xref: /openbmc/linux/mm/vmscan.c (revision a579086c99ed70cc4bfc104348dbe3dd8f2787e6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/rwsem.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/memory-tiers.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 #include <linux/khugepaged.h>
58 
59 #include <asm/tlbflush.h>
60 #include <asm/div64.h>
61 
62 #include <linux/swapops.h>
63 #include <linux/balloon_compaction.h>
64 #include <linux/sched/sysctl.h>
65 
66 #include "internal.h"
67 #include "swap.h"
68 
69 #define CREATE_TRACE_POINTS
70 #include <trace/events/vmscan.h>
71 
72 struct scan_control {
73 	/* How many pages shrink_list() should reclaim */
74 	unsigned long nr_to_reclaim;
75 
76 	/*
77 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
78 	 * are scanned.
79 	 */
80 	nodemask_t	*nodemask;
81 
82 	/*
83 	 * The memory cgroup that hit its limit and as a result is the
84 	 * primary target of this reclaim invocation.
85 	 */
86 	struct mem_cgroup *target_mem_cgroup;
87 
88 	/*
89 	 * Scan pressure balancing between anon and file LRUs
90 	 */
91 	unsigned long	anon_cost;
92 	unsigned long	file_cost;
93 
94 	/* Can active folios be deactivated as part of reclaim? */
95 #define DEACTIVATE_ANON 1
96 #define DEACTIVATE_FILE 2
97 	unsigned int may_deactivate:2;
98 	unsigned int force_deactivate:1;
99 	unsigned int skipped_deactivate:1;
100 
101 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
102 	unsigned int may_writepage:1;
103 
104 	/* Can mapped folios be reclaimed? */
105 	unsigned int may_unmap:1;
106 
107 	/* Can folios be swapped as part of reclaim? */
108 	unsigned int may_swap:1;
109 
110 	/* Proactive reclaim invoked by userspace through memory.reclaim */
111 	unsigned int proactive:1;
112 
113 	/*
114 	 * Cgroup memory below memory.low is protected as long as we
115 	 * don't threaten to OOM. If any cgroup is reclaimed at
116 	 * reduced force or passed over entirely due to its memory.low
117 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
118 	 * result, then go back for one more cycle that reclaims the protected
119 	 * memory (memcg_low_reclaim) to avert OOM.
120 	 */
121 	unsigned int memcg_low_reclaim:1;
122 	unsigned int memcg_low_skipped:1;
123 
124 	unsigned int hibernation_mode:1;
125 
126 	/* One of the zones is ready for compaction */
127 	unsigned int compaction_ready:1;
128 
129 	/* There is easily reclaimable cold cache in the current node */
130 	unsigned int cache_trim_mode:1;
131 
132 	/* The file folios on the current node are dangerously low */
133 	unsigned int file_is_tiny:1;
134 
135 	/* Always discard instead of demoting to lower tier memory */
136 	unsigned int no_demotion:1;
137 
138 #ifdef CONFIG_LRU_GEN
139 	/* help kswapd make better choices among multiple memcgs */
140 	unsigned int memcgs_need_aging:1;
141 	unsigned long last_reclaimed;
142 #endif
143 
144 	/* Allocation order */
145 	s8 order;
146 
147 	/* Scan (total_size >> priority) pages at once */
148 	s8 priority;
149 
150 	/* The highest zone to isolate folios for reclaim from */
151 	s8 reclaim_idx;
152 
153 	/* This context's GFP mask */
154 	gfp_t gfp_mask;
155 
156 	/* Incremented by the number of inactive pages that were scanned */
157 	unsigned long nr_scanned;
158 
159 	/* Number of pages freed so far during a call to shrink_zones() */
160 	unsigned long nr_reclaimed;
161 
162 	struct {
163 		unsigned int dirty;
164 		unsigned int unqueued_dirty;
165 		unsigned int congested;
166 		unsigned int writeback;
167 		unsigned int immediate;
168 		unsigned int file_taken;
169 		unsigned int taken;
170 	} nr;
171 
172 	/* for recording the reclaimed slab by now */
173 	struct reclaim_state reclaim_state;
174 };
175 
176 #ifdef ARCH_HAS_PREFETCHW
177 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
178 	do {								\
179 		if ((_folio)->lru.prev != _base) {			\
180 			struct folio *prev;				\
181 									\
182 			prev = lru_to_folio(&(_folio->lru));		\
183 			prefetchw(&prev->_field);			\
184 		}							\
185 	} while (0)
186 #else
187 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
188 #endif
189 
190 /*
191  * From 0 .. 200.  Higher means more swappy.
192  */
193 int vm_swappiness = 60;
194 
195 static void set_task_reclaim_state(struct task_struct *task,
196 				   struct reclaim_state *rs)
197 {
198 	/* Check for an overwrite */
199 	WARN_ON_ONCE(rs && task->reclaim_state);
200 
201 	/* Check for the nulling of an already-nulled member */
202 	WARN_ON_ONCE(!rs && !task->reclaim_state);
203 
204 	task->reclaim_state = rs;
205 }
206 
207 LIST_HEAD(shrinker_list);
208 DECLARE_RWSEM(shrinker_rwsem);
209 
210 #ifdef CONFIG_MEMCG
211 static int shrinker_nr_max;
212 
213 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
214 static inline int shrinker_map_size(int nr_items)
215 {
216 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
217 }
218 
219 static inline int shrinker_defer_size(int nr_items)
220 {
221 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
222 }
223 
224 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
225 						     int nid)
226 {
227 	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
228 					 lockdep_is_held(&shrinker_rwsem));
229 }
230 
231 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
232 				    int map_size, int defer_size,
233 				    int old_map_size, int old_defer_size)
234 {
235 	struct shrinker_info *new, *old;
236 	struct mem_cgroup_per_node *pn;
237 	int nid;
238 	int size = map_size + defer_size;
239 
240 	for_each_node(nid) {
241 		pn = memcg->nodeinfo[nid];
242 		old = shrinker_info_protected(memcg, nid);
243 		/* Not yet online memcg */
244 		if (!old)
245 			return 0;
246 
247 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
248 		if (!new)
249 			return -ENOMEM;
250 
251 		new->nr_deferred = (atomic_long_t *)(new + 1);
252 		new->map = (void *)new->nr_deferred + defer_size;
253 
254 		/* map: set all old bits, clear all new bits */
255 		memset(new->map, (int)0xff, old_map_size);
256 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
257 		/* nr_deferred: copy old values, clear all new values */
258 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
259 		memset((void *)new->nr_deferred + old_defer_size, 0,
260 		       defer_size - old_defer_size);
261 
262 		rcu_assign_pointer(pn->shrinker_info, new);
263 		kvfree_rcu(old, rcu);
264 	}
265 
266 	return 0;
267 }
268 
269 void free_shrinker_info(struct mem_cgroup *memcg)
270 {
271 	struct mem_cgroup_per_node *pn;
272 	struct shrinker_info *info;
273 	int nid;
274 
275 	for_each_node(nid) {
276 		pn = memcg->nodeinfo[nid];
277 		info = rcu_dereference_protected(pn->shrinker_info, true);
278 		kvfree(info);
279 		rcu_assign_pointer(pn->shrinker_info, NULL);
280 	}
281 }
282 
283 int alloc_shrinker_info(struct mem_cgroup *memcg)
284 {
285 	struct shrinker_info *info;
286 	int nid, size, ret = 0;
287 	int map_size, defer_size = 0;
288 
289 	down_write(&shrinker_rwsem);
290 	map_size = shrinker_map_size(shrinker_nr_max);
291 	defer_size = shrinker_defer_size(shrinker_nr_max);
292 	size = map_size + defer_size;
293 	for_each_node(nid) {
294 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
295 		if (!info) {
296 			free_shrinker_info(memcg);
297 			ret = -ENOMEM;
298 			break;
299 		}
300 		info->nr_deferred = (atomic_long_t *)(info + 1);
301 		info->map = (void *)info->nr_deferred + defer_size;
302 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
303 	}
304 	up_write(&shrinker_rwsem);
305 
306 	return ret;
307 }
308 
309 static inline bool need_expand(int nr_max)
310 {
311 	return round_up(nr_max, BITS_PER_LONG) >
312 	       round_up(shrinker_nr_max, BITS_PER_LONG);
313 }
314 
315 static int expand_shrinker_info(int new_id)
316 {
317 	int ret = 0;
318 	int new_nr_max = new_id + 1;
319 	int map_size, defer_size = 0;
320 	int old_map_size, old_defer_size = 0;
321 	struct mem_cgroup *memcg;
322 
323 	if (!need_expand(new_nr_max))
324 		goto out;
325 
326 	if (!root_mem_cgroup)
327 		goto out;
328 
329 	lockdep_assert_held(&shrinker_rwsem);
330 
331 	map_size = shrinker_map_size(new_nr_max);
332 	defer_size = shrinker_defer_size(new_nr_max);
333 	old_map_size = shrinker_map_size(shrinker_nr_max);
334 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
335 
336 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
337 	do {
338 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
339 					       old_map_size, old_defer_size);
340 		if (ret) {
341 			mem_cgroup_iter_break(NULL, memcg);
342 			goto out;
343 		}
344 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
345 out:
346 	if (!ret)
347 		shrinker_nr_max = new_nr_max;
348 
349 	return ret;
350 }
351 
352 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
353 {
354 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
355 		struct shrinker_info *info;
356 
357 		rcu_read_lock();
358 		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
359 		/* Pairs with smp mb in shrink_slab() */
360 		smp_mb__before_atomic();
361 		set_bit(shrinker_id, info->map);
362 		rcu_read_unlock();
363 	}
364 }
365 
366 static DEFINE_IDR(shrinker_idr);
367 
368 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
369 {
370 	int id, ret = -ENOMEM;
371 
372 	if (mem_cgroup_disabled())
373 		return -ENOSYS;
374 
375 	down_write(&shrinker_rwsem);
376 	/* This may call shrinker, so it must use down_read_trylock() */
377 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
378 	if (id < 0)
379 		goto unlock;
380 
381 	if (id >= shrinker_nr_max) {
382 		if (expand_shrinker_info(id)) {
383 			idr_remove(&shrinker_idr, id);
384 			goto unlock;
385 		}
386 	}
387 	shrinker->id = id;
388 	ret = 0;
389 unlock:
390 	up_write(&shrinker_rwsem);
391 	return ret;
392 }
393 
394 static void unregister_memcg_shrinker(struct shrinker *shrinker)
395 {
396 	int id = shrinker->id;
397 
398 	BUG_ON(id < 0);
399 
400 	lockdep_assert_held(&shrinker_rwsem);
401 
402 	idr_remove(&shrinker_idr, id);
403 }
404 
405 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
406 				   struct mem_cgroup *memcg)
407 {
408 	struct shrinker_info *info;
409 
410 	info = shrinker_info_protected(memcg, nid);
411 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
412 }
413 
414 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
415 				  struct mem_cgroup *memcg)
416 {
417 	struct shrinker_info *info;
418 
419 	info = shrinker_info_protected(memcg, nid);
420 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
421 }
422 
423 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
424 {
425 	int i, nid;
426 	long nr;
427 	struct mem_cgroup *parent;
428 	struct shrinker_info *child_info, *parent_info;
429 
430 	parent = parent_mem_cgroup(memcg);
431 	if (!parent)
432 		parent = root_mem_cgroup;
433 
434 	/* Prevent from concurrent shrinker_info expand */
435 	down_read(&shrinker_rwsem);
436 	for_each_node(nid) {
437 		child_info = shrinker_info_protected(memcg, nid);
438 		parent_info = shrinker_info_protected(parent, nid);
439 		for (i = 0; i < shrinker_nr_max; i++) {
440 			nr = atomic_long_read(&child_info->nr_deferred[i]);
441 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
442 		}
443 	}
444 	up_read(&shrinker_rwsem);
445 }
446 
447 static bool cgroup_reclaim(struct scan_control *sc)
448 {
449 	return sc->target_mem_cgroup;
450 }
451 
452 static bool global_reclaim(struct scan_control *sc)
453 {
454 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
455 }
456 
457 /**
458  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
459  * @sc: scan_control in question
460  *
461  * The normal page dirty throttling mechanism in balance_dirty_pages() is
462  * completely broken with the legacy memcg and direct stalling in
463  * shrink_folio_list() is used for throttling instead, which lacks all the
464  * niceties such as fairness, adaptive pausing, bandwidth proportional
465  * allocation and configurability.
466  *
467  * This function tests whether the vmscan currently in progress can assume
468  * that the normal dirty throttling mechanism is operational.
469  */
470 static bool writeback_throttling_sane(struct scan_control *sc)
471 {
472 	if (!cgroup_reclaim(sc))
473 		return true;
474 #ifdef CONFIG_CGROUP_WRITEBACK
475 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
476 		return true;
477 #endif
478 	return false;
479 }
480 #else
481 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
482 {
483 	return -ENOSYS;
484 }
485 
486 static void unregister_memcg_shrinker(struct shrinker *shrinker)
487 {
488 }
489 
490 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
491 				   struct mem_cgroup *memcg)
492 {
493 	return 0;
494 }
495 
496 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
497 				  struct mem_cgroup *memcg)
498 {
499 	return 0;
500 }
501 
502 static bool cgroup_reclaim(struct scan_control *sc)
503 {
504 	return false;
505 }
506 
507 static bool global_reclaim(struct scan_control *sc)
508 {
509 	return true;
510 }
511 
512 static bool writeback_throttling_sane(struct scan_control *sc)
513 {
514 	return true;
515 }
516 #endif
517 
518 static long xchg_nr_deferred(struct shrinker *shrinker,
519 			     struct shrink_control *sc)
520 {
521 	int nid = sc->nid;
522 
523 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
524 		nid = 0;
525 
526 	if (sc->memcg &&
527 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
528 		return xchg_nr_deferred_memcg(nid, shrinker,
529 					      sc->memcg);
530 
531 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
532 }
533 
534 
535 static long add_nr_deferred(long nr, struct shrinker *shrinker,
536 			    struct shrink_control *sc)
537 {
538 	int nid = sc->nid;
539 
540 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
541 		nid = 0;
542 
543 	if (sc->memcg &&
544 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
545 		return add_nr_deferred_memcg(nr, nid, shrinker,
546 					     sc->memcg);
547 
548 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
549 }
550 
551 static bool can_demote(int nid, struct scan_control *sc)
552 {
553 	if (!numa_demotion_enabled)
554 		return false;
555 	if (sc && sc->no_demotion)
556 		return false;
557 	if (next_demotion_node(nid) == NUMA_NO_NODE)
558 		return false;
559 
560 	return true;
561 }
562 
563 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
564 					  int nid,
565 					  struct scan_control *sc)
566 {
567 	if (memcg == NULL) {
568 		/*
569 		 * For non-memcg reclaim, is there
570 		 * space in any swap device?
571 		 */
572 		if (get_nr_swap_pages() > 0)
573 			return true;
574 	} else {
575 		/* Is the memcg below its swap limit? */
576 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
577 			return true;
578 	}
579 
580 	/*
581 	 * The page can not be swapped.
582 	 *
583 	 * Can it be reclaimed from this node via demotion?
584 	 */
585 	return can_demote(nid, sc);
586 }
587 
588 /*
589  * This misses isolated folios which are not accounted for to save counters.
590  * As the data only determines if reclaim or compaction continues, it is
591  * not expected that isolated folios will be a dominating factor.
592  */
593 unsigned long zone_reclaimable_pages(struct zone *zone)
594 {
595 	unsigned long nr;
596 
597 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
598 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
599 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
600 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
601 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
602 
603 	return nr;
604 }
605 
606 /**
607  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
608  * @lruvec: lru vector
609  * @lru: lru to use
610  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
611  */
612 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
613 				     int zone_idx)
614 {
615 	unsigned long size = 0;
616 	int zid;
617 
618 	for (zid = 0; zid <= zone_idx; zid++) {
619 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
620 
621 		if (!managed_zone(zone))
622 			continue;
623 
624 		if (!mem_cgroup_disabled())
625 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
626 		else
627 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
628 	}
629 	return size;
630 }
631 
632 /*
633  * Add a shrinker callback to be called from the vm.
634  */
635 static int __prealloc_shrinker(struct shrinker *shrinker)
636 {
637 	unsigned int size;
638 	int err;
639 
640 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
641 		err = prealloc_memcg_shrinker(shrinker);
642 		if (err != -ENOSYS)
643 			return err;
644 
645 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
646 	}
647 
648 	size = sizeof(*shrinker->nr_deferred);
649 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
650 		size *= nr_node_ids;
651 
652 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
653 	if (!shrinker->nr_deferred)
654 		return -ENOMEM;
655 
656 	return 0;
657 }
658 
659 #ifdef CONFIG_SHRINKER_DEBUG
660 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
661 {
662 	va_list ap;
663 	int err;
664 
665 	va_start(ap, fmt);
666 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
667 	va_end(ap);
668 	if (!shrinker->name)
669 		return -ENOMEM;
670 
671 	err = __prealloc_shrinker(shrinker);
672 	if (err) {
673 		kfree_const(shrinker->name);
674 		shrinker->name = NULL;
675 	}
676 
677 	return err;
678 }
679 #else
680 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
681 {
682 	return __prealloc_shrinker(shrinker);
683 }
684 #endif
685 
686 void free_prealloced_shrinker(struct shrinker *shrinker)
687 {
688 #ifdef CONFIG_SHRINKER_DEBUG
689 	kfree_const(shrinker->name);
690 	shrinker->name = NULL;
691 #endif
692 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
693 		down_write(&shrinker_rwsem);
694 		unregister_memcg_shrinker(shrinker);
695 		up_write(&shrinker_rwsem);
696 		return;
697 	}
698 
699 	kfree(shrinker->nr_deferred);
700 	shrinker->nr_deferred = NULL;
701 }
702 
703 void register_shrinker_prepared(struct shrinker *shrinker)
704 {
705 	down_write(&shrinker_rwsem);
706 	list_add_tail(&shrinker->list, &shrinker_list);
707 	shrinker->flags |= SHRINKER_REGISTERED;
708 	shrinker_debugfs_add(shrinker);
709 	up_write(&shrinker_rwsem);
710 }
711 
712 static int __register_shrinker(struct shrinker *shrinker)
713 {
714 	int err = __prealloc_shrinker(shrinker);
715 
716 	if (err)
717 		return err;
718 	register_shrinker_prepared(shrinker);
719 	return 0;
720 }
721 
722 #ifdef CONFIG_SHRINKER_DEBUG
723 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
724 {
725 	va_list ap;
726 	int err;
727 
728 	va_start(ap, fmt);
729 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
730 	va_end(ap);
731 	if (!shrinker->name)
732 		return -ENOMEM;
733 
734 	err = __register_shrinker(shrinker);
735 	if (err) {
736 		kfree_const(shrinker->name);
737 		shrinker->name = NULL;
738 	}
739 	return err;
740 }
741 #else
742 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
743 {
744 	return __register_shrinker(shrinker);
745 }
746 #endif
747 EXPORT_SYMBOL(register_shrinker);
748 
749 /*
750  * Remove one
751  */
752 void unregister_shrinker(struct shrinker *shrinker)
753 {
754 	if (!(shrinker->flags & SHRINKER_REGISTERED))
755 		return;
756 
757 	down_write(&shrinker_rwsem);
758 	list_del(&shrinker->list);
759 	shrinker->flags &= ~SHRINKER_REGISTERED;
760 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
761 		unregister_memcg_shrinker(shrinker);
762 	shrinker_debugfs_remove(shrinker);
763 	up_write(&shrinker_rwsem);
764 
765 	kfree(shrinker->nr_deferred);
766 	shrinker->nr_deferred = NULL;
767 }
768 EXPORT_SYMBOL(unregister_shrinker);
769 
770 /**
771  * synchronize_shrinkers - Wait for all running shrinkers to complete.
772  *
773  * This is equivalent to calling unregister_shrink() and register_shrinker(),
774  * but atomically and with less overhead. This is useful to guarantee that all
775  * shrinker invocations have seen an update, before freeing memory, similar to
776  * rcu.
777  */
778 void synchronize_shrinkers(void)
779 {
780 	down_write(&shrinker_rwsem);
781 	up_write(&shrinker_rwsem);
782 }
783 EXPORT_SYMBOL(synchronize_shrinkers);
784 
785 #define SHRINK_BATCH 128
786 
787 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
788 				    struct shrinker *shrinker, int priority)
789 {
790 	unsigned long freed = 0;
791 	unsigned long long delta;
792 	long total_scan;
793 	long freeable;
794 	long nr;
795 	long new_nr;
796 	long batch_size = shrinker->batch ? shrinker->batch
797 					  : SHRINK_BATCH;
798 	long scanned = 0, next_deferred;
799 
800 	freeable = shrinker->count_objects(shrinker, shrinkctl);
801 	if (freeable == 0 || freeable == SHRINK_EMPTY)
802 		return freeable;
803 
804 	/*
805 	 * copy the current shrinker scan count into a local variable
806 	 * and zero it so that other concurrent shrinker invocations
807 	 * don't also do this scanning work.
808 	 */
809 	nr = xchg_nr_deferred(shrinker, shrinkctl);
810 
811 	if (shrinker->seeks) {
812 		delta = freeable >> priority;
813 		delta *= 4;
814 		do_div(delta, shrinker->seeks);
815 	} else {
816 		/*
817 		 * These objects don't require any IO to create. Trim
818 		 * them aggressively under memory pressure to keep
819 		 * them from causing refetches in the IO caches.
820 		 */
821 		delta = freeable / 2;
822 	}
823 
824 	total_scan = nr >> priority;
825 	total_scan += delta;
826 	total_scan = min(total_scan, (2 * freeable));
827 
828 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
829 				   freeable, delta, total_scan, priority);
830 
831 	/*
832 	 * Normally, we should not scan less than batch_size objects in one
833 	 * pass to avoid too frequent shrinker calls, but if the slab has less
834 	 * than batch_size objects in total and we are really tight on memory,
835 	 * we will try to reclaim all available objects, otherwise we can end
836 	 * up failing allocations although there are plenty of reclaimable
837 	 * objects spread over several slabs with usage less than the
838 	 * batch_size.
839 	 *
840 	 * We detect the "tight on memory" situations by looking at the total
841 	 * number of objects we want to scan (total_scan). If it is greater
842 	 * than the total number of objects on slab (freeable), we must be
843 	 * scanning at high prio and therefore should try to reclaim as much as
844 	 * possible.
845 	 */
846 	while (total_scan >= batch_size ||
847 	       total_scan >= freeable) {
848 		unsigned long ret;
849 		unsigned long nr_to_scan = min(batch_size, total_scan);
850 
851 		shrinkctl->nr_to_scan = nr_to_scan;
852 		shrinkctl->nr_scanned = nr_to_scan;
853 		ret = shrinker->scan_objects(shrinker, shrinkctl);
854 		if (ret == SHRINK_STOP)
855 			break;
856 		freed += ret;
857 
858 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
859 		total_scan -= shrinkctl->nr_scanned;
860 		scanned += shrinkctl->nr_scanned;
861 
862 		cond_resched();
863 	}
864 
865 	/*
866 	 * The deferred work is increased by any new work (delta) that wasn't
867 	 * done, decreased by old deferred work that was done now.
868 	 *
869 	 * And it is capped to two times of the freeable items.
870 	 */
871 	next_deferred = max_t(long, (nr + delta - scanned), 0);
872 	next_deferred = min(next_deferred, (2 * freeable));
873 
874 	/*
875 	 * move the unused scan count back into the shrinker in a
876 	 * manner that handles concurrent updates.
877 	 */
878 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
879 
880 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
881 	return freed;
882 }
883 
884 #ifdef CONFIG_MEMCG
885 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
886 			struct mem_cgroup *memcg, int priority)
887 {
888 	struct shrinker_info *info;
889 	unsigned long ret, freed = 0;
890 	int i;
891 
892 	if (!mem_cgroup_online(memcg))
893 		return 0;
894 
895 	if (!down_read_trylock(&shrinker_rwsem))
896 		return 0;
897 
898 	info = shrinker_info_protected(memcg, nid);
899 	if (unlikely(!info))
900 		goto unlock;
901 
902 	for_each_set_bit(i, info->map, shrinker_nr_max) {
903 		struct shrink_control sc = {
904 			.gfp_mask = gfp_mask,
905 			.nid = nid,
906 			.memcg = memcg,
907 		};
908 		struct shrinker *shrinker;
909 
910 		shrinker = idr_find(&shrinker_idr, i);
911 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
912 			if (!shrinker)
913 				clear_bit(i, info->map);
914 			continue;
915 		}
916 
917 		/* Call non-slab shrinkers even though kmem is disabled */
918 		if (!memcg_kmem_enabled() &&
919 		    !(shrinker->flags & SHRINKER_NONSLAB))
920 			continue;
921 
922 		ret = do_shrink_slab(&sc, shrinker, priority);
923 		if (ret == SHRINK_EMPTY) {
924 			clear_bit(i, info->map);
925 			/*
926 			 * After the shrinker reported that it had no objects to
927 			 * free, but before we cleared the corresponding bit in
928 			 * the memcg shrinker map, a new object might have been
929 			 * added. To make sure, we have the bit set in this
930 			 * case, we invoke the shrinker one more time and reset
931 			 * the bit if it reports that it is not empty anymore.
932 			 * The memory barrier here pairs with the barrier in
933 			 * set_shrinker_bit():
934 			 *
935 			 * list_lru_add()     shrink_slab_memcg()
936 			 *   list_add_tail()    clear_bit()
937 			 *   <MB>               <MB>
938 			 *   set_bit()          do_shrink_slab()
939 			 */
940 			smp_mb__after_atomic();
941 			ret = do_shrink_slab(&sc, shrinker, priority);
942 			if (ret == SHRINK_EMPTY)
943 				ret = 0;
944 			else
945 				set_shrinker_bit(memcg, nid, i);
946 		}
947 		freed += ret;
948 
949 		if (rwsem_is_contended(&shrinker_rwsem)) {
950 			freed = freed ? : 1;
951 			break;
952 		}
953 	}
954 unlock:
955 	up_read(&shrinker_rwsem);
956 	return freed;
957 }
958 #else /* CONFIG_MEMCG */
959 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
960 			struct mem_cgroup *memcg, int priority)
961 {
962 	return 0;
963 }
964 #endif /* CONFIG_MEMCG */
965 
966 /**
967  * shrink_slab - shrink slab caches
968  * @gfp_mask: allocation context
969  * @nid: node whose slab caches to target
970  * @memcg: memory cgroup whose slab caches to target
971  * @priority: the reclaim priority
972  *
973  * Call the shrink functions to age shrinkable caches.
974  *
975  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
976  * unaware shrinkers will receive a node id of 0 instead.
977  *
978  * @memcg specifies the memory cgroup to target. Unaware shrinkers
979  * are called only if it is the root cgroup.
980  *
981  * @priority is sc->priority, we take the number of objects and >> by priority
982  * in order to get the scan target.
983  *
984  * Returns the number of reclaimed slab objects.
985  */
986 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
987 				 struct mem_cgroup *memcg,
988 				 int priority)
989 {
990 	unsigned long ret, freed = 0;
991 	struct shrinker *shrinker;
992 
993 	/*
994 	 * The root memcg might be allocated even though memcg is disabled
995 	 * via "cgroup_disable=memory" boot parameter.  This could make
996 	 * mem_cgroup_is_root() return false, then just run memcg slab
997 	 * shrink, but skip global shrink.  This may result in premature
998 	 * oom.
999 	 */
1000 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
1001 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
1002 
1003 	if (!down_read_trylock(&shrinker_rwsem))
1004 		goto out;
1005 
1006 	list_for_each_entry(shrinker, &shrinker_list, list) {
1007 		struct shrink_control sc = {
1008 			.gfp_mask = gfp_mask,
1009 			.nid = nid,
1010 			.memcg = memcg,
1011 		};
1012 
1013 		ret = do_shrink_slab(&sc, shrinker, priority);
1014 		if (ret == SHRINK_EMPTY)
1015 			ret = 0;
1016 		freed += ret;
1017 		/*
1018 		 * Bail out if someone want to register a new shrinker to
1019 		 * prevent the registration from being stalled for long periods
1020 		 * by parallel ongoing shrinking.
1021 		 */
1022 		if (rwsem_is_contended(&shrinker_rwsem)) {
1023 			freed = freed ? : 1;
1024 			break;
1025 		}
1026 	}
1027 
1028 	up_read(&shrinker_rwsem);
1029 out:
1030 	cond_resched();
1031 	return freed;
1032 }
1033 
1034 static unsigned long drop_slab_node(int nid)
1035 {
1036 	unsigned long freed = 0;
1037 	struct mem_cgroup *memcg = NULL;
1038 
1039 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
1040 	do {
1041 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1042 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1043 
1044 	return freed;
1045 }
1046 
1047 void drop_slab(void)
1048 {
1049 	int nid;
1050 	int shift = 0;
1051 	unsigned long freed;
1052 
1053 	do {
1054 		freed = 0;
1055 		for_each_online_node(nid) {
1056 			if (fatal_signal_pending(current))
1057 				return;
1058 
1059 			freed += drop_slab_node(nid);
1060 		}
1061 	} while ((freed >> shift++) > 1);
1062 }
1063 
1064 static int reclaimer_offset(void)
1065 {
1066 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1067 			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
1068 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1069 			PGSCAN_DIRECT - PGSCAN_KSWAPD);
1070 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1071 			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
1072 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1073 			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
1074 
1075 	if (current_is_kswapd())
1076 		return 0;
1077 	if (current_is_khugepaged())
1078 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
1079 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
1080 }
1081 
1082 static inline int is_page_cache_freeable(struct folio *folio)
1083 {
1084 	/*
1085 	 * A freeable page cache folio is referenced only by the caller
1086 	 * that isolated the folio, the page cache and optional filesystem
1087 	 * private data at folio->private.
1088 	 */
1089 	return folio_ref_count(folio) - folio_test_private(folio) ==
1090 		1 + folio_nr_pages(folio);
1091 }
1092 
1093 /*
1094  * We detected a synchronous write error writing a folio out.  Probably
1095  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
1096  * fsync(), msync() or close().
1097  *
1098  * The tricky part is that after writepage we cannot touch the mapping: nothing
1099  * prevents it from being freed up.  But we have a ref on the folio and once
1100  * that folio is locked, the mapping is pinned.
1101  *
1102  * We're allowed to run sleeping folio_lock() here because we know the caller has
1103  * __GFP_FS.
1104  */
1105 static void handle_write_error(struct address_space *mapping,
1106 				struct folio *folio, int error)
1107 {
1108 	folio_lock(folio);
1109 	if (folio_mapping(folio) == mapping)
1110 		mapping_set_error(mapping, error);
1111 	folio_unlock(folio);
1112 }
1113 
1114 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1115 {
1116 	int reclaimable = 0, write_pending = 0;
1117 	int i;
1118 
1119 	/*
1120 	 * If kswapd is disabled, reschedule if necessary but do not
1121 	 * throttle as the system is likely near OOM.
1122 	 */
1123 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1124 		return true;
1125 
1126 	/*
1127 	 * If there are a lot of dirty/writeback folios then do not
1128 	 * throttle as throttling will occur when the folios cycle
1129 	 * towards the end of the LRU if still under writeback.
1130 	 */
1131 	for (i = 0; i < MAX_NR_ZONES; i++) {
1132 		struct zone *zone = pgdat->node_zones + i;
1133 
1134 		if (!managed_zone(zone))
1135 			continue;
1136 
1137 		reclaimable += zone_reclaimable_pages(zone);
1138 		write_pending += zone_page_state_snapshot(zone,
1139 						  NR_ZONE_WRITE_PENDING);
1140 	}
1141 	if (2 * write_pending <= reclaimable)
1142 		return true;
1143 
1144 	return false;
1145 }
1146 
1147 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1148 {
1149 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1150 	long timeout, ret;
1151 	DEFINE_WAIT(wait);
1152 
1153 	/*
1154 	 * Do not throttle IO workers, kthreads other than kswapd or
1155 	 * workqueues. They may be required for reclaim to make
1156 	 * forward progress (e.g. journalling workqueues or kthreads).
1157 	 */
1158 	if (!current_is_kswapd() &&
1159 	    current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1160 		cond_resched();
1161 		return;
1162 	}
1163 
1164 	/*
1165 	 * These figures are pulled out of thin air.
1166 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1167 	 * parallel reclaimers which is a short-lived event so the timeout is
1168 	 * short. Failing to make progress or waiting on writeback are
1169 	 * potentially long-lived events so use a longer timeout. This is shaky
1170 	 * logic as a failure to make progress could be due to anything from
1171 	 * writeback to a slow device to excessive referenced folios at the tail
1172 	 * of the inactive LRU.
1173 	 */
1174 	switch(reason) {
1175 	case VMSCAN_THROTTLE_WRITEBACK:
1176 		timeout = HZ/10;
1177 
1178 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1179 			WRITE_ONCE(pgdat->nr_reclaim_start,
1180 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1181 		}
1182 
1183 		break;
1184 	case VMSCAN_THROTTLE_CONGESTED:
1185 		fallthrough;
1186 	case VMSCAN_THROTTLE_NOPROGRESS:
1187 		if (skip_throttle_noprogress(pgdat)) {
1188 			cond_resched();
1189 			return;
1190 		}
1191 
1192 		timeout = 1;
1193 
1194 		break;
1195 	case VMSCAN_THROTTLE_ISOLATED:
1196 		timeout = HZ/50;
1197 		break;
1198 	default:
1199 		WARN_ON_ONCE(1);
1200 		timeout = HZ;
1201 		break;
1202 	}
1203 
1204 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1205 	ret = schedule_timeout(timeout);
1206 	finish_wait(wqh, &wait);
1207 
1208 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
1209 		atomic_dec(&pgdat->nr_writeback_throttled);
1210 
1211 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1212 				jiffies_to_usecs(timeout - ret),
1213 				reason);
1214 }
1215 
1216 /*
1217  * Account for folios written if tasks are throttled waiting on dirty
1218  * folios to clean. If enough folios have been cleaned since throttling
1219  * started then wakeup the throttled tasks.
1220  */
1221 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1222 							int nr_throttled)
1223 {
1224 	unsigned long nr_written;
1225 
1226 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1227 
1228 	/*
1229 	 * This is an inaccurate read as the per-cpu deltas may not
1230 	 * be synchronised. However, given that the system is
1231 	 * writeback throttled, it is not worth taking the penalty
1232 	 * of getting an accurate count. At worst, the throttle
1233 	 * timeout guarantees forward progress.
1234 	 */
1235 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1236 		READ_ONCE(pgdat->nr_reclaim_start);
1237 
1238 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1239 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1240 }
1241 
1242 /* possible outcome of pageout() */
1243 typedef enum {
1244 	/* failed to write folio out, folio is locked */
1245 	PAGE_KEEP,
1246 	/* move folio to the active list, folio is locked */
1247 	PAGE_ACTIVATE,
1248 	/* folio has been sent to the disk successfully, folio is unlocked */
1249 	PAGE_SUCCESS,
1250 	/* folio is clean and locked */
1251 	PAGE_CLEAN,
1252 } pageout_t;
1253 
1254 /*
1255  * pageout is called by shrink_folio_list() for each dirty folio.
1256  * Calls ->writepage().
1257  */
1258 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1259 			 struct swap_iocb **plug)
1260 {
1261 	/*
1262 	 * If the folio is dirty, only perform writeback if that write
1263 	 * will be non-blocking.  To prevent this allocation from being
1264 	 * stalled by pagecache activity.  But note that there may be
1265 	 * stalls if we need to run get_block().  We could test
1266 	 * PagePrivate for that.
1267 	 *
1268 	 * If this process is currently in __generic_file_write_iter() against
1269 	 * this folio's queue, we can perform writeback even if that
1270 	 * will block.
1271 	 *
1272 	 * If the folio is swapcache, write it back even if that would
1273 	 * block, for some throttling. This happens by accident, because
1274 	 * swap_backing_dev_info is bust: it doesn't reflect the
1275 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1276 	 */
1277 	if (!is_page_cache_freeable(folio))
1278 		return PAGE_KEEP;
1279 	if (!mapping) {
1280 		/*
1281 		 * Some data journaling orphaned folios can have
1282 		 * folio->mapping == NULL while being dirty with clean buffers.
1283 		 */
1284 		if (folio_test_private(folio)) {
1285 			if (try_to_free_buffers(folio)) {
1286 				folio_clear_dirty(folio);
1287 				pr_info("%s: orphaned folio\n", __func__);
1288 				return PAGE_CLEAN;
1289 			}
1290 		}
1291 		return PAGE_KEEP;
1292 	}
1293 	if (mapping->a_ops->writepage == NULL)
1294 		return PAGE_ACTIVATE;
1295 
1296 	if (folio_clear_dirty_for_io(folio)) {
1297 		int res;
1298 		struct writeback_control wbc = {
1299 			.sync_mode = WB_SYNC_NONE,
1300 			.nr_to_write = SWAP_CLUSTER_MAX,
1301 			.range_start = 0,
1302 			.range_end = LLONG_MAX,
1303 			.for_reclaim = 1,
1304 			.swap_plug = plug,
1305 		};
1306 
1307 		folio_set_reclaim(folio);
1308 		res = mapping->a_ops->writepage(&folio->page, &wbc);
1309 		if (res < 0)
1310 			handle_write_error(mapping, folio, res);
1311 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1312 			folio_clear_reclaim(folio);
1313 			return PAGE_ACTIVATE;
1314 		}
1315 
1316 		if (!folio_test_writeback(folio)) {
1317 			/* synchronous write or broken a_ops? */
1318 			folio_clear_reclaim(folio);
1319 		}
1320 		trace_mm_vmscan_write_folio(folio);
1321 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1322 		return PAGE_SUCCESS;
1323 	}
1324 
1325 	return PAGE_CLEAN;
1326 }
1327 
1328 /*
1329  * Same as remove_mapping, but if the folio is removed from the mapping, it
1330  * gets returned with a refcount of 0.
1331  */
1332 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1333 			    bool reclaimed, struct mem_cgroup *target_memcg)
1334 {
1335 	int refcount;
1336 	void *shadow = NULL;
1337 
1338 	BUG_ON(!folio_test_locked(folio));
1339 	BUG_ON(mapping != folio_mapping(folio));
1340 
1341 	if (!folio_test_swapcache(folio))
1342 		spin_lock(&mapping->host->i_lock);
1343 	xa_lock_irq(&mapping->i_pages);
1344 	/*
1345 	 * The non racy check for a busy folio.
1346 	 *
1347 	 * Must be careful with the order of the tests. When someone has
1348 	 * a ref to the folio, it may be possible that they dirty it then
1349 	 * drop the reference. So if the dirty flag is tested before the
1350 	 * refcount here, then the following race may occur:
1351 	 *
1352 	 * get_user_pages(&page);
1353 	 * [user mapping goes away]
1354 	 * write_to(page);
1355 	 *				!folio_test_dirty(folio)    [good]
1356 	 * folio_set_dirty(folio);
1357 	 * folio_put(folio);
1358 	 *				!refcount(folio)   [good, discard it]
1359 	 *
1360 	 * [oops, our write_to data is lost]
1361 	 *
1362 	 * Reversing the order of the tests ensures such a situation cannot
1363 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1364 	 * load is not satisfied before that of folio->_refcount.
1365 	 *
1366 	 * Note that if the dirty flag is always set via folio_mark_dirty,
1367 	 * and thus under the i_pages lock, then this ordering is not required.
1368 	 */
1369 	refcount = 1 + folio_nr_pages(folio);
1370 	if (!folio_ref_freeze(folio, refcount))
1371 		goto cannot_free;
1372 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
1373 	if (unlikely(folio_test_dirty(folio))) {
1374 		folio_ref_unfreeze(folio, refcount);
1375 		goto cannot_free;
1376 	}
1377 
1378 	if (folio_test_swapcache(folio)) {
1379 		swp_entry_t swap = folio_swap_entry(folio);
1380 
1381 		if (reclaimed && !mapping_exiting(mapping))
1382 			shadow = workingset_eviction(folio, target_memcg);
1383 		__delete_from_swap_cache(folio, swap, shadow);
1384 		mem_cgroup_swapout(folio, swap);
1385 		xa_unlock_irq(&mapping->i_pages);
1386 		put_swap_folio(folio, swap);
1387 	} else {
1388 		void (*free_folio)(struct folio *);
1389 
1390 		free_folio = mapping->a_ops->free_folio;
1391 		/*
1392 		 * Remember a shadow entry for reclaimed file cache in
1393 		 * order to detect refaults, thus thrashing, later on.
1394 		 *
1395 		 * But don't store shadows in an address space that is
1396 		 * already exiting.  This is not just an optimization,
1397 		 * inode reclaim needs to empty out the radix tree or
1398 		 * the nodes are lost.  Don't plant shadows behind its
1399 		 * back.
1400 		 *
1401 		 * We also don't store shadows for DAX mappings because the
1402 		 * only page cache folios found in these are zero pages
1403 		 * covering holes, and because we don't want to mix DAX
1404 		 * exceptional entries and shadow exceptional entries in the
1405 		 * same address_space.
1406 		 */
1407 		if (reclaimed && folio_is_file_lru(folio) &&
1408 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1409 			shadow = workingset_eviction(folio, target_memcg);
1410 		__filemap_remove_folio(folio, shadow);
1411 		xa_unlock_irq(&mapping->i_pages);
1412 		if (mapping_shrinkable(mapping))
1413 			inode_add_lru(mapping->host);
1414 		spin_unlock(&mapping->host->i_lock);
1415 
1416 		if (free_folio)
1417 			free_folio(folio);
1418 	}
1419 
1420 	return 1;
1421 
1422 cannot_free:
1423 	xa_unlock_irq(&mapping->i_pages);
1424 	if (!folio_test_swapcache(folio))
1425 		spin_unlock(&mapping->host->i_lock);
1426 	return 0;
1427 }
1428 
1429 /**
1430  * remove_mapping() - Attempt to remove a folio from its mapping.
1431  * @mapping: The address space.
1432  * @folio: The folio to remove.
1433  *
1434  * If the folio is dirty, under writeback or if someone else has a ref
1435  * on it, removal will fail.
1436  * Return: The number of pages removed from the mapping.  0 if the folio
1437  * could not be removed.
1438  * Context: The caller should have a single refcount on the folio and
1439  * hold its lock.
1440  */
1441 long remove_mapping(struct address_space *mapping, struct folio *folio)
1442 {
1443 	if (__remove_mapping(mapping, folio, false, NULL)) {
1444 		/*
1445 		 * Unfreezing the refcount with 1 effectively
1446 		 * drops the pagecache ref for us without requiring another
1447 		 * atomic operation.
1448 		 */
1449 		folio_ref_unfreeze(folio, 1);
1450 		return folio_nr_pages(folio);
1451 	}
1452 	return 0;
1453 }
1454 
1455 /**
1456  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1457  * @folio: Folio to be returned to an LRU list.
1458  *
1459  * Add previously isolated @folio to appropriate LRU list.
1460  * The folio may still be unevictable for other reasons.
1461  *
1462  * Context: lru_lock must not be held, interrupts must be enabled.
1463  */
1464 void folio_putback_lru(struct folio *folio)
1465 {
1466 	folio_add_lru(folio);
1467 	folio_put(folio);		/* drop ref from isolate */
1468 }
1469 
1470 enum folio_references {
1471 	FOLIOREF_RECLAIM,
1472 	FOLIOREF_RECLAIM_CLEAN,
1473 	FOLIOREF_KEEP,
1474 	FOLIOREF_ACTIVATE,
1475 };
1476 
1477 static enum folio_references folio_check_references(struct folio *folio,
1478 						  struct scan_control *sc)
1479 {
1480 	int referenced_ptes, referenced_folio;
1481 	unsigned long vm_flags;
1482 
1483 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1484 					   &vm_flags);
1485 	referenced_folio = folio_test_clear_referenced(folio);
1486 
1487 	/*
1488 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1489 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1490 	 */
1491 	if (vm_flags & VM_LOCKED)
1492 		return FOLIOREF_ACTIVATE;
1493 
1494 	/* rmap lock contention: rotate */
1495 	if (referenced_ptes == -1)
1496 		return FOLIOREF_KEEP;
1497 
1498 	if (referenced_ptes) {
1499 		/*
1500 		 * All mapped folios start out with page table
1501 		 * references from the instantiating fault, so we need
1502 		 * to look twice if a mapped file/anon folio is used more
1503 		 * than once.
1504 		 *
1505 		 * Mark it and spare it for another trip around the
1506 		 * inactive list.  Another page table reference will
1507 		 * lead to its activation.
1508 		 *
1509 		 * Note: the mark is set for activated folios as well
1510 		 * so that recently deactivated but used folios are
1511 		 * quickly recovered.
1512 		 */
1513 		folio_set_referenced(folio);
1514 
1515 		if (referenced_folio || referenced_ptes > 1)
1516 			return FOLIOREF_ACTIVATE;
1517 
1518 		/*
1519 		 * Activate file-backed executable folios after first usage.
1520 		 */
1521 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1522 			return FOLIOREF_ACTIVATE;
1523 
1524 		return FOLIOREF_KEEP;
1525 	}
1526 
1527 	/* Reclaim if clean, defer dirty folios to writeback */
1528 	if (referenced_folio && folio_is_file_lru(folio))
1529 		return FOLIOREF_RECLAIM_CLEAN;
1530 
1531 	return FOLIOREF_RECLAIM;
1532 }
1533 
1534 /* Check if a folio is dirty or under writeback */
1535 static void folio_check_dirty_writeback(struct folio *folio,
1536 				       bool *dirty, bool *writeback)
1537 {
1538 	struct address_space *mapping;
1539 
1540 	/*
1541 	 * Anonymous folios are not handled by flushers and must be written
1542 	 * from reclaim context. Do not stall reclaim based on them.
1543 	 * MADV_FREE anonymous folios are put into inactive file list too.
1544 	 * They could be mistakenly treated as file lru. So further anon
1545 	 * test is needed.
1546 	 */
1547 	if (!folio_is_file_lru(folio) ||
1548 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1549 		*dirty = false;
1550 		*writeback = false;
1551 		return;
1552 	}
1553 
1554 	/* By default assume that the folio flags are accurate */
1555 	*dirty = folio_test_dirty(folio);
1556 	*writeback = folio_test_writeback(folio);
1557 
1558 	/* Verify dirty/writeback state if the filesystem supports it */
1559 	if (!folio_test_private(folio))
1560 		return;
1561 
1562 	mapping = folio_mapping(folio);
1563 	if (mapping && mapping->a_ops->is_dirty_writeback)
1564 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1565 }
1566 
1567 static struct page *alloc_demote_page(struct page *page, unsigned long private)
1568 {
1569 	struct page *target_page;
1570 	nodemask_t *allowed_mask;
1571 	struct migration_target_control *mtc;
1572 
1573 	mtc = (struct migration_target_control *)private;
1574 
1575 	allowed_mask = mtc->nmask;
1576 	/*
1577 	 * make sure we allocate from the target node first also trying to
1578 	 * demote or reclaim pages from the target node via kswapd if we are
1579 	 * low on free memory on target node. If we don't do this and if
1580 	 * we have free memory on the slower(lower) memtier, we would start
1581 	 * allocating pages from slower(lower) memory tiers without even forcing
1582 	 * a demotion of cold pages from the target memtier. This can result
1583 	 * in the kernel placing hot pages in slower(lower) memory tiers.
1584 	 */
1585 	mtc->nmask = NULL;
1586 	mtc->gfp_mask |= __GFP_THISNODE;
1587 	target_page = alloc_migration_target(page, (unsigned long)mtc);
1588 	if (target_page)
1589 		return target_page;
1590 
1591 	mtc->gfp_mask &= ~__GFP_THISNODE;
1592 	mtc->nmask = allowed_mask;
1593 
1594 	return alloc_migration_target(page, (unsigned long)mtc);
1595 }
1596 
1597 /*
1598  * Take folios on @demote_folios and attempt to demote them to another node.
1599  * Folios which are not demoted are left on @demote_folios.
1600  */
1601 static unsigned int demote_folio_list(struct list_head *demote_folios,
1602 				     struct pglist_data *pgdat)
1603 {
1604 	int target_nid = next_demotion_node(pgdat->node_id);
1605 	unsigned int nr_succeeded;
1606 	nodemask_t allowed_mask;
1607 
1608 	struct migration_target_control mtc = {
1609 		/*
1610 		 * Allocate from 'node', or fail quickly and quietly.
1611 		 * When this happens, 'page' will likely just be discarded
1612 		 * instead of migrated.
1613 		 */
1614 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1615 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1616 		.nid = target_nid,
1617 		.nmask = &allowed_mask
1618 	};
1619 
1620 	if (list_empty(demote_folios))
1621 		return 0;
1622 
1623 	if (target_nid == NUMA_NO_NODE)
1624 		return 0;
1625 
1626 	node_get_allowed_targets(pgdat, &allowed_mask);
1627 
1628 	/* Demotion ignores all cpuset and mempolicy settings */
1629 	migrate_pages(demote_folios, alloc_demote_page, NULL,
1630 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1631 		      &nr_succeeded);
1632 
1633 	__count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
1634 
1635 	return nr_succeeded;
1636 }
1637 
1638 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1639 {
1640 	if (gfp_mask & __GFP_FS)
1641 		return true;
1642 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1643 		return false;
1644 	/*
1645 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1646 	 * providing this isn't SWP_FS_OPS.
1647 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1648 	 * but that will never affect SWP_FS_OPS, so the data_race
1649 	 * is safe.
1650 	 */
1651 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1652 }
1653 
1654 /*
1655  * shrink_folio_list() returns the number of reclaimed pages
1656  */
1657 static unsigned int shrink_folio_list(struct list_head *folio_list,
1658 		struct pglist_data *pgdat, struct scan_control *sc,
1659 		struct reclaim_stat *stat, bool ignore_references)
1660 {
1661 	LIST_HEAD(ret_folios);
1662 	LIST_HEAD(free_folios);
1663 	LIST_HEAD(demote_folios);
1664 	unsigned int nr_reclaimed = 0;
1665 	unsigned int pgactivate = 0;
1666 	bool do_demote_pass;
1667 	struct swap_iocb *plug = NULL;
1668 
1669 	memset(stat, 0, sizeof(*stat));
1670 	cond_resched();
1671 	do_demote_pass = can_demote(pgdat->node_id, sc);
1672 
1673 retry:
1674 	while (!list_empty(folio_list)) {
1675 		struct address_space *mapping;
1676 		struct folio *folio;
1677 		enum folio_references references = FOLIOREF_RECLAIM;
1678 		bool dirty, writeback;
1679 		unsigned int nr_pages;
1680 
1681 		cond_resched();
1682 
1683 		folio = lru_to_folio(folio_list);
1684 		list_del(&folio->lru);
1685 
1686 		if (!folio_trylock(folio))
1687 			goto keep;
1688 
1689 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1690 
1691 		nr_pages = folio_nr_pages(folio);
1692 
1693 		/* Account the number of base pages */
1694 		sc->nr_scanned += nr_pages;
1695 
1696 		if (unlikely(!folio_evictable(folio)))
1697 			goto activate_locked;
1698 
1699 		if (!sc->may_unmap && folio_mapped(folio))
1700 			goto keep_locked;
1701 
1702 		/* folio_update_gen() tried to promote this page? */
1703 		if (lru_gen_enabled() && !ignore_references &&
1704 		    folio_mapped(folio) && folio_test_referenced(folio))
1705 			goto keep_locked;
1706 
1707 		/*
1708 		 * The number of dirty pages determines if a node is marked
1709 		 * reclaim_congested. kswapd will stall and start writing
1710 		 * folios if the tail of the LRU is all dirty unqueued folios.
1711 		 */
1712 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1713 		if (dirty || writeback)
1714 			stat->nr_dirty += nr_pages;
1715 
1716 		if (dirty && !writeback)
1717 			stat->nr_unqueued_dirty += nr_pages;
1718 
1719 		/*
1720 		 * Treat this folio as congested if folios are cycling
1721 		 * through the LRU so quickly that the folios marked
1722 		 * for immediate reclaim are making it to the end of
1723 		 * the LRU a second time.
1724 		 */
1725 		if (writeback && folio_test_reclaim(folio))
1726 			stat->nr_congested += nr_pages;
1727 
1728 		/*
1729 		 * If a folio at the tail of the LRU is under writeback, there
1730 		 * are three cases to consider.
1731 		 *
1732 		 * 1) If reclaim is encountering an excessive number
1733 		 *    of folios under writeback and this folio has both
1734 		 *    the writeback and reclaim flags set, then it
1735 		 *    indicates that folios are being queued for I/O but
1736 		 *    are being recycled through the LRU before the I/O
1737 		 *    can complete. Waiting on the folio itself risks an
1738 		 *    indefinite stall if it is impossible to writeback
1739 		 *    the folio due to I/O error or disconnected storage
1740 		 *    so instead note that the LRU is being scanned too
1741 		 *    quickly and the caller can stall after the folio
1742 		 *    list has been processed.
1743 		 *
1744 		 * 2) Global or new memcg reclaim encounters a folio that is
1745 		 *    not marked for immediate reclaim, or the caller does not
1746 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1747 		 *    not to fs). In this case mark the folio for immediate
1748 		 *    reclaim and continue scanning.
1749 		 *
1750 		 *    Require may_enter_fs() because we would wait on fs, which
1751 		 *    may not have submitted I/O yet. And the loop driver might
1752 		 *    enter reclaim, and deadlock if it waits on a folio for
1753 		 *    which it is needed to do the write (loop masks off
1754 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1755 		 *    would probably show more reasons.
1756 		 *
1757 		 * 3) Legacy memcg encounters a folio that already has the
1758 		 *    reclaim flag set. memcg does not have any dirty folio
1759 		 *    throttling so we could easily OOM just because too many
1760 		 *    folios are in writeback and there is nothing else to
1761 		 *    reclaim. Wait for the writeback to complete.
1762 		 *
1763 		 * In cases 1) and 2) we activate the folios to get them out of
1764 		 * the way while we continue scanning for clean folios on the
1765 		 * inactive list and refilling from the active list. The
1766 		 * observation here is that waiting for disk writes is more
1767 		 * expensive than potentially causing reloads down the line.
1768 		 * Since they're marked for immediate reclaim, they won't put
1769 		 * memory pressure on the cache working set any longer than it
1770 		 * takes to write them to disk.
1771 		 */
1772 		if (folio_test_writeback(folio)) {
1773 			/* Case 1 above */
1774 			if (current_is_kswapd() &&
1775 			    folio_test_reclaim(folio) &&
1776 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1777 				stat->nr_immediate += nr_pages;
1778 				goto activate_locked;
1779 
1780 			/* Case 2 above */
1781 			} else if (writeback_throttling_sane(sc) ||
1782 			    !folio_test_reclaim(folio) ||
1783 			    !may_enter_fs(folio, sc->gfp_mask)) {
1784 				/*
1785 				 * This is slightly racy -
1786 				 * folio_end_writeback() might have
1787 				 * just cleared the reclaim flag, then
1788 				 * setting the reclaim flag here ends up
1789 				 * interpreted as the readahead flag - but
1790 				 * that does not matter enough to care.
1791 				 * What we do want is for this folio to
1792 				 * have the reclaim flag set next time
1793 				 * memcg reclaim reaches the tests above,
1794 				 * so it will then wait for writeback to
1795 				 * avoid OOM; and it's also appropriate
1796 				 * in global reclaim.
1797 				 */
1798 				folio_set_reclaim(folio);
1799 				stat->nr_writeback += nr_pages;
1800 				goto activate_locked;
1801 
1802 			/* Case 3 above */
1803 			} else {
1804 				folio_unlock(folio);
1805 				folio_wait_writeback(folio);
1806 				/* then go back and try same folio again */
1807 				list_add_tail(&folio->lru, folio_list);
1808 				continue;
1809 			}
1810 		}
1811 
1812 		if (!ignore_references)
1813 			references = folio_check_references(folio, sc);
1814 
1815 		switch (references) {
1816 		case FOLIOREF_ACTIVATE:
1817 			goto activate_locked;
1818 		case FOLIOREF_KEEP:
1819 			stat->nr_ref_keep += nr_pages;
1820 			goto keep_locked;
1821 		case FOLIOREF_RECLAIM:
1822 		case FOLIOREF_RECLAIM_CLEAN:
1823 			; /* try to reclaim the folio below */
1824 		}
1825 
1826 		/*
1827 		 * Before reclaiming the folio, try to relocate
1828 		 * its contents to another node.
1829 		 */
1830 		if (do_demote_pass &&
1831 		    (thp_migration_supported() || !folio_test_large(folio))) {
1832 			list_add(&folio->lru, &demote_folios);
1833 			folio_unlock(folio);
1834 			continue;
1835 		}
1836 
1837 		/*
1838 		 * Anonymous process memory has backing store?
1839 		 * Try to allocate it some swap space here.
1840 		 * Lazyfree folio could be freed directly
1841 		 */
1842 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1843 			if (!folio_test_swapcache(folio)) {
1844 				if (!(sc->gfp_mask & __GFP_IO))
1845 					goto keep_locked;
1846 				if (folio_maybe_dma_pinned(folio))
1847 					goto keep_locked;
1848 				if (folio_test_large(folio)) {
1849 					/* cannot split folio, skip it */
1850 					if (!can_split_folio(folio, NULL))
1851 						goto activate_locked;
1852 					/*
1853 					 * Split folios without a PMD map right
1854 					 * away. Chances are some or all of the
1855 					 * tail pages can be freed without IO.
1856 					 */
1857 					if (!folio_entire_mapcount(folio) &&
1858 					    split_folio_to_list(folio,
1859 								folio_list))
1860 						goto activate_locked;
1861 				}
1862 				if (!add_to_swap(folio)) {
1863 					if (!folio_test_large(folio))
1864 						goto activate_locked_split;
1865 					/* Fallback to swap normal pages */
1866 					if (split_folio_to_list(folio,
1867 								folio_list))
1868 						goto activate_locked;
1869 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1870 					count_vm_event(THP_SWPOUT_FALLBACK);
1871 #endif
1872 					if (!add_to_swap(folio))
1873 						goto activate_locked_split;
1874 				}
1875 			}
1876 		} else if (folio_test_swapbacked(folio) &&
1877 			   folio_test_large(folio)) {
1878 			/* Split shmem folio */
1879 			if (split_folio_to_list(folio, folio_list))
1880 				goto keep_locked;
1881 		}
1882 
1883 		/*
1884 		 * If the folio was split above, the tail pages will make
1885 		 * their own pass through this function and be accounted
1886 		 * then.
1887 		 */
1888 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1889 			sc->nr_scanned -= (nr_pages - 1);
1890 			nr_pages = 1;
1891 		}
1892 
1893 		/*
1894 		 * The folio is mapped into the page tables of one or more
1895 		 * processes. Try to unmap it here.
1896 		 */
1897 		if (folio_mapped(folio)) {
1898 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1899 			bool was_swapbacked = folio_test_swapbacked(folio);
1900 
1901 			if (folio_test_pmd_mappable(folio))
1902 				flags |= TTU_SPLIT_HUGE_PMD;
1903 
1904 			try_to_unmap(folio, flags);
1905 			if (folio_mapped(folio)) {
1906 				stat->nr_unmap_fail += nr_pages;
1907 				if (!was_swapbacked &&
1908 				    folio_test_swapbacked(folio))
1909 					stat->nr_lazyfree_fail += nr_pages;
1910 				goto activate_locked;
1911 			}
1912 		}
1913 
1914 		mapping = folio_mapping(folio);
1915 		if (folio_test_dirty(folio)) {
1916 			/*
1917 			 * Only kswapd can writeback filesystem folios
1918 			 * to avoid risk of stack overflow. But avoid
1919 			 * injecting inefficient single-folio I/O into
1920 			 * flusher writeback as much as possible: only
1921 			 * write folios when we've encountered many
1922 			 * dirty folios, and when we've already scanned
1923 			 * the rest of the LRU for clean folios and see
1924 			 * the same dirty folios again (with the reclaim
1925 			 * flag set).
1926 			 */
1927 			if (folio_is_file_lru(folio) &&
1928 			    (!current_is_kswapd() ||
1929 			     !folio_test_reclaim(folio) ||
1930 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1931 				/*
1932 				 * Immediately reclaim when written back.
1933 				 * Similar in principle to folio_deactivate()
1934 				 * except we already have the folio isolated
1935 				 * and know it's dirty
1936 				 */
1937 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1938 						nr_pages);
1939 				folio_set_reclaim(folio);
1940 
1941 				goto activate_locked;
1942 			}
1943 
1944 			if (references == FOLIOREF_RECLAIM_CLEAN)
1945 				goto keep_locked;
1946 			if (!may_enter_fs(folio, sc->gfp_mask))
1947 				goto keep_locked;
1948 			if (!sc->may_writepage)
1949 				goto keep_locked;
1950 
1951 			/*
1952 			 * Folio is dirty. Flush the TLB if a writable entry
1953 			 * potentially exists to avoid CPU writes after I/O
1954 			 * starts and then write it out here.
1955 			 */
1956 			try_to_unmap_flush_dirty();
1957 			switch (pageout(folio, mapping, &plug)) {
1958 			case PAGE_KEEP:
1959 				goto keep_locked;
1960 			case PAGE_ACTIVATE:
1961 				goto activate_locked;
1962 			case PAGE_SUCCESS:
1963 				stat->nr_pageout += nr_pages;
1964 
1965 				if (folio_test_writeback(folio))
1966 					goto keep;
1967 				if (folio_test_dirty(folio))
1968 					goto keep;
1969 
1970 				/*
1971 				 * A synchronous write - probably a ramdisk.  Go
1972 				 * ahead and try to reclaim the folio.
1973 				 */
1974 				if (!folio_trylock(folio))
1975 					goto keep;
1976 				if (folio_test_dirty(folio) ||
1977 				    folio_test_writeback(folio))
1978 					goto keep_locked;
1979 				mapping = folio_mapping(folio);
1980 				fallthrough;
1981 			case PAGE_CLEAN:
1982 				; /* try to free the folio below */
1983 			}
1984 		}
1985 
1986 		/*
1987 		 * If the folio has buffers, try to free the buffer
1988 		 * mappings associated with this folio. If we succeed
1989 		 * we try to free the folio as well.
1990 		 *
1991 		 * We do this even if the folio is dirty.
1992 		 * filemap_release_folio() does not perform I/O, but it
1993 		 * is possible for a folio to have the dirty flag set,
1994 		 * but it is actually clean (all its buffers are clean).
1995 		 * This happens if the buffers were written out directly,
1996 		 * with submit_bh(). ext3 will do this, as well as
1997 		 * the blockdev mapping.  filemap_release_folio() will
1998 		 * discover that cleanness and will drop the buffers
1999 		 * and mark the folio clean - it can be freed.
2000 		 *
2001 		 * Rarely, folios can have buffers and no ->mapping.
2002 		 * These are the folios which were not successfully
2003 		 * invalidated in truncate_cleanup_folio().  We try to
2004 		 * drop those buffers here and if that worked, and the
2005 		 * folio is no longer mapped into process address space
2006 		 * (refcount == 1) it can be freed.  Otherwise, leave
2007 		 * the folio on the LRU so it is swappable.
2008 		 */
2009 		if (folio_has_private(folio)) {
2010 			if (!filemap_release_folio(folio, sc->gfp_mask))
2011 				goto activate_locked;
2012 			if (!mapping && folio_ref_count(folio) == 1) {
2013 				folio_unlock(folio);
2014 				if (folio_put_testzero(folio))
2015 					goto free_it;
2016 				else {
2017 					/*
2018 					 * rare race with speculative reference.
2019 					 * the speculative reference will free
2020 					 * this folio shortly, so we may
2021 					 * increment nr_reclaimed here (and
2022 					 * leave it off the LRU).
2023 					 */
2024 					nr_reclaimed += nr_pages;
2025 					continue;
2026 				}
2027 			}
2028 		}
2029 
2030 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
2031 			/* follow __remove_mapping for reference */
2032 			if (!folio_ref_freeze(folio, 1))
2033 				goto keep_locked;
2034 			/*
2035 			 * The folio has only one reference left, which is
2036 			 * from the isolation. After the caller puts the
2037 			 * folio back on the lru and drops the reference, the
2038 			 * folio will be freed anyway. It doesn't matter
2039 			 * which lru it goes on. So we don't bother checking
2040 			 * the dirty flag here.
2041 			 */
2042 			count_vm_events(PGLAZYFREED, nr_pages);
2043 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
2044 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
2045 							 sc->target_mem_cgroup))
2046 			goto keep_locked;
2047 
2048 		folio_unlock(folio);
2049 free_it:
2050 		/*
2051 		 * Folio may get swapped out as a whole, need to account
2052 		 * all pages in it.
2053 		 */
2054 		nr_reclaimed += nr_pages;
2055 
2056 		/*
2057 		 * Is there need to periodically free_folio_list? It would
2058 		 * appear not as the counts should be low
2059 		 */
2060 		if (unlikely(folio_test_large(folio)))
2061 			destroy_large_folio(folio);
2062 		else
2063 			list_add(&folio->lru, &free_folios);
2064 		continue;
2065 
2066 activate_locked_split:
2067 		/*
2068 		 * The tail pages that are failed to add into swap cache
2069 		 * reach here.  Fixup nr_scanned and nr_pages.
2070 		 */
2071 		if (nr_pages > 1) {
2072 			sc->nr_scanned -= (nr_pages - 1);
2073 			nr_pages = 1;
2074 		}
2075 activate_locked:
2076 		/* Not a candidate for swapping, so reclaim swap space. */
2077 		if (folio_test_swapcache(folio) &&
2078 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
2079 			folio_free_swap(folio);
2080 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2081 		if (!folio_test_mlocked(folio)) {
2082 			int type = folio_is_file_lru(folio);
2083 			folio_set_active(folio);
2084 			stat->nr_activate[type] += nr_pages;
2085 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2086 		}
2087 keep_locked:
2088 		folio_unlock(folio);
2089 keep:
2090 		list_add(&folio->lru, &ret_folios);
2091 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2092 				folio_test_unevictable(folio), folio);
2093 	}
2094 	/* 'folio_list' is always empty here */
2095 
2096 	/* Migrate folios selected for demotion */
2097 	nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2098 	/* Folios that could not be demoted are still in @demote_folios */
2099 	if (!list_empty(&demote_folios)) {
2100 		/* Folios which weren't demoted go back on @folio_list */
2101 		list_splice_init(&demote_folios, folio_list);
2102 
2103 		/*
2104 		 * goto retry to reclaim the undemoted folios in folio_list if
2105 		 * desired.
2106 		 *
2107 		 * Reclaiming directly from top tier nodes is not often desired
2108 		 * due to it breaking the LRU ordering: in general memory
2109 		 * should be reclaimed from lower tier nodes and demoted from
2110 		 * top tier nodes.
2111 		 *
2112 		 * However, disabling reclaim from top tier nodes entirely
2113 		 * would cause ooms in edge scenarios where lower tier memory
2114 		 * is unreclaimable for whatever reason, eg memory being
2115 		 * mlocked or too hot to reclaim. We can disable reclaim
2116 		 * from top tier nodes in proactive reclaim though as that is
2117 		 * not real memory pressure.
2118 		 */
2119 		if (!sc->proactive) {
2120 			do_demote_pass = false;
2121 			goto retry;
2122 		}
2123 	}
2124 
2125 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2126 
2127 	mem_cgroup_uncharge_list(&free_folios);
2128 	try_to_unmap_flush();
2129 	free_unref_page_list(&free_folios);
2130 
2131 	list_splice(&ret_folios, folio_list);
2132 	count_vm_events(PGACTIVATE, pgactivate);
2133 
2134 	if (plug)
2135 		swap_write_unplug(plug);
2136 	return nr_reclaimed;
2137 }
2138 
2139 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2140 					   struct list_head *folio_list)
2141 {
2142 	struct scan_control sc = {
2143 		.gfp_mask = GFP_KERNEL,
2144 		.may_unmap = 1,
2145 	};
2146 	struct reclaim_stat stat;
2147 	unsigned int nr_reclaimed;
2148 	struct folio *folio, *next;
2149 	LIST_HEAD(clean_folios);
2150 	unsigned int noreclaim_flag;
2151 
2152 	list_for_each_entry_safe(folio, next, folio_list, lru) {
2153 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2154 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2155 		    !folio_test_unevictable(folio)) {
2156 			folio_clear_active(folio);
2157 			list_move(&folio->lru, &clean_folios);
2158 		}
2159 	}
2160 
2161 	/*
2162 	 * We should be safe here since we are only dealing with file pages and
2163 	 * we are not kswapd and therefore cannot write dirty file pages. But
2164 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
2165 	 * change in the future.
2166 	 */
2167 	noreclaim_flag = memalloc_noreclaim_save();
2168 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
2169 					&stat, true);
2170 	memalloc_noreclaim_restore(noreclaim_flag);
2171 
2172 	list_splice(&clean_folios, folio_list);
2173 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2174 			    -(long)nr_reclaimed);
2175 	/*
2176 	 * Since lazyfree pages are isolated from file LRU from the beginning,
2177 	 * they will rotate back to anonymous LRU in the end if it failed to
2178 	 * discard so isolated count will be mismatched.
2179 	 * Compensate the isolated count for both LRU lists.
2180 	 */
2181 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2182 			    stat.nr_lazyfree_fail);
2183 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2184 			    -(long)stat.nr_lazyfree_fail);
2185 	return nr_reclaimed;
2186 }
2187 
2188 /*
2189  * Update LRU sizes after isolating pages. The LRU size updates must
2190  * be complete before mem_cgroup_update_lru_size due to a sanity check.
2191  */
2192 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2193 			enum lru_list lru, unsigned long *nr_zone_taken)
2194 {
2195 	int zid;
2196 
2197 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2198 		if (!nr_zone_taken[zid])
2199 			continue;
2200 
2201 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2202 	}
2203 
2204 }
2205 
2206 /*
2207  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2208  *
2209  * lruvec->lru_lock is heavily contended.  Some of the functions that
2210  * shrink the lists perform better by taking out a batch of pages
2211  * and working on them outside the LRU lock.
2212  *
2213  * For pagecache intensive workloads, this function is the hottest
2214  * spot in the kernel (apart from copy_*_user functions).
2215  *
2216  * Lru_lock must be held before calling this function.
2217  *
2218  * @nr_to_scan:	The number of eligible pages to look through on the list.
2219  * @lruvec:	The LRU vector to pull pages from.
2220  * @dst:	The temp list to put pages on to.
2221  * @nr_scanned:	The number of pages that were scanned.
2222  * @sc:		The scan_control struct for this reclaim session
2223  * @lru:	LRU list id for isolating
2224  *
2225  * returns how many pages were moved onto *@dst.
2226  */
2227 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
2228 		struct lruvec *lruvec, struct list_head *dst,
2229 		unsigned long *nr_scanned, struct scan_control *sc,
2230 		enum lru_list lru)
2231 {
2232 	struct list_head *src = &lruvec->lists[lru];
2233 	unsigned long nr_taken = 0;
2234 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2235 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2236 	unsigned long skipped = 0;
2237 	unsigned long scan, total_scan, nr_pages;
2238 	LIST_HEAD(folios_skipped);
2239 
2240 	total_scan = 0;
2241 	scan = 0;
2242 	while (scan < nr_to_scan && !list_empty(src)) {
2243 		struct list_head *move_to = src;
2244 		struct folio *folio;
2245 
2246 		folio = lru_to_folio(src);
2247 		prefetchw_prev_lru_folio(folio, src, flags);
2248 
2249 		nr_pages = folio_nr_pages(folio);
2250 		total_scan += nr_pages;
2251 
2252 		if (folio_zonenum(folio) > sc->reclaim_idx) {
2253 			nr_skipped[folio_zonenum(folio)] += nr_pages;
2254 			move_to = &folios_skipped;
2255 			goto move;
2256 		}
2257 
2258 		/*
2259 		 * Do not count skipped folios because that makes the function
2260 		 * return with no isolated folios if the LRU mostly contains
2261 		 * ineligible folios.  This causes the VM to not reclaim any
2262 		 * folios, triggering a premature OOM.
2263 		 * Account all pages in a folio.
2264 		 */
2265 		scan += nr_pages;
2266 
2267 		if (!folio_test_lru(folio))
2268 			goto move;
2269 		if (!sc->may_unmap && folio_mapped(folio))
2270 			goto move;
2271 
2272 		/*
2273 		 * Be careful not to clear the lru flag until after we're
2274 		 * sure the folio is not being freed elsewhere -- the
2275 		 * folio release code relies on it.
2276 		 */
2277 		if (unlikely(!folio_try_get(folio)))
2278 			goto move;
2279 
2280 		if (!folio_test_clear_lru(folio)) {
2281 			/* Another thread is already isolating this folio */
2282 			folio_put(folio);
2283 			goto move;
2284 		}
2285 
2286 		nr_taken += nr_pages;
2287 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2288 		move_to = dst;
2289 move:
2290 		list_move(&folio->lru, move_to);
2291 	}
2292 
2293 	/*
2294 	 * Splice any skipped folios to the start of the LRU list. Note that
2295 	 * this disrupts the LRU order when reclaiming for lower zones but
2296 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2297 	 * scanning would soon rescan the same folios to skip and waste lots
2298 	 * of cpu cycles.
2299 	 */
2300 	if (!list_empty(&folios_skipped)) {
2301 		int zid;
2302 
2303 		list_splice(&folios_skipped, src);
2304 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2305 			if (!nr_skipped[zid])
2306 				continue;
2307 
2308 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2309 			skipped += nr_skipped[zid];
2310 		}
2311 	}
2312 	*nr_scanned = total_scan;
2313 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2314 				    total_scan, skipped, nr_taken,
2315 				    sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2316 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2317 	return nr_taken;
2318 }
2319 
2320 /**
2321  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2322  * @folio: Folio to isolate from its LRU list.
2323  *
2324  * Isolate a @folio from an LRU list and adjust the vmstat statistic
2325  * corresponding to whatever LRU list the folio was on.
2326  *
2327  * The folio will have its LRU flag cleared.  If it was found on the
2328  * active list, it will have the Active flag set.  If it was found on the
2329  * unevictable list, it will have the Unevictable flag set.  These flags
2330  * may need to be cleared by the caller before letting the page go.
2331  *
2332  * Context:
2333  *
2334  * (1) Must be called with an elevated refcount on the folio. This is a
2335  *     fundamental difference from isolate_lru_folios() (which is called
2336  *     without a stable reference).
2337  * (2) The lru_lock must not be held.
2338  * (3) Interrupts must be enabled.
2339  *
2340  * Return: 0 if the folio was removed from an LRU list.
2341  * -EBUSY if the folio was not on an LRU list.
2342  */
2343 int folio_isolate_lru(struct folio *folio)
2344 {
2345 	int ret = -EBUSY;
2346 
2347 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2348 
2349 	if (folio_test_clear_lru(folio)) {
2350 		struct lruvec *lruvec;
2351 
2352 		folio_get(folio);
2353 		lruvec = folio_lruvec_lock_irq(folio);
2354 		lruvec_del_folio(lruvec, folio);
2355 		unlock_page_lruvec_irq(lruvec);
2356 		ret = 0;
2357 	}
2358 
2359 	return ret;
2360 }
2361 
2362 /*
2363  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2364  * then get rescheduled. When there are massive number of tasks doing page
2365  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2366  * the LRU list will go small and be scanned faster than necessary, leading to
2367  * unnecessary swapping, thrashing and OOM.
2368  */
2369 static int too_many_isolated(struct pglist_data *pgdat, int file,
2370 		struct scan_control *sc)
2371 {
2372 	unsigned long inactive, isolated;
2373 	bool too_many;
2374 
2375 	if (current_is_kswapd())
2376 		return 0;
2377 
2378 	if (!writeback_throttling_sane(sc))
2379 		return 0;
2380 
2381 	if (file) {
2382 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2383 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2384 	} else {
2385 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2386 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2387 	}
2388 
2389 	/*
2390 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2391 	 * won't get blocked by normal direct-reclaimers, forming a circular
2392 	 * deadlock.
2393 	 */
2394 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2395 		inactive >>= 3;
2396 
2397 	too_many = isolated > inactive;
2398 
2399 	/* Wake up tasks throttled due to too_many_isolated. */
2400 	if (!too_many)
2401 		wake_throttle_isolated(pgdat);
2402 
2403 	return too_many;
2404 }
2405 
2406 /*
2407  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
2408  * On return, @list is reused as a list of folios to be freed by the caller.
2409  *
2410  * Returns the number of pages moved to the given lruvec.
2411  */
2412 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
2413 		struct list_head *list)
2414 {
2415 	int nr_pages, nr_moved = 0;
2416 	LIST_HEAD(folios_to_free);
2417 
2418 	while (!list_empty(list)) {
2419 		struct folio *folio = lru_to_folio(list);
2420 
2421 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2422 		list_del(&folio->lru);
2423 		if (unlikely(!folio_evictable(folio))) {
2424 			spin_unlock_irq(&lruvec->lru_lock);
2425 			folio_putback_lru(folio);
2426 			spin_lock_irq(&lruvec->lru_lock);
2427 			continue;
2428 		}
2429 
2430 		/*
2431 		 * The folio_set_lru needs to be kept here for list integrity.
2432 		 * Otherwise:
2433 		 *   #0 move_folios_to_lru             #1 release_pages
2434 		 *   if (!folio_put_testzero())
2435 		 *				      if (folio_put_testzero())
2436 		 *				        !lru //skip lru_lock
2437 		 *     folio_set_lru()
2438 		 *     list_add(&folio->lru,)
2439 		 *                                        list_add(&folio->lru,)
2440 		 */
2441 		folio_set_lru(folio);
2442 
2443 		if (unlikely(folio_put_testzero(folio))) {
2444 			__folio_clear_lru_flags(folio);
2445 
2446 			if (unlikely(folio_test_large(folio))) {
2447 				spin_unlock_irq(&lruvec->lru_lock);
2448 				destroy_large_folio(folio);
2449 				spin_lock_irq(&lruvec->lru_lock);
2450 			} else
2451 				list_add(&folio->lru, &folios_to_free);
2452 
2453 			continue;
2454 		}
2455 
2456 		/*
2457 		 * All pages were isolated from the same lruvec (and isolation
2458 		 * inhibits memcg migration).
2459 		 */
2460 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2461 		lruvec_add_folio(lruvec, folio);
2462 		nr_pages = folio_nr_pages(folio);
2463 		nr_moved += nr_pages;
2464 		if (folio_test_active(folio))
2465 			workingset_age_nonresident(lruvec, nr_pages);
2466 	}
2467 
2468 	/*
2469 	 * To save our caller's stack, now use input list for pages to free.
2470 	 */
2471 	list_splice(&folios_to_free, list);
2472 
2473 	return nr_moved;
2474 }
2475 
2476 /*
2477  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2478  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2479  * we should not throttle.  Otherwise it is safe to do so.
2480  */
2481 static int current_may_throttle(void)
2482 {
2483 	return !(current->flags & PF_LOCAL_THROTTLE);
2484 }
2485 
2486 /*
2487  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2488  * of reclaimed pages
2489  */
2490 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2491 		struct lruvec *lruvec, struct scan_control *sc,
2492 		enum lru_list lru)
2493 {
2494 	LIST_HEAD(folio_list);
2495 	unsigned long nr_scanned;
2496 	unsigned int nr_reclaimed = 0;
2497 	unsigned long nr_taken;
2498 	struct reclaim_stat stat;
2499 	bool file = is_file_lru(lru);
2500 	enum vm_event_item item;
2501 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2502 	bool stalled = false;
2503 
2504 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2505 		if (stalled)
2506 			return 0;
2507 
2508 		/* wait a bit for the reclaimer. */
2509 		stalled = true;
2510 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2511 
2512 		/* We are about to die and free our memory. Return now. */
2513 		if (fatal_signal_pending(current))
2514 			return SWAP_CLUSTER_MAX;
2515 	}
2516 
2517 	lru_add_drain();
2518 
2519 	spin_lock_irq(&lruvec->lru_lock);
2520 
2521 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2522 				     &nr_scanned, sc, lru);
2523 
2524 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2525 	item = PGSCAN_KSWAPD + reclaimer_offset();
2526 	if (!cgroup_reclaim(sc))
2527 		__count_vm_events(item, nr_scanned);
2528 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2529 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2530 
2531 	spin_unlock_irq(&lruvec->lru_lock);
2532 
2533 	if (nr_taken == 0)
2534 		return 0;
2535 
2536 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2537 
2538 	spin_lock_irq(&lruvec->lru_lock);
2539 	move_folios_to_lru(lruvec, &folio_list);
2540 
2541 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2542 	item = PGSTEAL_KSWAPD + reclaimer_offset();
2543 	if (!cgroup_reclaim(sc))
2544 		__count_vm_events(item, nr_reclaimed);
2545 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2546 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2547 	spin_unlock_irq(&lruvec->lru_lock);
2548 
2549 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2550 	mem_cgroup_uncharge_list(&folio_list);
2551 	free_unref_page_list(&folio_list);
2552 
2553 	/*
2554 	 * If dirty folios are scanned that are not queued for IO, it
2555 	 * implies that flushers are not doing their job. This can
2556 	 * happen when memory pressure pushes dirty folios to the end of
2557 	 * the LRU before the dirty limits are breached and the dirty
2558 	 * data has expired. It can also happen when the proportion of
2559 	 * dirty folios grows not through writes but through memory
2560 	 * pressure reclaiming all the clean cache. And in some cases,
2561 	 * the flushers simply cannot keep up with the allocation
2562 	 * rate. Nudge the flusher threads in case they are asleep.
2563 	 */
2564 	if (stat.nr_unqueued_dirty == nr_taken) {
2565 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2566 		/*
2567 		 * For cgroupv1 dirty throttling is achieved by waking up
2568 		 * the kernel flusher here and later waiting on folios
2569 		 * which are in writeback to finish (see shrink_folio_list()).
2570 		 *
2571 		 * Flusher may not be able to issue writeback quickly
2572 		 * enough for cgroupv1 writeback throttling to work
2573 		 * on a large system.
2574 		 */
2575 		if (!writeback_throttling_sane(sc))
2576 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2577 	}
2578 
2579 	sc->nr.dirty += stat.nr_dirty;
2580 	sc->nr.congested += stat.nr_congested;
2581 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2582 	sc->nr.writeback += stat.nr_writeback;
2583 	sc->nr.immediate += stat.nr_immediate;
2584 	sc->nr.taken += nr_taken;
2585 	if (file)
2586 		sc->nr.file_taken += nr_taken;
2587 
2588 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2589 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2590 	return nr_reclaimed;
2591 }
2592 
2593 /*
2594  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2595  *
2596  * We move them the other way if the folio is referenced by one or more
2597  * processes.
2598  *
2599  * If the folios are mostly unmapped, the processing is fast and it is
2600  * appropriate to hold lru_lock across the whole operation.  But if
2601  * the folios are mapped, the processing is slow (folio_referenced()), so
2602  * we should drop lru_lock around each folio.  It's impossible to balance
2603  * this, so instead we remove the folios from the LRU while processing them.
2604  * It is safe to rely on the active flag against the non-LRU folios in here
2605  * because nobody will play with that bit on a non-LRU folio.
2606  *
2607  * The downside is that we have to touch folio->_refcount against each folio.
2608  * But we had to alter folio->flags anyway.
2609  */
2610 static void shrink_active_list(unsigned long nr_to_scan,
2611 			       struct lruvec *lruvec,
2612 			       struct scan_control *sc,
2613 			       enum lru_list lru)
2614 {
2615 	unsigned long nr_taken;
2616 	unsigned long nr_scanned;
2617 	unsigned long vm_flags;
2618 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2619 	LIST_HEAD(l_active);
2620 	LIST_HEAD(l_inactive);
2621 	unsigned nr_deactivate, nr_activate;
2622 	unsigned nr_rotated = 0;
2623 	int file = is_file_lru(lru);
2624 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2625 
2626 	lru_add_drain();
2627 
2628 	spin_lock_irq(&lruvec->lru_lock);
2629 
2630 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2631 				     &nr_scanned, sc, lru);
2632 
2633 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2634 
2635 	if (!cgroup_reclaim(sc))
2636 		__count_vm_events(PGREFILL, nr_scanned);
2637 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2638 
2639 	spin_unlock_irq(&lruvec->lru_lock);
2640 
2641 	while (!list_empty(&l_hold)) {
2642 		struct folio *folio;
2643 
2644 		cond_resched();
2645 		folio = lru_to_folio(&l_hold);
2646 		list_del(&folio->lru);
2647 
2648 		if (unlikely(!folio_evictable(folio))) {
2649 			folio_putback_lru(folio);
2650 			continue;
2651 		}
2652 
2653 		if (unlikely(buffer_heads_over_limit)) {
2654 			if (folio_test_private(folio) && folio_trylock(folio)) {
2655 				if (folio_test_private(folio))
2656 					filemap_release_folio(folio, 0);
2657 				folio_unlock(folio);
2658 			}
2659 		}
2660 
2661 		/* Referenced or rmap lock contention: rotate */
2662 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2663 				     &vm_flags) != 0) {
2664 			/*
2665 			 * Identify referenced, file-backed active folios and
2666 			 * give them one more trip around the active list. So
2667 			 * that executable code get better chances to stay in
2668 			 * memory under moderate memory pressure.  Anon folios
2669 			 * are not likely to be evicted by use-once streaming
2670 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2671 			 * so we ignore them here.
2672 			 */
2673 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2674 				nr_rotated += folio_nr_pages(folio);
2675 				list_add(&folio->lru, &l_active);
2676 				continue;
2677 			}
2678 		}
2679 
2680 		folio_clear_active(folio);	/* we are de-activating */
2681 		folio_set_workingset(folio);
2682 		list_add(&folio->lru, &l_inactive);
2683 	}
2684 
2685 	/*
2686 	 * Move folios back to the lru list.
2687 	 */
2688 	spin_lock_irq(&lruvec->lru_lock);
2689 
2690 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2691 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2692 	/* Keep all free folios in l_active list */
2693 	list_splice(&l_inactive, &l_active);
2694 
2695 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2696 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2697 
2698 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2699 	spin_unlock_irq(&lruvec->lru_lock);
2700 
2701 	if (nr_rotated)
2702 		lru_note_cost(lruvec, file, 0, nr_rotated);
2703 	mem_cgroup_uncharge_list(&l_active);
2704 	free_unref_page_list(&l_active);
2705 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2706 			nr_deactivate, nr_rotated, sc->priority, file);
2707 }
2708 
2709 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2710 				      struct pglist_data *pgdat)
2711 {
2712 	struct reclaim_stat dummy_stat;
2713 	unsigned int nr_reclaimed;
2714 	struct folio *folio;
2715 	struct scan_control sc = {
2716 		.gfp_mask = GFP_KERNEL,
2717 		.may_writepage = 1,
2718 		.may_unmap = 1,
2719 		.may_swap = 1,
2720 		.no_demotion = 1,
2721 	};
2722 
2723 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2724 	while (!list_empty(folio_list)) {
2725 		folio = lru_to_folio(folio_list);
2726 		list_del(&folio->lru);
2727 		folio_putback_lru(folio);
2728 	}
2729 
2730 	return nr_reclaimed;
2731 }
2732 
2733 unsigned long reclaim_pages(struct list_head *folio_list)
2734 {
2735 	int nid;
2736 	unsigned int nr_reclaimed = 0;
2737 	LIST_HEAD(node_folio_list);
2738 	unsigned int noreclaim_flag;
2739 
2740 	if (list_empty(folio_list))
2741 		return nr_reclaimed;
2742 
2743 	noreclaim_flag = memalloc_noreclaim_save();
2744 
2745 	nid = folio_nid(lru_to_folio(folio_list));
2746 	do {
2747 		struct folio *folio = lru_to_folio(folio_list);
2748 
2749 		if (nid == folio_nid(folio)) {
2750 			folio_clear_active(folio);
2751 			list_move(&folio->lru, &node_folio_list);
2752 			continue;
2753 		}
2754 
2755 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2756 		nid = folio_nid(lru_to_folio(folio_list));
2757 	} while (!list_empty(folio_list));
2758 
2759 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2760 
2761 	memalloc_noreclaim_restore(noreclaim_flag);
2762 
2763 	return nr_reclaimed;
2764 }
2765 
2766 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2767 				 struct lruvec *lruvec, struct scan_control *sc)
2768 {
2769 	if (is_active_lru(lru)) {
2770 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2771 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2772 		else
2773 			sc->skipped_deactivate = 1;
2774 		return 0;
2775 	}
2776 
2777 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2778 }
2779 
2780 /*
2781  * The inactive anon list should be small enough that the VM never has
2782  * to do too much work.
2783  *
2784  * The inactive file list should be small enough to leave most memory
2785  * to the established workingset on the scan-resistant active list,
2786  * but large enough to avoid thrashing the aggregate readahead window.
2787  *
2788  * Both inactive lists should also be large enough that each inactive
2789  * folio has a chance to be referenced again before it is reclaimed.
2790  *
2791  * If that fails and refaulting is observed, the inactive list grows.
2792  *
2793  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2794  * on this LRU, maintained by the pageout code. An inactive_ratio
2795  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2796  *
2797  * total     target    max
2798  * memory    ratio     inactive
2799  * -------------------------------------
2800  *   10MB       1         5MB
2801  *  100MB       1        50MB
2802  *    1GB       3       250MB
2803  *   10GB      10       0.9GB
2804  *  100GB      31         3GB
2805  *    1TB     101        10GB
2806  *   10TB     320        32GB
2807  */
2808 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2809 {
2810 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2811 	unsigned long inactive, active;
2812 	unsigned long inactive_ratio;
2813 	unsigned long gb;
2814 
2815 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2816 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2817 
2818 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2819 	if (gb)
2820 		inactive_ratio = int_sqrt(10 * gb);
2821 	else
2822 		inactive_ratio = 1;
2823 
2824 	return inactive * inactive_ratio < active;
2825 }
2826 
2827 enum scan_balance {
2828 	SCAN_EQUAL,
2829 	SCAN_FRACT,
2830 	SCAN_ANON,
2831 	SCAN_FILE,
2832 };
2833 
2834 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2835 {
2836 	unsigned long file;
2837 	struct lruvec *target_lruvec;
2838 
2839 	if (lru_gen_enabled())
2840 		return;
2841 
2842 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2843 
2844 	/*
2845 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
2846 	 * lruvec stats for heuristics.
2847 	 */
2848 	mem_cgroup_flush_stats();
2849 
2850 	/*
2851 	 * Determine the scan balance between anon and file LRUs.
2852 	 */
2853 	spin_lock_irq(&target_lruvec->lru_lock);
2854 	sc->anon_cost = target_lruvec->anon_cost;
2855 	sc->file_cost = target_lruvec->file_cost;
2856 	spin_unlock_irq(&target_lruvec->lru_lock);
2857 
2858 	/*
2859 	 * Target desirable inactive:active list ratios for the anon
2860 	 * and file LRU lists.
2861 	 */
2862 	if (!sc->force_deactivate) {
2863 		unsigned long refaults;
2864 
2865 		/*
2866 		 * When refaults are being observed, it means a new
2867 		 * workingset is being established. Deactivate to get
2868 		 * rid of any stale active pages quickly.
2869 		 */
2870 		refaults = lruvec_page_state(target_lruvec,
2871 				WORKINGSET_ACTIVATE_ANON);
2872 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2873 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2874 			sc->may_deactivate |= DEACTIVATE_ANON;
2875 		else
2876 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2877 
2878 		refaults = lruvec_page_state(target_lruvec,
2879 				WORKINGSET_ACTIVATE_FILE);
2880 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2881 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2882 			sc->may_deactivate |= DEACTIVATE_FILE;
2883 		else
2884 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2885 	} else
2886 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2887 
2888 	/*
2889 	 * If we have plenty of inactive file pages that aren't
2890 	 * thrashing, try to reclaim those first before touching
2891 	 * anonymous pages.
2892 	 */
2893 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2894 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2895 		sc->cache_trim_mode = 1;
2896 	else
2897 		sc->cache_trim_mode = 0;
2898 
2899 	/*
2900 	 * Prevent the reclaimer from falling into the cache trap: as
2901 	 * cache pages start out inactive, every cache fault will tip
2902 	 * the scan balance towards the file LRU.  And as the file LRU
2903 	 * shrinks, so does the window for rotation from references.
2904 	 * This means we have a runaway feedback loop where a tiny
2905 	 * thrashing file LRU becomes infinitely more attractive than
2906 	 * anon pages.  Try to detect this based on file LRU size.
2907 	 */
2908 	if (!cgroup_reclaim(sc)) {
2909 		unsigned long total_high_wmark = 0;
2910 		unsigned long free, anon;
2911 		int z;
2912 
2913 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2914 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2915 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2916 
2917 		for (z = 0; z < MAX_NR_ZONES; z++) {
2918 			struct zone *zone = &pgdat->node_zones[z];
2919 
2920 			if (!managed_zone(zone))
2921 				continue;
2922 
2923 			total_high_wmark += high_wmark_pages(zone);
2924 		}
2925 
2926 		/*
2927 		 * Consider anon: if that's low too, this isn't a
2928 		 * runaway file reclaim problem, but rather just
2929 		 * extreme pressure. Reclaim as per usual then.
2930 		 */
2931 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2932 
2933 		sc->file_is_tiny =
2934 			file + free <= total_high_wmark &&
2935 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2936 			anon >> sc->priority;
2937 	}
2938 }
2939 
2940 /*
2941  * Determine how aggressively the anon and file LRU lists should be
2942  * scanned.
2943  *
2944  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2945  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2946  */
2947 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2948 			   unsigned long *nr)
2949 {
2950 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2951 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2952 	unsigned long anon_cost, file_cost, total_cost;
2953 	int swappiness = mem_cgroup_swappiness(memcg);
2954 	u64 fraction[ANON_AND_FILE];
2955 	u64 denominator = 0;	/* gcc */
2956 	enum scan_balance scan_balance;
2957 	unsigned long ap, fp;
2958 	enum lru_list lru;
2959 
2960 	/* If we have no swap space, do not bother scanning anon folios. */
2961 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2962 		scan_balance = SCAN_FILE;
2963 		goto out;
2964 	}
2965 
2966 	/*
2967 	 * Global reclaim will swap to prevent OOM even with no
2968 	 * swappiness, but memcg users want to use this knob to
2969 	 * disable swapping for individual groups completely when
2970 	 * using the memory controller's swap limit feature would be
2971 	 * too expensive.
2972 	 */
2973 	if (cgroup_reclaim(sc) && !swappiness) {
2974 		scan_balance = SCAN_FILE;
2975 		goto out;
2976 	}
2977 
2978 	/*
2979 	 * Do not apply any pressure balancing cleverness when the
2980 	 * system is close to OOM, scan both anon and file equally
2981 	 * (unless the swappiness setting disagrees with swapping).
2982 	 */
2983 	if (!sc->priority && swappiness) {
2984 		scan_balance = SCAN_EQUAL;
2985 		goto out;
2986 	}
2987 
2988 	/*
2989 	 * If the system is almost out of file pages, force-scan anon.
2990 	 */
2991 	if (sc->file_is_tiny) {
2992 		scan_balance = SCAN_ANON;
2993 		goto out;
2994 	}
2995 
2996 	/*
2997 	 * If there is enough inactive page cache, we do not reclaim
2998 	 * anything from the anonymous working right now.
2999 	 */
3000 	if (sc->cache_trim_mode) {
3001 		scan_balance = SCAN_FILE;
3002 		goto out;
3003 	}
3004 
3005 	scan_balance = SCAN_FRACT;
3006 	/*
3007 	 * Calculate the pressure balance between anon and file pages.
3008 	 *
3009 	 * The amount of pressure we put on each LRU is inversely
3010 	 * proportional to the cost of reclaiming each list, as
3011 	 * determined by the share of pages that are refaulting, times
3012 	 * the relative IO cost of bringing back a swapped out
3013 	 * anonymous page vs reloading a filesystem page (swappiness).
3014 	 *
3015 	 * Although we limit that influence to ensure no list gets
3016 	 * left behind completely: at least a third of the pressure is
3017 	 * applied, before swappiness.
3018 	 *
3019 	 * With swappiness at 100, anon and file have equal IO cost.
3020 	 */
3021 	total_cost = sc->anon_cost + sc->file_cost;
3022 	anon_cost = total_cost + sc->anon_cost;
3023 	file_cost = total_cost + sc->file_cost;
3024 	total_cost = anon_cost + file_cost;
3025 
3026 	ap = swappiness * (total_cost + 1);
3027 	ap /= anon_cost + 1;
3028 
3029 	fp = (200 - swappiness) * (total_cost + 1);
3030 	fp /= file_cost + 1;
3031 
3032 	fraction[0] = ap;
3033 	fraction[1] = fp;
3034 	denominator = ap + fp;
3035 out:
3036 	for_each_evictable_lru(lru) {
3037 		int file = is_file_lru(lru);
3038 		unsigned long lruvec_size;
3039 		unsigned long low, min;
3040 		unsigned long scan;
3041 
3042 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
3043 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
3044 				      &min, &low);
3045 
3046 		if (min || low) {
3047 			/*
3048 			 * Scale a cgroup's reclaim pressure by proportioning
3049 			 * its current usage to its memory.low or memory.min
3050 			 * setting.
3051 			 *
3052 			 * This is important, as otherwise scanning aggression
3053 			 * becomes extremely binary -- from nothing as we
3054 			 * approach the memory protection threshold, to totally
3055 			 * nominal as we exceed it.  This results in requiring
3056 			 * setting extremely liberal protection thresholds. It
3057 			 * also means we simply get no protection at all if we
3058 			 * set it too low, which is not ideal.
3059 			 *
3060 			 * If there is any protection in place, we reduce scan
3061 			 * pressure by how much of the total memory used is
3062 			 * within protection thresholds.
3063 			 *
3064 			 * There is one special case: in the first reclaim pass,
3065 			 * we skip over all groups that are within their low
3066 			 * protection. If that fails to reclaim enough pages to
3067 			 * satisfy the reclaim goal, we come back and override
3068 			 * the best-effort low protection. However, we still
3069 			 * ideally want to honor how well-behaved groups are in
3070 			 * that case instead of simply punishing them all
3071 			 * equally. As such, we reclaim them based on how much
3072 			 * memory they are using, reducing the scan pressure
3073 			 * again by how much of the total memory used is under
3074 			 * hard protection.
3075 			 */
3076 			unsigned long cgroup_size = mem_cgroup_size(memcg);
3077 			unsigned long protection;
3078 
3079 			/* memory.low scaling, make sure we retry before OOM */
3080 			if (!sc->memcg_low_reclaim && low > min) {
3081 				protection = low;
3082 				sc->memcg_low_skipped = 1;
3083 			} else {
3084 				protection = min;
3085 			}
3086 
3087 			/* Avoid TOCTOU with earlier protection check */
3088 			cgroup_size = max(cgroup_size, protection);
3089 
3090 			scan = lruvec_size - lruvec_size * protection /
3091 				(cgroup_size + 1);
3092 
3093 			/*
3094 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
3095 			 * reclaim moving forwards, avoiding decrementing
3096 			 * sc->priority further than desirable.
3097 			 */
3098 			scan = max(scan, SWAP_CLUSTER_MAX);
3099 		} else {
3100 			scan = lruvec_size;
3101 		}
3102 
3103 		scan >>= sc->priority;
3104 
3105 		/*
3106 		 * If the cgroup's already been deleted, make sure to
3107 		 * scrape out the remaining cache.
3108 		 */
3109 		if (!scan && !mem_cgroup_online(memcg))
3110 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3111 
3112 		switch (scan_balance) {
3113 		case SCAN_EQUAL:
3114 			/* Scan lists relative to size */
3115 			break;
3116 		case SCAN_FRACT:
3117 			/*
3118 			 * Scan types proportional to swappiness and
3119 			 * their relative recent reclaim efficiency.
3120 			 * Make sure we don't miss the last page on
3121 			 * the offlined memory cgroups because of a
3122 			 * round-off error.
3123 			 */
3124 			scan = mem_cgroup_online(memcg) ?
3125 			       div64_u64(scan * fraction[file], denominator) :
3126 			       DIV64_U64_ROUND_UP(scan * fraction[file],
3127 						  denominator);
3128 			break;
3129 		case SCAN_FILE:
3130 		case SCAN_ANON:
3131 			/* Scan one type exclusively */
3132 			if ((scan_balance == SCAN_FILE) != file)
3133 				scan = 0;
3134 			break;
3135 		default:
3136 			/* Look ma, no brain */
3137 			BUG();
3138 		}
3139 
3140 		nr[lru] = scan;
3141 	}
3142 }
3143 
3144 /*
3145  * Anonymous LRU management is a waste if there is
3146  * ultimately no way to reclaim the memory.
3147  */
3148 static bool can_age_anon_pages(struct pglist_data *pgdat,
3149 			       struct scan_control *sc)
3150 {
3151 	/* Aging the anon LRU is valuable if swap is present: */
3152 	if (total_swap_pages > 0)
3153 		return true;
3154 
3155 	/* Also valuable if anon pages can be demoted: */
3156 	return can_demote(pgdat->node_id, sc);
3157 }
3158 
3159 #ifdef CONFIG_LRU_GEN
3160 
3161 #ifdef CONFIG_LRU_GEN_ENABLED
3162 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3163 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
3164 #else
3165 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3166 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
3167 #endif
3168 
3169 /******************************************************************************
3170  *                          shorthand helpers
3171  ******************************************************************************/
3172 
3173 #define LRU_REFS_FLAGS	(BIT(PG_referenced) | BIT(PG_workingset))
3174 
3175 #define DEFINE_MAX_SEQ(lruvec)						\
3176 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3177 
3178 #define DEFINE_MIN_SEQ(lruvec)						\
3179 	unsigned long min_seq[ANON_AND_FILE] = {			\
3180 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
3181 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
3182 	}
3183 
3184 #define for_each_gen_type_zone(gen, type, zone)				\
3185 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
3186 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
3187 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3188 
3189 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
3190 {
3191 	struct pglist_data *pgdat = NODE_DATA(nid);
3192 
3193 #ifdef CONFIG_MEMCG
3194 	if (memcg) {
3195 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3196 
3197 		/* see the comment in mem_cgroup_lruvec() */
3198 		if (!lruvec->pgdat)
3199 			lruvec->pgdat = pgdat;
3200 
3201 		return lruvec;
3202 	}
3203 #endif
3204 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3205 
3206 	return &pgdat->__lruvec;
3207 }
3208 
3209 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3210 {
3211 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3212 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3213 
3214 	if (!can_demote(pgdat->node_id, sc) &&
3215 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3216 		return 0;
3217 
3218 	return mem_cgroup_swappiness(memcg);
3219 }
3220 
3221 static int get_nr_gens(struct lruvec *lruvec, int type)
3222 {
3223 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3224 }
3225 
3226 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3227 {
3228 	/* see the comment on lru_gen_folio */
3229 	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3230 	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3231 	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3232 }
3233 
3234 /******************************************************************************
3235  *                          mm_struct list
3236  ******************************************************************************/
3237 
3238 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3239 {
3240 	static struct lru_gen_mm_list mm_list = {
3241 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
3242 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3243 	};
3244 
3245 #ifdef CONFIG_MEMCG
3246 	if (memcg)
3247 		return &memcg->mm_list;
3248 #endif
3249 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3250 
3251 	return &mm_list;
3252 }
3253 
3254 void lru_gen_add_mm(struct mm_struct *mm)
3255 {
3256 	int nid;
3257 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3258 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3259 
3260 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3261 #ifdef CONFIG_MEMCG
3262 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3263 	mm->lru_gen.memcg = memcg;
3264 #endif
3265 	spin_lock(&mm_list->lock);
3266 
3267 	for_each_node_state(nid, N_MEMORY) {
3268 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3269 
3270 		/* the first addition since the last iteration */
3271 		if (lruvec->mm_state.tail == &mm_list->fifo)
3272 			lruvec->mm_state.tail = &mm->lru_gen.list;
3273 	}
3274 
3275 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3276 
3277 	spin_unlock(&mm_list->lock);
3278 }
3279 
3280 void lru_gen_del_mm(struct mm_struct *mm)
3281 {
3282 	int nid;
3283 	struct lru_gen_mm_list *mm_list;
3284 	struct mem_cgroup *memcg = NULL;
3285 
3286 	if (list_empty(&mm->lru_gen.list))
3287 		return;
3288 
3289 #ifdef CONFIG_MEMCG
3290 	memcg = mm->lru_gen.memcg;
3291 #endif
3292 	mm_list = get_mm_list(memcg);
3293 
3294 	spin_lock(&mm_list->lock);
3295 
3296 	for_each_node(nid) {
3297 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3298 
3299 		/* where the last iteration ended (exclusive) */
3300 		if (lruvec->mm_state.tail == &mm->lru_gen.list)
3301 			lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3302 
3303 		/* where the current iteration continues (inclusive) */
3304 		if (lruvec->mm_state.head != &mm->lru_gen.list)
3305 			continue;
3306 
3307 		lruvec->mm_state.head = lruvec->mm_state.head->next;
3308 		/* the deletion ends the current iteration */
3309 		if (lruvec->mm_state.head == &mm_list->fifo)
3310 			WRITE_ONCE(lruvec->mm_state.seq, lruvec->mm_state.seq + 1);
3311 	}
3312 
3313 	list_del_init(&mm->lru_gen.list);
3314 
3315 	spin_unlock(&mm_list->lock);
3316 
3317 #ifdef CONFIG_MEMCG
3318 	mem_cgroup_put(mm->lru_gen.memcg);
3319 	mm->lru_gen.memcg = NULL;
3320 #endif
3321 }
3322 
3323 #ifdef CONFIG_MEMCG
3324 void lru_gen_migrate_mm(struct mm_struct *mm)
3325 {
3326 	struct mem_cgroup *memcg;
3327 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3328 
3329 	VM_WARN_ON_ONCE(task->mm != mm);
3330 	lockdep_assert_held(&task->alloc_lock);
3331 
3332 	/* for mm_update_next_owner() */
3333 	if (mem_cgroup_disabled())
3334 		return;
3335 
3336 	rcu_read_lock();
3337 	memcg = mem_cgroup_from_task(task);
3338 	rcu_read_unlock();
3339 	if (memcg == mm->lru_gen.memcg)
3340 		return;
3341 
3342 	VM_WARN_ON_ONCE(!mm->lru_gen.memcg);
3343 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3344 
3345 	lru_gen_del_mm(mm);
3346 	lru_gen_add_mm(mm);
3347 }
3348 #endif
3349 
3350 /*
3351  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3352  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3353  * bits in a bitmap, k is the number of hash functions and n is the number of
3354  * inserted items.
3355  *
3356  * Page table walkers use one of the two filters to reduce their search space.
3357  * To get rid of non-leaf entries that no longer have enough leaf entries, the
3358  * aging uses the double-buffering technique to flip to the other filter each
3359  * time it produces a new generation. For non-leaf entries that have enough
3360  * leaf entries, the aging carries them over to the next generation in
3361  * walk_pmd_range(); the eviction also report them when walking the rmap
3362  * in lru_gen_look_around().
3363  *
3364  * For future optimizations:
3365  * 1. It's not necessary to keep both filters all the time. The spare one can be
3366  *    freed after the RCU grace period and reallocated if needed again.
3367  * 2. And when reallocating, it's worth scaling its size according to the number
3368  *    of inserted entries in the other filter, to reduce the memory overhead on
3369  *    small systems and false positives on large systems.
3370  * 3. Jenkins' hash function is an alternative to Knuth's.
3371  */
3372 #define BLOOM_FILTER_SHIFT	15
3373 
3374 static inline int filter_gen_from_seq(unsigned long seq)
3375 {
3376 	return seq % NR_BLOOM_FILTERS;
3377 }
3378 
3379 static void get_item_key(void *item, int *key)
3380 {
3381 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3382 
3383 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3384 
3385 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3386 	key[1] = hash >> BLOOM_FILTER_SHIFT;
3387 }
3388 
3389 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3390 {
3391 	unsigned long *filter;
3392 	int gen = filter_gen_from_seq(seq);
3393 
3394 	filter = lruvec->mm_state.filters[gen];
3395 	if (filter) {
3396 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3397 		return;
3398 	}
3399 
3400 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3401 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3402 	WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3403 }
3404 
3405 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3406 {
3407 	int key[2];
3408 	unsigned long *filter;
3409 	int gen = filter_gen_from_seq(seq);
3410 
3411 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3412 	if (!filter)
3413 		return;
3414 
3415 	get_item_key(item, key);
3416 
3417 	if (!test_bit(key[0], filter))
3418 		set_bit(key[0], filter);
3419 	if (!test_bit(key[1], filter))
3420 		set_bit(key[1], filter);
3421 }
3422 
3423 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3424 {
3425 	int key[2];
3426 	unsigned long *filter;
3427 	int gen = filter_gen_from_seq(seq);
3428 
3429 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3430 	if (!filter)
3431 		return true;
3432 
3433 	get_item_key(item, key);
3434 
3435 	return test_bit(key[0], filter) && test_bit(key[1], filter);
3436 }
3437 
3438 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3439 {
3440 	int i;
3441 	int hist;
3442 
3443 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3444 
3445 	if (walk) {
3446 		hist = lru_hist_from_seq(walk->max_seq);
3447 
3448 		for (i = 0; i < NR_MM_STATS; i++) {
3449 			WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3450 				   lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3451 			walk->mm_stats[i] = 0;
3452 		}
3453 	}
3454 
3455 	if (NR_HIST_GENS > 1 && last) {
3456 		hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3457 
3458 		for (i = 0; i < NR_MM_STATS; i++)
3459 			WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3460 	}
3461 }
3462 
3463 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3464 {
3465 	int type;
3466 	unsigned long size = 0;
3467 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3468 	int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3469 
3470 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3471 		return true;
3472 
3473 	clear_bit(key, &mm->lru_gen.bitmap);
3474 
3475 	for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3476 		size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3477 			       get_mm_counter(mm, MM_ANONPAGES) +
3478 			       get_mm_counter(mm, MM_SHMEMPAGES);
3479 	}
3480 
3481 	if (size < MIN_LRU_BATCH)
3482 		return true;
3483 
3484 	return !mmget_not_zero(mm);
3485 }
3486 
3487 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3488 			    struct mm_struct **iter)
3489 {
3490 	bool first = false;
3491 	bool last = true;
3492 	struct mm_struct *mm = NULL;
3493 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3494 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3495 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3496 
3497 	/*
3498 	 * There are four interesting cases for this page table walker:
3499 	 * 1. It tries to start a new iteration of mm_list with a stale max_seq;
3500 	 *    there is nothing left to do.
3501 	 * 2. It's the first of the current generation, and it needs to reset
3502 	 *    the Bloom filter for the next generation.
3503 	 * 3. It reaches the end of mm_list, and it needs to increment
3504 	 *    mm_state->seq; the iteration is done.
3505 	 * 4. It's the last of the current generation, and it needs to reset the
3506 	 *    mm stats counters for the next generation.
3507 	 */
3508 	spin_lock(&mm_list->lock);
3509 
3510 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3511 	VM_WARN_ON_ONCE(*iter && mm_state->seq > walk->max_seq);
3512 	VM_WARN_ON_ONCE(*iter && !mm_state->nr_walkers);
3513 
3514 	if (walk->max_seq <= mm_state->seq) {
3515 		if (!*iter)
3516 			last = false;
3517 		goto done;
3518 	}
3519 
3520 	if (!mm_state->nr_walkers) {
3521 		VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3522 
3523 		mm_state->head = mm_list->fifo.next;
3524 		first = true;
3525 	}
3526 
3527 	while (!mm && mm_state->head != &mm_list->fifo) {
3528 		mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3529 
3530 		mm_state->head = mm_state->head->next;
3531 
3532 		/* force scan for those added after the last iteration */
3533 		if (!mm_state->tail || mm_state->tail == &mm->lru_gen.list) {
3534 			mm_state->tail = mm_state->head;
3535 			walk->force_scan = true;
3536 		}
3537 
3538 		if (should_skip_mm(mm, walk))
3539 			mm = NULL;
3540 	}
3541 
3542 	if (mm_state->head == &mm_list->fifo)
3543 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3544 done:
3545 	if (*iter && !mm)
3546 		mm_state->nr_walkers--;
3547 	if (!*iter && mm)
3548 		mm_state->nr_walkers++;
3549 
3550 	if (mm_state->nr_walkers)
3551 		last = false;
3552 
3553 	if (*iter || last)
3554 		reset_mm_stats(lruvec, walk, last);
3555 
3556 	spin_unlock(&mm_list->lock);
3557 
3558 	if (mm && first)
3559 		reset_bloom_filter(lruvec, walk->max_seq + 1);
3560 
3561 	if (*iter)
3562 		mmput_async(*iter);
3563 
3564 	*iter = mm;
3565 
3566 	return last;
3567 }
3568 
3569 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3570 {
3571 	bool success = false;
3572 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3573 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3574 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3575 
3576 	spin_lock(&mm_list->lock);
3577 
3578 	VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3579 
3580 	if (max_seq > mm_state->seq && !mm_state->nr_walkers) {
3581 		VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3582 
3583 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3584 		reset_mm_stats(lruvec, NULL, true);
3585 		success = true;
3586 	}
3587 
3588 	spin_unlock(&mm_list->lock);
3589 
3590 	return success;
3591 }
3592 
3593 /******************************************************************************
3594  *                          refault feedback loop
3595  ******************************************************************************/
3596 
3597 /*
3598  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3599  *
3600  * The P term is refaulted/(evicted+protected) from a tier in the generation
3601  * currently being evicted; the I term is the exponential moving average of the
3602  * P term over the generations previously evicted, using the smoothing factor
3603  * 1/2; the D term isn't supported.
3604  *
3605  * The setpoint (SP) is always the first tier of one type; the process variable
3606  * (PV) is either any tier of the other type or any other tier of the same
3607  * type.
3608  *
3609  * The error is the difference between the SP and the PV; the correction is to
3610  * turn off protection when SP>PV or turn on protection when SP<PV.
3611  *
3612  * For future optimizations:
3613  * 1. The D term may discount the other two terms over time so that long-lived
3614  *    generations can resist stale information.
3615  */
3616 struct ctrl_pos {
3617 	unsigned long refaulted;
3618 	unsigned long total;
3619 	int gain;
3620 };
3621 
3622 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3623 			  struct ctrl_pos *pos)
3624 {
3625 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3626 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3627 
3628 	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3629 			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3630 	pos->total = lrugen->avg_total[type][tier] +
3631 		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3632 	if (tier)
3633 		pos->total += lrugen->protected[hist][type][tier - 1];
3634 	pos->gain = gain;
3635 }
3636 
3637 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3638 {
3639 	int hist, tier;
3640 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3641 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3642 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3643 
3644 	lockdep_assert_held(&lruvec->lru_lock);
3645 
3646 	if (!carryover && !clear)
3647 		return;
3648 
3649 	hist = lru_hist_from_seq(seq);
3650 
3651 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3652 		if (carryover) {
3653 			unsigned long sum;
3654 
3655 			sum = lrugen->avg_refaulted[type][tier] +
3656 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3657 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3658 
3659 			sum = lrugen->avg_total[type][tier] +
3660 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3661 			if (tier)
3662 				sum += lrugen->protected[hist][type][tier - 1];
3663 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3664 		}
3665 
3666 		if (clear) {
3667 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3668 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3669 			if (tier)
3670 				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3671 		}
3672 	}
3673 }
3674 
3675 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3676 {
3677 	/*
3678 	 * Return true if the PV has a limited number of refaults or a lower
3679 	 * refaulted/total than the SP.
3680 	 */
3681 	return pv->refaulted < MIN_LRU_BATCH ||
3682 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3683 	       (sp->refaulted + 1) * pv->total * pv->gain;
3684 }
3685 
3686 /******************************************************************************
3687  *                          the aging
3688  ******************************************************************************/
3689 
3690 /* promote pages accessed through page tables */
3691 static int folio_update_gen(struct folio *folio, int gen)
3692 {
3693 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3694 
3695 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3696 	VM_WARN_ON_ONCE(!rcu_read_lock_held());
3697 
3698 	do {
3699 		/* lru_gen_del_folio() has isolated this page? */
3700 		if (!(old_flags & LRU_GEN_MASK)) {
3701 			/* for shrink_folio_list() */
3702 			new_flags = old_flags | BIT(PG_referenced);
3703 			continue;
3704 		}
3705 
3706 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3707 		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3708 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3709 
3710 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3711 }
3712 
3713 /* protect pages accessed multiple times through file descriptors */
3714 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3715 {
3716 	int type = folio_is_file_lru(folio);
3717 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3718 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3719 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3720 
3721 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3722 
3723 	do {
3724 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3725 		/* folio_update_gen() has promoted this page? */
3726 		if (new_gen >= 0 && new_gen != old_gen)
3727 			return new_gen;
3728 
3729 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3730 
3731 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3732 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3733 		/* for folio_end_writeback() */
3734 		if (reclaiming)
3735 			new_flags |= BIT(PG_reclaim);
3736 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3737 
3738 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3739 
3740 	return new_gen;
3741 }
3742 
3743 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3744 			      int old_gen, int new_gen)
3745 {
3746 	int type = folio_is_file_lru(folio);
3747 	int zone = folio_zonenum(folio);
3748 	int delta = folio_nr_pages(folio);
3749 
3750 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3751 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3752 
3753 	walk->batched++;
3754 
3755 	walk->nr_pages[old_gen][type][zone] -= delta;
3756 	walk->nr_pages[new_gen][type][zone] += delta;
3757 }
3758 
3759 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3760 {
3761 	int gen, type, zone;
3762 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3763 
3764 	walk->batched = 0;
3765 
3766 	for_each_gen_type_zone(gen, type, zone) {
3767 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3768 		int delta = walk->nr_pages[gen][type][zone];
3769 
3770 		if (!delta)
3771 			continue;
3772 
3773 		walk->nr_pages[gen][type][zone] = 0;
3774 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3775 			   lrugen->nr_pages[gen][type][zone] + delta);
3776 
3777 		if (lru_gen_is_active(lruvec, gen))
3778 			lru += LRU_ACTIVE;
3779 		__update_lru_size(lruvec, lru, zone, delta);
3780 	}
3781 }
3782 
3783 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3784 {
3785 	struct address_space *mapping;
3786 	struct vm_area_struct *vma = args->vma;
3787 	struct lru_gen_mm_walk *walk = args->private;
3788 
3789 	if (!vma_is_accessible(vma))
3790 		return true;
3791 
3792 	if (is_vm_hugetlb_page(vma))
3793 		return true;
3794 
3795 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL | VM_SEQ_READ | VM_RAND_READ))
3796 		return true;
3797 
3798 	if (vma == get_gate_vma(vma->vm_mm))
3799 		return true;
3800 
3801 	if (vma_is_anonymous(vma))
3802 		return !walk->can_swap;
3803 
3804 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3805 		return true;
3806 
3807 	mapping = vma->vm_file->f_mapping;
3808 	if (mapping_unevictable(mapping))
3809 		return true;
3810 
3811 	if (shmem_mapping(mapping))
3812 		return !walk->can_swap;
3813 
3814 	/* to exclude special mappings like dax, etc. */
3815 	return !mapping->a_ops->read_folio;
3816 }
3817 
3818 /*
3819  * Some userspace memory allocators map many single-page VMAs. Instead of
3820  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3821  * table to reduce zigzags and improve cache performance.
3822  */
3823 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3824 			 unsigned long *vm_start, unsigned long *vm_end)
3825 {
3826 	unsigned long start = round_up(*vm_end, size);
3827 	unsigned long end = (start | ~mask) + 1;
3828 	VMA_ITERATOR(vmi, args->mm, start);
3829 
3830 	VM_WARN_ON_ONCE(mask & size);
3831 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3832 
3833 	for_each_vma(vmi, args->vma) {
3834 		if (end && end <= args->vma->vm_start)
3835 			return false;
3836 
3837 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3838 			continue;
3839 
3840 		*vm_start = max(start, args->vma->vm_start);
3841 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3842 
3843 		return true;
3844 	}
3845 
3846 	return false;
3847 }
3848 
3849 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3850 {
3851 	unsigned long pfn = pte_pfn(pte);
3852 
3853 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3854 
3855 	if (!pte_present(pte) || is_zero_pfn(pfn))
3856 		return -1;
3857 
3858 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3859 		return -1;
3860 
3861 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3862 		return -1;
3863 
3864 	return pfn;
3865 }
3866 
3867 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3868 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3869 {
3870 	unsigned long pfn = pmd_pfn(pmd);
3871 
3872 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3873 
3874 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3875 		return -1;
3876 
3877 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3878 		return -1;
3879 
3880 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3881 		return -1;
3882 
3883 	return pfn;
3884 }
3885 #endif
3886 
3887 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3888 				   struct pglist_data *pgdat, bool can_swap)
3889 {
3890 	struct folio *folio;
3891 
3892 	/* try to avoid unnecessary memory loads */
3893 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3894 		return NULL;
3895 
3896 	folio = pfn_folio(pfn);
3897 	if (folio_nid(folio) != pgdat->node_id)
3898 		return NULL;
3899 
3900 	if (folio_memcg_rcu(folio) != memcg)
3901 		return NULL;
3902 
3903 	/* file VMAs can contain anon pages from COW */
3904 	if (!folio_is_file_lru(folio) && !can_swap)
3905 		return NULL;
3906 
3907 	return folio;
3908 }
3909 
3910 static bool suitable_to_scan(int total, int young)
3911 {
3912 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3913 
3914 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3915 	return young * n >= total;
3916 }
3917 
3918 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3919 			   struct mm_walk *args)
3920 {
3921 	int i;
3922 	pte_t *pte;
3923 	spinlock_t *ptl;
3924 	unsigned long addr;
3925 	int total = 0;
3926 	int young = 0;
3927 	struct lru_gen_mm_walk *walk = args->private;
3928 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3929 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3930 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3931 
3932 	VM_WARN_ON_ONCE(pmd_leaf(*pmd));
3933 
3934 	ptl = pte_lockptr(args->mm, pmd);
3935 	if (!spin_trylock(ptl))
3936 		return false;
3937 
3938 	arch_enter_lazy_mmu_mode();
3939 
3940 	pte = pte_offset_map(pmd, start & PMD_MASK);
3941 restart:
3942 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3943 		unsigned long pfn;
3944 		struct folio *folio;
3945 
3946 		total++;
3947 		walk->mm_stats[MM_LEAF_TOTAL]++;
3948 
3949 		pfn = get_pte_pfn(pte[i], args->vma, addr);
3950 		if (pfn == -1)
3951 			continue;
3952 
3953 		if (!pte_young(pte[i])) {
3954 			walk->mm_stats[MM_LEAF_OLD]++;
3955 			continue;
3956 		}
3957 
3958 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3959 		if (!folio)
3960 			continue;
3961 
3962 		if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3963 			VM_WARN_ON_ONCE(true);
3964 
3965 		young++;
3966 		walk->mm_stats[MM_LEAF_YOUNG]++;
3967 
3968 		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
3969 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3970 		      !folio_test_swapcache(folio)))
3971 			folio_mark_dirty(folio);
3972 
3973 		old_gen = folio_update_gen(folio, new_gen);
3974 		if (old_gen >= 0 && old_gen != new_gen)
3975 			update_batch_size(walk, folio, old_gen, new_gen);
3976 	}
3977 
3978 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3979 		goto restart;
3980 
3981 	pte_unmap(pte);
3982 
3983 	arch_leave_lazy_mmu_mode();
3984 	spin_unlock(ptl);
3985 
3986 	return suitable_to_scan(total, young);
3987 }
3988 
3989 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3990 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
3991 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
3992 {
3993 	int i;
3994 	pmd_t *pmd;
3995 	spinlock_t *ptl;
3996 	struct lru_gen_mm_walk *walk = args->private;
3997 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3998 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3999 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4000 
4001 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4002 
4003 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
4004 	if (*start == -1) {
4005 		*start = next;
4006 		return;
4007 	}
4008 
4009 	i = next == -1 ? 0 : pmd_index(next) - pmd_index(*start);
4010 	if (i && i <= MIN_LRU_BATCH) {
4011 		__set_bit(i - 1, bitmap);
4012 		return;
4013 	}
4014 
4015 	pmd = pmd_offset(pud, *start);
4016 
4017 	ptl = pmd_lockptr(args->mm, pmd);
4018 	if (!spin_trylock(ptl))
4019 		goto done;
4020 
4021 	arch_enter_lazy_mmu_mode();
4022 
4023 	do {
4024 		unsigned long pfn;
4025 		struct folio *folio;
4026 		unsigned long addr = i ? (*start & PMD_MASK) + i * PMD_SIZE : *start;
4027 
4028 		pfn = get_pmd_pfn(pmd[i], vma, addr);
4029 		if (pfn == -1)
4030 			goto next;
4031 
4032 		if (!pmd_trans_huge(pmd[i])) {
4033 			if (arch_has_hw_nonleaf_pmd_young() &&
4034 			    get_cap(LRU_GEN_NONLEAF_YOUNG))
4035 				pmdp_test_and_clear_young(vma, addr, pmd + i);
4036 			goto next;
4037 		}
4038 
4039 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4040 		if (!folio)
4041 			goto next;
4042 
4043 		if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
4044 			goto next;
4045 
4046 		walk->mm_stats[MM_LEAF_YOUNG]++;
4047 
4048 		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4049 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4050 		      !folio_test_swapcache(folio)))
4051 			folio_mark_dirty(folio);
4052 
4053 		old_gen = folio_update_gen(folio, new_gen);
4054 		if (old_gen >= 0 && old_gen != new_gen)
4055 			update_batch_size(walk, folio, old_gen, new_gen);
4056 next:
4057 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4058 	} while (i <= MIN_LRU_BATCH);
4059 
4060 	arch_leave_lazy_mmu_mode();
4061 	spin_unlock(ptl);
4062 done:
4063 	*start = -1;
4064 	bitmap_zero(bitmap, MIN_LRU_BATCH);
4065 }
4066 #else
4067 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
4068 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
4069 {
4070 }
4071 #endif
4072 
4073 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4074 			   struct mm_walk *args)
4075 {
4076 	int i;
4077 	pmd_t *pmd;
4078 	unsigned long next;
4079 	unsigned long addr;
4080 	struct vm_area_struct *vma;
4081 	unsigned long pos = -1;
4082 	struct lru_gen_mm_walk *walk = args->private;
4083 	unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4084 
4085 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4086 
4087 	/*
4088 	 * Finish an entire PMD in two passes: the first only reaches to PTE
4089 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
4090 	 * the PMD lock to clear the accessed bit in PMD entries.
4091 	 */
4092 	pmd = pmd_offset(pud, start & PUD_MASK);
4093 restart:
4094 	/* walk_pte_range() may call get_next_vma() */
4095 	vma = args->vma;
4096 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4097 		pmd_t val = pmdp_get_lockless(pmd + i);
4098 
4099 		next = pmd_addr_end(addr, end);
4100 
4101 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4102 			walk->mm_stats[MM_LEAF_TOTAL]++;
4103 			continue;
4104 		}
4105 
4106 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4107 		if (pmd_trans_huge(val)) {
4108 			unsigned long pfn = pmd_pfn(val);
4109 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4110 
4111 			walk->mm_stats[MM_LEAF_TOTAL]++;
4112 
4113 			if (!pmd_young(val)) {
4114 				walk->mm_stats[MM_LEAF_OLD]++;
4115 				continue;
4116 			}
4117 
4118 			/* try to avoid unnecessary memory loads */
4119 			if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4120 				continue;
4121 
4122 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
4123 			continue;
4124 		}
4125 #endif
4126 		walk->mm_stats[MM_NONLEAF_TOTAL]++;
4127 
4128 		if (arch_has_hw_nonleaf_pmd_young() &&
4129 		    get_cap(LRU_GEN_NONLEAF_YOUNG)) {
4130 			if (!pmd_young(val))
4131 				continue;
4132 
4133 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
4134 		}
4135 
4136 		if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4137 			continue;
4138 
4139 		walk->mm_stats[MM_NONLEAF_FOUND]++;
4140 
4141 		if (!walk_pte_range(&val, addr, next, args))
4142 			continue;
4143 
4144 		walk->mm_stats[MM_NONLEAF_ADDED]++;
4145 
4146 		/* carry over to the next generation */
4147 		update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4148 	}
4149 
4150 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &pos);
4151 
4152 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4153 		goto restart;
4154 }
4155 
4156 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4157 			  struct mm_walk *args)
4158 {
4159 	int i;
4160 	pud_t *pud;
4161 	unsigned long addr;
4162 	unsigned long next;
4163 	struct lru_gen_mm_walk *walk = args->private;
4164 
4165 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4166 
4167 	pud = pud_offset(p4d, start & P4D_MASK);
4168 restart:
4169 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4170 		pud_t val = READ_ONCE(pud[i]);
4171 
4172 		next = pud_addr_end(addr, end);
4173 
4174 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4175 			continue;
4176 
4177 		walk_pmd_range(&val, addr, next, args);
4178 
4179 		/* a racy check to curtail the waiting time */
4180 		if (wq_has_sleeper(&walk->lruvec->mm_state.wait))
4181 			return 1;
4182 
4183 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4184 			end = (addr | ~PUD_MASK) + 1;
4185 			goto done;
4186 		}
4187 	}
4188 
4189 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4190 		goto restart;
4191 
4192 	end = round_up(end, P4D_SIZE);
4193 done:
4194 	if (!end || !args->vma)
4195 		return 1;
4196 
4197 	walk->next_addr = max(end, args->vma->vm_start);
4198 
4199 	return -EAGAIN;
4200 }
4201 
4202 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4203 {
4204 	static const struct mm_walk_ops mm_walk_ops = {
4205 		.test_walk = should_skip_vma,
4206 		.p4d_entry = walk_pud_range,
4207 	};
4208 
4209 	int err;
4210 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4211 
4212 	walk->next_addr = FIRST_USER_ADDRESS;
4213 
4214 	do {
4215 		err = -EBUSY;
4216 
4217 		/* folio_update_gen() requires stable folio_memcg() */
4218 		if (!mem_cgroup_trylock_pages(memcg))
4219 			break;
4220 
4221 		/* the caller might be holding the lock for write */
4222 		if (mmap_read_trylock(mm)) {
4223 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4224 
4225 			mmap_read_unlock(mm);
4226 		}
4227 
4228 		mem_cgroup_unlock_pages();
4229 
4230 		if (walk->batched) {
4231 			spin_lock_irq(&lruvec->lru_lock);
4232 			reset_batch_size(lruvec, walk);
4233 			spin_unlock_irq(&lruvec->lru_lock);
4234 		}
4235 
4236 		cond_resched();
4237 	} while (err == -EAGAIN);
4238 }
4239 
4240 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat)
4241 {
4242 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4243 
4244 	if (pgdat && current_is_kswapd()) {
4245 		VM_WARN_ON_ONCE(walk);
4246 
4247 		walk = &pgdat->mm_walk;
4248 	} else if (!pgdat && !walk) {
4249 		VM_WARN_ON_ONCE(current_is_kswapd());
4250 
4251 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4252 	}
4253 
4254 	current->reclaim_state->mm_walk = walk;
4255 
4256 	return walk;
4257 }
4258 
4259 static void clear_mm_walk(void)
4260 {
4261 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4262 
4263 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4264 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4265 
4266 	current->reclaim_state->mm_walk = NULL;
4267 
4268 	if (!current_is_kswapd())
4269 		kfree(walk);
4270 }
4271 
4272 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4273 {
4274 	int zone;
4275 	int remaining = MAX_LRU_BATCH;
4276 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4277 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4278 
4279 	if (type == LRU_GEN_ANON && !can_swap)
4280 		goto done;
4281 
4282 	/* prevent cold/hot inversion if force_scan is true */
4283 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4284 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
4285 
4286 		while (!list_empty(head)) {
4287 			struct folio *folio = lru_to_folio(head);
4288 
4289 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4290 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4291 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4292 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4293 
4294 			new_gen = folio_inc_gen(lruvec, folio, false);
4295 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
4296 
4297 			if (!--remaining)
4298 				return false;
4299 		}
4300 	}
4301 done:
4302 	reset_ctrl_pos(lruvec, type, true);
4303 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4304 
4305 	return true;
4306 }
4307 
4308 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4309 {
4310 	int gen, type, zone;
4311 	bool success = false;
4312 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4313 	DEFINE_MIN_SEQ(lruvec);
4314 
4315 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4316 
4317 	/* find the oldest populated generation */
4318 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4319 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4320 			gen = lru_gen_from_seq(min_seq[type]);
4321 
4322 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4323 				if (!list_empty(&lrugen->folios[gen][type][zone]))
4324 					goto next;
4325 			}
4326 
4327 			min_seq[type]++;
4328 		}
4329 next:
4330 		;
4331 	}
4332 
4333 	/* see the comment on lru_gen_folio */
4334 	if (can_swap) {
4335 		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4336 		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4337 	}
4338 
4339 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4340 		if (min_seq[type] == lrugen->min_seq[type])
4341 			continue;
4342 
4343 		reset_ctrl_pos(lruvec, type, true);
4344 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4345 		success = true;
4346 	}
4347 
4348 	return success;
4349 }
4350 
4351 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4352 {
4353 	int prev, next;
4354 	int type, zone;
4355 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4356 
4357 	spin_lock_irq(&lruvec->lru_lock);
4358 
4359 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4360 
4361 	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4362 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4363 			continue;
4364 
4365 		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4366 
4367 		while (!inc_min_seq(lruvec, type, can_swap)) {
4368 			spin_unlock_irq(&lruvec->lru_lock);
4369 			cond_resched();
4370 			spin_lock_irq(&lruvec->lru_lock);
4371 		}
4372 	}
4373 
4374 	/*
4375 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
4376 	 * the current max_seq need to be covered, since max_seq+1 can overlap
4377 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4378 	 * overlap, cold/hot inversion happens.
4379 	 */
4380 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
4381 	next = lru_gen_from_seq(lrugen->max_seq + 1);
4382 
4383 	for (type = 0; type < ANON_AND_FILE; type++) {
4384 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4385 			enum lru_list lru = type * LRU_INACTIVE_FILE;
4386 			long delta = lrugen->nr_pages[prev][type][zone] -
4387 				     lrugen->nr_pages[next][type][zone];
4388 
4389 			if (!delta)
4390 				continue;
4391 
4392 			__update_lru_size(lruvec, lru, zone, delta);
4393 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4394 		}
4395 	}
4396 
4397 	for (type = 0; type < ANON_AND_FILE; type++)
4398 		reset_ctrl_pos(lruvec, type, false);
4399 
4400 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
4401 	/* make sure preceding modifications appear */
4402 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4403 
4404 	spin_unlock_irq(&lruvec->lru_lock);
4405 }
4406 
4407 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4408 			       struct scan_control *sc, bool can_swap, bool force_scan)
4409 {
4410 	bool success;
4411 	struct lru_gen_mm_walk *walk;
4412 	struct mm_struct *mm = NULL;
4413 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4414 
4415 	VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4416 
4417 	/* see the comment in iterate_mm_list() */
4418 	if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4419 		success = false;
4420 		goto done;
4421 	}
4422 
4423 	/*
4424 	 * If the hardware doesn't automatically set the accessed bit, fallback
4425 	 * to lru_gen_look_around(), which only clears the accessed bit in a
4426 	 * handful of PTEs. Spreading the work out over a period of time usually
4427 	 * is less efficient, but it avoids bursty page faults.
4428 	 */
4429 	if (!force_scan && !(arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))) {
4430 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4431 		goto done;
4432 	}
4433 
4434 	walk = set_mm_walk(NULL);
4435 	if (!walk) {
4436 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4437 		goto done;
4438 	}
4439 
4440 	walk->lruvec = lruvec;
4441 	walk->max_seq = max_seq;
4442 	walk->can_swap = can_swap;
4443 	walk->force_scan = force_scan;
4444 
4445 	do {
4446 		success = iterate_mm_list(lruvec, walk, &mm);
4447 		if (mm)
4448 			walk_mm(lruvec, mm, walk);
4449 
4450 		cond_resched();
4451 	} while (mm);
4452 done:
4453 	if (!success) {
4454 		if (sc->priority <= DEF_PRIORITY - 2)
4455 			wait_event_killable(lruvec->mm_state.wait,
4456 					    max_seq < READ_ONCE(lrugen->max_seq));
4457 
4458 		return max_seq < READ_ONCE(lrugen->max_seq);
4459 	}
4460 
4461 	VM_WARN_ON_ONCE(max_seq != READ_ONCE(lrugen->max_seq));
4462 
4463 	inc_max_seq(lruvec, can_swap, force_scan);
4464 	/* either this sees any waiters or they will see updated max_seq */
4465 	if (wq_has_sleeper(&lruvec->mm_state.wait))
4466 		wake_up_all(&lruvec->mm_state.wait);
4467 
4468 	return true;
4469 }
4470 
4471 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, unsigned long *min_seq,
4472 			     struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
4473 {
4474 	int gen, type, zone;
4475 	unsigned long old = 0;
4476 	unsigned long young = 0;
4477 	unsigned long total = 0;
4478 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4479 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4480 
4481 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4482 		unsigned long seq;
4483 
4484 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4485 			unsigned long size = 0;
4486 
4487 			gen = lru_gen_from_seq(seq);
4488 
4489 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4490 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4491 
4492 			total += size;
4493 			if (seq == max_seq)
4494 				young += size;
4495 			else if (seq + MIN_NR_GENS == max_seq)
4496 				old += size;
4497 		}
4498 	}
4499 
4500 	/* try to scrape all its memory if this memcg was deleted */
4501 	*nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4502 
4503 	/*
4504 	 * The aging tries to be lazy to reduce the overhead, while the eviction
4505 	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4506 	 * ideal number of generations is MIN_NR_GENS+1.
4507 	 */
4508 	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq)
4509 		return true;
4510 	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4511 		return false;
4512 
4513 	/*
4514 	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4515 	 * of the total number of pages for each generation. A reasonable range
4516 	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4517 	 * aging cares about the upper bound of hot pages, while the eviction
4518 	 * cares about the lower bound of cold pages.
4519 	 */
4520 	if (young * MIN_NR_GENS > total)
4521 		return true;
4522 	if (old * (MIN_NR_GENS + 2) < total)
4523 		return true;
4524 
4525 	return false;
4526 }
4527 
4528 static bool age_lruvec(struct lruvec *lruvec, struct scan_control *sc, unsigned long min_ttl)
4529 {
4530 	bool need_aging;
4531 	unsigned long nr_to_scan;
4532 	int swappiness = get_swappiness(lruvec, sc);
4533 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4534 	DEFINE_MAX_SEQ(lruvec);
4535 	DEFINE_MIN_SEQ(lruvec);
4536 
4537 	VM_WARN_ON_ONCE(sc->memcg_low_reclaim);
4538 
4539 	mem_cgroup_calculate_protection(NULL, memcg);
4540 
4541 	if (mem_cgroup_below_min(NULL, memcg))
4542 		return false;
4543 
4544 	need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, swappiness, &nr_to_scan);
4545 
4546 	if (min_ttl) {
4547 		int gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4548 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4549 
4550 		if (time_is_after_jiffies(birth + min_ttl))
4551 			return false;
4552 
4553 		/* the size is likely too small to be helpful */
4554 		if (!nr_to_scan && sc->priority != DEF_PRIORITY)
4555 			return false;
4556 	}
4557 
4558 	if (need_aging)
4559 		try_to_inc_max_seq(lruvec, max_seq, sc, swappiness, false);
4560 
4561 	return true;
4562 }
4563 
4564 /* to protect the working set of the last N jiffies */
4565 static unsigned long lru_gen_min_ttl __read_mostly;
4566 
4567 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4568 {
4569 	struct mem_cgroup *memcg;
4570 	bool success = false;
4571 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4572 
4573 	VM_WARN_ON_ONCE(!current_is_kswapd());
4574 
4575 	sc->last_reclaimed = sc->nr_reclaimed;
4576 
4577 	/*
4578 	 * To reduce the chance of going into the aging path, which can be
4579 	 * costly, optimistically skip it if the flag below was cleared in the
4580 	 * eviction path. This improves the overall performance when multiple
4581 	 * memcgs are available.
4582 	 */
4583 	if (!sc->memcgs_need_aging) {
4584 		sc->memcgs_need_aging = true;
4585 		return;
4586 	}
4587 
4588 	set_mm_walk(pgdat);
4589 
4590 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4591 	do {
4592 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4593 
4594 		if (age_lruvec(lruvec, sc, min_ttl))
4595 			success = true;
4596 
4597 		cond_resched();
4598 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4599 
4600 	clear_mm_walk();
4601 
4602 	/* check the order to exclude compaction-induced reclaim */
4603 	if (success || !min_ttl || sc->order)
4604 		return;
4605 
4606 	/*
4607 	 * The main goal is to OOM kill if every generation from all memcgs is
4608 	 * younger than min_ttl. However, another possibility is all memcgs are
4609 	 * either below min or empty.
4610 	 */
4611 	if (mutex_trylock(&oom_lock)) {
4612 		struct oom_control oc = {
4613 			.gfp_mask = sc->gfp_mask,
4614 		};
4615 
4616 		out_of_memory(&oc);
4617 
4618 		mutex_unlock(&oom_lock);
4619 	}
4620 }
4621 
4622 /*
4623  * This function exploits spatial locality when shrink_folio_list() walks the
4624  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4625  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4626  * the PTE table to the Bloom filter. This forms a feedback loop between the
4627  * eviction and the aging.
4628  */
4629 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4630 {
4631 	int i;
4632 	pte_t *pte;
4633 	unsigned long start;
4634 	unsigned long end;
4635 	unsigned long addr;
4636 	struct lru_gen_mm_walk *walk;
4637 	int young = 0;
4638 	unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4639 	struct folio *folio = pfn_folio(pvmw->pfn);
4640 	struct mem_cgroup *memcg = folio_memcg(folio);
4641 	struct pglist_data *pgdat = folio_pgdat(folio);
4642 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4643 	DEFINE_MAX_SEQ(lruvec);
4644 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
4645 
4646 	lockdep_assert_held(pvmw->ptl);
4647 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4648 
4649 	if (spin_is_contended(pvmw->ptl))
4650 		return;
4651 
4652 	/* avoid taking the LRU lock under the PTL when possible */
4653 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4654 
4655 	start = max(pvmw->address & PMD_MASK, pvmw->vma->vm_start);
4656 	end = min(pvmw->address | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4657 
4658 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4659 		if (pvmw->address - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4660 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4661 		else if (end - pvmw->address < MIN_LRU_BATCH * PAGE_SIZE / 2)
4662 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4663 		else {
4664 			start = pvmw->address - MIN_LRU_BATCH * PAGE_SIZE / 2;
4665 			end = pvmw->address + MIN_LRU_BATCH * PAGE_SIZE / 2;
4666 		}
4667 	}
4668 
4669 	pte = pvmw->pte - (pvmw->address - start) / PAGE_SIZE;
4670 
4671 	rcu_read_lock();
4672 	arch_enter_lazy_mmu_mode();
4673 
4674 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4675 		unsigned long pfn;
4676 
4677 		pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
4678 		if (pfn == -1)
4679 			continue;
4680 
4681 		if (!pte_young(pte[i]))
4682 			continue;
4683 
4684 		folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap);
4685 		if (!folio)
4686 			continue;
4687 
4688 		if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4689 			VM_WARN_ON_ONCE(true);
4690 
4691 		young++;
4692 
4693 		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4694 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4695 		      !folio_test_swapcache(folio)))
4696 			folio_mark_dirty(folio);
4697 
4698 		old_gen = folio_lru_gen(folio);
4699 		if (old_gen < 0)
4700 			folio_set_referenced(folio);
4701 		else if (old_gen != new_gen)
4702 			__set_bit(i, bitmap);
4703 	}
4704 
4705 	arch_leave_lazy_mmu_mode();
4706 	rcu_read_unlock();
4707 
4708 	/* feedback from rmap walkers to page table walkers */
4709 	if (suitable_to_scan(i, young))
4710 		update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4711 
4712 	if (!walk && bitmap_weight(bitmap, MIN_LRU_BATCH) < PAGEVEC_SIZE) {
4713 		for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4714 			folio = pfn_folio(pte_pfn(pte[i]));
4715 			folio_activate(folio);
4716 		}
4717 		return;
4718 	}
4719 
4720 	/* folio_update_gen() requires stable folio_memcg() */
4721 	if (!mem_cgroup_trylock_pages(memcg))
4722 		return;
4723 
4724 	if (!walk) {
4725 		spin_lock_irq(&lruvec->lru_lock);
4726 		new_gen = lru_gen_from_seq(lruvec->lrugen.max_seq);
4727 	}
4728 
4729 	for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4730 		folio = pfn_folio(pte_pfn(pte[i]));
4731 		if (folio_memcg_rcu(folio) != memcg)
4732 			continue;
4733 
4734 		old_gen = folio_update_gen(folio, new_gen);
4735 		if (old_gen < 0 || old_gen == new_gen)
4736 			continue;
4737 
4738 		if (walk)
4739 			update_batch_size(walk, folio, old_gen, new_gen);
4740 		else
4741 			lru_gen_update_size(lruvec, folio, old_gen, new_gen);
4742 	}
4743 
4744 	if (!walk)
4745 		spin_unlock_irq(&lruvec->lru_lock);
4746 
4747 	mem_cgroup_unlock_pages();
4748 }
4749 
4750 /******************************************************************************
4751  *                          the eviction
4752  ******************************************************************************/
4753 
4754 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx)
4755 {
4756 	bool success;
4757 	int gen = folio_lru_gen(folio);
4758 	int type = folio_is_file_lru(folio);
4759 	int zone = folio_zonenum(folio);
4760 	int delta = folio_nr_pages(folio);
4761 	int refs = folio_lru_refs(folio);
4762 	int tier = lru_tier_from_refs(refs);
4763 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4764 
4765 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4766 
4767 	/* unevictable */
4768 	if (!folio_evictable(folio)) {
4769 		success = lru_gen_del_folio(lruvec, folio, true);
4770 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4771 		folio_set_unevictable(folio);
4772 		lruvec_add_folio(lruvec, folio);
4773 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4774 		return true;
4775 	}
4776 
4777 	/* dirty lazyfree */
4778 	if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4779 		success = lru_gen_del_folio(lruvec, folio, true);
4780 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4781 		folio_set_swapbacked(folio);
4782 		lruvec_add_folio_tail(lruvec, folio);
4783 		return true;
4784 	}
4785 
4786 	/* promoted */
4787 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4788 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4789 		return true;
4790 	}
4791 
4792 	/* protected */
4793 	if (tier > tier_idx) {
4794 		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4795 
4796 		gen = folio_inc_gen(lruvec, folio, false);
4797 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4798 
4799 		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4800 			   lrugen->protected[hist][type][tier - 1] + delta);
4801 		__mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
4802 		return true;
4803 	}
4804 
4805 	/* waiting for writeback */
4806 	if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4807 	    (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4808 		gen = folio_inc_gen(lruvec, folio, true);
4809 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4810 		return true;
4811 	}
4812 
4813 	return false;
4814 }
4815 
4816 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4817 {
4818 	bool success;
4819 
4820 	/* unmapping inhibited */
4821 	if (!sc->may_unmap && folio_mapped(folio))
4822 		return false;
4823 
4824 	/* swapping inhibited */
4825 	if (!(sc->may_writepage && (sc->gfp_mask & __GFP_IO)) &&
4826 	    (folio_test_dirty(folio) ||
4827 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4828 		return false;
4829 
4830 	/* raced with release_pages() */
4831 	if (!folio_try_get(folio))
4832 		return false;
4833 
4834 	/* raced with another isolation */
4835 	if (!folio_test_clear_lru(folio)) {
4836 		folio_put(folio);
4837 		return false;
4838 	}
4839 
4840 	/* see the comment on MAX_NR_TIERS */
4841 	if (!folio_test_referenced(folio))
4842 		set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4843 
4844 	/* for shrink_folio_list() */
4845 	folio_clear_reclaim(folio);
4846 	folio_clear_referenced(folio);
4847 
4848 	success = lru_gen_del_folio(lruvec, folio, true);
4849 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4850 
4851 	return true;
4852 }
4853 
4854 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4855 		       int type, int tier, struct list_head *list)
4856 {
4857 	int gen, zone;
4858 	enum vm_event_item item;
4859 	int sorted = 0;
4860 	int scanned = 0;
4861 	int isolated = 0;
4862 	int remaining = MAX_LRU_BATCH;
4863 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4864 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4865 
4866 	VM_WARN_ON_ONCE(!list_empty(list));
4867 
4868 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4869 		return 0;
4870 
4871 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4872 
4873 	for (zone = sc->reclaim_idx; zone >= 0; zone--) {
4874 		LIST_HEAD(moved);
4875 		int skipped = 0;
4876 		struct list_head *head = &lrugen->folios[gen][type][zone];
4877 
4878 		while (!list_empty(head)) {
4879 			struct folio *folio = lru_to_folio(head);
4880 			int delta = folio_nr_pages(folio);
4881 
4882 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4883 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4884 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4885 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4886 
4887 			scanned += delta;
4888 
4889 			if (sort_folio(lruvec, folio, tier))
4890 				sorted += delta;
4891 			else if (isolate_folio(lruvec, folio, sc)) {
4892 				list_add(&folio->lru, list);
4893 				isolated += delta;
4894 			} else {
4895 				list_move(&folio->lru, &moved);
4896 				skipped += delta;
4897 			}
4898 
4899 			if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
4900 				break;
4901 		}
4902 
4903 		if (skipped) {
4904 			list_splice(&moved, head);
4905 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
4906 		}
4907 
4908 		if (!remaining || isolated >= MIN_LRU_BATCH)
4909 			break;
4910 	}
4911 
4912 	item = PGSCAN_KSWAPD + reclaimer_offset();
4913 	if (!cgroup_reclaim(sc)) {
4914 		__count_vm_events(item, isolated);
4915 		__count_vm_events(PGREFILL, sorted);
4916 	}
4917 	__count_memcg_events(memcg, item, isolated);
4918 	__count_memcg_events(memcg, PGREFILL, sorted);
4919 	__count_vm_events(PGSCAN_ANON + type, isolated);
4920 
4921 	/*
4922 	 * There might not be eligible pages due to reclaim_idx, may_unmap and
4923 	 * may_writepage. Check the remaining to prevent livelock if it's not
4924 	 * making progress.
4925 	 */
4926 	return isolated || !remaining ? scanned : 0;
4927 }
4928 
4929 static int get_tier_idx(struct lruvec *lruvec, int type)
4930 {
4931 	int tier;
4932 	struct ctrl_pos sp, pv;
4933 
4934 	/*
4935 	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4936 	 * This value is chosen because any other tier would have at least twice
4937 	 * as many refaults as the first tier.
4938 	 */
4939 	read_ctrl_pos(lruvec, type, 0, 1, &sp);
4940 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4941 		read_ctrl_pos(lruvec, type, tier, 2, &pv);
4942 		if (!positive_ctrl_err(&sp, &pv))
4943 			break;
4944 	}
4945 
4946 	return tier - 1;
4947 }
4948 
4949 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4950 {
4951 	int type, tier;
4952 	struct ctrl_pos sp, pv;
4953 	int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
4954 
4955 	/*
4956 	 * Compare the first tier of anon with that of file to determine which
4957 	 * type to scan. Also need to compare other tiers of the selected type
4958 	 * with the first tier of the other type to determine the last tier (of
4959 	 * the selected type) to evict.
4960 	 */
4961 	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4962 	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4963 	type = positive_ctrl_err(&sp, &pv);
4964 
4965 	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4966 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4967 		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4968 		if (!positive_ctrl_err(&sp, &pv))
4969 			break;
4970 	}
4971 
4972 	*tier_idx = tier - 1;
4973 
4974 	return type;
4975 }
4976 
4977 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4978 			  int *type_scanned, struct list_head *list)
4979 {
4980 	int i;
4981 	int type;
4982 	int scanned;
4983 	int tier = -1;
4984 	DEFINE_MIN_SEQ(lruvec);
4985 
4986 	/*
4987 	 * Try to make the obvious choice first. When anon and file are both
4988 	 * available from the same generation, interpret swappiness 1 as file
4989 	 * first and 200 as anon first.
4990 	 */
4991 	if (!swappiness)
4992 		type = LRU_GEN_FILE;
4993 	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4994 		type = LRU_GEN_ANON;
4995 	else if (swappiness == 1)
4996 		type = LRU_GEN_FILE;
4997 	else if (swappiness == 200)
4998 		type = LRU_GEN_ANON;
4999 	else
5000 		type = get_type_to_scan(lruvec, swappiness, &tier);
5001 
5002 	for (i = !swappiness; i < ANON_AND_FILE; i++) {
5003 		if (tier < 0)
5004 			tier = get_tier_idx(lruvec, type);
5005 
5006 		scanned = scan_folios(lruvec, sc, type, tier, list);
5007 		if (scanned)
5008 			break;
5009 
5010 		type = !type;
5011 		tier = -1;
5012 	}
5013 
5014 	*type_scanned = type;
5015 
5016 	return scanned;
5017 }
5018 
5019 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
5020 {
5021 	int type;
5022 	int scanned;
5023 	int reclaimed;
5024 	LIST_HEAD(list);
5025 	LIST_HEAD(clean);
5026 	struct folio *folio;
5027 	struct folio *next;
5028 	enum vm_event_item item;
5029 	struct reclaim_stat stat;
5030 	struct lru_gen_mm_walk *walk;
5031 	bool skip_retry = false;
5032 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5033 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5034 
5035 	spin_lock_irq(&lruvec->lru_lock);
5036 
5037 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
5038 
5039 	scanned += try_to_inc_min_seq(lruvec, swappiness);
5040 
5041 	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
5042 		scanned = 0;
5043 
5044 	spin_unlock_irq(&lruvec->lru_lock);
5045 
5046 	if (list_empty(&list))
5047 		return scanned;
5048 retry:
5049 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
5050 	sc->nr_reclaimed += reclaimed;
5051 
5052 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
5053 		if (!folio_evictable(folio)) {
5054 			list_del(&folio->lru);
5055 			folio_putback_lru(folio);
5056 			continue;
5057 		}
5058 
5059 		if (folio_test_reclaim(folio) &&
5060 		    (folio_test_dirty(folio) || folio_test_writeback(folio))) {
5061 			/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5062 			if (folio_test_workingset(folio))
5063 				folio_set_referenced(folio);
5064 			continue;
5065 		}
5066 
5067 		if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
5068 		    folio_mapped(folio) || folio_test_locked(folio) ||
5069 		    folio_test_dirty(folio) || folio_test_writeback(folio)) {
5070 			/* don't add rejected folios to the oldest generation */
5071 			set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
5072 				      BIT(PG_active));
5073 			continue;
5074 		}
5075 
5076 		/* retry folios that may have missed folio_rotate_reclaimable() */
5077 		list_move(&folio->lru, &clean);
5078 		sc->nr_scanned -= folio_nr_pages(folio);
5079 	}
5080 
5081 	spin_lock_irq(&lruvec->lru_lock);
5082 
5083 	move_folios_to_lru(lruvec, &list);
5084 
5085 	walk = current->reclaim_state->mm_walk;
5086 	if (walk && walk->batched)
5087 		reset_batch_size(lruvec, walk);
5088 
5089 	item = PGSTEAL_KSWAPD + reclaimer_offset();
5090 	if (!cgroup_reclaim(sc))
5091 		__count_vm_events(item, reclaimed);
5092 	__count_memcg_events(memcg, item, reclaimed);
5093 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
5094 
5095 	spin_unlock_irq(&lruvec->lru_lock);
5096 
5097 	mem_cgroup_uncharge_list(&list);
5098 	free_unref_page_list(&list);
5099 
5100 	INIT_LIST_HEAD(&list);
5101 	list_splice_init(&clean, &list);
5102 
5103 	if (!list_empty(&list)) {
5104 		skip_retry = true;
5105 		goto retry;
5106 	}
5107 
5108 	return scanned;
5109 }
5110 
5111 /*
5112  * For future optimizations:
5113  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5114  *    reclaim.
5115  */
5116 static unsigned long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc,
5117 				    bool can_swap, bool *need_aging)
5118 {
5119 	unsigned long nr_to_scan;
5120 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5121 	DEFINE_MAX_SEQ(lruvec);
5122 	DEFINE_MIN_SEQ(lruvec);
5123 
5124 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg) ||
5125 	    (mem_cgroup_below_low(sc->target_mem_cgroup, memcg) &&
5126 	     !sc->memcg_low_reclaim))
5127 		return 0;
5128 
5129 	*need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, can_swap, &nr_to_scan);
5130 	if (!*need_aging)
5131 		return nr_to_scan;
5132 
5133 	/* skip the aging path at the default priority */
5134 	if (sc->priority == DEF_PRIORITY)
5135 		goto done;
5136 
5137 	/* leave the work to lru_gen_age_node() */
5138 	if (current_is_kswapd())
5139 		return 0;
5140 
5141 	if (try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false))
5142 		return nr_to_scan;
5143 done:
5144 	return min_seq[!can_swap] + MIN_NR_GENS <= max_seq ? nr_to_scan : 0;
5145 }
5146 
5147 static unsigned long get_nr_to_reclaim(struct scan_control *sc)
5148 {
5149 	/* don't abort memcg reclaim to ensure fairness */
5150 	if (!global_reclaim(sc))
5151 		return -1;
5152 
5153 	/* discount the previous progress for kswapd */
5154 	if (current_is_kswapd())
5155 		return sc->nr_to_reclaim + sc->last_reclaimed;
5156 
5157 	return max(sc->nr_to_reclaim, compact_gap(sc->order));
5158 }
5159 
5160 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5161 {
5162 	struct blk_plug plug;
5163 	bool need_aging = false;
5164 	unsigned long scanned = 0;
5165 	unsigned long reclaimed = sc->nr_reclaimed;
5166 	unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5167 
5168 	lru_add_drain();
5169 
5170 	blk_start_plug(&plug);
5171 
5172 	set_mm_walk(lruvec_pgdat(lruvec));
5173 
5174 	while (true) {
5175 		int delta;
5176 		int swappiness;
5177 		unsigned long nr_to_scan;
5178 
5179 		if (sc->may_swap)
5180 			swappiness = get_swappiness(lruvec, sc);
5181 		else if (!cgroup_reclaim(sc) && get_swappiness(lruvec, sc))
5182 			swappiness = 1;
5183 		else
5184 			swappiness = 0;
5185 
5186 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness, &need_aging);
5187 		if (!nr_to_scan)
5188 			goto done;
5189 
5190 		delta = evict_folios(lruvec, sc, swappiness);
5191 		if (!delta)
5192 			goto done;
5193 
5194 		scanned += delta;
5195 		if (scanned >= nr_to_scan)
5196 			break;
5197 
5198 		if (sc->nr_reclaimed >= nr_to_reclaim)
5199 			break;
5200 
5201 		cond_resched();
5202 	}
5203 
5204 	/* see the comment in lru_gen_age_node() */
5205 	if (sc->nr_reclaimed - reclaimed >= MIN_LRU_BATCH && !need_aging)
5206 		sc->memcgs_need_aging = false;
5207 done:
5208 	clear_mm_walk();
5209 
5210 	blk_finish_plug(&plug);
5211 }
5212 
5213 /******************************************************************************
5214  *                          state change
5215  ******************************************************************************/
5216 
5217 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5218 {
5219 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5220 
5221 	if (lrugen->enabled) {
5222 		enum lru_list lru;
5223 
5224 		for_each_evictable_lru(lru) {
5225 			if (!list_empty(&lruvec->lists[lru]))
5226 				return false;
5227 		}
5228 	} else {
5229 		int gen, type, zone;
5230 
5231 		for_each_gen_type_zone(gen, type, zone) {
5232 			if (!list_empty(&lrugen->folios[gen][type][zone]))
5233 				return false;
5234 		}
5235 	}
5236 
5237 	return true;
5238 }
5239 
5240 static bool fill_evictable(struct lruvec *lruvec)
5241 {
5242 	enum lru_list lru;
5243 	int remaining = MAX_LRU_BATCH;
5244 
5245 	for_each_evictable_lru(lru) {
5246 		int type = is_file_lru(lru);
5247 		bool active = is_active_lru(lru);
5248 		struct list_head *head = &lruvec->lists[lru];
5249 
5250 		while (!list_empty(head)) {
5251 			bool success;
5252 			struct folio *folio = lru_to_folio(head);
5253 
5254 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5255 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5256 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5257 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5258 
5259 			lruvec_del_folio(lruvec, folio);
5260 			success = lru_gen_add_folio(lruvec, folio, false);
5261 			VM_WARN_ON_ONCE(!success);
5262 
5263 			if (!--remaining)
5264 				return false;
5265 		}
5266 	}
5267 
5268 	return true;
5269 }
5270 
5271 static bool drain_evictable(struct lruvec *lruvec)
5272 {
5273 	int gen, type, zone;
5274 	int remaining = MAX_LRU_BATCH;
5275 
5276 	for_each_gen_type_zone(gen, type, zone) {
5277 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5278 
5279 		while (!list_empty(head)) {
5280 			bool success;
5281 			struct folio *folio = lru_to_folio(head);
5282 
5283 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5284 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5285 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5286 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5287 
5288 			success = lru_gen_del_folio(lruvec, folio, false);
5289 			VM_WARN_ON_ONCE(!success);
5290 			lruvec_add_folio(lruvec, folio);
5291 
5292 			if (!--remaining)
5293 				return false;
5294 		}
5295 	}
5296 
5297 	return true;
5298 }
5299 
5300 static void lru_gen_change_state(bool enabled)
5301 {
5302 	static DEFINE_MUTEX(state_mutex);
5303 
5304 	struct mem_cgroup *memcg;
5305 
5306 	cgroup_lock();
5307 	cpus_read_lock();
5308 	get_online_mems();
5309 	mutex_lock(&state_mutex);
5310 
5311 	if (enabled == lru_gen_enabled())
5312 		goto unlock;
5313 
5314 	if (enabled)
5315 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5316 	else
5317 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5318 
5319 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5320 	do {
5321 		int nid;
5322 
5323 		for_each_node(nid) {
5324 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5325 
5326 			spin_lock_irq(&lruvec->lru_lock);
5327 
5328 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5329 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5330 
5331 			lruvec->lrugen.enabled = enabled;
5332 
5333 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5334 				spin_unlock_irq(&lruvec->lru_lock);
5335 				cond_resched();
5336 				spin_lock_irq(&lruvec->lru_lock);
5337 			}
5338 
5339 			spin_unlock_irq(&lruvec->lru_lock);
5340 		}
5341 
5342 		cond_resched();
5343 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5344 unlock:
5345 	mutex_unlock(&state_mutex);
5346 	put_online_mems();
5347 	cpus_read_unlock();
5348 	cgroup_unlock();
5349 }
5350 
5351 /******************************************************************************
5352  *                          sysfs interface
5353  ******************************************************************************/
5354 
5355 static ssize_t show_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5356 {
5357 	return sprintf(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5358 }
5359 
5360 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5361 static ssize_t store_min_ttl(struct kobject *kobj, struct kobj_attribute *attr,
5362 			     const char *buf, size_t len)
5363 {
5364 	unsigned int msecs;
5365 
5366 	if (kstrtouint(buf, 0, &msecs))
5367 		return -EINVAL;
5368 
5369 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5370 
5371 	return len;
5372 }
5373 
5374 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR(
5375 	min_ttl_ms, 0644, show_min_ttl, store_min_ttl
5376 );
5377 
5378 static ssize_t show_enabled(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5379 {
5380 	unsigned int caps = 0;
5381 
5382 	if (get_cap(LRU_GEN_CORE))
5383 		caps |= BIT(LRU_GEN_CORE);
5384 
5385 	if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))
5386 		caps |= BIT(LRU_GEN_MM_WALK);
5387 
5388 	if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
5389 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5390 
5391 	return sysfs_emit(buf, "0x%04x\n", caps);
5392 }
5393 
5394 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5395 static ssize_t store_enabled(struct kobject *kobj, struct kobj_attribute *attr,
5396 			     const char *buf, size_t len)
5397 {
5398 	int i;
5399 	unsigned int caps;
5400 
5401 	if (tolower(*buf) == 'n')
5402 		caps = 0;
5403 	else if (tolower(*buf) == 'y')
5404 		caps = -1;
5405 	else if (kstrtouint(buf, 0, &caps))
5406 		return -EINVAL;
5407 
5408 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5409 		bool enabled = caps & BIT(i);
5410 
5411 		if (i == LRU_GEN_CORE)
5412 			lru_gen_change_state(enabled);
5413 		else if (enabled)
5414 			static_branch_enable(&lru_gen_caps[i]);
5415 		else
5416 			static_branch_disable(&lru_gen_caps[i]);
5417 	}
5418 
5419 	return len;
5420 }
5421 
5422 static struct kobj_attribute lru_gen_enabled_attr = __ATTR(
5423 	enabled, 0644, show_enabled, store_enabled
5424 );
5425 
5426 static struct attribute *lru_gen_attrs[] = {
5427 	&lru_gen_min_ttl_attr.attr,
5428 	&lru_gen_enabled_attr.attr,
5429 	NULL
5430 };
5431 
5432 static struct attribute_group lru_gen_attr_group = {
5433 	.name = "lru_gen",
5434 	.attrs = lru_gen_attrs,
5435 };
5436 
5437 /******************************************************************************
5438  *                          debugfs interface
5439  ******************************************************************************/
5440 
5441 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5442 {
5443 	struct mem_cgroup *memcg;
5444 	loff_t nr_to_skip = *pos;
5445 
5446 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5447 	if (!m->private)
5448 		return ERR_PTR(-ENOMEM);
5449 
5450 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5451 	do {
5452 		int nid;
5453 
5454 		for_each_node_state(nid, N_MEMORY) {
5455 			if (!nr_to_skip--)
5456 				return get_lruvec(memcg, nid);
5457 		}
5458 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5459 
5460 	return NULL;
5461 }
5462 
5463 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5464 {
5465 	if (!IS_ERR_OR_NULL(v))
5466 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5467 
5468 	kvfree(m->private);
5469 	m->private = NULL;
5470 }
5471 
5472 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5473 {
5474 	int nid = lruvec_pgdat(v)->node_id;
5475 	struct mem_cgroup *memcg = lruvec_memcg(v);
5476 
5477 	++*pos;
5478 
5479 	nid = next_memory_node(nid);
5480 	if (nid == MAX_NUMNODES) {
5481 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5482 		if (!memcg)
5483 			return NULL;
5484 
5485 		nid = first_memory_node;
5486 	}
5487 
5488 	return get_lruvec(memcg, nid);
5489 }
5490 
5491 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5492 				  unsigned long max_seq, unsigned long *min_seq,
5493 				  unsigned long seq)
5494 {
5495 	int i;
5496 	int type, tier;
5497 	int hist = lru_hist_from_seq(seq);
5498 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5499 
5500 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5501 		seq_printf(m, "            %10d", tier);
5502 		for (type = 0; type < ANON_AND_FILE; type++) {
5503 			const char *s = "   ";
5504 			unsigned long n[3] = {};
5505 
5506 			if (seq == max_seq) {
5507 				s = "RT ";
5508 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5509 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5510 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5511 				s = "rep";
5512 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5513 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5514 				if (tier)
5515 					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5516 			}
5517 
5518 			for (i = 0; i < 3; i++)
5519 				seq_printf(m, " %10lu%c", n[i], s[i]);
5520 		}
5521 		seq_putc(m, '\n');
5522 	}
5523 
5524 	seq_puts(m, "                      ");
5525 	for (i = 0; i < NR_MM_STATS; i++) {
5526 		const char *s = "      ";
5527 		unsigned long n = 0;
5528 
5529 		if (seq == max_seq && NR_HIST_GENS == 1) {
5530 			s = "LOYNFA";
5531 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5532 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5533 			s = "loynfa";
5534 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5535 		}
5536 
5537 		seq_printf(m, " %10lu%c", n, s[i]);
5538 	}
5539 	seq_putc(m, '\n');
5540 }
5541 
5542 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5543 static int lru_gen_seq_show(struct seq_file *m, void *v)
5544 {
5545 	unsigned long seq;
5546 	bool full = !debugfs_real_fops(m->file)->write;
5547 	struct lruvec *lruvec = v;
5548 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5549 	int nid = lruvec_pgdat(lruvec)->node_id;
5550 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5551 	DEFINE_MAX_SEQ(lruvec);
5552 	DEFINE_MIN_SEQ(lruvec);
5553 
5554 	if (nid == first_memory_node) {
5555 		const char *path = memcg ? m->private : "";
5556 
5557 #ifdef CONFIG_MEMCG
5558 		if (memcg)
5559 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5560 #endif
5561 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5562 	}
5563 
5564 	seq_printf(m, " node %5d\n", nid);
5565 
5566 	if (!full)
5567 		seq = min_seq[LRU_GEN_ANON];
5568 	else if (max_seq >= MAX_NR_GENS)
5569 		seq = max_seq - MAX_NR_GENS + 1;
5570 	else
5571 		seq = 0;
5572 
5573 	for (; seq <= max_seq; seq++) {
5574 		int type, zone;
5575 		int gen = lru_gen_from_seq(seq);
5576 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5577 
5578 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5579 
5580 		for (type = 0; type < ANON_AND_FILE; type++) {
5581 			unsigned long size = 0;
5582 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5583 
5584 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5585 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5586 
5587 			seq_printf(m, " %10lu%c", size, mark);
5588 		}
5589 
5590 		seq_putc(m, '\n');
5591 
5592 		if (full)
5593 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5594 	}
5595 
5596 	return 0;
5597 }
5598 
5599 static const struct seq_operations lru_gen_seq_ops = {
5600 	.start = lru_gen_seq_start,
5601 	.stop = lru_gen_seq_stop,
5602 	.next = lru_gen_seq_next,
5603 	.show = lru_gen_seq_show,
5604 };
5605 
5606 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5607 		     bool can_swap, bool force_scan)
5608 {
5609 	DEFINE_MAX_SEQ(lruvec);
5610 	DEFINE_MIN_SEQ(lruvec);
5611 
5612 	if (seq < max_seq)
5613 		return 0;
5614 
5615 	if (seq > max_seq)
5616 		return -EINVAL;
5617 
5618 	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5619 		return -ERANGE;
5620 
5621 	try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5622 
5623 	return 0;
5624 }
5625 
5626 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5627 			int swappiness, unsigned long nr_to_reclaim)
5628 {
5629 	DEFINE_MAX_SEQ(lruvec);
5630 
5631 	if (seq + MIN_NR_GENS > max_seq)
5632 		return -EINVAL;
5633 
5634 	sc->nr_reclaimed = 0;
5635 
5636 	while (!signal_pending(current)) {
5637 		DEFINE_MIN_SEQ(lruvec);
5638 
5639 		if (seq < min_seq[!swappiness])
5640 			return 0;
5641 
5642 		if (sc->nr_reclaimed >= nr_to_reclaim)
5643 			return 0;
5644 
5645 		if (!evict_folios(lruvec, sc, swappiness))
5646 			return 0;
5647 
5648 		cond_resched();
5649 	}
5650 
5651 	return -EINTR;
5652 }
5653 
5654 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5655 		   struct scan_control *sc, int swappiness, unsigned long opt)
5656 {
5657 	struct lruvec *lruvec;
5658 	int err = -EINVAL;
5659 	struct mem_cgroup *memcg = NULL;
5660 
5661 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5662 		return -EINVAL;
5663 
5664 	if (!mem_cgroup_disabled()) {
5665 		rcu_read_lock();
5666 		memcg = mem_cgroup_from_id(memcg_id);
5667 #ifdef CONFIG_MEMCG
5668 		if (memcg && !css_tryget(&memcg->css))
5669 			memcg = NULL;
5670 #endif
5671 		rcu_read_unlock();
5672 
5673 		if (!memcg)
5674 			return -EINVAL;
5675 	}
5676 
5677 	if (memcg_id != mem_cgroup_id(memcg))
5678 		goto done;
5679 
5680 	lruvec = get_lruvec(memcg, nid);
5681 
5682 	if (swappiness < 0)
5683 		swappiness = get_swappiness(lruvec, sc);
5684 	else if (swappiness > 200)
5685 		goto done;
5686 
5687 	switch (cmd) {
5688 	case '+':
5689 		err = run_aging(lruvec, seq, sc, swappiness, opt);
5690 		break;
5691 	case '-':
5692 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
5693 		break;
5694 	}
5695 done:
5696 	mem_cgroup_put(memcg);
5697 
5698 	return err;
5699 }
5700 
5701 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5702 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5703 				 size_t len, loff_t *pos)
5704 {
5705 	void *buf;
5706 	char *cur, *next;
5707 	unsigned int flags;
5708 	struct blk_plug plug;
5709 	int err = -EINVAL;
5710 	struct scan_control sc = {
5711 		.may_writepage = true,
5712 		.may_unmap = true,
5713 		.may_swap = true,
5714 		.reclaim_idx = MAX_NR_ZONES - 1,
5715 		.gfp_mask = GFP_KERNEL,
5716 	};
5717 
5718 	buf = kvmalloc(len + 1, GFP_KERNEL);
5719 	if (!buf)
5720 		return -ENOMEM;
5721 
5722 	if (copy_from_user(buf, src, len)) {
5723 		kvfree(buf);
5724 		return -EFAULT;
5725 	}
5726 
5727 	set_task_reclaim_state(current, &sc.reclaim_state);
5728 	flags = memalloc_noreclaim_save();
5729 	blk_start_plug(&plug);
5730 	if (!set_mm_walk(NULL)) {
5731 		err = -ENOMEM;
5732 		goto done;
5733 	}
5734 
5735 	next = buf;
5736 	next[len] = '\0';
5737 
5738 	while ((cur = strsep(&next, ",;\n"))) {
5739 		int n;
5740 		int end;
5741 		char cmd;
5742 		unsigned int memcg_id;
5743 		unsigned int nid;
5744 		unsigned long seq;
5745 		unsigned int swappiness = -1;
5746 		unsigned long opt = -1;
5747 
5748 		cur = skip_spaces(cur);
5749 		if (!*cur)
5750 			continue;
5751 
5752 		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5753 			   &seq, &end, &swappiness, &end, &opt, &end);
5754 		if (n < 4 || cur[end]) {
5755 			err = -EINVAL;
5756 			break;
5757 		}
5758 
5759 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5760 		if (err)
5761 			break;
5762 	}
5763 done:
5764 	clear_mm_walk();
5765 	blk_finish_plug(&plug);
5766 	memalloc_noreclaim_restore(flags);
5767 	set_task_reclaim_state(current, NULL);
5768 
5769 	kvfree(buf);
5770 
5771 	return err ? : len;
5772 }
5773 
5774 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5775 {
5776 	return seq_open(file, &lru_gen_seq_ops);
5777 }
5778 
5779 static const struct file_operations lru_gen_rw_fops = {
5780 	.open = lru_gen_seq_open,
5781 	.read = seq_read,
5782 	.write = lru_gen_seq_write,
5783 	.llseek = seq_lseek,
5784 	.release = seq_release,
5785 };
5786 
5787 static const struct file_operations lru_gen_ro_fops = {
5788 	.open = lru_gen_seq_open,
5789 	.read = seq_read,
5790 	.llseek = seq_lseek,
5791 	.release = seq_release,
5792 };
5793 
5794 /******************************************************************************
5795  *                          initialization
5796  ******************************************************************************/
5797 
5798 void lru_gen_init_lruvec(struct lruvec *lruvec)
5799 {
5800 	int i;
5801 	int gen, type, zone;
5802 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5803 
5804 	lrugen->max_seq = MIN_NR_GENS + 1;
5805 	lrugen->enabled = lru_gen_enabled();
5806 
5807 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
5808 		lrugen->timestamps[i] = jiffies;
5809 
5810 	for_each_gen_type_zone(gen, type, zone)
5811 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5812 
5813 	lruvec->mm_state.seq = MIN_NR_GENS;
5814 	init_waitqueue_head(&lruvec->mm_state.wait);
5815 }
5816 
5817 #ifdef CONFIG_MEMCG
5818 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5819 {
5820 	INIT_LIST_HEAD(&memcg->mm_list.fifo);
5821 	spin_lock_init(&memcg->mm_list.lock);
5822 }
5823 
5824 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5825 {
5826 	int i;
5827 	int nid;
5828 
5829 	for_each_node(nid) {
5830 		struct lruvec *lruvec = get_lruvec(memcg, nid);
5831 
5832 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5833 					   sizeof(lruvec->lrugen.nr_pages)));
5834 
5835 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5836 			bitmap_free(lruvec->mm_state.filters[i]);
5837 			lruvec->mm_state.filters[i] = NULL;
5838 		}
5839 	}
5840 }
5841 #endif
5842 
5843 static int __init init_lru_gen(void)
5844 {
5845 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5846 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5847 
5848 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5849 		pr_err("lru_gen: failed to create sysfs group\n");
5850 
5851 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5852 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5853 
5854 	return 0;
5855 };
5856 late_initcall(init_lru_gen);
5857 
5858 #else /* !CONFIG_LRU_GEN */
5859 
5860 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5861 {
5862 }
5863 
5864 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5865 {
5866 }
5867 
5868 #endif /* CONFIG_LRU_GEN */
5869 
5870 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5871 {
5872 	unsigned long nr[NR_LRU_LISTS];
5873 	unsigned long targets[NR_LRU_LISTS];
5874 	unsigned long nr_to_scan;
5875 	enum lru_list lru;
5876 	unsigned long nr_reclaimed = 0;
5877 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5878 	bool proportional_reclaim;
5879 	struct blk_plug plug;
5880 
5881 	if (lru_gen_enabled()) {
5882 		lru_gen_shrink_lruvec(lruvec, sc);
5883 		return;
5884 	}
5885 
5886 	get_scan_count(lruvec, sc, nr);
5887 
5888 	/* Record the original scan target for proportional adjustments later */
5889 	memcpy(targets, nr, sizeof(nr));
5890 
5891 	/*
5892 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5893 	 * event that can occur when there is little memory pressure e.g.
5894 	 * multiple streaming readers/writers. Hence, we do not abort scanning
5895 	 * when the requested number of pages are reclaimed when scanning at
5896 	 * DEF_PRIORITY on the assumption that the fact we are direct
5897 	 * reclaiming implies that kswapd is not keeping up and it is best to
5898 	 * do a batch of work at once. For memcg reclaim one check is made to
5899 	 * abort proportional reclaim if either the file or anon lru has already
5900 	 * dropped to zero at the first pass.
5901 	 */
5902 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5903 				sc->priority == DEF_PRIORITY);
5904 
5905 	blk_start_plug(&plug);
5906 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5907 					nr[LRU_INACTIVE_FILE]) {
5908 		unsigned long nr_anon, nr_file, percentage;
5909 		unsigned long nr_scanned;
5910 
5911 		for_each_evictable_lru(lru) {
5912 			if (nr[lru]) {
5913 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5914 				nr[lru] -= nr_to_scan;
5915 
5916 				nr_reclaimed += shrink_list(lru, nr_to_scan,
5917 							    lruvec, sc);
5918 			}
5919 		}
5920 
5921 		cond_resched();
5922 
5923 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5924 			continue;
5925 
5926 		/*
5927 		 * For kswapd and memcg, reclaim at least the number of pages
5928 		 * requested. Ensure that the anon and file LRUs are scanned
5929 		 * proportionally what was requested by get_scan_count(). We
5930 		 * stop reclaiming one LRU and reduce the amount scanning
5931 		 * proportional to the original scan target.
5932 		 */
5933 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5934 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5935 
5936 		/*
5937 		 * It's just vindictive to attack the larger once the smaller
5938 		 * has gone to zero.  And given the way we stop scanning the
5939 		 * smaller below, this makes sure that we only make one nudge
5940 		 * towards proportionality once we've got nr_to_reclaim.
5941 		 */
5942 		if (!nr_file || !nr_anon)
5943 			break;
5944 
5945 		if (nr_file > nr_anon) {
5946 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5947 						targets[LRU_ACTIVE_ANON] + 1;
5948 			lru = LRU_BASE;
5949 			percentage = nr_anon * 100 / scan_target;
5950 		} else {
5951 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5952 						targets[LRU_ACTIVE_FILE] + 1;
5953 			lru = LRU_FILE;
5954 			percentage = nr_file * 100 / scan_target;
5955 		}
5956 
5957 		/* Stop scanning the smaller of the LRU */
5958 		nr[lru] = 0;
5959 		nr[lru + LRU_ACTIVE] = 0;
5960 
5961 		/*
5962 		 * Recalculate the other LRU scan count based on its original
5963 		 * scan target and the percentage scanning already complete
5964 		 */
5965 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5966 		nr_scanned = targets[lru] - nr[lru];
5967 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5968 		nr[lru] -= min(nr[lru], nr_scanned);
5969 
5970 		lru += LRU_ACTIVE;
5971 		nr_scanned = targets[lru] - nr[lru];
5972 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5973 		nr[lru] -= min(nr[lru], nr_scanned);
5974 	}
5975 	blk_finish_plug(&plug);
5976 	sc->nr_reclaimed += nr_reclaimed;
5977 
5978 	/*
5979 	 * Even if we did not try to evict anon pages at all, we want to
5980 	 * rebalance the anon lru active/inactive ratio.
5981 	 */
5982 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5983 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5984 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5985 				   sc, LRU_ACTIVE_ANON);
5986 }
5987 
5988 /* Use reclaim/compaction for costly allocs or under memory pressure */
5989 static bool in_reclaim_compaction(struct scan_control *sc)
5990 {
5991 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
5992 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5993 			 sc->priority < DEF_PRIORITY - 2))
5994 		return true;
5995 
5996 	return false;
5997 }
5998 
5999 /*
6000  * Reclaim/compaction is used for high-order allocation requests. It reclaims
6001  * order-0 pages before compacting the zone. should_continue_reclaim() returns
6002  * true if more pages should be reclaimed such that when the page allocator
6003  * calls try_to_compact_pages() that it will have enough free pages to succeed.
6004  * It will give up earlier than that if there is difficulty reclaiming pages.
6005  */
6006 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
6007 					unsigned long nr_reclaimed,
6008 					struct scan_control *sc)
6009 {
6010 	unsigned long pages_for_compaction;
6011 	unsigned long inactive_lru_pages;
6012 	int z;
6013 
6014 	/* If not in reclaim/compaction mode, stop */
6015 	if (!in_reclaim_compaction(sc))
6016 		return false;
6017 
6018 	/*
6019 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6020 	 * number of pages that were scanned. This will return to the caller
6021 	 * with the risk reclaim/compaction and the resulting allocation attempt
6022 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6023 	 * allocations through requiring that the full LRU list has been scanned
6024 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6025 	 * scan, but that approximation was wrong, and there were corner cases
6026 	 * where always a non-zero amount of pages were scanned.
6027 	 */
6028 	if (!nr_reclaimed)
6029 		return false;
6030 
6031 	/* If compaction would go ahead or the allocation would succeed, stop */
6032 	for (z = 0; z <= sc->reclaim_idx; z++) {
6033 		struct zone *zone = &pgdat->node_zones[z];
6034 		if (!managed_zone(zone))
6035 			continue;
6036 
6037 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
6038 		case COMPACT_SUCCESS:
6039 		case COMPACT_CONTINUE:
6040 			return false;
6041 		default:
6042 			/* check next zone */
6043 			;
6044 		}
6045 	}
6046 
6047 	/*
6048 	 * If we have not reclaimed enough pages for compaction and the
6049 	 * inactive lists are large enough, continue reclaiming
6050 	 */
6051 	pages_for_compaction = compact_gap(sc->order);
6052 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6053 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6054 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6055 
6056 	return inactive_lru_pages > pages_for_compaction;
6057 }
6058 
6059 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6060 {
6061 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6062 	struct mem_cgroup *memcg;
6063 
6064 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6065 	do {
6066 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6067 		unsigned long reclaimed;
6068 		unsigned long scanned;
6069 
6070 		/*
6071 		 * This loop can become CPU-bound when target memcgs
6072 		 * aren't eligible for reclaim - either because they
6073 		 * don't have any reclaimable pages, or because their
6074 		 * memory is explicitly protected. Avoid soft lockups.
6075 		 */
6076 		cond_resched();
6077 
6078 		mem_cgroup_calculate_protection(target_memcg, memcg);
6079 
6080 		if (mem_cgroup_below_min(target_memcg, memcg)) {
6081 			/*
6082 			 * Hard protection.
6083 			 * If there is no reclaimable memory, OOM.
6084 			 */
6085 			continue;
6086 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
6087 			/*
6088 			 * Soft protection.
6089 			 * Respect the protection only as long as
6090 			 * there is an unprotected supply
6091 			 * of reclaimable memory from other cgroups.
6092 			 */
6093 			if (!sc->memcg_low_reclaim) {
6094 				sc->memcg_low_skipped = 1;
6095 				continue;
6096 			}
6097 			memcg_memory_event(memcg, MEMCG_LOW);
6098 		}
6099 
6100 		reclaimed = sc->nr_reclaimed;
6101 		scanned = sc->nr_scanned;
6102 
6103 		shrink_lruvec(lruvec, sc);
6104 
6105 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6106 			    sc->priority);
6107 
6108 		/* Record the group's reclaim efficiency */
6109 		if (!sc->proactive)
6110 			vmpressure(sc->gfp_mask, memcg, false,
6111 				   sc->nr_scanned - scanned,
6112 				   sc->nr_reclaimed - reclaimed);
6113 
6114 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6115 }
6116 
6117 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6118 {
6119 	struct reclaim_state *reclaim_state = current->reclaim_state;
6120 	unsigned long nr_reclaimed, nr_scanned;
6121 	struct lruvec *target_lruvec;
6122 	bool reclaimable = false;
6123 
6124 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6125 
6126 again:
6127 	memset(&sc->nr, 0, sizeof(sc->nr));
6128 
6129 	nr_reclaimed = sc->nr_reclaimed;
6130 	nr_scanned = sc->nr_scanned;
6131 
6132 	prepare_scan_count(pgdat, sc);
6133 
6134 	shrink_node_memcgs(pgdat, sc);
6135 
6136 	if (reclaim_state) {
6137 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
6138 		reclaim_state->reclaimed_slab = 0;
6139 	}
6140 
6141 	/* Record the subtree's reclaim efficiency */
6142 	if (!sc->proactive)
6143 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6144 			   sc->nr_scanned - nr_scanned,
6145 			   sc->nr_reclaimed - nr_reclaimed);
6146 
6147 	if (sc->nr_reclaimed - nr_reclaimed)
6148 		reclaimable = true;
6149 
6150 	if (current_is_kswapd()) {
6151 		/*
6152 		 * If reclaim is isolating dirty pages under writeback,
6153 		 * it implies that the long-lived page allocation rate
6154 		 * is exceeding the page laundering rate. Either the
6155 		 * global limits are not being effective at throttling
6156 		 * processes due to the page distribution throughout
6157 		 * zones or there is heavy usage of a slow backing
6158 		 * device. The only option is to throttle from reclaim
6159 		 * context which is not ideal as there is no guarantee
6160 		 * the dirtying process is throttled in the same way
6161 		 * balance_dirty_pages() manages.
6162 		 *
6163 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6164 		 * count the number of pages under pages flagged for
6165 		 * immediate reclaim and stall if any are encountered
6166 		 * in the nr_immediate check below.
6167 		 */
6168 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6169 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6170 
6171 		/* Allow kswapd to start writing pages during reclaim.*/
6172 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6173 			set_bit(PGDAT_DIRTY, &pgdat->flags);
6174 
6175 		/*
6176 		 * If kswapd scans pages marked for immediate
6177 		 * reclaim and under writeback (nr_immediate), it
6178 		 * implies that pages are cycling through the LRU
6179 		 * faster than they are written so forcibly stall
6180 		 * until some pages complete writeback.
6181 		 */
6182 		if (sc->nr.immediate)
6183 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6184 	}
6185 
6186 	/*
6187 	 * Tag a node/memcg as congested if all the dirty pages were marked
6188 	 * for writeback and immediate reclaim (counted in nr.congested).
6189 	 *
6190 	 * Legacy memcg will stall in page writeback so avoid forcibly
6191 	 * stalling in reclaim_throttle().
6192 	 */
6193 	if ((current_is_kswapd() ||
6194 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
6195 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
6196 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
6197 
6198 	/*
6199 	 * Stall direct reclaim for IO completions if the lruvec is
6200 	 * node is congested. Allow kswapd to continue until it
6201 	 * starts encountering unqueued dirty pages or cycling through
6202 	 * the LRU too quickly.
6203 	 */
6204 	if (!current_is_kswapd() && current_may_throttle() &&
6205 	    !sc->hibernation_mode &&
6206 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
6207 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6208 
6209 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
6210 				    sc))
6211 		goto again;
6212 
6213 	/*
6214 	 * Kswapd gives up on balancing particular nodes after too
6215 	 * many failures to reclaim anything from them and goes to
6216 	 * sleep. On reclaim progress, reset the failure counter. A
6217 	 * successful direct reclaim run will revive a dormant kswapd.
6218 	 */
6219 	if (reclaimable)
6220 		pgdat->kswapd_failures = 0;
6221 }
6222 
6223 /*
6224  * Returns true if compaction should go ahead for a costly-order request, or
6225  * the allocation would already succeed without compaction. Return false if we
6226  * should reclaim first.
6227  */
6228 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6229 {
6230 	unsigned long watermark;
6231 	enum compact_result suitable;
6232 
6233 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
6234 	if (suitable == COMPACT_SUCCESS)
6235 		/* Allocation should succeed already. Don't reclaim. */
6236 		return true;
6237 	if (suitable == COMPACT_SKIPPED)
6238 		/* Compaction cannot yet proceed. Do reclaim. */
6239 		return false;
6240 
6241 	/*
6242 	 * Compaction is already possible, but it takes time to run and there
6243 	 * are potentially other callers using the pages just freed. So proceed
6244 	 * with reclaim to make a buffer of free pages available to give
6245 	 * compaction a reasonable chance of completing and allocating the page.
6246 	 * Note that we won't actually reclaim the whole buffer in one attempt
6247 	 * as the target watermark in should_continue_reclaim() is lower. But if
6248 	 * we are already above the high+gap watermark, don't reclaim at all.
6249 	 */
6250 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6251 
6252 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6253 }
6254 
6255 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6256 {
6257 	/*
6258 	 * If reclaim is making progress greater than 12% efficiency then
6259 	 * wake all the NOPROGRESS throttled tasks.
6260 	 */
6261 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6262 		wait_queue_head_t *wqh;
6263 
6264 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6265 		if (waitqueue_active(wqh))
6266 			wake_up(wqh);
6267 
6268 		return;
6269 	}
6270 
6271 	/*
6272 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6273 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6274 	 * under writeback and marked for immediate reclaim at the tail of the
6275 	 * LRU.
6276 	 */
6277 	if (current_is_kswapd() || cgroup_reclaim(sc))
6278 		return;
6279 
6280 	/* Throttle if making no progress at high prioities. */
6281 	if (sc->priority == 1 && !sc->nr_reclaimed)
6282 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6283 }
6284 
6285 /*
6286  * This is the direct reclaim path, for page-allocating processes.  We only
6287  * try to reclaim pages from zones which will satisfy the caller's allocation
6288  * request.
6289  *
6290  * If a zone is deemed to be full of pinned pages then just give it a light
6291  * scan then give up on it.
6292  */
6293 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6294 {
6295 	struct zoneref *z;
6296 	struct zone *zone;
6297 	unsigned long nr_soft_reclaimed;
6298 	unsigned long nr_soft_scanned;
6299 	gfp_t orig_mask;
6300 	pg_data_t *last_pgdat = NULL;
6301 	pg_data_t *first_pgdat = NULL;
6302 
6303 	/*
6304 	 * If the number of buffer_heads in the machine exceeds the maximum
6305 	 * allowed level, force direct reclaim to scan the highmem zone as
6306 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6307 	 */
6308 	orig_mask = sc->gfp_mask;
6309 	if (buffer_heads_over_limit) {
6310 		sc->gfp_mask |= __GFP_HIGHMEM;
6311 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6312 	}
6313 
6314 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6315 					sc->reclaim_idx, sc->nodemask) {
6316 		/*
6317 		 * Take care memory controller reclaiming has small influence
6318 		 * to global LRU.
6319 		 */
6320 		if (!cgroup_reclaim(sc)) {
6321 			if (!cpuset_zone_allowed(zone,
6322 						 GFP_KERNEL | __GFP_HARDWALL))
6323 				continue;
6324 
6325 			/*
6326 			 * If we already have plenty of memory free for
6327 			 * compaction in this zone, don't free any more.
6328 			 * Even though compaction is invoked for any
6329 			 * non-zero order, only frequent costly order
6330 			 * reclamation is disruptive enough to become a
6331 			 * noticeable problem, like transparent huge
6332 			 * page allocations.
6333 			 */
6334 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6335 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6336 			    compaction_ready(zone, sc)) {
6337 				sc->compaction_ready = true;
6338 				continue;
6339 			}
6340 
6341 			/*
6342 			 * Shrink each node in the zonelist once. If the
6343 			 * zonelist is ordered by zone (not the default) then a
6344 			 * node may be shrunk multiple times but in that case
6345 			 * the user prefers lower zones being preserved.
6346 			 */
6347 			if (zone->zone_pgdat == last_pgdat)
6348 				continue;
6349 
6350 			/*
6351 			 * This steals pages from memory cgroups over softlimit
6352 			 * and returns the number of reclaimed pages and
6353 			 * scanned pages. This works for global memory pressure
6354 			 * and balancing, not for a memcg's limit.
6355 			 */
6356 			nr_soft_scanned = 0;
6357 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6358 						sc->order, sc->gfp_mask,
6359 						&nr_soft_scanned);
6360 			sc->nr_reclaimed += nr_soft_reclaimed;
6361 			sc->nr_scanned += nr_soft_scanned;
6362 			/* need some check for avoid more shrink_zone() */
6363 		}
6364 
6365 		if (!first_pgdat)
6366 			first_pgdat = zone->zone_pgdat;
6367 
6368 		/* See comment about same check for global reclaim above */
6369 		if (zone->zone_pgdat == last_pgdat)
6370 			continue;
6371 		last_pgdat = zone->zone_pgdat;
6372 		shrink_node(zone->zone_pgdat, sc);
6373 	}
6374 
6375 	if (first_pgdat)
6376 		consider_reclaim_throttle(first_pgdat, sc);
6377 
6378 	/*
6379 	 * Restore to original mask to avoid the impact on the caller if we
6380 	 * promoted it to __GFP_HIGHMEM.
6381 	 */
6382 	sc->gfp_mask = orig_mask;
6383 }
6384 
6385 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6386 {
6387 	struct lruvec *target_lruvec;
6388 	unsigned long refaults;
6389 
6390 	if (lru_gen_enabled())
6391 		return;
6392 
6393 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6394 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6395 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6396 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6397 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6398 }
6399 
6400 /*
6401  * This is the main entry point to direct page reclaim.
6402  *
6403  * If a full scan of the inactive list fails to free enough memory then we
6404  * are "out of memory" and something needs to be killed.
6405  *
6406  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6407  * high - the zone may be full of dirty or under-writeback pages, which this
6408  * caller can't do much about.  We kick the writeback threads and take explicit
6409  * naps in the hope that some of these pages can be written.  But if the
6410  * allocating task holds filesystem locks which prevent writeout this might not
6411  * work, and the allocation attempt will fail.
6412  *
6413  * returns:	0, if no pages reclaimed
6414  * 		else, the number of pages reclaimed
6415  */
6416 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6417 					  struct scan_control *sc)
6418 {
6419 	int initial_priority = sc->priority;
6420 	pg_data_t *last_pgdat;
6421 	struct zoneref *z;
6422 	struct zone *zone;
6423 retry:
6424 	delayacct_freepages_start();
6425 
6426 	if (!cgroup_reclaim(sc))
6427 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6428 
6429 	do {
6430 		if (!sc->proactive)
6431 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6432 					sc->priority);
6433 		sc->nr_scanned = 0;
6434 		shrink_zones(zonelist, sc);
6435 
6436 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6437 			break;
6438 
6439 		if (sc->compaction_ready)
6440 			break;
6441 
6442 		/*
6443 		 * If we're getting trouble reclaiming, start doing
6444 		 * writepage even in laptop mode.
6445 		 */
6446 		if (sc->priority < DEF_PRIORITY - 2)
6447 			sc->may_writepage = 1;
6448 	} while (--sc->priority >= 0);
6449 
6450 	last_pgdat = NULL;
6451 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6452 					sc->nodemask) {
6453 		if (zone->zone_pgdat == last_pgdat)
6454 			continue;
6455 		last_pgdat = zone->zone_pgdat;
6456 
6457 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6458 
6459 		if (cgroup_reclaim(sc)) {
6460 			struct lruvec *lruvec;
6461 
6462 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6463 						   zone->zone_pgdat);
6464 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6465 		}
6466 	}
6467 
6468 	delayacct_freepages_end();
6469 
6470 	if (sc->nr_reclaimed)
6471 		return sc->nr_reclaimed;
6472 
6473 	/* Aborted reclaim to try compaction? don't OOM, then */
6474 	if (sc->compaction_ready)
6475 		return 1;
6476 
6477 	/*
6478 	 * We make inactive:active ratio decisions based on the node's
6479 	 * composition of memory, but a restrictive reclaim_idx or a
6480 	 * memory.low cgroup setting can exempt large amounts of
6481 	 * memory from reclaim. Neither of which are very common, so
6482 	 * instead of doing costly eligibility calculations of the
6483 	 * entire cgroup subtree up front, we assume the estimates are
6484 	 * good, and retry with forcible deactivation if that fails.
6485 	 */
6486 	if (sc->skipped_deactivate) {
6487 		sc->priority = initial_priority;
6488 		sc->force_deactivate = 1;
6489 		sc->skipped_deactivate = 0;
6490 		goto retry;
6491 	}
6492 
6493 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6494 	if (sc->memcg_low_skipped) {
6495 		sc->priority = initial_priority;
6496 		sc->force_deactivate = 0;
6497 		sc->memcg_low_reclaim = 1;
6498 		sc->memcg_low_skipped = 0;
6499 		goto retry;
6500 	}
6501 
6502 	return 0;
6503 }
6504 
6505 static bool allow_direct_reclaim(pg_data_t *pgdat)
6506 {
6507 	struct zone *zone;
6508 	unsigned long pfmemalloc_reserve = 0;
6509 	unsigned long free_pages = 0;
6510 	int i;
6511 	bool wmark_ok;
6512 
6513 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6514 		return true;
6515 
6516 	for (i = 0; i <= ZONE_NORMAL; i++) {
6517 		zone = &pgdat->node_zones[i];
6518 		if (!managed_zone(zone))
6519 			continue;
6520 
6521 		if (!zone_reclaimable_pages(zone))
6522 			continue;
6523 
6524 		pfmemalloc_reserve += min_wmark_pages(zone);
6525 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
6526 	}
6527 
6528 	/* If there are no reserves (unexpected config) then do not throttle */
6529 	if (!pfmemalloc_reserve)
6530 		return true;
6531 
6532 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6533 
6534 	/* kswapd must be awake if processes are being throttled */
6535 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6536 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6537 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6538 
6539 		wake_up_interruptible(&pgdat->kswapd_wait);
6540 	}
6541 
6542 	return wmark_ok;
6543 }
6544 
6545 /*
6546  * Throttle direct reclaimers if backing storage is backed by the network
6547  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6548  * depleted. kswapd will continue to make progress and wake the processes
6549  * when the low watermark is reached.
6550  *
6551  * Returns true if a fatal signal was delivered during throttling. If this
6552  * happens, the page allocator should not consider triggering the OOM killer.
6553  */
6554 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6555 					nodemask_t *nodemask)
6556 {
6557 	struct zoneref *z;
6558 	struct zone *zone;
6559 	pg_data_t *pgdat = NULL;
6560 
6561 	/*
6562 	 * Kernel threads should not be throttled as they may be indirectly
6563 	 * responsible for cleaning pages necessary for reclaim to make forward
6564 	 * progress. kjournald for example may enter direct reclaim while
6565 	 * committing a transaction where throttling it could forcing other
6566 	 * processes to block on log_wait_commit().
6567 	 */
6568 	if (current->flags & PF_KTHREAD)
6569 		goto out;
6570 
6571 	/*
6572 	 * If a fatal signal is pending, this process should not throttle.
6573 	 * It should return quickly so it can exit and free its memory
6574 	 */
6575 	if (fatal_signal_pending(current))
6576 		goto out;
6577 
6578 	/*
6579 	 * Check if the pfmemalloc reserves are ok by finding the first node
6580 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6581 	 * GFP_KERNEL will be required for allocating network buffers when
6582 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6583 	 *
6584 	 * Throttling is based on the first usable node and throttled processes
6585 	 * wait on a queue until kswapd makes progress and wakes them. There
6586 	 * is an affinity then between processes waking up and where reclaim
6587 	 * progress has been made assuming the process wakes on the same node.
6588 	 * More importantly, processes running on remote nodes will not compete
6589 	 * for remote pfmemalloc reserves and processes on different nodes
6590 	 * should make reasonable progress.
6591 	 */
6592 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6593 					gfp_zone(gfp_mask), nodemask) {
6594 		if (zone_idx(zone) > ZONE_NORMAL)
6595 			continue;
6596 
6597 		/* Throttle based on the first usable node */
6598 		pgdat = zone->zone_pgdat;
6599 		if (allow_direct_reclaim(pgdat))
6600 			goto out;
6601 		break;
6602 	}
6603 
6604 	/* If no zone was usable by the allocation flags then do not throttle */
6605 	if (!pgdat)
6606 		goto out;
6607 
6608 	/* Account for the throttling */
6609 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6610 
6611 	/*
6612 	 * If the caller cannot enter the filesystem, it's possible that it
6613 	 * is due to the caller holding an FS lock or performing a journal
6614 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6615 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6616 	 * blocked waiting on the same lock. Instead, throttle for up to a
6617 	 * second before continuing.
6618 	 */
6619 	if (!(gfp_mask & __GFP_FS))
6620 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6621 			allow_direct_reclaim(pgdat), HZ);
6622 	else
6623 		/* Throttle until kswapd wakes the process */
6624 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6625 			allow_direct_reclaim(pgdat));
6626 
6627 	if (fatal_signal_pending(current))
6628 		return true;
6629 
6630 out:
6631 	return false;
6632 }
6633 
6634 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6635 				gfp_t gfp_mask, nodemask_t *nodemask)
6636 {
6637 	unsigned long nr_reclaimed;
6638 	struct scan_control sc = {
6639 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6640 		.gfp_mask = current_gfp_context(gfp_mask),
6641 		.reclaim_idx = gfp_zone(gfp_mask),
6642 		.order = order,
6643 		.nodemask = nodemask,
6644 		.priority = DEF_PRIORITY,
6645 		.may_writepage = !laptop_mode,
6646 		.may_unmap = 1,
6647 		.may_swap = 1,
6648 	};
6649 
6650 	/*
6651 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6652 	 * Confirm they are large enough for max values.
6653 	 */
6654 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
6655 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6656 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6657 
6658 	/*
6659 	 * Do not enter reclaim if fatal signal was delivered while throttled.
6660 	 * 1 is returned so that the page allocator does not OOM kill at this
6661 	 * point.
6662 	 */
6663 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6664 		return 1;
6665 
6666 	set_task_reclaim_state(current, &sc.reclaim_state);
6667 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6668 
6669 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6670 
6671 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6672 	set_task_reclaim_state(current, NULL);
6673 
6674 	return nr_reclaimed;
6675 }
6676 
6677 #ifdef CONFIG_MEMCG
6678 
6679 /* Only used by soft limit reclaim. Do not reuse for anything else. */
6680 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6681 						gfp_t gfp_mask, bool noswap,
6682 						pg_data_t *pgdat,
6683 						unsigned long *nr_scanned)
6684 {
6685 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6686 	struct scan_control sc = {
6687 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6688 		.target_mem_cgroup = memcg,
6689 		.may_writepage = !laptop_mode,
6690 		.may_unmap = 1,
6691 		.reclaim_idx = MAX_NR_ZONES - 1,
6692 		.may_swap = !noswap,
6693 	};
6694 
6695 	WARN_ON_ONCE(!current->reclaim_state);
6696 
6697 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6698 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6699 
6700 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6701 						      sc.gfp_mask);
6702 
6703 	/*
6704 	 * NOTE: Although we can get the priority field, using it
6705 	 * here is not a good idea, since it limits the pages we can scan.
6706 	 * if we don't reclaim here, the shrink_node from balance_pgdat
6707 	 * will pick up pages from other mem cgroup's as well. We hack
6708 	 * the priority and make it zero.
6709 	 */
6710 	shrink_lruvec(lruvec, &sc);
6711 
6712 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6713 
6714 	*nr_scanned = sc.nr_scanned;
6715 
6716 	return sc.nr_reclaimed;
6717 }
6718 
6719 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6720 					   unsigned long nr_pages,
6721 					   gfp_t gfp_mask,
6722 					   unsigned int reclaim_options,
6723 					   nodemask_t *nodemask)
6724 {
6725 	unsigned long nr_reclaimed;
6726 	unsigned int noreclaim_flag;
6727 	struct scan_control sc = {
6728 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6729 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6730 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6731 		.reclaim_idx = MAX_NR_ZONES - 1,
6732 		.target_mem_cgroup = memcg,
6733 		.priority = DEF_PRIORITY,
6734 		.may_writepage = !laptop_mode,
6735 		.may_unmap = 1,
6736 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6737 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6738 		.nodemask = nodemask,
6739 	};
6740 	/*
6741 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6742 	 * equal pressure on all the nodes. This is based on the assumption that
6743 	 * the reclaim does not bail out early.
6744 	 */
6745 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6746 
6747 	set_task_reclaim_state(current, &sc.reclaim_state);
6748 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6749 	noreclaim_flag = memalloc_noreclaim_save();
6750 
6751 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6752 
6753 	memalloc_noreclaim_restore(noreclaim_flag);
6754 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6755 	set_task_reclaim_state(current, NULL);
6756 
6757 	return nr_reclaimed;
6758 }
6759 #endif
6760 
6761 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6762 {
6763 	struct mem_cgroup *memcg;
6764 	struct lruvec *lruvec;
6765 
6766 	if (lru_gen_enabled()) {
6767 		lru_gen_age_node(pgdat, sc);
6768 		return;
6769 	}
6770 
6771 	if (!can_age_anon_pages(pgdat, sc))
6772 		return;
6773 
6774 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
6775 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6776 		return;
6777 
6778 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
6779 	do {
6780 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
6781 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6782 				   sc, LRU_ACTIVE_ANON);
6783 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
6784 	} while (memcg);
6785 }
6786 
6787 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6788 {
6789 	int i;
6790 	struct zone *zone;
6791 
6792 	/*
6793 	 * Check for watermark boosts top-down as the higher zones
6794 	 * are more likely to be boosted. Both watermarks and boosts
6795 	 * should not be checked at the same time as reclaim would
6796 	 * start prematurely when there is no boosting and a lower
6797 	 * zone is balanced.
6798 	 */
6799 	for (i = highest_zoneidx; i >= 0; i--) {
6800 		zone = pgdat->node_zones + i;
6801 		if (!managed_zone(zone))
6802 			continue;
6803 
6804 		if (zone->watermark_boost)
6805 			return true;
6806 	}
6807 
6808 	return false;
6809 }
6810 
6811 /*
6812  * Returns true if there is an eligible zone balanced for the request order
6813  * and highest_zoneidx
6814  */
6815 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6816 {
6817 	int i;
6818 	unsigned long mark = -1;
6819 	struct zone *zone;
6820 
6821 	/*
6822 	 * Check watermarks bottom-up as lower zones are more likely to
6823 	 * meet watermarks.
6824 	 */
6825 	for (i = 0; i <= highest_zoneidx; i++) {
6826 		zone = pgdat->node_zones + i;
6827 
6828 		if (!managed_zone(zone))
6829 			continue;
6830 
6831 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6832 			mark = wmark_pages(zone, WMARK_PROMO);
6833 		else
6834 			mark = high_wmark_pages(zone);
6835 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6836 			return true;
6837 	}
6838 
6839 	/*
6840 	 * If a node has no managed zone within highest_zoneidx, it does not
6841 	 * need balancing by definition. This can happen if a zone-restricted
6842 	 * allocation tries to wake a remote kswapd.
6843 	 */
6844 	if (mark == -1)
6845 		return true;
6846 
6847 	return false;
6848 }
6849 
6850 /* Clear pgdat state for congested, dirty or under writeback. */
6851 static void clear_pgdat_congested(pg_data_t *pgdat)
6852 {
6853 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6854 
6855 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6856 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
6857 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6858 }
6859 
6860 /*
6861  * Prepare kswapd for sleeping. This verifies that there are no processes
6862  * waiting in throttle_direct_reclaim() and that watermarks have been met.
6863  *
6864  * Returns true if kswapd is ready to sleep
6865  */
6866 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6867 				int highest_zoneidx)
6868 {
6869 	/*
6870 	 * The throttled processes are normally woken up in balance_pgdat() as
6871 	 * soon as allow_direct_reclaim() is true. But there is a potential
6872 	 * race between when kswapd checks the watermarks and a process gets
6873 	 * throttled. There is also a potential race if processes get
6874 	 * throttled, kswapd wakes, a large process exits thereby balancing the
6875 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
6876 	 * the wake up checks. If kswapd is going to sleep, no process should
6877 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6878 	 * the wake up is premature, processes will wake kswapd and get
6879 	 * throttled again. The difference from wake ups in balance_pgdat() is
6880 	 * that here we are under prepare_to_wait().
6881 	 */
6882 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
6883 		wake_up_all(&pgdat->pfmemalloc_wait);
6884 
6885 	/* Hopeless node, leave it to direct reclaim */
6886 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6887 		return true;
6888 
6889 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6890 		clear_pgdat_congested(pgdat);
6891 		return true;
6892 	}
6893 
6894 	return false;
6895 }
6896 
6897 /*
6898  * kswapd shrinks a node of pages that are at or below the highest usable
6899  * zone that is currently unbalanced.
6900  *
6901  * Returns true if kswapd scanned at least the requested number of pages to
6902  * reclaim or if the lack of progress was due to pages under writeback.
6903  * This is used to determine if the scanning priority needs to be raised.
6904  */
6905 static bool kswapd_shrink_node(pg_data_t *pgdat,
6906 			       struct scan_control *sc)
6907 {
6908 	struct zone *zone;
6909 	int z;
6910 
6911 	/* Reclaim a number of pages proportional to the number of zones */
6912 	sc->nr_to_reclaim = 0;
6913 	for (z = 0; z <= sc->reclaim_idx; z++) {
6914 		zone = pgdat->node_zones + z;
6915 		if (!managed_zone(zone))
6916 			continue;
6917 
6918 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6919 	}
6920 
6921 	/*
6922 	 * Historically care was taken to put equal pressure on all zones but
6923 	 * now pressure is applied based on node LRU order.
6924 	 */
6925 	shrink_node(pgdat, sc);
6926 
6927 	/*
6928 	 * Fragmentation may mean that the system cannot be rebalanced for
6929 	 * high-order allocations. If twice the allocation size has been
6930 	 * reclaimed then recheck watermarks only at order-0 to prevent
6931 	 * excessive reclaim. Assume that a process requested a high-order
6932 	 * can direct reclaim/compact.
6933 	 */
6934 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6935 		sc->order = 0;
6936 
6937 	return sc->nr_scanned >= sc->nr_to_reclaim;
6938 }
6939 
6940 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6941 static inline void
6942 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6943 {
6944 	int i;
6945 	struct zone *zone;
6946 
6947 	for (i = 0; i <= highest_zoneidx; i++) {
6948 		zone = pgdat->node_zones + i;
6949 
6950 		if (!managed_zone(zone))
6951 			continue;
6952 
6953 		if (active)
6954 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6955 		else
6956 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6957 	}
6958 }
6959 
6960 static inline void
6961 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6962 {
6963 	update_reclaim_active(pgdat, highest_zoneidx, true);
6964 }
6965 
6966 static inline void
6967 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6968 {
6969 	update_reclaim_active(pgdat, highest_zoneidx, false);
6970 }
6971 
6972 /*
6973  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6974  * that are eligible for use by the caller until at least one zone is
6975  * balanced.
6976  *
6977  * Returns the order kswapd finished reclaiming at.
6978  *
6979  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
6980  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6981  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6982  * or lower is eligible for reclaim until at least one usable zone is
6983  * balanced.
6984  */
6985 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6986 {
6987 	int i;
6988 	unsigned long nr_soft_reclaimed;
6989 	unsigned long nr_soft_scanned;
6990 	unsigned long pflags;
6991 	unsigned long nr_boost_reclaim;
6992 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6993 	bool boosted;
6994 	struct zone *zone;
6995 	struct scan_control sc = {
6996 		.gfp_mask = GFP_KERNEL,
6997 		.order = order,
6998 		.may_unmap = 1,
6999 	};
7000 
7001 	set_task_reclaim_state(current, &sc.reclaim_state);
7002 	psi_memstall_enter(&pflags);
7003 	__fs_reclaim_acquire(_THIS_IP_);
7004 
7005 	count_vm_event(PAGEOUTRUN);
7006 
7007 	/*
7008 	 * Account for the reclaim boost. Note that the zone boost is left in
7009 	 * place so that parallel allocations that are near the watermark will
7010 	 * stall or direct reclaim until kswapd is finished.
7011 	 */
7012 	nr_boost_reclaim = 0;
7013 	for (i = 0; i <= highest_zoneidx; i++) {
7014 		zone = pgdat->node_zones + i;
7015 		if (!managed_zone(zone))
7016 			continue;
7017 
7018 		nr_boost_reclaim += zone->watermark_boost;
7019 		zone_boosts[i] = zone->watermark_boost;
7020 	}
7021 	boosted = nr_boost_reclaim;
7022 
7023 restart:
7024 	set_reclaim_active(pgdat, highest_zoneidx);
7025 	sc.priority = DEF_PRIORITY;
7026 	do {
7027 		unsigned long nr_reclaimed = sc.nr_reclaimed;
7028 		bool raise_priority = true;
7029 		bool balanced;
7030 		bool ret;
7031 
7032 		sc.reclaim_idx = highest_zoneidx;
7033 
7034 		/*
7035 		 * If the number of buffer_heads exceeds the maximum allowed
7036 		 * then consider reclaiming from all zones. This has a dual
7037 		 * purpose -- on 64-bit systems it is expected that
7038 		 * buffer_heads are stripped during active rotation. On 32-bit
7039 		 * systems, highmem pages can pin lowmem memory and shrinking
7040 		 * buffers can relieve lowmem pressure. Reclaim may still not
7041 		 * go ahead if all eligible zones for the original allocation
7042 		 * request are balanced to avoid excessive reclaim from kswapd.
7043 		 */
7044 		if (buffer_heads_over_limit) {
7045 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7046 				zone = pgdat->node_zones + i;
7047 				if (!managed_zone(zone))
7048 					continue;
7049 
7050 				sc.reclaim_idx = i;
7051 				break;
7052 			}
7053 		}
7054 
7055 		/*
7056 		 * If the pgdat is imbalanced then ignore boosting and preserve
7057 		 * the watermarks for a later time and restart. Note that the
7058 		 * zone watermarks will be still reset at the end of balancing
7059 		 * on the grounds that the normal reclaim should be enough to
7060 		 * re-evaluate if boosting is required when kswapd next wakes.
7061 		 */
7062 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7063 		if (!balanced && nr_boost_reclaim) {
7064 			nr_boost_reclaim = 0;
7065 			goto restart;
7066 		}
7067 
7068 		/*
7069 		 * If boosting is not active then only reclaim if there are no
7070 		 * eligible zones. Note that sc.reclaim_idx is not used as
7071 		 * buffer_heads_over_limit may have adjusted it.
7072 		 */
7073 		if (!nr_boost_reclaim && balanced)
7074 			goto out;
7075 
7076 		/* Limit the priority of boosting to avoid reclaim writeback */
7077 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7078 			raise_priority = false;
7079 
7080 		/*
7081 		 * Do not writeback or swap pages for boosted reclaim. The
7082 		 * intent is to relieve pressure not issue sub-optimal IO
7083 		 * from reclaim context. If no pages are reclaimed, the
7084 		 * reclaim will be aborted.
7085 		 */
7086 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7087 		sc.may_swap = !nr_boost_reclaim;
7088 
7089 		/*
7090 		 * Do some background aging, to give pages a chance to be
7091 		 * referenced before reclaiming. All pages are rotated
7092 		 * regardless of classzone as this is about consistent aging.
7093 		 */
7094 		kswapd_age_node(pgdat, &sc);
7095 
7096 		/*
7097 		 * If we're getting trouble reclaiming, start doing writepage
7098 		 * even in laptop mode.
7099 		 */
7100 		if (sc.priority < DEF_PRIORITY - 2)
7101 			sc.may_writepage = 1;
7102 
7103 		/* Call soft limit reclaim before calling shrink_node. */
7104 		sc.nr_scanned = 0;
7105 		nr_soft_scanned = 0;
7106 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7107 						sc.gfp_mask, &nr_soft_scanned);
7108 		sc.nr_reclaimed += nr_soft_reclaimed;
7109 
7110 		/*
7111 		 * There should be no need to raise the scanning priority if
7112 		 * enough pages are already being scanned that that high
7113 		 * watermark would be met at 100% efficiency.
7114 		 */
7115 		if (kswapd_shrink_node(pgdat, &sc))
7116 			raise_priority = false;
7117 
7118 		/*
7119 		 * If the low watermark is met there is no need for processes
7120 		 * to be throttled on pfmemalloc_wait as they should not be
7121 		 * able to safely make forward progress. Wake them
7122 		 */
7123 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7124 				allow_direct_reclaim(pgdat))
7125 			wake_up_all(&pgdat->pfmemalloc_wait);
7126 
7127 		/* Check if kswapd should be suspending */
7128 		__fs_reclaim_release(_THIS_IP_);
7129 		ret = try_to_freeze();
7130 		__fs_reclaim_acquire(_THIS_IP_);
7131 		if (ret || kthread_should_stop())
7132 			break;
7133 
7134 		/*
7135 		 * Raise priority if scanning rate is too low or there was no
7136 		 * progress in reclaiming pages
7137 		 */
7138 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7139 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7140 
7141 		/*
7142 		 * If reclaim made no progress for a boost, stop reclaim as
7143 		 * IO cannot be queued and it could be an infinite loop in
7144 		 * extreme circumstances.
7145 		 */
7146 		if (nr_boost_reclaim && !nr_reclaimed)
7147 			break;
7148 
7149 		if (raise_priority || !nr_reclaimed)
7150 			sc.priority--;
7151 	} while (sc.priority >= 1);
7152 
7153 	if (!sc.nr_reclaimed)
7154 		pgdat->kswapd_failures++;
7155 
7156 out:
7157 	clear_reclaim_active(pgdat, highest_zoneidx);
7158 
7159 	/* If reclaim was boosted, account for the reclaim done in this pass */
7160 	if (boosted) {
7161 		unsigned long flags;
7162 
7163 		for (i = 0; i <= highest_zoneidx; i++) {
7164 			if (!zone_boosts[i])
7165 				continue;
7166 
7167 			/* Increments are under the zone lock */
7168 			zone = pgdat->node_zones + i;
7169 			spin_lock_irqsave(&zone->lock, flags);
7170 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7171 			spin_unlock_irqrestore(&zone->lock, flags);
7172 		}
7173 
7174 		/*
7175 		 * As there is now likely space, wakeup kcompact to defragment
7176 		 * pageblocks.
7177 		 */
7178 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7179 	}
7180 
7181 	snapshot_refaults(NULL, pgdat);
7182 	__fs_reclaim_release(_THIS_IP_);
7183 	psi_memstall_leave(&pflags);
7184 	set_task_reclaim_state(current, NULL);
7185 
7186 	/*
7187 	 * Return the order kswapd stopped reclaiming at as
7188 	 * prepare_kswapd_sleep() takes it into account. If another caller
7189 	 * entered the allocator slow path while kswapd was awake, order will
7190 	 * remain at the higher level.
7191 	 */
7192 	return sc.order;
7193 }
7194 
7195 /*
7196  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7197  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7198  * not a valid index then either kswapd runs for first time or kswapd couldn't
7199  * sleep after previous reclaim attempt (node is still unbalanced). In that
7200  * case return the zone index of the previous kswapd reclaim cycle.
7201  */
7202 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7203 					   enum zone_type prev_highest_zoneidx)
7204 {
7205 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7206 
7207 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7208 }
7209 
7210 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7211 				unsigned int highest_zoneidx)
7212 {
7213 	long remaining = 0;
7214 	DEFINE_WAIT(wait);
7215 
7216 	if (freezing(current) || kthread_should_stop())
7217 		return;
7218 
7219 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7220 
7221 	/*
7222 	 * Try to sleep for a short interval. Note that kcompactd will only be
7223 	 * woken if it is possible to sleep for a short interval. This is
7224 	 * deliberate on the assumption that if reclaim cannot keep an
7225 	 * eligible zone balanced that it's also unlikely that compaction will
7226 	 * succeed.
7227 	 */
7228 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7229 		/*
7230 		 * Compaction records what page blocks it recently failed to
7231 		 * isolate pages from and skips them in the future scanning.
7232 		 * When kswapd is going to sleep, it is reasonable to assume
7233 		 * that pages and compaction may succeed so reset the cache.
7234 		 */
7235 		reset_isolation_suitable(pgdat);
7236 
7237 		/*
7238 		 * We have freed the memory, now we should compact it to make
7239 		 * allocation of the requested order possible.
7240 		 */
7241 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7242 
7243 		remaining = schedule_timeout(HZ/10);
7244 
7245 		/*
7246 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7247 		 * order. The values will either be from a wakeup request or
7248 		 * the previous request that slept prematurely.
7249 		 */
7250 		if (remaining) {
7251 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7252 					kswapd_highest_zoneidx(pgdat,
7253 							highest_zoneidx));
7254 
7255 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7256 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7257 		}
7258 
7259 		finish_wait(&pgdat->kswapd_wait, &wait);
7260 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7261 	}
7262 
7263 	/*
7264 	 * After a short sleep, check if it was a premature sleep. If not, then
7265 	 * go fully to sleep until explicitly woken up.
7266 	 */
7267 	if (!remaining &&
7268 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7269 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7270 
7271 		/*
7272 		 * vmstat counters are not perfectly accurate and the estimated
7273 		 * value for counters such as NR_FREE_PAGES can deviate from the
7274 		 * true value by nr_online_cpus * threshold. To avoid the zone
7275 		 * watermarks being breached while under pressure, we reduce the
7276 		 * per-cpu vmstat threshold while kswapd is awake and restore
7277 		 * them before going back to sleep.
7278 		 */
7279 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7280 
7281 		if (!kthread_should_stop())
7282 			schedule();
7283 
7284 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7285 	} else {
7286 		if (remaining)
7287 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7288 		else
7289 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7290 	}
7291 	finish_wait(&pgdat->kswapd_wait, &wait);
7292 }
7293 
7294 /*
7295  * The background pageout daemon, started as a kernel thread
7296  * from the init process.
7297  *
7298  * This basically trickles out pages so that we have _some_
7299  * free memory available even if there is no other activity
7300  * that frees anything up. This is needed for things like routing
7301  * etc, where we otherwise might have all activity going on in
7302  * asynchronous contexts that cannot page things out.
7303  *
7304  * If there are applications that are active memory-allocators
7305  * (most normal use), this basically shouldn't matter.
7306  */
7307 static int kswapd(void *p)
7308 {
7309 	unsigned int alloc_order, reclaim_order;
7310 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7311 	pg_data_t *pgdat = (pg_data_t *)p;
7312 	struct task_struct *tsk = current;
7313 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7314 
7315 	if (!cpumask_empty(cpumask))
7316 		set_cpus_allowed_ptr(tsk, cpumask);
7317 
7318 	/*
7319 	 * Tell the memory management that we're a "memory allocator",
7320 	 * and that if we need more memory we should get access to it
7321 	 * regardless (see "__alloc_pages()"). "kswapd" should
7322 	 * never get caught in the normal page freeing logic.
7323 	 *
7324 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7325 	 * you need a small amount of memory in order to be able to
7326 	 * page out something else, and this flag essentially protects
7327 	 * us from recursively trying to free more memory as we're
7328 	 * trying to free the first piece of memory in the first place).
7329 	 */
7330 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7331 	set_freezable();
7332 
7333 	WRITE_ONCE(pgdat->kswapd_order, 0);
7334 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7335 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7336 	for ( ; ; ) {
7337 		bool ret;
7338 
7339 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7340 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7341 							highest_zoneidx);
7342 
7343 kswapd_try_sleep:
7344 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7345 					highest_zoneidx);
7346 
7347 		/* Read the new order and highest_zoneidx */
7348 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7349 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7350 							highest_zoneidx);
7351 		WRITE_ONCE(pgdat->kswapd_order, 0);
7352 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7353 
7354 		ret = try_to_freeze();
7355 		if (kthread_should_stop())
7356 			break;
7357 
7358 		/*
7359 		 * We can speed up thawing tasks if we don't call balance_pgdat
7360 		 * after returning from the refrigerator
7361 		 */
7362 		if (ret)
7363 			continue;
7364 
7365 		/*
7366 		 * Reclaim begins at the requested order but if a high-order
7367 		 * reclaim fails then kswapd falls back to reclaiming for
7368 		 * order-0. If that happens, kswapd will consider sleeping
7369 		 * for the order it finished reclaiming at (reclaim_order)
7370 		 * but kcompactd is woken to compact for the original
7371 		 * request (alloc_order).
7372 		 */
7373 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7374 						alloc_order);
7375 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7376 						highest_zoneidx);
7377 		if (reclaim_order < alloc_order)
7378 			goto kswapd_try_sleep;
7379 	}
7380 
7381 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7382 
7383 	return 0;
7384 }
7385 
7386 /*
7387  * A zone is low on free memory or too fragmented for high-order memory.  If
7388  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7389  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7390  * has failed or is not needed, still wake up kcompactd if only compaction is
7391  * needed.
7392  */
7393 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7394 		   enum zone_type highest_zoneidx)
7395 {
7396 	pg_data_t *pgdat;
7397 	enum zone_type curr_idx;
7398 
7399 	if (!managed_zone(zone))
7400 		return;
7401 
7402 	if (!cpuset_zone_allowed(zone, gfp_flags))
7403 		return;
7404 
7405 	pgdat = zone->zone_pgdat;
7406 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7407 
7408 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7409 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7410 
7411 	if (READ_ONCE(pgdat->kswapd_order) < order)
7412 		WRITE_ONCE(pgdat->kswapd_order, order);
7413 
7414 	if (!waitqueue_active(&pgdat->kswapd_wait))
7415 		return;
7416 
7417 	/* Hopeless node, leave it to direct reclaim if possible */
7418 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7419 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7420 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7421 		/*
7422 		 * There may be plenty of free memory available, but it's too
7423 		 * fragmented for high-order allocations.  Wake up kcompactd
7424 		 * and rely on compaction_suitable() to determine if it's
7425 		 * needed.  If it fails, it will defer subsequent attempts to
7426 		 * ratelimit its work.
7427 		 */
7428 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7429 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7430 		return;
7431 	}
7432 
7433 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7434 				      gfp_flags);
7435 	wake_up_interruptible(&pgdat->kswapd_wait);
7436 }
7437 
7438 #ifdef CONFIG_HIBERNATION
7439 /*
7440  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7441  * freed pages.
7442  *
7443  * Rather than trying to age LRUs the aim is to preserve the overall
7444  * LRU order by reclaiming preferentially
7445  * inactive > active > active referenced > active mapped
7446  */
7447 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7448 {
7449 	struct scan_control sc = {
7450 		.nr_to_reclaim = nr_to_reclaim,
7451 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7452 		.reclaim_idx = MAX_NR_ZONES - 1,
7453 		.priority = DEF_PRIORITY,
7454 		.may_writepage = 1,
7455 		.may_unmap = 1,
7456 		.may_swap = 1,
7457 		.hibernation_mode = 1,
7458 	};
7459 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7460 	unsigned long nr_reclaimed;
7461 	unsigned int noreclaim_flag;
7462 
7463 	fs_reclaim_acquire(sc.gfp_mask);
7464 	noreclaim_flag = memalloc_noreclaim_save();
7465 	set_task_reclaim_state(current, &sc.reclaim_state);
7466 
7467 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7468 
7469 	set_task_reclaim_state(current, NULL);
7470 	memalloc_noreclaim_restore(noreclaim_flag);
7471 	fs_reclaim_release(sc.gfp_mask);
7472 
7473 	return nr_reclaimed;
7474 }
7475 #endif /* CONFIG_HIBERNATION */
7476 
7477 /*
7478  * This kswapd start function will be called by init and node-hot-add.
7479  */
7480 void kswapd_run(int nid)
7481 {
7482 	pg_data_t *pgdat = NODE_DATA(nid);
7483 
7484 	pgdat_kswapd_lock(pgdat);
7485 	if (!pgdat->kswapd) {
7486 		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7487 		if (IS_ERR(pgdat->kswapd)) {
7488 			/* failure at boot is fatal */
7489 			BUG_ON(system_state < SYSTEM_RUNNING);
7490 			pr_err("Failed to start kswapd on node %d\n", nid);
7491 			pgdat->kswapd = NULL;
7492 		}
7493 	}
7494 	pgdat_kswapd_unlock(pgdat);
7495 }
7496 
7497 /*
7498  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7499  * be holding mem_hotplug_begin/done().
7500  */
7501 void kswapd_stop(int nid)
7502 {
7503 	pg_data_t *pgdat = NODE_DATA(nid);
7504 	struct task_struct *kswapd;
7505 
7506 	pgdat_kswapd_lock(pgdat);
7507 	kswapd = pgdat->kswapd;
7508 	if (kswapd) {
7509 		kthread_stop(kswapd);
7510 		pgdat->kswapd = NULL;
7511 	}
7512 	pgdat_kswapd_unlock(pgdat);
7513 }
7514 
7515 static int __init kswapd_init(void)
7516 {
7517 	int nid;
7518 
7519 	swap_setup();
7520 	for_each_node_state(nid, N_MEMORY)
7521  		kswapd_run(nid);
7522 	return 0;
7523 }
7524 
7525 module_init(kswapd_init)
7526 
7527 #ifdef CONFIG_NUMA
7528 /*
7529  * Node reclaim mode
7530  *
7531  * If non-zero call node_reclaim when the number of free pages falls below
7532  * the watermarks.
7533  */
7534 int node_reclaim_mode __read_mostly;
7535 
7536 /*
7537  * Priority for NODE_RECLAIM. This determines the fraction of pages
7538  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7539  * a zone.
7540  */
7541 #define NODE_RECLAIM_PRIORITY 4
7542 
7543 /*
7544  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7545  * occur.
7546  */
7547 int sysctl_min_unmapped_ratio = 1;
7548 
7549 /*
7550  * If the number of slab pages in a zone grows beyond this percentage then
7551  * slab reclaim needs to occur.
7552  */
7553 int sysctl_min_slab_ratio = 5;
7554 
7555 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7556 {
7557 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7558 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7559 		node_page_state(pgdat, NR_ACTIVE_FILE);
7560 
7561 	/*
7562 	 * It's possible for there to be more file mapped pages than
7563 	 * accounted for by the pages on the file LRU lists because
7564 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7565 	 */
7566 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7567 }
7568 
7569 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7570 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7571 {
7572 	unsigned long nr_pagecache_reclaimable;
7573 	unsigned long delta = 0;
7574 
7575 	/*
7576 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7577 	 * potentially reclaimable. Otherwise, we have to worry about
7578 	 * pages like swapcache and node_unmapped_file_pages() provides
7579 	 * a better estimate
7580 	 */
7581 	if (node_reclaim_mode & RECLAIM_UNMAP)
7582 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7583 	else
7584 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7585 
7586 	/* If we can't clean pages, remove dirty pages from consideration */
7587 	if (!(node_reclaim_mode & RECLAIM_WRITE))
7588 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7589 
7590 	/* Watch for any possible underflows due to delta */
7591 	if (unlikely(delta > nr_pagecache_reclaimable))
7592 		delta = nr_pagecache_reclaimable;
7593 
7594 	return nr_pagecache_reclaimable - delta;
7595 }
7596 
7597 /*
7598  * Try to free up some pages from this node through reclaim.
7599  */
7600 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7601 {
7602 	/* Minimum pages needed in order to stay on node */
7603 	const unsigned long nr_pages = 1 << order;
7604 	struct task_struct *p = current;
7605 	unsigned int noreclaim_flag;
7606 	struct scan_control sc = {
7607 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7608 		.gfp_mask = current_gfp_context(gfp_mask),
7609 		.order = order,
7610 		.priority = NODE_RECLAIM_PRIORITY,
7611 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7612 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7613 		.may_swap = 1,
7614 		.reclaim_idx = gfp_zone(gfp_mask),
7615 	};
7616 	unsigned long pflags;
7617 
7618 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7619 					   sc.gfp_mask);
7620 
7621 	cond_resched();
7622 	psi_memstall_enter(&pflags);
7623 	fs_reclaim_acquire(sc.gfp_mask);
7624 	/*
7625 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7626 	 */
7627 	noreclaim_flag = memalloc_noreclaim_save();
7628 	set_task_reclaim_state(p, &sc.reclaim_state);
7629 
7630 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7631 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7632 		/*
7633 		 * Free memory by calling shrink node with increasing
7634 		 * priorities until we have enough memory freed.
7635 		 */
7636 		do {
7637 			shrink_node(pgdat, &sc);
7638 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7639 	}
7640 
7641 	set_task_reclaim_state(p, NULL);
7642 	memalloc_noreclaim_restore(noreclaim_flag);
7643 	fs_reclaim_release(sc.gfp_mask);
7644 	psi_memstall_leave(&pflags);
7645 
7646 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7647 
7648 	return sc.nr_reclaimed >= nr_pages;
7649 }
7650 
7651 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7652 {
7653 	int ret;
7654 
7655 	/*
7656 	 * Node reclaim reclaims unmapped file backed pages and
7657 	 * slab pages if we are over the defined limits.
7658 	 *
7659 	 * A small portion of unmapped file backed pages is needed for
7660 	 * file I/O otherwise pages read by file I/O will be immediately
7661 	 * thrown out if the node is overallocated. So we do not reclaim
7662 	 * if less than a specified percentage of the node is used by
7663 	 * unmapped file backed pages.
7664 	 */
7665 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7666 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7667 	    pgdat->min_slab_pages)
7668 		return NODE_RECLAIM_FULL;
7669 
7670 	/*
7671 	 * Do not scan if the allocation should not be delayed.
7672 	 */
7673 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7674 		return NODE_RECLAIM_NOSCAN;
7675 
7676 	/*
7677 	 * Only run node reclaim on the local node or on nodes that do not
7678 	 * have associated processors. This will favor the local processor
7679 	 * over remote processors and spread off node memory allocations
7680 	 * as wide as possible.
7681 	 */
7682 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7683 		return NODE_RECLAIM_NOSCAN;
7684 
7685 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7686 		return NODE_RECLAIM_NOSCAN;
7687 
7688 	ret = __node_reclaim(pgdat, gfp_mask, order);
7689 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7690 
7691 	if (!ret)
7692 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7693 
7694 	return ret;
7695 }
7696 #endif
7697 
7698 void check_move_unevictable_pages(struct pagevec *pvec)
7699 {
7700 	struct folio_batch fbatch;
7701 	unsigned i;
7702 
7703 	folio_batch_init(&fbatch);
7704 	for (i = 0; i < pvec->nr; i++) {
7705 		struct page *page = pvec->pages[i];
7706 
7707 		if (PageTransTail(page))
7708 			continue;
7709 		folio_batch_add(&fbatch, page_folio(page));
7710 	}
7711 	check_move_unevictable_folios(&fbatch);
7712 }
7713 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
7714 
7715 /**
7716  * check_move_unevictable_folios - Move evictable folios to appropriate zone
7717  * lru list
7718  * @fbatch: Batch of lru folios to check.
7719  *
7720  * Checks folios for evictability, if an evictable folio is in the unevictable
7721  * lru list, moves it to the appropriate evictable lru list. This function
7722  * should be only used for lru folios.
7723  */
7724 void check_move_unevictable_folios(struct folio_batch *fbatch)
7725 {
7726 	struct lruvec *lruvec = NULL;
7727 	int pgscanned = 0;
7728 	int pgrescued = 0;
7729 	int i;
7730 
7731 	for (i = 0; i < fbatch->nr; i++) {
7732 		struct folio *folio = fbatch->folios[i];
7733 		int nr_pages = folio_nr_pages(folio);
7734 
7735 		pgscanned += nr_pages;
7736 
7737 		/* block memcg migration while the folio moves between lrus */
7738 		if (!folio_test_clear_lru(folio))
7739 			continue;
7740 
7741 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
7742 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7743 			lruvec_del_folio(lruvec, folio);
7744 			folio_clear_unevictable(folio);
7745 			lruvec_add_folio(lruvec, folio);
7746 			pgrescued += nr_pages;
7747 		}
7748 		folio_set_lru(folio);
7749 	}
7750 
7751 	if (lruvec) {
7752 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7753 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7754 		unlock_page_lruvec_irq(lruvec);
7755 	} else if (pgscanned) {
7756 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7757 	}
7758 }
7759 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
7760