xref: /openbmc/linux/mm/vmscan.c (revision 9d5e6a9f22311b00a20ff9b072760ad3e73f0d99)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
50 
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53 
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
56 
57 #include "internal.h"
58 
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
61 
62 struct scan_control {
63 	/* How many pages shrink_list() should reclaim */
64 	unsigned long nr_to_reclaim;
65 
66 	/* This context's GFP mask */
67 	gfp_t gfp_mask;
68 
69 	/* Allocation order */
70 	int order;
71 
72 	/*
73 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 	 * are scanned.
75 	 */
76 	nodemask_t	*nodemask;
77 
78 	/*
79 	 * The memory cgroup that hit its limit and as a result is the
80 	 * primary target of this reclaim invocation.
81 	 */
82 	struct mem_cgroup *target_mem_cgroup;
83 
84 	/* Scan (total_size >> priority) pages at once */
85 	int priority;
86 
87 	unsigned int may_writepage:1;
88 
89 	/* Can mapped pages be reclaimed? */
90 	unsigned int may_unmap:1;
91 
92 	/* Can pages be swapped as part of reclaim? */
93 	unsigned int may_swap:1;
94 
95 	/* Can cgroups be reclaimed below their normal consumption range? */
96 	unsigned int may_thrash:1;
97 
98 	unsigned int hibernation_mode:1;
99 
100 	/* One of the zones is ready for compaction */
101 	unsigned int compaction_ready:1;
102 
103 	/* Incremented by the number of inactive pages that were scanned */
104 	unsigned long nr_scanned;
105 
106 	/* Number of pages freed so far during a call to shrink_zones() */
107 	unsigned long nr_reclaimed;
108 };
109 
110 #ifdef ARCH_HAS_PREFETCH
111 #define prefetch_prev_lru_page(_page, _base, _field)			\
112 	do {								\
113 		if ((_page)->lru.prev != _base) {			\
114 			struct page *prev;				\
115 									\
116 			prev = lru_to_page(&(_page->lru));		\
117 			prefetch(&prev->_field);			\
118 		}							\
119 	} while (0)
120 #else
121 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
122 #endif
123 
124 #ifdef ARCH_HAS_PREFETCHW
125 #define prefetchw_prev_lru_page(_page, _base, _field)			\
126 	do {								\
127 		if ((_page)->lru.prev != _base) {			\
128 			struct page *prev;				\
129 									\
130 			prev = lru_to_page(&(_page->lru));		\
131 			prefetchw(&prev->_field);			\
132 		}							\
133 	} while (0)
134 #else
135 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
136 #endif
137 
138 /*
139  * From 0 .. 100.  Higher means more swappy.
140  */
141 int vm_swappiness = 60;
142 /*
143  * The total number of pages which are beyond the high watermark within all
144  * zones.
145  */
146 unsigned long vm_total_pages;
147 
148 static LIST_HEAD(shrinker_list);
149 static DECLARE_RWSEM(shrinker_rwsem);
150 
151 #ifdef CONFIG_MEMCG
152 static bool global_reclaim(struct scan_control *sc)
153 {
154 	return !sc->target_mem_cgroup;
155 }
156 
157 /**
158  * sane_reclaim - is the usual dirty throttling mechanism operational?
159  * @sc: scan_control in question
160  *
161  * The normal page dirty throttling mechanism in balance_dirty_pages() is
162  * completely broken with the legacy memcg and direct stalling in
163  * shrink_page_list() is used for throttling instead, which lacks all the
164  * niceties such as fairness, adaptive pausing, bandwidth proportional
165  * allocation and configurability.
166  *
167  * This function tests whether the vmscan currently in progress can assume
168  * that the normal dirty throttling mechanism is operational.
169  */
170 static bool sane_reclaim(struct scan_control *sc)
171 {
172 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
173 
174 	if (!memcg)
175 		return true;
176 #ifdef CONFIG_CGROUP_WRITEBACK
177 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
178 		return true;
179 #endif
180 	return false;
181 }
182 #else
183 static bool global_reclaim(struct scan_control *sc)
184 {
185 	return true;
186 }
187 
188 static bool sane_reclaim(struct scan_control *sc)
189 {
190 	return true;
191 }
192 #endif
193 
194 static unsigned long zone_reclaimable_pages(struct zone *zone)
195 {
196 	unsigned long nr;
197 
198 	nr = zone_page_state_snapshot(zone, NR_ACTIVE_FILE) +
199 	     zone_page_state_snapshot(zone, NR_INACTIVE_FILE) +
200 	     zone_page_state_snapshot(zone, NR_ISOLATED_FILE);
201 
202 	if (get_nr_swap_pages() > 0)
203 		nr += zone_page_state_snapshot(zone, NR_ACTIVE_ANON) +
204 		      zone_page_state_snapshot(zone, NR_INACTIVE_ANON) +
205 		      zone_page_state_snapshot(zone, NR_ISOLATED_ANON);
206 
207 	return nr;
208 }
209 
210 bool zone_reclaimable(struct zone *zone)
211 {
212 	return zone_page_state_snapshot(zone, NR_PAGES_SCANNED) <
213 		zone_reclaimable_pages(zone) * 6;
214 }
215 
216 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
217 {
218 	if (!mem_cgroup_disabled())
219 		return mem_cgroup_get_lru_size(lruvec, lru);
220 
221 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
222 }
223 
224 /*
225  * Add a shrinker callback to be called from the vm.
226  */
227 int register_shrinker(struct shrinker *shrinker)
228 {
229 	size_t size = sizeof(*shrinker->nr_deferred);
230 
231 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
232 		size *= nr_node_ids;
233 
234 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
235 	if (!shrinker->nr_deferred)
236 		return -ENOMEM;
237 
238 	down_write(&shrinker_rwsem);
239 	list_add_tail(&shrinker->list, &shrinker_list);
240 	up_write(&shrinker_rwsem);
241 	return 0;
242 }
243 EXPORT_SYMBOL(register_shrinker);
244 
245 /*
246  * Remove one
247  */
248 void unregister_shrinker(struct shrinker *shrinker)
249 {
250 	down_write(&shrinker_rwsem);
251 	list_del(&shrinker->list);
252 	up_write(&shrinker_rwsem);
253 	kfree(shrinker->nr_deferred);
254 }
255 EXPORT_SYMBOL(unregister_shrinker);
256 
257 #define SHRINK_BATCH 128
258 
259 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
260 				    struct shrinker *shrinker,
261 				    unsigned long nr_scanned,
262 				    unsigned long nr_eligible)
263 {
264 	unsigned long freed = 0;
265 	unsigned long long delta;
266 	long total_scan;
267 	long freeable;
268 	long nr;
269 	long new_nr;
270 	int nid = shrinkctl->nid;
271 	long batch_size = shrinker->batch ? shrinker->batch
272 					  : SHRINK_BATCH;
273 
274 	freeable = shrinker->count_objects(shrinker, shrinkctl);
275 	if (freeable == 0)
276 		return 0;
277 
278 	/*
279 	 * copy the current shrinker scan count into a local variable
280 	 * and zero it so that other concurrent shrinker invocations
281 	 * don't also do this scanning work.
282 	 */
283 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
284 
285 	total_scan = nr;
286 	delta = (4 * nr_scanned) / shrinker->seeks;
287 	delta *= freeable;
288 	do_div(delta, nr_eligible + 1);
289 	total_scan += delta;
290 	if (total_scan < 0) {
291 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
292 		       shrinker->scan_objects, total_scan);
293 		total_scan = freeable;
294 	}
295 
296 	/*
297 	 * We need to avoid excessive windup on filesystem shrinkers
298 	 * due to large numbers of GFP_NOFS allocations causing the
299 	 * shrinkers to return -1 all the time. This results in a large
300 	 * nr being built up so when a shrink that can do some work
301 	 * comes along it empties the entire cache due to nr >>>
302 	 * freeable. This is bad for sustaining a working set in
303 	 * memory.
304 	 *
305 	 * Hence only allow the shrinker to scan the entire cache when
306 	 * a large delta change is calculated directly.
307 	 */
308 	if (delta < freeable / 4)
309 		total_scan = min(total_scan, freeable / 2);
310 
311 	/*
312 	 * Avoid risking looping forever due to too large nr value:
313 	 * never try to free more than twice the estimate number of
314 	 * freeable entries.
315 	 */
316 	if (total_scan > freeable * 2)
317 		total_scan = freeable * 2;
318 
319 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
320 				   nr_scanned, nr_eligible,
321 				   freeable, delta, total_scan);
322 
323 	/*
324 	 * Normally, we should not scan less than batch_size objects in one
325 	 * pass to avoid too frequent shrinker calls, but if the slab has less
326 	 * than batch_size objects in total and we are really tight on memory,
327 	 * we will try to reclaim all available objects, otherwise we can end
328 	 * up failing allocations although there are plenty of reclaimable
329 	 * objects spread over several slabs with usage less than the
330 	 * batch_size.
331 	 *
332 	 * We detect the "tight on memory" situations by looking at the total
333 	 * number of objects we want to scan (total_scan). If it is greater
334 	 * than the total number of objects on slab (freeable), we must be
335 	 * scanning at high prio and therefore should try to reclaim as much as
336 	 * possible.
337 	 */
338 	while (total_scan >= batch_size ||
339 	       total_scan >= freeable) {
340 		unsigned long ret;
341 		unsigned long nr_to_scan = min(batch_size, total_scan);
342 
343 		shrinkctl->nr_to_scan = nr_to_scan;
344 		ret = shrinker->scan_objects(shrinker, shrinkctl);
345 		if (ret == SHRINK_STOP)
346 			break;
347 		freed += ret;
348 
349 		count_vm_events(SLABS_SCANNED, nr_to_scan);
350 		total_scan -= nr_to_scan;
351 
352 		cond_resched();
353 	}
354 
355 	/*
356 	 * move the unused scan count back into the shrinker in a
357 	 * manner that handles concurrent updates. If we exhausted the
358 	 * scan, there is no need to do an update.
359 	 */
360 	if (total_scan > 0)
361 		new_nr = atomic_long_add_return(total_scan,
362 						&shrinker->nr_deferred[nid]);
363 	else
364 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
365 
366 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
367 	return freed;
368 }
369 
370 /**
371  * shrink_slab - shrink slab caches
372  * @gfp_mask: allocation context
373  * @nid: node whose slab caches to target
374  * @memcg: memory cgroup whose slab caches to target
375  * @nr_scanned: pressure numerator
376  * @nr_eligible: pressure denominator
377  *
378  * Call the shrink functions to age shrinkable caches.
379  *
380  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
381  * unaware shrinkers will receive a node id of 0 instead.
382  *
383  * @memcg specifies the memory cgroup to target. If it is not NULL,
384  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
385  * objects from the memory cgroup specified. Otherwise, only unaware
386  * shrinkers are called.
387  *
388  * @nr_scanned and @nr_eligible form a ratio that indicate how much of
389  * the available objects should be scanned.  Page reclaim for example
390  * passes the number of pages scanned and the number of pages on the
391  * LRU lists that it considered on @nid, plus a bias in @nr_scanned
392  * when it encountered mapped pages.  The ratio is further biased by
393  * the ->seeks setting of the shrink function, which indicates the
394  * cost to recreate an object relative to that of an LRU page.
395  *
396  * Returns the number of reclaimed slab objects.
397  */
398 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
399 				 struct mem_cgroup *memcg,
400 				 unsigned long nr_scanned,
401 				 unsigned long nr_eligible)
402 {
403 	struct shrinker *shrinker;
404 	unsigned long freed = 0;
405 
406 	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
407 		return 0;
408 
409 	if (nr_scanned == 0)
410 		nr_scanned = SWAP_CLUSTER_MAX;
411 
412 	if (!down_read_trylock(&shrinker_rwsem)) {
413 		/*
414 		 * If we would return 0, our callers would understand that we
415 		 * have nothing else to shrink and give up trying. By returning
416 		 * 1 we keep it going and assume we'll be able to shrink next
417 		 * time.
418 		 */
419 		freed = 1;
420 		goto out;
421 	}
422 
423 	list_for_each_entry(shrinker, &shrinker_list, list) {
424 		struct shrink_control sc = {
425 			.gfp_mask = gfp_mask,
426 			.nid = nid,
427 			.memcg = memcg,
428 		};
429 
430 		/*
431 		 * If kernel memory accounting is disabled, we ignore
432 		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
433 		 * passing NULL for memcg.
434 		 */
435 		if (memcg_kmem_enabled() &&
436 		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
437 			continue;
438 
439 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
440 			sc.nid = 0;
441 
442 		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
443 	}
444 
445 	up_read(&shrinker_rwsem);
446 out:
447 	cond_resched();
448 	return freed;
449 }
450 
451 void drop_slab_node(int nid)
452 {
453 	unsigned long freed;
454 
455 	do {
456 		struct mem_cgroup *memcg = NULL;
457 
458 		freed = 0;
459 		do {
460 			freed += shrink_slab(GFP_KERNEL, nid, memcg,
461 					     1000, 1000);
462 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
463 	} while (freed > 10);
464 }
465 
466 void drop_slab(void)
467 {
468 	int nid;
469 
470 	for_each_online_node(nid)
471 		drop_slab_node(nid);
472 }
473 
474 static inline int is_page_cache_freeable(struct page *page)
475 {
476 	/*
477 	 * A freeable page cache page is referenced only by the caller
478 	 * that isolated the page, the page cache radix tree and
479 	 * optional buffer heads at page->private.
480 	 */
481 	return page_count(page) - page_has_private(page) == 2;
482 }
483 
484 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
485 {
486 	if (current->flags & PF_SWAPWRITE)
487 		return 1;
488 	if (!inode_write_congested(inode))
489 		return 1;
490 	if (inode_to_bdi(inode) == current->backing_dev_info)
491 		return 1;
492 	return 0;
493 }
494 
495 /*
496  * We detected a synchronous write error writing a page out.  Probably
497  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
498  * fsync(), msync() or close().
499  *
500  * The tricky part is that after writepage we cannot touch the mapping: nothing
501  * prevents it from being freed up.  But we have a ref on the page and once
502  * that page is locked, the mapping is pinned.
503  *
504  * We're allowed to run sleeping lock_page() here because we know the caller has
505  * __GFP_FS.
506  */
507 static void handle_write_error(struct address_space *mapping,
508 				struct page *page, int error)
509 {
510 	lock_page(page);
511 	if (page_mapping(page) == mapping)
512 		mapping_set_error(mapping, error);
513 	unlock_page(page);
514 }
515 
516 /* possible outcome of pageout() */
517 typedef enum {
518 	/* failed to write page out, page is locked */
519 	PAGE_KEEP,
520 	/* move page to the active list, page is locked */
521 	PAGE_ACTIVATE,
522 	/* page has been sent to the disk successfully, page is unlocked */
523 	PAGE_SUCCESS,
524 	/* page is clean and locked */
525 	PAGE_CLEAN,
526 } pageout_t;
527 
528 /*
529  * pageout is called by shrink_page_list() for each dirty page.
530  * Calls ->writepage().
531  */
532 static pageout_t pageout(struct page *page, struct address_space *mapping,
533 			 struct scan_control *sc)
534 {
535 	/*
536 	 * If the page is dirty, only perform writeback if that write
537 	 * will be non-blocking.  To prevent this allocation from being
538 	 * stalled by pagecache activity.  But note that there may be
539 	 * stalls if we need to run get_block().  We could test
540 	 * PagePrivate for that.
541 	 *
542 	 * If this process is currently in __generic_file_write_iter() against
543 	 * this page's queue, we can perform writeback even if that
544 	 * will block.
545 	 *
546 	 * If the page is swapcache, write it back even if that would
547 	 * block, for some throttling. This happens by accident, because
548 	 * swap_backing_dev_info is bust: it doesn't reflect the
549 	 * congestion state of the swapdevs.  Easy to fix, if needed.
550 	 */
551 	if (!is_page_cache_freeable(page))
552 		return PAGE_KEEP;
553 	if (!mapping) {
554 		/*
555 		 * Some data journaling orphaned pages can have
556 		 * page->mapping == NULL while being dirty with clean buffers.
557 		 */
558 		if (page_has_private(page)) {
559 			if (try_to_free_buffers(page)) {
560 				ClearPageDirty(page);
561 				pr_info("%s: orphaned page\n", __func__);
562 				return PAGE_CLEAN;
563 			}
564 		}
565 		return PAGE_KEEP;
566 	}
567 	if (mapping->a_ops->writepage == NULL)
568 		return PAGE_ACTIVATE;
569 	if (!may_write_to_inode(mapping->host, sc))
570 		return PAGE_KEEP;
571 
572 	if (clear_page_dirty_for_io(page)) {
573 		int res;
574 		struct writeback_control wbc = {
575 			.sync_mode = WB_SYNC_NONE,
576 			.nr_to_write = SWAP_CLUSTER_MAX,
577 			.range_start = 0,
578 			.range_end = LLONG_MAX,
579 			.for_reclaim = 1,
580 		};
581 
582 		SetPageReclaim(page);
583 		res = mapping->a_ops->writepage(page, &wbc);
584 		if (res < 0)
585 			handle_write_error(mapping, page, res);
586 		if (res == AOP_WRITEPAGE_ACTIVATE) {
587 			ClearPageReclaim(page);
588 			return PAGE_ACTIVATE;
589 		}
590 
591 		if (!PageWriteback(page)) {
592 			/* synchronous write or broken a_ops? */
593 			ClearPageReclaim(page);
594 		}
595 		trace_mm_vmscan_writepage(page);
596 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
597 		return PAGE_SUCCESS;
598 	}
599 
600 	return PAGE_CLEAN;
601 }
602 
603 /*
604  * Same as remove_mapping, but if the page is removed from the mapping, it
605  * gets returned with a refcount of 0.
606  */
607 static int __remove_mapping(struct address_space *mapping, struct page *page,
608 			    bool reclaimed)
609 {
610 	unsigned long flags;
611 
612 	BUG_ON(!PageLocked(page));
613 	BUG_ON(mapping != page_mapping(page));
614 
615 	spin_lock_irqsave(&mapping->tree_lock, flags);
616 	/*
617 	 * The non racy check for a busy page.
618 	 *
619 	 * Must be careful with the order of the tests. When someone has
620 	 * a ref to the page, it may be possible that they dirty it then
621 	 * drop the reference. So if PageDirty is tested before page_count
622 	 * here, then the following race may occur:
623 	 *
624 	 * get_user_pages(&page);
625 	 * [user mapping goes away]
626 	 * write_to(page);
627 	 *				!PageDirty(page)    [good]
628 	 * SetPageDirty(page);
629 	 * put_page(page);
630 	 *				!page_count(page)   [good, discard it]
631 	 *
632 	 * [oops, our write_to data is lost]
633 	 *
634 	 * Reversing the order of the tests ensures such a situation cannot
635 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
636 	 * load is not satisfied before that of page->_refcount.
637 	 *
638 	 * Note that if SetPageDirty is always performed via set_page_dirty,
639 	 * and thus under tree_lock, then this ordering is not required.
640 	 */
641 	if (!page_ref_freeze(page, 2))
642 		goto cannot_free;
643 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
644 	if (unlikely(PageDirty(page))) {
645 		page_ref_unfreeze(page, 2);
646 		goto cannot_free;
647 	}
648 
649 	if (PageSwapCache(page)) {
650 		swp_entry_t swap = { .val = page_private(page) };
651 		mem_cgroup_swapout(page, swap);
652 		__delete_from_swap_cache(page);
653 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
654 		swapcache_free(swap);
655 	} else {
656 		void (*freepage)(struct page *);
657 		void *shadow = NULL;
658 
659 		freepage = mapping->a_ops->freepage;
660 		/*
661 		 * Remember a shadow entry for reclaimed file cache in
662 		 * order to detect refaults, thus thrashing, later on.
663 		 *
664 		 * But don't store shadows in an address space that is
665 		 * already exiting.  This is not just an optizimation,
666 		 * inode reclaim needs to empty out the radix tree or
667 		 * the nodes are lost.  Don't plant shadows behind its
668 		 * back.
669 		 *
670 		 * We also don't store shadows for DAX mappings because the
671 		 * only page cache pages found in these are zero pages
672 		 * covering holes, and because we don't want to mix DAX
673 		 * exceptional entries and shadow exceptional entries in the
674 		 * same page_tree.
675 		 */
676 		if (reclaimed && page_is_file_cache(page) &&
677 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
678 			shadow = workingset_eviction(mapping, page);
679 		__delete_from_page_cache(page, shadow);
680 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
681 
682 		if (freepage != NULL)
683 			freepage(page);
684 	}
685 
686 	return 1;
687 
688 cannot_free:
689 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
690 	return 0;
691 }
692 
693 /*
694  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
695  * someone else has a ref on the page, abort and return 0.  If it was
696  * successfully detached, return 1.  Assumes the caller has a single ref on
697  * this page.
698  */
699 int remove_mapping(struct address_space *mapping, struct page *page)
700 {
701 	if (__remove_mapping(mapping, page, false)) {
702 		/*
703 		 * Unfreezing the refcount with 1 rather than 2 effectively
704 		 * drops the pagecache ref for us without requiring another
705 		 * atomic operation.
706 		 */
707 		page_ref_unfreeze(page, 1);
708 		return 1;
709 	}
710 	return 0;
711 }
712 
713 /**
714  * putback_lru_page - put previously isolated page onto appropriate LRU list
715  * @page: page to be put back to appropriate lru list
716  *
717  * Add previously isolated @page to appropriate LRU list.
718  * Page may still be unevictable for other reasons.
719  *
720  * lru_lock must not be held, interrupts must be enabled.
721  */
722 void putback_lru_page(struct page *page)
723 {
724 	bool is_unevictable;
725 	int was_unevictable = PageUnevictable(page);
726 
727 	VM_BUG_ON_PAGE(PageLRU(page), page);
728 
729 redo:
730 	ClearPageUnevictable(page);
731 
732 	if (page_evictable(page)) {
733 		/*
734 		 * For evictable pages, we can use the cache.
735 		 * In event of a race, worst case is we end up with an
736 		 * unevictable page on [in]active list.
737 		 * We know how to handle that.
738 		 */
739 		is_unevictable = false;
740 		lru_cache_add(page);
741 	} else {
742 		/*
743 		 * Put unevictable pages directly on zone's unevictable
744 		 * list.
745 		 */
746 		is_unevictable = true;
747 		add_page_to_unevictable_list(page);
748 		/*
749 		 * When racing with an mlock or AS_UNEVICTABLE clearing
750 		 * (page is unlocked) make sure that if the other thread
751 		 * does not observe our setting of PG_lru and fails
752 		 * isolation/check_move_unevictable_pages,
753 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
754 		 * the page back to the evictable list.
755 		 *
756 		 * The other side is TestClearPageMlocked() or shmem_lock().
757 		 */
758 		smp_mb();
759 	}
760 
761 	/*
762 	 * page's status can change while we move it among lru. If an evictable
763 	 * page is on unevictable list, it never be freed. To avoid that,
764 	 * check after we added it to the list, again.
765 	 */
766 	if (is_unevictable && page_evictable(page)) {
767 		if (!isolate_lru_page(page)) {
768 			put_page(page);
769 			goto redo;
770 		}
771 		/* This means someone else dropped this page from LRU
772 		 * So, it will be freed or putback to LRU again. There is
773 		 * nothing to do here.
774 		 */
775 	}
776 
777 	if (was_unevictable && !is_unevictable)
778 		count_vm_event(UNEVICTABLE_PGRESCUED);
779 	else if (!was_unevictable && is_unevictable)
780 		count_vm_event(UNEVICTABLE_PGCULLED);
781 
782 	put_page(page);		/* drop ref from isolate */
783 }
784 
785 enum page_references {
786 	PAGEREF_RECLAIM,
787 	PAGEREF_RECLAIM_CLEAN,
788 	PAGEREF_KEEP,
789 	PAGEREF_ACTIVATE,
790 };
791 
792 static enum page_references page_check_references(struct page *page,
793 						  struct scan_control *sc)
794 {
795 	int referenced_ptes, referenced_page;
796 	unsigned long vm_flags;
797 
798 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
799 					  &vm_flags);
800 	referenced_page = TestClearPageReferenced(page);
801 
802 	/*
803 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
804 	 * move the page to the unevictable list.
805 	 */
806 	if (vm_flags & VM_LOCKED)
807 		return PAGEREF_RECLAIM;
808 
809 	if (referenced_ptes) {
810 		if (PageSwapBacked(page))
811 			return PAGEREF_ACTIVATE;
812 		/*
813 		 * All mapped pages start out with page table
814 		 * references from the instantiating fault, so we need
815 		 * to look twice if a mapped file page is used more
816 		 * than once.
817 		 *
818 		 * Mark it and spare it for another trip around the
819 		 * inactive list.  Another page table reference will
820 		 * lead to its activation.
821 		 *
822 		 * Note: the mark is set for activated pages as well
823 		 * so that recently deactivated but used pages are
824 		 * quickly recovered.
825 		 */
826 		SetPageReferenced(page);
827 
828 		if (referenced_page || referenced_ptes > 1)
829 			return PAGEREF_ACTIVATE;
830 
831 		/*
832 		 * Activate file-backed executable pages after first usage.
833 		 */
834 		if (vm_flags & VM_EXEC)
835 			return PAGEREF_ACTIVATE;
836 
837 		return PAGEREF_KEEP;
838 	}
839 
840 	/* Reclaim if clean, defer dirty pages to writeback */
841 	if (referenced_page && !PageSwapBacked(page))
842 		return PAGEREF_RECLAIM_CLEAN;
843 
844 	return PAGEREF_RECLAIM;
845 }
846 
847 /* Check if a page is dirty or under writeback */
848 static void page_check_dirty_writeback(struct page *page,
849 				       bool *dirty, bool *writeback)
850 {
851 	struct address_space *mapping;
852 
853 	/*
854 	 * Anonymous pages are not handled by flushers and must be written
855 	 * from reclaim context. Do not stall reclaim based on them
856 	 */
857 	if (!page_is_file_cache(page)) {
858 		*dirty = false;
859 		*writeback = false;
860 		return;
861 	}
862 
863 	/* By default assume that the page flags are accurate */
864 	*dirty = PageDirty(page);
865 	*writeback = PageWriteback(page);
866 
867 	/* Verify dirty/writeback state if the filesystem supports it */
868 	if (!page_has_private(page))
869 		return;
870 
871 	mapping = page_mapping(page);
872 	if (mapping && mapping->a_ops->is_dirty_writeback)
873 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
874 }
875 
876 /*
877  * shrink_page_list() returns the number of reclaimed pages
878  */
879 static unsigned long shrink_page_list(struct list_head *page_list,
880 				      struct zone *zone,
881 				      struct scan_control *sc,
882 				      enum ttu_flags ttu_flags,
883 				      unsigned long *ret_nr_dirty,
884 				      unsigned long *ret_nr_unqueued_dirty,
885 				      unsigned long *ret_nr_congested,
886 				      unsigned long *ret_nr_writeback,
887 				      unsigned long *ret_nr_immediate,
888 				      bool force_reclaim)
889 {
890 	LIST_HEAD(ret_pages);
891 	LIST_HEAD(free_pages);
892 	int pgactivate = 0;
893 	unsigned long nr_unqueued_dirty = 0;
894 	unsigned long nr_dirty = 0;
895 	unsigned long nr_congested = 0;
896 	unsigned long nr_reclaimed = 0;
897 	unsigned long nr_writeback = 0;
898 	unsigned long nr_immediate = 0;
899 
900 	cond_resched();
901 
902 	while (!list_empty(page_list)) {
903 		struct address_space *mapping;
904 		struct page *page;
905 		int may_enter_fs;
906 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
907 		bool dirty, writeback;
908 		bool lazyfree = false;
909 		int ret = SWAP_SUCCESS;
910 
911 		cond_resched();
912 
913 		page = lru_to_page(page_list);
914 		list_del(&page->lru);
915 
916 		if (!trylock_page(page))
917 			goto keep;
918 
919 		VM_BUG_ON_PAGE(PageActive(page), page);
920 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
921 
922 		sc->nr_scanned++;
923 
924 		if (unlikely(!page_evictable(page)))
925 			goto cull_mlocked;
926 
927 		if (!sc->may_unmap && page_mapped(page))
928 			goto keep_locked;
929 
930 		/* Double the slab pressure for mapped and swapcache pages */
931 		if (page_mapped(page) || PageSwapCache(page))
932 			sc->nr_scanned++;
933 
934 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
935 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
936 
937 		/*
938 		 * The number of dirty pages determines if a zone is marked
939 		 * reclaim_congested which affects wait_iff_congested. kswapd
940 		 * will stall and start writing pages if the tail of the LRU
941 		 * is all dirty unqueued pages.
942 		 */
943 		page_check_dirty_writeback(page, &dirty, &writeback);
944 		if (dirty || writeback)
945 			nr_dirty++;
946 
947 		if (dirty && !writeback)
948 			nr_unqueued_dirty++;
949 
950 		/*
951 		 * Treat this page as congested if the underlying BDI is or if
952 		 * pages are cycling through the LRU so quickly that the
953 		 * pages marked for immediate reclaim are making it to the
954 		 * end of the LRU a second time.
955 		 */
956 		mapping = page_mapping(page);
957 		if (((dirty || writeback) && mapping &&
958 		     inode_write_congested(mapping->host)) ||
959 		    (writeback && PageReclaim(page)))
960 			nr_congested++;
961 
962 		/*
963 		 * If a page at the tail of the LRU is under writeback, there
964 		 * are three cases to consider.
965 		 *
966 		 * 1) If reclaim is encountering an excessive number of pages
967 		 *    under writeback and this page is both under writeback and
968 		 *    PageReclaim then it indicates that pages are being queued
969 		 *    for IO but are being recycled through the LRU before the
970 		 *    IO can complete. Waiting on the page itself risks an
971 		 *    indefinite stall if it is impossible to writeback the
972 		 *    page due to IO error or disconnected storage so instead
973 		 *    note that the LRU is being scanned too quickly and the
974 		 *    caller can stall after page list has been processed.
975 		 *
976 		 * 2) Global or new memcg reclaim encounters a page that is
977 		 *    not marked for immediate reclaim, or the caller does not
978 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
979 		 *    not to fs). In this case mark the page for immediate
980 		 *    reclaim and continue scanning.
981 		 *
982 		 *    Require may_enter_fs because we would wait on fs, which
983 		 *    may not have submitted IO yet. And the loop driver might
984 		 *    enter reclaim, and deadlock if it waits on a page for
985 		 *    which it is needed to do the write (loop masks off
986 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
987 		 *    would probably show more reasons.
988 		 *
989 		 * 3) Legacy memcg encounters a page that is already marked
990 		 *    PageReclaim. memcg does not have any dirty pages
991 		 *    throttling so we could easily OOM just because too many
992 		 *    pages are in writeback and there is nothing else to
993 		 *    reclaim. Wait for the writeback to complete.
994 		 */
995 		if (PageWriteback(page)) {
996 			/* Case 1 above */
997 			if (current_is_kswapd() &&
998 			    PageReclaim(page) &&
999 			    test_bit(ZONE_WRITEBACK, &zone->flags)) {
1000 				nr_immediate++;
1001 				goto keep_locked;
1002 
1003 			/* Case 2 above */
1004 			} else if (sane_reclaim(sc) ||
1005 			    !PageReclaim(page) || !may_enter_fs) {
1006 				/*
1007 				 * This is slightly racy - end_page_writeback()
1008 				 * might have just cleared PageReclaim, then
1009 				 * setting PageReclaim here end up interpreted
1010 				 * as PageReadahead - but that does not matter
1011 				 * enough to care.  What we do want is for this
1012 				 * page to have PageReclaim set next time memcg
1013 				 * reclaim reaches the tests above, so it will
1014 				 * then wait_on_page_writeback() to avoid OOM;
1015 				 * and it's also appropriate in global reclaim.
1016 				 */
1017 				SetPageReclaim(page);
1018 				nr_writeback++;
1019 				goto keep_locked;
1020 
1021 			/* Case 3 above */
1022 			} else {
1023 				unlock_page(page);
1024 				wait_on_page_writeback(page);
1025 				/* then go back and try same page again */
1026 				list_add_tail(&page->lru, page_list);
1027 				continue;
1028 			}
1029 		}
1030 
1031 		if (!force_reclaim)
1032 			references = page_check_references(page, sc);
1033 
1034 		switch (references) {
1035 		case PAGEREF_ACTIVATE:
1036 			goto activate_locked;
1037 		case PAGEREF_KEEP:
1038 			goto keep_locked;
1039 		case PAGEREF_RECLAIM:
1040 		case PAGEREF_RECLAIM_CLEAN:
1041 			; /* try to reclaim the page below */
1042 		}
1043 
1044 		/*
1045 		 * Anonymous process memory has backing store?
1046 		 * Try to allocate it some swap space here.
1047 		 */
1048 		if (PageAnon(page) && !PageSwapCache(page)) {
1049 			if (!(sc->gfp_mask & __GFP_IO))
1050 				goto keep_locked;
1051 			if (!add_to_swap(page, page_list))
1052 				goto activate_locked;
1053 			lazyfree = true;
1054 			may_enter_fs = 1;
1055 
1056 			/* Adding to swap updated mapping */
1057 			mapping = page_mapping(page);
1058 		}
1059 
1060 		/*
1061 		 * The page is mapped into the page tables of one or more
1062 		 * processes. Try to unmap it here.
1063 		 */
1064 		if (page_mapped(page) && mapping) {
1065 			switch (ret = try_to_unmap(page, lazyfree ?
1066 				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1067 				(ttu_flags | TTU_BATCH_FLUSH))) {
1068 			case SWAP_FAIL:
1069 				goto activate_locked;
1070 			case SWAP_AGAIN:
1071 				goto keep_locked;
1072 			case SWAP_MLOCK:
1073 				goto cull_mlocked;
1074 			case SWAP_LZFREE:
1075 				goto lazyfree;
1076 			case SWAP_SUCCESS:
1077 				; /* try to free the page below */
1078 			}
1079 		}
1080 
1081 		if (PageDirty(page)) {
1082 			/*
1083 			 * Only kswapd can writeback filesystem pages to
1084 			 * avoid risk of stack overflow but only writeback
1085 			 * if many dirty pages have been encountered.
1086 			 */
1087 			if (page_is_file_cache(page) &&
1088 					(!current_is_kswapd() ||
1089 					 !test_bit(ZONE_DIRTY, &zone->flags))) {
1090 				/*
1091 				 * Immediately reclaim when written back.
1092 				 * Similar in principal to deactivate_page()
1093 				 * except we already have the page isolated
1094 				 * and know it's dirty
1095 				 */
1096 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1097 				SetPageReclaim(page);
1098 
1099 				goto keep_locked;
1100 			}
1101 
1102 			if (references == PAGEREF_RECLAIM_CLEAN)
1103 				goto keep_locked;
1104 			if (!may_enter_fs)
1105 				goto keep_locked;
1106 			if (!sc->may_writepage)
1107 				goto keep_locked;
1108 
1109 			/*
1110 			 * Page is dirty. Flush the TLB if a writable entry
1111 			 * potentially exists to avoid CPU writes after IO
1112 			 * starts and then write it out here.
1113 			 */
1114 			try_to_unmap_flush_dirty();
1115 			switch (pageout(page, mapping, sc)) {
1116 			case PAGE_KEEP:
1117 				goto keep_locked;
1118 			case PAGE_ACTIVATE:
1119 				goto activate_locked;
1120 			case PAGE_SUCCESS:
1121 				if (PageWriteback(page))
1122 					goto keep;
1123 				if (PageDirty(page))
1124 					goto keep;
1125 
1126 				/*
1127 				 * A synchronous write - probably a ramdisk.  Go
1128 				 * ahead and try to reclaim the page.
1129 				 */
1130 				if (!trylock_page(page))
1131 					goto keep;
1132 				if (PageDirty(page) || PageWriteback(page))
1133 					goto keep_locked;
1134 				mapping = page_mapping(page);
1135 			case PAGE_CLEAN:
1136 				; /* try to free the page below */
1137 			}
1138 		}
1139 
1140 		/*
1141 		 * If the page has buffers, try to free the buffer mappings
1142 		 * associated with this page. If we succeed we try to free
1143 		 * the page as well.
1144 		 *
1145 		 * We do this even if the page is PageDirty().
1146 		 * try_to_release_page() does not perform I/O, but it is
1147 		 * possible for a page to have PageDirty set, but it is actually
1148 		 * clean (all its buffers are clean).  This happens if the
1149 		 * buffers were written out directly, with submit_bh(). ext3
1150 		 * will do this, as well as the blockdev mapping.
1151 		 * try_to_release_page() will discover that cleanness and will
1152 		 * drop the buffers and mark the page clean - it can be freed.
1153 		 *
1154 		 * Rarely, pages can have buffers and no ->mapping.  These are
1155 		 * the pages which were not successfully invalidated in
1156 		 * truncate_complete_page().  We try to drop those buffers here
1157 		 * and if that worked, and the page is no longer mapped into
1158 		 * process address space (page_count == 1) it can be freed.
1159 		 * Otherwise, leave the page on the LRU so it is swappable.
1160 		 */
1161 		if (page_has_private(page)) {
1162 			if (!try_to_release_page(page, sc->gfp_mask))
1163 				goto activate_locked;
1164 			if (!mapping && page_count(page) == 1) {
1165 				unlock_page(page);
1166 				if (put_page_testzero(page))
1167 					goto free_it;
1168 				else {
1169 					/*
1170 					 * rare race with speculative reference.
1171 					 * the speculative reference will free
1172 					 * this page shortly, so we may
1173 					 * increment nr_reclaimed here (and
1174 					 * leave it off the LRU).
1175 					 */
1176 					nr_reclaimed++;
1177 					continue;
1178 				}
1179 			}
1180 		}
1181 
1182 lazyfree:
1183 		if (!mapping || !__remove_mapping(mapping, page, true))
1184 			goto keep_locked;
1185 
1186 		/*
1187 		 * At this point, we have no other references and there is
1188 		 * no way to pick any more up (removed from LRU, removed
1189 		 * from pagecache). Can use non-atomic bitops now (and
1190 		 * we obviously don't have to worry about waking up a process
1191 		 * waiting on the page lock, because there are no references.
1192 		 */
1193 		__ClearPageLocked(page);
1194 free_it:
1195 		if (ret == SWAP_LZFREE)
1196 			count_vm_event(PGLAZYFREED);
1197 
1198 		nr_reclaimed++;
1199 
1200 		/*
1201 		 * Is there need to periodically free_page_list? It would
1202 		 * appear not as the counts should be low
1203 		 */
1204 		list_add(&page->lru, &free_pages);
1205 		continue;
1206 
1207 cull_mlocked:
1208 		if (PageSwapCache(page))
1209 			try_to_free_swap(page);
1210 		unlock_page(page);
1211 		list_add(&page->lru, &ret_pages);
1212 		continue;
1213 
1214 activate_locked:
1215 		/* Not a candidate for swapping, so reclaim swap space. */
1216 		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1217 			try_to_free_swap(page);
1218 		VM_BUG_ON_PAGE(PageActive(page), page);
1219 		SetPageActive(page);
1220 		pgactivate++;
1221 keep_locked:
1222 		unlock_page(page);
1223 keep:
1224 		list_add(&page->lru, &ret_pages);
1225 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1226 	}
1227 
1228 	mem_cgroup_uncharge_list(&free_pages);
1229 	try_to_unmap_flush();
1230 	free_hot_cold_page_list(&free_pages, true);
1231 
1232 	list_splice(&ret_pages, page_list);
1233 	count_vm_events(PGACTIVATE, pgactivate);
1234 
1235 	*ret_nr_dirty += nr_dirty;
1236 	*ret_nr_congested += nr_congested;
1237 	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1238 	*ret_nr_writeback += nr_writeback;
1239 	*ret_nr_immediate += nr_immediate;
1240 	return nr_reclaimed;
1241 }
1242 
1243 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1244 					    struct list_head *page_list)
1245 {
1246 	struct scan_control sc = {
1247 		.gfp_mask = GFP_KERNEL,
1248 		.priority = DEF_PRIORITY,
1249 		.may_unmap = 1,
1250 	};
1251 	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1252 	struct page *page, *next;
1253 	LIST_HEAD(clean_pages);
1254 
1255 	list_for_each_entry_safe(page, next, page_list, lru) {
1256 		if (page_is_file_cache(page) && !PageDirty(page) &&
1257 		    !isolated_balloon_page(page)) {
1258 			ClearPageActive(page);
1259 			list_move(&page->lru, &clean_pages);
1260 		}
1261 	}
1262 
1263 	ret = shrink_page_list(&clean_pages, zone, &sc,
1264 			TTU_UNMAP|TTU_IGNORE_ACCESS,
1265 			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1266 	list_splice(&clean_pages, page_list);
1267 	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1268 	return ret;
1269 }
1270 
1271 /*
1272  * Attempt to remove the specified page from its LRU.  Only take this page
1273  * if it is of the appropriate PageActive status.  Pages which are being
1274  * freed elsewhere are also ignored.
1275  *
1276  * page:	page to consider
1277  * mode:	one of the LRU isolation modes defined above
1278  *
1279  * returns 0 on success, -ve errno on failure.
1280  */
1281 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1282 {
1283 	int ret = -EINVAL;
1284 
1285 	/* Only take pages on the LRU. */
1286 	if (!PageLRU(page))
1287 		return ret;
1288 
1289 	/* Compaction should not handle unevictable pages but CMA can do so */
1290 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1291 		return ret;
1292 
1293 	ret = -EBUSY;
1294 
1295 	/*
1296 	 * To minimise LRU disruption, the caller can indicate that it only
1297 	 * wants to isolate pages it will be able to operate on without
1298 	 * blocking - clean pages for the most part.
1299 	 *
1300 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1301 	 * is used by reclaim when it is cannot write to backing storage
1302 	 *
1303 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1304 	 * that it is possible to migrate without blocking
1305 	 */
1306 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1307 		/* All the caller can do on PageWriteback is block */
1308 		if (PageWriteback(page))
1309 			return ret;
1310 
1311 		if (PageDirty(page)) {
1312 			struct address_space *mapping;
1313 
1314 			/* ISOLATE_CLEAN means only clean pages */
1315 			if (mode & ISOLATE_CLEAN)
1316 				return ret;
1317 
1318 			/*
1319 			 * Only pages without mappings or that have a
1320 			 * ->migratepage callback are possible to migrate
1321 			 * without blocking
1322 			 */
1323 			mapping = page_mapping(page);
1324 			if (mapping && !mapping->a_ops->migratepage)
1325 				return ret;
1326 		}
1327 	}
1328 
1329 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1330 		return ret;
1331 
1332 	if (likely(get_page_unless_zero(page))) {
1333 		/*
1334 		 * Be careful not to clear PageLRU until after we're
1335 		 * sure the page is not being freed elsewhere -- the
1336 		 * page release code relies on it.
1337 		 */
1338 		ClearPageLRU(page);
1339 		ret = 0;
1340 	}
1341 
1342 	return ret;
1343 }
1344 
1345 /*
1346  * zone->lru_lock is heavily contended.  Some of the functions that
1347  * shrink the lists perform better by taking out a batch of pages
1348  * and working on them outside the LRU lock.
1349  *
1350  * For pagecache intensive workloads, this function is the hottest
1351  * spot in the kernel (apart from copy_*_user functions).
1352  *
1353  * Appropriate locks must be held before calling this function.
1354  *
1355  * @nr_to_scan:	The number of pages to look through on the list.
1356  * @lruvec:	The LRU vector to pull pages from.
1357  * @dst:	The temp list to put pages on to.
1358  * @nr_scanned:	The number of pages that were scanned.
1359  * @sc:		The scan_control struct for this reclaim session
1360  * @mode:	One of the LRU isolation modes
1361  * @lru:	LRU list id for isolating
1362  *
1363  * returns how many pages were moved onto *@dst.
1364  */
1365 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1366 		struct lruvec *lruvec, struct list_head *dst,
1367 		unsigned long *nr_scanned, struct scan_control *sc,
1368 		isolate_mode_t mode, enum lru_list lru)
1369 {
1370 	struct list_head *src = &lruvec->lists[lru];
1371 	unsigned long nr_taken = 0;
1372 	unsigned long scan;
1373 
1374 	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1375 					!list_empty(src); scan++) {
1376 		struct page *page;
1377 
1378 		page = lru_to_page(src);
1379 		prefetchw_prev_lru_page(page, src, flags);
1380 
1381 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1382 
1383 		switch (__isolate_lru_page(page, mode)) {
1384 		case 0:
1385 			nr_taken += hpage_nr_pages(page);
1386 			list_move(&page->lru, dst);
1387 			break;
1388 
1389 		case -EBUSY:
1390 			/* else it is being freed elsewhere */
1391 			list_move(&page->lru, src);
1392 			continue;
1393 
1394 		default:
1395 			BUG();
1396 		}
1397 	}
1398 
1399 	*nr_scanned = scan;
1400 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1401 				    nr_taken, mode, is_file_lru(lru));
1402 	return nr_taken;
1403 }
1404 
1405 /**
1406  * isolate_lru_page - tries to isolate a page from its LRU list
1407  * @page: page to isolate from its LRU list
1408  *
1409  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1410  * vmstat statistic corresponding to whatever LRU list the page was on.
1411  *
1412  * Returns 0 if the page was removed from an LRU list.
1413  * Returns -EBUSY if the page was not on an LRU list.
1414  *
1415  * The returned page will have PageLRU() cleared.  If it was found on
1416  * the active list, it will have PageActive set.  If it was found on
1417  * the unevictable list, it will have the PageUnevictable bit set. That flag
1418  * may need to be cleared by the caller before letting the page go.
1419  *
1420  * The vmstat statistic corresponding to the list on which the page was
1421  * found will be decremented.
1422  *
1423  * Restrictions:
1424  * (1) Must be called with an elevated refcount on the page. This is a
1425  *     fundamentnal difference from isolate_lru_pages (which is called
1426  *     without a stable reference).
1427  * (2) the lru_lock must not be held.
1428  * (3) interrupts must be enabled.
1429  */
1430 int isolate_lru_page(struct page *page)
1431 {
1432 	int ret = -EBUSY;
1433 
1434 	VM_BUG_ON_PAGE(!page_count(page), page);
1435 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1436 
1437 	if (PageLRU(page)) {
1438 		struct zone *zone = page_zone(page);
1439 		struct lruvec *lruvec;
1440 
1441 		spin_lock_irq(&zone->lru_lock);
1442 		lruvec = mem_cgroup_page_lruvec(page, zone);
1443 		if (PageLRU(page)) {
1444 			int lru = page_lru(page);
1445 			get_page(page);
1446 			ClearPageLRU(page);
1447 			del_page_from_lru_list(page, lruvec, lru);
1448 			ret = 0;
1449 		}
1450 		spin_unlock_irq(&zone->lru_lock);
1451 	}
1452 	return ret;
1453 }
1454 
1455 /*
1456  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1457  * then get resheduled. When there are massive number of tasks doing page
1458  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1459  * the LRU list will go small and be scanned faster than necessary, leading to
1460  * unnecessary swapping, thrashing and OOM.
1461  */
1462 static int too_many_isolated(struct zone *zone, int file,
1463 		struct scan_control *sc)
1464 {
1465 	unsigned long inactive, isolated;
1466 
1467 	if (current_is_kswapd())
1468 		return 0;
1469 
1470 	if (!sane_reclaim(sc))
1471 		return 0;
1472 
1473 	if (file) {
1474 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1475 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1476 	} else {
1477 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1478 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1479 	}
1480 
1481 	/*
1482 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1483 	 * won't get blocked by normal direct-reclaimers, forming a circular
1484 	 * deadlock.
1485 	 */
1486 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1487 		inactive >>= 3;
1488 
1489 	return isolated > inactive;
1490 }
1491 
1492 static noinline_for_stack void
1493 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1494 {
1495 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1496 	struct zone *zone = lruvec_zone(lruvec);
1497 	LIST_HEAD(pages_to_free);
1498 
1499 	/*
1500 	 * Put back any unfreeable pages.
1501 	 */
1502 	while (!list_empty(page_list)) {
1503 		struct page *page = lru_to_page(page_list);
1504 		int lru;
1505 
1506 		VM_BUG_ON_PAGE(PageLRU(page), page);
1507 		list_del(&page->lru);
1508 		if (unlikely(!page_evictable(page))) {
1509 			spin_unlock_irq(&zone->lru_lock);
1510 			putback_lru_page(page);
1511 			spin_lock_irq(&zone->lru_lock);
1512 			continue;
1513 		}
1514 
1515 		lruvec = mem_cgroup_page_lruvec(page, zone);
1516 
1517 		SetPageLRU(page);
1518 		lru = page_lru(page);
1519 		add_page_to_lru_list(page, lruvec, lru);
1520 
1521 		if (is_active_lru(lru)) {
1522 			int file = is_file_lru(lru);
1523 			int numpages = hpage_nr_pages(page);
1524 			reclaim_stat->recent_rotated[file] += numpages;
1525 		}
1526 		if (put_page_testzero(page)) {
1527 			__ClearPageLRU(page);
1528 			__ClearPageActive(page);
1529 			del_page_from_lru_list(page, lruvec, lru);
1530 
1531 			if (unlikely(PageCompound(page))) {
1532 				spin_unlock_irq(&zone->lru_lock);
1533 				mem_cgroup_uncharge(page);
1534 				(*get_compound_page_dtor(page))(page);
1535 				spin_lock_irq(&zone->lru_lock);
1536 			} else
1537 				list_add(&page->lru, &pages_to_free);
1538 		}
1539 	}
1540 
1541 	/*
1542 	 * To save our caller's stack, now use input list for pages to free.
1543 	 */
1544 	list_splice(&pages_to_free, page_list);
1545 }
1546 
1547 /*
1548  * If a kernel thread (such as nfsd for loop-back mounts) services
1549  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1550  * In that case we should only throttle if the backing device it is
1551  * writing to is congested.  In other cases it is safe to throttle.
1552  */
1553 static int current_may_throttle(void)
1554 {
1555 	return !(current->flags & PF_LESS_THROTTLE) ||
1556 		current->backing_dev_info == NULL ||
1557 		bdi_write_congested(current->backing_dev_info);
1558 }
1559 
1560 /*
1561  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1562  * of reclaimed pages
1563  */
1564 static noinline_for_stack unsigned long
1565 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1566 		     struct scan_control *sc, enum lru_list lru)
1567 {
1568 	LIST_HEAD(page_list);
1569 	unsigned long nr_scanned;
1570 	unsigned long nr_reclaimed = 0;
1571 	unsigned long nr_taken;
1572 	unsigned long nr_dirty = 0;
1573 	unsigned long nr_congested = 0;
1574 	unsigned long nr_unqueued_dirty = 0;
1575 	unsigned long nr_writeback = 0;
1576 	unsigned long nr_immediate = 0;
1577 	isolate_mode_t isolate_mode = 0;
1578 	int file = is_file_lru(lru);
1579 	struct zone *zone = lruvec_zone(lruvec);
1580 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1581 
1582 	while (unlikely(too_many_isolated(zone, file, sc))) {
1583 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1584 
1585 		/* We are about to die and free our memory. Return now. */
1586 		if (fatal_signal_pending(current))
1587 			return SWAP_CLUSTER_MAX;
1588 	}
1589 
1590 	lru_add_drain();
1591 
1592 	if (!sc->may_unmap)
1593 		isolate_mode |= ISOLATE_UNMAPPED;
1594 	if (!sc->may_writepage)
1595 		isolate_mode |= ISOLATE_CLEAN;
1596 
1597 	spin_lock_irq(&zone->lru_lock);
1598 
1599 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1600 				     &nr_scanned, sc, isolate_mode, lru);
1601 
1602 	update_lru_size(lruvec, lru, -nr_taken);
1603 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1604 	reclaim_stat->recent_scanned[file] += nr_taken;
1605 
1606 	if (global_reclaim(sc)) {
1607 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1608 		if (current_is_kswapd())
1609 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1610 		else
1611 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1612 	}
1613 	spin_unlock_irq(&zone->lru_lock);
1614 
1615 	if (nr_taken == 0)
1616 		return 0;
1617 
1618 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1619 				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1620 				&nr_writeback, &nr_immediate,
1621 				false);
1622 
1623 	spin_lock_irq(&zone->lru_lock);
1624 
1625 	if (global_reclaim(sc)) {
1626 		if (current_is_kswapd())
1627 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1628 					       nr_reclaimed);
1629 		else
1630 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1631 					       nr_reclaimed);
1632 	}
1633 
1634 	putback_inactive_pages(lruvec, &page_list);
1635 
1636 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1637 
1638 	spin_unlock_irq(&zone->lru_lock);
1639 
1640 	mem_cgroup_uncharge_list(&page_list);
1641 	free_hot_cold_page_list(&page_list, true);
1642 
1643 	/*
1644 	 * If reclaim is isolating dirty pages under writeback, it implies
1645 	 * that the long-lived page allocation rate is exceeding the page
1646 	 * laundering rate. Either the global limits are not being effective
1647 	 * at throttling processes due to the page distribution throughout
1648 	 * zones or there is heavy usage of a slow backing device. The
1649 	 * only option is to throttle from reclaim context which is not ideal
1650 	 * as there is no guarantee the dirtying process is throttled in the
1651 	 * same way balance_dirty_pages() manages.
1652 	 *
1653 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1654 	 * of pages under pages flagged for immediate reclaim and stall if any
1655 	 * are encountered in the nr_immediate check below.
1656 	 */
1657 	if (nr_writeback && nr_writeback == nr_taken)
1658 		set_bit(ZONE_WRITEBACK, &zone->flags);
1659 
1660 	/*
1661 	 * Legacy memcg will stall in page writeback so avoid forcibly
1662 	 * stalling here.
1663 	 */
1664 	if (sane_reclaim(sc)) {
1665 		/*
1666 		 * Tag a zone as congested if all the dirty pages scanned were
1667 		 * backed by a congested BDI and wait_iff_congested will stall.
1668 		 */
1669 		if (nr_dirty && nr_dirty == nr_congested)
1670 			set_bit(ZONE_CONGESTED, &zone->flags);
1671 
1672 		/*
1673 		 * If dirty pages are scanned that are not queued for IO, it
1674 		 * implies that flushers are not keeping up. In this case, flag
1675 		 * the zone ZONE_DIRTY and kswapd will start writing pages from
1676 		 * reclaim context.
1677 		 */
1678 		if (nr_unqueued_dirty == nr_taken)
1679 			set_bit(ZONE_DIRTY, &zone->flags);
1680 
1681 		/*
1682 		 * If kswapd scans pages marked marked for immediate
1683 		 * reclaim and under writeback (nr_immediate), it implies
1684 		 * that pages are cycling through the LRU faster than
1685 		 * they are written so also forcibly stall.
1686 		 */
1687 		if (nr_immediate && current_may_throttle())
1688 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1689 	}
1690 
1691 	/*
1692 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1693 	 * is congested. Allow kswapd to continue until it starts encountering
1694 	 * unqueued dirty pages or cycling through the LRU too quickly.
1695 	 */
1696 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1697 	    current_may_throttle())
1698 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1699 
1700 	trace_mm_vmscan_lru_shrink_inactive(zone, nr_scanned, nr_reclaimed,
1701 			sc->priority, file);
1702 	return nr_reclaimed;
1703 }
1704 
1705 /*
1706  * This moves pages from the active list to the inactive list.
1707  *
1708  * We move them the other way if the page is referenced by one or more
1709  * processes, from rmap.
1710  *
1711  * If the pages are mostly unmapped, the processing is fast and it is
1712  * appropriate to hold zone->lru_lock across the whole operation.  But if
1713  * the pages are mapped, the processing is slow (page_referenced()) so we
1714  * should drop zone->lru_lock around each page.  It's impossible to balance
1715  * this, so instead we remove the pages from the LRU while processing them.
1716  * It is safe to rely on PG_active against the non-LRU pages in here because
1717  * nobody will play with that bit on a non-LRU page.
1718  *
1719  * The downside is that we have to touch page->_refcount against each page.
1720  * But we had to alter page->flags anyway.
1721  */
1722 
1723 static void move_active_pages_to_lru(struct lruvec *lruvec,
1724 				     struct list_head *list,
1725 				     struct list_head *pages_to_free,
1726 				     enum lru_list lru)
1727 {
1728 	struct zone *zone = lruvec_zone(lruvec);
1729 	unsigned long pgmoved = 0;
1730 	struct page *page;
1731 	int nr_pages;
1732 
1733 	while (!list_empty(list)) {
1734 		page = lru_to_page(list);
1735 		lruvec = mem_cgroup_page_lruvec(page, zone);
1736 
1737 		VM_BUG_ON_PAGE(PageLRU(page), page);
1738 		SetPageLRU(page);
1739 
1740 		nr_pages = hpage_nr_pages(page);
1741 		update_lru_size(lruvec, lru, nr_pages);
1742 		list_move(&page->lru, &lruvec->lists[lru]);
1743 		pgmoved += nr_pages;
1744 
1745 		if (put_page_testzero(page)) {
1746 			__ClearPageLRU(page);
1747 			__ClearPageActive(page);
1748 			del_page_from_lru_list(page, lruvec, lru);
1749 
1750 			if (unlikely(PageCompound(page))) {
1751 				spin_unlock_irq(&zone->lru_lock);
1752 				mem_cgroup_uncharge(page);
1753 				(*get_compound_page_dtor(page))(page);
1754 				spin_lock_irq(&zone->lru_lock);
1755 			} else
1756 				list_add(&page->lru, pages_to_free);
1757 		}
1758 	}
1759 
1760 	if (!is_active_lru(lru))
1761 		__count_vm_events(PGDEACTIVATE, pgmoved);
1762 }
1763 
1764 static void shrink_active_list(unsigned long nr_to_scan,
1765 			       struct lruvec *lruvec,
1766 			       struct scan_control *sc,
1767 			       enum lru_list lru)
1768 {
1769 	unsigned long nr_taken;
1770 	unsigned long nr_scanned;
1771 	unsigned long vm_flags;
1772 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1773 	LIST_HEAD(l_active);
1774 	LIST_HEAD(l_inactive);
1775 	struct page *page;
1776 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1777 	unsigned long nr_rotated = 0;
1778 	isolate_mode_t isolate_mode = 0;
1779 	int file = is_file_lru(lru);
1780 	struct zone *zone = lruvec_zone(lruvec);
1781 
1782 	lru_add_drain();
1783 
1784 	if (!sc->may_unmap)
1785 		isolate_mode |= ISOLATE_UNMAPPED;
1786 	if (!sc->may_writepage)
1787 		isolate_mode |= ISOLATE_CLEAN;
1788 
1789 	spin_lock_irq(&zone->lru_lock);
1790 
1791 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1792 				     &nr_scanned, sc, isolate_mode, lru);
1793 
1794 	update_lru_size(lruvec, lru, -nr_taken);
1795 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1796 	reclaim_stat->recent_scanned[file] += nr_taken;
1797 
1798 	if (global_reclaim(sc))
1799 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1800 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1801 
1802 	spin_unlock_irq(&zone->lru_lock);
1803 
1804 	while (!list_empty(&l_hold)) {
1805 		cond_resched();
1806 		page = lru_to_page(&l_hold);
1807 		list_del(&page->lru);
1808 
1809 		if (unlikely(!page_evictable(page))) {
1810 			putback_lru_page(page);
1811 			continue;
1812 		}
1813 
1814 		if (unlikely(buffer_heads_over_limit)) {
1815 			if (page_has_private(page) && trylock_page(page)) {
1816 				if (page_has_private(page))
1817 					try_to_release_page(page, 0);
1818 				unlock_page(page);
1819 			}
1820 		}
1821 
1822 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1823 				    &vm_flags)) {
1824 			nr_rotated += hpage_nr_pages(page);
1825 			/*
1826 			 * Identify referenced, file-backed active pages and
1827 			 * give them one more trip around the active list. So
1828 			 * that executable code get better chances to stay in
1829 			 * memory under moderate memory pressure.  Anon pages
1830 			 * are not likely to be evicted by use-once streaming
1831 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1832 			 * so we ignore them here.
1833 			 */
1834 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1835 				list_add(&page->lru, &l_active);
1836 				continue;
1837 			}
1838 		}
1839 
1840 		ClearPageActive(page);	/* we are de-activating */
1841 		list_add(&page->lru, &l_inactive);
1842 	}
1843 
1844 	/*
1845 	 * Move pages back to the lru list.
1846 	 */
1847 	spin_lock_irq(&zone->lru_lock);
1848 	/*
1849 	 * Count referenced pages from currently used mappings as rotated,
1850 	 * even though only some of them are actually re-activated.  This
1851 	 * helps balance scan pressure between file and anonymous pages in
1852 	 * get_scan_count.
1853 	 */
1854 	reclaim_stat->recent_rotated[file] += nr_rotated;
1855 
1856 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1857 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1858 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1859 	spin_unlock_irq(&zone->lru_lock);
1860 
1861 	mem_cgroup_uncharge_list(&l_hold);
1862 	free_hot_cold_page_list(&l_hold, true);
1863 }
1864 
1865 #ifdef CONFIG_SWAP
1866 static bool inactive_anon_is_low_global(struct zone *zone)
1867 {
1868 	unsigned long active, inactive;
1869 
1870 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1871 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1872 
1873 	return inactive * zone->inactive_ratio < active;
1874 }
1875 
1876 /**
1877  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1878  * @lruvec: LRU vector to check
1879  *
1880  * Returns true if the zone does not have enough inactive anon pages,
1881  * meaning some active anon pages need to be deactivated.
1882  */
1883 static bool inactive_anon_is_low(struct lruvec *lruvec)
1884 {
1885 	/*
1886 	 * If we don't have swap space, anonymous page deactivation
1887 	 * is pointless.
1888 	 */
1889 	if (!total_swap_pages)
1890 		return false;
1891 
1892 	if (!mem_cgroup_disabled())
1893 		return mem_cgroup_inactive_anon_is_low(lruvec);
1894 
1895 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1896 }
1897 #else
1898 static inline bool inactive_anon_is_low(struct lruvec *lruvec)
1899 {
1900 	return false;
1901 }
1902 #endif
1903 
1904 /**
1905  * inactive_file_is_low - check if file pages need to be deactivated
1906  * @lruvec: LRU vector to check
1907  *
1908  * When the system is doing streaming IO, memory pressure here
1909  * ensures that active file pages get deactivated, until more
1910  * than half of the file pages are on the inactive list.
1911  *
1912  * Once we get to that situation, protect the system's working
1913  * set from being evicted by disabling active file page aging.
1914  *
1915  * This uses a different ratio than the anonymous pages, because
1916  * the page cache uses a use-once replacement algorithm.
1917  */
1918 static bool inactive_file_is_low(struct lruvec *lruvec)
1919 {
1920 	unsigned long inactive;
1921 	unsigned long active;
1922 
1923 	inactive = lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
1924 	active = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE);
1925 
1926 	return active > inactive;
1927 }
1928 
1929 static bool inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1930 {
1931 	if (is_file_lru(lru))
1932 		return inactive_file_is_low(lruvec);
1933 	else
1934 		return inactive_anon_is_low(lruvec);
1935 }
1936 
1937 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1938 				 struct lruvec *lruvec, struct scan_control *sc)
1939 {
1940 	if (is_active_lru(lru)) {
1941 		if (inactive_list_is_low(lruvec, lru))
1942 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1943 		return 0;
1944 	}
1945 
1946 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1947 }
1948 
1949 enum scan_balance {
1950 	SCAN_EQUAL,
1951 	SCAN_FRACT,
1952 	SCAN_ANON,
1953 	SCAN_FILE,
1954 };
1955 
1956 /*
1957  * Determine how aggressively the anon and file LRU lists should be
1958  * scanned.  The relative value of each set of LRU lists is determined
1959  * by looking at the fraction of the pages scanned we did rotate back
1960  * onto the active list instead of evict.
1961  *
1962  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1963  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1964  */
1965 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
1966 			   struct scan_control *sc, unsigned long *nr,
1967 			   unsigned long *lru_pages)
1968 {
1969 	int swappiness = mem_cgroup_swappiness(memcg);
1970 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1971 	u64 fraction[2];
1972 	u64 denominator = 0;	/* gcc */
1973 	struct zone *zone = lruvec_zone(lruvec);
1974 	unsigned long anon_prio, file_prio;
1975 	enum scan_balance scan_balance;
1976 	unsigned long anon, file;
1977 	bool force_scan = false;
1978 	unsigned long ap, fp;
1979 	enum lru_list lru;
1980 	bool some_scanned;
1981 	int pass;
1982 
1983 	/*
1984 	 * If the zone or memcg is small, nr[l] can be 0.  This
1985 	 * results in no scanning on this priority and a potential
1986 	 * priority drop.  Global direct reclaim can go to the next
1987 	 * zone and tends to have no problems. Global kswapd is for
1988 	 * zone balancing and it needs to scan a minimum amount. When
1989 	 * reclaiming for a memcg, a priority drop can cause high
1990 	 * latencies, so it's better to scan a minimum amount there as
1991 	 * well.
1992 	 */
1993 	if (current_is_kswapd()) {
1994 		if (!zone_reclaimable(zone))
1995 			force_scan = true;
1996 		if (!mem_cgroup_online(memcg))
1997 			force_scan = true;
1998 	}
1999 	if (!global_reclaim(sc))
2000 		force_scan = true;
2001 
2002 	/* If we have no swap space, do not bother scanning anon pages. */
2003 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2004 		scan_balance = SCAN_FILE;
2005 		goto out;
2006 	}
2007 
2008 	/*
2009 	 * Global reclaim will swap to prevent OOM even with no
2010 	 * swappiness, but memcg users want to use this knob to
2011 	 * disable swapping for individual groups completely when
2012 	 * using the memory controller's swap limit feature would be
2013 	 * too expensive.
2014 	 */
2015 	if (!global_reclaim(sc) && !swappiness) {
2016 		scan_balance = SCAN_FILE;
2017 		goto out;
2018 	}
2019 
2020 	/*
2021 	 * Do not apply any pressure balancing cleverness when the
2022 	 * system is close to OOM, scan both anon and file equally
2023 	 * (unless the swappiness setting disagrees with swapping).
2024 	 */
2025 	if (!sc->priority && swappiness) {
2026 		scan_balance = SCAN_EQUAL;
2027 		goto out;
2028 	}
2029 
2030 	/*
2031 	 * Prevent the reclaimer from falling into the cache trap: as
2032 	 * cache pages start out inactive, every cache fault will tip
2033 	 * the scan balance towards the file LRU.  And as the file LRU
2034 	 * shrinks, so does the window for rotation from references.
2035 	 * This means we have a runaway feedback loop where a tiny
2036 	 * thrashing file LRU becomes infinitely more attractive than
2037 	 * anon pages.  Try to detect this based on file LRU size.
2038 	 */
2039 	if (global_reclaim(sc)) {
2040 		unsigned long zonefile;
2041 		unsigned long zonefree;
2042 
2043 		zonefree = zone_page_state(zone, NR_FREE_PAGES);
2044 		zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2045 			   zone_page_state(zone, NR_INACTIVE_FILE);
2046 
2047 		if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2048 			scan_balance = SCAN_ANON;
2049 			goto out;
2050 		}
2051 	}
2052 
2053 	/*
2054 	 * If there is enough inactive page cache, i.e. if the size of the
2055 	 * inactive list is greater than that of the active list *and* the
2056 	 * inactive list actually has some pages to scan on this priority, we
2057 	 * do not reclaim anything from the anonymous working set right now.
2058 	 * Without the second condition we could end up never scanning an
2059 	 * lruvec even if it has plenty of old anonymous pages unless the
2060 	 * system is under heavy pressure.
2061 	 */
2062 	if (!inactive_file_is_low(lruvec) &&
2063 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2064 		scan_balance = SCAN_FILE;
2065 		goto out;
2066 	}
2067 
2068 	scan_balance = SCAN_FRACT;
2069 
2070 	/*
2071 	 * With swappiness at 100, anonymous and file have the same priority.
2072 	 * This scanning priority is essentially the inverse of IO cost.
2073 	 */
2074 	anon_prio = swappiness;
2075 	file_prio = 200 - anon_prio;
2076 
2077 	/*
2078 	 * OK, so we have swap space and a fair amount of page cache
2079 	 * pages.  We use the recently rotated / recently scanned
2080 	 * ratios to determine how valuable each cache is.
2081 	 *
2082 	 * Because workloads change over time (and to avoid overflow)
2083 	 * we keep these statistics as a floating average, which ends
2084 	 * up weighing recent references more than old ones.
2085 	 *
2086 	 * anon in [0], file in [1]
2087 	 */
2088 
2089 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
2090 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
2091 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
2092 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2093 
2094 	spin_lock_irq(&zone->lru_lock);
2095 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2096 		reclaim_stat->recent_scanned[0] /= 2;
2097 		reclaim_stat->recent_rotated[0] /= 2;
2098 	}
2099 
2100 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2101 		reclaim_stat->recent_scanned[1] /= 2;
2102 		reclaim_stat->recent_rotated[1] /= 2;
2103 	}
2104 
2105 	/*
2106 	 * The amount of pressure on anon vs file pages is inversely
2107 	 * proportional to the fraction of recently scanned pages on
2108 	 * each list that were recently referenced and in active use.
2109 	 */
2110 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2111 	ap /= reclaim_stat->recent_rotated[0] + 1;
2112 
2113 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2114 	fp /= reclaim_stat->recent_rotated[1] + 1;
2115 	spin_unlock_irq(&zone->lru_lock);
2116 
2117 	fraction[0] = ap;
2118 	fraction[1] = fp;
2119 	denominator = ap + fp + 1;
2120 out:
2121 	some_scanned = false;
2122 	/* Only use force_scan on second pass. */
2123 	for (pass = 0; !some_scanned && pass < 2; pass++) {
2124 		*lru_pages = 0;
2125 		for_each_evictable_lru(lru) {
2126 			int file = is_file_lru(lru);
2127 			unsigned long size;
2128 			unsigned long scan;
2129 
2130 			size = lruvec_lru_size(lruvec, lru);
2131 			scan = size >> sc->priority;
2132 
2133 			if (!scan && pass && force_scan)
2134 				scan = min(size, SWAP_CLUSTER_MAX);
2135 
2136 			switch (scan_balance) {
2137 			case SCAN_EQUAL:
2138 				/* Scan lists relative to size */
2139 				break;
2140 			case SCAN_FRACT:
2141 				/*
2142 				 * Scan types proportional to swappiness and
2143 				 * their relative recent reclaim efficiency.
2144 				 */
2145 				scan = div64_u64(scan * fraction[file],
2146 							denominator);
2147 				break;
2148 			case SCAN_FILE:
2149 			case SCAN_ANON:
2150 				/* Scan one type exclusively */
2151 				if ((scan_balance == SCAN_FILE) != file) {
2152 					size = 0;
2153 					scan = 0;
2154 				}
2155 				break;
2156 			default:
2157 				/* Look ma, no brain */
2158 				BUG();
2159 			}
2160 
2161 			*lru_pages += size;
2162 			nr[lru] = scan;
2163 
2164 			/*
2165 			 * Skip the second pass and don't force_scan,
2166 			 * if we found something to scan.
2167 			 */
2168 			some_scanned |= !!scan;
2169 		}
2170 	}
2171 }
2172 
2173 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2174 static void init_tlb_ubc(void)
2175 {
2176 	/*
2177 	 * This deliberately does not clear the cpumask as it's expensive
2178 	 * and unnecessary. If there happens to be data in there then the
2179 	 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2180 	 * then will be cleared.
2181 	 */
2182 	current->tlb_ubc.flush_required = false;
2183 }
2184 #else
2185 static inline void init_tlb_ubc(void)
2186 {
2187 }
2188 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2189 
2190 /*
2191  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2192  */
2193 static void shrink_zone_memcg(struct zone *zone, struct mem_cgroup *memcg,
2194 			      struct scan_control *sc, unsigned long *lru_pages)
2195 {
2196 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2197 	unsigned long nr[NR_LRU_LISTS];
2198 	unsigned long targets[NR_LRU_LISTS];
2199 	unsigned long nr_to_scan;
2200 	enum lru_list lru;
2201 	unsigned long nr_reclaimed = 0;
2202 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2203 	struct blk_plug plug;
2204 	bool scan_adjusted;
2205 
2206 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2207 
2208 	/* Record the original scan target for proportional adjustments later */
2209 	memcpy(targets, nr, sizeof(nr));
2210 
2211 	/*
2212 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2213 	 * event that can occur when there is little memory pressure e.g.
2214 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2215 	 * when the requested number of pages are reclaimed when scanning at
2216 	 * DEF_PRIORITY on the assumption that the fact we are direct
2217 	 * reclaiming implies that kswapd is not keeping up and it is best to
2218 	 * do a batch of work at once. For memcg reclaim one check is made to
2219 	 * abort proportional reclaim if either the file or anon lru has already
2220 	 * dropped to zero at the first pass.
2221 	 */
2222 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2223 			 sc->priority == DEF_PRIORITY);
2224 
2225 	init_tlb_ubc();
2226 
2227 	blk_start_plug(&plug);
2228 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2229 					nr[LRU_INACTIVE_FILE]) {
2230 		unsigned long nr_anon, nr_file, percentage;
2231 		unsigned long nr_scanned;
2232 
2233 		for_each_evictable_lru(lru) {
2234 			if (nr[lru]) {
2235 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2236 				nr[lru] -= nr_to_scan;
2237 
2238 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2239 							    lruvec, sc);
2240 			}
2241 		}
2242 
2243 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2244 			continue;
2245 
2246 		/*
2247 		 * For kswapd and memcg, reclaim at least the number of pages
2248 		 * requested. Ensure that the anon and file LRUs are scanned
2249 		 * proportionally what was requested by get_scan_count(). We
2250 		 * stop reclaiming one LRU and reduce the amount scanning
2251 		 * proportional to the original scan target.
2252 		 */
2253 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2254 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2255 
2256 		/*
2257 		 * It's just vindictive to attack the larger once the smaller
2258 		 * has gone to zero.  And given the way we stop scanning the
2259 		 * smaller below, this makes sure that we only make one nudge
2260 		 * towards proportionality once we've got nr_to_reclaim.
2261 		 */
2262 		if (!nr_file || !nr_anon)
2263 			break;
2264 
2265 		if (nr_file > nr_anon) {
2266 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2267 						targets[LRU_ACTIVE_ANON] + 1;
2268 			lru = LRU_BASE;
2269 			percentage = nr_anon * 100 / scan_target;
2270 		} else {
2271 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2272 						targets[LRU_ACTIVE_FILE] + 1;
2273 			lru = LRU_FILE;
2274 			percentage = nr_file * 100 / scan_target;
2275 		}
2276 
2277 		/* Stop scanning the smaller of the LRU */
2278 		nr[lru] = 0;
2279 		nr[lru + LRU_ACTIVE] = 0;
2280 
2281 		/*
2282 		 * Recalculate the other LRU scan count based on its original
2283 		 * scan target and the percentage scanning already complete
2284 		 */
2285 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2286 		nr_scanned = targets[lru] - nr[lru];
2287 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2288 		nr[lru] -= min(nr[lru], nr_scanned);
2289 
2290 		lru += LRU_ACTIVE;
2291 		nr_scanned = targets[lru] - nr[lru];
2292 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2293 		nr[lru] -= min(nr[lru], nr_scanned);
2294 
2295 		scan_adjusted = true;
2296 	}
2297 	blk_finish_plug(&plug);
2298 	sc->nr_reclaimed += nr_reclaimed;
2299 
2300 	/*
2301 	 * Even if we did not try to evict anon pages at all, we want to
2302 	 * rebalance the anon lru active/inactive ratio.
2303 	 */
2304 	if (inactive_anon_is_low(lruvec))
2305 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2306 				   sc, LRU_ACTIVE_ANON);
2307 
2308 	throttle_vm_writeout(sc->gfp_mask);
2309 }
2310 
2311 /* Use reclaim/compaction for costly allocs or under memory pressure */
2312 static bool in_reclaim_compaction(struct scan_control *sc)
2313 {
2314 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2315 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2316 			 sc->priority < DEF_PRIORITY - 2))
2317 		return true;
2318 
2319 	return false;
2320 }
2321 
2322 /*
2323  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2324  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2325  * true if more pages should be reclaimed such that when the page allocator
2326  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2327  * It will give up earlier than that if there is difficulty reclaiming pages.
2328  */
2329 static inline bool should_continue_reclaim(struct zone *zone,
2330 					unsigned long nr_reclaimed,
2331 					unsigned long nr_scanned,
2332 					struct scan_control *sc)
2333 {
2334 	unsigned long pages_for_compaction;
2335 	unsigned long inactive_lru_pages;
2336 
2337 	/* If not in reclaim/compaction mode, stop */
2338 	if (!in_reclaim_compaction(sc))
2339 		return false;
2340 
2341 	/* Consider stopping depending on scan and reclaim activity */
2342 	if (sc->gfp_mask & __GFP_REPEAT) {
2343 		/*
2344 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2345 		 * full LRU list has been scanned and we are still failing
2346 		 * to reclaim pages. This full LRU scan is potentially
2347 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2348 		 */
2349 		if (!nr_reclaimed && !nr_scanned)
2350 			return false;
2351 	} else {
2352 		/*
2353 		 * For non-__GFP_REPEAT allocations which can presumably
2354 		 * fail without consequence, stop if we failed to reclaim
2355 		 * any pages from the last SWAP_CLUSTER_MAX number of
2356 		 * pages that were scanned. This will return to the
2357 		 * caller faster at the risk reclaim/compaction and
2358 		 * the resulting allocation attempt fails
2359 		 */
2360 		if (!nr_reclaimed)
2361 			return false;
2362 	}
2363 
2364 	/*
2365 	 * If we have not reclaimed enough pages for compaction and the
2366 	 * inactive lists are large enough, continue reclaiming
2367 	 */
2368 	pages_for_compaction = (2UL << sc->order);
2369 	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2370 	if (get_nr_swap_pages() > 0)
2371 		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2372 	if (sc->nr_reclaimed < pages_for_compaction &&
2373 			inactive_lru_pages > pages_for_compaction)
2374 		return true;
2375 
2376 	/* If compaction would go ahead or the allocation would succeed, stop */
2377 	switch (compaction_suitable(zone, sc->order, 0, 0)) {
2378 	case COMPACT_PARTIAL:
2379 	case COMPACT_CONTINUE:
2380 		return false;
2381 	default:
2382 		return true;
2383 	}
2384 }
2385 
2386 static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2387 			bool is_classzone)
2388 {
2389 	struct reclaim_state *reclaim_state = current->reclaim_state;
2390 	unsigned long nr_reclaimed, nr_scanned;
2391 	bool reclaimable = false;
2392 
2393 	do {
2394 		struct mem_cgroup *root = sc->target_mem_cgroup;
2395 		struct mem_cgroup_reclaim_cookie reclaim = {
2396 			.zone = zone,
2397 			.priority = sc->priority,
2398 		};
2399 		unsigned long zone_lru_pages = 0;
2400 		struct mem_cgroup *memcg;
2401 
2402 		nr_reclaimed = sc->nr_reclaimed;
2403 		nr_scanned = sc->nr_scanned;
2404 
2405 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2406 		do {
2407 			unsigned long lru_pages;
2408 			unsigned long reclaimed;
2409 			unsigned long scanned;
2410 
2411 			if (mem_cgroup_low(root, memcg)) {
2412 				if (!sc->may_thrash)
2413 					continue;
2414 				mem_cgroup_events(memcg, MEMCG_LOW, 1);
2415 			}
2416 
2417 			reclaimed = sc->nr_reclaimed;
2418 			scanned = sc->nr_scanned;
2419 
2420 			shrink_zone_memcg(zone, memcg, sc, &lru_pages);
2421 			zone_lru_pages += lru_pages;
2422 
2423 			if (memcg && is_classzone)
2424 				shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2425 					    memcg, sc->nr_scanned - scanned,
2426 					    lru_pages);
2427 
2428 			/* Record the group's reclaim efficiency */
2429 			vmpressure(sc->gfp_mask, memcg, false,
2430 				   sc->nr_scanned - scanned,
2431 				   sc->nr_reclaimed - reclaimed);
2432 
2433 			/*
2434 			 * Direct reclaim and kswapd have to scan all memory
2435 			 * cgroups to fulfill the overall scan target for the
2436 			 * zone.
2437 			 *
2438 			 * Limit reclaim, on the other hand, only cares about
2439 			 * nr_to_reclaim pages to be reclaimed and it will
2440 			 * retry with decreasing priority if one round over the
2441 			 * whole hierarchy is not sufficient.
2442 			 */
2443 			if (!global_reclaim(sc) &&
2444 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2445 				mem_cgroup_iter_break(root, memcg);
2446 				break;
2447 			}
2448 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2449 
2450 		/*
2451 		 * Shrink the slab caches in the same proportion that
2452 		 * the eligible LRU pages were scanned.
2453 		 */
2454 		if (global_reclaim(sc) && is_classzone)
2455 			shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2456 				    sc->nr_scanned - nr_scanned,
2457 				    zone_lru_pages);
2458 
2459 		if (reclaim_state) {
2460 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2461 			reclaim_state->reclaimed_slab = 0;
2462 		}
2463 
2464 		/* Record the subtree's reclaim efficiency */
2465 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2466 			   sc->nr_scanned - nr_scanned,
2467 			   sc->nr_reclaimed - nr_reclaimed);
2468 
2469 		if (sc->nr_reclaimed - nr_reclaimed)
2470 			reclaimable = true;
2471 
2472 	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2473 					 sc->nr_scanned - nr_scanned, sc));
2474 
2475 	return reclaimable;
2476 }
2477 
2478 /*
2479  * Returns true if compaction should go ahead for a high-order request, or
2480  * the high-order allocation would succeed without compaction.
2481  */
2482 static inline bool compaction_ready(struct zone *zone, int order)
2483 {
2484 	unsigned long balance_gap, watermark;
2485 	bool watermark_ok;
2486 
2487 	/*
2488 	 * Compaction takes time to run and there are potentially other
2489 	 * callers using the pages just freed. Continue reclaiming until
2490 	 * there is a buffer of free pages available to give compaction
2491 	 * a reasonable chance of completing and allocating the page
2492 	 */
2493 	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2494 			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2495 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2496 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0);
2497 
2498 	/*
2499 	 * If compaction is deferred, reclaim up to a point where
2500 	 * compaction will have a chance of success when re-enabled
2501 	 */
2502 	if (compaction_deferred(zone, order))
2503 		return watermark_ok;
2504 
2505 	/*
2506 	 * If compaction is not ready to start and allocation is not likely
2507 	 * to succeed without it, then keep reclaiming.
2508 	 */
2509 	if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2510 		return false;
2511 
2512 	return watermark_ok;
2513 }
2514 
2515 /*
2516  * This is the direct reclaim path, for page-allocating processes.  We only
2517  * try to reclaim pages from zones which will satisfy the caller's allocation
2518  * request.
2519  *
2520  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2521  * Because:
2522  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2523  *    allocation or
2524  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2525  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2526  *    zone defense algorithm.
2527  *
2528  * If a zone is deemed to be full of pinned pages then just give it a light
2529  * scan then give up on it.
2530  *
2531  * Returns true if a zone was reclaimable.
2532  */
2533 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2534 {
2535 	struct zoneref *z;
2536 	struct zone *zone;
2537 	unsigned long nr_soft_reclaimed;
2538 	unsigned long nr_soft_scanned;
2539 	gfp_t orig_mask;
2540 	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2541 	bool reclaimable = false;
2542 
2543 	/*
2544 	 * If the number of buffer_heads in the machine exceeds the maximum
2545 	 * allowed level, force direct reclaim to scan the highmem zone as
2546 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2547 	 */
2548 	orig_mask = sc->gfp_mask;
2549 	if (buffer_heads_over_limit)
2550 		sc->gfp_mask |= __GFP_HIGHMEM;
2551 
2552 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2553 					gfp_zone(sc->gfp_mask), sc->nodemask) {
2554 		enum zone_type classzone_idx;
2555 
2556 		if (!populated_zone(zone))
2557 			continue;
2558 
2559 		classzone_idx = requested_highidx;
2560 		while (!populated_zone(zone->zone_pgdat->node_zones +
2561 							classzone_idx))
2562 			classzone_idx--;
2563 
2564 		/*
2565 		 * Take care memory controller reclaiming has small influence
2566 		 * to global LRU.
2567 		 */
2568 		if (global_reclaim(sc)) {
2569 			if (!cpuset_zone_allowed(zone,
2570 						 GFP_KERNEL | __GFP_HARDWALL))
2571 				continue;
2572 
2573 			if (sc->priority != DEF_PRIORITY &&
2574 			    !zone_reclaimable(zone))
2575 				continue;	/* Let kswapd poll it */
2576 
2577 			/*
2578 			 * If we already have plenty of memory free for
2579 			 * compaction in this zone, don't free any more.
2580 			 * Even though compaction is invoked for any
2581 			 * non-zero order, only frequent costly order
2582 			 * reclamation is disruptive enough to become a
2583 			 * noticeable problem, like transparent huge
2584 			 * page allocations.
2585 			 */
2586 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2587 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2588 			    zonelist_zone_idx(z) <= requested_highidx &&
2589 			    compaction_ready(zone, sc->order)) {
2590 				sc->compaction_ready = true;
2591 				continue;
2592 			}
2593 
2594 			/*
2595 			 * This steals pages from memory cgroups over softlimit
2596 			 * and returns the number of reclaimed pages and
2597 			 * scanned pages. This works for global memory pressure
2598 			 * and balancing, not for a memcg's limit.
2599 			 */
2600 			nr_soft_scanned = 0;
2601 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2602 						sc->order, sc->gfp_mask,
2603 						&nr_soft_scanned);
2604 			sc->nr_reclaimed += nr_soft_reclaimed;
2605 			sc->nr_scanned += nr_soft_scanned;
2606 			if (nr_soft_reclaimed)
2607 				reclaimable = true;
2608 			/* need some check for avoid more shrink_zone() */
2609 		}
2610 
2611 		if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2612 			reclaimable = true;
2613 
2614 		if (global_reclaim(sc) &&
2615 		    !reclaimable && zone_reclaimable(zone))
2616 			reclaimable = true;
2617 	}
2618 
2619 	/*
2620 	 * Restore to original mask to avoid the impact on the caller if we
2621 	 * promoted it to __GFP_HIGHMEM.
2622 	 */
2623 	sc->gfp_mask = orig_mask;
2624 
2625 	return reclaimable;
2626 }
2627 
2628 /*
2629  * This is the main entry point to direct page reclaim.
2630  *
2631  * If a full scan of the inactive list fails to free enough memory then we
2632  * are "out of memory" and something needs to be killed.
2633  *
2634  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2635  * high - the zone may be full of dirty or under-writeback pages, which this
2636  * caller can't do much about.  We kick the writeback threads and take explicit
2637  * naps in the hope that some of these pages can be written.  But if the
2638  * allocating task holds filesystem locks which prevent writeout this might not
2639  * work, and the allocation attempt will fail.
2640  *
2641  * returns:	0, if no pages reclaimed
2642  * 		else, the number of pages reclaimed
2643  */
2644 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2645 					  struct scan_control *sc)
2646 {
2647 	int initial_priority = sc->priority;
2648 	unsigned long total_scanned = 0;
2649 	unsigned long writeback_threshold;
2650 	bool zones_reclaimable;
2651 retry:
2652 	delayacct_freepages_start();
2653 
2654 	if (global_reclaim(sc))
2655 		count_vm_event(ALLOCSTALL);
2656 
2657 	do {
2658 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2659 				sc->priority);
2660 		sc->nr_scanned = 0;
2661 		zones_reclaimable = shrink_zones(zonelist, sc);
2662 
2663 		total_scanned += sc->nr_scanned;
2664 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2665 			break;
2666 
2667 		if (sc->compaction_ready)
2668 			break;
2669 
2670 		/*
2671 		 * If we're getting trouble reclaiming, start doing
2672 		 * writepage even in laptop mode.
2673 		 */
2674 		if (sc->priority < DEF_PRIORITY - 2)
2675 			sc->may_writepage = 1;
2676 
2677 		/*
2678 		 * Try to write back as many pages as we just scanned.  This
2679 		 * tends to cause slow streaming writers to write data to the
2680 		 * disk smoothly, at the dirtying rate, which is nice.   But
2681 		 * that's undesirable in laptop mode, where we *want* lumpy
2682 		 * writeout.  So in laptop mode, write out the whole world.
2683 		 */
2684 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2685 		if (total_scanned > writeback_threshold) {
2686 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2687 						WB_REASON_TRY_TO_FREE_PAGES);
2688 			sc->may_writepage = 1;
2689 		}
2690 	} while (--sc->priority >= 0);
2691 
2692 	delayacct_freepages_end();
2693 
2694 	if (sc->nr_reclaimed)
2695 		return sc->nr_reclaimed;
2696 
2697 	/* Aborted reclaim to try compaction? don't OOM, then */
2698 	if (sc->compaction_ready)
2699 		return 1;
2700 
2701 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2702 	if (!sc->may_thrash) {
2703 		sc->priority = initial_priority;
2704 		sc->may_thrash = 1;
2705 		goto retry;
2706 	}
2707 
2708 	/* Any of the zones still reclaimable?  Don't OOM. */
2709 	if (zones_reclaimable)
2710 		return 1;
2711 
2712 	return 0;
2713 }
2714 
2715 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2716 {
2717 	struct zone *zone;
2718 	unsigned long pfmemalloc_reserve = 0;
2719 	unsigned long free_pages = 0;
2720 	int i;
2721 	bool wmark_ok;
2722 
2723 	for (i = 0; i <= ZONE_NORMAL; i++) {
2724 		zone = &pgdat->node_zones[i];
2725 		if (!populated_zone(zone) ||
2726 		    zone_reclaimable_pages(zone) == 0)
2727 			continue;
2728 
2729 		pfmemalloc_reserve += min_wmark_pages(zone);
2730 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2731 	}
2732 
2733 	/* If there are no reserves (unexpected config) then do not throttle */
2734 	if (!pfmemalloc_reserve)
2735 		return true;
2736 
2737 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2738 
2739 	/* kswapd must be awake if processes are being throttled */
2740 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2741 		pgdat->classzone_idx = min(pgdat->classzone_idx,
2742 						(enum zone_type)ZONE_NORMAL);
2743 		wake_up_interruptible(&pgdat->kswapd_wait);
2744 	}
2745 
2746 	return wmark_ok;
2747 }
2748 
2749 /*
2750  * Throttle direct reclaimers if backing storage is backed by the network
2751  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2752  * depleted. kswapd will continue to make progress and wake the processes
2753  * when the low watermark is reached.
2754  *
2755  * Returns true if a fatal signal was delivered during throttling. If this
2756  * happens, the page allocator should not consider triggering the OOM killer.
2757  */
2758 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2759 					nodemask_t *nodemask)
2760 {
2761 	struct zoneref *z;
2762 	struct zone *zone;
2763 	pg_data_t *pgdat = NULL;
2764 
2765 	/*
2766 	 * Kernel threads should not be throttled as they may be indirectly
2767 	 * responsible for cleaning pages necessary for reclaim to make forward
2768 	 * progress. kjournald for example may enter direct reclaim while
2769 	 * committing a transaction where throttling it could forcing other
2770 	 * processes to block on log_wait_commit().
2771 	 */
2772 	if (current->flags & PF_KTHREAD)
2773 		goto out;
2774 
2775 	/*
2776 	 * If a fatal signal is pending, this process should not throttle.
2777 	 * It should return quickly so it can exit and free its memory
2778 	 */
2779 	if (fatal_signal_pending(current))
2780 		goto out;
2781 
2782 	/*
2783 	 * Check if the pfmemalloc reserves are ok by finding the first node
2784 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2785 	 * GFP_KERNEL will be required for allocating network buffers when
2786 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2787 	 *
2788 	 * Throttling is based on the first usable node and throttled processes
2789 	 * wait on a queue until kswapd makes progress and wakes them. There
2790 	 * is an affinity then between processes waking up and where reclaim
2791 	 * progress has been made assuming the process wakes on the same node.
2792 	 * More importantly, processes running on remote nodes will not compete
2793 	 * for remote pfmemalloc reserves and processes on different nodes
2794 	 * should make reasonable progress.
2795 	 */
2796 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2797 					gfp_zone(gfp_mask), nodemask) {
2798 		if (zone_idx(zone) > ZONE_NORMAL)
2799 			continue;
2800 
2801 		/* Throttle based on the first usable node */
2802 		pgdat = zone->zone_pgdat;
2803 		if (pfmemalloc_watermark_ok(pgdat))
2804 			goto out;
2805 		break;
2806 	}
2807 
2808 	/* If no zone was usable by the allocation flags then do not throttle */
2809 	if (!pgdat)
2810 		goto out;
2811 
2812 	/* Account for the throttling */
2813 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2814 
2815 	/*
2816 	 * If the caller cannot enter the filesystem, it's possible that it
2817 	 * is due to the caller holding an FS lock or performing a journal
2818 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2819 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2820 	 * blocked waiting on the same lock. Instead, throttle for up to a
2821 	 * second before continuing.
2822 	 */
2823 	if (!(gfp_mask & __GFP_FS)) {
2824 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2825 			pfmemalloc_watermark_ok(pgdat), HZ);
2826 
2827 		goto check_pending;
2828 	}
2829 
2830 	/* Throttle until kswapd wakes the process */
2831 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2832 		pfmemalloc_watermark_ok(pgdat));
2833 
2834 check_pending:
2835 	if (fatal_signal_pending(current))
2836 		return true;
2837 
2838 out:
2839 	return false;
2840 }
2841 
2842 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2843 				gfp_t gfp_mask, nodemask_t *nodemask)
2844 {
2845 	unsigned long nr_reclaimed;
2846 	struct scan_control sc = {
2847 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2848 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2849 		.order = order,
2850 		.nodemask = nodemask,
2851 		.priority = DEF_PRIORITY,
2852 		.may_writepage = !laptop_mode,
2853 		.may_unmap = 1,
2854 		.may_swap = 1,
2855 	};
2856 
2857 	/*
2858 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2859 	 * 1 is returned so that the page allocator does not OOM kill at this
2860 	 * point.
2861 	 */
2862 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2863 		return 1;
2864 
2865 	trace_mm_vmscan_direct_reclaim_begin(order,
2866 				sc.may_writepage,
2867 				gfp_mask);
2868 
2869 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2870 
2871 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2872 
2873 	return nr_reclaimed;
2874 }
2875 
2876 #ifdef CONFIG_MEMCG
2877 
2878 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2879 						gfp_t gfp_mask, bool noswap,
2880 						struct zone *zone,
2881 						unsigned long *nr_scanned)
2882 {
2883 	struct scan_control sc = {
2884 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2885 		.target_mem_cgroup = memcg,
2886 		.may_writepage = !laptop_mode,
2887 		.may_unmap = 1,
2888 		.may_swap = !noswap,
2889 	};
2890 	unsigned long lru_pages;
2891 
2892 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2893 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2894 
2895 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2896 						      sc.may_writepage,
2897 						      sc.gfp_mask);
2898 
2899 	/*
2900 	 * NOTE: Although we can get the priority field, using it
2901 	 * here is not a good idea, since it limits the pages we can scan.
2902 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2903 	 * will pick up pages from other mem cgroup's as well. We hack
2904 	 * the priority and make it zero.
2905 	 */
2906 	shrink_zone_memcg(zone, memcg, &sc, &lru_pages);
2907 
2908 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2909 
2910 	*nr_scanned = sc.nr_scanned;
2911 	return sc.nr_reclaimed;
2912 }
2913 
2914 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2915 					   unsigned long nr_pages,
2916 					   gfp_t gfp_mask,
2917 					   bool may_swap)
2918 {
2919 	struct zonelist *zonelist;
2920 	unsigned long nr_reclaimed;
2921 	int nid;
2922 	struct scan_control sc = {
2923 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2924 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2925 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2926 		.target_mem_cgroup = memcg,
2927 		.priority = DEF_PRIORITY,
2928 		.may_writepage = !laptop_mode,
2929 		.may_unmap = 1,
2930 		.may_swap = may_swap,
2931 	};
2932 
2933 	/*
2934 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2935 	 * take care of from where we get pages. So the node where we start the
2936 	 * scan does not need to be the current node.
2937 	 */
2938 	nid = mem_cgroup_select_victim_node(memcg);
2939 
2940 	zonelist = NODE_DATA(nid)->node_zonelists;
2941 
2942 	trace_mm_vmscan_memcg_reclaim_begin(0,
2943 					    sc.may_writepage,
2944 					    sc.gfp_mask);
2945 
2946 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2947 
2948 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2949 
2950 	return nr_reclaimed;
2951 }
2952 #endif
2953 
2954 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2955 {
2956 	struct mem_cgroup *memcg;
2957 
2958 	if (!total_swap_pages)
2959 		return;
2960 
2961 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2962 	do {
2963 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2964 
2965 		if (inactive_anon_is_low(lruvec))
2966 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2967 					   sc, LRU_ACTIVE_ANON);
2968 
2969 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2970 	} while (memcg);
2971 }
2972 
2973 static bool zone_balanced(struct zone *zone, int order, bool highorder,
2974 			unsigned long balance_gap, int classzone_idx)
2975 {
2976 	unsigned long mark = high_wmark_pages(zone) + balance_gap;
2977 
2978 	/*
2979 	 * When checking from pgdat_balanced(), kswapd should stop and sleep
2980 	 * when it reaches the high order-0 watermark and let kcompactd take
2981 	 * over. Other callers such as wakeup_kswapd() want to determine the
2982 	 * true high-order watermark.
2983 	 */
2984 	if (IS_ENABLED(CONFIG_COMPACTION) && !highorder) {
2985 		mark += (1UL << order);
2986 		order = 0;
2987 	}
2988 
2989 	return zone_watermark_ok_safe(zone, order, mark, classzone_idx);
2990 }
2991 
2992 /*
2993  * pgdat_balanced() is used when checking if a node is balanced.
2994  *
2995  * For order-0, all zones must be balanced!
2996  *
2997  * For high-order allocations only zones that meet watermarks and are in a
2998  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2999  * total of balanced pages must be at least 25% of the zones allowed by
3000  * classzone_idx for the node to be considered balanced. Forcing all zones to
3001  * be balanced for high orders can cause excessive reclaim when there are
3002  * imbalanced zones.
3003  * The choice of 25% is due to
3004  *   o a 16M DMA zone that is balanced will not balance a zone on any
3005  *     reasonable sized machine
3006  *   o On all other machines, the top zone must be at least a reasonable
3007  *     percentage of the middle zones. For example, on 32-bit x86, highmem
3008  *     would need to be at least 256M for it to be balance a whole node.
3009  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
3010  *     to balance a node on its own. These seemed like reasonable ratios.
3011  */
3012 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3013 {
3014 	unsigned long managed_pages = 0;
3015 	unsigned long balanced_pages = 0;
3016 	int i;
3017 
3018 	/* Check the watermark levels */
3019 	for (i = 0; i <= classzone_idx; i++) {
3020 		struct zone *zone = pgdat->node_zones + i;
3021 
3022 		if (!populated_zone(zone))
3023 			continue;
3024 
3025 		managed_pages += zone->managed_pages;
3026 
3027 		/*
3028 		 * A special case here:
3029 		 *
3030 		 * balance_pgdat() skips over all_unreclaimable after
3031 		 * DEF_PRIORITY. Effectively, it considers them balanced so
3032 		 * they must be considered balanced here as well!
3033 		 */
3034 		if (!zone_reclaimable(zone)) {
3035 			balanced_pages += zone->managed_pages;
3036 			continue;
3037 		}
3038 
3039 		if (zone_balanced(zone, order, false, 0, i))
3040 			balanced_pages += zone->managed_pages;
3041 		else if (!order)
3042 			return false;
3043 	}
3044 
3045 	if (order)
3046 		return balanced_pages >= (managed_pages >> 2);
3047 	else
3048 		return true;
3049 }
3050 
3051 /*
3052  * Prepare kswapd for sleeping. This verifies that there are no processes
3053  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3054  *
3055  * Returns true if kswapd is ready to sleep
3056  */
3057 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3058 					int classzone_idx)
3059 {
3060 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3061 	if (remaining)
3062 		return false;
3063 
3064 	/*
3065 	 * The throttled processes are normally woken up in balance_pgdat() as
3066 	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3067 	 * race between when kswapd checks the watermarks and a process gets
3068 	 * throttled. There is also a potential race if processes get
3069 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3070 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3071 	 * the wake up checks. If kswapd is going to sleep, no process should
3072 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3073 	 * the wake up is premature, processes will wake kswapd and get
3074 	 * throttled again. The difference from wake ups in balance_pgdat() is
3075 	 * that here we are under prepare_to_wait().
3076 	 */
3077 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3078 		wake_up_all(&pgdat->pfmemalloc_wait);
3079 
3080 	return pgdat_balanced(pgdat, order, classzone_idx);
3081 }
3082 
3083 /*
3084  * kswapd shrinks the zone by the number of pages required to reach
3085  * the high watermark.
3086  *
3087  * Returns true if kswapd scanned at least the requested number of pages to
3088  * reclaim or if the lack of progress was due to pages under writeback.
3089  * This is used to determine if the scanning priority needs to be raised.
3090  */
3091 static bool kswapd_shrink_zone(struct zone *zone,
3092 			       int classzone_idx,
3093 			       struct scan_control *sc)
3094 {
3095 	unsigned long balance_gap;
3096 	bool lowmem_pressure;
3097 
3098 	/* Reclaim above the high watermark. */
3099 	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3100 
3101 	/*
3102 	 * We put equal pressure on every zone, unless one zone has way too
3103 	 * many pages free already. The "too many pages" is defined as the
3104 	 * high wmark plus a "gap" where the gap is either the low
3105 	 * watermark or 1% of the zone, whichever is smaller.
3106 	 */
3107 	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3108 			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3109 
3110 	/*
3111 	 * If there is no low memory pressure or the zone is balanced then no
3112 	 * reclaim is necessary
3113 	 */
3114 	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3115 	if (!lowmem_pressure && zone_balanced(zone, sc->order, false,
3116 						balance_gap, classzone_idx))
3117 		return true;
3118 
3119 	shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3120 
3121 	clear_bit(ZONE_WRITEBACK, &zone->flags);
3122 
3123 	/*
3124 	 * If a zone reaches its high watermark, consider it to be no longer
3125 	 * congested. It's possible there are dirty pages backed by congested
3126 	 * BDIs but as pressure is relieved, speculatively avoid congestion
3127 	 * waits.
3128 	 */
3129 	if (zone_reclaimable(zone) &&
3130 	    zone_balanced(zone, sc->order, false, 0, classzone_idx)) {
3131 		clear_bit(ZONE_CONGESTED, &zone->flags);
3132 		clear_bit(ZONE_DIRTY, &zone->flags);
3133 	}
3134 
3135 	return sc->nr_scanned >= sc->nr_to_reclaim;
3136 }
3137 
3138 /*
3139  * For kswapd, balance_pgdat() will work across all this node's zones until
3140  * they are all at high_wmark_pages(zone).
3141  *
3142  * Returns the highest zone idx kswapd was reclaiming at
3143  *
3144  * There is special handling here for zones which are full of pinned pages.
3145  * This can happen if the pages are all mlocked, or if they are all used by
3146  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
3147  * What we do is to detect the case where all pages in the zone have been
3148  * scanned twice and there has been zero successful reclaim.  Mark the zone as
3149  * dead and from now on, only perform a short scan.  Basically we're polling
3150  * the zone for when the problem goes away.
3151  *
3152  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3153  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3154  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3155  * lower zones regardless of the number of free pages in the lower zones. This
3156  * interoperates with the page allocator fallback scheme to ensure that aging
3157  * of pages is balanced across the zones.
3158  */
3159 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3160 {
3161 	int i;
3162 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
3163 	unsigned long nr_soft_reclaimed;
3164 	unsigned long nr_soft_scanned;
3165 	struct scan_control sc = {
3166 		.gfp_mask = GFP_KERNEL,
3167 		.order = order,
3168 		.priority = DEF_PRIORITY,
3169 		.may_writepage = !laptop_mode,
3170 		.may_unmap = 1,
3171 		.may_swap = 1,
3172 	};
3173 	count_vm_event(PAGEOUTRUN);
3174 
3175 	do {
3176 		bool raise_priority = true;
3177 
3178 		sc.nr_reclaimed = 0;
3179 
3180 		/*
3181 		 * Scan in the highmem->dma direction for the highest
3182 		 * zone which needs scanning
3183 		 */
3184 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3185 			struct zone *zone = pgdat->node_zones + i;
3186 
3187 			if (!populated_zone(zone))
3188 				continue;
3189 
3190 			if (sc.priority != DEF_PRIORITY &&
3191 			    !zone_reclaimable(zone))
3192 				continue;
3193 
3194 			/*
3195 			 * Do some background aging of the anon list, to give
3196 			 * pages a chance to be referenced before reclaiming.
3197 			 */
3198 			age_active_anon(zone, &sc);
3199 
3200 			/*
3201 			 * If the number of buffer_heads in the machine
3202 			 * exceeds the maximum allowed level and this node
3203 			 * has a highmem zone, force kswapd to reclaim from
3204 			 * it to relieve lowmem pressure.
3205 			 */
3206 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
3207 				end_zone = i;
3208 				break;
3209 			}
3210 
3211 			if (!zone_balanced(zone, order, false, 0, 0)) {
3212 				end_zone = i;
3213 				break;
3214 			} else {
3215 				/*
3216 				 * If balanced, clear the dirty and congested
3217 				 * flags
3218 				 */
3219 				clear_bit(ZONE_CONGESTED, &zone->flags);
3220 				clear_bit(ZONE_DIRTY, &zone->flags);
3221 			}
3222 		}
3223 
3224 		if (i < 0)
3225 			goto out;
3226 
3227 		/*
3228 		 * If we're getting trouble reclaiming, start doing writepage
3229 		 * even in laptop mode.
3230 		 */
3231 		if (sc.priority < DEF_PRIORITY - 2)
3232 			sc.may_writepage = 1;
3233 
3234 		/*
3235 		 * Now scan the zone in the dma->highmem direction, stopping
3236 		 * at the last zone which needs scanning.
3237 		 *
3238 		 * We do this because the page allocator works in the opposite
3239 		 * direction.  This prevents the page allocator from allocating
3240 		 * pages behind kswapd's direction of progress, which would
3241 		 * cause too much scanning of the lower zones.
3242 		 */
3243 		for (i = 0; i <= end_zone; i++) {
3244 			struct zone *zone = pgdat->node_zones + i;
3245 
3246 			if (!populated_zone(zone))
3247 				continue;
3248 
3249 			if (sc.priority != DEF_PRIORITY &&
3250 			    !zone_reclaimable(zone))
3251 				continue;
3252 
3253 			sc.nr_scanned = 0;
3254 
3255 			nr_soft_scanned = 0;
3256 			/*
3257 			 * Call soft limit reclaim before calling shrink_zone.
3258 			 */
3259 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3260 							order, sc.gfp_mask,
3261 							&nr_soft_scanned);
3262 			sc.nr_reclaimed += nr_soft_reclaimed;
3263 
3264 			/*
3265 			 * There should be no need to raise the scanning
3266 			 * priority if enough pages are already being scanned
3267 			 * that that high watermark would be met at 100%
3268 			 * efficiency.
3269 			 */
3270 			if (kswapd_shrink_zone(zone, end_zone, &sc))
3271 				raise_priority = false;
3272 		}
3273 
3274 		/*
3275 		 * If the low watermark is met there is no need for processes
3276 		 * to be throttled on pfmemalloc_wait as they should not be
3277 		 * able to safely make forward progress. Wake them
3278 		 */
3279 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3280 				pfmemalloc_watermark_ok(pgdat))
3281 			wake_up_all(&pgdat->pfmemalloc_wait);
3282 
3283 		/* Check if kswapd should be suspending */
3284 		if (try_to_freeze() || kthread_should_stop())
3285 			break;
3286 
3287 		/*
3288 		 * Raise priority if scanning rate is too low or there was no
3289 		 * progress in reclaiming pages
3290 		 */
3291 		if (raise_priority || !sc.nr_reclaimed)
3292 			sc.priority--;
3293 	} while (sc.priority >= 1 &&
3294 			!pgdat_balanced(pgdat, order, classzone_idx));
3295 
3296 out:
3297 	/*
3298 	 * Return the highest zone idx we were reclaiming at so
3299 	 * prepare_kswapd_sleep() makes the same decisions as here.
3300 	 */
3301 	return end_zone;
3302 }
3303 
3304 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order,
3305 				int classzone_idx, int balanced_classzone_idx)
3306 {
3307 	long remaining = 0;
3308 	DEFINE_WAIT(wait);
3309 
3310 	if (freezing(current) || kthread_should_stop())
3311 		return;
3312 
3313 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3314 
3315 	/* Try to sleep for a short interval */
3316 	if (prepare_kswapd_sleep(pgdat, order, remaining,
3317 						balanced_classzone_idx)) {
3318 		/*
3319 		 * Compaction records what page blocks it recently failed to
3320 		 * isolate pages from and skips them in the future scanning.
3321 		 * When kswapd is going to sleep, it is reasonable to assume
3322 		 * that pages and compaction may succeed so reset the cache.
3323 		 */
3324 		reset_isolation_suitable(pgdat);
3325 
3326 		/*
3327 		 * We have freed the memory, now we should compact it to make
3328 		 * allocation of the requested order possible.
3329 		 */
3330 		wakeup_kcompactd(pgdat, order, classzone_idx);
3331 
3332 		remaining = schedule_timeout(HZ/10);
3333 		finish_wait(&pgdat->kswapd_wait, &wait);
3334 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3335 	}
3336 
3337 	/*
3338 	 * After a short sleep, check if it was a premature sleep. If not, then
3339 	 * go fully to sleep until explicitly woken up.
3340 	 */
3341 	if (prepare_kswapd_sleep(pgdat, order, remaining,
3342 						balanced_classzone_idx)) {
3343 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3344 
3345 		/*
3346 		 * vmstat counters are not perfectly accurate and the estimated
3347 		 * value for counters such as NR_FREE_PAGES can deviate from the
3348 		 * true value by nr_online_cpus * threshold. To avoid the zone
3349 		 * watermarks being breached while under pressure, we reduce the
3350 		 * per-cpu vmstat threshold while kswapd is awake and restore
3351 		 * them before going back to sleep.
3352 		 */
3353 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3354 
3355 		if (!kthread_should_stop())
3356 			schedule();
3357 
3358 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3359 	} else {
3360 		if (remaining)
3361 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3362 		else
3363 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3364 	}
3365 	finish_wait(&pgdat->kswapd_wait, &wait);
3366 }
3367 
3368 /*
3369  * The background pageout daemon, started as a kernel thread
3370  * from the init process.
3371  *
3372  * This basically trickles out pages so that we have _some_
3373  * free memory available even if there is no other activity
3374  * that frees anything up. This is needed for things like routing
3375  * etc, where we otherwise might have all activity going on in
3376  * asynchronous contexts that cannot page things out.
3377  *
3378  * If there are applications that are active memory-allocators
3379  * (most normal use), this basically shouldn't matter.
3380  */
3381 static int kswapd(void *p)
3382 {
3383 	unsigned long order, new_order;
3384 	int classzone_idx, new_classzone_idx;
3385 	int balanced_classzone_idx;
3386 	pg_data_t *pgdat = (pg_data_t*)p;
3387 	struct task_struct *tsk = current;
3388 
3389 	struct reclaim_state reclaim_state = {
3390 		.reclaimed_slab = 0,
3391 	};
3392 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3393 
3394 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3395 
3396 	if (!cpumask_empty(cpumask))
3397 		set_cpus_allowed_ptr(tsk, cpumask);
3398 	current->reclaim_state = &reclaim_state;
3399 
3400 	/*
3401 	 * Tell the memory management that we're a "memory allocator",
3402 	 * and that if we need more memory we should get access to it
3403 	 * regardless (see "__alloc_pages()"). "kswapd" should
3404 	 * never get caught in the normal page freeing logic.
3405 	 *
3406 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3407 	 * you need a small amount of memory in order to be able to
3408 	 * page out something else, and this flag essentially protects
3409 	 * us from recursively trying to free more memory as we're
3410 	 * trying to free the first piece of memory in the first place).
3411 	 */
3412 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3413 	set_freezable();
3414 
3415 	order = new_order = 0;
3416 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3417 	balanced_classzone_idx = classzone_idx;
3418 	for ( ; ; ) {
3419 		bool ret;
3420 
3421 		/*
3422 		 * While we were reclaiming, there might have been another
3423 		 * wakeup, so check the values.
3424 		 */
3425 		new_order = pgdat->kswapd_max_order;
3426 		new_classzone_idx = pgdat->classzone_idx;
3427 		pgdat->kswapd_max_order =  0;
3428 		pgdat->classzone_idx = pgdat->nr_zones - 1;
3429 
3430 		if (order < new_order || classzone_idx > new_classzone_idx) {
3431 			/*
3432 			 * Don't sleep if someone wants a larger 'order'
3433 			 * allocation or has tigher zone constraints
3434 			 */
3435 			order = new_order;
3436 			classzone_idx = new_classzone_idx;
3437 		} else {
3438 			kswapd_try_to_sleep(pgdat, order, classzone_idx,
3439 						balanced_classzone_idx);
3440 			order = pgdat->kswapd_max_order;
3441 			classzone_idx = pgdat->classzone_idx;
3442 			new_order = order;
3443 			new_classzone_idx = classzone_idx;
3444 			pgdat->kswapd_max_order = 0;
3445 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3446 		}
3447 
3448 		ret = try_to_freeze();
3449 		if (kthread_should_stop())
3450 			break;
3451 
3452 		/*
3453 		 * We can speed up thawing tasks if we don't call balance_pgdat
3454 		 * after returning from the refrigerator
3455 		 */
3456 		if (!ret) {
3457 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3458 			balanced_classzone_idx = balance_pgdat(pgdat, order,
3459 								classzone_idx);
3460 		}
3461 	}
3462 
3463 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3464 	current->reclaim_state = NULL;
3465 	lockdep_clear_current_reclaim_state();
3466 
3467 	return 0;
3468 }
3469 
3470 /*
3471  * A zone is low on free memory, so wake its kswapd task to service it.
3472  */
3473 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3474 {
3475 	pg_data_t *pgdat;
3476 
3477 	if (!populated_zone(zone))
3478 		return;
3479 
3480 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3481 		return;
3482 	pgdat = zone->zone_pgdat;
3483 	if (pgdat->kswapd_max_order < order) {
3484 		pgdat->kswapd_max_order = order;
3485 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3486 	}
3487 	if (!waitqueue_active(&pgdat->kswapd_wait))
3488 		return;
3489 	if (zone_balanced(zone, order, true, 0, 0))
3490 		return;
3491 
3492 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3493 	wake_up_interruptible(&pgdat->kswapd_wait);
3494 }
3495 
3496 #ifdef CONFIG_HIBERNATION
3497 /*
3498  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3499  * freed pages.
3500  *
3501  * Rather than trying to age LRUs the aim is to preserve the overall
3502  * LRU order by reclaiming preferentially
3503  * inactive > active > active referenced > active mapped
3504  */
3505 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3506 {
3507 	struct reclaim_state reclaim_state;
3508 	struct scan_control sc = {
3509 		.nr_to_reclaim = nr_to_reclaim,
3510 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3511 		.priority = DEF_PRIORITY,
3512 		.may_writepage = 1,
3513 		.may_unmap = 1,
3514 		.may_swap = 1,
3515 		.hibernation_mode = 1,
3516 	};
3517 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3518 	struct task_struct *p = current;
3519 	unsigned long nr_reclaimed;
3520 
3521 	p->flags |= PF_MEMALLOC;
3522 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3523 	reclaim_state.reclaimed_slab = 0;
3524 	p->reclaim_state = &reclaim_state;
3525 
3526 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3527 
3528 	p->reclaim_state = NULL;
3529 	lockdep_clear_current_reclaim_state();
3530 	p->flags &= ~PF_MEMALLOC;
3531 
3532 	return nr_reclaimed;
3533 }
3534 #endif /* CONFIG_HIBERNATION */
3535 
3536 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3537    not required for correctness.  So if the last cpu in a node goes
3538    away, we get changed to run anywhere: as the first one comes back,
3539    restore their cpu bindings. */
3540 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3541 			void *hcpu)
3542 {
3543 	int nid;
3544 
3545 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3546 		for_each_node_state(nid, N_MEMORY) {
3547 			pg_data_t *pgdat = NODE_DATA(nid);
3548 			const struct cpumask *mask;
3549 
3550 			mask = cpumask_of_node(pgdat->node_id);
3551 
3552 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3553 				/* One of our CPUs online: restore mask */
3554 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3555 		}
3556 	}
3557 	return NOTIFY_OK;
3558 }
3559 
3560 /*
3561  * This kswapd start function will be called by init and node-hot-add.
3562  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3563  */
3564 int kswapd_run(int nid)
3565 {
3566 	pg_data_t *pgdat = NODE_DATA(nid);
3567 	int ret = 0;
3568 
3569 	if (pgdat->kswapd)
3570 		return 0;
3571 
3572 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3573 	if (IS_ERR(pgdat->kswapd)) {
3574 		/* failure at boot is fatal */
3575 		BUG_ON(system_state == SYSTEM_BOOTING);
3576 		pr_err("Failed to start kswapd on node %d\n", nid);
3577 		ret = PTR_ERR(pgdat->kswapd);
3578 		pgdat->kswapd = NULL;
3579 	}
3580 	return ret;
3581 }
3582 
3583 /*
3584  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3585  * hold mem_hotplug_begin/end().
3586  */
3587 void kswapd_stop(int nid)
3588 {
3589 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3590 
3591 	if (kswapd) {
3592 		kthread_stop(kswapd);
3593 		NODE_DATA(nid)->kswapd = NULL;
3594 	}
3595 }
3596 
3597 static int __init kswapd_init(void)
3598 {
3599 	int nid;
3600 
3601 	swap_setup();
3602 	for_each_node_state(nid, N_MEMORY)
3603  		kswapd_run(nid);
3604 	hotcpu_notifier(cpu_callback, 0);
3605 	return 0;
3606 }
3607 
3608 module_init(kswapd_init)
3609 
3610 #ifdef CONFIG_NUMA
3611 /*
3612  * Zone reclaim mode
3613  *
3614  * If non-zero call zone_reclaim when the number of free pages falls below
3615  * the watermarks.
3616  */
3617 int zone_reclaim_mode __read_mostly;
3618 
3619 #define RECLAIM_OFF 0
3620 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3621 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3622 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3623 
3624 /*
3625  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3626  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3627  * a zone.
3628  */
3629 #define ZONE_RECLAIM_PRIORITY 4
3630 
3631 /*
3632  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3633  * occur.
3634  */
3635 int sysctl_min_unmapped_ratio = 1;
3636 
3637 /*
3638  * If the number of slab pages in a zone grows beyond this percentage then
3639  * slab reclaim needs to occur.
3640  */
3641 int sysctl_min_slab_ratio = 5;
3642 
3643 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3644 {
3645 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3646 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3647 		zone_page_state(zone, NR_ACTIVE_FILE);
3648 
3649 	/*
3650 	 * It's possible for there to be more file mapped pages than
3651 	 * accounted for by the pages on the file LRU lists because
3652 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3653 	 */
3654 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3655 }
3656 
3657 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3658 static unsigned long zone_pagecache_reclaimable(struct zone *zone)
3659 {
3660 	unsigned long nr_pagecache_reclaimable;
3661 	unsigned long delta = 0;
3662 
3663 	/*
3664 	 * If RECLAIM_UNMAP is set, then all file pages are considered
3665 	 * potentially reclaimable. Otherwise, we have to worry about
3666 	 * pages like swapcache and zone_unmapped_file_pages() provides
3667 	 * a better estimate
3668 	 */
3669 	if (zone_reclaim_mode & RECLAIM_UNMAP)
3670 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3671 	else
3672 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3673 
3674 	/* If we can't clean pages, remove dirty pages from consideration */
3675 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3676 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3677 
3678 	/* Watch for any possible underflows due to delta */
3679 	if (unlikely(delta > nr_pagecache_reclaimable))
3680 		delta = nr_pagecache_reclaimable;
3681 
3682 	return nr_pagecache_reclaimable - delta;
3683 }
3684 
3685 /*
3686  * Try to free up some pages from this zone through reclaim.
3687  */
3688 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3689 {
3690 	/* Minimum pages needed in order to stay on node */
3691 	const unsigned long nr_pages = 1 << order;
3692 	struct task_struct *p = current;
3693 	struct reclaim_state reclaim_state;
3694 	struct scan_control sc = {
3695 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3696 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3697 		.order = order,
3698 		.priority = ZONE_RECLAIM_PRIORITY,
3699 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3700 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
3701 		.may_swap = 1,
3702 	};
3703 
3704 	cond_resched();
3705 	/*
3706 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3707 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3708 	 * and RECLAIM_UNMAP.
3709 	 */
3710 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3711 	lockdep_set_current_reclaim_state(gfp_mask);
3712 	reclaim_state.reclaimed_slab = 0;
3713 	p->reclaim_state = &reclaim_state;
3714 
3715 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3716 		/*
3717 		 * Free memory by calling shrink zone with increasing
3718 		 * priorities until we have enough memory freed.
3719 		 */
3720 		do {
3721 			shrink_zone(zone, &sc, true);
3722 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3723 	}
3724 
3725 	p->reclaim_state = NULL;
3726 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3727 	lockdep_clear_current_reclaim_state();
3728 	return sc.nr_reclaimed >= nr_pages;
3729 }
3730 
3731 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3732 {
3733 	int node_id;
3734 	int ret;
3735 
3736 	/*
3737 	 * Zone reclaim reclaims unmapped file backed pages and
3738 	 * slab pages if we are over the defined limits.
3739 	 *
3740 	 * A small portion of unmapped file backed pages is needed for
3741 	 * file I/O otherwise pages read by file I/O will be immediately
3742 	 * thrown out if the zone is overallocated. So we do not reclaim
3743 	 * if less than a specified percentage of the zone is used by
3744 	 * unmapped file backed pages.
3745 	 */
3746 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3747 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3748 		return ZONE_RECLAIM_FULL;
3749 
3750 	if (!zone_reclaimable(zone))
3751 		return ZONE_RECLAIM_FULL;
3752 
3753 	/*
3754 	 * Do not scan if the allocation should not be delayed.
3755 	 */
3756 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3757 		return ZONE_RECLAIM_NOSCAN;
3758 
3759 	/*
3760 	 * Only run zone reclaim on the local zone or on zones that do not
3761 	 * have associated processors. This will favor the local processor
3762 	 * over remote processors and spread off node memory allocations
3763 	 * as wide as possible.
3764 	 */
3765 	node_id = zone_to_nid(zone);
3766 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3767 		return ZONE_RECLAIM_NOSCAN;
3768 
3769 	if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3770 		return ZONE_RECLAIM_NOSCAN;
3771 
3772 	ret = __zone_reclaim(zone, gfp_mask, order);
3773 	clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3774 
3775 	if (!ret)
3776 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3777 
3778 	return ret;
3779 }
3780 #endif
3781 
3782 /*
3783  * page_evictable - test whether a page is evictable
3784  * @page: the page to test
3785  *
3786  * Test whether page is evictable--i.e., should be placed on active/inactive
3787  * lists vs unevictable list.
3788  *
3789  * Reasons page might not be evictable:
3790  * (1) page's mapping marked unevictable
3791  * (2) page is part of an mlocked VMA
3792  *
3793  */
3794 int page_evictable(struct page *page)
3795 {
3796 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3797 }
3798 
3799 #ifdef CONFIG_SHMEM
3800 /**
3801  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3802  * @pages:	array of pages to check
3803  * @nr_pages:	number of pages to check
3804  *
3805  * Checks pages for evictability and moves them to the appropriate lru list.
3806  *
3807  * This function is only used for SysV IPC SHM_UNLOCK.
3808  */
3809 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3810 {
3811 	struct lruvec *lruvec;
3812 	struct zone *zone = NULL;
3813 	int pgscanned = 0;
3814 	int pgrescued = 0;
3815 	int i;
3816 
3817 	for (i = 0; i < nr_pages; i++) {
3818 		struct page *page = pages[i];
3819 		struct zone *pagezone;
3820 
3821 		pgscanned++;
3822 		pagezone = page_zone(page);
3823 		if (pagezone != zone) {
3824 			if (zone)
3825 				spin_unlock_irq(&zone->lru_lock);
3826 			zone = pagezone;
3827 			spin_lock_irq(&zone->lru_lock);
3828 		}
3829 		lruvec = mem_cgroup_page_lruvec(page, zone);
3830 
3831 		if (!PageLRU(page) || !PageUnevictable(page))
3832 			continue;
3833 
3834 		if (page_evictable(page)) {
3835 			enum lru_list lru = page_lru_base_type(page);
3836 
3837 			VM_BUG_ON_PAGE(PageActive(page), page);
3838 			ClearPageUnevictable(page);
3839 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3840 			add_page_to_lru_list(page, lruvec, lru);
3841 			pgrescued++;
3842 		}
3843 	}
3844 
3845 	if (zone) {
3846 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3847 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3848 		spin_unlock_irq(&zone->lru_lock);
3849 	}
3850 }
3851 #endif /* CONFIG_SHMEM */
3852