xref: /openbmc/linux/mm/vmscan.c (revision a92f71263af9d0ab77c260f709c0c079656221aa)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h>	/* for try_to_release_page(),
26 					buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
36 
37 #include <asm/tlbflush.h>
38 #include <asm/div64.h>
39 
40 #include <linux/swapops.h>
41 
42 /* possible outcome of pageout() */
43 typedef enum {
44 	/* failed to write page out, page is locked */
45 	PAGE_KEEP,
46 	/* move page to the active list, page is locked */
47 	PAGE_ACTIVATE,
48 	/* page has been sent to the disk successfully, page is unlocked */
49 	PAGE_SUCCESS,
50 	/* page is clean and locked */
51 	PAGE_CLEAN,
52 } pageout_t;
53 
54 struct scan_control {
55 	/* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
56 	unsigned long nr_to_scan;
57 
58 	/* Incremented by the number of inactive pages that were scanned */
59 	unsigned long nr_scanned;
60 
61 	/* Incremented by the number of pages reclaimed */
62 	unsigned long nr_reclaimed;
63 
64 	unsigned long nr_mapped;	/* From page_state */
65 
66 	/* Ask shrink_caches, or shrink_zone to scan at this priority */
67 	unsigned int priority;
68 
69 	/* This context's GFP mask */
70 	gfp_t gfp_mask;
71 
72 	int may_writepage;
73 
74 	/* Can pages be swapped as part of reclaim? */
75 	int may_swap;
76 
77 	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
78 	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
79 	 * In this context, it doesn't matter that we scan the
80 	 * whole list at once. */
81 	int swap_cluster_max;
82 };
83 
84 /*
85  * The list of shrinker callbacks used by to apply pressure to
86  * ageable caches.
87  */
88 struct shrinker {
89 	shrinker_t		shrinker;
90 	struct list_head	list;
91 	int			seeks;	/* seeks to recreate an obj */
92 	long			nr;	/* objs pending delete */
93 };
94 
95 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
96 
97 #ifdef ARCH_HAS_PREFETCH
98 #define prefetch_prev_lru_page(_page, _base, _field)			\
99 	do {								\
100 		if ((_page)->lru.prev != _base) {			\
101 			struct page *prev;				\
102 									\
103 			prev = lru_to_page(&(_page->lru));		\
104 			prefetch(&prev->_field);			\
105 		}							\
106 	} while (0)
107 #else
108 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
109 #endif
110 
111 #ifdef ARCH_HAS_PREFETCHW
112 #define prefetchw_prev_lru_page(_page, _base, _field)			\
113 	do {								\
114 		if ((_page)->lru.prev != _base) {			\
115 			struct page *prev;				\
116 									\
117 			prev = lru_to_page(&(_page->lru));		\
118 			prefetchw(&prev->_field);			\
119 		}							\
120 	} while (0)
121 #else
122 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
123 #endif
124 
125 /*
126  * From 0 .. 100.  Higher means more swappy.
127  */
128 int vm_swappiness = 60;
129 static long total_memory;
130 
131 static LIST_HEAD(shrinker_list);
132 static DECLARE_RWSEM(shrinker_rwsem);
133 
134 /*
135  * Add a shrinker callback to be called from the vm
136  */
137 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
138 {
139         struct shrinker *shrinker;
140 
141         shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
142         if (shrinker) {
143 	        shrinker->shrinker = theshrinker;
144 	        shrinker->seeks = seeks;
145 	        shrinker->nr = 0;
146 	        down_write(&shrinker_rwsem);
147 	        list_add_tail(&shrinker->list, &shrinker_list);
148 	        up_write(&shrinker_rwsem);
149 	}
150 	return shrinker;
151 }
152 EXPORT_SYMBOL(set_shrinker);
153 
154 /*
155  * Remove one
156  */
157 void remove_shrinker(struct shrinker *shrinker)
158 {
159 	down_write(&shrinker_rwsem);
160 	list_del(&shrinker->list);
161 	up_write(&shrinker_rwsem);
162 	kfree(shrinker);
163 }
164 EXPORT_SYMBOL(remove_shrinker);
165 
166 #define SHRINK_BATCH 128
167 /*
168  * Call the shrink functions to age shrinkable caches
169  *
170  * Here we assume it costs one seek to replace a lru page and that it also
171  * takes a seek to recreate a cache object.  With this in mind we age equal
172  * percentages of the lru and ageable caches.  This should balance the seeks
173  * generated by these structures.
174  *
175  * If the vm encounted mapped pages on the LRU it increase the pressure on
176  * slab to avoid swapping.
177  *
178  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
179  *
180  * `lru_pages' represents the number of on-LRU pages in all the zones which
181  * are eligible for the caller's allocation attempt.  It is used for balancing
182  * slab reclaim versus page reclaim.
183  *
184  * Returns the number of slab objects which we shrunk.
185  */
186 int shrink_slab(unsigned long scanned, gfp_t gfp_mask, unsigned long lru_pages)
187 {
188 	struct shrinker *shrinker;
189 	int ret = 0;
190 
191 	if (scanned == 0)
192 		scanned = SWAP_CLUSTER_MAX;
193 
194 	if (!down_read_trylock(&shrinker_rwsem))
195 		return 1;	/* Assume we'll be able to shrink next time */
196 
197 	list_for_each_entry(shrinker, &shrinker_list, list) {
198 		unsigned long long delta;
199 		unsigned long total_scan;
200 		unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
201 
202 		delta = (4 * scanned) / shrinker->seeks;
203 		delta *= max_pass;
204 		do_div(delta, lru_pages + 1);
205 		shrinker->nr += delta;
206 		if (shrinker->nr < 0) {
207 			printk(KERN_ERR "%s: nr=%ld\n",
208 					__FUNCTION__, shrinker->nr);
209 			shrinker->nr = max_pass;
210 		}
211 
212 		/*
213 		 * Avoid risking looping forever due to too large nr value:
214 		 * never try to free more than twice the estimate number of
215 		 * freeable entries.
216 		 */
217 		if (shrinker->nr > max_pass * 2)
218 			shrinker->nr = max_pass * 2;
219 
220 		total_scan = shrinker->nr;
221 		shrinker->nr = 0;
222 
223 		while (total_scan >= SHRINK_BATCH) {
224 			long this_scan = SHRINK_BATCH;
225 			int shrink_ret;
226 			int nr_before;
227 
228 			nr_before = (*shrinker->shrinker)(0, gfp_mask);
229 			shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
230 			if (shrink_ret == -1)
231 				break;
232 			if (shrink_ret < nr_before)
233 				ret += nr_before - shrink_ret;
234 			mod_page_state(slabs_scanned, this_scan);
235 			total_scan -= this_scan;
236 
237 			cond_resched();
238 		}
239 
240 		shrinker->nr += total_scan;
241 	}
242 	up_read(&shrinker_rwsem);
243 	return ret;
244 }
245 
246 /* Called without lock on whether page is mapped, so answer is unstable */
247 static inline int page_mapping_inuse(struct page *page)
248 {
249 	struct address_space *mapping;
250 
251 	/* Page is in somebody's page tables. */
252 	if (page_mapped(page))
253 		return 1;
254 
255 	/* Be more reluctant to reclaim swapcache than pagecache */
256 	if (PageSwapCache(page))
257 		return 1;
258 
259 	mapping = page_mapping(page);
260 	if (!mapping)
261 		return 0;
262 
263 	/* File is mmap'd by somebody? */
264 	return mapping_mapped(mapping);
265 }
266 
267 static inline int is_page_cache_freeable(struct page *page)
268 {
269 	return page_count(page) - !!PagePrivate(page) == 2;
270 }
271 
272 static int may_write_to_queue(struct backing_dev_info *bdi)
273 {
274 	if (current->flags & PF_SWAPWRITE)
275 		return 1;
276 	if (!bdi_write_congested(bdi))
277 		return 1;
278 	if (bdi == current->backing_dev_info)
279 		return 1;
280 	return 0;
281 }
282 
283 /*
284  * We detected a synchronous write error writing a page out.  Probably
285  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
286  * fsync(), msync() or close().
287  *
288  * The tricky part is that after writepage we cannot touch the mapping: nothing
289  * prevents it from being freed up.  But we have a ref on the page and once
290  * that page is locked, the mapping is pinned.
291  *
292  * We're allowed to run sleeping lock_page() here because we know the caller has
293  * __GFP_FS.
294  */
295 static void handle_write_error(struct address_space *mapping,
296 				struct page *page, int error)
297 {
298 	lock_page(page);
299 	if (page_mapping(page) == mapping) {
300 		if (error == -ENOSPC)
301 			set_bit(AS_ENOSPC, &mapping->flags);
302 		else
303 			set_bit(AS_EIO, &mapping->flags);
304 	}
305 	unlock_page(page);
306 }
307 
308 /*
309  * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
310  */
311 static pageout_t pageout(struct page *page, struct address_space *mapping)
312 {
313 	/*
314 	 * If the page is dirty, only perform writeback if that write
315 	 * will be non-blocking.  To prevent this allocation from being
316 	 * stalled by pagecache activity.  But note that there may be
317 	 * stalls if we need to run get_block().  We could test
318 	 * PagePrivate for that.
319 	 *
320 	 * If this process is currently in generic_file_write() against
321 	 * this page's queue, we can perform writeback even if that
322 	 * will block.
323 	 *
324 	 * If the page is swapcache, write it back even if that would
325 	 * block, for some throttling. This happens by accident, because
326 	 * swap_backing_dev_info is bust: it doesn't reflect the
327 	 * congestion state of the swapdevs.  Easy to fix, if needed.
328 	 * See swapfile.c:page_queue_congested().
329 	 */
330 	if (!is_page_cache_freeable(page))
331 		return PAGE_KEEP;
332 	if (!mapping) {
333 		/*
334 		 * Some data journaling orphaned pages can have
335 		 * page->mapping == NULL while being dirty with clean buffers.
336 		 */
337 		if (PagePrivate(page)) {
338 			if (try_to_free_buffers(page)) {
339 				ClearPageDirty(page);
340 				printk("%s: orphaned page\n", __FUNCTION__);
341 				return PAGE_CLEAN;
342 			}
343 		}
344 		return PAGE_KEEP;
345 	}
346 	if (mapping->a_ops->writepage == NULL)
347 		return PAGE_ACTIVATE;
348 	if (!may_write_to_queue(mapping->backing_dev_info))
349 		return PAGE_KEEP;
350 
351 	if (clear_page_dirty_for_io(page)) {
352 		int res;
353 		struct writeback_control wbc = {
354 			.sync_mode = WB_SYNC_NONE,
355 			.nr_to_write = SWAP_CLUSTER_MAX,
356 			.nonblocking = 1,
357 			.for_reclaim = 1,
358 		};
359 
360 		SetPageReclaim(page);
361 		res = mapping->a_ops->writepage(page, &wbc);
362 		if (res < 0)
363 			handle_write_error(mapping, page, res);
364 		if (res == AOP_WRITEPAGE_ACTIVATE) {
365 			ClearPageReclaim(page);
366 			return PAGE_ACTIVATE;
367 		}
368 		if (!PageWriteback(page)) {
369 			/* synchronous write or broken a_ops? */
370 			ClearPageReclaim(page);
371 		}
372 
373 		return PAGE_SUCCESS;
374 	}
375 
376 	return PAGE_CLEAN;
377 }
378 
379 static int remove_mapping(struct address_space *mapping, struct page *page)
380 {
381 	if (!mapping)
382 		return 0;		/* truncate got there first */
383 
384 	write_lock_irq(&mapping->tree_lock);
385 
386 	/*
387 	 * The non-racy check for busy page.  It is critical to check
388 	 * PageDirty _after_ making sure that the page is freeable and
389 	 * not in use by anybody. 	(pagecache + us == 2)
390 	 */
391 	if (unlikely(page_count(page) != 2))
392 		goto cannot_free;
393 	smp_rmb();
394 	if (unlikely(PageDirty(page)))
395 		goto cannot_free;
396 
397 	if (PageSwapCache(page)) {
398 		swp_entry_t swap = { .val = page_private(page) };
399 		__delete_from_swap_cache(page);
400 		write_unlock_irq(&mapping->tree_lock);
401 		swap_free(swap);
402 		__put_page(page);	/* The pagecache ref */
403 		return 1;
404 	}
405 
406 	__remove_from_page_cache(page);
407 	write_unlock_irq(&mapping->tree_lock);
408 	__put_page(page);
409 	return 1;
410 
411 cannot_free:
412 	write_unlock_irq(&mapping->tree_lock);
413 	return 0;
414 }
415 
416 /*
417  * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
418  */
419 static int shrink_list(struct list_head *page_list, struct scan_control *sc)
420 {
421 	LIST_HEAD(ret_pages);
422 	struct pagevec freed_pvec;
423 	int pgactivate = 0;
424 	int reclaimed = 0;
425 
426 	cond_resched();
427 
428 	pagevec_init(&freed_pvec, 1);
429 	while (!list_empty(page_list)) {
430 		struct address_space *mapping;
431 		struct page *page;
432 		int may_enter_fs;
433 		int referenced;
434 
435 		cond_resched();
436 
437 		page = lru_to_page(page_list);
438 		list_del(&page->lru);
439 
440 		if (TestSetPageLocked(page))
441 			goto keep;
442 
443 		BUG_ON(PageActive(page));
444 
445 		sc->nr_scanned++;
446 		/* Double the slab pressure for mapped and swapcache pages */
447 		if (page_mapped(page) || PageSwapCache(page))
448 			sc->nr_scanned++;
449 
450 		if (PageWriteback(page))
451 			goto keep_locked;
452 
453 		referenced = page_referenced(page, 1);
454 		/* In active use or really unfreeable?  Activate it. */
455 		if (referenced && page_mapping_inuse(page))
456 			goto activate_locked;
457 
458 #ifdef CONFIG_SWAP
459 		/*
460 		 * Anonymous process memory has backing store?
461 		 * Try to allocate it some swap space here.
462 		 */
463 		if (PageAnon(page) && !PageSwapCache(page)) {
464 			if (!sc->may_swap)
465 				goto keep_locked;
466 			if (!add_to_swap(page, GFP_ATOMIC))
467 				goto activate_locked;
468 		}
469 #endif /* CONFIG_SWAP */
470 
471 		mapping = page_mapping(page);
472 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
473 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
474 
475 		/*
476 		 * The page is mapped into the page tables of one or more
477 		 * processes. Try to unmap it here.
478 		 */
479 		if (page_mapped(page) && mapping) {
480 			/*
481 			 * No unmapping if we do not swap
482 			 */
483 			if (!sc->may_swap)
484 				goto keep_locked;
485 
486 			switch (try_to_unmap(page)) {
487 			case SWAP_FAIL:
488 				goto activate_locked;
489 			case SWAP_AGAIN:
490 				goto keep_locked;
491 			case SWAP_SUCCESS:
492 				; /* try to free the page below */
493 			}
494 		}
495 
496 		if (PageDirty(page)) {
497 			if (referenced)
498 				goto keep_locked;
499 			if (!may_enter_fs)
500 				goto keep_locked;
501 			if (!sc->may_writepage)
502 				goto keep_locked;
503 
504 			/* Page is dirty, try to write it out here */
505 			switch(pageout(page, mapping)) {
506 			case PAGE_KEEP:
507 				goto keep_locked;
508 			case PAGE_ACTIVATE:
509 				goto activate_locked;
510 			case PAGE_SUCCESS:
511 				if (PageWriteback(page) || PageDirty(page))
512 					goto keep;
513 				/*
514 				 * A synchronous write - probably a ramdisk.  Go
515 				 * ahead and try to reclaim the page.
516 				 */
517 				if (TestSetPageLocked(page))
518 					goto keep;
519 				if (PageDirty(page) || PageWriteback(page))
520 					goto keep_locked;
521 				mapping = page_mapping(page);
522 			case PAGE_CLEAN:
523 				; /* try to free the page below */
524 			}
525 		}
526 
527 		/*
528 		 * If the page has buffers, try to free the buffer mappings
529 		 * associated with this page. If we succeed we try to free
530 		 * the page as well.
531 		 *
532 		 * We do this even if the page is PageDirty().
533 		 * try_to_release_page() does not perform I/O, but it is
534 		 * possible for a page to have PageDirty set, but it is actually
535 		 * clean (all its buffers are clean).  This happens if the
536 		 * buffers were written out directly, with submit_bh(). ext3
537 		 * will do this, as well as the blockdev mapping.
538 		 * try_to_release_page() will discover that cleanness and will
539 		 * drop the buffers and mark the page clean - it can be freed.
540 		 *
541 		 * Rarely, pages can have buffers and no ->mapping.  These are
542 		 * the pages which were not successfully invalidated in
543 		 * truncate_complete_page().  We try to drop those buffers here
544 		 * and if that worked, and the page is no longer mapped into
545 		 * process address space (page_count == 1) it can be freed.
546 		 * Otherwise, leave the page on the LRU so it is swappable.
547 		 */
548 		if (PagePrivate(page)) {
549 			if (!try_to_release_page(page, sc->gfp_mask))
550 				goto activate_locked;
551 			if (!mapping && page_count(page) == 1)
552 				goto free_it;
553 		}
554 
555 		if (!remove_mapping(mapping, page))
556 			goto keep_locked;
557 
558 free_it:
559 		unlock_page(page);
560 		reclaimed++;
561 		if (!pagevec_add(&freed_pvec, page))
562 			__pagevec_release_nonlru(&freed_pvec);
563 		continue;
564 
565 activate_locked:
566 		SetPageActive(page);
567 		pgactivate++;
568 keep_locked:
569 		unlock_page(page);
570 keep:
571 		list_add(&page->lru, &ret_pages);
572 		BUG_ON(PageLRU(page));
573 	}
574 	list_splice(&ret_pages, page_list);
575 	if (pagevec_count(&freed_pvec))
576 		__pagevec_release_nonlru(&freed_pvec);
577 	mod_page_state(pgactivate, pgactivate);
578 	sc->nr_reclaimed += reclaimed;
579 	return reclaimed;
580 }
581 
582 #ifdef CONFIG_MIGRATION
583 static inline void move_to_lru(struct page *page)
584 {
585 	list_del(&page->lru);
586 	if (PageActive(page)) {
587 		/*
588 		 * lru_cache_add_active checks that
589 		 * the PG_active bit is off.
590 		 */
591 		ClearPageActive(page);
592 		lru_cache_add_active(page);
593 	} else {
594 		lru_cache_add(page);
595 	}
596 	put_page(page);
597 }
598 
599 /*
600  * Add isolated pages on the list back to the LRU.
601  *
602  * returns the number of pages put back.
603  */
604 int putback_lru_pages(struct list_head *l)
605 {
606 	struct page *page;
607 	struct page *page2;
608 	int count = 0;
609 
610 	list_for_each_entry_safe(page, page2, l, lru) {
611 		move_to_lru(page);
612 		count++;
613 	}
614 	return count;
615 }
616 
617 /*
618  * swapout a single page
619  * page is locked upon entry, unlocked on exit
620  */
621 static int swap_page(struct page *page)
622 {
623 	struct address_space *mapping = page_mapping(page);
624 
625 	if (page_mapped(page) && mapping)
626 		if (try_to_unmap(page) != SWAP_SUCCESS)
627 			goto unlock_retry;
628 
629 	if (PageDirty(page)) {
630 		/* Page is dirty, try to write it out here */
631 		switch(pageout(page, mapping)) {
632 		case PAGE_KEEP:
633 		case PAGE_ACTIVATE:
634 			goto unlock_retry;
635 
636 		case PAGE_SUCCESS:
637 			goto retry;
638 
639 		case PAGE_CLEAN:
640 			; /* try to free the page below */
641 		}
642 	}
643 
644 	if (PagePrivate(page)) {
645 		if (!try_to_release_page(page, GFP_KERNEL) ||
646 		    (!mapping && page_count(page) == 1))
647 			goto unlock_retry;
648 	}
649 
650 	if (remove_mapping(mapping, page)) {
651 		/* Success */
652 		unlock_page(page);
653 		return 0;
654 	}
655 
656 unlock_retry:
657 	unlock_page(page);
658 
659 retry:
660 	return -EAGAIN;
661 }
662 /*
663  * migrate_pages
664  *
665  * Two lists are passed to this function. The first list
666  * contains the pages isolated from the LRU to be migrated.
667  * The second list contains new pages that the pages isolated
668  * can be moved to. If the second list is NULL then all
669  * pages are swapped out.
670  *
671  * The function returns after 10 attempts or if no pages
672  * are movable anymore because t has become empty
673  * or no retryable pages exist anymore.
674  *
675  * SIMPLIFIED VERSION: This implementation of migrate_pages
676  * is only swapping out pages and never touches the second
677  * list. The direct migration patchset
678  * extends this function to avoid the use of swap.
679  *
680  * Return: Number of pages not migrated when "to" ran empty.
681  */
682 int migrate_pages(struct list_head *from, struct list_head *to,
683 		  struct list_head *moved, struct list_head *failed)
684 {
685 	int retry;
686 	int nr_failed = 0;
687 	int pass = 0;
688 	struct page *page;
689 	struct page *page2;
690 	int swapwrite = current->flags & PF_SWAPWRITE;
691 	int rc;
692 
693 	if (!swapwrite)
694 		current->flags |= PF_SWAPWRITE;
695 
696 redo:
697 	retry = 0;
698 
699 	list_for_each_entry_safe(page, page2, from, lru) {
700 		cond_resched();
701 
702 		rc = 0;
703 		if (page_count(page) == 1)
704 			/* page was freed from under us. So we are done. */
705 			goto next;
706 
707 		/*
708 		 * Skip locked pages during the first two passes to give the
709 		 * functions holding the lock time to release the page. Later we
710 		 * use lock_page() to have a higher chance of acquiring the
711 		 * lock.
712 		 */
713 		rc = -EAGAIN;
714 		if (pass > 2)
715 			lock_page(page);
716 		else
717 			if (TestSetPageLocked(page))
718 				goto next;
719 
720 		/*
721 		 * Only wait on writeback if we have already done a pass where
722 		 * we we may have triggered writeouts for lots of pages.
723 		 */
724 		if (pass > 0) {
725 			wait_on_page_writeback(page);
726 		} else {
727 			if (PageWriteback(page))
728 				goto unlock_page;
729 		}
730 
731 		/*
732 		 * Anonymous pages must have swap cache references otherwise
733 		 * the information contained in the page maps cannot be
734 		 * preserved.
735 		 */
736 		if (PageAnon(page) && !PageSwapCache(page)) {
737 			if (!add_to_swap(page, GFP_KERNEL)) {
738 				rc = -ENOMEM;
739 				goto unlock_page;
740 			}
741 		}
742 
743 		/*
744 		 * Page is properly locked and writeback is complete.
745 		 * Try to migrate the page.
746 		 */
747 		rc = swap_page(page);
748 		goto next;
749 
750 unlock_page:
751 		unlock_page(page);
752 
753 next:
754 		if (rc == -EAGAIN) {
755 			retry++;
756 		} else if (rc) {
757 			/* Permanent failure */
758 			list_move(&page->lru, failed);
759 			nr_failed++;
760 		} else {
761 			/* Success */
762 			list_move(&page->lru, moved);
763 		}
764 	}
765 	if (retry && pass++ < 10)
766 		goto redo;
767 
768 	if (!swapwrite)
769 		current->flags &= ~PF_SWAPWRITE;
770 
771 	return nr_failed + retry;
772 }
773 
774 /*
775  * Isolate one page from the LRU lists and put it on the
776  * indicated list with elevated refcount.
777  *
778  * Result:
779  *  0 = page not on LRU list
780  *  1 = page removed from LRU list and added to the specified list.
781  */
782 int isolate_lru_page(struct page *page)
783 {
784 	int ret = 0;
785 
786 	if (PageLRU(page)) {
787 		struct zone *zone = page_zone(page);
788 		spin_lock_irq(&zone->lru_lock);
789 		if (TestClearPageLRU(page)) {
790 			ret = 1;
791 			get_page(page);
792 			if (PageActive(page))
793 				del_page_from_active_list(zone, page);
794 			else
795 				del_page_from_inactive_list(zone, page);
796 		}
797 		spin_unlock_irq(&zone->lru_lock);
798 	}
799 
800 	return ret;
801 }
802 #endif
803 
804 /*
805  * zone->lru_lock is heavily contended.  Some of the functions that
806  * shrink the lists perform better by taking out a batch of pages
807  * and working on them outside the LRU lock.
808  *
809  * For pagecache intensive workloads, this function is the hottest
810  * spot in the kernel (apart from copy_*_user functions).
811  *
812  * Appropriate locks must be held before calling this function.
813  *
814  * @nr_to_scan:	The number of pages to look through on the list.
815  * @src:	The LRU list to pull pages off.
816  * @dst:	The temp list to put pages on to.
817  * @scanned:	The number of pages that were scanned.
818  *
819  * returns how many pages were moved onto *@dst.
820  */
821 static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
822 			     struct list_head *dst, int *scanned)
823 {
824 	int nr_taken = 0;
825 	struct page *page;
826 	int scan = 0;
827 
828 	while (scan++ < nr_to_scan && !list_empty(src)) {
829 		page = lru_to_page(src);
830 		prefetchw_prev_lru_page(page, src, flags);
831 
832 		if (!TestClearPageLRU(page))
833 			BUG();
834 		list_del(&page->lru);
835 		if (get_page_testone(page)) {
836 			/*
837 			 * It is being freed elsewhere
838 			 */
839 			__put_page(page);
840 			SetPageLRU(page);
841 			list_add(&page->lru, src);
842 			continue;
843 		} else {
844 			list_add(&page->lru, dst);
845 			nr_taken++;
846 		}
847 	}
848 
849 	*scanned = scan;
850 	return nr_taken;
851 }
852 
853 /*
854  * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
855  */
856 static void shrink_cache(struct zone *zone, struct scan_control *sc)
857 {
858 	LIST_HEAD(page_list);
859 	struct pagevec pvec;
860 	int max_scan = sc->nr_to_scan;
861 
862 	pagevec_init(&pvec, 1);
863 
864 	lru_add_drain();
865 	spin_lock_irq(&zone->lru_lock);
866 	while (max_scan > 0) {
867 		struct page *page;
868 		int nr_taken;
869 		int nr_scan;
870 		int nr_freed;
871 
872 		nr_taken = isolate_lru_pages(sc->swap_cluster_max,
873 					     &zone->inactive_list,
874 					     &page_list, &nr_scan);
875 		zone->nr_inactive -= nr_taken;
876 		zone->pages_scanned += nr_scan;
877 		spin_unlock_irq(&zone->lru_lock);
878 
879 		if (nr_taken == 0)
880 			goto done;
881 
882 		max_scan -= nr_scan;
883 		nr_freed = shrink_list(&page_list, sc);
884 
885 		local_irq_disable();
886 		if (current_is_kswapd()) {
887 			__mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
888 			__mod_page_state(kswapd_steal, nr_freed);
889 		} else
890 			__mod_page_state_zone(zone, pgscan_direct, nr_scan);
891 		__mod_page_state_zone(zone, pgsteal, nr_freed);
892 
893 		spin_lock(&zone->lru_lock);
894 		/*
895 		 * Put back any unfreeable pages.
896 		 */
897 		while (!list_empty(&page_list)) {
898 			page = lru_to_page(&page_list);
899 			if (TestSetPageLRU(page))
900 				BUG();
901 			list_del(&page->lru);
902 			if (PageActive(page))
903 				add_page_to_active_list(zone, page);
904 			else
905 				add_page_to_inactive_list(zone, page);
906 			if (!pagevec_add(&pvec, page)) {
907 				spin_unlock_irq(&zone->lru_lock);
908 				__pagevec_release(&pvec);
909 				spin_lock_irq(&zone->lru_lock);
910 			}
911 		}
912   	}
913 	spin_unlock_irq(&zone->lru_lock);
914 done:
915 	pagevec_release(&pvec);
916 }
917 
918 /*
919  * This moves pages from the active list to the inactive list.
920  *
921  * We move them the other way if the page is referenced by one or more
922  * processes, from rmap.
923  *
924  * If the pages are mostly unmapped, the processing is fast and it is
925  * appropriate to hold zone->lru_lock across the whole operation.  But if
926  * the pages are mapped, the processing is slow (page_referenced()) so we
927  * should drop zone->lru_lock around each page.  It's impossible to balance
928  * this, so instead we remove the pages from the LRU while processing them.
929  * It is safe to rely on PG_active against the non-LRU pages in here because
930  * nobody will play with that bit on a non-LRU page.
931  *
932  * The downside is that we have to touch page->_count against each page.
933  * But we had to alter page->flags anyway.
934  */
935 static void
936 refill_inactive_zone(struct zone *zone, struct scan_control *sc)
937 {
938 	int pgmoved;
939 	int pgdeactivate = 0;
940 	int pgscanned;
941 	int nr_pages = sc->nr_to_scan;
942 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
943 	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
944 	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
945 	struct page *page;
946 	struct pagevec pvec;
947 	int reclaim_mapped = 0;
948 	long mapped_ratio;
949 	long distress;
950 	long swap_tendency;
951 
952 	lru_add_drain();
953 	spin_lock_irq(&zone->lru_lock);
954 	pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
955 				    &l_hold, &pgscanned);
956 	zone->pages_scanned += pgscanned;
957 	zone->nr_active -= pgmoved;
958 	spin_unlock_irq(&zone->lru_lock);
959 
960 	/*
961 	 * `distress' is a measure of how much trouble we're having reclaiming
962 	 * pages.  0 -> no problems.  100 -> great trouble.
963 	 */
964 	distress = 100 >> zone->prev_priority;
965 
966 	/*
967 	 * The point of this algorithm is to decide when to start reclaiming
968 	 * mapped memory instead of just pagecache.  Work out how much memory
969 	 * is mapped.
970 	 */
971 	mapped_ratio = (sc->nr_mapped * 100) / total_memory;
972 
973 	/*
974 	 * Now decide how much we really want to unmap some pages.  The mapped
975 	 * ratio is downgraded - just because there's a lot of mapped memory
976 	 * doesn't necessarily mean that page reclaim isn't succeeding.
977 	 *
978 	 * The distress ratio is important - we don't want to start going oom.
979 	 *
980 	 * A 100% value of vm_swappiness overrides this algorithm altogether.
981 	 */
982 	swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
983 
984 	/*
985 	 * Now use this metric to decide whether to start moving mapped memory
986 	 * onto the inactive list.
987 	 */
988 	if (swap_tendency >= 100)
989 		reclaim_mapped = 1;
990 
991 	while (!list_empty(&l_hold)) {
992 		cond_resched();
993 		page = lru_to_page(&l_hold);
994 		list_del(&page->lru);
995 		if (page_mapped(page)) {
996 			if (!reclaim_mapped ||
997 			    (total_swap_pages == 0 && PageAnon(page)) ||
998 			    page_referenced(page, 0)) {
999 				list_add(&page->lru, &l_active);
1000 				continue;
1001 			}
1002 		}
1003 		list_add(&page->lru, &l_inactive);
1004 	}
1005 
1006 	pagevec_init(&pvec, 1);
1007 	pgmoved = 0;
1008 	spin_lock_irq(&zone->lru_lock);
1009 	while (!list_empty(&l_inactive)) {
1010 		page = lru_to_page(&l_inactive);
1011 		prefetchw_prev_lru_page(page, &l_inactive, flags);
1012 		if (TestSetPageLRU(page))
1013 			BUG();
1014 		if (!TestClearPageActive(page))
1015 			BUG();
1016 		list_move(&page->lru, &zone->inactive_list);
1017 		pgmoved++;
1018 		if (!pagevec_add(&pvec, page)) {
1019 			zone->nr_inactive += pgmoved;
1020 			spin_unlock_irq(&zone->lru_lock);
1021 			pgdeactivate += pgmoved;
1022 			pgmoved = 0;
1023 			if (buffer_heads_over_limit)
1024 				pagevec_strip(&pvec);
1025 			__pagevec_release(&pvec);
1026 			spin_lock_irq(&zone->lru_lock);
1027 		}
1028 	}
1029 	zone->nr_inactive += pgmoved;
1030 	pgdeactivate += pgmoved;
1031 	if (buffer_heads_over_limit) {
1032 		spin_unlock_irq(&zone->lru_lock);
1033 		pagevec_strip(&pvec);
1034 		spin_lock_irq(&zone->lru_lock);
1035 	}
1036 
1037 	pgmoved = 0;
1038 	while (!list_empty(&l_active)) {
1039 		page = lru_to_page(&l_active);
1040 		prefetchw_prev_lru_page(page, &l_active, flags);
1041 		if (TestSetPageLRU(page))
1042 			BUG();
1043 		BUG_ON(!PageActive(page));
1044 		list_move(&page->lru, &zone->active_list);
1045 		pgmoved++;
1046 		if (!pagevec_add(&pvec, page)) {
1047 			zone->nr_active += pgmoved;
1048 			pgmoved = 0;
1049 			spin_unlock_irq(&zone->lru_lock);
1050 			__pagevec_release(&pvec);
1051 			spin_lock_irq(&zone->lru_lock);
1052 		}
1053 	}
1054 	zone->nr_active += pgmoved;
1055 	spin_unlock(&zone->lru_lock);
1056 
1057 	__mod_page_state_zone(zone, pgrefill, pgscanned);
1058 	__mod_page_state(pgdeactivate, pgdeactivate);
1059 	local_irq_enable();
1060 
1061 	pagevec_release(&pvec);
1062 }
1063 
1064 /*
1065  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1066  */
1067 static void
1068 shrink_zone(struct zone *zone, struct scan_control *sc)
1069 {
1070 	unsigned long nr_active;
1071 	unsigned long nr_inactive;
1072 
1073 	atomic_inc(&zone->reclaim_in_progress);
1074 
1075 	/*
1076 	 * Add one to `nr_to_scan' just to make sure that the kernel will
1077 	 * slowly sift through the active list.
1078 	 */
1079 	zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
1080 	nr_active = zone->nr_scan_active;
1081 	if (nr_active >= sc->swap_cluster_max)
1082 		zone->nr_scan_active = 0;
1083 	else
1084 		nr_active = 0;
1085 
1086 	zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
1087 	nr_inactive = zone->nr_scan_inactive;
1088 	if (nr_inactive >= sc->swap_cluster_max)
1089 		zone->nr_scan_inactive = 0;
1090 	else
1091 		nr_inactive = 0;
1092 
1093 	while (nr_active || nr_inactive) {
1094 		if (nr_active) {
1095 			sc->nr_to_scan = min(nr_active,
1096 					(unsigned long)sc->swap_cluster_max);
1097 			nr_active -= sc->nr_to_scan;
1098 			refill_inactive_zone(zone, sc);
1099 		}
1100 
1101 		if (nr_inactive) {
1102 			sc->nr_to_scan = min(nr_inactive,
1103 					(unsigned long)sc->swap_cluster_max);
1104 			nr_inactive -= sc->nr_to_scan;
1105 			shrink_cache(zone, sc);
1106 		}
1107 	}
1108 
1109 	throttle_vm_writeout();
1110 
1111 	atomic_dec(&zone->reclaim_in_progress);
1112 }
1113 
1114 /*
1115  * This is the direct reclaim path, for page-allocating processes.  We only
1116  * try to reclaim pages from zones which will satisfy the caller's allocation
1117  * request.
1118  *
1119  * We reclaim from a zone even if that zone is over pages_high.  Because:
1120  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1121  *    allocation or
1122  * b) The zones may be over pages_high but they must go *over* pages_high to
1123  *    satisfy the `incremental min' zone defense algorithm.
1124  *
1125  * Returns the number of reclaimed pages.
1126  *
1127  * If a zone is deemed to be full of pinned pages then just give it a light
1128  * scan then give up on it.
1129  */
1130 static void
1131 shrink_caches(struct zone **zones, struct scan_control *sc)
1132 {
1133 	int i;
1134 
1135 	for (i = 0; zones[i] != NULL; i++) {
1136 		struct zone *zone = zones[i];
1137 
1138 		if (!populated_zone(zone))
1139 			continue;
1140 
1141 		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1142 			continue;
1143 
1144 		zone->temp_priority = sc->priority;
1145 		if (zone->prev_priority > sc->priority)
1146 			zone->prev_priority = sc->priority;
1147 
1148 		if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
1149 			continue;	/* Let kswapd poll it */
1150 
1151 		shrink_zone(zone, sc);
1152 	}
1153 }
1154 
1155 /*
1156  * This is the main entry point to direct page reclaim.
1157  *
1158  * If a full scan of the inactive list fails to free enough memory then we
1159  * are "out of memory" and something needs to be killed.
1160  *
1161  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1162  * high - the zone may be full of dirty or under-writeback pages, which this
1163  * caller can't do much about.  We kick pdflush and take explicit naps in the
1164  * hope that some of these pages can be written.  But if the allocating task
1165  * holds filesystem locks which prevent writeout this might not work, and the
1166  * allocation attempt will fail.
1167  */
1168 int try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
1169 {
1170 	int priority;
1171 	int ret = 0;
1172 	int total_scanned = 0, total_reclaimed = 0;
1173 	struct reclaim_state *reclaim_state = current->reclaim_state;
1174 	struct scan_control sc;
1175 	unsigned long lru_pages = 0;
1176 	int i;
1177 
1178 	sc.gfp_mask = gfp_mask;
1179 	sc.may_writepage = !laptop_mode;
1180 	sc.may_swap = 1;
1181 
1182 	inc_page_state(allocstall);
1183 
1184 	for (i = 0; zones[i] != NULL; i++) {
1185 		struct zone *zone = zones[i];
1186 
1187 		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1188 			continue;
1189 
1190 		zone->temp_priority = DEF_PRIORITY;
1191 		lru_pages += zone->nr_active + zone->nr_inactive;
1192 	}
1193 
1194 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1195 		sc.nr_mapped = read_page_state(nr_mapped);
1196 		sc.nr_scanned = 0;
1197 		sc.nr_reclaimed = 0;
1198 		sc.priority = priority;
1199 		sc.swap_cluster_max = SWAP_CLUSTER_MAX;
1200 		if (!priority)
1201 			disable_swap_token();
1202 		shrink_caches(zones, &sc);
1203 		shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1204 		if (reclaim_state) {
1205 			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1206 			reclaim_state->reclaimed_slab = 0;
1207 		}
1208 		total_scanned += sc.nr_scanned;
1209 		total_reclaimed += sc.nr_reclaimed;
1210 		if (total_reclaimed >= sc.swap_cluster_max) {
1211 			ret = 1;
1212 			goto out;
1213 		}
1214 
1215 		/*
1216 		 * Try to write back as many pages as we just scanned.  This
1217 		 * tends to cause slow streaming writers to write data to the
1218 		 * disk smoothly, at the dirtying rate, which is nice.   But
1219 		 * that's undesirable in laptop mode, where we *want* lumpy
1220 		 * writeout.  So in laptop mode, write out the whole world.
1221 		 */
1222 		if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
1223 			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1224 			sc.may_writepage = 1;
1225 		}
1226 
1227 		/* Take a nap, wait for some writeback to complete */
1228 		if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1229 			blk_congestion_wait(WRITE, HZ/10);
1230 	}
1231 out:
1232 	for (i = 0; zones[i] != 0; i++) {
1233 		struct zone *zone = zones[i];
1234 
1235 		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1236 			continue;
1237 
1238 		zone->prev_priority = zone->temp_priority;
1239 	}
1240 	return ret;
1241 }
1242 
1243 /*
1244  * For kswapd, balance_pgdat() will work across all this node's zones until
1245  * they are all at pages_high.
1246  *
1247  * If `nr_pages' is non-zero then it is the number of pages which are to be
1248  * reclaimed, regardless of the zone occupancies.  This is a software suspend
1249  * special.
1250  *
1251  * Returns the number of pages which were actually freed.
1252  *
1253  * There is special handling here for zones which are full of pinned pages.
1254  * This can happen if the pages are all mlocked, or if they are all used by
1255  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1256  * What we do is to detect the case where all pages in the zone have been
1257  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1258  * dead and from now on, only perform a short scan.  Basically we're polling
1259  * the zone for when the problem goes away.
1260  *
1261  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1262  * zones which have free_pages > pages_high, but once a zone is found to have
1263  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1264  * of the number of free pages in the lower zones.  This interoperates with
1265  * the page allocator fallback scheme to ensure that aging of pages is balanced
1266  * across the zones.
1267  */
1268 static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
1269 {
1270 	int to_free = nr_pages;
1271 	int all_zones_ok;
1272 	int priority;
1273 	int i;
1274 	int total_scanned, total_reclaimed;
1275 	struct reclaim_state *reclaim_state = current->reclaim_state;
1276 	struct scan_control sc;
1277 
1278 loop_again:
1279 	total_scanned = 0;
1280 	total_reclaimed = 0;
1281 	sc.gfp_mask = GFP_KERNEL;
1282 	sc.may_writepage = !laptop_mode;
1283 	sc.may_swap = 1;
1284 	sc.nr_mapped = read_page_state(nr_mapped);
1285 
1286 	inc_page_state(pageoutrun);
1287 
1288 	for (i = 0; i < pgdat->nr_zones; i++) {
1289 		struct zone *zone = pgdat->node_zones + i;
1290 
1291 		zone->temp_priority = DEF_PRIORITY;
1292 	}
1293 
1294 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1295 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1296 		unsigned long lru_pages = 0;
1297 
1298 		/* The swap token gets in the way of swapout... */
1299 		if (!priority)
1300 			disable_swap_token();
1301 
1302 		all_zones_ok = 1;
1303 
1304 		if (nr_pages == 0) {
1305 			/*
1306 			 * Scan in the highmem->dma direction for the highest
1307 			 * zone which needs scanning
1308 			 */
1309 			for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1310 				struct zone *zone = pgdat->node_zones + i;
1311 
1312 				if (!populated_zone(zone))
1313 					continue;
1314 
1315 				if (zone->all_unreclaimable &&
1316 						priority != DEF_PRIORITY)
1317 					continue;
1318 
1319 				if (!zone_watermark_ok(zone, order,
1320 						zone->pages_high, 0, 0)) {
1321 					end_zone = i;
1322 					goto scan;
1323 				}
1324 			}
1325 			goto out;
1326 		} else {
1327 			end_zone = pgdat->nr_zones - 1;
1328 		}
1329 scan:
1330 		for (i = 0; i <= end_zone; i++) {
1331 			struct zone *zone = pgdat->node_zones + i;
1332 
1333 			lru_pages += zone->nr_active + zone->nr_inactive;
1334 		}
1335 
1336 		/*
1337 		 * Now scan the zone in the dma->highmem direction, stopping
1338 		 * at the last zone which needs scanning.
1339 		 *
1340 		 * We do this because the page allocator works in the opposite
1341 		 * direction.  This prevents the page allocator from allocating
1342 		 * pages behind kswapd's direction of progress, which would
1343 		 * cause too much scanning of the lower zones.
1344 		 */
1345 		for (i = 0; i <= end_zone; i++) {
1346 			struct zone *zone = pgdat->node_zones + i;
1347 			int nr_slab;
1348 
1349 			if (!populated_zone(zone))
1350 				continue;
1351 
1352 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1353 				continue;
1354 
1355 			if (nr_pages == 0) {	/* Not software suspend */
1356 				if (!zone_watermark_ok(zone, order,
1357 						zone->pages_high, end_zone, 0))
1358 					all_zones_ok = 0;
1359 			}
1360 			zone->temp_priority = priority;
1361 			if (zone->prev_priority > priority)
1362 				zone->prev_priority = priority;
1363 			sc.nr_scanned = 0;
1364 			sc.nr_reclaimed = 0;
1365 			sc.priority = priority;
1366 			sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
1367 			atomic_inc(&zone->reclaim_in_progress);
1368 			shrink_zone(zone, &sc);
1369 			atomic_dec(&zone->reclaim_in_progress);
1370 			reclaim_state->reclaimed_slab = 0;
1371 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1372 						lru_pages);
1373 			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1374 			total_reclaimed += sc.nr_reclaimed;
1375 			total_scanned += sc.nr_scanned;
1376 			if (zone->all_unreclaimable)
1377 				continue;
1378 			if (nr_slab == 0 && zone->pages_scanned >=
1379 				    (zone->nr_active + zone->nr_inactive) * 4)
1380 				zone->all_unreclaimable = 1;
1381 			/*
1382 			 * If we've done a decent amount of scanning and
1383 			 * the reclaim ratio is low, start doing writepage
1384 			 * even in laptop mode
1385 			 */
1386 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1387 			    total_scanned > total_reclaimed+total_reclaimed/2)
1388 				sc.may_writepage = 1;
1389 		}
1390 		if (nr_pages && to_free > total_reclaimed)
1391 			continue;	/* swsusp: need to do more work */
1392 		if (all_zones_ok)
1393 			break;		/* kswapd: all done */
1394 		/*
1395 		 * OK, kswapd is getting into trouble.  Take a nap, then take
1396 		 * another pass across the zones.
1397 		 */
1398 		if (total_scanned && priority < DEF_PRIORITY - 2)
1399 			blk_congestion_wait(WRITE, HZ/10);
1400 
1401 		/*
1402 		 * We do this so kswapd doesn't build up large priorities for
1403 		 * example when it is freeing in parallel with allocators. It
1404 		 * matches the direct reclaim path behaviour in terms of impact
1405 		 * on zone->*_priority.
1406 		 */
1407 		if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
1408 			break;
1409 	}
1410 out:
1411 	for (i = 0; i < pgdat->nr_zones; i++) {
1412 		struct zone *zone = pgdat->node_zones + i;
1413 
1414 		zone->prev_priority = zone->temp_priority;
1415 	}
1416 	if (!all_zones_ok) {
1417 		cond_resched();
1418 		goto loop_again;
1419 	}
1420 
1421 	return total_reclaimed;
1422 }
1423 
1424 /*
1425  * The background pageout daemon, started as a kernel thread
1426  * from the init process.
1427  *
1428  * This basically trickles out pages so that we have _some_
1429  * free memory available even if there is no other activity
1430  * that frees anything up. This is needed for things like routing
1431  * etc, where we otherwise might have all activity going on in
1432  * asynchronous contexts that cannot page things out.
1433  *
1434  * If there are applications that are active memory-allocators
1435  * (most normal use), this basically shouldn't matter.
1436  */
1437 static int kswapd(void *p)
1438 {
1439 	unsigned long order;
1440 	pg_data_t *pgdat = (pg_data_t*)p;
1441 	struct task_struct *tsk = current;
1442 	DEFINE_WAIT(wait);
1443 	struct reclaim_state reclaim_state = {
1444 		.reclaimed_slab = 0,
1445 	};
1446 	cpumask_t cpumask;
1447 
1448 	daemonize("kswapd%d", pgdat->node_id);
1449 	cpumask = node_to_cpumask(pgdat->node_id);
1450 	if (!cpus_empty(cpumask))
1451 		set_cpus_allowed(tsk, cpumask);
1452 	current->reclaim_state = &reclaim_state;
1453 
1454 	/*
1455 	 * Tell the memory management that we're a "memory allocator",
1456 	 * and that if we need more memory we should get access to it
1457 	 * regardless (see "__alloc_pages()"). "kswapd" should
1458 	 * never get caught in the normal page freeing logic.
1459 	 *
1460 	 * (Kswapd normally doesn't need memory anyway, but sometimes
1461 	 * you need a small amount of memory in order to be able to
1462 	 * page out something else, and this flag essentially protects
1463 	 * us from recursively trying to free more memory as we're
1464 	 * trying to free the first piece of memory in the first place).
1465 	 */
1466 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1467 
1468 	order = 0;
1469 	for ( ; ; ) {
1470 		unsigned long new_order;
1471 
1472 		try_to_freeze();
1473 
1474 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1475 		new_order = pgdat->kswapd_max_order;
1476 		pgdat->kswapd_max_order = 0;
1477 		if (order < new_order) {
1478 			/*
1479 			 * Don't sleep if someone wants a larger 'order'
1480 			 * allocation
1481 			 */
1482 			order = new_order;
1483 		} else {
1484 			schedule();
1485 			order = pgdat->kswapd_max_order;
1486 		}
1487 		finish_wait(&pgdat->kswapd_wait, &wait);
1488 
1489 		balance_pgdat(pgdat, 0, order);
1490 	}
1491 	return 0;
1492 }
1493 
1494 /*
1495  * A zone is low on free memory, so wake its kswapd task to service it.
1496  */
1497 void wakeup_kswapd(struct zone *zone, int order)
1498 {
1499 	pg_data_t *pgdat;
1500 
1501 	if (!populated_zone(zone))
1502 		return;
1503 
1504 	pgdat = zone->zone_pgdat;
1505 	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1506 		return;
1507 	if (pgdat->kswapd_max_order < order)
1508 		pgdat->kswapd_max_order = order;
1509 	if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1510 		return;
1511 	if (!waitqueue_active(&pgdat->kswapd_wait))
1512 		return;
1513 	wake_up_interruptible(&pgdat->kswapd_wait);
1514 }
1515 
1516 #ifdef CONFIG_PM
1517 /*
1518  * Try to free `nr_pages' of memory, system-wide.  Returns the number of freed
1519  * pages.
1520  */
1521 int shrink_all_memory(int nr_pages)
1522 {
1523 	pg_data_t *pgdat;
1524 	int nr_to_free = nr_pages;
1525 	int ret = 0;
1526 	struct reclaim_state reclaim_state = {
1527 		.reclaimed_slab = 0,
1528 	};
1529 
1530 	current->reclaim_state = &reclaim_state;
1531 	for_each_pgdat(pgdat) {
1532 		int freed;
1533 		freed = balance_pgdat(pgdat, nr_to_free, 0);
1534 		ret += freed;
1535 		nr_to_free -= freed;
1536 		if (nr_to_free <= 0)
1537 			break;
1538 	}
1539 	current->reclaim_state = NULL;
1540 	return ret;
1541 }
1542 #endif
1543 
1544 #ifdef CONFIG_HOTPLUG_CPU
1545 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1546    not required for correctness.  So if the last cpu in a node goes
1547    away, we get changed to run anywhere: as the first one comes back,
1548    restore their cpu bindings. */
1549 static int __devinit cpu_callback(struct notifier_block *nfb,
1550 				  unsigned long action,
1551 				  void *hcpu)
1552 {
1553 	pg_data_t *pgdat;
1554 	cpumask_t mask;
1555 
1556 	if (action == CPU_ONLINE) {
1557 		for_each_pgdat(pgdat) {
1558 			mask = node_to_cpumask(pgdat->node_id);
1559 			if (any_online_cpu(mask) != NR_CPUS)
1560 				/* One of our CPUs online: restore mask */
1561 				set_cpus_allowed(pgdat->kswapd, mask);
1562 		}
1563 	}
1564 	return NOTIFY_OK;
1565 }
1566 #endif /* CONFIG_HOTPLUG_CPU */
1567 
1568 static int __init kswapd_init(void)
1569 {
1570 	pg_data_t *pgdat;
1571 	swap_setup();
1572 	for_each_pgdat(pgdat)
1573 		pgdat->kswapd
1574 		= find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
1575 	total_memory = nr_free_pagecache_pages();
1576 	hotcpu_notifier(cpu_callback, 0);
1577 	return 0;
1578 }
1579 
1580 module_init(kswapd_init)
1581 
1582 #ifdef CONFIG_NUMA
1583 /*
1584  * Zone reclaim mode
1585  *
1586  * If non-zero call zone_reclaim when the number of free pages falls below
1587  * the watermarks.
1588  *
1589  * In the future we may add flags to the mode. However, the page allocator
1590  * should only have to check that zone_reclaim_mode != 0 before calling
1591  * zone_reclaim().
1592  */
1593 int zone_reclaim_mode __read_mostly;
1594 
1595 /*
1596  * Mininum time between zone reclaim scans
1597  */
1598 #define ZONE_RECLAIM_INTERVAL 30*HZ
1599 
1600 /*
1601  * Priority for ZONE_RECLAIM. This determines the fraction of pages
1602  * of a node considered for each zone_reclaim. 4 scans 1/16th of
1603  * a zone.
1604  */
1605 #define ZONE_RECLAIM_PRIORITY 4
1606 
1607 /*
1608  * Try to free up some pages from this zone through reclaim.
1609  */
1610 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1611 {
1612 	int nr_pages;
1613 	struct task_struct *p = current;
1614 	struct reclaim_state reclaim_state;
1615 	struct scan_control sc;
1616 	cpumask_t mask;
1617 	int node_id;
1618 
1619 	if (time_before(jiffies,
1620 		zone->last_unsuccessful_zone_reclaim + ZONE_RECLAIM_INTERVAL))
1621 			return 0;
1622 
1623 	if (!(gfp_mask & __GFP_WAIT) ||
1624 		zone->all_unreclaimable ||
1625 		atomic_read(&zone->reclaim_in_progress) > 0)
1626 			return 0;
1627 
1628 	node_id = zone->zone_pgdat->node_id;
1629 	mask = node_to_cpumask(node_id);
1630 	if (!cpus_empty(mask) && node_id != numa_node_id())
1631 		return 0;
1632 
1633 	sc.may_writepage = 0;
1634 	sc.may_swap = 0;
1635 	sc.nr_scanned = 0;
1636 	sc.nr_reclaimed = 0;
1637 	sc.priority = ZONE_RECLAIM_PRIORITY + 1;
1638 	sc.nr_mapped = read_page_state(nr_mapped);
1639 	sc.gfp_mask = gfp_mask;
1640 
1641 	disable_swap_token();
1642 
1643 	nr_pages = 1 << order;
1644 	if (nr_pages > SWAP_CLUSTER_MAX)
1645 		sc.swap_cluster_max = nr_pages;
1646 	else
1647 		sc.swap_cluster_max = SWAP_CLUSTER_MAX;
1648 
1649 	cond_resched();
1650 	p->flags |= PF_MEMALLOC;
1651 	reclaim_state.reclaimed_slab = 0;
1652 	p->reclaim_state = &reclaim_state;
1653 
1654 	/*
1655 	 * Free memory by calling shrink zone with increasing priorities
1656 	 * until we have enough memory freed.
1657 	 */
1658 	do {
1659 		sc.priority--;
1660 		shrink_zone(zone, &sc);
1661 
1662 	} while (sc.nr_reclaimed < nr_pages && sc.priority > 0);
1663 
1664 	p->reclaim_state = NULL;
1665 	current->flags &= ~PF_MEMALLOC;
1666 
1667 	if (sc.nr_reclaimed == 0)
1668 		zone->last_unsuccessful_zone_reclaim = jiffies;
1669 
1670 	return sc.nr_reclaimed >= nr_pages;
1671 }
1672 #endif
1673 
1674