1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/file.h> 23 #include <linux/writeback.h> 24 #include <linux/blkdev.h> 25 #include <linux/buffer_head.h> /* for try_to_release_page(), 26 buffer_heads_over_limit */ 27 #include <linux/mm_inline.h> 28 #include <linux/pagevec.h> 29 #include <linux/backing-dev.h> 30 #include <linux/rmap.h> 31 #include <linux/topology.h> 32 #include <linux/cpu.h> 33 #include <linux/cpuset.h> 34 #include <linux/notifier.h> 35 #include <linux/rwsem.h> 36 37 #include <asm/tlbflush.h> 38 #include <asm/div64.h> 39 40 #include <linux/swapops.h> 41 42 /* possible outcome of pageout() */ 43 typedef enum { 44 /* failed to write page out, page is locked */ 45 PAGE_KEEP, 46 /* move page to the active list, page is locked */ 47 PAGE_ACTIVATE, 48 /* page has been sent to the disk successfully, page is unlocked */ 49 PAGE_SUCCESS, 50 /* page is clean and locked */ 51 PAGE_CLEAN, 52 } pageout_t; 53 54 struct scan_control { 55 /* Ask refill_inactive_zone, or shrink_cache to scan this many pages */ 56 unsigned long nr_to_scan; 57 58 /* Incremented by the number of inactive pages that were scanned */ 59 unsigned long nr_scanned; 60 61 /* Incremented by the number of pages reclaimed */ 62 unsigned long nr_reclaimed; 63 64 unsigned long nr_mapped; /* From page_state */ 65 66 /* Ask shrink_caches, or shrink_zone to scan at this priority */ 67 unsigned int priority; 68 69 /* This context's GFP mask */ 70 gfp_t gfp_mask; 71 72 int may_writepage; 73 74 /* Can pages be swapped as part of reclaim? */ 75 int may_swap; 76 77 /* This context's SWAP_CLUSTER_MAX. If freeing memory for 78 * suspend, we effectively ignore SWAP_CLUSTER_MAX. 79 * In this context, it doesn't matter that we scan the 80 * whole list at once. */ 81 int swap_cluster_max; 82 }; 83 84 /* 85 * The list of shrinker callbacks used by to apply pressure to 86 * ageable caches. 87 */ 88 struct shrinker { 89 shrinker_t shrinker; 90 struct list_head list; 91 int seeks; /* seeks to recreate an obj */ 92 long nr; /* objs pending delete */ 93 }; 94 95 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 96 97 #ifdef ARCH_HAS_PREFETCH 98 #define prefetch_prev_lru_page(_page, _base, _field) \ 99 do { \ 100 if ((_page)->lru.prev != _base) { \ 101 struct page *prev; \ 102 \ 103 prev = lru_to_page(&(_page->lru)); \ 104 prefetch(&prev->_field); \ 105 } \ 106 } while (0) 107 #else 108 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 109 #endif 110 111 #ifdef ARCH_HAS_PREFETCHW 112 #define prefetchw_prev_lru_page(_page, _base, _field) \ 113 do { \ 114 if ((_page)->lru.prev != _base) { \ 115 struct page *prev; \ 116 \ 117 prev = lru_to_page(&(_page->lru)); \ 118 prefetchw(&prev->_field); \ 119 } \ 120 } while (0) 121 #else 122 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 123 #endif 124 125 /* 126 * From 0 .. 100. Higher means more swappy. 127 */ 128 int vm_swappiness = 60; 129 static long total_memory; 130 131 static LIST_HEAD(shrinker_list); 132 static DECLARE_RWSEM(shrinker_rwsem); 133 134 /* 135 * Add a shrinker callback to be called from the vm 136 */ 137 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker) 138 { 139 struct shrinker *shrinker; 140 141 shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL); 142 if (shrinker) { 143 shrinker->shrinker = theshrinker; 144 shrinker->seeks = seeks; 145 shrinker->nr = 0; 146 down_write(&shrinker_rwsem); 147 list_add_tail(&shrinker->list, &shrinker_list); 148 up_write(&shrinker_rwsem); 149 } 150 return shrinker; 151 } 152 EXPORT_SYMBOL(set_shrinker); 153 154 /* 155 * Remove one 156 */ 157 void remove_shrinker(struct shrinker *shrinker) 158 { 159 down_write(&shrinker_rwsem); 160 list_del(&shrinker->list); 161 up_write(&shrinker_rwsem); 162 kfree(shrinker); 163 } 164 EXPORT_SYMBOL(remove_shrinker); 165 166 #define SHRINK_BATCH 128 167 /* 168 * Call the shrink functions to age shrinkable caches 169 * 170 * Here we assume it costs one seek to replace a lru page and that it also 171 * takes a seek to recreate a cache object. With this in mind we age equal 172 * percentages of the lru and ageable caches. This should balance the seeks 173 * generated by these structures. 174 * 175 * If the vm encounted mapped pages on the LRU it increase the pressure on 176 * slab to avoid swapping. 177 * 178 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 179 * 180 * `lru_pages' represents the number of on-LRU pages in all the zones which 181 * are eligible for the caller's allocation attempt. It is used for balancing 182 * slab reclaim versus page reclaim. 183 * 184 * Returns the number of slab objects which we shrunk. 185 */ 186 int shrink_slab(unsigned long scanned, gfp_t gfp_mask, unsigned long lru_pages) 187 { 188 struct shrinker *shrinker; 189 int ret = 0; 190 191 if (scanned == 0) 192 scanned = SWAP_CLUSTER_MAX; 193 194 if (!down_read_trylock(&shrinker_rwsem)) 195 return 1; /* Assume we'll be able to shrink next time */ 196 197 list_for_each_entry(shrinker, &shrinker_list, list) { 198 unsigned long long delta; 199 unsigned long total_scan; 200 unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask); 201 202 delta = (4 * scanned) / shrinker->seeks; 203 delta *= max_pass; 204 do_div(delta, lru_pages + 1); 205 shrinker->nr += delta; 206 if (shrinker->nr < 0) { 207 printk(KERN_ERR "%s: nr=%ld\n", 208 __FUNCTION__, shrinker->nr); 209 shrinker->nr = max_pass; 210 } 211 212 /* 213 * Avoid risking looping forever due to too large nr value: 214 * never try to free more than twice the estimate number of 215 * freeable entries. 216 */ 217 if (shrinker->nr > max_pass * 2) 218 shrinker->nr = max_pass * 2; 219 220 total_scan = shrinker->nr; 221 shrinker->nr = 0; 222 223 while (total_scan >= SHRINK_BATCH) { 224 long this_scan = SHRINK_BATCH; 225 int shrink_ret; 226 int nr_before; 227 228 nr_before = (*shrinker->shrinker)(0, gfp_mask); 229 shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask); 230 if (shrink_ret == -1) 231 break; 232 if (shrink_ret < nr_before) 233 ret += nr_before - shrink_ret; 234 mod_page_state(slabs_scanned, this_scan); 235 total_scan -= this_scan; 236 237 cond_resched(); 238 } 239 240 shrinker->nr += total_scan; 241 } 242 up_read(&shrinker_rwsem); 243 return ret; 244 } 245 246 /* Called without lock on whether page is mapped, so answer is unstable */ 247 static inline int page_mapping_inuse(struct page *page) 248 { 249 struct address_space *mapping; 250 251 /* Page is in somebody's page tables. */ 252 if (page_mapped(page)) 253 return 1; 254 255 /* Be more reluctant to reclaim swapcache than pagecache */ 256 if (PageSwapCache(page)) 257 return 1; 258 259 mapping = page_mapping(page); 260 if (!mapping) 261 return 0; 262 263 /* File is mmap'd by somebody? */ 264 return mapping_mapped(mapping); 265 } 266 267 static inline int is_page_cache_freeable(struct page *page) 268 { 269 return page_count(page) - !!PagePrivate(page) == 2; 270 } 271 272 static int may_write_to_queue(struct backing_dev_info *bdi) 273 { 274 if (current->flags & PF_SWAPWRITE) 275 return 1; 276 if (!bdi_write_congested(bdi)) 277 return 1; 278 if (bdi == current->backing_dev_info) 279 return 1; 280 return 0; 281 } 282 283 /* 284 * We detected a synchronous write error writing a page out. Probably 285 * -ENOSPC. We need to propagate that into the address_space for a subsequent 286 * fsync(), msync() or close(). 287 * 288 * The tricky part is that after writepage we cannot touch the mapping: nothing 289 * prevents it from being freed up. But we have a ref on the page and once 290 * that page is locked, the mapping is pinned. 291 * 292 * We're allowed to run sleeping lock_page() here because we know the caller has 293 * __GFP_FS. 294 */ 295 static void handle_write_error(struct address_space *mapping, 296 struct page *page, int error) 297 { 298 lock_page(page); 299 if (page_mapping(page) == mapping) { 300 if (error == -ENOSPC) 301 set_bit(AS_ENOSPC, &mapping->flags); 302 else 303 set_bit(AS_EIO, &mapping->flags); 304 } 305 unlock_page(page); 306 } 307 308 /* 309 * pageout is called by shrink_list() for each dirty page. Calls ->writepage(). 310 */ 311 static pageout_t pageout(struct page *page, struct address_space *mapping) 312 { 313 /* 314 * If the page is dirty, only perform writeback if that write 315 * will be non-blocking. To prevent this allocation from being 316 * stalled by pagecache activity. But note that there may be 317 * stalls if we need to run get_block(). We could test 318 * PagePrivate for that. 319 * 320 * If this process is currently in generic_file_write() against 321 * this page's queue, we can perform writeback even if that 322 * will block. 323 * 324 * If the page is swapcache, write it back even if that would 325 * block, for some throttling. This happens by accident, because 326 * swap_backing_dev_info is bust: it doesn't reflect the 327 * congestion state of the swapdevs. Easy to fix, if needed. 328 * See swapfile.c:page_queue_congested(). 329 */ 330 if (!is_page_cache_freeable(page)) 331 return PAGE_KEEP; 332 if (!mapping) { 333 /* 334 * Some data journaling orphaned pages can have 335 * page->mapping == NULL while being dirty with clean buffers. 336 */ 337 if (PagePrivate(page)) { 338 if (try_to_free_buffers(page)) { 339 ClearPageDirty(page); 340 printk("%s: orphaned page\n", __FUNCTION__); 341 return PAGE_CLEAN; 342 } 343 } 344 return PAGE_KEEP; 345 } 346 if (mapping->a_ops->writepage == NULL) 347 return PAGE_ACTIVATE; 348 if (!may_write_to_queue(mapping->backing_dev_info)) 349 return PAGE_KEEP; 350 351 if (clear_page_dirty_for_io(page)) { 352 int res; 353 struct writeback_control wbc = { 354 .sync_mode = WB_SYNC_NONE, 355 .nr_to_write = SWAP_CLUSTER_MAX, 356 .nonblocking = 1, 357 .for_reclaim = 1, 358 }; 359 360 SetPageReclaim(page); 361 res = mapping->a_ops->writepage(page, &wbc); 362 if (res < 0) 363 handle_write_error(mapping, page, res); 364 if (res == AOP_WRITEPAGE_ACTIVATE) { 365 ClearPageReclaim(page); 366 return PAGE_ACTIVATE; 367 } 368 if (!PageWriteback(page)) { 369 /* synchronous write or broken a_ops? */ 370 ClearPageReclaim(page); 371 } 372 373 return PAGE_SUCCESS; 374 } 375 376 return PAGE_CLEAN; 377 } 378 379 static int remove_mapping(struct address_space *mapping, struct page *page) 380 { 381 if (!mapping) 382 return 0; /* truncate got there first */ 383 384 write_lock_irq(&mapping->tree_lock); 385 386 /* 387 * The non-racy check for busy page. It is critical to check 388 * PageDirty _after_ making sure that the page is freeable and 389 * not in use by anybody. (pagecache + us == 2) 390 */ 391 if (unlikely(page_count(page) != 2)) 392 goto cannot_free; 393 smp_rmb(); 394 if (unlikely(PageDirty(page))) 395 goto cannot_free; 396 397 if (PageSwapCache(page)) { 398 swp_entry_t swap = { .val = page_private(page) }; 399 __delete_from_swap_cache(page); 400 write_unlock_irq(&mapping->tree_lock); 401 swap_free(swap); 402 __put_page(page); /* The pagecache ref */ 403 return 1; 404 } 405 406 __remove_from_page_cache(page); 407 write_unlock_irq(&mapping->tree_lock); 408 __put_page(page); 409 return 1; 410 411 cannot_free: 412 write_unlock_irq(&mapping->tree_lock); 413 return 0; 414 } 415 416 /* 417 * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed 418 */ 419 static int shrink_list(struct list_head *page_list, struct scan_control *sc) 420 { 421 LIST_HEAD(ret_pages); 422 struct pagevec freed_pvec; 423 int pgactivate = 0; 424 int reclaimed = 0; 425 426 cond_resched(); 427 428 pagevec_init(&freed_pvec, 1); 429 while (!list_empty(page_list)) { 430 struct address_space *mapping; 431 struct page *page; 432 int may_enter_fs; 433 int referenced; 434 435 cond_resched(); 436 437 page = lru_to_page(page_list); 438 list_del(&page->lru); 439 440 if (TestSetPageLocked(page)) 441 goto keep; 442 443 BUG_ON(PageActive(page)); 444 445 sc->nr_scanned++; 446 /* Double the slab pressure for mapped and swapcache pages */ 447 if (page_mapped(page) || PageSwapCache(page)) 448 sc->nr_scanned++; 449 450 if (PageWriteback(page)) 451 goto keep_locked; 452 453 referenced = page_referenced(page, 1); 454 /* In active use or really unfreeable? Activate it. */ 455 if (referenced && page_mapping_inuse(page)) 456 goto activate_locked; 457 458 #ifdef CONFIG_SWAP 459 /* 460 * Anonymous process memory has backing store? 461 * Try to allocate it some swap space here. 462 */ 463 if (PageAnon(page) && !PageSwapCache(page)) { 464 if (!sc->may_swap) 465 goto keep_locked; 466 if (!add_to_swap(page, GFP_ATOMIC)) 467 goto activate_locked; 468 } 469 #endif /* CONFIG_SWAP */ 470 471 mapping = page_mapping(page); 472 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 473 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 474 475 /* 476 * The page is mapped into the page tables of one or more 477 * processes. Try to unmap it here. 478 */ 479 if (page_mapped(page) && mapping) { 480 /* 481 * No unmapping if we do not swap 482 */ 483 if (!sc->may_swap) 484 goto keep_locked; 485 486 switch (try_to_unmap(page)) { 487 case SWAP_FAIL: 488 goto activate_locked; 489 case SWAP_AGAIN: 490 goto keep_locked; 491 case SWAP_SUCCESS: 492 ; /* try to free the page below */ 493 } 494 } 495 496 if (PageDirty(page)) { 497 if (referenced) 498 goto keep_locked; 499 if (!may_enter_fs) 500 goto keep_locked; 501 if (!sc->may_writepage) 502 goto keep_locked; 503 504 /* Page is dirty, try to write it out here */ 505 switch(pageout(page, mapping)) { 506 case PAGE_KEEP: 507 goto keep_locked; 508 case PAGE_ACTIVATE: 509 goto activate_locked; 510 case PAGE_SUCCESS: 511 if (PageWriteback(page) || PageDirty(page)) 512 goto keep; 513 /* 514 * A synchronous write - probably a ramdisk. Go 515 * ahead and try to reclaim the page. 516 */ 517 if (TestSetPageLocked(page)) 518 goto keep; 519 if (PageDirty(page) || PageWriteback(page)) 520 goto keep_locked; 521 mapping = page_mapping(page); 522 case PAGE_CLEAN: 523 ; /* try to free the page below */ 524 } 525 } 526 527 /* 528 * If the page has buffers, try to free the buffer mappings 529 * associated with this page. If we succeed we try to free 530 * the page as well. 531 * 532 * We do this even if the page is PageDirty(). 533 * try_to_release_page() does not perform I/O, but it is 534 * possible for a page to have PageDirty set, but it is actually 535 * clean (all its buffers are clean). This happens if the 536 * buffers were written out directly, with submit_bh(). ext3 537 * will do this, as well as the blockdev mapping. 538 * try_to_release_page() will discover that cleanness and will 539 * drop the buffers and mark the page clean - it can be freed. 540 * 541 * Rarely, pages can have buffers and no ->mapping. These are 542 * the pages which were not successfully invalidated in 543 * truncate_complete_page(). We try to drop those buffers here 544 * and if that worked, and the page is no longer mapped into 545 * process address space (page_count == 1) it can be freed. 546 * Otherwise, leave the page on the LRU so it is swappable. 547 */ 548 if (PagePrivate(page)) { 549 if (!try_to_release_page(page, sc->gfp_mask)) 550 goto activate_locked; 551 if (!mapping && page_count(page) == 1) 552 goto free_it; 553 } 554 555 if (!remove_mapping(mapping, page)) 556 goto keep_locked; 557 558 free_it: 559 unlock_page(page); 560 reclaimed++; 561 if (!pagevec_add(&freed_pvec, page)) 562 __pagevec_release_nonlru(&freed_pvec); 563 continue; 564 565 activate_locked: 566 SetPageActive(page); 567 pgactivate++; 568 keep_locked: 569 unlock_page(page); 570 keep: 571 list_add(&page->lru, &ret_pages); 572 BUG_ON(PageLRU(page)); 573 } 574 list_splice(&ret_pages, page_list); 575 if (pagevec_count(&freed_pvec)) 576 __pagevec_release_nonlru(&freed_pvec); 577 mod_page_state(pgactivate, pgactivate); 578 sc->nr_reclaimed += reclaimed; 579 return reclaimed; 580 } 581 582 #ifdef CONFIG_MIGRATION 583 static inline void move_to_lru(struct page *page) 584 { 585 list_del(&page->lru); 586 if (PageActive(page)) { 587 /* 588 * lru_cache_add_active checks that 589 * the PG_active bit is off. 590 */ 591 ClearPageActive(page); 592 lru_cache_add_active(page); 593 } else { 594 lru_cache_add(page); 595 } 596 put_page(page); 597 } 598 599 /* 600 * Add isolated pages on the list back to the LRU. 601 * 602 * returns the number of pages put back. 603 */ 604 int putback_lru_pages(struct list_head *l) 605 { 606 struct page *page; 607 struct page *page2; 608 int count = 0; 609 610 list_for_each_entry_safe(page, page2, l, lru) { 611 move_to_lru(page); 612 count++; 613 } 614 return count; 615 } 616 617 /* 618 * swapout a single page 619 * page is locked upon entry, unlocked on exit 620 */ 621 static int swap_page(struct page *page) 622 { 623 struct address_space *mapping = page_mapping(page); 624 625 if (page_mapped(page) && mapping) 626 if (try_to_unmap(page) != SWAP_SUCCESS) 627 goto unlock_retry; 628 629 if (PageDirty(page)) { 630 /* Page is dirty, try to write it out here */ 631 switch(pageout(page, mapping)) { 632 case PAGE_KEEP: 633 case PAGE_ACTIVATE: 634 goto unlock_retry; 635 636 case PAGE_SUCCESS: 637 goto retry; 638 639 case PAGE_CLEAN: 640 ; /* try to free the page below */ 641 } 642 } 643 644 if (PagePrivate(page)) { 645 if (!try_to_release_page(page, GFP_KERNEL) || 646 (!mapping && page_count(page) == 1)) 647 goto unlock_retry; 648 } 649 650 if (remove_mapping(mapping, page)) { 651 /* Success */ 652 unlock_page(page); 653 return 0; 654 } 655 656 unlock_retry: 657 unlock_page(page); 658 659 retry: 660 return -EAGAIN; 661 } 662 /* 663 * migrate_pages 664 * 665 * Two lists are passed to this function. The first list 666 * contains the pages isolated from the LRU to be migrated. 667 * The second list contains new pages that the pages isolated 668 * can be moved to. If the second list is NULL then all 669 * pages are swapped out. 670 * 671 * The function returns after 10 attempts or if no pages 672 * are movable anymore because t has become empty 673 * or no retryable pages exist anymore. 674 * 675 * SIMPLIFIED VERSION: This implementation of migrate_pages 676 * is only swapping out pages and never touches the second 677 * list. The direct migration patchset 678 * extends this function to avoid the use of swap. 679 * 680 * Return: Number of pages not migrated when "to" ran empty. 681 */ 682 int migrate_pages(struct list_head *from, struct list_head *to, 683 struct list_head *moved, struct list_head *failed) 684 { 685 int retry; 686 int nr_failed = 0; 687 int pass = 0; 688 struct page *page; 689 struct page *page2; 690 int swapwrite = current->flags & PF_SWAPWRITE; 691 int rc; 692 693 if (!swapwrite) 694 current->flags |= PF_SWAPWRITE; 695 696 redo: 697 retry = 0; 698 699 list_for_each_entry_safe(page, page2, from, lru) { 700 cond_resched(); 701 702 rc = 0; 703 if (page_count(page) == 1) 704 /* page was freed from under us. So we are done. */ 705 goto next; 706 707 /* 708 * Skip locked pages during the first two passes to give the 709 * functions holding the lock time to release the page. Later we 710 * use lock_page() to have a higher chance of acquiring the 711 * lock. 712 */ 713 rc = -EAGAIN; 714 if (pass > 2) 715 lock_page(page); 716 else 717 if (TestSetPageLocked(page)) 718 goto next; 719 720 /* 721 * Only wait on writeback if we have already done a pass where 722 * we we may have triggered writeouts for lots of pages. 723 */ 724 if (pass > 0) { 725 wait_on_page_writeback(page); 726 } else { 727 if (PageWriteback(page)) 728 goto unlock_page; 729 } 730 731 /* 732 * Anonymous pages must have swap cache references otherwise 733 * the information contained in the page maps cannot be 734 * preserved. 735 */ 736 if (PageAnon(page) && !PageSwapCache(page)) { 737 if (!add_to_swap(page, GFP_KERNEL)) { 738 rc = -ENOMEM; 739 goto unlock_page; 740 } 741 } 742 743 /* 744 * Page is properly locked and writeback is complete. 745 * Try to migrate the page. 746 */ 747 rc = swap_page(page); 748 goto next; 749 750 unlock_page: 751 unlock_page(page); 752 753 next: 754 if (rc == -EAGAIN) { 755 retry++; 756 } else if (rc) { 757 /* Permanent failure */ 758 list_move(&page->lru, failed); 759 nr_failed++; 760 } else { 761 /* Success */ 762 list_move(&page->lru, moved); 763 } 764 } 765 if (retry && pass++ < 10) 766 goto redo; 767 768 if (!swapwrite) 769 current->flags &= ~PF_SWAPWRITE; 770 771 return nr_failed + retry; 772 } 773 774 /* 775 * Isolate one page from the LRU lists and put it on the 776 * indicated list with elevated refcount. 777 * 778 * Result: 779 * 0 = page not on LRU list 780 * 1 = page removed from LRU list and added to the specified list. 781 */ 782 int isolate_lru_page(struct page *page) 783 { 784 int ret = 0; 785 786 if (PageLRU(page)) { 787 struct zone *zone = page_zone(page); 788 spin_lock_irq(&zone->lru_lock); 789 if (TestClearPageLRU(page)) { 790 ret = 1; 791 get_page(page); 792 if (PageActive(page)) 793 del_page_from_active_list(zone, page); 794 else 795 del_page_from_inactive_list(zone, page); 796 } 797 spin_unlock_irq(&zone->lru_lock); 798 } 799 800 return ret; 801 } 802 #endif 803 804 /* 805 * zone->lru_lock is heavily contended. Some of the functions that 806 * shrink the lists perform better by taking out a batch of pages 807 * and working on them outside the LRU lock. 808 * 809 * For pagecache intensive workloads, this function is the hottest 810 * spot in the kernel (apart from copy_*_user functions). 811 * 812 * Appropriate locks must be held before calling this function. 813 * 814 * @nr_to_scan: The number of pages to look through on the list. 815 * @src: The LRU list to pull pages off. 816 * @dst: The temp list to put pages on to. 817 * @scanned: The number of pages that were scanned. 818 * 819 * returns how many pages were moved onto *@dst. 820 */ 821 static int isolate_lru_pages(int nr_to_scan, struct list_head *src, 822 struct list_head *dst, int *scanned) 823 { 824 int nr_taken = 0; 825 struct page *page; 826 int scan = 0; 827 828 while (scan++ < nr_to_scan && !list_empty(src)) { 829 page = lru_to_page(src); 830 prefetchw_prev_lru_page(page, src, flags); 831 832 if (!TestClearPageLRU(page)) 833 BUG(); 834 list_del(&page->lru); 835 if (get_page_testone(page)) { 836 /* 837 * It is being freed elsewhere 838 */ 839 __put_page(page); 840 SetPageLRU(page); 841 list_add(&page->lru, src); 842 continue; 843 } else { 844 list_add(&page->lru, dst); 845 nr_taken++; 846 } 847 } 848 849 *scanned = scan; 850 return nr_taken; 851 } 852 853 /* 854 * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed 855 */ 856 static void shrink_cache(struct zone *zone, struct scan_control *sc) 857 { 858 LIST_HEAD(page_list); 859 struct pagevec pvec; 860 int max_scan = sc->nr_to_scan; 861 862 pagevec_init(&pvec, 1); 863 864 lru_add_drain(); 865 spin_lock_irq(&zone->lru_lock); 866 while (max_scan > 0) { 867 struct page *page; 868 int nr_taken; 869 int nr_scan; 870 int nr_freed; 871 872 nr_taken = isolate_lru_pages(sc->swap_cluster_max, 873 &zone->inactive_list, 874 &page_list, &nr_scan); 875 zone->nr_inactive -= nr_taken; 876 zone->pages_scanned += nr_scan; 877 spin_unlock_irq(&zone->lru_lock); 878 879 if (nr_taken == 0) 880 goto done; 881 882 max_scan -= nr_scan; 883 nr_freed = shrink_list(&page_list, sc); 884 885 local_irq_disable(); 886 if (current_is_kswapd()) { 887 __mod_page_state_zone(zone, pgscan_kswapd, nr_scan); 888 __mod_page_state(kswapd_steal, nr_freed); 889 } else 890 __mod_page_state_zone(zone, pgscan_direct, nr_scan); 891 __mod_page_state_zone(zone, pgsteal, nr_freed); 892 893 spin_lock(&zone->lru_lock); 894 /* 895 * Put back any unfreeable pages. 896 */ 897 while (!list_empty(&page_list)) { 898 page = lru_to_page(&page_list); 899 if (TestSetPageLRU(page)) 900 BUG(); 901 list_del(&page->lru); 902 if (PageActive(page)) 903 add_page_to_active_list(zone, page); 904 else 905 add_page_to_inactive_list(zone, page); 906 if (!pagevec_add(&pvec, page)) { 907 spin_unlock_irq(&zone->lru_lock); 908 __pagevec_release(&pvec); 909 spin_lock_irq(&zone->lru_lock); 910 } 911 } 912 } 913 spin_unlock_irq(&zone->lru_lock); 914 done: 915 pagevec_release(&pvec); 916 } 917 918 /* 919 * This moves pages from the active list to the inactive list. 920 * 921 * We move them the other way if the page is referenced by one or more 922 * processes, from rmap. 923 * 924 * If the pages are mostly unmapped, the processing is fast and it is 925 * appropriate to hold zone->lru_lock across the whole operation. But if 926 * the pages are mapped, the processing is slow (page_referenced()) so we 927 * should drop zone->lru_lock around each page. It's impossible to balance 928 * this, so instead we remove the pages from the LRU while processing them. 929 * It is safe to rely on PG_active against the non-LRU pages in here because 930 * nobody will play with that bit on a non-LRU page. 931 * 932 * The downside is that we have to touch page->_count against each page. 933 * But we had to alter page->flags anyway. 934 */ 935 static void 936 refill_inactive_zone(struct zone *zone, struct scan_control *sc) 937 { 938 int pgmoved; 939 int pgdeactivate = 0; 940 int pgscanned; 941 int nr_pages = sc->nr_to_scan; 942 LIST_HEAD(l_hold); /* The pages which were snipped off */ 943 LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */ 944 LIST_HEAD(l_active); /* Pages to go onto the active_list */ 945 struct page *page; 946 struct pagevec pvec; 947 int reclaim_mapped = 0; 948 long mapped_ratio; 949 long distress; 950 long swap_tendency; 951 952 lru_add_drain(); 953 spin_lock_irq(&zone->lru_lock); 954 pgmoved = isolate_lru_pages(nr_pages, &zone->active_list, 955 &l_hold, &pgscanned); 956 zone->pages_scanned += pgscanned; 957 zone->nr_active -= pgmoved; 958 spin_unlock_irq(&zone->lru_lock); 959 960 /* 961 * `distress' is a measure of how much trouble we're having reclaiming 962 * pages. 0 -> no problems. 100 -> great trouble. 963 */ 964 distress = 100 >> zone->prev_priority; 965 966 /* 967 * The point of this algorithm is to decide when to start reclaiming 968 * mapped memory instead of just pagecache. Work out how much memory 969 * is mapped. 970 */ 971 mapped_ratio = (sc->nr_mapped * 100) / total_memory; 972 973 /* 974 * Now decide how much we really want to unmap some pages. The mapped 975 * ratio is downgraded - just because there's a lot of mapped memory 976 * doesn't necessarily mean that page reclaim isn't succeeding. 977 * 978 * The distress ratio is important - we don't want to start going oom. 979 * 980 * A 100% value of vm_swappiness overrides this algorithm altogether. 981 */ 982 swap_tendency = mapped_ratio / 2 + distress + vm_swappiness; 983 984 /* 985 * Now use this metric to decide whether to start moving mapped memory 986 * onto the inactive list. 987 */ 988 if (swap_tendency >= 100) 989 reclaim_mapped = 1; 990 991 while (!list_empty(&l_hold)) { 992 cond_resched(); 993 page = lru_to_page(&l_hold); 994 list_del(&page->lru); 995 if (page_mapped(page)) { 996 if (!reclaim_mapped || 997 (total_swap_pages == 0 && PageAnon(page)) || 998 page_referenced(page, 0)) { 999 list_add(&page->lru, &l_active); 1000 continue; 1001 } 1002 } 1003 list_add(&page->lru, &l_inactive); 1004 } 1005 1006 pagevec_init(&pvec, 1); 1007 pgmoved = 0; 1008 spin_lock_irq(&zone->lru_lock); 1009 while (!list_empty(&l_inactive)) { 1010 page = lru_to_page(&l_inactive); 1011 prefetchw_prev_lru_page(page, &l_inactive, flags); 1012 if (TestSetPageLRU(page)) 1013 BUG(); 1014 if (!TestClearPageActive(page)) 1015 BUG(); 1016 list_move(&page->lru, &zone->inactive_list); 1017 pgmoved++; 1018 if (!pagevec_add(&pvec, page)) { 1019 zone->nr_inactive += pgmoved; 1020 spin_unlock_irq(&zone->lru_lock); 1021 pgdeactivate += pgmoved; 1022 pgmoved = 0; 1023 if (buffer_heads_over_limit) 1024 pagevec_strip(&pvec); 1025 __pagevec_release(&pvec); 1026 spin_lock_irq(&zone->lru_lock); 1027 } 1028 } 1029 zone->nr_inactive += pgmoved; 1030 pgdeactivate += pgmoved; 1031 if (buffer_heads_over_limit) { 1032 spin_unlock_irq(&zone->lru_lock); 1033 pagevec_strip(&pvec); 1034 spin_lock_irq(&zone->lru_lock); 1035 } 1036 1037 pgmoved = 0; 1038 while (!list_empty(&l_active)) { 1039 page = lru_to_page(&l_active); 1040 prefetchw_prev_lru_page(page, &l_active, flags); 1041 if (TestSetPageLRU(page)) 1042 BUG(); 1043 BUG_ON(!PageActive(page)); 1044 list_move(&page->lru, &zone->active_list); 1045 pgmoved++; 1046 if (!pagevec_add(&pvec, page)) { 1047 zone->nr_active += pgmoved; 1048 pgmoved = 0; 1049 spin_unlock_irq(&zone->lru_lock); 1050 __pagevec_release(&pvec); 1051 spin_lock_irq(&zone->lru_lock); 1052 } 1053 } 1054 zone->nr_active += pgmoved; 1055 spin_unlock(&zone->lru_lock); 1056 1057 __mod_page_state_zone(zone, pgrefill, pgscanned); 1058 __mod_page_state(pgdeactivate, pgdeactivate); 1059 local_irq_enable(); 1060 1061 pagevec_release(&pvec); 1062 } 1063 1064 /* 1065 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 1066 */ 1067 static void 1068 shrink_zone(struct zone *zone, struct scan_control *sc) 1069 { 1070 unsigned long nr_active; 1071 unsigned long nr_inactive; 1072 1073 atomic_inc(&zone->reclaim_in_progress); 1074 1075 /* 1076 * Add one to `nr_to_scan' just to make sure that the kernel will 1077 * slowly sift through the active list. 1078 */ 1079 zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1; 1080 nr_active = zone->nr_scan_active; 1081 if (nr_active >= sc->swap_cluster_max) 1082 zone->nr_scan_active = 0; 1083 else 1084 nr_active = 0; 1085 1086 zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1; 1087 nr_inactive = zone->nr_scan_inactive; 1088 if (nr_inactive >= sc->swap_cluster_max) 1089 zone->nr_scan_inactive = 0; 1090 else 1091 nr_inactive = 0; 1092 1093 while (nr_active || nr_inactive) { 1094 if (nr_active) { 1095 sc->nr_to_scan = min(nr_active, 1096 (unsigned long)sc->swap_cluster_max); 1097 nr_active -= sc->nr_to_scan; 1098 refill_inactive_zone(zone, sc); 1099 } 1100 1101 if (nr_inactive) { 1102 sc->nr_to_scan = min(nr_inactive, 1103 (unsigned long)sc->swap_cluster_max); 1104 nr_inactive -= sc->nr_to_scan; 1105 shrink_cache(zone, sc); 1106 } 1107 } 1108 1109 throttle_vm_writeout(); 1110 1111 atomic_dec(&zone->reclaim_in_progress); 1112 } 1113 1114 /* 1115 * This is the direct reclaim path, for page-allocating processes. We only 1116 * try to reclaim pages from zones which will satisfy the caller's allocation 1117 * request. 1118 * 1119 * We reclaim from a zone even if that zone is over pages_high. Because: 1120 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 1121 * allocation or 1122 * b) The zones may be over pages_high but they must go *over* pages_high to 1123 * satisfy the `incremental min' zone defense algorithm. 1124 * 1125 * Returns the number of reclaimed pages. 1126 * 1127 * If a zone is deemed to be full of pinned pages then just give it a light 1128 * scan then give up on it. 1129 */ 1130 static void 1131 shrink_caches(struct zone **zones, struct scan_control *sc) 1132 { 1133 int i; 1134 1135 for (i = 0; zones[i] != NULL; i++) { 1136 struct zone *zone = zones[i]; 1137 1138 if (!populated_zone(zone)) 1139 continue; 1140 1141 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL)) 1142 continue; 1143 1144 zone->temp_priority = sc->priority; 1145 if (zone->prev_priority > sc->priority) 1146 zone->prev_priority = sc->priority; 1147 1148 if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY) 1149 continue; /* Let kswapd poll it */ 1150 1151 shrink_zone(zone, sc); 1152 } 1153 } 1154 1155 /* 1156 * This is the main entry point to direct page reclaim. 1157 * 1158 * If a full scan of the inactive list fails to free enough memory then we 1159 * are "out of memory" and something needs to be killed. 1160 * 1161 * If the caller is !__GFP_FS then the probability of a failure is reasonably 1162 * high - the zone may be full of dirty or under-writeback pages, which this 1163 * caller can't do much about. We kick pdflush and take explicit naps in the 1164 * hope that some of these pages can be written. But if the allocating task 1165 * holds filesystem locks which prevent writeout this might not work, and the 1166 * allocation attempt will fail. 1167 */ 1168 int try_to_free_pages(struct zone **zones, gfp_t gfp_mask) 1169 { 1170 int priority; 1171 int ret = 0; 1172 int total_scanned = 0, total_reclaimed = 0; 1173 struct reclaim_state *reclaim_state = current->reclaim_state; 1174 struct scan_control sc; 1175 unsigned long lru_pages = 0; 1176 int i; 1177 1178 sc.gfp_mask = gfp_mask; 1179 sc.may_writepage = !laptop_mode; 1180 sc.may_swap = 1; 1181 1182 inc_page_state(allocstall); 1183 1184 for (i = 0; zones[i] != NULL; i++) { 1185 struct zone *zone = zones[i]; 1186 1187 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL)) 1188 continue; 1189 1190 zone->temp_priority = DEF_PRIORITY; 1191 lru_pages += zone->nr_active + zone->nr_inactive; 1192 } 1193 1194 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1195 sc.nr_mapped = read_page_state(nr_mapped); 1196 sc.nr_scanned = 0; 1197 sc.nr_reclaimed = 0; 1198 sc.priority = priority; 1199 sc.swap_cluster_max = SWAP_CLUSTER_MAX; 1200 if (!priority) 1201 disable_swap_token(); 1202 shrink_caches(zones, &sc); 1203 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages); 1204 if (reclaim_state) { 1205 sc.nr_reclaimed += reclaim_state->reclaimed_slab; 1206 reclaim_state->reclaimed_slab = 0; 1207 } 1208 total_scanned += sc.nr_scanned; 1209 total_reclaimed += sc.nr_reclaimed; 1210 if (total_reclaimed >= sc.swap_cluster_max) { 1211 ret = 1; 1212 goto out; 1213 } 1214 1215 /* 1216 * Try to write back as many pages as we just scanned. This 1217 * tends to cause slow streaming writers to write data to the 1218 * disk smoothly, at the dirtying rate, which is nice. But 1219 * that's undesirable in laptop mode, where we *want* lumpy 1220 * writeout. So in laptop mode, write out the whole world. 1221 */ 1222 if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) { 1223 wakeup_pdflush(laptop_mode ? 0 : total_scanned); 1224 sc.may_writepage = 1; 1225 } 1226 1227 /* Take a nap, wait for some writeback to complete */ 1228 if (sc.nr_scanned && priority < DEF_PRIORITY - 2) 1229 blk_congestion_wait(WRITE, HZ/10); 1230 } 1231 out: 1232 for (i = 0; zones[i] != 0; i++) { 1233 struct zone *zone = zones[i]; 1234 1235 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL)) 1236 continue; 1237 1238 zone->prev_priority = zone->temp_priority; 1239 } 1240 return ret; 1241 } 1242 1243 /* 1244 * For kswapd, balance_pgdat() will work across all this node's zones until 1245 * they are all at pages_high. 1246 * 1247 * If `nr_pages' is non-zero then it is the number of pages which are to be 1248 * reclaimed, regardless of the zone occupancies. This is a software suspend 1249 * special. 1250 * 1251 * Returns the number of pages which were actually freed. 1252 * 1253 * There is special handling here for zones which are full of pinned pages. 1254 * This can happen if the pages are all mlocked, or if they are all used by 1255 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 1256 * What we do is to detect the case where all pages in the zone have been 1257 * scanned twice and there has been zero successful reclaim. Mark the zone as 1258 * dead and from now on, only perform a short scan. Basically we're polling 1259 * the zone for when the problem goes away. 1260 * 1261 * kswapd scans the zones in the highmem->normal->dma direction. It skips 1262 * zones which have free_pages > pages_high, but once a zone is found to have 1263 * free_pages <= pages_high, we scan that zone and the lower zones regardless 1264 * of the number of free pages in the lower zones. This interoperates with 1265 * the page allocator fallback scheme to ensure that aging of pages is balanced 1266 * across the zones. 1267 */ 1268 static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order) 1269 { 1270 int to_free = nr_pages; 1271 int all_zones_ok; 1272 int priority; 1273 int i; 1274 int total_scanned, total_reclaimed; 1275 struct reclaim_state *reclaim_state = current->reclaim_state; 1276 struct scan_control sc; 1277 1278 loop_again: 1279 total_scanned = 0; 1280 total_reclaimed = 0; 1281 sc.gfp_mask = GFP_KERNEL; 1282 sc.may_writepage = !laptop_mode; 1283 sc.may_swap = 1; 1284 sc.nr_mapped = read_page_state(nr_mapped); 1285 1286 inc_page_state(pageoutrun); 1287 1288 for (i = 0; i < pgdat->nr_zones; i++) { 1289 struct zone *zone = pgdat->node_zones + i; 1290 1291 zone->temp_priority = DEF_PRIORITY; 1292 } 1293 1294 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1295 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 1296 unsigned long lru_pages = 0; 1297 1298 /* The swap token gets in the way of swapout... */ 1299 if (!priority) 1300 disable_swap_token(); 1301 1302 all_zones_ok = 1; 1303 1304 if (nr_pages == 0) { 1305 /* 1306 * Scan in the highmem->dma direction for the highest 1307 * zone which needs scanning 1308 */ 1309 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 1310 struct zone *zone = pgdat->node_zones + i; 1311 1312 if (!populated_zone(zone)) 1313 continue; 1314 1315 if (zone->all_unreclaimable && 1316 priority != DEF_PRIORITY) 1317 continue; 1318 1319 if (!zone_watermark_ok(zone, order, 1320 zone->pages_high, 0, 0)) { 1321 end_zone = i; 1322 goto scan; 1323 } 1324 } 1325 goto out; 1326 } else { 1327 end_zone = pgdat->nr_zones - 1; 1328 } 1329 scan: 1330 for (i = 0; i <= end_zone; i++) { 1331 struct zone *zone = pgdat->node_zones + i; 1332 1333 lru_pages += zone->nr_active + zone->nr_inactive; 1334 } 1335 1336 /* 1337 * Now scan the zone in the dma->highmem direction, stopping 1338 * at the last zone which needs scanning. 1339 * 1340 * We do this because the page allocator works in the opposite 1341 * direction. This prevents the page allocator from allocating 1342 * pages behind kswapd's direction of progress, which would 1343 * cause too much scanning of the lower zones. 1344 */ 1345 for (i = 0; i <= end_zone; i++) { 1346 struct zone *zone = pgdat->node_zones + i; 1347 int nr_slab; 1348 1349 if (!populated_zone(zone)) 1350 continue; 1351 1352 if (zone->all_unreclaimable && priority != DEF_PRIORITY) 1353 continue; 1354 1355 if (nr_pages == 0) { /* Not software suspend */ 1356 if (!zone_watermark_ok(zone, order, 1357 zone->pages_high, end_zone, 0)) 1358 all_zones_ok = 0; 1359 } 1360 zone->temp_priority = priority; 1361 if (zone->prev_priority > priority) 1362 zone->prev_priority = priority; 1363 sc.nr_scanned = 0; 1364 sc.nr_reclaimed = 0; 1365 sc.priority = priority; 1366 sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX; 1367 atomic_inc(&zone->reclaim_in_progress); 1368 shrink_zone(zone, &sc); 1369 atomic_dec(&zone->reclaim_in_progress); 1370 reclaim_state->reclaimed_slab = 0; 1371 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, 1372 lru_pages); 1373 sc.nr_reclaimed += reclaim_state->reclaimed_slab; 1374 total_reclaimed += sc.nr_reclaimed; 1375 total_scanned += sc.nr_scanned; 1376 if (zone->all_unreclaimable) 1377 continue; 1378 if (nr_slab == 0 && zone->pages_scanned >= 1379 (zone->nr_active + zone->nr_inactive) * 4) 1380 zone->all_unreclaimable = 1; 1381 /* 1382 * If we've done a decent amount of scanning and 1383 * the reclaim ratio is low, start doing writepage 1384 * even in laptop mode 1385 */ 1386 if (total_scanned > SWAP_CLUSTER_MAX * 2 && 1387 total_scanned > total_reclaimed+total_reclaimed/2) 1388 sc.may_writepage = 1; 1389 } 1390 if (nr_pages && to_free > total_reclaimed) 1391 continue; /* swsusp: need to do more work */ 1392 if (all_zones_ok) 1393 break; /* kswapd: all done */ 1394 /* 1395 * OK, kswapd is getting into trouble. Take a nap, then take 1396 * another pass across the zones. 1397 */ 1398 if (total_scanned && priority < DEF_PRIORITY - 2) 1399 blk_congestion_wait(WRITE, HZ/10); 1400 1401 /* 1402 * We do this so kswapd doesn't build up large priorities for 1403 * example when it is freeing in parallel with allocators. It 1404 * matches the direct reclaim path behaviour in terms of impact 1405 * on zone->*_priority. 1406 */ 1407 if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages)) 1408 break; 1409 } 1410 out: 1411 for (i = 0; i < pgdat->nr_zones; i++) { 1412 struct zone *zone = pgdat->node_zones + i; 1413 1414 zone->prev_priority = zone->temp_priority; 1415 } 1416 if (!all_zones_ok) { 1417 cond_resched(); 1418 goto loop_again; 1419 } 1420 1421 return total_reclaimed; 1422 } 1423 1424 /* 1425 * The background pageout daemon, started as a kernel thread 1426 * from the init process. 1427 * 1428 * This basically trickles out pages so that we have _some_ 1429 * free memory available even if there is no other activity 1430 * that frees anything up. This is needed for things like routing 1431 * etc, where we otherwise might have all activity going on in 1432 * asynchronous contexts that cannot page things out. 1433 * 1434 * If there are applications that are active memory-allocators 1435 * (most normal use), this basically shouldn't matter. 1436 */ 1437 static int kswapd(void *p) 1438 { 1439 unsigned long order; 1440 pg_data_t *pgdat = (pg_data_t*)p; 1441 struct task_struct *tsk = current; 1442 DEFINE_WAIT(wait); 1443 struct reclaim_state reclaim_state = { 1444 .reclaimed_slab = 0, 1445 }; 1446 cpumask_t cpumask; 1447 1448 daemonize("kswapd%d", pgdat->node_id); 1449 cpumask = node_to_cpumask(pgdat->node_id); 1450 if (!cpus_empty(cpumask)) 1451 set_cpus_allowed(tsk, cpumask); 1452 current->reclaim_state = &reclaim_state; 1453 1454 /* 1455 * Tell the memory management that we're a "memory allocator", 1456 * and that if we need more memory we should get access to it 1457 * regardless (see "__alloc_pages()"). "kswapd" should 1458 * never get caught in the normal page freeing logic. 1459 * 1460 * (Kswapd normally doesn't need memory anyway, but sometimes 1461 * you need a small amount of memory in order to be able to 1462 * page out something else, and this flag essentially protects 1463 * us from recursively trying to free more memory as we're 1464 * trying to free the first piece of memory in the first place). 1465 */ 1466 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 1467 1468 order = 0; 1469 for ( ; ; ) { 1470 unsigned long new_order; 1471 1472 try_to_freeze(); 1473 1474 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 1475 new_order = pgdat->kswapd_max_order; 1476 pgdat->kswapd_max_order = 0; 1477 if (order < new_order) { 1478 /* 1479 * Don't sleep if someone wants a larger 'order' 1480 * allocation 1481 */ 1482 order = new_order; 1483 } else { 1484 schedule(); 1485 order = pgdat->kswapd_max_order; 1486 } 1487 finish_wait(&pgdat->kswapd_wait, &wait); 1488 1489 balance_pgdat(pgdat, 0, order); 1490 } 1491 return 0; 1492 } 1493 1494 /* 1495 * A zone is low on free memory, so wake its kswapd task to service it. 1496 */ 1497 void wakeup_kswapd(struct zone *zone, int order) 1498 { 1499 pg_data_t *pgdat; 1500 1501 if (!populated_zone(zone)) 1502 return; 1503 1504 pgdat = zone->zone_pgdat; 1505 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0)) 1506 return; 1507 if (pgdat->kswapd_max_order < order) 1508 pgdat->kswapd_max_order = order; 1509 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL)) 1510 return; 1511 if (!waitqueue_active(&pgdat->kswapd_wait)) 1512 return; 1513 wake_up_interruptible(&pgdat->kswapd_wait); 1514 } 1515 1516 #ifdef CONFIG_PM 1517 /* 1518 * Try to free `nr_pages' of memory, system-wide. Returns the number of freed 1519 * pages. 1520 */ 1521 int shrink_all_memory(int nr_pages) 1522 { 1523 pg_data_t *pgdat; 1524 int nr_to_free = nr_pages; 1525 int ret = 0; 1526 struct reclaim_state reclaim_state = { 1527 .reclaimed_slab = 0, 1528 }; 1529 1530 current->reclaim_state = &reclaim_state; 1531 for_each_pgdat(pgdat) { 1532 int freed; 1533 freed = balance_pgdat(pgdat, nr_to_free, 0); 1534 ret += freed; 1535 nr_to_free -= freed; 1536 if (nr_to_free <= 0) 1537 break; 1538 } 1539 current->reclaim_state = NULL; 1540 return ret; 1541 } 1542 #endif 1543 1544 #ifdef CONFIG_HOTPLUG_CPU 1545 /* It's optimal to keep kswapds on the same CPUs as their memory, but 1546 not required for correctness. So if the last cpu in a node goes 1547 away, we get changed to run anywhere: as the first one comes back, 1548 restore their cpu bindings. */ 1549 static int __devinit cpu_callback(struct notifier_block *nfb, 1550 unsigned long action, 1551 void *hcpu) 1552 { 1553 pg_data_t *pgdat; 1554 cpumask_t mask; 1555 1556 if (action == CPU_ONLINE) { 1557 for_each_pgdat(pgdat) { 1558 mask = node_to_cpumask(pgdat->node_id); 1559 if (any_online_cpu(mask) != NR_CPUS) 1560 /* One of our CPUs online: restore mask */ 1561 set_cpus_allowed(pgdat->kswapd, mask); 1562 } 1563 } 1564 return NOTIFY_OK; 1565 } 1566 #endif /* CONFIG_HOTPLUG_CPU */ 1567 1568 static int __init kswapd_init(void) 1569 { 1570 pg_data_t *pgdat; 1571 swap_setup(); 1572 for_each_pgdat(pgdat) 1573 pgdat->kswapd 1574 = find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL)); 1575 total_memory = nr_free_pagecache_pages(); 1576 hotcpu_notifier(cpu_callback, 0); 1577 return 0; 1578 } 1579 1580 module_init(kswapd_init) 1581 1582 #ifdef CONFIG_NUMA 1583 /* 1584 * Zone reclaim mode 1585 * 1586 * If non-zero call zone_reclaim when the number of free pages falls below 1587 * the watermarks. 1588 * 1589 * In the future we may add flags to the mode. However, the page allocator 1590 * should only have to check that zone_reclaim_mode != 0 before calling 1591 * zone_reclaim(). 1592 */ 1593 int zone_reclaim_mode __read_mostly; 1594 1595 /* 1596 * Mininum time between zone reclaim scans 1597 */ 1598 #define ZONE_RECLAIM_INTERVAL 30*HZ 1599 /* 1600 * Try to free up some pages from this zone through reclaim. 1601 */ 1602 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 1603 { 1604 int nr_pages; 1605 struct task_struct *p = current; 1606 struct reclaim_state reclaim_state; 1607 struct scan_control sc; 1608 cpumask_t mask; 1609 int node_id; 1610 1611 if (time_before(jiffies, 1612 zone->last_unsuccessful_zone_reclaim + ZONE_RECLAIM_INTERVAL)) 1613 return 0; 1614 1615 if (!(gfp_mask & __GFP_WAIT) || 1616 zone->all_unreclaimable || 1617 atomic_read(&zone->reclaim_in_progress) > 0) 1618 return 0; 1619 1620 node_id = zone->zone_pgdat->node_id; 1621 mask = node_to_cpumask(node_id); 1622 if (!cpus_empty(mask) && node_id != numa_node_id()) 1623 return 0; 1624 1625 sc.may_writepage = 0; 1626 sc.may_swap = 0; 1627 sc.nr_scanned = 0; 1628 sc.nr_reclaimed = 0; 1629 sc.priority = 0; 1630 sc.nr_mapped = read_page_state(nr_mapped); 1631 sc.gfp_mask = gfp_mask; 1632 1633 disable_swap_token(); 1634 1635 nr_pages = 1 << order; 1636 if (nr_pages > SWAP_CLUSTER_MAX) 1637 sc.swap_cluster_max = nr_pages; 1638 else 1639 sc.swap_cluster_max = SWAP_CLUSTER_MAX; 1640 1641 cond_resched(); 1642 p->flags |= PF_MEMALLOC; 1643 reclaim_state.reclaimed_slab = 0; 1644 p->reclaim_state = &reclaim_state; 1645 1646 shrink_zone(zone, &sc); 1647 1648 p->reclaim_state = NULL; 1649 current->flags &= ~PF_MEMALLOC; 1650 1651 if (sc.nr_reclaimed == 0) 1652 zone->last_unsuccessful_zone_reclaim = jiffies; 1653 1654 return sc.nr_reclaimed >= nr_pages; 1655 } 1656 #endif 1657 1658