;
4068 }
4069 
4070 /*
4071  * Try to free up some pages from this node through reclaim.
4072  */
4073 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4074 {
4075 	/* Minimum pages needed in order to stay on node */
4076 	const unsigned long nr_pages = 1 << order;
4077 	struct task_struct *p = current;
4078 	struct reclaim_state reclaim_state;
4079 	unsigned int noreclaim_flag;
4080 	struct scan_control sc = {
4081 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4082 		.gfp_mask = current_gfp_context(gfp_mask),
4083 		.order = order,
4084 		.priority = NODE_RECLAIM_PRIORITY,
4085 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4086 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4087 		.may_swap = 1,
4088 		.reclaim_idx = gfp_zone(gfp_mask),
4089 	};
4090 
4091 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4092 					   sc.gfp_mask);
4093 
4094 	cond_resched();
4095 	fs_reclaim_acquire(sc.gfp_mask);
4096 	/*
4097 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4098 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4099 	 * and RECLAIM_UNMAP.
4100 	 */
4101 	noreclaim_flag = memalloc_noreclaim_save();
4102 	p->flags |= PF_SWAPWRITE;
4103 	reclaim_state.reclaimed_slab = 0;
4104 	p->reclaim_state = &reclaim_state;
4105 
4106 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4107 		/*
4108 		 * Free memory by calling shrink node with increasing
4109 		 * priorities until we have enough memory freed.
4110 		 */
4111 		do {
4112 			shrink_node(pgdat, &sc);
4113 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4114 	}
4115 
4116 	p->reclaim_state = NULL;
4117 	current->flags &= ~PF_SWAPWRITE;
4118 	memalloc_noreclaim_restore(noreclaim_flag);
4119 	fs_reclaim_release(sc.gfp_mask);
4120 
4121 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4122 
4123 	return sc.nr_reclaimed >= nr_pages;
4124 }
4125 
4126 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4127 {
4128 	int ret;
4129 
4130 	/*
4131 	 * Node reclaim reclaims unmapped file backed pages and
4132 	 * slab pages if we are over the defined limits.
4133 	 *
4134 	 * A small portion of unmapped file backed pages is needed for
4135 	 * file I/O otherwise pages read by file I/O will be immediately
4136 	 * thrown out if the node is overallocated. So we do not reclaim
4137 	 * if less than a specified percentage of the node is used by
4138 	 * unmapped file backed pages.
4139 	 */
4140 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4141 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4142 		return NODE_RECLAIM_FULL;
4143 
4144 	/*
4145 	 * Do not scan if the allocation should not be delayed.
4146 	 */
4147 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4148 		return NODE_RECLAIM_NOSCAN;
4149 
4150 	/*
4151 	 * Only run node reclaim on the local node or on nodes that do not
4152 	 * have associated processors. This will favor the local processor
4153 	 * over remote processors and spread off node memory allocations
4154 	 * as wide as possible.
4155 	 */
4156 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4157 		return NODE_RECLAIM_NOSCAN;
4158 
4159 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4160 		return NODE_RECLAIM_NOSCAN;
4161 
4162 	ret = __node_reclaim(pgdat, gfp_mask, order);
4163 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4164 
4165 	if (!ret)
4166 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4167 
4168 	return ret;
4169 }
4170 #endif
4171 
4172 /*
4173  * page_evictable - test whether a page is evictable
4174  * @page: the page to test
4175  *
4176  * Test whether page is evictable--i.e., should be placed on active/inactive
4177  * lists vs unevictable list.
4178  *
4179  * Reasons page might not be evictable:
4180  * (1) page's mapping marked unevictable
4181  * (2) page is part of an mlocked VMA
4182  *
4183  */
4184 int page_evictable(struct page *page)
4185 {
4186 	int ret;
4187 
4188 	/* Prevent address_space of inode and swap cache from being freed */
4189 	rcu_read_lock();
4190 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4191 	rcu_read_unlock();
4192 	return ret;
4193 }
4194 
4195 /**
4196  * check_move_unevictable_pages - check pages for evictability and move to
4197  * appropriate zone lru list
4198  * @pvec: pagevec with lru pages to check
4199  *
4200  * Checks pages for evictability, if an evictable page is in the unevictable
4201  * lru list, moves it to the appropriate evictable lru list. This function
4202  * should be only used for lru pages.
4203  */
4204 void check_move_unevictable_pages(struct pagevec *pvec)
4205 {
4206 	struct lruvec *lruvec;
4207 	struct pglist_data *pgdat = NULL;
4208 	int pgscanned = 0;
4209 	int pgrescued = 0;
4210 	int i;
4211 
4212 	for (i = 0; i < pvec->nr; i++) {
4213 		struct page *page = pvec->pages[i];
4214 		struct pglist_data *pagepgdat = page_pgdat(page);
4215 
4216 		pgscanned++;
4217 		if (pagepgdat != pgdat) {
4218 			if (pgdat)
4219 				spin_unlock_irq(&pgdat->lru_lock);
4220 			pgdat = pagepgdat;
4221 			spin_lock_irq(&pgdat->lru_lock);
4222 		}
4223 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4224 
4225 		if (!PageLRU(page) || !PageUnevictable(page))
4226 			continue;
4227 
4228 		if (page_evictable(page)) {
4229 			enum lru_list lru = page_lru_base_type(page);
4230 
4231 			VM_BUG_ON_PAGE(PageActive(page), page);
4232 			ClearPageUnevictable(page);
4233 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4234 			add_page_to_lru_list(page, lruvec, lru);
4235 			pgrescued++;
4236 		}
4237 	}
4238 
4239 	if (pgdat) {
4240 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4241 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4242 		spin_unlock_irq(&pgdat->lru_lock);
4243 	}
4244 }
4245 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4246