1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/oom.h> 47 #include <linux/prefetch.h> 48 #include <linux/printk.h> 49 #include <linux/dax.h> 50 51 #include <asm/tlbflush.h> 52 #include <asm/div64.h> 53 54 #include <linux/swapops.h> 55 #include <linux/balloon_compaction.h> 56 57 #include "internal.h" 58 59 #define CREATE_TRACE_POINTS 60 #include <trace/events/vmscan.h> 61 62 struct scan_control { 63 /* How many pages shrink_list() should reclaim */ 64 unsigned long nr_to_reclaim; 65 66 /* This context's GFP mask */ 67 gfp_t gfp_mask; 68 69 /* Allocation order */ 70 int order; 71 72 /* 73 * Nodemask of nodes allowed by the caller. If NULL, all nodes 74 * are scanned. 75 */ 76 nodemask_t *nodemask; 77 78 /* 79 * The memory cgroup that hit its limit and as a result is the 80 * primary target of this reclaim invocation. 81 */ 82 struct mem_cgroup *target_mem_cgroup; 83 84 /* Scan (total_size >> priority) pages at once */ 85 int priority; 86 87 unsigned int may_writepage:1; 88 89 /* Can mapped pages be reclaimed? */ 90 unsigned int may_unmap:1; 91 92 /* Can pages be swapped as part of reclaim? */ 93 unsigned int may_swap:1; 94 95 /* Can cgroups be reclaimed below their normal consumption range? */ 96 unsigned int may_thrash:1; 97 98 unsigned int hibernation_mode:1; 99 100 /* One of the zones is ready for compaction */ 101 unsigned int compaction_ready:1; 102 103 /* Incremented by the number of inactive pages that were scanned */ 104 unsigned long nr_scanned; 105 106 /* Number of pages freed so far during a call to shrink_zones() */ 107 unsigned long nr_reclaimed; 108 }; 109 110 #ifdef ARCH_HAS_PREFETCH 111 #define prefetch_prev_lru_page(_page, _base, _field) \ 112 do { \ 113 if ((_page)->lru.prev != _base) { \ 114 struct page *prev; \ 115 \ 116 prev = lru_to_page(&(_page->lru)); \ 117 prefetch(&prev->_field); \ 118 } \ 119 } while (0) 120 #else 121 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 122 #endif 123 124 #ifdef ARCH_HAS_PREFETCHW 125 #define prefetchw_prev_lru_page(_page, _base, _field) \ 126 do { \ 127 if ((_page)->lru.prev != _base) { \ 128 struct page *prev; \ 129 \ 130 prev = lru_to_page(&(_page->lru)); \ 131 prefetchw(&prev->_field); \ 132 } \ 133 } while (0) 134 #else 135 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 136 #endif 137 138 /* 139 * From 0 .. 100. Higher means more swappy. 140 */ 141 int vm_swappiness = 60; 142 /* 143 * The total number of pages which are beyond the high watermark within all 144 * zones. 145 */ 146 unsigned long vm_total_pages; 147 148 static LIST_HEAD(shrinker_list); 149 static DECLARE_RWSEM(shrinker_rwsem); 150 151 #ifdef CONFIG_MEMCG 152 static bool global_reclaim(struct scan_control *sc) 153 { 154 return !sc->target_mem_cgroup; 155 } 156 157 /** 158 * sane_reclaim - is the usual dirty throttling mechanism operational? 159 * @sc: scan_control in question 160 * 161 * The normal page dirty throttling mechanism in balance_dirty_pages() is 162 * completely broken with the legacy memcg and direct stalling in 163 * shrink_page_list() is used for throttling instead, which lacks all the 164 * niceties such as fairness, adaptive pausing, bandwidth proportional 165 * allocation and configurability. 166 * 167 * This function tests whether the vmscan currently in progress can assume 168 * that the normal dirty throttling mechanism is operational. 169 */ 170 static bool sane_reclaim(struct scan_control *sc) 171 { 172 struct mem_cgroup *memcg = sc->target_mem_cgroup; 173 174 if (!memcg) 175 return true; 176 #ifdef CONFIG_CGROUP_WRITEBACK 177 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 178 return true; 179 #endif 180 return false; 181 } 182 #else 183 static bool global_reclaim(struct scan_control *sc) 184 { 185 return true; 186 } 187 188 static bool sane_reclaim(struct scan_control *sc) 189 { 190 return true; 191 } 192 #endif 193 194 static unsigned long zone_reclaimable_pages(struct zone *zone) 195 { 196 unsigned long nr; 197 198 nr = zone_page_state_snapshot(zone, NR_ACTIVE_FILE) + 199 zone_page_state_snapshot(zone, NR_INACTIVE_FILE) + 200 zone_page_state_snapshot(zone, NR_ISOLATED_FILE); 201 202 if (get_nr_swap_pages() > 0) 203 nr += zone_page_state_snapshot(zone, NR_ACTIVE_ANON) + 204 zone_page_state_snapshot(zone, NR_INACTIVE_ANON) + 205 zone_page_state_snapshot(zone, NR_ISOLATED_ANON); 206 207 return nr; 208 } 209 210 bool zone_reclaimable(struct zone *zone) 211 { 212 return zone_page_state_snapshot(zone, NR_PAGES_SCANNED) < 213 zone_reclaimable_pages(zone) * 6; 214 } 215 216 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru) 217 { 218 if (!mem_cgroup_disabled()) 219 return mem_cgroup_get_lru_size(lruvec, lru); 220 221 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); 222 } 223 224 /* 225 * Add a shrinker callback to be called from the vm. 226 */ 227 int register_shrinker(struct shrinker *shrinker) 228 { 229 size_t size = sizeof(*shrinker->nr_deferred); 230 231 if (shrinker->flags & SHRINKER_NUMA_AWARE) 232 size *= nr_node_ids; 233 234 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 235 if (!shrinker->nr_deferred) 236 return -ENOMEM; 237 238 down_write(&shrinker_rwsem); 239 list_add_tail(&shrinker->list, &shrinker_list); 240 up_write(&shrinker_rwsem); 241 return 0; 242 } 243 EXPORT_SYMBOL(register_shrinker); 244 245 /* 246 * Remove one 247 */ 248 void unregister_shrinker(struct shrinker *shrinker) 249 { 250 down_write(&shrinker_rwsem); 251 list_del(&shrinker->list); 252 up_write(&shrinker_rwsem); 253 kfree(shrinker->nr_deferred); 254 } 255 EXPORT_SYMBOL(unregister_shrinker); 256 257 #define SHRINK_BATCH 128 258 259 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 260 struct shrinker *shrinker, 261 unsigned long nr_scanned, 262 unsigned long nr_eligible) 263 { 264 unsigned long freed = 0; 265 unsigned long long delta; 266 long total_scan; 267 long freeable; 268 long nr; 269 long new_nr; 270 int nid = shrinkctl->nid; 271 long batch_size = shrinker->batch ? shrinker->batch 272 : SHRINK_BATCH; 273 274 freeable = shrinker->count_objects(shrinker, shrinkctl); 275 if (freeable == 0) 276 return 0; 277 278 /* 279 * copy the current shrinker scan count into a local variable 280 * and zero it so that other concurrent shrinker invocations 281 * don't also do this scanning work. 282 */ 283 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 284 285 total_scan = nr; 286 delta = (4 * nr_scanned) / shrinker->seeks; 287 delta *= freeable; 288 do_div(delta, nr_eligible + 1); 289 total_scan += delta; 290 if (total_scan < 0) { 291 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 292 shrinker->scan_objects, total_scan); 293 total_scan = freeable; 294 } 295 296 /* 297 * We need to avoid excessive windup on filesystem shrinkers 298 * due to large numbers of GFP_NOFS allocations causing the 299 * shrinkers to return -1 all the time. This results in a large 300 * nr being built up so when a shrink that can do some work 301 * comes along it empties the entire cache due to nr >>> 302 * freeable. This is bad for sustaining a working set in 303 * memory. 304 * 305 * Hence only allow the shrinker to scan the entire cache when 306 * a large delta change is calculated directly. 307 */ 308 if (delta < freeable / 4) 309 total_scan = min(total_scan, freeable / 2); 310 311 /* 312 * Avoid risking looping forever due to too large nr value: 313 * never try to free more than twice the estimate number of 314 * freeable entries. 315 */ 316 if (total_scan > freeable * 2) 317 total_scan = freeable * 2; 318 319 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 320 nr_scanned, nr_eligible, 321 freeable, delta, total_scan); 322 323 /* 324 * Normally, we should not scan less than batch_size objects in one 325 * pass to avoid too frequent shrinker calls, but if the slab has less 326 * than batch_size objects in total and we are really tight on memory, 327 * we will try to reclaim all available objects, otherwise we can end 328 * up failing allocations although there are plenty of reclaimable 329 * objects spread over several slabs with usage less than the 330 * batch_size. 331 * 332 * We detect the "tight on memory" situations by looking at the total 333 * number of objects we want to scan (total_scan). If it is greater 334 * than the total number of objects on slab (freeable), we must be 335 * scanning at high prio and therefore should try to reclaim as much as 336 * possible. 337 */ 338 while (total_scan >= batch_size || 339 total_scan >= freeable) { 340 unsigned long ret; 341 unsigned long nr_to_scan = min(batch_size, total_scan); 342 343 shrinkctl->nr_to_scan = nr_to_scan; 344 ret = shrinker->scan_objects(shrinker, shrinkctl); 345 if (ret == SHRINK_STOP) 346 break; 347 freed += ret; 348 349 count_vm_events(SLABS_SCANNED, nr_to_scan); 350 total_scan -= nr_to_scan; 351 352 cond_resched(); 353 } 354 355 /* 356 * move the unused scan count back into the shrinker in a 357 * manner that handles concurrent updates. If we exhausted the 358 * scan, there is no need to do an update. 359 */ 360 if (total_scan > 0) 361 new_nr = atomic_long_add_return(total_scan, 362 &shrinker->nr_deferred[nid]); 363 else 364 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 365 366 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 367 return freed; 368 } 369 370 /** 371 * shrink_slab - shrink slab caches 372 * @gfp_mask: allocation context 373 * @nid: node whose slab caches to target 374 * @memcg: memory cgroup whose slab caches to target 375 * @nr_scanned: pressure numerator 376 * @nr_eligible: pressure denominator 377 * 378 * Call the shrink functions to age shrinkable caches. 379 * 380 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 381 * unaware shrinkers will receive a node id of 0 instead. 382 * 383 * @memcg specifies the memory cgroup to target. If it is not NULL, 384 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan 385 * objects from the memory cgroup specified. Otherwise, only unaware 386 * shrinkers are called. 387 * 388 * @nr_scanned and @nr_eligible form a ratio that indicate how much of 389 * the available objects should be scanned. Page reclaim for example 390 * passes the number of pages scanned and the number of pages on the 391 * LRU lists that it considered on @nid, plus a bias in @nr_scanned 392 * when it encountered mapped pages. The ratio is further biased by 393 * the ->seeks setting of the shrink function, which indicates the 394 * cost to recreate an object relative to that of an LRU page. 395 * 396 * Returns the number of reclaimed slab objects. 397 */ 398 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 399 struct mem_cgroup *memcg, 400 unsigned long nr_scanned, 401 unsigned long nr_eligible) 402 { 403 struct shrinker *shrinker; 404 unsigned long freed = 0; 405 406 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))) 407 return 0; 408 409 if (nr_scanned == 0) 410 nr_scanned = SWAP_CLUSTER_MAX; 411 412 if (!down_read_trylock(&shrinker_rwsem)) { 413 /* 414 * If we would return 0, our callers would understand that we 415 * have nothing else to shrink and give up trying. By returning 416 * 1 we keep it going and assume we'll be able to shrink next 417 * time. 418 */ 419 freed = 1; 420 goto out; 421 } 422 423 list_for_each_entry(shrinker, &shrinker_list, list) { 424 struct shrink_control sc = { 425 .gfp_mask = gfp_mask, 426 .nid = nid, 427 .memcg = memcg, 428 }; 429 430 /* 431 * If kernel memory accounting is disabled, we ignore 432 * SHRINKER_MEMCG_AWARE flag and call all shrinkers 433 * passing NULL for memcg. 434 */ 435 if (memcg_kmem_enabled() && 436 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE)) 437 continue; 438 439 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 440 sc.nid = 0; 441 442 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible); 443 } 444 445 up_read(&shrinker_rwsem); 446 out: 447 cond_resched(); 448 return freed; 449 } 450 451 void drop_slab_node(int nid) 452 { 453 unsigned long freed; 454 455 do { 456 struct mem_cgroup *memcg = NULL; 457 458 freed = 0; 459 do { 460 freed += shrink_slab(GFP_KERNEL, nid, memcg, 461 1000, 1000); 462 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 463 } while (freed > 10); 464 } 465 466 void drop_slab(void) 467 { 468 int nid; 469 470 for_each_online_node(nid) 471 drop_slab_node(nid); 472 } 473 474 static inline int is_page_cache_freeable(struct page *page) 475 { 476 /* 477 * A freeable page cache page is referenced only by the caller 478 * that isolated the page, the page cache radix tree and 479 * optional buffer heads at page->private. 480 */ 481 return page_count(page) - page_has_private(page) == 2; 482 } 483 484 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 485 { 486 if (current->flags & PF_SWAPWRITE) 487 return 1; 488 if (!inode_write_congested(inode)) 489 return 1; 490 if (inode_to_bdi(inode) == current->backing_dev_info) 491 return 1; 492 return 0; 493 } 494 495 /* 496 * We detected a synchronous write error writing a page out. Probably 497 * -ENOSPC. We need to propagate that into the address_space for a subsequent 498 * fsync(), msync() or close(). 499 * 500 * The tricky part is that after writepage we cannot touch the mapping: nothing 501 * prevents it from being freed up. But we have a ref on the page and once 502 * that page is locked, the mapping is pinned. 503 * 504 * We're allowed to run sleeping lock_page() here because we know the caller has 505 * __GFP_FS. 506 */ 507 static void handle_write_error(struct address_space *mapping, 508 struct page *page, int error) 509 { 510 lock_page(page); 511 if (page_mapping(page) == mapping) 512 mapping_set_error(mapping, error); 513 unlock_page(page); 514 } 515 516 /* possible outcome of pageout() */ 517 typedef enum { 518 /* failed to write page out, page is locked */ 519 PAGE_KEEP, 520 /* move page to the active list, page is locked */ 521 PAGE_ACTIVATE, 522 /* page has been sent to the disk successfully, page is unlocked */ 523 PAGE_SUCCESS, 524 /* page is clean and locked */ 525 PAGE_CLEAN, 526 } pageout_t; 527 528 /* 529 * pageout is called by shrink_page_list() for each dirty page. 530 * Calls ->writepage(). 531 */ 532 static pageout_t pageout(struct page *page, struct address_space *mapping, 533 struct scan_control *sc) 534 { 535 /* 536 * If the page is dirty, only perform writeback if that write 537 * will be non-blocking. To prevent this allocation from being 538 * stalled by pagecache activity. But note that there may be 539 * stalls if we need to run get_block(). We could test 540 * PagePrivate for that. 541 * 542 * If this process is currently in __generic_file_write_iter() against 543 * this page's queue, we can perform writeback even if that 544 * will block. 545 * 546 * If the page is swapcache, write it back even if that would 547 * block, for some throttling. This happens by accident, because 548 * swap_backing_dev_info is bust: it doesn't reflect the 549 * congestion state of the swapdevs. Easy to fix, if needed. 550 */ 551 if (!is_page_cache_freeable(page)) 552 return PAGE_KEEP; 553 if (!mapping) { 554 /* 555 * Some data journaling orphaned pages can have 556 * page->mapping == NULL while being dirty with clean buffers. 557 */ 558 if (page_has_private(page)) { 559 if (try_to_free_buffers(page)) { 560 ClearPageDirty(page); 561 pr_info("%s: orphaned page\n", __func__); 562 return PAGE_CLEAN; 563 } 564 } 565 return PAGE_KEEP; 566 } 567 if (mapping->a_ops->writepage == NULL) 568 return PAGE_ACTIVATE; 569 if (!may_write_to_inode(mapping->host, sc)) 570 return PAGE_KEEP; 571 572 if (clear_page_dirty_for_io(page)) { 573 int res; 574 struct writeback_control wbc = { 575 .sync_mode = WB_SYNC_NONE, 576 .nr_to_write = SWAP_CLUSTER_MAX, 577 .range_start = 0, 578 .range_end = LLONG_MAX, 579 .for_reclaim = 1, 580 }; 581 582 SetPageReclaim(page); 583 res = mapping->a_ops->writepage(page, &wbc); 584 if (res < 0) 585 handle_write_error(mapping, page, res); 586 if (res == AOP_WRITEPAGE_ACTIVATE) { 587 ClearPageReclaim(page); 588 return PAGE_ACTIVATE; 589 } 590 591 if (!PageWriteback(page)) { 592 /* synchronous write or broken a_ops? */ 593 ClearPageReclaim(page); 594 } 595 trace_mm_vmscan_writepage(page); 596 inc_zone_page_state(page, NR_VMSCAN_WRITE); 597 return PAGE_SUCCESS; 598 } 599 600 return PAGE_CLEAN; 601 } 602 603 /* 604 * Same as remove_mapping, but if the page is removed from the mapping, it 605 * gets returned with a refcount of 0. 606 */ 607 static int __remove_mapping(struct address_space *mapping, struct page *page, 608 bool reclaimed) 609 { 610 unsigned long flags; 611 612 BUG_ON(!PageLocked(page)); 613 BUG_ON(mapping != page_mapping(page)); 614 615 spin_lock_irqsave(&mapping->tree_lock, flags); 616 /* 617 * The non racy check for a busy page. 618 * 619 * Must be careful with the order of the tests. When someone has 620 * a ref to the page, it may be possible that they dirty it then 621 * drop the reference. So if PageDirty is tested before page_count 622 * here, then the following race may occur: 623 * 624 * get_user_pages(&page); 625 * [user mapping goes away] 626 * write_to(page); 627 * !PageDirty(page) [good] 628 * SetPageDirty(page); 629 * put_page(page); 630 * !page_count(page) [good, discard it] 631 * 632 * [oops, our write_to data is lost] 633 * 634 * Reversing the order of the tests ensures such a situation cannot 635 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 636 * load is not satisfied before that of page->_refcount. 637 * 638 * Note that if SetPageDirty is always performed via set_page_dirty, 639 * and thus under tree_lock, then this ordering is not required. 640 */ 641 if (!page_ref_freeze(page, 2)) 642 goto cannot_free; 643 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 644 if (unlikely(PageDirty(page))) { 645 page_ref_unfreeze(page, 2); 646 goto cannot_free; 647 } 648 649 if (PageSwapCache(page)) { 650 swp_entry_t swap = { .val = page_private(page) }; 651 mem_cgroup_swapout(page, swap); 652 __delete_from_swap_cache(page); 653 spin_unlock_irqrestore(&mapping->tree_lock, flags); 654 swapcache_free(swap); 655 } else { 656 void (*freepage)(struct page *); 657 void *shadow = NULL; 658 659 freepage = mapping->a_ops->freepage; 660 /* 661 * Remember a shadow entry for reclaimed file cache in 662 * order to detect refaults, thus thrashing, later on. 663 * 664 * But don't store shadows in an address space that is 665 * already exiting. This is not just an optizimation, 666 * inode reclaim needs to empty out the radix tree or 667 * the nodes are lost. Don't plant shadows behind its 668 * back. 669 * 670 * We also don't store shadows for DAX mappings because the 671 * only page cache pages found in these are zero pages 672 * covering holes, and because we don't want to mix DAX 673 * exceptional entries and shadow exceptional entries in the 674 * same page_tree. 675 */ 676 if (reclaimed && page_is_file_cache(page) && 677 !mapping_exiting(mapping) && !dax_mapping(mapping)) 678 shadow = workingset_eviction(mapping, page); 679 __delete_from_page_cache(page, shadow); 680 spin_unlock_irqrestore(&mapping->tree_lock, flags); 681 682 if (freepage != NULL) 683 freepage(page); 684 } 685 686 return 1; 687 688 cannot_free: 689 spin_unlock_irqrestore(&mapping->tree_lock, flags); 690 return 0; 691 } 692 693 /* 694 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 695 * someone else has a ref on the page, abort and return 0. If it was 696 * successfully detached, return 1. Assumes the caller has a single ref on 697 * this page. 698 */ 699 int remove_mapping(struct address_space *mapping, struct page *page) 700 { 701 if (__remove_mapping(mapping, page, false)) { 702 /* 703 * Unfreezing the refcount with 1 rather than 2 effectively 704 * drops the pagecache ref for us without requiring another 705 * atomic operation. 706 */ 707 page_ref_unfreeze(page, 1); 708 return 1; 709 } 710 return 0; 711 } 712 713 /** 714 * putback_lru_page - put previously isolated page onto appropriate LRU list 715 * @page: page to be put back to appropriate lru list 716 * 717 * Add previously isolated @page to appropriate LRU list. 718 * Page may still be unevictable for other reasons. 719 * 720 * lru_lock must not be held, interrupts must be enabled. 721 */ 722 void putback_lru_page(struct page *page) 723 { 724 bool is_unevictable; 725 int was_unevictable = PageUnevictable(page); 726 727 VM_BUG_ON_PAGE(PageLRU(page), page); 728 729 redo: 730 ClearPageUnevictable(page); 731 732 if (page_evictable(page)) { 733 /* 734 * For evictable pages, we can use the cache. 735 * In event of a race, worst case is we end up with an 736 * unevictable page on [in]active list. 737 * We know how to handle that. 738 */ 739 is_unevictable = false; 740 lru_cache_add(page); 741 } else { 742 /* 743 * Put unevictable pages directly on zone's unevictable 744 * list. 745 */ 746 is_unevictable = true; 747 add_page_to_unevictable_list(page); 748 /* 749 * When racing with an mlock or AS_UNEVICTABLE clearing 750 * (page is unlocked) make sure that if the other thread 751 * does not observe our setting of PG_lru and fails 752 * isolation/check_move_unevictable_pages, 753 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 754 * the page back to the evictable list. 755 * 756 * The other side is TestClearPageMlocked() or shmem_lock(). 757 */ 758 smp_mb(); 759 } 760 761 /* 762 * page's status can change while we move it among lru. If an evictable 763 * page is on unevictable list, it never be freed. To avoid that, 764 * check after we added it to the list, again. 765 */ 766 if (is_unevictable && page_evictable(page)) { 767 if (!isolate_lru_page(page)) { 768 put_page(page); 769 goto redo; 770 } 771 /* This means someone else dropped this page from LRU 772 * So, it will be freed or putback to LRU again. There is 773 * nothing to do here. 774 */ 775 } 776 777 if (was_unevictable && !is_unevictable) 778 count_vm_event(UNEVICTABLE_PGRESCUED); 779 else if (!was_unevictable && is_unevictable) 780 count_vm_event(UNEVICTABLE_PGCULLED); 781 782 put_page(page); /* drop ref from isolate */ 783 } 784 785 enum page_references { 786 PAGEREF_RECLAIM, 787 PAGEREF_RECLAIM_CLEAN, 788 PAGEREF_KEEP, 789 PAGEREF_ACTIVATE, 790 }; 791 792 static enum page_references page_check_references(struct page *page, 793 struct scan_control *sc) 794 { 795 int referenced_ptes, referenced_page; 796 unsigned long vm_flags; 797 798 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 799 &vm_flags); 800 referenced_page = TestClearPageReferenced(page); 801 802 /* 803 * Mlock lost the isolation race with us. Let try_to_unmap() 804 * move the page to the unevictable list. 805 */ 806 if (vm_flags & VM_LOCKED) 807 return PAGEREF_RECLAIM; 808 809 if (referenced_ptes) { 810 if (PageSwapBacked(page)) 811 return PAGEREF_ACTIVATE; 812 /* 813 * All mapped pages start out with page table 814 * references from the instantiating fault, so we need 815 * to look twice if a mapped file page is used more 816 * than once. 817 * 818 * Mark it and spare it for another trip around the 819 * inactive list. Another page table reference will 820 * lead to its activation. 821 * 822 * Note: the mark is set for activated pages as well 823 * so that recently deactivated but used pages are 824 * quickly recovered. 825 */ 826 SetPageReferenced(page); 827 828 if (referenced_page || referenced_ptes > 1) 829 return PAGEREF_ACTIVATE; 830 831 /* 832 * Activate file-backed executable pages after first usage. 833 */ 834 if (vm_flags & VM_EXEC) 835 return PAGEREF_ACTIVATE; 836 837 return PAGEREF_KEEP; 838 } 839 840 /* Reclaim if clean, defer dirty pages to writeback */ 841 if (referenced_page && !PageSwapBacked(page)) 842 return PAGEREF_RECLAIM_CLEAN; 843 844 return PAGEREF_RECLAIM; 845 } 846 847 /* Check if a page is dirty or under writeback */ 848 static void page_check_dirty_writeback(struct page *page, 849 bool *dirty, bool *writeback) 850 { 851 struct address_space *mapping; 852 853 /* 854 * Anonymous pages are not handled by flushers and must be written 855 * from reclaim context. Do not stall reclaim based on them 856 */ 857 if (!page_is_file_cache(page)) { 858 *dirty = false; 859 *writeback = false; 860 return; 861 } 862 863 /* By default assume that the page flags are accurate */ 864 *dirty = PageDirty(page); 865 *writeback = PageWriteback(page); 866 867 /* Verify dirty/writeback state if the filesystem supports it */ 868 if (!page_has_private(page)) 869 return; 870 871 mapping = page_mapping(page); 872 if (mapping && mapping->a_ops->is_dirty_writeback) 873 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 874 } 875 876 /* 877 * shrink_page_list() returns the number of reclaimed pages 878 */ 879 static unsigned long shrink_page_list(struct list_head *page_list, 880 struct zone *zone, 881 struct scan_control *sc, 882 enum ttu_flags ttu_flags, 883 unsigned long *ret_nr_dirty, 884 unsigned long *ret_nr_unqueued_dirty, 885 unsigned long *ret_nr_congested, 886 unsigned long *ret_nr_writeback, 887 unsigned long *ret_nr_immediate, 888 bool force_reclaim) 889 { 890 LIST_HEAD(ret_pages); 891 LIST_HEAD(free_pages); 892 int pgactivate = 0; 893 unsigned long nr_unqueued_dirty = 0; 894 unsigned long nr_dirty = 0; 895 unsigned long nr_congested = 0; 896 unsigned long nr_reclaimed = 0; 897 unsigned long nr_writeback = 0; 898 unsigned long nr_immediate = 0; 899 900 cond_resched(); 901 902 while (!list_empty(page_list)) { 903 struct address_space *mapping; 904 struct page *page; 905 int may_enter_fs; 906 enum page_references references = PAGEREF_RECLAIM_CLEAN; 907 bool dirty, writeback; 908 bool lazyfree = false; 909 int ret = SWAP_SUCCESS; 910 911 cond_resched(); 912 913 page = lru_to_page(page_list); 914 list_del(&page->lru); 915 916 if (!trylock_page(page)) 917 goto keep; 918 919 VM_BUG_ON_PAGE(PageActive(page), page); 920 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 921 922 sc->nr_scanned++; 923 924 if (unlikely(!page_evictable(page))) 925 goto cull_mlocked; 926 927 if (!sc->may_unmap && page_mapped(page)) 928 goto keep_locked; 929 930 /* Double the slab pressure for mapped and swapcache pages */ 931 if (page_mapped(page) || PageSwapCache(page)) 932 sc->nr_scanned++; 933 934 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 935 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 936 937 /* 938 * The number of dirty pages determines if a zone is marked 939 * reclaim_congested which affects wait_iff_congested. kswapd 940 * will stall and start writing pages if the tail of the LRU 941 * is all dirty unqueued pages. 942 */ 943 page_check_dirty_writeback(page, &dirty, &writeback); 944 if (dirty || writeback) 945 nr_dirty++; 946 947 if (dirty && !writeback) 948 nr_unqueued_dirty++; 949 950 /* 951 * Treat this page as congested if the underlying BDI is or if 952 * pages are cycling through the LRU so quickly that the 953 * pages marked for immediate reclaim are making it to the 954 * end of the LRU a second time. 955 */ 956 mapping = page_mapping(page); 957 if (((dirty || writeback) && mapping && 958 inode_write_congested(mapping->host)) || 959 (writeback && PageReclaim(page))) 960 nr_congested++; 961 962 /* 963 * If a page at the tail of the LRU is under writeback, there 964 * are three cases to consider. 965 * 966 * 1) If reclaim is encountering an excessive number of pages 967 * under writeback and this page is both under writeback and 968 * PageReclaim then it indicates that pages are being queued 969 * for IO but are being recycled through the LRU before the 970 * IO can complete. Waiting on the page itself risks an 971 * indefinite stall if it is impossible to writeback the 972 * page due to IO error or disconnected storage so instead 973 * note that the LRU is being scanned too quickly and the 974 * caller can stall after page list has been processed. 975 * 976 * 2) Global or new memcg reclaim encounters a page that is 977 * not marked for immediate reclaim, or the caller does not 978 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 979 * not to fs). In this case mark the page for immediate 980 * reclaim and continue scanning. 981 * 982 * Require may_enter_fs because we would wait on fs, which 983 * may not have submitted IO yet. And the loop driver might 984 * enter reclaim, and deadlock if it waits on a page for 985 * which it is needed to do the write (loop masks off 986 * __GFP_IO|__GFP_FS for this reason); but more thought 987 * would probably show more reasons. 988 * 989 * 3) Legacy memcg encounters a page that is already marked 990 * PageReclaim. memcg does not have any dirty pages 991 * throttling so we could easily OOM just because too many 992 * pages are in writeback and there is nothing else to 993 * reclaim. Wait for the writeback to complete. 994 */ 995 if (PageWriteback(page)) { 996 /* Case 1 above */ 997 if (current_is_kswapd() && 998 PageReclaim(page) && 999 test_bit(ZONE_WRITEBACK, &zone->flags)) { 1000 nr_immediate++; 1001 goto keep_locked; 1002 1003 /* Case 2 above */ 1004 } else if (sane_reclaim(sc) || 1005 !PageReclaim(page) || !may_enter_fs) { 1006 /* 1007 * This is slightly racy - end_page_writeback() 1008 * might have just cleared PageReclaim, then 1009 * setting PageReclaim here end up interpreted 1010 * as PageReadahead - but that does not matter 1011 * enough to care. What we do want is for this 1012 * page to have PageReclaim set next time memcg 1013 * reclaim reaches the tests above, so it will 1014 * then wait_on_page_writeback() to avoid OOM; 1015 * and it's also appropriate in global reclaim. 1016 */ 1017 SetPageReclaim(page); 1018 nr_writeback++; 1019 goto keep_locked; 1020 1021 /* Case 3 above */ 1022 } else { 1023 unlock_page(page); 1024 wait_on_page_writeback(page); 1025 /* then go back and try same page again */ 1026 list_add_tail(&page->lru, page_list); 1027 continue; 1028 } 1029 } 1030 1031 if (!force_reclaim) 1032 references = page_check_references(page, sc); 1033 1034 switch (references) { 1035 case PAGEREF_ACTIVATE: 1036 goto activate_locked; 1037 case PAGEREF_KEEP: 1038 goto keep_locked; 1039 case PAGEREF_RECLAIM: 1040 case PAGEREF_RECLAIM_CLEAN: 1041 ; /* try to reclaim the page below */ 1042 } 1043 1044 /* 1045 * Anonymous process memory has backing store? 1046 * Try to allocate it some swap space here. 1047 */ 1048 if (PageAnon(page) && !PageSwapCache(page)) { 1049 if (!(sc->gfp_mask & __GFP_IO)) 1050 goto keep_locked; 1051 if (!add_to_swap(page, page_list)) 1052 goto activate_locked; 1053 lazyfree = true; 1054 may_enter_fs = 1; 1055 1056 /* Adding to swap updated mapping */ 1057 mapping = page_mapping(page); 1058 } 1059 1060 /* 1061 * The page is mapped into the page tables of one or more 1062 * processes. Try to unmap it here. 1063 */ 1064 if (page_mapped(page) && mapping) { 1065 switch (ret = try_to_unmap(page, lazyfree ? 1066 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) : 1067 (ttu_flags | TTU_BATCH_FLUSH))) { 1068 case SWAP_FAIL: 1069 goto activate_locked; 1070 case SWAP_AGAIN: 1071 goto keep_locked; 1072 case SWAP_MLOCK: 1073 goto cull_mlocked; 1074 case SWAP_LZFREE: 1075 goto lazyfree; 1076 case SWAP_SUCCESS: 1077 ; /* try to free the page below */ 1078 } 1079 } 1080 1081 if (PageDirty(page)) { 1082 /* 1083 * Only kswapd can writeback filesystem pages to 1084 * avoid risk of stack overflow but only writeback 1085 * if many dirty pages have been encountered. 1086 */ 1087 if (page_is_file_cache(page) && 1088 (!current_is_kswapd() || 1089 !test_bit(ZONE_DIRTY, &zone->flags))) { 1090 /* 1091 * Immediately reclaim when written back. 1092 * Similar in principal to deactivate_page() 1093 * except we already have the page isolated 1094 * and know it's dirty 1095 */ 1096 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); 1097 SetPageReclaim(page); 1098 1099 goto keep_locked; 1100 } 1101 1102 if (references == PAGEREF_RECLAIM_CLEAN) 1103 goto keep_locked; 1104 if (!may_enter_fs) 1105 goto keep_locked; 1106 if (!sc->may_writepage) 1107 goto keep_locked; 1108 1109 /* 1110 * Page is dirty. Flush the TLB if a writable entry 1111 * potentially exists to avoid CPU writes after IO 1112 * starts and then write it out here. 1113 */ 1114 try_to_unmap_flush_dirty(); 1115 switch (pageout(page, mapping, sc)) { 1116 case PAGE_KEEP: 1117 goto keep_locked; 1118 case PAGE_ACTIVATE: 1119 goto activate_locked; 1120 case PAGE_SUCCESS: 1121 if (PageWriteback(page)) 1122 goto keep; 1123 if (PageDirty(page)) 1124 goto keep; 1125 1126 /* 1127 * A synchronous write - probably a ramdisk. Go 1128 * ahead and try to reclaim the page. 1129 */ 1130 if (!trylock_page(page)) 1131 goto keep; 1132 if (PageDirty(page) || PageWriteback(page)) 1133 goto keep_locked; 1134 mapping = page_mapping(page); 1135 case PAGE_CLEAN: 1136 ; /* try to free the page below */ 1137 } 1138 } 1139 1140 /* 1141 * If the page has buffers, try to free the buffer mappings 1142 * associated with this page. If we succeed we try to free 1143 * the page as well. 1144 * 1145 * We do this even if the page is PageDirty(). 1146 * try_to_release_page() does not perform I/O, but it is 1147 * possible for a page to have PageDirty set, but it is actually 1148 * clean (all its buffers are clean). This happens if the 1149 * buffers were written out directly, with submit_bh(). ext3 1150 * will do this, as well as the blockdev mapping. 1151 * try_to_release_page() will discover that cleanness and will 1152 * drop the buffers and mark the page clean - it can be freed. 1153 * 1154 * Rarely, pages can have buffers and no ->mapping. These are 1155 * the pages which were not successfully invalidated in 1156 * truncate_complete_page(). We try to drop those buffers here 1157 * and if that worked, and the page is no longer mapped into 1158 * process address space (page_count == 1) it can be freed. 1159 * Otherwise, leave the page on the LRU so it is swappable. 1160 */ 1161 if (page_has_private(page)) { 1162 if (!try_to_release_page(page, sc->gfp_mask)) 1163 goto activate_locked; 1164 if (!mapping && page_count(page) == 1) { 1165 unlock_page(page); 1166 if (put_page_testzero(page)) 1167 goto free_it; 1168 else { 1169 /* 1170 * rare race with speculative reference. 1171 * the speculative reference will free 1172 * this page shortly, so we may 1173 * increment nr_reclaimed here (and 1174 * leave it off the LRU). 1175 */ 1176 nr_reclaimed++; 1177 continue; 1178 } 1179 } 1180 } 1181 1182 lazyfree: 1183 if (!mapping || !__remove_mapping(mapping, page, true)) 1184 goto keep_locked; 1185 1186 /* 1187 * At this point, we have no other references and there is 1188 * no way to pick any more up (removed from LRU, removed 1189 * from pagecache). Can use non-atomic bitops now (and 1190 * we obviously don't have to worry about waking up a process 1191 * waiting on the page lock, because there are no references. 1192 */ 1193 __ClearPageLocked(page); 1194 free_it: 1195 if (ret == SWAP_LZFREE) 1196 count_vm_event(PGLAZYFREED); 1197 1198 nr_reclaimed++; 1199 1200 /* 1201 * Is there need to periodically free_page_list? It would 1202 * appear not as the counts should be low 1203 */ 1204 list_add(&page->lru, &free_pages); 1205 continue; 1206 1207 cull_mlocked: 1208 if (PageSwapCache(page)) 1209 try_to_free_swap(page); 1210 unlock_page(page); 1211 list_add(&page->lru, &ret_pages); 1212 continue; 1213 1214 activate_locked: 1215 /* Not a candidate for swapping, so reclaim swap space. */ 1216 if (PageSwapCache(page) && mem_cgroup_swap_full(page)) 1217 try_to_free_swap(page); 1218 VM_BUG_ON_PAGE(PageActive(page), page); 1219 SetPageActive(page); 1220 pgactivate++; 1221 keep_locked: 1222 unlock_page(page); 1223 keep: 1224 list_add(&page->lru, &ret_pages); 1225 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1226 } 1227 1228 mem_cgroup_uncharge_list(&free_pages); 1229 try_to_unmap_flush(); 1230 free_hot_cold_page_list(&free_pages, true); 1231 1232 list_splice(&ret_pages, page_list); 1233 count_vm_events(PGACTIVATE, pgactivate); 1234 1235 *ret_nr_dirty += nr_dirty; 1236 *ret_nr_congested += nr_congested; 1237 *ret_nr_unqueued_dirty += nr_unqueued_dirty; 1238 *ret_nr_writeback += nr_writeback; 1239 *ret_nr_immediate += nr_immediate; 1240 return nr_reclaimed; 1241 } 1242 1243 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1244 struct list_head *page_list) 1245 { 1246 struct scan_control sc = { 1247 .gfp_mask = GFP_KERNEL, 1248 .priority = DEF_PRIORITY, 1249 .may_unmap = 1, 1250 }; 1251 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; 1252 struct page *page, *next; 1253 LIST_HEAD(clean_pages); 1254 1255 list_for_each_entry_safe(page, next, page_list, lru) { 1256 if (page_is_file_cache(page) && !PageDirty(page) && 1257 !isolated_balloon_page(page)) { 1258 ClearPageActive(page); 1259 list_move(&page->lru, &clean_pages); 1260 } 1261 } 1262 1263 ret = shrink_page_list(&clean_pages, zone, &sc, 1264 TTU_UNMAP|TTU_IGNORE_ACCESS, 1265 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); 1266 list_splice(&clean_pages, page_list); 1267 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); 1268 return ret; 1269 } 1270 1271 /* 1272 * Attempt to remove the specified page from its LRU. Only take this page 1273 * if it is of the appropriate PageActive status. Pages which are being 1274 * freed elsewhere are also ignored. 1275 * 1276 * page: page to consider 1277 * mode: one of the LRU isolation modes defined above 1278 * 1279 * returns 0 on success, -ve errno on failure. 1280 */ 1281 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1282 { 1283 int ret = -EINVAL; 1284 1285 /* Only take pages on the LRU. */ 1286 if (!PageLRU(page)) 1287 return ret; 1288 1289 /* Compaction should not handle unevictable pages but CMA can do so */ 1290 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1291 return ret; 1292 1293 ret = -EBUSY; 1294 1295 /* 1296 * To minimise LRU disruption, the caller can indicate that it only 1297 * wants to isolate pages it will be able to operate on without 1298 * blocking - clean pages for the most part. 1299 * 1300 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1301 * is used by reclaim when it is cannot write to backing storage 1302 * 1303 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1304 * that it is possible to migrate without blocking 1305 */ 1306 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1307 /* All the caller can do on PageWriteback is block */ 1308 if (PageWriteback(page)) 1309 return ret; 1310 1311 if (PageDirty(page)) { 1312 struct address_space *mapping; 1313 1314 /* ISOLATE_CLEAN means only clean pages */ 1315 if (mode & ISOLATE_CLEAN) 1316 return ret; 1317 1318 /* 1319 * Only pages without mappings or that have a 1320 * ->migratepage callback are possible to migrate 1321 * without blocking 1322 */ 1323 mapping = page_mapping(page); 1324 if (mapping && !mapping->a_ops->migratepage) 1325 return ret; 1326 } 1327 } 1328 1329 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1330 return ret; 1331 1332 if (likely(get_page_unless_zero(page))) { 1333 /* 1334 * Be careful not to clear PageLRU until after we're 1335 * sure the page is not being freed elsewhere -- the 1336 * page release code relies on it. 1337 */ 1338 ClearPageLRU(page); 1339 ret = 0; 1340 } 1341 1342 return ret; 1343 } 1344 1345 /* 1346 * zone->lru_lock is heavily contended. Some of the functions that 1347 * shrink the lists perform better by taking out a batch of pages 1348 * and working on them outside the LRU lock. 1349 * 1350 * For pagecache intensive workloads, this function is the hottest 1351 * spot in the kernel (apart from copy_*_user functions). 1352 * 1353 * Appropriate locks must be held before calling this function. 1354 * 1355 * @nr_to_scan: The number of pages to look through on the list. 1356 * @lruvec: The LRU vector to pull pages from. 1357 * @dst: The temp list to put pages on to. 1358 * @nr_scanned: The number of pages that were scanned. 1359 * @sc: The scan_control struct for this reclaim session 1360 * @mode: One of the LRU isolation modes 1361 * @lru: LRU list id for isolating 1362 * 1363 * returns how many pages were moved onto *@dst. 1364 */ 1365 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1366 struct lruvec *lruvec, struct list_head *dst, 1367 unsigned long *nr_scanned, struct scan_control *sc, 1368 isolate_mode_t mode, enum lru_list lru) 1369 { 1370 struct list_head *src = &lruvec->lists[lru]; 1371 unsigned long nr_taken = 0; 1372 unsigned long scan; 1373 1374 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan && 1375 !list_empty(src); scan++) { 1376 struct page *page; 1377 1378 page = lru_to_page(src); 1379 prefetchw_prev_lru_page(page, src, flags); 1380 1381 VM_BUG_ON_PAGE(!PageLRU(page), page); 1382 1383 switch (__isolate_lru_page(page, mode)) { 1384 case 0: 1385 nr_taken += hpage_nr_pages(page); 1386 list_move(&page->lru, dst); 1387 break; 1388 1389 case -EBUSY: 1390 /* else it is being freed elsewhere */ 1391 list_move(&page->lru, src); 1392 continue; 1393 1394 default: 1395 BUG(); 1396 } 1397 } 1398 1399 *nr_scanned = scan; 1400 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, 1401 nr_taken, mode, is_file_lru(lru)); 1402 return nr_taken; 1403 } 1404 1405 /** 1406 * isolate_lru_page - tries to isolate a page from its LRU list 1407 * @page: page to isolate from its LRU list 1408 * 1409 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1410 * vmstat statistic corresponding to whatever LRU list the page was on. 1411 * 1412 * Returns 0 if the page was removed from an LRU list. 1413 * Returns -EBUSY if the page was not on an LRU list. 1414 * 1415 * The returned page will have PageLRU() cleared. If it was found on 1416 * the active list, it will have PageActive set. If it was found on 1417 * the unevictable list, it will have the PageUnevictable bit set. That flag 1418 * may need to be cleared by the caller before letting the page go. 1419 * 1420 * The vmstat statistic corresponding to the list on which the page was 1421 * found will be decremented. 1422 * 1423 * Restrictions: 1424 * (1) Must be called with an elevated refcount on the page. This is a 1425 * fundamentnal difference from isolate_lru_pages (which is called 1426 * without a stable reference). 1427 * (2) the lru_lock must not be held. 1428 * (3) interrupts must be enabled. 1429 */ 1430 int isolate_lru_page(struct page *page) 1431 { 1432 int ret = -EBUSY; 1433 1434 VM_BUG_ON_PAGE(!page_count(page), page); 1435 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1436 1437 if (PageLRU(page)) { 1438 struct zone *zone = page_zone(page); 1439 struct lruvec *lruvec; 1440 1441 spin_lock_irq(&zone->lru_lock); 1442 lruvec = mem_cgroup_page_lruvec(page, zone); 1443 if (PageLRU(page)) { 1444 int lru = page_lru(page); 1445 get_page(page); 1446 ClearPageLRU(page); 1447 del_page_from_lru_list(page, lruvec, lru); 1448 ret = 0; 1449 } 1450 spin_unlock_irq(&zone->lru_lock); 1451 } 1452 return ret; 1453 } 1454 1455 /* 1456 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1457 * then get resheduled. When there are massive number of tasks doing page 1458 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1459 * the LRU list will go small and be scanned faster than necessary, leading to 1460 * unnecessary swapping, thrashing and OOM. 1461 */ 1462 static int too_many_isolated(struct zone *zone, int file, 1463 struct scan_control *sc) 1464 { 1465 unsigned long inactive, isolated; 1466 1467 if (current_is_kswapd()) 1468 return 0; 1469 1470 if (!sane_reclaim(sc)) 1471 return 0; 1472 1473 if (file) { 1474 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1475 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1476 } else { 1477 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1478 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1479 } 1480 1481 /* 1482 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1483 * won't get blocked by normal direct-reclaimers, forming a circular 1484 * deadlock. 1485 */ 1486 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1487 inactive >>= 3; 1488 1489 return isolated > inactive; 1490 } 1491 1492 static noinline_for_stack void 1493 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1494 { 1495 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1496 struct zone *zone = lruvec_zone(lruvec); 1497 LIST_HEAD(pages_to_free); 1498 1499 /* 1500 * Put back any unfreeable pages. 1501 */ 1502 while (!list_empty(page_list)) { 1503 struct page *page = lru_to_page(page_list); 1504 int lru; 1505 1506 VM_BUG_ON_PAGE(PageLRU(page), page); 1507 list_del(&page->lru); 1508 if (unlikely(!page_evictable(page))) { 1509 spin_unlock_irq(&zone->lru_lock); 1510 putback_lru_page(page); 1511 spin_lock_irq(&zone->lru_lock); 1512 continue; 1513 } 1514 1515 lruvec = mem_cgroup_page_lruvec(page, zone); 1516 1517 SetPageLRU(page); 1518 lru = page_lru(page); 1519 add_page_to_lru_list(page, lruvec, lru); 1520 1521 if (is_active_lru(lru)) { 1522 int file = is_file_lru(lru); 1523 int numpages = hpage_nr_pages(page); 1524 reclaim_stat->recent_rotated[file] += numpages; 1525 } 1526 if (put_page_testzero(page)) { 1527 __ClearPageLRU(page); 1528 __ClearPageActive(page); 1529 del_page_from_lru_list(page, lruvec, lru); 1530 1531 if (unlikely(PageCompound(page))) { 1532 spin_unlock_irq(&zone->lru_lock); 1533 mem_cgroup_uncharge(page); 1534 (*get_compound_page_dtor(page))(page); 1535 spin_lock_irq(&zone->lru_lock); 1536 } else 1537 list_add(&page->lru, &pages_to_free); 1538 } 1539 } 1540 1541 /* 1542 * To save our caller's stack, now use input list for pages to free. 1543 */ 1544 list_splice(&pages_to_free, page_list); 1545 } 1546 1547 /* 1548 * If a kernel thread (such as nfsd for loop-back mounts) services 1549 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1550 * In that case we should only throttle if the backing device it is 1551 * writing to is congested. In other cases it is safe to throttle. 1552 */ 1553 static int current_may_throttle(void) 1554 { 1555 return !(current->flags & PF_LESS_THROTTLE) || 1556 current->backing_dev_info == NULL || 1557 bdi_write_congested(current->backing_dev_info); 1558 } 1559 1560 /* 1561 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1562 * of reclaimed pages 1563 */ 1564 static noinline_for_stack unsigned long 1565 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1566 struct scan_control *sc, enum lru_list lru) 1567 { 1568 LIST_HEAD(page_list); 1569 unsigned long nr_scanned; 1570 unsigned long nr_reclaimed = 0; 1571 unsigned long nr_taken; 1572 unsigned long nr_dirty = 0; 1573 unsigned long nr_congested = 0; 1574 unsigned long nr_unqueued_dirty = 0; 1575 unsigned long nr_writeback = 0; 1576 unsigned long nr_immediate = 0; 1577 isolate_mode_t isolate_mode = 0; 1578 int file = is_file_lru(lru); 1579 struct zone *zone = lruvec_zone(lruvec); 1580 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1581 1582 while (unlikely(too_many_isolated(zone, file, sc))) { 1583 congestion_wait(BLK_RW_ASYNC, HZ/10); 1584 1585 /* We are about to die and free our memory. Return now. */ 1586 if (fatal_signal_pending(current)) 1587 return SWAP_CLUSTER_MAX; 1588 } 1589 1590 lru_add_drain(); 1591 1592 if (!sc->may_unmap) 1593 isolate_mode |= ISOLATE_UNMAPPED; 1594 if (!sc->may_writepage) 1595 isolate_mode |= ISOLATE_CLEAN; 1596 1597 spin_lock_irq(&zone->lru_lock); 1598 1599 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1600 &nr_scanned, sc, isolate_mode, lru); 1601 1602 update_lru_size(lruvec, lru, -nr_taken); 1603 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1604 reclaim_stat->recent_scanned[file] += nr_taken; 1605 1606 if (global_reclaim(sc)) { 1607 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned); 1608 if (current_is_kswapd()) 1609 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); 1610 else 1611 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); 1612 } 1613 spin_unlock_irq(&zone->lru_lock); 1614 1615 if (nr_taken == 0) 1616 return 0; 1617 1618 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, 1619 &nr_dirty, &nr_unqueued_dirty, &nr_congested, 1620 &nr_writeback, &nr_immediate, 1621 false); 1622 1623 spin_lock_irq(&zone->lru_lock); 1624 1625 if (global_reclaim(sc)) { 1626 if (current_is_kswapd()) 1627 __count_zone_vm_events(PGSTEAL_KSWAPD, zone, 1628 nr_reclaimed); 1629 else 1630 __count_zone_vm_events(PGSTEAL_DIRECT, zone, 1631 nr_reclaimed); 1632 } 1633 1634 putback_inactive_pages(lruvec, &page_list); 1635 1636 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1637 1638 spin_unlock_irq(&zone->lru_lock); 1639 1640 mem_cgroup_uncharge_list(&page_list); 1641 free_hot_cold_page_list(&page_list, true); 1642 1643 /* 1644 * If reclaim is isolating dirty pages under writeback, it implies 1645 * that the long-lived page allocation rate is exceeding the page 1646 * laundering rate. Either the global limits are not being effective 1647 * at throttling processes due to the page distribution throughout 1648 * zones or there is heavy usage of a slow backing device. The 1649 * only option is to throttle from reclaim context which is not ideal 1650 * as there is no guarantee the dirtying process is throttled in the 1651 * same way balance_dirty_pages() manages. 1652 * 1653 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1654 * of pages under pages flagged for immediate reclaim and stall if any 1655 * are encountered in the nr_immediate check below. 1656 */ 1657 if (nr_writeback && nr_writeback == nr_taken) 1658 set_bit(ZONE_WRITEBACK, &zone->flags); 1659 1660 /* 1661 * Legacy memcg will stall in page writeback so avoid forcibly 1662 * stalling here. 1663 */ 1664 if (sane_reclaim(sc)) { 1665 /* 1666 * Tag a zone as congested if all the dirty pages scanned were 1667 * backed by a congested BDI and wait_iff_congested will stall. 1668 */ 1669 if (nr_dirty && nr_dirty == nr_congested) 1670 set_bit(ZONE_CONGESTED, &zone->flags); 1671 1672 /* 1673 * If dirty pages are scanned that are not queued for IO, it 1674 * implies that flushers are not keeping up. In this case, flag 1675 * the zone ZONE_DIRTY and kswapd will start writing pages from 1676 * reclaim context. 1677 */ 1678 if (nr_unqueued_dirty == nr_taken) 1679 set_bit(ZONE_DIRTY, &zone->flags); 1680 1681 /* 1682 * If kswapd scans pages marked marked for immediate 1683 * reclaim and under writeback (nr_immediate), it implies 1684 * that pages are cycling through the LRU faster than 1685 * they are written so also forcibly stall. 1686 */ 1687 if (nr_immediate && current_may_throttle()) 1688 congestion_wait(BLK_RW_ASYNC, HZ/10); 1689 } 1690 1691 /* 1692 * Stall direct reclaim for IO completions if underlying BDIs or zone 1693 * is congested. Allow kswapd to continue until it starts encountering 1694 * unqueued dirty pages or cycling through the LRU too quickly. 1695 */ 1696 if (!sc->hibernation_mode && !current_is_kswapd() && 1697 current_may_throttle()) 1698 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); 1699 1700 trace_mm_vmscan_lru_shrink_inactive(zone, nr_scanned, nr_reclaimed, 1701 sc->priority, file); 1702 return nr_reclaimed; 1703 } 1704 1705 /* 1706 * This moves pages from the active list to the inactive list. 1707 * 1708 * We move them the other way if the page is referenced by one or more 1709 * processes, from rmap. 1710 * 1711 * If the pages are mostly unmapped, the processing is fast and it is 1712 * appropriate to hold zone->lru_lock across the whole operation. But if 1713 * the pages are mapped, the processing is slow (page_referenced()) so we 1714 * should drop zone->lru_lock around each page. It's impossible to balance 1715 * this, so instead we remove the pages from the LRU while processing them. 1716 * It is safe to rely on PG_active against the non-LRU pages in here because 1717 * nobody will play with that bit on a non-LRU page. 1718 * 1719 * The downside is that we have to touch page->_refcount against each page. 1720 * But we had to alter page->flags anyway. 1721 */ 1722 1723 static void move_active_pages_to_lru(struct lruvec *lruvec, 1724 struct list_head *list, 1725 struct list_head *pages_to_free, 1726 enum lru_list lru) 1727 { 1728 struct zone *zone = lruvec_zone(lruvec); 1729 unsigned long pgmoved = 0; 1730 struct page *page; 1731 int nr_pages; 1732 1733 while (!list_empty(list)) { 1734 page = lru_to_page(list); 1735 lruvec = mem_cgroup_page_lruvec(page, zone); 1736 1737 VM_BUG_ON_PAGE(PageLRU(page), page); 1738 SetPageLRU(page); 1739 1740 nr_pages = hpage_nr_pages(page); 1741 update_lru_size(lruvec, lru, nr_pages); 1742 list_move(&page->lru, &lruvec->lists[lru]); 1743 pgmoved += nr_pages; 1744 1745 if (put_page_testzero(page)) { 1746 __ClearPageLRU(page); 1747 __ClearPageActive(page); 1748 del_page_from_lru_list(page, lruvec, lru); 1749 1750 if (unlikely(PageCompound(page))) { 1751 spin_unlock_irq(&zone->lru_lock); 1752 mem_cgroup_uncharge(page); 1753 (*get_compound_page_dtor(page))(page); 1754 spin_lock_irq(&zone->lru_lock); 1755 } else 1756 list_add(&page->lru, pages_to_free); 1757 } 1758 } 1759 1760 if (!is_active_lru(lru)) 1761 __count_vm_events(PGDEACTIVATE, pgmoved); 1762 } 1763 1764 static void shrink_active_list(unsigned long nr_to_scan, 1765 struct lruvec *lruvec, 1766 struct scan_control *sc, 1767 enum lru_list lru) 1768 { 1769 unsigned long nr_taken; 1770 unsigned long nr_scanned; 1771 unsigned long vm_flags; 1772 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1773 LIST_HEAD(l_active); 1774 LIST_HEAD(l_inactive); 1775 struct page *page; 1776 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1777 unsigned long nr_rotated = 0; 1778 isolate_mode_t isolate_mode = 0; 1779 int file = is_file_lru(lru); 1780 struct zone *zone = lruvec_zone(lruvec); 1781 1782 lru_add_drain(); 1783 1784 if (!sc->may_unmap) 1785 isolate_mode |= ISOLATE_UNMAPPED; 1786 if (!sc->may_writepage) 1787 isolate_mode |= ISOLATE_CLEAN; 1788 1789 spin_lock_irq(&zone->lru_lock); 1790 1791 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1792 &nr_scanned, sc, isolate_mode, lru); 1793 1794 update_lru_size(lruvec, lru, -nr_taken); 1795 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1796 reclaim_stat->recent_scanned[file] += nr_taken; 1797 1798 if (global_reclaim(sc)) 1799 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned); 1800 __count_zone_vm_events(PGREFILL, zone, nr_scanned); 1801 1802 spin_unlock_irq(&zone->lru_lock); 1803 1804 while (!list_empty(&l_hold)) { 1805 cond_resched(); 1806 page = lru_to_page(&l_hold); 1807 list_del(&page->lru); 1808 1809 if (unlikely(!page_evictable(page))) { 1810 putback_lru_page(page); 1811 continue; 1812 } 1813 1814 if (unlikely(buffer_heads_over_limit)) { 1815 if (page_has_private(page) && trylock_page(page)) { 1816 if (page_has_private(page)) 1817 try_to_release_page(page, 0); 1818 unlock_page(page); 1819 } 1820 } 1821 1822 if (page_referenced(page, 0, sc->target_mem_cgroup, 1823 &vm_flags)) { 1824 nr_rotated += hpage_nr_pages(page); 1825 /* 1826 * Identify referenced, file-backed active pages and 1827 * give them one more trip around the active list. So 1828 * that executable code get better chances to stay in 1829 * memory under moderate memory pressure. Anon pages 1830 * are not likely to be evicted by use-once streaming 1831 * IO, plus JVM can create lots of anon VM_EXEC pages, 1832 * so we ignore them here. 1833 */ 1834 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1835 list_add(&page->lru, &l_active); 1836 continue; 1837 } 1838 } 1839 1840 ClearPageActive(page); /* we are de-activating */ 1841 list_add(&page->lru, &l_inactive); 1842 } 1843 1844 /* 1845 * Move pages back to the lru list. 1846 */ 1847 spin_lock_irq(&zone->lru_lock); 1848 /* 1849 * Count referenced pages from currently used mappings as rotated, 1850 * even though only some of them are actually re-activated. This 1851 * helps balance scan pressure between file and anonymous pages in 1852 * get_scan_count. 1853 */ 1854 reclaim_stat->recent_rotated[file] += nr_rotated; 1855 1856 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1857 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1858 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1859 spin_unlock_irq(&zone->lru_lock); 1860 1861 mem_cgroup_uncharge_list(&l_hold); 1862 free_hot_cold_page_list(&l_hold, true); 1863 } 1864 1865 #ifdef CONFIG_SWAP 1866 static bool inactive_anon_is_low_global(struct zone *zone) 1867 { 1868 unsigned long active, inactive; 1869 1870 active = zone_page_state(zone, NR_ACTIVE_ANON); 1871 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1872 1873 return inactive * zone->inactive_ratio < active; 1874 } 1875 1876 /** 1877 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1878 * @lruvec: LRU vector to check 1879 * 1880 * Returns true if the zone does not have enough inactive anon pages, 1881 * meaning some active anon pages need to be deactivated. 1882 */ 1883 static bool inactive_anon_is_low(struct lruvec *lruvec) 1884 { 1885 /* 1886 * If we don't have swap space, anonymous page deactivation 1887 * is pointless. 1888 */ 1889 if (!total_swap_pages) 1890 return false; 1891 1892 if (!mem_cgroup_disabled()) 1893 return mem_cgroup_inactive_anon_is_low(lruvec); 1894 1895 return inactive_anon_is_low_global(lruvec_zone(lruvec)); 1896 } 1897 #else 1898 static inline bool inactive_anon_is_low(struct lruvec *lruvec) 1899 { 1900 return false; 1901 } 1902 #endif 1903 1904 /** 1905 * inactive_file_is_low - check if file pages need to be deactivated 1906 * @lruvec: LRU vector to check 1907 * 1908 * When the system is doing streaming IO, memory pressure here 1909 * ensures that active file pages get deactivated, until more 1910 * than half of the file pages are on the inactive list. 1911 * 1912 * Once we get to that situation, protect the system's working 1913 * set from being evicted by disabling active file page aging. 1914 * 1915 * This uses a different ratio than the anonymous pages, because 1916 * the page cache uses a use-once replacement algorithm. 1917 */ 1918 static bool inactive_file_is_low(struct lruvec *lruvec) 1919 { 1920 unsigned long inactive; 1921 unsigned long active; 1922 1923 inactive = lruvec_lru_size(lruvec, LRU_INACTIVE_FILE); 1924 active = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE); 1925 1926 return active > inactive; 1927 } 1928 1929 static bool inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) 1930 { 1931 if (is_file_lru(lru)) 1932 return inactive_file_is_low(lruvec); 1933 else 1934 return inactive_anon_is_low(lruvec); 1935 } 1936 1937 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1938 struct lruvec *lruvec, struct scan_control *sc) 1939 { 1940 if (is_active_lru(lru)) { 1941 if (inactive_list_is_low(lruvec, lru)) 1942 shrink_active_list(nr_to_scan, lruvec, sc, lru); 1943 return 0; 1944 } 1945 1946 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 1947 } 1948 1949 enum scan_balance { 1950 SCAN_EQUAL, 1951 SCAN_FRACT, 1952 SCAN_ANON, 1953 SCAN_FILE, 1954 }; 1955 1956 /* 1957 * Determine how aggressively the anon and file LRU lists should be 1958 * scanned. The relative value of each set of LRU lists is determined 1959 * by looking at the fraction of the pages scanned we did rotate back 1960 * onto the active list instead of evict. 1961 * 1962 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 1963 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 1964 */ 1965 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 1966 struct scan_control *sc, unsigned long *nr, 1967 unsigned long *lru_pages) 1968 { 1969 int swappiness = mem_cgroup_swappiness(memcg); 1970 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1971 u64 fraction[2]; 1972 u64 denominator = 0; /* gcc */ 1973 struct zone *zone = lruvec_zone(lruvec); 1974 unsigned long anon_prio, file_prio; 1975 enum scan_balance scan_balance; 1976 unsigned long anon, file; 1977 bool force_scan = false; 1978 unsigned long ap, fp; 1979 enum lru_list lru; 1980 bool some_scanned; 1981 int pass; 1982 1983 /* 1984 * If the zone or memcg is small, nr[l] can be 0. This 1985 * results in no scanning on this priority and a potential 1986 * priority drop. Global direct reclaim can go to the next 1987 * zone and tends to have no problems. Global kswapd is for 1988 * zone balancing and it needs to scan a minimum amount. When 1989 * reclaiming for a memcg, a priority drop can cause high 1990 * latencies, so it's better to scan a minimum amount there as 1991 * well. 1992 */ 1993 if (current_is_kswapd()) { 1994 if (!zone_reclaimable(zone)) 1995 force_scan = true; 1996 if (!mem_cgroup_online(memcg)) 1997 force_scan = true; 1998 } 1999 if (!global_reclaim(sc)) 2000 force_scan = true; 2001 2002 /* If we have no swap space, do not bother scanning anon pages. */ 2003 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2004 scan_balance = SCAN_FILE; 2005 goto out; 2006 } 2007 2008 /* 2009 * Global reclaim will swap to prevent OOM even with no 2010 * swappiness, but memcg users want to use this knob to 2011 * disable swapping for individual groups completely when 2012 * using the memory controller's swap limit feature would be 2013 * too expensive. 2014 */ 2015 if (!global_reclaim(sc) && !swappiness) { 2016 scan_balance = SCAN_FILE; 2017 goto out; 2018 } 2019 2020 /* 2021 * Do not apply any pressure balancing cleverness when the 2022 * system is close to OOM, scan both anon and file equally 2023 * (unless the swappiness setting disagrees with swapping). 2024 */ 2025 if (!sc->priority && swappiness) { 2026 scan_balance = SCAN_EQUAL; 2027 goto out; 2028 } 2029 2030 /* 2031 * Prevent the reclaimer from falling into the cache trap: as 2032 * cache pages start out inactive, every cache fault will tip 2033 * the scan balance towards the file LRU. And as the file LRU 2034 * shrinks, so does the window for rotation from references. 2035 * This means we have a runaway feedback loop where a tiny 2036 * thrashing file LRU becomes infinitely more attractive than 2037 * anon pages. Try to detect this based on file LRU size. 2038 */ 2039 if (global_reclaim(sc)) { 2040 unsigned long zonefile; 2041 unsigned long zonefree; 2042 2043 zonefree = zone_page_state(zone, NR_FREE_PAGES); 2044 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) + 2045 zone_page_state(zone, NR_INACTIVE_FILE); 2046 2047 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) { 2048 scan_balance = SCAN_ANON; 2049 goto out; 2050 } 2051 } 2052 2053 /* 2054 * If there is enough inactive page cache, i.e. if the size of the 2055 * inactive list is greater than that of the active list *and* the 2056 * inactive list actually has some pages to scan on this priority, we 2057 * do not reclaim anything from the anonymous working set right now. 2058 * Without the second condition we could end up never scanning an 2059 * lruvec even if it has plenty of old anonymous pages unless the 2060 * system is under heavy pressure. 2061 */ 2062 if (!inactive_file_is_low(lruvec) && 2063 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) { 2064 scan_balance = SCAN_FILE; 2065 goto out; 2066 } 2067 2068 scan_balance = SCAN_FRACT; 2069 2070 /* 2071 * With swappiness at 100, anonymous and file have the same priority. 2072 * This scanning priority is essentially the inverse of IO cost. 2073 */ 2074 anon_prio = swappiness; 2075 file_prio = 200 - anon_prio; 2076 2077 /* 2078 * OK, so we have swap space and a fair amount of page cache 2079 * pages. We use the recently rotated / recently scanned 2080 * ratios to determine how valuable each cache is. 2081 * 2082 * Because workloads change over time (and to avoid overflow) 2083 * we keep these statistics as a floating average, which ends 2084 * up weighing recent references more than old ones. 2085 * 2086 * anon in [0], file in [1] 2087 */ 2088 2089 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) + 2090 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON); 2091 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) + 2092 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE); 2093 2094 spin_lock_irq(&zone->lru_lock); 2095 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2096 reclaim_stat->recent_scanned[0] /= 2; 2097 reclaim_stat->recent_rotated[0] /= 2; 2098 } 2099 2100 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2101 reclaim_stat->recent_scanned[1] /= 2; 2102 reclaim_stat->recent_rotated[1] /= 2; 2103 } 2104 2105 /* 2106 * The amount of pressure on anon vs file pages is inversely 2107 * proportional to the fraction of recently scanned pages on 2108 * each list that were recently referenced and in active use. 2109 */ 2110 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2111 ap /= reclaim_stat->recent_rotated[0] + 1; 2112 2113 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2114 fp /= reclaim_stat->recent_rotated[1] + 1; 2115 spin_unlock_irq(&zone->lru_lock); 2116 2117 fraction[0] = ap; 2118 fraction[1] = fp; 2119 denominator = ap + fp + 1; 2120 out: 2121 some_scanned = false; 2122 /* Only use force_scan on second pass. */ 2123 for (pass = 0; !some_scanned && pass < 2; pass++) { 2124 *lru_pages = 0; 2125 for_each_evictable_lru(lru) { 2126 int file = is_file_lru(lru); 2127 unsigned long size; 2128 unsigned long scan; 2129 2130 size = lruvec_lru_size(lruvec, lru); 2131 scan = size >> sc->priority; 2132 2133 if (!scan && pass && force_scan) 2134 scan = min(size, SWAP_CLUSTER_MAX); 2135 2136 switch (scan_balance) { 2137 case SCAN_EQUAL: 2138 /* Scan lists relative to size */ 2139 break; 2140 case SCAN_FRACT: 2141 /* 2142 * Scan types proportional to swappiness and 2143 * their relative recent reclaim efficiency. 2144 */ 2145 scan = div64_u64(scan * fraction[file], 2146 denominator); 2147 break; 2148 case SCAN_FILE: 2149 case SCAN_ANON: 2150 /* Scan one type exclusively */ 2151 if ((scan_balance == SCAN_FILE) != file) { 2152 size = 0; 2153 scan = 0; 2154 } 2155 break; 2156 default: 2157 /* Look ma, no brain */ 2158 BUG(); 2159 } 2160 2161 *lru_pages += size; 2162 nr[lru] = scan; 2163 2164 /* 2165 * Skip the second pass and don't force_scan, 2166 * if we found something to scan. 2167 */ 2168 some_scanned |= !!scan; 2169 } 2170 } 2171 } 2172 2173 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 2174 static void init_tlb_ubc(void) 2175 { 2176 /* 2177 * This deliberately does not clear the cpumask as it's expensive 2178 * and unnecessary. If there happens to be data in there then the 2179 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and 2180 * then will be cleared. 2181 */ 2182 current->tlb_ubc.flush_required = false; 2183 } 2184 #else 2185 static inline void init_tlb_ubc(void) 2186 { 2187 } 2188 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 2189 2190 /* 2191 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 2192 */ 2193 static void shrink_zone_memcg(struct zone *zone, struct mem_cgroup *memcg, 2194 struct scan_control *sc, unsigned long *lru_pages) 2195 { 2196 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2197 unsigned long nr[NR_LRU_LISTS]; 2198 unsigned long targets[NR_LRU_LISTS]; 2199 unsigned long nr_to_scan; 2200 enum lru_list lru; 2201 unsigned long nr_reclaimed = 0; 2202 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2203 struct blk_plug plug; 2204 bool scan_adjusted; 2205 2206 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2207 2208 /* Record the original scan target for proportional adjustments later */ 2209 memcpy(targets, nr, sizeof(nr)); 2210 2211 /* 2212 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2213 * event that can occur when there is little memory pressure e.g. 2214 * multiple streaming readers/writers. Hence, we do not abort scanning 2215 * when the requested number of pages are reclaimed when scanning at 2216 * DEF_PRIORITY on the assumption that the fact we are direct 2217 * reclaiming implies that kswapd is not keeping up and it is best to 2218 * do a batch of work at once. For memcg reclaim one check is made to 2219 * abort proportional reclaim if either the file or anon lru has already 2220 * dropped to zero at the first pass. 2221 */ 2222 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2223 sc->priority == DEF_PRIORITY); 2224 2225 init_tlb_ubc(); 2226 2227 blk_start_plug(&plug); 2228 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2229 nr[LRU_INACTIVE_FILE]) { 2230 unsigned long nr_anon, nr_file, percentage; 2231 unsigned long nr_scanned; 2232 2233 for_each_evictable_lru(lru) { 2234 if (nr[lru]) { 2235 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2236 nr[lru] -= nr_to_scan; 2237 2238 nr_reclaimed += shrink_list(lru, nr_to_scan, 2239 lruvec, sc); 2240 } 2241 } 2242 2243 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2244 continue; 2245 2246 /* 2247 * For kswapd and memcg, reclaim at least the number of pages 2248 * requested. Ensure that the anon and file LRUs are scanned 2249 * proportionally what was requested by get_scan_count(). We 2250 * stop reclaiming one LRU and reduce the amount scanning 2251 * proportional to the original scan target. 2252 */ 2253 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2254 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2255 2256 /* 2257 * It's just vindictive to attack the larger once the smaller 2258 * has gone to zero. And given the way we stop scanning the 2259 * smaller below, this makes sure that we only make one nudge 2260 * towards proportionality once we've got nr_to_reclaim. 2261 */ 2262 if (!nr_file || !nr_anon) 2263 break; 2264 2265 if (nr_file > nr_anon) { 2266 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2267 targets[LRU_ACTIVE_ANON] + 1; 2268 lru = LRU_BASE; 2269 percentage = nr_anon * 100 / scan_target; 2270 } else { 2271 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2272 targets[LRU_ACTIVE_FILE] + 1; 2273 lru = LRU_FILE; 2274 percentage = nr_file * 100 / scan_target; 2275 } 2276 2277 /* Stop scanning the smaller of the LRU */ 2278 nr[lru] = 0; 2279 nr[lru + LRU_ACTIVE] = 0; 2280 2281 /* 2282 * Recalculate the other LRU scan count based on its original 2283 * scan target and the percentage scanning already complete 2284 */ 2285 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2286 nr_scanned = targets[lru] - nr[lru]; 2287 nr[lru] = targets[lru] * (100 - percentage) / 100; 2288 nr[lru] -= min(nr[lru], nr_scanned); 2289 2290 lru += LRU_ACTIVE; 2291 nr_scanned = targets[lru] - nr[lru]; 2292 nr[lru] = targets[lru] * (100 - percentage) / 100; 2293 nr[lru] -= min(nr[lru], nr_scanned); 2294 2295 scan_adjusted = true; 2296 } 2297 blk_finish_plug(&plug); 2298 sc->nr_reclaimed += nr_reclaimed; 2299 2300 /* 2301 * Even if we did not try to evict anon pages at all, we want to 2302 * rebalance the anon lru active/inactive ratio. 2303 */ 2304 if (inactive_anon_is_low(lruvec)) 2305 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2306 sc, LRU_ACTIVE_ANON); 2307 2308 throttle_vm_writeout(sc->gfp_mask); 2309 } 2310 2311 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2312 static bool in_reclaim_compaction(struct scan_control *sc) 2313 { 2314 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2315 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2316 sc->priority < DEF_PRIORITY - 2)) 2317 return true; 2318 2319 return false; 2320 } 2321 2322 /* 2323 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2324 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2325 * true if more pages should be reclaimed such that when the page allocator 2326 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2327 * It will give up earlier than that if there is difficulty reclaiming pages. 2328 */ 2329 static inline bool should_continue_reclaim(struct zone *zone, 2330 unsigned long nr_reclaimed, 2331 unsigned long nr_scanned, 2332 struct scan_control *sc) 2333 { 2334 unsigned long pages_for_compaction; 2335 unsigned long inactive_lru_pages; 2336 2337 /* If not in reclaim/compaction mode, stop */ 2338 if (!in_reclaim_compaction(sc)) 2339 return false; 2340 2341 /* Consider stopping depending on scan and reclaim activity */ 2342 if (sc->gfp_mask & __GFP_REPEAT) { 2343 /* 2344 * For __GFP_REPEAT allocations, stop reclaiming if the 2345 * full LRU list has been scanned and we are still failing 2346 * to reclaim pages. This full LRU scan is potentially 2347 * expensive but a __GFP_REPEAT caller really wants to succeed 2348 */ 2349 if (!nr_reclaimed && !nr_scanned) 2350 return false; 2351 } else { 2352 /* 2353 * For non-__GFP_REPEAT allocations which can presumably 2354 * fail without consequence, stop if we failed to reclaim 2355 * any pages from the last SWAP_CLUSTER_MAX number of 2356 * pages that were scanned. This will return to the 2357 * caller faster at the risk reclaim/compaction and 2358 * the resulting allocation attempt fails 2359 */ 2360 if (!nr_reclaimed) 2361 return false; 2362 } 2363 2364 /* 2365 * If we have not reclaimed enough pages for compaction and the 2366 * inactive lists are large enough, continue reclaiming 2367 */ 2368 pages_for_compaction = (2UL << sc->order); 2369 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE); 2370 if (get_nr_swap_pages() > 0) 2371 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON); 2372 if (sc->nr_reclaimed < pages_for_compaction && 2373 inactive_lru_pages > pages_for_compaction) 2374 return true; 2375 2376 /* If compaction would go ahead or the allocation would succeed, stop */ 2377 switch (compaction_suitable(zone, sc->order, 0, 0)) { 2378 case COMPACT_PARTIAL: 2379 case COMPACT_CONTINUE: 2380 return false; 2381 default: 2382 return true; 2383 } 2384 } 2385 2386 static bool shrink_zone(struct zone *zone, struct scan_control *sc, 2387 bool is_classzone) 2388 { 2389 struct reclaim_state *reclaim_state = current->reclaim_state; 2390 unsigned long nr_reclaimed, nr_scanned; 2391 bool reclaimable = false; 2392 2393 do { 2394 struct mem_cgroup *root = sc->target_mem_cgroup; 2395 struct mem_cgroup_reclaim_cookie reclaim = { 2396 .zone = zone, 2397 .priority = sc->priority, 2398 }; 2399 unsigned long zone_lru_pages = 0; 2400 struct mem_cgroup *memcg; 2401 2402 nr_reclaimed = sc->nr_reclaimed; 2403 nr_scanned = sc->nr_scanned; 2404 2405 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2406 do { 2407 unsigned long lru_pages; 2408 unsigned long reclaimed; 2409 unsigned long scanned; 2410 2411 if (mem_cgroup_low(root, memcg)) { 2412 if (!sc->may_thrash) 2413 continue; 2414 mem_cgroup_events(memcg, MEMCG_LOW, 1); 2415 } 2416 2417 reclaimed = sc->nr_reclaimed; 2418 scanned = sc->nr_scanned; 2419 2420 shrink_zone_memcg(zone, memcg, sc, &lru_pages); 2421 zone_lru_pages += lru_pages; 2422 2423 if (memcg && is_classzone) 2424 shrink_slab(sc->gfp_mask, zone_to_nid(zone), 2425 memcg, sc->nr_scanned - scanned, 2426 lru_pages); 2427 2428 /* Record the group's reclaim efficiency */ 2429 vmpressure(sc->gfp_mask, memcg, false, 2430 sc->nr_scanned - scanned, 2431 sc->nr_reclaimed - reclaimed); 2432 2433 /* 2434 * Direct reclaim and kswapd have to scan all memory 2435 * cgroups to fulfill the overall scan target for the 2436 * zone. 2437 * 2438 * Limit reclaim, on the other hand, only cares about 2439 * nr_to_reclaim pages to be reclaimed and it will 2440 * retry with decreasing priority if one round over the 2441 * whole hierarchy is not sufficient. 2442 */ 2443 if (!global_reclaim(sc) && 2444 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2445 mem_cgroup_iter_break(root, memcg); 2446 break; 2447 } 2448 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2449 2450 /* 2451 * Shrink the slab caches in the same proportion that 2452 * the eligible LRU pages were scanned. 2453 */ 2454 if (global_reclaim(sc) && is_classzone) 2455 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL, 2456 sc->nr_scanned - nr_scanned, 2457 zone_lru_pages); 2458 2459 if (reclaim_state) { 2460 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2461 reclaim_state->reclaimed_slab = 0; 2462 } 2463 2464 /* Record the subtree's reclaim efficiency */ 2465 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2466 sc->nr_scanned - nr_scanned, 2467 sc->nr_reclaimed - nr_reclaimed); 2468 2469 if (sc->nr_reclaimed - nr_reclaimed) 2470 reclaimable = true; 2471 2472 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed, 2473 sc->nr_scanned - nr_scanned, sc)); 2474 2475 return reclaimable; 2476 } 2477 2478 /* 2479 * Returns true if compaction should go ahead for a high-order request, or 2480 * the high-order allocation would succeed without compaction. 2481 */ 2482 static inline bool compaction_ready(struct zone *zone, int order) 2483 { 2484 unsigned long balance_gap, watermark; 2485 bool watermark_ok; 2486 2487 /* 2488 * Compaction takes time to run and there are potentially other 2489 * callers using the pages just freed. Continue reclaiming until 2490 * there is a buffer of free pages available to give compaction 2491 * a reasonable chance of completing and allocating the page 2492 */ 2493 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( 2494 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); 2495 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order); 2496 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0); 2497 2498 /* 2499 * If compaction is deferred, reclaim up to a point where 2500 * compaction will have a chance of success when re-enabled 2501 */ 2502 if (compaction_deferred(zone, order)) 2503 return watermark_ok; 2504 2505 /* 2506 * If compaction is not ready to start and allocation is not likely 2507 * to succeed without it, then keep reclaiming. 2508 */ 2509 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED) 2510 return false; 2511 2512 return watermark_ok; 2513 } 2514 2515 /* 2516 * This is the direct reclaim path, for page-allocating processes. We only 2517 * try to reclaim pages from zones which will satisfy the caller's allocation 2518 * request. 2519 * 2520 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 2521 * Because: 2522 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 2523 * allocation or 2524 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 2525 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 2526 * zone defense algorithm. 2527 * 2528 * If a zone is deemed to be full of pinned pages then just give it a light 2529 * scan then give up on it. 2530 * 2531 * Returns true if a zone was reclaimable. 2532 */ 2533 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2534 { 2535 struct zoneref *z; 2536 struct zone *zone; 2537 unsigned long nr_soft_reclaimed; 2538 unsigned long nr_soft_scanned; 2539 gfp_t orig_mask; 2540 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask); 2541 bool reclaimable = false; 2542 2543 /* 2544 * If the number of buffer_heads in the machine exceeds the maximum 2545 * allowed level, force direct reclaim to scan the highmem zone as 2546 * highmem pages could be pinning lowmem pages storing buffer_heads 2547 */ 2548 orig_mask = sc->gfp_mask; 2549 if (buffer_heads_over_limit) 2550 sc->gfp_mask |= __GFP_HIGHMEM; 2551 2552 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2553 gfp_zone(sc->gfp_mask), sc->nodemask) { 2554 enum zone_type classzone_idx; 2555 2556 if (!populated_zone(zone)) 2557 continue; 2558 2559 classzone_idx = requested_highidx; 2560 while (!populated_zone(zone->zone_pgdat->node_zones + 2561 classzone_idx)) 2562 classzone_idx--; 2563 2564 /* 2565 * Take care memory controller reclaiming has small influence 2566 * to global LRU. 2567 */ 2568 if (global_reclaim(sc)) { 2569 if (!cpuset_zone_allowed(zone, 2570 GFP_KERNEL | __GFP_HARDWALL)) 2571 continue; 2572 2573 if (sc->priority != DEF_PRIORITY && 2574 !zone_reclaimable(zone)) 2575 continue; /* Let kswapd poll it */ 2576 2577 /* 2578 * If we already have plenty of memory free for 2579 * compaction in this zone, don't free any more. 2580 * Even though compaction is invoked for any 2581 * non-zero order, only frequent costly order 2582 * reclamation is disruptive enough to become a 2583 * noticeable problem, like transparent huge 2584 * page allocations. 2585 */ 2586 if (IS_ENABLED(CONFIG_COMPACTION) && 2587 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2588 zonelist_zone_idx(z) <= requested_highidx && 2589 compaction_ready(zone, sc->order)) { 2590 sc->compaction_ready = true; 2591 continue; 2592 } 2593 2594 /* 2595 * This steals pages from memory cgroups over softlimit 2596 * and returns the number of reclaimed pages and 2597 * scanned pages. This works for global memory pressure 2598 * and balancing, not for a memcg's limit. 2599 */ 2600 nr_soft_scanned = 0; 2601 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 2602 sc->order, sc->gfp_mask, 2603 &nr_soft_scanned); 2604 sc->nr_reclaimed += nr_soft_reclaimed; 2605 sc->nr_scanned += nr_soft_scanned; 2606 if (nr_soft_reclaimed) 2607 reclaimable = true; 2608 /* need some check for avoid more shrink_zone() */ 2609 } 2610 2611 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx)) 2612 reclaimable = true; 2613 2614 if (global_reclaim(sc) && 2615 !reclaimable && zone_reclaimable(zone)) 2616 reclaimable = true; 2617 } 2618 2619 /* 2620 * Restore to original mask to avoid the impact on the caller if we 2621 * promoted it to __GFP_HIGHMEM. 2622 */ 2623 sc->gfp_mask = orig_mask; 2624 2625 return reclaimable; 2626 } 2627 2628 /* 2629 * This is the main entry point to direct page reclaim. 2630 * 2631 * If a full scan of the inactive list fails to free enough memory then we 2632 * are "out of memory" and something needs to be killed. 2633 * 2634 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2635 * high - the zone may be full of dirty or under-writeback pages, which this 2636 * caller can't do much about. We kick the writeback threads and take explicit 2637 * naps in the hope that some of these pages can be written. But if the 2638 * allocating task holds filesystem locks which prevent writeout this might not 2639 * work, and the allocation attempt will fail. 2640 * 2641 * returns: 0, if no pages reclaimed 2642 * else, the number of pages reclaimed 2643 */ 2644 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2645 struct scan_control *sc) 2646 { 2647 int initial_priority = sc->priority; 2648 unsigned long total_scanned = 0; 2649 unsigned long writeback_threshold; 2650 bool zones_reclaimable; 2651 retry: 2652 delayacct_freepages_start(); 2653 2654 if (global_reclaim(sc)) 2655 count_vm_event(ALLOCSTALL); 2656 2657 do { 2658 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2659 sc->priority); 2660 sc->nr_scanned = 0; 2661 zones_reclaimable = shrink_zones(zonelist, sc); 2662 2663 total_scanned += sc->nr_scanned; 2664 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2665 break; 2666 2667 if (sc->compaction_ready) 2668 break; 2669 2670 /* 2671 * If we're getting trouble reclaiming, start doing 2672 * writepage even in laptop mode. 2673 */ 2674 if (sc->priority < DEF_PRIORITY - 2) 2675 sc->may_writepage = 1; 2676 2677 /* 2678 * Try to write back as many pages as we just scanned. This 2679 * tends to cause slow streaming writers to write data to the 2680 * disk smoothly, at the dirtying rate, which is nice. But 2681 * that's undesirable in laptop mode, where we *want* lumpy 2682 * writeout. So in laptop mode, write out the whole world. 2683 */ 2684 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2685 if (total_scanned > writeback_threshold) { 2686 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2687 WB_REASON_TRY_TO_FREE_PAGES); 2688 sc->may_writepage = 1; 2689 } 2690 } while (--sc->priority >= 0); 2691 2692 delayacct_freepages_end(); 2693 2694 if (sc->nr_reclaimed) 2695 return sc->nr_reclaimed; 2696 2697 /* Aborted reclaim to try compaction? don't OOM, then */ 2698 if (sc->compaction_ready) 2699 return 1; 2700 2701 /* Untapped cgroup reserves? Don't OOM, retry. */ 2702 if (!sc->may_thrash) { 2703 sc->priority = initial_priority; 2704 sc->may_thrash = 1; 2705 goto retry; 2706 } 2707 2708 /* Any of the zones still reclaimable? Don't OOM. */ 2709 if (zones_reclaimable) 2710 return 1; 2711 2712 return 0; 2713 } 2714 2715 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2716 { 2717 struct zone *zone; 2718 unsigned long pfmemalloc_reserve = 0; 2719 unsigned long free_pages = 0; 2720 int i; 2721 bool wmark_ok; 2722 2723 for (i = 0; i <= ZONE_NORMAL; i++) { 2724 zone = &pgdat->node_zones[i]; 2725 if (!populated_zone(zone) || 2726 zone_reclaimable_pages(zone) == 0) 2727 continue; 2728 2729 pfmemalloc_reserve += min_wmark_pages(zone); 2730 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2731 } 2732 2733 /* If there are no reserves (unexpected config) then do not throttle */ 2734 if (!pfmemalloc_reserve) 2735 return true; 2736 2737 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2738 2739 /* kswapd must be awake if processes are being throttled */ 2740 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2741 pgdat->classzone_idx = min(pgdat->classzone_idx, 2742 (enum zone_type)ZONE_NORMAL); 2743 wake_up_interruptible(&pgdat->kswapd_wait); 2744 } 2745 2746 return wmark_ok; 2747 } 2748 2749 /* 2750 * Throttle direct reclaimers if backing storage is backed by the network 2751 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2752 * depleted. kswapd will continue to make progress and wake the processes 2753 * when the low watermark is reached. 2754 * 2755 * Returns true if a fatal signal was delivered during throttling. If this 2756 * happens, the page allocator should not consider triggering the OOM killer. 2757 */ 2758 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2759 nodemask_t *nodemask) 2760 { 2761 struct zoneref *z; 2762 struct zone *zone; 2763 pg_data_t *pgdat = NULL; 2764 2765 /* 2766 * Kernel threads should not be throttled as they may be indirectly 2767 * responsible for cleaning pages necessary for reclaim to make forward 2768 * progress. kjournald for example may enter direct reclaim while 2769 * committing a transaction where throttling it could forcing other 2770 * processes to block on log_wait_commit(). 2771 */ 2772 if (current->flags & PF_KTHREAD) 2773 goto out; 2774 2775 /* 2776 * If a fatal signal is pending, this process should not throttle. 2777 * It should return quickly so it can exit and free its memory 2778 */ 2779 if (fatal_signal_pending(current)) 2780 goto out; 2781 2782 /* 2783 * Check if the pfmemalloc reserves are ok by finding the first node 2784 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2785 * GFP_KERNEL will be required for allocating network buffers when 2786 * swapping over the network so ZONE_HIGHMEM is unusable. 2787 * 2788 * Throttling is based on the first usable node and throttled processes 2789 * wait on a queue until kswapd makes progress and wakes them. There 2790 * is an affinity then between processes waking up and where reclaim 2791 * progress has been made assuming the process wakes on the same node. 2792 * More importantly, processes running on remote nodes will not compete 2793 * for remote pfmemalloc reserves and processes on different nodes 2794 * should make reasonable progress. 2795 */ 2796 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2797 gfp_zone(gfp_mask), nodemask) { 2798 if (zone_idx(zone) > ZONE_NORMAL) 2799 continue; 2800 2801 /* Throttle based on the first usable node */ 2802 pgdat = zone->zone_pgdat; 2803 if (pfmemalloc_watermark_ok(pgdat)) 2804 goto out; 2805 break; 2806 } 2807 2808 /* If no zone was usable by the allocation flags then do not throttle */ 2809 if (!pgdat) 2810 goto out; 2811 2812 /* Account for the throttling */ 2813 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2814 2815 /* 2816 * If the caller cannot enter the filesystem, it's possible that it 2817 * is due to the caller holding an FS lock or performing a journal 2818 * transaction in the case of a filesystem like ext[3|4]. In this case, 2819 * it is not safe to block on pfmemalloc_wait as kswapd could be 2820 * blocked waiting on the same lock. Instead, throttle for up to a 2821 * second before continuing. 2822 */ 2823 if (!(gfp_mask & __GFP_FS)) { 2824 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2825 pfmemalloc_watermark_ok(pgdat), HZ); 2826 2827 goto check_pending; 2828 } 2829 2830 /* Throttle until kswapd wakes the process */ 2831 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2832 pfmemalloc_watermark_ok(pgdat)); 2833 2834 check_pending: 2835 if (fatal_signal_pending(current)) 2836 return true; 2837 2838 out: 2839 return false; 2840 } 2841 2842 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2843 gfp_t gfp_mask, nodemask_t *nodemask) 2844 { 2845 unsigned long nr_reclaimed; 2846 struct scan_control sc = { 2847 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2848 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2849 .order = order, 2850 .nodemask = nodemask, 2851 .priority = DEF_PRIORITY, 2852 .may_writepage = !laptop_mode, 2853 .may_unmap = 1, 2854 .may_swap = 1, 2855 }; 2856 2857 /* 2858 * Do not enter reclaim if fatal signal was delivered while throttled. 2859 * 1 is returned so that the page allocator does not OOM kill at this 2860 * point. 2861 */ 2862 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2863 return 1; 2864 2865 trace_mm_vmscan_direct_reclaim_begin(order, 2866 sc.may_writepage, 2867 gfp_mask); 2868 2869 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2870 2871 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2872 2873 return nr_reclaimed; 2874 } 2875 2876 #ifdef CONFIG_MEMCG 2877 2878 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, 2879 gfp_t gfp_mask, bool noswap, 2880 struct zone *zone, 2881 unsigned long *nr_scanned) 2882 { 2883 struct scan_control sc = { 2884 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2885 .target_mem_cgroup = memcg, 2886 .may_writepage = !laptop_mode, 2887 .may_unmap = 1, 2888 .may_swap = !noswap, 2889 }; 2890 unsigned long lru_pages; 2891 2892 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2893 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2894 2895 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 2896 sc.may_writepage, 2897 sc.gfp_mask); 2898 2899 /* 2900 * NOTE: Although we can get the priority field, using it 2901 * here is not a good idea, since it limits the pages we can scan. 2902 * if we don't reclaim here, the shrink_zone from balance_pgdat 2903 * will pick up pages from other mem cgroup's as well. We hack 2904 * the priority and make it zero. 2905 */ 2906 shrink_zone_memcg(zone, memcg, &sc, &lru_pages); 2907 2908 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2909 2910 *nr_scanned = sc.nr_scanned; 2911 return sc.nr_reclaimed; 2912 } 2913 2914 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 2915 unsigned long nr_pages, 2916 gfp_t gfp_mask, 2917 bool may_swap) 2918 { 2919 struct zonelist *zonelist; 2920 unsigned long nr_reclaimed; 2921 int nid; 2922 struct scan_control sc = { 2923 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 2924 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2925 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 2926 .target_mem_cgroup = memcg, 2927 .priority = DEF_PRIORITY, 2928 .may_writepage = !laptop_mode, 2929 .may_unmap = 1, 2930 .may_swap = may_swap, 2931 }; 2932 2933 /* 2934 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 2935 * take care of from where we get pages. So the node where we start the 2936 * scan does not need to be the current node. 2937 */ 2938 nid = mem_cgroup_select_victim_node(memcg); 2939 2940 zonelist = NODE_DATA(nid)->node_zonelists; 2941 2942 trace_mm_vmscan_memcg_reclaim_begin(0, 2943 sc.may_writepage, 2944 sc.gfp_mask); 2945 2946 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2947 2948 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2949 2950 return nr_reclaimed; 2951 } 2952 #endif 2953 2954 static void age_active_anon(struct zone *zone, struct scan_control *sc) 2955 { 2956 struct mem_cgroup *memcg; 2957 2958 if (!total_swap_pages) 2959 return; 2960 2961 memcg = mem_cgroup_iter(NULL, NULL, NULL); 2962 do { 2963 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2964 2965 if (inactive_anon_is_low(lruvec)) 2966 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2967 sc, LRU_ACTIVE_ANON); 2968 2969 memcg = mem_cgroup_iter(NULL, memcg, NULL); 2970 } while (memcg); 2971 } 2972 2973 static bool zone_balanced(struct zone *zone, int order, bool highorder, 2974 unsigned long balance_gap, int classzone_idx) 2975 { 2976 unsigned long mark = high_wmark_pages(zone) + balance_gap; 2977 2978 /* 2979 * When checking from pgdat_balanced(), kswapd should stop and sleep 2980 * when it reaches the high order-0 watermark and let kcompactd take 2981 * over. Other callers such as wakeup_kswapd() want to determine the 2982 * true high-order watermark. 2983 */ 2984 if (IS_ENABLED(CONFIG_COMPACTION) && !highorder) { 2985 mark += (1UL << order); 2986 order = 0; 2987 } 2988 2989 return zone_watermark_ok_safe(zone, order, mark, classzone_idx); 2990 } 2991 2992 /* 2993 * pgdat_balanced() is used when checking if a node is balanced. 2994 * 2995 * For order-0, all zones must be balanced! 2996 * 2997 * For high-order allocations only zones that meet watermarks and are in a 2998 * zone allowed by the callers classzone_idx are added to balanced_pages. The 2999 * total of balanced pages must be at least 25% of the zones allowed by 3000 * classzone_idx for the node to be considered balanced. Forcing all zones to 3001 * be balanced for high orders can cause excessive reclaim when there are 3002 * imbalanced zones. 3003 * The choice of 25% is due to 3004 * o a 16M DMA zone that is balanced will not balance a zone on any 3005 * reasonable sized machine 3006 * o On all other machines, the top zone must be at least a reasonable 3007 * percentage of the middle zones. For example, on 32-bit x86, highmem 3008 * would need to be at least 256M for it to be balance a whole node. 3009 * Similarly, on x86-64 the Normal zone would need to be at least 1G 3010 * to balance a node on its own. These seemed like reasonable ratios. 3011 */ 3012 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3013 { 3014 unsigned long managed_pages = 0; 3015 unsigned long balanced_pages = 0; 3016 int i; 3017 3018 /* Check the watermark levels */ 3019 for (i = 0; i <= classzone_idx; i++) { 3020 struct zone *zone = pgdat->node_zones + i; 3021 3022 if (!populated_zone(zone)) 3023 continue; 3024 3025 managed_pages += zone->managed_pages; 3026 3027 /* 3028 * A special case here: 3029 * 3030 * balance_pgdat() skips over all_unreclaimable after 3031 * DEF_PRIORITY. Effectively, it considers them balanced so 3032 * they must be considered balanced here as well! 3033 */ 3034 if (!zone_reclaimable(zone)) { 3035 balanced_pages += zone->managed_pages; 3036 continue; 3037 } 3038 3039 if (zone_balanced(zone, order, false, 0, i)) 3040 balanced_pages += zone->managed_pages; 3041 else if (!order) 3042 return false; 3043 } 3044 3045 if (order) 3046 return balanced_pages >= (managed_pages >> 2); 3047 else 3048 return true; 3049 } 3050 3051 /* 3052 * Prepare kswapd for sleeping. This verifies that there are no processes 3053 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3054 * 3055 * Returns true if kswapd is ready to sleep 3056 */ 3057 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, 3058 int classzone_idx) 3059 { 3060 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 3061 if (remaining) 3062 return false; 3063 3064 /* 3065 * The throttled processes are normally woken up in balance_pgdat() as 3066 * soon as pfmemalloc_watermark_ok() is true. But there is a potential 3067 * race between when kswapd checks the watermarks and a process gets 3068 * throttled. There is also a potential race if processes get 3069 * throttled, kswapd wakes, a large process exits thereby balancing the 3070 * zones, which causes kswapd to exit balance_pgdat() before reaching 3071 * the wake up checks. If kswapd is going to sleep, no process should 3072 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3073 * the wake up is premature, processes will wake kswapd and get 3074 * throttled again. The difference from wake ups in balance_pgdat() is 3075 * that here we are under prepare_to_wait(). 3076 */ 3077 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3078 wake_up_all(&pgdat->pfmemalloc_wait); 3079 3080 return pgdat_balanced(pgdat, order, classzone_idx); 3081 } 3082 3083 /* 3084 * kswapd shrinks the zone by the number of pages required to reach 3085 * the high watermark. 3086 * 3087 * Returns true if kswapd scanned at least the requested number of pages to 3088 * reclaim or if the lack of progress was due to pages under writeback. 3089 * This is used to determine if the scanning priority needs to be raised. 3090 */ 3091 static bool kswapd_shrink_zone(struct zone *zone, 3092 int classzone_idx, 3093 struct scan_control *sc) 3094 { 3095 unsigned long balance_gap; 3096 bool lowmem_pressure; 3097 3098 /* Reclaim above the high watermark. */ 3099 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone)); 3100 3101 /* 3102 * We put equal pressure on every zone, unless one zone has way too 3103 * many pages free already. The "too many pages" is defined as the 3104 * high wmark plus a "gap" where the gap is either the low 3105 * watermark or 1% of the zone, whichever is smaller. 3106 */ 3107 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( 3108 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); 3109 3110 /* 3111 * If there is no low memory pressure or the zone is balanced then no 3112 * reclaim is necessary 3113 */ 3114 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone)); 3115 if (!lowmem_pressure && zone_balanced(zone, sc->order, false, 3116 balance_gap, classzone_idx)) 3117 return true; 3118 3119 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx); 3120 3121 clear_bit(ZONE_WRITEBACK, &zone->flags); 3122 3123 /* 3124 * If a zone reaches its high watermark, consider it to be no longer 3125 * congested. It's possible there are dirty pages backed by congested 3126 * BDIs but as pressure is relieved, speculatively avoid congestion 3127 * waits. 3128 */ 3129 if (zone_reclaimable(zone) && 3130 zone_balanced(zone, sc->order, false, 0, classzone_idx)) { 3131 clear_bit(ZONE_CONGESTED, &zone->flags); 3132 clear_bit(ZONE_DIRTY, &zone->flags); 3133 } 3134 3135 return sc->nr_scanned >= sc->nr_to_reclaim; 3136 } 3137 3138 /* 3139 * For kswapd, balance_pgdat() will work across all this node's zones until 3140 * they are all at high_wmark_pages(zone). 3141 * 3142 * Returns the highest zone idx kswapd was reclaiming at 3143 * 3144 * There is special handling here for zones which are full of pinned pages. 3145 * This can happen if the pages are all mlocked, or if they are all used by 3146 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 3147 * What we do is to detect the case where all pages in the zone have been 3148 * scanned twice and there has been zero successful reclaim. Mark the zone as 3149 * dead and from now on, only perform a short scan. Basically we're polling 3150 * the zone for when the problem goes away. 3151 * 3152 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3153 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3154 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 3155 * lower zones regardless of the number of free pages in the lower zones. This 3156 * interoperates with the page allocator fallback scheme to ensure that aging 3157 * of pages is balanced across the zones. 3158 */ 3159 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3160 { 3161 int i; 3162 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 3163 unsigned long nr_soft_reclaimed; 3164 unsigned long nr_soft_scanned; 3165 struct scan_control sc = { 3166 .gfp_mask = GFP_KERNEL, 3167 .order = order, 3168 .priority = DEF_PRIORITY, 3169 .may_writepage = !laptop_mode, 3170 .may_unmap = 1, 3171 .may_swap = 1, 3172 }; 3173 count_vm_event(PAGEOUTRUN); 3174 3175 do { 3176 bool raise_priority = true; 3177 3178 sc.nr_reclaimed = 0; 3179 3180 /* 3181 * Scan in the highmem->dma direction for the highest 3182 * zone which needs scanning 3183 */ 3184 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 3185 struct zone *zone = pgdat->node_zones + i; 3186 3187 if (!populated_zone(zone)) 3188 continue; 3189 3190 if (sc.priority != DEF_PRIORITY && 3191 !zone_reclaimable(zone)) 3192 continue; 3193 3194 /* 3195 * Do some background aging of the anon list, to give 3196 * pages a chance to be referenced before reclaiming. 3197 */ 3198 age_active_anon(zone, &sc); 3199 3200 /* 3201 * If the number of buffer_heads in the machine 3202 * exceeds the maximum allowed level and this node 3203 * has a highmem zone, force kswapd to reclaim from 3204 * it to relieve lowmem pressure. 3205 */ 3206 if (buffer_heads_over_limit && is_highmem_idx(i)) { 3207 end_zone = i; 3208 break; 3209 } 3210 3211 if (!zone_balanced(zone, order, false, 0, 0)) { 3212 end_zone = i; 3213 break; 3214 } else { 3215 /* 3216 * If balanced, clear the dirty and congested 3217 * flags 3218 */ 3219 clear_bit(ZONE_CONGESTED, &zone->flags); 3220 clear_bit(ZONE_DIRTY, &zone->flags); 3221 } 3222 } 3223 3224 if (i < 0) 3225 goto out; 3226 3227 /* 3228 * If we're getting trouble reclaiming, start doing writepage 3229 * even in laptop mode. 3230 */ 3231 if (sc.priority < DEF_PRIORITY - 2) 3232 sc.may_writepage = 1; 3233 3234 /* 3235 * Now scan the zone in the dma->highmem direction, stopping 3236 * at the last zone which needs scanning. 3237 * 3238 * We do this because the page allocator works in the opposite 3239 * direction. This prevents the page allocator from allocating 3240 * pages behind kswapd's direction of progress, which would 3241 * cause too much scanning of the lower zones. 3242 */ 3243 for (i = 0; i <= end_zone; i++) { 3244 struct zone *zone = pgdat->node_zones + i; 3245 3246 if (!populated_zone(zone)) 3247 continue; 3248 3249 if (sc.priority != DEF_PRIORITY && 3250 !zone_reclaimable(zone)) 3251 continue; 3252 3253 sc.nr_scanned = 0; 3254 3255 nr_soft_scanned = 0; 3256 /* 3257 * Call soft limit reclaim before calling shrink_zone. 3258 */ 3259 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 3260 order, sc.gfp_mask, 3261 &nr_soft_scanned); 3262 sc.nr_reclaimed += nr_soft_reclaimed; 3263 3264 /* 3265 * There should be no need to raise the scanning 3266 * priority if enough pages are already being scanned 3267 * that that high watermark would be met at 100% 3268 * efficiency. 3269 */ 3270 if (kswapd_shrink_zone(zone, end_zone, &sc)) 3271 raise_priority = false; 3272 } 3273 3274 /* 3275 * If the low watermark is met there is no need for processes 3276 * to be throttled on pfmemalloc_wait as they should not be 3277 * able to safely make forward progress. Wake them 3278 */ 3279 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3280 pfmemalloc_watermark_ok(pgdat)) 3281 wake_up_all(&pgdat->pfmemalloc_wait); 3282 3283 /* Check if kswapd should be suspending */ 3284 if (try_to_freeze() || kthread_should_stop()) 3285 break; 3286 3287 /* 3288 * Raise priority if scanning rate is too low or there was no 3289 * progress in reclaiming pages 3290 */ 3291 if (raise_priority || !sc.nr_reclaimed) 3292 sc.priority--; 3293 } while (sc.priority >= 1 && 3294 !pgdat_balanced(pgdat, order, classzone_idx)); 3295 3296 out: 3297 /* 3298 * Return the highest zone idx we were reclaiming at so 3299 * prepare_kswapd_sleep() makes the same decisions as here. 3300 */ 3301 return end_zone; 3302 } 3303 3304 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, 3305 int classzone_idx, int balanced_classzone_idx) 3306 { 3307 long remaining = 0; 3308 DEFINE_WAIT(wait); 3309 3310 if (freezing(current) || kthread_should_stop()) 3311 return; 3312 3313 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3314 3315 /* Try to sleep for a short interval */ 3316 if (prepare_kswapd_sleep(pgdat, order, remaining, 3317 balanced_classzone_idx)) { 3318 /* 3319 * Compaction records what page blocks it recently failed to 3320 * isolate pages from and skips them in the future scanning. 3321 * When kswapd is going to sleep, it is reasonable to assume 3322 * that pages and compaction may succeed so reset the cache. 3323 */ 3324 reset_isolation_suitable(pgdat); 3325 3326 /* 3327 * We have freed the memory, now we should compact it to make 3328 * allocation of the requested order possible. 3329 */ 3330 wakeup_kcompactd(pgdat, order, classzone_idx); 3331 3332 remaining = schedule_timeout(HZ/10); 3333 finish_wait(&pgdat->kswapd_wait, &wait); 3334 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3335 } 3336 3337 /* 3338 * After a short sleep, check if it was a premature sleep. If not, then 3339 * go fully to sleep until explicitly woken up. 3340 */ 3341 if (prepare_kswapd_sleep(pgdat, order, remaining, 3342 balanced_classzone_idx)) { 3343 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3344 3345 /* 3346 * vmstat counters are not perfectly accurate and the estimated 3347 * value for counters such as NR_FREE_PAGES can deviate from the 3348 * true value by nr_online_cpus * threshold. To avoid the zone 3349 * watermarks being breached while under pressure, we reduce the 3350 * per-cpu vmstat threshold while kswapd is awake and restore 3351 * them before going back to sleep. 3352 */ 3353 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3354 3355 if (!kthread_should_stop()) 3356 schedule(); 3357 3358 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3359 } else { 3360 if (remaining) 3361 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3362 else 3363 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3364 } 3365 finish_wait(&pgdat->kswapd_wait, &wait); 3366 } 3367 3368 /* 3369 * The background pageout daemon, started as a kernel thread 3370 * from the init process. 3371 * 3372 * This basically trickles out pages so that we have _some_ 3373 * free memory available even if there is no other activity 3374 * that frees anything up. This is needed for things like routing 3375 * etc, where we otherwise might have all activity going on in 3376 * asynchronous contexts that cannot page things out. 3377 * 3378 * If there are applications that are active memory-allocators 3379 * (most normal use), this basically shouldn't matter. 3380 */ 3381 static int kswapd(void *p) 3382 { 3383 unsigned long order, new_order; 3384 int classzone_idx, new_classzone_idx; 3385 int balanced_classzone_idx; 3386 pg_data_t *pgdat = (pg_data_t*)p; 3387 struct task_struct *tsk = current; 3388 3389 struct reclaim_state reclaim_state = { 3390 .reclaimed_slab = 0, 3391 }; 3392 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3393 3394 lockdep_set_current_reclaim_state(GFP_KERNEL); 3395 3396 if (!cpumask_empty(cpumask)) 3397 set_cpus_allowed_ptr(tsk, cpumask); 3398 current->reclaim_state = &reclaim_state; 3399 3400 /* 3401 * Tell the memory management that we're a "memory allocator", 3402 * and that if we need more memory we should get access to it 3403 * regardless (see "__alloc_pages()"). "kswapd" should 3404 * never get caught in the normal page freeing logic. 3405 * 3406 * (Kswapd normally doesn't need memory anyway, but sometimes 3407 * you need a small amount of memory in order to be able to 3408 * page out something else, and this flag essentially protects 3409 * us from recursively trying to free more memory as we're 3410 * trying to free the first piece of memory in the first place). 3411 */ 3412 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3413 set_freezable(); 3414 3415 order = new_order = 0; 3416 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; 3417 balanced_classzone_idx = classzone_idx; 3418 for ( ; ; ) { 3419 bool ret; 3420 3421 /* 3422 * While we were reclaiming, there might have been another 3423 * wakeup, so check the values. 3424 */ 3425 new_order = pgdat->kswapd_max_order; 3426 new_classzone_idx = pgdat->classzone_idx; 3427 pgdat->kswapd_max_order = 0; 3428 pgdat->classzone_idx = pgdat->nr_zones - 1; 3429 3430 if (order < new_order || classzone_idx > new_classzone_idx) { 3431 /* 3432 * Don't sleep if someone wants a larger 'order' 3433 * allocation or has tigher zone constraints 3434 */ 3435 order = new_order; 3436 classzone_idx = new_classzone_idx; 3437 } else { 3438 kswapd_try_to_sleep(pgdat, order, classzone_idx, 3439 balanced_classzone_idx); 3440 order = pgdat->kswapd_max_order; 3441 classzone_idx = pgdat->classzone_idx; 3442 new_order = order; 3443 new_classzone_idx = classzone_idx; 3444 pgdat->kswapd_max_order = 0; 3445 pgdat->classzone_idx = pgdat->nr_zones - 1; 3446 } 3447 3448 ret = try_to_freeze(); 3449 if (kthread_should_stop()) 3450 break; 3451 3452 /* 3453 * We can speed up thawing tasks if we don't call balance_pgdat 3454 * after returning from the refrigerator 3455 */ 3456 if (!ret) { 3457 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); 3458 balanced_classzone_idx = balance_pgdat(pgdat, order, 3459 classzone_idx); 3460 } 3461 } 3462 3463 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3464 current->reclaim_state = NULL; 3465 lockdep_clear_current_reclaim_state(); 3466 3467 return 0; 3468 } 3469 3470 /* 3471 * A zone is low on free memory, so wake its kswapd task to service it. 3472 */ 3473 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3474 { 3475 pg_data_t *pgdat; 3476 3477 if (!populated_zone(zone)) 3478 return; 3479 3480 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) 3481 return; 3482 pgdat = zone->zone_pgdat; 3483 if (pgdat->kswapd_max_order < order) { 3484 pgdat->kswapd_max_order = order; 3485 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); 3486 } 3487 if (!waitqueue_active(&pgdat->kswapd_wait)) 3488 return; 3489 if (zone_balanced(zone, order, true, 0, 0)) 3490 return; 3491 3492 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3493 wake_up_interruptible(&pgdat->kswapd_wait); 3494 } 3495 3496 #ifdef CONFIG_HIBERNATION 3497 /* 3498 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3499 * freed pages. 3500 * 3501 * Rather than trying to age LRUs the aim is to preserve the overall 3502 * LRU order by reclaiming preferentially 3503 * inactive > active > active referenced > active mapped 3504 */ 3505 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3506 { 3507 struct reclaim_state reclaim_state; 3508 struct scan_control sc = { 3509 .nr_to_reclaim = nr_to_reclaim, 3510 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3511 .priority = DEF_PRIORITY, 3512 .may_writepage = 1, 3513 .may_unmap = 1, 3514 .may_swap = 1, 3515 .hibernation_mode = 1, 3516 }; 3517 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3518 struct task_struct *p = current; 3519 unsigned long nr_reclaimed; 3520 3521 p->flags |= PF_MEMALLOC; 3522 lockdep_set_current_reclaim_state(sc.gfp_mask); 3523 reclaim_state.reclaimed_slab = 0; 3524 p->reclaim_state = &reclaim_state; 3525 3526 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3527 3528 p->reclaim_state = NULL; 3529 lockdep_clear_current_reclaim_state(); 3530 p->flags &= ~PF_MEMALLOC; 3531 3532 return nr_reclaimed; 3533 } 3534 #endif /* CONFIG_HIBERNATION */ 3535 3536 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3537 not required for correctness. So if the last cpu in a node goes 3538 away, we get changed to run anywhere: as the first one comes back, 3539 restore their cpu bindings. */ 3540 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 3541 void *hcpu) 3542 { 3543 int nid; 3544 3545 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 3546 for_each_node_state(nid, N_MEMORY) { 3547 pg_data_t *pgdat = NODE_DATA(nid); 3548 const struct cpumask *mask; 3549 3550 mask = cpumask_of_node(pgdat->node_id); 3551 3552 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3553 /* One of our CPUs online: restore mask */ 3554 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3555 } 3556 } 3557 return NOTIFY_OK; 3558 } 3559 3560 /* 3561 * This kswapd start function will be called by init and node-hot-add. 3562 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3563 */ 3564 int kswapd_run(int nid) 3565 { 3566 pg_data_t *pgdat = NODE_DATA(nid); 3567 int ret = 0; 3568 3569 if (pgdat->kswapd) 3570 return 0; 3571 3572 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3573 if (IS_ERR(pgdat->kswapd)) { 3574 /* failure at boot is fatal */ 3575 BUG_ON(system_state == SYSTEM_BOOTING); 3576 pr_err("Failed to start kswapd on node %d\n", nid); 3577 ret = PTR_ERR(pgdat->kswapd); 3578 pgdat->kswapd = NULL; 3579 } 3580 return ret; 3581 } 3582 3583 /* 3584 * Called by memory hotplug when all memory in a node is offlined. Caller must 3585 * hold mem_hotplug_begin/end(). 3586 */ 3587 void kswapd_stop(int nid) 3588 { 3589 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3590 3591 if (kswapd) { 3592 kthread_stop(kswapd); 3593 NODE_DATA(nid)->kswapd = NULL; 3594 } 3595 } 3596 3597 static int __init kswapd_init(void) 3598 { 3599 int nid; 3600 3601 swap_setup(); 3602 for_each_node_state(nid, N_MEMORY) 3603 kswapd_run(nid); 3604 hotcpu_notifier(cpu_callback, 0); 3605 return 0; 3606 } 3607 3608 module_init(kswapd_init) 3609 3610 #ifdef CONFIG_NUMA 3611 /* 3612 * Zone reclaim mode 3613 * 3614 * If non-zero call zone_reclaim when the number of free pages falls below 3615 * the watermarks. 3616 */ 3617 int zone_reclaim_mode __read_mostly; 3618 3619 #define RECLAIM_OFF 0 3620 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3621 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3622 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 3623 3624 /* 3625 * Priority for ZONE_RECLAIM. This determines the fraction of pages 3626 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3627 * a zone. 3628 */ 3629 #define ZONE_RECLAIM_PRIORITY 4 3630 3631 /* 3632 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 3633 * occur. 3634 */ 3635 int sysctl_min_unmapped_ratio = 1; 3636 3637 /* 3638 * If the number of slab pages in a zone grows beyond this percentage then 3639 * slab reclaim needs to occur. 3640 */ 3641 int sysctl_min_slab_ratio = 5; 3642 3643 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 3644 { 3645 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 3646 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 3647 zone_page_state(zone, NR_ACTIVE_FILE); 3648 3649 /* 3650 * It's possible for there to be more file mapped pages than 3651 * accounted for by the pages on the file LRU lists because 3652 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3653 */ 3654 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3655 } 3656 3657 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3658 static unsigned long zone_pagecache_reclaimable(struct zone *zone) 3659 { 3660 unsigned long nr_pagecache_reclaimable; 3661 unsigned long delta = 0; 3662 3663 /* 3664 * If RECLAIM_UNMAP is set, then all file pages are considered 3665 * potentially reclaimable. Otherwise, we have to worry about 3666 * pages like swapcache and zone_unmapped_file_pages() provides 3667 * a better estimate 3668 */ 3669 if (zone_reclaim_mode & RECLAIM_UNMAP) 3670 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 3671 else 3672 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 3673 3674 /* If we can't clean pages, remove dirty pages from consideration */ 3675 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 3676 delta += zone_page_state(zone, NR_FILE_DIRTY); 3677 3678 /* Watch for any possible underflows due to delta */ 3679 if (unlikely(delta > nr_pagecache_reclaimable)) 3680 delta = nr_pagecache_reclaimable; 3681 3682 return nr_pagecache_reclaimable - delta; 3683 } 3684 3685 /* 3686 * Try to free up some pages from this zone through reclaim. 3687 */ 3688 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3689 { 3690 /* Minimum pages needed in order to stay on node */ 3691 const unsigned long nr_pages = 1 << order; 3692 struct task_struct *p = current; 3693 struct reclaim_state reclaim_state; 3694 struct scan_control sc = { 3695 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3696 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3697 .order = order, 3698 .priority = ZONE_RECLAIM_PRIORITY, 3699 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 3700 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP), 3701 .may_swap = 1, 3702 }; 3703 3704 cond_resched(); 3705 /* 3706 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 3707 * and we also need to be able to write out pages for RECLAIM_WRITE 3708 * and RECLAIM_UNMAP. 3709 */ 3710 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3711 lockdep_set_current_reclaim_state(gfp_mask); 3712 reclaim_state.reclaimed_slab = 0; 3713 p->reclaim_state = &reclaim_state; 3714 3715 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 3716 /* 3717 * Free memory by calling shrink zone with increasing 3718 * priorities until we have enough memory freed. 3719 */ 3720 do { 3721 shrink_zone(zone, &sc, true); 3722 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3723 } 3724 3725 p->reclaim_state = NULL; 3726 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3727 lockdep_clear_current_reclaim_state(); 3728 return sc.nr_reclaimed >= nr_pages; 3729 } 3730 3731 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3732 { 3733 int node_id; 3734 int ret; 3735 3736 /* 3737 * Zone reclaim reclaims unmapped file backed pages and 3738 * slab pages if we are over the defined limits. 3739 * 3740 * A small portion of unmapped file backed pages is needed for 3741 * file I/O otherwise pages read by file I/O will be immediately 3742 * thrown out if the zone is overallocated. So we do not reclaim 3743 * if less than a specified percentage of the zone is used by 3744 * unmapped file backed pages. 3745 */ 3746 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 3747 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 3748 return ZONE_RECLAIM_FULL; 3749 3750 if (!zone_reclaimable(zone)) 3751 return ZONE_RECLAIM_FULL; 3752 3753 /* 3754 * Do not scan if the allocation should not be delayed. 3755 */ 3756 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 3757 return ZONE_RECLAIM_NOSCAN; 3758 3759 /* 3760 * Only run zone reclaim on the local zone or on zones that do not 3761 * have associated processors. This will favor the local processor 3762 * over remote processors and spread off node memory allocations 3763 * as wide as possible. 3764 */ 3765 node_id = zone_to_nid(zone); 3766 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 3767 return ZONE_RECLAIM_NOSCAN; 3768 3769 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags)) 3770 return ZONE_RECLAIM_NOSCAN; 3771 3772 ret = __zone_reclaim(zone, gfp_mask, order); 3773 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 3774 3775 if (!ret) 3776 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3777 3778 return ret; 3779 } 3780 #endif 3781 3782 /* 3783 * page_evictable - test whether a page is evictable 3784 * @page: the page to test 3785 * 3786 * Test whether page is evictable--i.e., should be placed on active/inactive 3787 * lists vs unevictable list. 3788 * 3789 * Reasons page might not be evictable: 3790 * (1) page's mapping marked unevictable 3791 * (2) page is part of an mlocked VMA 3792 * 3793 */ 3794 int page_evictable(struct page *page) 3795 { 3796 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3797 } 3798 3799 #ifdef CONFIG_SHMEM 3800 /** 3801 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3802 * @pages: array of pages to check 3803 * @nr_pages: number of pages to check 3804 * 3805 * Checks pages for evictability and moves them to the appropriate lru list. 3806 * 3807 * This function is only used for SysV IPC SHM_UNLOCK. 3808 */ 3809 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3810 { 3811 struct lruvec *lruvec; 3812 struct zone *zone = NULL; 3813 int pgscanned = 0; 3814 int pgrescued = 0; 3815 int i; 3816 3817 for (i = 0; i < nr_pages; i++) { 3818 struct page *page = pages[i]; 3819 struct zone *pagezone; 3820 3821 pgscanned++; 3822 pagezone = page_zone(page); 3823 if (pagezone != zone) { 3824 if (zone) 3825 spin_unlock_irq(&zone->lru_lock); 3826 zone = pagezone; 3827 spin_lock_irq(&zone->lru_lock); 3828 } 3829 lruvec = mem_cgroup_page_lruvec(page, zone); 3830 3831 if (!PageLRU(page) || !PageUnevictable(page)) 3832 continue; 3833 3834 if (page_evictable(page)) { 3835 enum lru_list lru = page_lru_base_type(page); 3836 3837 VM_BUG_ON_PAGE(PageActive(page), page); 3838 ClearPageUnevictable(page); 3839 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3840 add_page_to_lru_list(page, lruvec, lru); 3841 pgrescued++; 3842 } 3843 } 3844 3845 if (zone) { 3846 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3847 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3848 spin_unlock_irq(&zone->lru_lock); 3849 } 3850 } 3851 #endif /* CONFIG_SHMEM */ 3852