xref: /openbmc/linux/mm/vmscan.c (revision 89e004ea55abe201b29e2d6e35124101f1288ef7)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 
43 #include <asm/tlbflush.h>
44 #include <asm/div64.h>
45 
46 #include <linux/swapops.h>
47 
48 #include "internal.h"
49 
50 struct scan_control {
51 	/* Incremented by the number of inactive pages that were scanned */
52 	unsigned long nr_scanned;
53 
54 	/* This context's GFP mask */
55 	gfp_t gfp_mask;
56 
57 	int may_writepage;
58 
59 	/* Can pages be swapped as part of reclaim? */
60 	int may_swap;
61 
62 	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
63 	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
64 	 * In this context, it doesn't matter that we scan the
65 	 * whole list at once. */
66 	int swap_cluster_max;
67 
68 	int swappiness;
69 
70 	int all_unreclaimable;
71 
72 	int order;
73 
74 	/* Which cgroup do we reclaim from */
75 	struct mem_cgroup *mem_cgroup;
76 
77 	/* Pluggable isolate pages callback */
78 	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
79 			unsigned long *scanned, int order, int mode,
80 			struct zone *z, struct mem_cgroup *mem_cont,
81 			int active, int file);
82 };
83 
84 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
85 
86 #ifdef ARCH_HAS_PREFETCH
87 #define prefetch_prev_lru_page(_page, _base, _field)			\
88 	do {								\
89 		if ((_page)->lru.prev != _base) {			\
90 			struct page *prev;				\
91 									\
92 			prev = lru_to_page(&(_page->lru));		\
93 			prefetch(&prev->_field);			\
94 		}							\
95 	} while (0)
96 #else
97 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
98 #endif
99 
100 #ifdef ARCH_HAS_PREFETCHW
101 #define prefetchw_prev_lru_page(_page, _base, _field)			\
102 	do {								\
103 		if ((_page)->lru.prev != _base) {			\
104 			struct page *prev;				\
105 									\
106 			prev = lru_to_page(&(_page->lru));		\
107 			prefetchw(&prev->_field);			\
108 		}							\
109 	} while (0)
110 #else
111 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113 
114 /*
115  * From 0 .. 100.  Higher means more swappy.
116  */
117 int vm_swappiness = 60;
118 long vm_total_pages;	/* The total number of pages which the VM controls */
119 
120 static LIST_HEAD(shrinker_list);
121 static DECLARE_RWSEM(shrinker_rwsem);
122 
123 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
124 #define scan_global_lru(sc)	(!(sc)->mem_cgroup)
125 #else
126 #define scan_global_lru(sc)	(1)
127 #endif
128 
129 /*
130  * Add a shrinker callback to be called from the vm
131  */
132 void register_shrinker(struct shrinker *shrinker)
133 {
134 	shrinker->nr = 0;
135 	down_write(&shrinker_rwsem);
136 	list_add_tail(&shrinker->list, &shrinker_list);
137 	up_write(&shrinker_rwsem);
138 }
139 EXPORT_SYMBOL(register_shrinker);
140 
141 /*
142  * Remove one
143  */
144 void unregister_shrinker(struct shrinker *shrinker)
145 {
146 	down_write(&shrinker_rwsem);
147 	list_del(&shrinker->list);
148 	up_write(&shrinker_rwsem);
149 }
150 EXPORT_SYMBOL(unregister_shrinker);
151 
152 #define SHRINK_BATCH 128
153 /*
154  * Call the shrink functions to age shrinkable caches
155  *
156  * Here we assume it costs one seek to replace a lru page and that it also
157  * takes a seek to recreate a cache object.  With this in mind we age equal
158  * percentages of the lru and ageable caches.  This should balance the seeks
159  * generated by these structures.
160  *
161  * If the vm encountered mapped pages on the LRU it increase the pressure on
162  * slab to avoid swapping.
163  *
164  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
165  *
166  * `lru_pages' represents the number of on-LRU pages in all the zones which
167  * are eligible for the caller's allocation attempt.  It is used for balancing
168  * slab reclaim versus page reclaim.
169  *
170  * Returns the number of slab objects which we shrunk.
171  */
172 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
173 			unsigned long lru_pages)
174 {
175 	struct shrinker *shrinker;
176 	unsigned long ret = 0;
177 
178 	if (scanned == 0)
179 		scanned = SWAP_CLUSTER_MAX;
180 
181 	if (!down_read_trylock(&shrinker_rwsem))
182 		return 1;	/* Assume we'll be able to shrink next time */
183 
184 	list_for_each_entry(shrinker, &shrinker_list, list) {
185 		unsigned long long delta;
186 		unsigned long total_scan;
187 		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
188 
189 		delta = (4 * scanned) / shrinker->seeks;
190 		delta *= max_pass;
191 		do_div(delta, lru_pages + 1);
192 		shrinker->nr += delta;
193 		if (shrinker->nr < 0) {
194 			printk(KERN_ERR "%s: nr=%ld\n",
195 					__func__, shrinker->nr);
196 			shrinker->nr = max_pass;
197 		}
198 
199 		/*
200 		 * Avoid risking looping forever due to too large nr value:
201 		 * never try to free more than twice the estimate number of
202 		 * freeable entries.
203 		 */
204 		if (shrinker->nr > max_pass * 2)
205 			shrinker->nr = max_pass * 2;
206 
207 		total_scan = shrinker->nr;
208 		shrinker->nr = 0;
209 
210 		while (total_scan >= SHRINK_BATCH) {
211 			long this_scan = SHRINK_BATCH;
212 			int shrink_ret;
213 			int nr_before;
214 
215 			nr_before = (*shrinker->shrink)(0, gfp_mask);
216 			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
217 			if (shrink_ret == -1)
218 				break;
219 			if (shrink_ret < nr_before)
220 				ret += nr_before - shrink_ret;
221 			count_vm_events(SLABS_SCANNED, this_scan);
222 			total_scan -= this_scan;
223 
224 			cond_resched();
225 		}
226 
227 		shrinker->nr += total_scan;
228 	}
229 	up_read(&shrinker_rwsem);
230 	return ret;
231 }
232 
233 /* Called without lock on whether page is mapped, so answer is unstable */
234 static inline int page_mapping_inuse(struct page *page)
235 {
236 	struct address_space *mapping;
237 
238 	/* Page is in somebody's page tables. */
239 	if (page_mapped(page))
240 		return 1;
241 
242 	/* Be more reluctant to reclaim swapcache than pagecache */
243 	if (PageSwapCache(page))
244 		return 1;
245 
246 	mapping = page_mapping(page);
247 	if (!mapping)
248 		return 0;
249 
250 	/* File is mmap'd by somebody? */
251 	return mapping_mapped(mapping);
252 }
253 
254 static inline int is_page_cache_freeable(struct page *page)
255 {
256 	return page_count(page) - !!PagePrivate(page) == 2;
257 }
258 
259 static int may_write_to_queue(struct backing_dev_info *bdi)
260 {
261 	if (current->flags & PF_SWAPWRITE)
262 		return 1;
263 	if (!bdi_write_congested(bdi))
264 		return 1;
265 	if (bdi == current->backing_dev_info)
266 		return 1;
267 	return 0;
268 }
269 
270 /*
271  * We detected a synchronous write error writing a page out.  Probably
272  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
273  * fsync(), msync() or close().
274  *
275  * The tricky part is that after writepage we cannot touch the mapping: nothing
276  * prevents it from being freed up.  But we have a ref on the page and once
277  * that page is locked, the mapping is pinned.
278  *
279  * We're allowed to run sleeping lock_page() here because we know the caller has
280  * __GFP_FS.
281  */
282 static void handle_write_error(struct address_space *mapping,
283 				struct page *page, int error)
284 {
285 	lock_page(page);
286 	if (page_mapping(page) == mapping)
287 		mapping_set_error(mapping, error);
288 	unlock_page(page);
289 }
290 
291 /* Request for sync pageout. */
292 enum pageout_io {
293 	PAGEOUT_IO_ASYNC,
294 	PAGEOUT_IO_SYNC,
295 };
296 
297 /* possible outcome of pageout() */
298 typedef enum {
299 	/* failed to write page out, page is locked */
300 	PAGE_KEEP,
301 	/* move page to the active list, page is locked */
302 	PAGE_ACTIVATE,
303 	/* page has been sent to the disk successfully, page is unlocked */
304 	PAGE_SUCCESS,
305 	/* page is clean and locked */
306 	PAGE_CLEAN,
307 } pageout_t;
308 
309 /*
310  * pageout is called by shrink_page_list() for each dirty page.
311  * Calls ->writepage().
312  */
313 static pageout_t pageout(struct page *page, struct address_space *mapping,
314 						enum pageout_io sync_writeback)
315 {
316 	/*
317 	 * If the page is dirty, only perform writeback if that write
318 	 * will be non-blocking.  To prevent this allocation from being
319 	 * stalled by pagecache activity.  But note that there may be
320 	 * stalls if we need to run get_block().  We could test
321 	 * PagePrivate for that.
322 	 *
323 	 * If this process is currently in generic_file_write() against
324 	 * this page's queue, we can perform writeback even if that
325 	 * will block.
326 	 *
327 	 * If the page is swapcache, write it back even if that would
328 	 * block, for some throttling. This happens by accident, because
329 	 * swap_backing_dev_info is bust: it doesn't reflect the
330 	 * congestion state of the swapdevs.  Easy to fix, if needed.
331 	 * See swapfile.c:page_queue_congested().
332 	 */
333 	if (!is_page_cache_freeable(page))
334 		return PAGE_KEEP;
335 	if (!mapping) {
336 		/*
337 		 * Some data journaling orphaned pages can have
338 		 * page->mapping == NULL while being dirty with clean buffers.
339 		 */
340 		if (PagePrivate(page)) {
341 			if (try_to_free_buffers(page)) {
342 				ClearPageDirty(page);
343 				printk("%s: orphaned page\n", __func__);
344 				return PAGE_CLEAN;
345 			}
346 		}
347 		return PAGE_KEEP;
348 	}
349 	if (mapping->a_ops->writepage == NULL)
350 		return PAGE_ACTIVATE;
351 	if (!may_write_to_queue(mapping->backing_dev_info))
352 		return PAGE_KEEP;
353 
354 	if (clear_page_dirty_for_io(page)) {
355 		int res;
356 		struct writeback_control wbc = {
357 			.sync_mode = WB_SYNC_NONE,
358 			.nr_to_write = SWAP_CLUSTER_MAX,
359 			.range_start = 0,
360 			.range_end = LLONG_MAX,
361 			.nonblocking = 1,
362 			.for_reclaim = 1,
363 		};
364 
365 		SetPageReclaim(page);
366 		res = mapping->a_ops->writepage(page, &wbc);
367 		if (res < 0)
368 			handle_write_error(mapping, page, res);
369 		if (res == AOP_WRITEPAGE_ACTIVATE) {
370 			ClearPageReclaim(page);
371 			return PAGE_ACTIVATE;
372 		}
373 
374 		/*
375 		 * Wait on writeback if requested to. This happens when
376 		 * direct reclaiming a large contiguous area and the
377 		 * first attempt to free a range of pages fails.
378 		 */
379 		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
380 			wait_on_page_writeback(page);
381 
382 		if (!PageWriteback(page)) {
383 			/* synchronous write or broken a_ops? */
384 			ClearPageReclaim(page);
385 		}
386 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
387 		return PAGE_SUCCESS;
388 	}
389 
390 	return PAGE_CLEAN;
391 }
392 
393 /*
394  * Same as remove_mapping, but if the page is removed from the mapping, it
395  * gets returned with a refcount of 0.
396  */
397 static int __remove_mapping(struct address_space *mapping, struct page *page)
398 {
399 	BUG_ON(!PageLocked(page));
400 	BUG_ON(mapping != page_mapping(page));
401 
402 	spin_lock_irq(&mapping->tree_lock);
403 	/*
404 	 * The non racy check for a busy page.
405 	 *
406 	 * Must be careful with the order of the tests. When someone has
407 	 * a ref to the page, it may be possible that they dirty it then
408 	 * drop the reference. So if PageDirty is tested before page_count
409 	 * here, then the following race may occur:
410 	 *
411 	 * get_user_pages(&page);
412 	 * [user mapping goes away]
413 	 * write_to(page);
414 	 *				!PageDirty(page)    [good]
415 	 * SetPageDirty(page);
416 	 * put_page(page);
417 	 *				!page_count(page)   [good, discard it]
418 	 *
419 	 * [oops, our write_to data is lost]
420 	 *
421 	 * Reversing the order of the tests ensures such a situation cannot
422 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
423 	 * load is not satisfied before that of page->_count.
424 	 *
425 	 * Note that if SetPageDirty is always performed via set_page_dirty,
426 	 * and thus under tree_lock, then this ordering is not required.
427 	 */
428 	if (!page_freeze_refs(page, 2))
429 		goto cannot_free;
430 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
431 	if (unlikely(PageDirty(page))) {
432 		page_unfreeze_refs(page, 2);
433 		goto cannot_free;
434 	}
435 
436 	if (PageSwapCache(page)) {
437 		swp_entry_t swap = { .val = page_private(page) };
438 		__delete_from_swap_cache(page);
439 		spin_unlock_irq(&mapping->tree_lock);
440 		swap_free(swap);
441 	} else {
442 		__remove_from_page_cache(page);
443 		spin_unlock_irq(&mapping->tree_lock);
444 	}
445 
446 	return 1;
447 
448 cannot_free:
449 	spin_unlock_irq(&mapping->tree_lock);
450 	return 0;
451 }
452 
453 /*
454  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
455  * someone else has a ref on the page, abort and return 0.  If it was
456  * successfully detached, return 1.  Assumes the caller has a single ref on
457  * this page.
458  */
459 int remove_mapping(struct address_space *mapping, struct page *page)
460 {
461 	if (__remove_mapping(mapping, page)) {
462 		/*
463 		 * Unfreezing the refcount with 1 rather than 2 effectively
464 		 * drops the pagecache ref for us without requiring another
465 		 * atomic operation.
466 		 */
467 		page_unfreeze_refs(page, 1);
468 		return 1;
469 	}
470 	return 0;
471 }
472 
473 /**
474  * putback_lru_page - put previously isolated page onto appropriate LRU list
475  * @page: page to be put back to appropriate lru list
476  *
477  * Add previously isolated @page to appropriate LRU list.
478  * Page may still be unevictable for other reasons.
479  *
480  * lru_lock must not be held, interrupts must be enabled.
481  */
482 #ifdef CONFIG_UNEVICTABLE_LRU
483 void putback_lru_page(struct page *page)
484 {
485 	int lru;
486 	int active = !!TestClearPageActive(page);
487 	int was_unevictable = PageUnevictable(page);
488 
489 	VM_BUG_ON(PageLRU(page));
490 
491 redo:
492 	ClearPageUnevictable(page);
493 
494 	if (page_evictable(page, NULL)) {
495 		/*
496 		 * For evictable pages, we can use the cache.
497 		 * In event of a race, worst case is we end up with an
498 		 * unevictable page on [in]active list.
499 		 * We know how to handle that.
500 		 */
501 		lru = active + page_is_file_cache(page);
502 		lru_cache_add_lru(page, lru);
503 	} else {
504 		/*
505 		 * Put unevictable pages directly on zone's unevictable
506 		 * list.
507 		 */
508 		lru = LRU_UNEVICTABLE;
509 		add_page_to_unevictable_list(page);
510 	}
511 	mem_cgroup_move_lists(page, lru);
512 
513 	/*
514 	 * page's status can change while we move it among lru. If an evictable
515 	 * page is on unevictable list, it never be freed. To avoid that,
516 	 * check after we added it to the list, again.
517 	 */
518 	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
519 		if (!isolate_lru_page(page)) {
520 			put_page(page);
521 			goto redo;
522 		}
523 		/* This means someone else dropped this page from LRU
524 		 * So, it will be freed or putback to LRU again. There is
525 		 * nothing to do here.
526 		 */
527 	}
528 
529 	if (was_unevictable && lru != LRU_UNEVICTABLE)
530 		count_vm_event(UNEVICTABLE_PGRESCUED);
531 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
532 		count_vm_event(UNEVICTABLE_PGCULLED);
533 
534 	put_page(page);		/* drop ref from isolate */
535 }
536 
537 #else /* CONFIG_UNEVICTABLE_LRU */
538 
539 void putback_lru_page(struct page *page)
540 {
541 	int lru;
542 	VM_BUG_ON(PageLRU(page));
543 
544 	lru = !!TestClearPageActive(page) + page_is_file_cache(page);
545 	lru_cache_add_lru(page, lru);
546 	mem_cgroup_move_lists(page, lru);
547 	put_page(page);
548 }
549 #endif /* CONFIG_UNEVICTABLE_LRU */
550 
551 
552 /*
553  * shrink_page_list() returns the number of reclaimed pages
554  */
555 static unsigned long shrink_page_list(struct list_head *page_list,
556 					struct scan_control *sc,
557 					enum pageout_io sync_writeback)
558 {
559 	LIST_HEAD(ret_pages);
560 	struct pagevec freed_pvec;
561 	int pgactivate = 0;
562 	unsigned long nr_reclaimed = 0;
563 
564 	cond_resched();
565 
566 	pagevec_init(&freed_pvec, 1);
567 	while (!list_empty(page_list)) {
568 		struct address_space *mapping;
569 		struct page *page;
570 		int may_enter_fs;
571 		int referenced;
572 
573 		cond_resched();
574 
575 		page = lru_to_page(page_list);
576 		list_del(&page->lru);
577 
578 		if (!trylock_page(page))
579 			goto keep;
580 
581 		VM_BUG_ON(PageActive(page));
582 
583 		sc->nr_scanned++;
584 
585 		if (unlikely(!page_evictable(page, NULL))) {
586 			unlock_page(page);
587 			putback_lru_page(page);
588 			continue;
589 		}
590 
591 		if (!sc->may_swap && page_mapped(page))
592 			goto keep_locked;
593 
594 		/* Double the slab pressure for mapped and swapcache pages */
595 		if (page_mapped(page) || PageSwapCache(page))
596 			sc->nr_scanned++;
597 
598 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
599 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
600 
601 		if (PageWriteback(page)) {
602 			/*
603 			 * Synchronous reclaim is performed in two passes,
604 			 * first an asynchronous pass over the list to
605 			 * start parallel writeback, and a second synchronous
606 			 * pass to wait for the IO to complete.  Wait here
607 			 * for any page for which writeback has already
608 			 * started.
609 			 */
610 			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
611 				wait_on_page_writeback(page);
612 			else
613 				goto keep_locked;
614 		}
615 
616 		referenced = page_referenced(page, 1, sc->mem_cgroup);
617 		/* In active use or really unfreeable?  Activate it. */
618 		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
619 					referenced && page_mapping_inuse(page))
620 			goto activate_locked;
621 
622 #ifdef CONFIG_SWAP
623 		/*
624 		 * Anonymous process memory has backing store?
625 		 * Try to allocate it some swap space here.
626 		 */
627 		if (PageAnon(page) && !PageSwapCache(page))
628 			if (!add_to_swap(page, GFP_ATOMIC))
629 				goto activate_locked;
630 #endif /* CONFIG_SWAP */
631 
632 		mapping = page_mapping(page);
633 
634 		/*
635 		 * The page is mapped into the page tables of one or more
636 		 * processes. Try to unmap it here.
637 		 */
638 		if (page_mapped(page) && mapping) {
639 			switch (try_to_unmap(page, 0)) {
640 			case SWAP_FAIL:
641 				goto activate_locked;
642 			case SWAP_AGAIN:
643 				goto keep_locked;
644 			case SWAP_SUCCESS:
645 				; /* try to free the page below */
646 			}
647 		}
648 
649 		if (PageDirty(page)) {
650 			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
651 				goto keep_locked;
652 			if (!may_enter_fs)
653 				goto keep_locked;
654 			if (!sc->may_writepage)
655 				goto keep_locked;
656 
657 			/* Page is dirty, try to write it out here */
658 			switch (pageout(page, mapping, sync_writeback)) {
659 			case PAGE_KEEP:
660 				goto keep_locked;
661 			case PAGE_ACTIVATE:
662 				goto activate_locked;
663 			case PAGE_SUCCESS:
664 				if (PageWriteback(page) || PageDirty(page))
665 					goto keep;
666 				/*
667 				 * A synchronous write - probably a ramdisk.  Go
668 				 * ahead and try to reclaim the page.
669 				 */
670 				if (!trylock_page(page))
671 					goto keep;
672 				if (PageDirty(page) || PageWriteback(page))
673 					goto keep_locked;
674 				mapping = page_mapping(page);
675 			case PAGE_CLEAN:
676 				; /* try to free the page below */
677 			}
678 		}
679 
680 		/*
681 		 * If the page has buffers, try to free the buffer mappings
682 		 * associated with this page. If we succeed we try to free
683 		 * the page as well.
684 		 *
685 		 * We do this even if the page is PageDirty().
686 		 * try_to_release_page() does not perform I/O, but it is
687 		 * possible for a page to have PageDirty set, but it is actually
688 		 * clean (all its buffers are clean).  This happens if the
689 		 * buffers were written out directly, with submit_bh(). ext3
690 		 * will do this, as well as the blockdev mapping.
691 		 * try_to_release_page() will discover that cleanness and will
692 		 * drop the buffers and mark the page clean - it can be freed.
693 		 *
694 		 * Rarely, pages can have buffers and no ->mapping.  These are
695 		 * the pages which were not successfully invalidated in
696 		 * truncate_complete_page().  We try to drop those buffers here
697 		 * and if that worked, and the page is no longer mapped into
698 		 * process address space (page_count == 1) it can be freed.
699 		 * Otherwise, leave the page on the LRU so it is swappable.
700 		 */
701 		if (PagePrivate(page)) {
702 			if (!try_to_release_page(page, sc->gfp_mask))
703 				goto activate_locked;
704 			if (!mapping && page_count(page) == 1) {
705 				unlock_page(page);
706 				if (put_page_testzero(page))
707 					goto free_it;
708 				else {
709 					/*
710 					 * rare race with speculative reference.
711 					 * the speculative reference will free
712 					 * this page shortly, so we may
713 					 * increment nr_reclaimed here (and
714 					 * leave it off the LRU).
715 					 */
716 					nr_reclaimed++;
717 					continue;
718 				}
719 			}
720 		}
721 
722 		if (!mapping || !__remove_mapping(mapping, page))
723 			goto keep_locked;
724 
725 		unlock_page(page);
726 free_it:
727 		nr_reclaimed++;
728 		if (!pagevec_add(&freed_pvec, page)) {
729 			__pagevec_free(&freed_pvec);
730 			pagevec_reinit(&freed_pvec);
731 		}
732 		continue;
733 
734 activate_locked:
735 		/* Not a candidate for swapping, so reclaim swap space. */
736 		if (PageSwapCache(page) && vm_swap_full())
737 			remove_exclusive_swap_page_ref(page);
738 		VM_BUG_ON(PageActive(page));
739 		SetPageActive(page);
740 		pgactivate++;
741 keep_locked:
742 		unlock_page(page);
743 keep:
744 		list_add(&page->lru, &ret_pages);
745 		VM_BUG_ON(PageLRU(page));
746 	}
747 	list_splice(&ret_pages, page_list);
748 	if (pagevec_count(&freed_pvec))
749 		__pagevec_free(&freed_pvec);
750 	count_vm_events(PGACTIVATE, pgactivate);
751 	return nr_reclaimed;
752 }
753 
754 /* LRU Isolation modes. */
755 #define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
756 #define ISOLATE_ACTIVE 1	/* Isolate active pages. */
757 #define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */
758 
759 /*
760  * Attempt to remove the specified page from its LRU.  Only take this page
761  * if it is of the appropriate PageActive status.  Pages which are being
762  * freed elsewhere are also ignored.
763  *
764  * page:	page to consider
765  * mode:	one of the LRU isolation modes defined above
766  *
767  * returns 0 on success, -ve errno on failure.
768  */
769 int __isolate_lru_page(struct page *page, int mode, int file)
770 {
771 	int ret = -EINVAL;
772 
773 	/* Only take pages on the LRU. */
774 	if (!PageLRU(page))
775 		return ret;
776 
777 	/*
778 	 * When checking the active state, we need to be sure we are
779 	 * dealing with comparible boolean values.  Take the logical not
780 	 * of each.
781 	 */
782 	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
783 		return ret;
784 
785 	if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
786 		return ret;
787 
788 	/*
789 	 * When this function is being called for lumpy reclaim, we
790 	 * initially look into all LRU pages, active, inactive and
791 	 * unevictable; only give shrink_page_list evictable pages.
792 	 */
793 	if (PageUnevictable(page))
794 		return ret;
795 
796 	ret = -EBUSY;
797 	if (likely(get_page_unless_zero(page))) {
798 		/*
799 		 * Be careful not to clear PageLRU until after we're
800 		 * sure the page is not being freed elsewhere -- the
801 		 * page release code relies on it.
802 		 */
803 		ClearPageLRU(page);
804 		ret = 0;
805 	}
806 
807 	return ret;
808 }
809 
810 /*
811  * zone->lru_lock is heavily contended.  Some of the functions that
812  * shrink the lists perform better by taking out a batch of pages
813  * and working on them outside the LRU lock.
814  *
815  * For pagecache intensive workloads, this function is the hottest
816  * spot in the kernel (apart from copy_*_user functions).
817  *
818  * Appropriate locks must be held before calling this function.
819  *
820  * @nr_to_scan:	The number of pages to look through on the list.
821  * @src:	The LRU list to pull pages off.
822  * @dst:	The temp list to put pages on to.
823  * @scanned:	The number of pages that were scanned.
824  * @order:	The caller's attempted allocation order
825  * @mode:	One of the LRU isolation modes
826  * @file:	True [1] if isolating file [!anon] pages
827  *
828  * returns how many pages were moved onto *@dst.
829  */
830 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
831 		struct list_head *src, struct list_head *dst,
832 		unsigned long *scanned, int order, int mode, int file)
833 {
834 	unsigned long nr_taken = 0;
835 	unsigned long scan;
836 
837 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
838 		struct page *page;
839 		unsigned long pfn;
840 		unsigned long end_pfn;
841 		unsigned long page_pfn;
842 		int zone_id;
843 
844 		page = lru_to_page(src);
845 		prefetchw_prev_lru_page(page, src, flags);
846 
847 		VM_BUG_ON(!PageLRU(page));
848 
849 		switch (__isolate_lru_page(page, mode, file)) {
850 		case 0:
851 			list_move(&page->lru, dst);
852 			nr_taken++;
853 			break;
854 
855 		case -EBUSY:
856 			/* else it is being freed elsewhere */
857 			list_move(&page->lru, src);
858 			continue;
859 
860 		default:
861 			BUG();
862 		}
863 
864 		if (!order)
865 			continue;
866 
867 		/*
868 		 * Attempt to take all pages in the order aligned region
869 		 * surrounding the tag page.  Only take those pages of
870 		 * the same active state as that tag page.  We may safely
871 		 * round the target page pfn down to the requested order
872 		 * as the mem_map is guarenteed valid out to MAX_ORDER,
873 		 * where that page is in a different zone we will detect
874 		 * it from its zone id and abort this block scan.
875 		 */
876 		zone_id = page_zone_id(page);
877 		page_pfn = page_to_pfn(page);
878 		pfn = page_pfn & ~((1 << order) - 1);
879 		end_pfn = pfn + (1 << order);
880 		for (; pfn < end_pfn; pfn++) {
881 			struct page *cursor_page;
882 
883 			/* The target page is in the block, ignore it. */
884 			if (unlikely(pfn == page_pfn))
885 				continue;
886 
887 			/* Avoid holes within the zone. */
888 			if (unlikely(!pfn_valid_within(pfn)))
889 				break;
890 
891 			cursor_page = pfn_to_page(pfn);
892 
893 			/* Check that we have not crossed a zone boundary. */
894 			if (unlikely(page_zone_id(cursor_page) != zone_id))
895 				continue;
896 			switch (__isolate_lru_page(cursor_page, mode, file)) {
897 			case 0:
898 				list_move(&cursor_page->lru, dst);
899 				nr_taken++;
900 				scan++;
901 				break;
902 
903 			case -EBUSY:
904 				/* else it is being freed elsewhere */
905 				list_move(&cursor_page->lru, src);
906 			default:
907 				break;	/* ! on LRU or wrong list */
908 			}
909 		}
910 	}
911 
912 	*scanned = scan;
913 	return nr_taken;
914 }
915 
916 static unsigned long isolate_pages_global(unsigned long nr,
917 					struct list_head *dst,
918 					unsigned long *scanned, int order,
919 					int mode, struct zone *z,
920 					struct mem_cgroup *mem_cont,
921 					int active, int file)
922 {
923 	int lru = LRU_BASE;
924 	if (active)
925 		lru += LRU_ACTIVE;
926 	if (file)
927 		lru += LRU_FILE;
928 	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
929 								mode, !!file);
930 }
931 
932 /*
933  * clear_active_flags() is a helper for shrink_active_list(), clearing
934  * any active bits from the pages in the list.
935  */
936 static unsigned long clear_active_flags(struct list_head *page_list,
937 					unsigned int *count)
938 {
939 	int nr_active = 0;
940 	int lru;
941 	struct page *page;
942 
943 	list_for_each_entry(page, page_list, lru) {
944 		lru = page_is_file_cache(page);
945 		if (PageActive(page)) {
946 			lru += LRU_ACTIVE;
947 			ClearPageActive(page);
948 			nr_active++;
949 		}
950 		count[lru]++;
951 	}
952 
953 	return nr_active;
954 }
955 
956 /**
957  * isolate_lru_page - tries to isolate a page from its LRU list
958  * @page: page to isolate from its LRU list
959  *
960  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
961  * vmstat statistic corresponding to whatever LRU list the page was on.
962  *
963  * Returns 0 if the page was removed from an LRU list.
964  * Returns -EBUSY if the page was not on an LRU list.
965  *
966  * The returned page will have PageLRU() cleared.  If it was found on
967  * the active list, it will have PageActive set.  If it was found on
968  * the unevictable list, it will have the PageUnevictable bit set. That flag
969  * may need to be cleared by the caller before letting the page go.
970  *
971  * The vmstat statistic corresponding to the list on which the page was
972  * found will be decremented.
973  *
974  * Restrictions:
975  * (1) Must be called with an elevated refcount on the page. This is a
976  *     fundamentnal difference from isolate_lru_pages (which is called
977  *     without a stable reference).
978  * (2) the lru_lock must not be held.
979  * (3) interrupts must be enabled.
980  */
981 int isolate_lru_page(struct page *page)
982 {
983 	int ret = -EBUSY;
984 
985 	if (PageLRU(page)) {
986 		struct zone *zone = page_zone(page);
987 
988 		spin_lock_irq(&zone->lru_lock);
989 		if (PageLRU(page) && get_page_unless_zero(page)) {
990 			int lru = page_lru(page);
991 			ret = 0;
992 			ClearPageLRU(page);
993 
994 			del_page_from_lru_list(zone, page, lru);
995 		}
996 		spin_unlock_irq(&zone->lru_lock);
997 	}
998 	return ret;
999 }
1000 
1001 /*
1002  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1003  * of reclaimed pages
1004  */
1005 static unsigned long shrink_inactive_list(unsigned long max_scan,
1006 			struct zone *zone, struct scan_control *sc,
1007 			int priority, int file)
1008 {
1009 	LIST_HEAD(page_list);
1010 	struct pagevec pvec;
1011 	unsigned long nr_scanned = 0;
1012 	unsigned long nr_reclaimed = 0;
1013 
1014 	pagevec_init(&pvec, 1);
1015 
1016 	lru_add_drain();
1017 	spin_lock_irq(&zone->lru_lock);
1018 	do {
1019 		struct page *page;
1020 		unsigned long nr_taken;
1021 		unsigned long nr_scan;
1022 		unsigned long nr_freed;
1023 		unsigned long nr_active;
1024 		unsigned int count[NR_LRU_LISTS] = { 0, };
1025 		int mode = ISOLATE_INACTIVE;
1026 
1027 		/*
1028 		 * If we need a large contiguous chunk of memory, or have
1029 		 * trouble getting a small set of contiguous pages, we
1030 		 * will reclaim both active and inactive pages.
1031 		 *
1032 		 * We use the same threshold as pageout congestion_wait below.
1033 		 */
1034 		if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1035 			mode = ISOLATE_BOTH;
1036 		else if (sc->order && priority < DEF_PRIORITY - 2)
1037 			mode = ISOLATE_BOTH;
1038 
1039 		nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1040 			     &page_list, &nr_scan, sc->order, mode,
1041 				zone, sc->mem_cgroup, 0, file);
1042 		nr_active = clear_active_flags(&page_list, count);
1043 		__count_vm_events(PGDEACTIVATE, nr_active);
1044 
1045 		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1046 						-count[LRU_ACTIVE_FILE]);
1047 		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1048 						-count[LRU_INACTIVE_FILE]);
1049 		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1050 						-count[LRU_ACTIVE_ANON]);
1051 		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1052 						-count[LRU_INACTIVE_ANON]);
1053 
1054 		if (scan_global_lru(sc)) {
1055 			zone->pages_scanned += nr_scan;
1056 			zone->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1057 			zone->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1058 			zone->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1059 			zone->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1060 		}
1061 		spin_unlock_irq(&zone->lru_lock);
1062 
1063 		nr_scanned += nr_scan;
1064 		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1065 
1066 		/*
1067 		 * If we are direct reclaiming for contiguous pages and we do
1068 		 * not reclaim everything in the list, try again and wait
1069 		 * for IO to complete. This will stall high-order allocations
1070 		 * but that should be acceptable to the caller
1071 		 */
1072 		if (nr_freed < nr_taken && !current_is_kswapd() &&
1073 					sc->order > PAGE_ALLOC_COSTLY_ORDER) {
1074 			congestion_wait(WRITE, HZ/10);
1075 
1076 			/*
1077 			 * The attempt at page out may have made some
1078 			 * of the pages active, mark them inactive again.
1079 			 */
1080 			nr_active = clear_active_flags(&page_list, count);
1081 			count_vm_events(PGDEACTIVATE, nr_active);
1082 
1083 			nr_freed += shrink_page_list(&page_list, sc,
1084 							PAGEOUT_IO_SYNC);
1085 		}
1086 
1087 		nr_reclaimed += nr_freed;
1088 		local_irq_disable();
1089 		if (current_is_kswapd()) {
1090 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1091 			__count_vm_events(KSWAPD_STEAL, nr_freed);
1092 		} else if (scan_global_lru(sc))
1093 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1094 
1095 		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
1096 
1097 		if (nr_taken == 0)
1098 			goto done;
1099 
1100 		spin_lock(&zone->lru_lock);
1101 		/*
1102 		 * Put back any unfreeable pages.
1103 		 */
1104 		while (!list_empty(&page_list)) {
1105 			int lru;
1106 			page = lru_to_page(&page_list);
1107 			VM_BUG_ON(PageLRU(page));
1108 			list_del(&page->lru);
1109 			if (unlikely(!page_evictable(page, NULL))) {
1110 				spin_unlock_irq(&zone->lru_lock);
1111 				putback_lru_page(page);
1112 				spin_lock_irq(&zone->lru_lock);
1113 				continue;
1114 			}
1115 			SetPageLRU(page);
1116 			lru = page_lru(page);
1117 			add_page_to_lru_list(zone, page, lru);
1118 			mem_cgroup_move_lists(page, lru);
1119 			if (PageActive(page) && scan_global_lru(sc)) {
1120 				int file = !!page_is_file_cache(page);
1121 				zone->recent_rotated[file]++;
1122 			}
1123 			if (!pagevec_add(&pvec, page)) {
1124 				spin_unlock_irq(&zone->lru_lock);
1125 				__pagevec_release(&pvec);
1126 				spin_lock_irq(&zone->lru_lock);
1127 			}
1128 		}
1129   	} while (nr_scanned < max_scan);
1130 	spin_unlock(&zone->lru_lock);
1131 done:
1132 	local_irq_enable();
1133 	pagevec_release(&pvec);
1134 	return nr_reclaimed;
1135 }
1136 
1137 /*
1138  * We are about to scan this zone at a certain priority level.  If that priority
1139  * level is smaller (ie: more urgent) than the previous priority, then note
1140  * that priority level within the zone.  This is done so that when the next
1141  * process comes in to scan this zone, it will immediately start out at this
1142  * priority level rather than having to build up its own scanning priority.
1143  * Here, this priority affects only the reclaim-mapped threshold.
1144  */
1145 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1146 {
1147 	if (priority < zone->prev_priority)
1148 		zone->prev_priority = priority;
1149 }
1150 
1151 static inline int zone_is_near_oom(struct zone *zone)
1152 {
1153 	return zone->pages_scanned >= (zone_lru_pages(zone) * 3);
1154 }
1155 
1156 /*
1157  * This moves pages from the active list to the inactive list.
1158  *
1159  * We move them the other way if the page is referenced by one or more
1160  * processes, from rmap.
1161  *
1162  * If the pages are mostly unmapped, the processing is fast and it is
1163  * appropriate to hold zone->lru_lock across the whole operation.  But if
1164  * the pages are mapped, the processing is slow (page_referenced()) so we
1165  * should drop zone->lru_lock around each page.  It's impossible to balance
1166  * this, so instead we remove the pages from the LRU while processing them.
1167  * It is safe to rely on PG_active against the non-LRU pages in here because
1168  * nobody will play with that bit on a non-LRU page.
1169  *
1170  * The downside is that we have to touch page->_count against each page.
1171  * But we had to alter page->flags anyway.
1172  */
1173 
1174 
1175 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1176 			struct scan_control *sc, int priority, int file)
1177 {
1178 	unsigned long pgmoved;
1179 	int pgdeactivate = 0;
1180 	unsigned long pgscanned;
1181 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1182 	LIST_HEAD(l_inactive);
1183 	struct page *page;
1184 	struct pagevec pvec;
1185 	enum lru_list lru;
1186 
1187 	lru_add_drain();
1188 	spin_lock_irq(&zone->lru_lock);
1189 	pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1190 					ISOLATE_ACTIVE, zone,
1191 					sc->mem_cgroup, 1, file);
1192 	/*
1193 	 * zone->pages_scanned is used for detect zone's oom
1194 	 * mem_cgroup remembers nr_scan by itself.
1195 	 */
1196 	if (scan_global_lru(sc)) {
1197 		zone->pages_scanned += pgscanned;
1198 		zone->recent_scanned[!!file] += pgmoved;
1199 	}
1200 
1201 	if (file)
1202 		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1203 	else
1204 		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1205 	spin_unlock_irq(&zone->lru_lock);
1206 
1207 	pgmoved = 0;
1208 	while (!list_empty(&l_hold)) {
1209 		cond_resched();
1210 		page = lru_to_page(&l_hold);
1211 		list_del(&page->lru);
1212 
1213 		if (unlikely(!page_evictable(page, NULL))) {
1214 			putback_lru_page(page);
1215 			continue;
1216 		}
1217 
1218 		/* page_referenced clears PageReferenced */
1219 		if (page_mapping_inuse(page) &&
1220 		    page_referenced(page, 0, sc->mem_cgroup))
1221 			pgmoved++;
1222 
1223 		list_add(&page->lru, &l_inactive);
1224 	}
1225 
1226 	/*
1227 	 * Count referenced pages from currently used mappings as
1228 	 * rotated, even though they are moved to the inactive list.
1229 	 * This helps balance scan pressure between file and anonymous
1230 	 * pages in get_scan_ratio.
1231 	 */
1232 	zone->recent_rotated[!!file] += pgmoved;
1233 
1234 	/*
1235 	 * Move the pages to the [file or anon] inactive list.
1236 	 */
1237 	pagevec_init(&pvec, 1);
1238 
1239 	pgmoved = 0;
1240 	lru = LRU_BASE + file * LRU_FILE;
1241 	spin_lock_irq(&zone->lru_lock);
1242 	while (!list_empty(&l_inactive)) {
1243 		page = lru_to_page(&l_inactive);
1244 		prefetchw_prev_lru_page(page, &l_inactive, flags);
1245 		VM_BUG_ON(PageLRU(page));
1246 		SetPageLRU(page);
1247 		VM_BUG_ON(!PageActive(page));
1248 		ClearPageActive(page);
1249 
1250 		list_move(&page->lru, &zone->lru[lru].list);
1251 		mem_cgroup_move_lists(page, lru);
1252 		pgmoved++;
1253 		if (!pagevec_add(&pvec, page)) {
1254 			__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1255 			spin_unlock_irq(&zone->lru_lock);
1256 			pgdeactivate += pgmoved;
1257 			pgmoved = 0;
1258 			if (buffer_heads_over_limit)
1259 				pagevec_strip(&pvec);
1260 			__pagevec_release(&pvec);
1261 			spin_lock_irq(&zone->lru_lock);
1262 		}
1263 	}
1264 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1265 	pgdeactivate += pgmoved;
1266 	if (buffer_heads_over_limit) {
1267 		spin_unlock_irq(&zone->lru_lock);
1268 		pagevec_strip(&pvec);
1269 		spin_lock_irq(&zone->lru_lock);
1270 	}
1271 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1272 	__count_vm_events(PGDEACTIVATE, pgdeactivate);
1273 	spin_unlock_irq(&zone->lru_lock);
1274 	if (vm_swap_full())
1275 		pagevec_swap_free(&pvec);
1276 
1277 	pagevec_release(&pvec);
1278 }
1279 
1280 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1281 	struct zone *zone, struct scan_control *sc, int priority)
1282 {
1283 	int file = is_file_lru(lru);
1284 
1285 	if (lru == LRU_ACTIVE_FILE) {
1286 		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1287 		return 0;
1288 	}
1289 
1290 	if (lru == LRU_ACTIVE_ANON &&
1291 	    (!scan_global_lru(sc) || inactive_anon_is_low(zone))) {
1292 		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1293 		return 0;
1294 	}
1295 	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1296 }
1297 
1298 /*
1299  * Determine how aggressively the anon and file LRU lists should be
1300  * scanned.  The relative value of each set of LRU lists is determined
1301  * by looking at the fraction of the pages scanned we did rotate back
1302  * onto the active list instead of evict.
1303  *
1304  * percent[0] specifies how much pressure to put on ram/swap backed
1305  * memory, while percent[1] determines pressure on the file LRUs.
1306  */
1307 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1308 					unsigned long *percent)
1309 {
1310 	unsigned long anon, file, free;
1311 	unsigned long anon_prio, file_prio;
1312 	unsigned long ap, fp;
1313 
1314 	anon  = zone_page_state(zone, NR_ACTIVE_ANON) +
1315 		zone_page_state(zone, NR_INACTIVE_ANON);
1316 	file  = zone_page_state(zone, NR_ACTIVE_FILE) +
1317 		zone_page_state(zone, NR_INACTIVE_FILE);
1318 	free  = zone_page_state(zone, NR_FREE_PAGES);
1319 
1320 	/* If we have no swap space, do not bother scanning anon pages. */
1321 	if (nr_swap_pages <= 0) {
1322 		percent[0] = 0;
1323 		percent[1] = 100;
1324 		return;
1325 	}
1326 
1327 	/* If we have very few page cache pages, force-scan anon pages. */
1328 	if (unlikely(file + free <= zone->pages_high)) {
1329 		percent[0] = 100;
1330 		percent[1] = 0;
1331 		return;
1332 	}
1333 
1334 	/*
1335 	 * OK, so we have swap space and a fair amount of page cache
1336 	 * pages.  We use the recently rotated / recently scanned
1337 	 * ratios to determine how valuable each cache is.
1338 	 *
1339 	 * Because workloads change over time (and to avoid overflow)
1340 	 * we keep these statistics as a floating average, which ends
1341 	 * up weighing recent references more than old ones.
1342 	 *
1343 	 * anon in [0], file in [1]
1344 	 */
1345 	if (unlikely(zone->recent_scanned[0] > anon / 4)) {
1346 		spin_lock_irq(&zone->lru_lock);
1347 		zone->recent_scanned[0] /= 2;
1348 		zone->recent_rotated[0] /= 2;
1349 		spin_unlock_irq(&zone->lru_lock);
1350 	}
1351 
1352 	if (unlikely(zone->recent_scanned[1] > file / 4)) {
1353 		spin_lock_irq(&zone->lru_lock);
1354 		zone->recent_scanned[1] /= 2;
1355 		zone->recent_rotated[1] /= 2;
1356 		spin_unlock_irq(&zone->lru_lock);
1357 	}
1358 
1359 	/*
1360 	 * With swappiness at 100, anonymous and file have the same priority.
1361 	 * This scanning priority is essentially the inverse of IO cost.
1362 	 */
1363 	anon_prio = sc->swappiness;
1364 	file_prio = 200 - sc->swappiness;
1365 
1366 	/*
1367 	 *                  anon       recent_rotated[0]
1368 	 * %anon = 100 * ----------- / ----------------- * IO cost
1369 	 *               anon + file      rotate_sum
1370 	 */
1371 	ap = (anon_prio + 1) * (zone->recent_scanned[0] + 1);
1372 	ap /= zone->recent_rotated[0] + 1;
1373 
1374 	fp = (file_prio + 1) * (zone->recent_scanned[1] + 1);
1375 	fp /= zone->recent_rotated[1] + 1;
1376 
1377 	/* Normalize to percentages */
1378 	percent[0] = 100 * ap / (ap + fp + 1);
1379 	percent[1] = 100 - percent[0];
1380 }
1381 
1382 
1383 /*
1384  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1385  */
1386 static unsigned long shrink_zone(int priority, struct zone *zone,
1387 				struct scan_control *sc)
1388 {
1389 	unsigned long nr[NR_LRU_LISTS];
1390 	unsigned long nr_to_scan;
1391 	unsigned long nr_reclaimed = 0;
1392 	unsigned long percent[2];	/* anon @ 0; file @ 1 */
1393 	enum lru_list l;
1394 
1395 	get_scan_ratio(zone, sc, percent);
1396 
1397 	for_each_evictable_lru(l) {
1398 		if (scan_global_lru(sc)) {
1399 			int file = is_file_lru(l);
1400 			int scan;
1401 			/*
1402 			 * Add one to nr_to_scan just to make sure that the
1403 			 * kernel will slowly sift through each list.
1404 			 */
1405 			scan = zone_page_state(zone, NR_LRU_BASE + l);
1406 			if (priority) {
1407 				scan >>= priority;
1408 				scan = (scan * percent[file]) / 100;
1409 			}
1410 			zone->lru[l].nr_scan += scan + 1;
1411 			nr[l] = zone->lru[l].nr_scan;
1412 			if (nr[l] >= sc->swap_cluster_max)
1413 				zone->lru[l].nr_scan = 0;
1414 			else
1415 				nr[l] = 0;
1416 		} else {
1417 			/*
1418 			 * This reclaim occurs not because zone memory shortage
1419 			 * but because memory controller hits its limit.
1420 			 * Don't modify zone reclaim related data.
1421 			 */
1422 			nr[l] = mem_cgroup_calc_reclaim(sc->mem_cgroup, zone,
1423 								priority, l);
1424 		}
1425 	}
1426 
1427 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1428 					nr[LRU_INACTIVE_FILE]) {
1429 		for_each_evictable_lru(l) {
1430 			if (nr[l]) {
1431 				nr_to_scan = min(nr[l],
1432 					(unsigned long)sc->swap_cluster_max);
1433 				nr[l] -= nr_to_scan;
1434 
1435 				nr_reclaimed += shrink_list(l, nr_to_scan,
1436 							zone, sc, priority);
1437 			}
1438 		}
1439 	}
1440 
1441 	/*
1442 	 * Even if we did not try to evict anon pages at all, we want to
1443 	 * rebalance the anon lru active/inactive ratio.
1444 	 */
1445 	if (!scan_global_lru(sc) || inactive_anon_is_low(zone))
1446 		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1447 	else if (!scan_global_lru(sc))
1448 		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1449 
1450 	throttle_vm_writeout(sc->gfp_mask);
1451 	return nr_reclaimed;
1452 }
1453 
1454 /*
1455  * This is the direct reclaim path, for page-allocating processes.  We only
1456  * try to reclaim pages from zones which will satisfy the caller's allocation
1457  * request.
1458  *
1459  * We reclaim from a zone even if that zone is over pages_high.  Because:
1460  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1461  *    allocation or
1462  * b) The zones may be over pages_high but they must go *over* pages_high to
1463  *    satisfy the `incremental min' zone defense algorithm.
1464  *
1465  * Returns the number of reclaimed pages.
1466  *
1467  * If a zone is deemed to be full of pinned pages then just give it a light
1468  * scan then give up on it.
1469  */
1470 static unsigned long shrink_zones(int priority, struct zonelist *zonelist,
1471 					struct scan_control *sc)
1472 {
1473 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1474 	unsigned long nr_reclaimed = 0;
1475 	struct zoneref *z;
1476 	struct zone *zone;
1477 
1478 	sc->all_unreclaimable = 1;
1479 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1480 		if (!populated_zone(zone))
1481 			continue;
1482 		/*
1483 		 * Take care memory controller reclaiming has small influence
1484 		 * to global LRU.
1485 		 */
1486 		if (scan_global_lru(sc)) {
1487 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1488 				continue;
1489 			note_zone_scanning_priority(zone, priority);
1490 
1491 			if (zone_is_all_unreclaimable(zone) &&
1492 						priority != DEF_PRIORITY)
1493 				continue;	/* Let kswapd poll it */
1494 			sc->all_unreclaimable = 0;
1495 		} else {
1496 			/*
1497 			 * Ignore cpuset limitation here. We just want to reduce
1498 			 * # of used pages by us regardless of memory shortage.
1499 			 */
1500 			sc->all_unreclaimable = 0;
1501 			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1502 							priority);
1503 		}
1504 
1505 		nr_reclaimed += shrink_zone(priority, zone, sc);
1506 	}
1507 
1508 	return nr_reclaimed;
1509 }
1510 
1511 /*
1512  * This is the main entry point to direct page reclaim.
1513  *
1514  * If a full scan of the inactive list fails to free enough memory then we
1515  * are "out of memory" and something needs to be killed.
1516  *
1517  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1518  * high - the zone may be full of dirty or under-writeback pages, which this
1519  * caller can't do much about.  We kick pdflush and take explicit naps in the
1520  * hope that some of these pages can be written.  But if the allocating task
1521  * holds filesystem locks which prevent writeout this might not work, and the
1522  * allocation attempt will fail.
1523  *
1524  * returns:	0, if no pages reclaimed
1525  * 		else, the number of pages reclaimed
1526  */
1527 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1528 					struct scan_control *sc)
1529 {
1530 	int priority;
1531 	unsigned long ret = 0;
1532 	unsigned long total_scanned = 0;
1533 	unsigned long nr_reclaimed = 0;
1534 	struct reclaim_state *reclaim_state = current->reclaim_state;
1535 	unsigned long lru_pages = 0;
1536 	struct zoneref *z;
1537 	struct zone *zone;
1538 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1539 
1540 	delayacct_freepages_start();
1541 
1542 	if (scan_global_lru(sc))
1543 		count_vm_event(ALLOCSTALL);
1544 	/*
1545 	 * mem_cgroup will not do shrink_slab.
1546 	 */
1547 	if (scan_global_lru(sc)) {
1548 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1549 
1550 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1551 				continue;
1552 
1553 			lru_pages += zone_lru_pages(zone);
1554 		}
1555 	}
1556 
1557 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1558 		sc->nr_scanned = 0;
1559 		if (!priority)
1560 			disable_swap_token();
1561 		nr_reclaimed += shrink_zones(priority, zonelist, sc);
1562 		/*
1563 		 * Don't shrink slabs when reclaiming memory from
1564 		 * over limit cgroups
1565 		 */
1566 		if (scan_global_lru(sc)) {
1567 			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1568 			if (reclaim_state) {
1569 				nr_reclaimed += reclaim_state->reclaimed_slab;
1570 				reclaim_state->reclaimed_slab = 0;
1571 			}
1572 		}
1573 		total_scanned += sc->nr_scanned;
1574 		if (nr_reclaimed >= sc->swap_cluster_max) {
1575 			ret = nr_reclaimed;
1576 			goto out;
1577 		}
1578 
1579 		/*
1580 		 * Try to write back as many pages as we just scanned.  This
1581 		 * tends to cause slow streaming writers to write data to the
1582 		 * disk smoothly, at the dirtying rate, which is nice.   But
1583 		 * that's undesirable in laptop mode, where we *want* lumpy
1584 		 * writeout.  So in laptop mode, write out the whole world.
1585 		 */
1586 		if (total_scanned > sc->swap_cluster_max +
1587 					sc->swap_cluster_max / 2) {
1588 			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1589 			sc->may_writepage = 1;
1590 		}
1591 
1592 		/* Take a nap, wait for some writeback to complete */
1593 		if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1594 			congestion_wait(WRITE, HZ/10);
1595 	}
1596 	/* top priority shrink_zones still had more to do? don't OOM, then */
1597 	if (!sc->all_unreclaimable && scan_global_lru(sc))
1598 		ret = nr_reclaimed;
1599 out:
1600 	/*
1601 	 * Now that we've scanned all the zones at this priority level, note
1602 	 * that level within the zone so that the next thread which performs
1603 	 * scanning of this zone will immediately start out at this priority
1604 	 * level.  This affects only the decision whether or not to bring
1605 	 * mapped pages onto the inactive list.
1606 	 */
1607 	if (priority < 0)
1608 		priority = 0;
1609 
1610 	if (scan_global_lru(sc)) {
1611 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1612 
1613 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1614 				continue;
1615 
1616 			zone->prev_priority = priority;
1617 		}
1618 	} else
1619 		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1620 
1621 	delayacct_freepages_end();
1622 
1623 	return ret;
1624 }
1625 
1626 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1627 								gfp_t gfp_mask)
1628 {
1629 	struct scan_control sc = {
1630 		.gfp_mask = gfp_mask,
1631 		.may_writepage = !laptop_mode,
1632 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1633 		.may_swap = 1,
1634 		.swappiness = vm_swappiness,
1635 		.order = order,
1636 		.mem_cgroup = NULL,
1637 		.isolate_pages = isolate_pages_global,
1638 	};
1639 
1640 	return do_try_to_free_pages(zonelist, &sc);
1641 }
1642 
1643 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1644 
1645 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1646 						gfp_t gfp_mask)
1647 {
1648 	struct scan_control sc = {
1649 		.may_writepage = !laptop_mode,
1650 		.may_swap = 1,
1651 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1652 		.swappiness = vm_swappiness,
1653 		.order = 0,
1654 		.mem_cgroup = mem_cont,
1655 		.isolate_pages = mem_cgroup_isolate_pages,
1656 	};
1657 	struct zonelist *zonelist;
1658 
1659 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1660 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1661 	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1662 	return do_try_to_free_pages(zonelist, &sc);
1663 }
1664 #endif
1665 
1666 /*
1667  * For kswapd, balance_pgdat() will work across all this node's zones until
1668  * they are all at pages_high.
1669  *
1670  * Returns the number of pages which were actually freed.
1671  *
1672  * There is special handling here for zones which are full of pinned pages.
1673  * This can happen if the pages are all mlocked, or if they are all used by
1674  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1675  * What we do is to detect the case where all pages in the zone have been
1676  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1677  * dead and from now on, only perform a short scan.  Basically we're polling
1678  * the zone for when the problem goes away.
1679  *
1680  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1681  * zones which have free_pages > pages_high, but once a zone is found to have
1682  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1683  * of the number of free pages in the lower zones.  This interoperates with
1684  * the page allocator fallback scheme to ensure that aging of pages is balanced
1685  * across the zones.
1686  */
1687 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1688 {
1689 	int all_zones_ok;
1690 	int priority;
1691 	int i;
1692 	unsigned long total_scanned;
1693 	unsigned long nr_reclaimed;
1694 	struct reclaim_state *reclaim_state = current->reclaim_state;
1695 	struct scan_control sc = {
1696 		.gfp_mask = GFP_KERNEL,
1697 		.may_swap = 1,
1698 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1699 		.swappiness = vm_swappiness,
1700 		.order = order,
1701 		.mem_cgroup = NULL,
1702 		.isolate_pages = isolate_pages_global,
1703 	};
1704 	/*
1705 	 * temp_priority is used to remember the scanning priority at which
1706 	 * this zone was successfully refilled to free_pages == pages_high.
1707 	 */
1708 	int temp_priority[MAX_NR_ZONES];
1709 
1710 loop_again:
1711 	total_scanned = 0;
1712 	nr_reclaimed = 0;
1713 	sc.may_writepage = !laptop_mode;
1714 	count_vm_event(PAGEOUTRUN);
1715 
1716 	for (i = 0; i < pgdat->nr_zones; i++)
1717 		temp_priority[i] = DEF_PRIORITY;
1718 
1719 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1720 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1721 		unsigned long lru_pages = 0;
1722 
1723 		/* The swap token gets in the way of swapout... */
1724 		if (!priority)
1725 			disable_swap_token();
1726 
1727 		all_zones_ok = 1;
1728 
1729 		/*
1730 		 * Scan in the highmem->dma direction for the highest
1731 		 * zone which needs scanning
1732 		 */
1733 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1734 			struct zone *zone = pgdat->node_zones + i;
1735 
1736 			if (!populated_zone(zone))
1737 				continue;
1738 
1739 			if (zone_is_all_unreclaimable(zone) &&
1740 			    priority != DEF_PRIORITY)
1741 				continue;
1742 
1743 			/*
1744 			 * Do some background aging of the anon list, to give
1745 			 * pages a chance to be referenced before reclaiming.
1746 			 */
1747 			if (inactive_anon_is_low(zone))
1748 				shrink_active_list(SWAP_CLUSTER_MAX, zone,
1749 							&sc, priority, 0);
1750 
1751 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1752 					       0, 0)) {
1753 				end_zone = i;
1754 				break;
1755 			}
1756 		}
1757 		if (i < 0)
1758 			goto out;
1759 
1760 		for (i = 0; i <= end_zone; i++) {
1761 			struct zone *zone = pgdat->node_zones + i;
1762 
1763 			lru_pages += zone_lru_pages(zone);
1764 		}
1765 
1766 		/*
1767 		 * Now scan the zone in the dma->highmem direction, stopping
1768 		 * at the last zone which needs scanning.
1769 		 *
1770 		 * We do this because the page allocator works in the opposite
1771 		 * direction.  This prevents the page allocator from allocating
1772 		 * pages behind kswapd's direction of progress, which would
1773 		 * cause too much scanning of the lower zones.
1774 		 */
1775 		for (i = 0; i <= end_zone; i++) {
1776 			struct zone *zone = pgdat->node_zones + i;
1777 			int nr_slab;
1778 
1779 			if (!populated_zone(zone))
1780 				continue;
1781 
1782 			if (zone_is_all_unreclaimable(zone) &&
1783 					priority != DEF_PRIORITY)
1784 				continue;
1785 
1786 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1787 					       end_zone, 0))
1788 				all_zones_ok = 0;
1789 			temp_priority[i] = priority;
1790 			sc.nr_scanned = 0;
1791 			note_zone_scanning_priority(zone, priority);
1792 			/*
1793 			 * We put equal pressure on every zone, unless one
1794 			 * zone has way too many pages free already.
1795 			 */
1796 			if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1797 						end_zone, 0))
1798 				nr_reclaimed += shrink_zone(priority, zone, &sc);
1799 			reclaim_state->reclaimed_slab = 0;
1800 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1801 						lru_pages);
1802 			nr_reclaimed += reclaim_state->reclaimed_slab;
1803 			total_scanned += sc.nr_scanned;
1804 			if (zone_is_all_unreclaimable(zone))
1805 				continue;
1806 			if (nr_slab == 0 && zone->pages_scanned >=
1807 						(zone_lru_pages(zone) * 6))
1808 					zone_set_flag(zone,
1809 						      ZONE_ALL_UNRECLAIMABLE);
1810 			/*
1811 			 * If we've done a decent amount of scanning and
1812 			 * the reclaim ratio is low, start doing writepage
1813 			 * even in laptop mode
1814 			 */
1815 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1816 			    total_scanned > nr_reclaimed + nr_reclaimed / 2)
1817 				sc.may_writepage = 1;
1818 		}
1819 		if (all_zones_ok)
1820 			break;		/* kswapd: all done */
1821 		/*
1822 		 * OK, kswapd is getting into trouble.  Take a nap, then take
1823 		 * another pass across the zones.
1824 		 */
1825 		if (total_scanned && priority < DEF_PRIORITY - 2)
1826 			congestion_wait(WRITE, HZ/10);
1827 
1828 		/*
1829 		 * We do this so kswapd doesn't build up large priorities for
1830 		 * example when it is freeing in parallel with allocators. It
1831 		 * matches the direct reclaim path behaviour in terms of impact
1832 		 * on zone->*_priority.
1833 		 */
1834 		if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1835 			break;
1836 	}
1837 out:
1838 	/*
1839 	 * Note within each zone the priority level at which this zone was
1840 	 * brought into a happy state.  So that the next thread which scans this
1841 	 * zone will start out at that priority level.
1842 	 */
1843 	for (i = 0; i < pgdat->nr_zones; i++) {
1844 		struct zone *zone = pgdat->node_zones + i;
1845 
1846 		zone->prev_priority = temp_priority[i];
1847 	}
1848 	if (!all_zones_ok) {
1849 		cond_resched();
1850 
1851 		try_to_freeze();
1852 
1853 		goto loop_again;
1854 	}
1855 
1856 	return nr_reclaimed;
1857 }
1858 
1859 /*
1860  * The background pageout daemon, started as a kernel thread
1861  * from the init process.
1862  *
1863  * This basically trickles out pages so that we have _some_
1864  * free memory available even if there is no other activity
1865  * that frees anything up. This is needed for things like routing
1866  * etc, where we otherwise might have all activity going on in
1867  * asynchronous contexts that cannot page things out.
1868  *
1869  * If there are applications that are active memory-allocators
1870  * (most normal use), this basically shouldn't matter.
1871  */
1872 static int kswapd(void *p)
1873 {
1874 	unsigned long order;
1875 	pg_data_t *pgdat = (pg_data_t*)p;
1876 	struct task_struct *tsk = current;
1877 	DEFINE_WAIT(wait);
1878 	struct reclaim_state reclaim_state = {
1879 		.reclaimed_slab = 0,
1880 	};
1881 	node_to_cpumask_ptr(cpumask, pgdat->node_id);
1882 
1883 	if (!cpus_empty(*cpumask))
1884 		set_cpus_allowed_ptr(tsk, cpumask);
1885 	current->reclaim_state = &reclaim_state;
1886 
1887 	/*
1888 	 * Tell the memory management that we're a "memory allocator",
1889 	 * and that if we need more memory we should get access to it
1890 	 * regardless (see "__alloc_pages()"). "kswapd" should
1891 	 * never get caught in the normal page freeing logic.
1892 	 *
1893 	 * (Kswapd normally doesn't need memory anyway, but sometimes
1894 	 * you need a small amount of memory in order to be able to
1895 	 * page out something else, and this flag essentially protects
1896 	 * us from recursively trying to free more memory as we're
1897 	 * trying to free the first piece of memory in the first place).
1898 	 */
1899 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1900 	set_freezable();
1901 
1902 	order = 0;
1903 	for ( ; ; ) {
1904 		unsigned long new_order;
1905 
1906 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1907 		new_order = pgdat->kswapd_max_order;
1908 		pgdat->kswapd_max_order = 0;
1909 		if (order < new_order) {
1910 			/*
1911 			 * Don't sleep if someone wants a larger 'order'
1912 			 * allocation
1913 			 */
1914 			order = new_order;
1915 		} else {
1916 			if (!freezing(current))
1917 				schedule();
1918 
1919 			order = pgdat->kswapd_max_order;
1920 		}
1921 		finish_wait(&pgdat->kswapd_wait, &wait);
1922 
1923 		if (!try_to_freeze()) {
1924 			/* We can speed up thawing tasks if we don't call
1925 			 * balance_pgdat after returning from the refrigerator
1926 			 */
1927 			balance_pgdat(pgdat, order);
1928 		}
1929 	}
1930 	return 0;
1931 }
1932 
1933 /*
1934  * A zone is low on free memory, so wake its kswapd task to service it.
1935  */
1936 void wakeup_kswapd(struct zone *zone, int order)
1937 {
1938 	pg_data_t *pgdat;
1939 
1940 	if (!populated_zone(zone))
1941 		return;
1942 
1943 	pgdat = zone->zone_pgdat;
1944 	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1945 		return;
1946 	if (pgdat->kswapd_max_order < order)
1947 		pgdat->kswapd_max_order = order;
1948 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1949 		return;
1950 	if (!waitqueue_active(&pgdat->kswapd_wait))
1951 		return;
1952 	wake_up_interruptible(&pgdat->kswapd_wait);
1953 }
1954 
1955 unsigned long global_lru_pages(void)
1956 {
1957 	return global_page_state(NR_ACTIVE_ANON)
1958 		+ global_page_state(NR_ACTIVE_FILE)
1959 		+ global_page_state(NR_INACTIVE_ANON)
1960 		+ global_page_state(NR_INACTIVE_FILE);
1961 }
1962 
1963 #ifdef CONFIG_PM
1964 /*
1965  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
1966  * from LRU lists system-wide, for given pass and priority, and returns the
1967  * number of reclaimed pages
1968  *
1969  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1970  */
1971 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1972 				      int pass, struct scan_control *sc)
1973 {
1974 	struct zone *zone;
1975 	unsigned long nr_to_scan, ret = 0;
1976 	enum lru_list l;
1977 
1978 	for_each_zone(zone) {
1979 
1980 		if (!populated_zone(zone))
1981 			continue;
1982 
1983 		if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
1984 			continue;
1985 
1986 		for_each_evictable_lru(l) {
1987 			/* For pass = 0, we don't shrink the active list */
1988 			if (pass == 0 &&
1989 				(l == LRU_ACTIVE || l == LRU_ACTIVE_FILE))
1990 				continue;
1991 
1992 			zone->lru[l].nr_scan +=
1993 				(zone_page_state(zone, NR_LRU_BASE + l)
1994 								>> prio) + 1;
1995 			if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
1996 				zone->lru[l].nr_scan = 0;
1997 				nr_to_scan = min(nr_pages,
1998 					zone_page_state(zone,
1999 							NR_LRU_BASE + l));
2000 				ret += shrink_list(l, nr_to_scan, zone,
2001 								sc, prio);
2002 				if (ret >= nr_pages)
2003 					return ret;
2004 			}
2005 		}
2006 	}
2007 
2008 	return ret;
2009 }
2010 
2011 /*
2012  * Try to free `nr_pages' of memory, system-wide, and return the number of
2013  * freed pages.
2014  *
2015  * Rather than trying to age LRUs the aim is to preserve the overall
2016  * LRU order by reclaiming preferentially
2017  * inactive > active > active referenced > active mapped
2018  */
2019 unsigned long shrink_all_memory(unsigned long nr_pages)
2020 {
2021 	unsigned long lru_pages, nr_slab;
2022 	unsigned long ret = 0;
2023 	int pass;
2024 	struct reclaim_state reclaim_state;
2025 	struct scan_control sc = {
2026 		.gfp_mask = GFP_KERNEL,
2027 		.may_swap = 0,
2028 		.swap_cluster_max = nr_pages,
2029 		.may_writepage = 1,
2030 		.swappiness = vm_swappiness,
2031 		.isolate_pages = isolate_pages_global,
2032 	};
2033 
2034 	current->reclaim_state = &reclaim_state;
2035 
2036 	lru_pages = global_lru_pages();
2037 	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2038 	/* If slab caches are huge, it's better to hit them first */
2039 	while (nr_slab >= lru_pages) {
2040 		reclaim_state.reclaimed_slab = 0;
2041 		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2042 		if (!reclaim_state.reclaimed_slab)
2043 			break;
2044 
2045 		ret += reclaim_state.reclaimed_slab;
2046 		if (ret >= nr_pages)
2047 			goto out;
2048 
2049 		nr_slab -= reclaim_state.reclaimed_slab;
2050 	}
2051 
2052 	/*
2053 	 * We try to shrink LRUs in 5 passes:
2054 	 * 0 = Reclaim from inactive_list only
2055 	 * 1 = Reclaim from active list but don't reclaim mapped
2056 	 * 2 = 2nd pass of type 1
2057 	 * 3 = Reclaim mapped (normal reclaim)
2058 	 * 4 = 2nd pass of type 3
2059 	 */
2060 	for (pass = 0; pass < 5; pass++) {
2061 		int prio;
2062 
2063 		/* Force reclaiming mapped pages in the passes #3 and #4 */
2064 		if (pass > 2) {
2065 			sc.may_swap = 1;
2066 			sc.swappiness = 100;
2067 		}
2068 
2069 		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2070 			unsigned long nr_to_scan = nr_pages - ret;
2071 
2072 			sc.nr_scanned = 0;
2073 			ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
2074 			if (ret >= nr_pages)
2075 				goto out;
2076 
2077 			reclaim_state.reclaimed_slab = 0;
2078 			shrink_slab(sc.nr_scanned, sc.gfp_mask,
2079 					global_lru_pages());
2080 			ret += reclaim_state.reclaimed_slab;
2081 			if (ret >= nr_pages)
2082 				goto out;
2083 
2084 			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2085 				congestion_wait(WRITE, HZ / 10);
2086 		}
2087 	}
2088 
2089 	/*
2090 	 * If ret = 0, we could not shrink LRUs, but there may be something
2091 	 * in slab caches
2092 	 */
2093 	if (!ret) {
2094 		do {
2095 			reclaim_state.reclaimed_slab = 0;
2096 			shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
2097 			ret += reclaim_state.reclaimed_slab;
2098 		} while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
2099 	}
2100 
2101 out:
2102 	current->reclaim_state = NULL;
2103 
2104 	return ret;
2105 }
2106 #endif
2107 
2108 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2109    not required for correctness.  So if the last cpu in a node goes
2110    away, we get changed to run anywhere: as the first one comes back,
2111    restore their cpu bindings. */
2112 static int __devinit cpu_callback(struct notifier_block *nfb,
2113 				  unsigned long action, void *hcpu)
2114 {
2115 	int nid;
2116 
2117 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2118 		for_each_node_state(nid, N_HIGH_MEMORY) {
2119 			pg_data_t *pgdat = NODE_DATA(nid);
2120 			node_to_cpumask_ptr(mask, pgdat->node_id);
2121 
2122 			if (any_online_cpu(*mask) < nr_cpu_ids)
2123 				/* One of our CPUs online: restore mask */
2124 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2125 		}
2126 	}
2127 	return NOTIFY_OK;
2128 }
2129 
2130 /*
2131  * This kswapd start function will be called by init and node-hot-add.
2132  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2133  */
2134 int kswapd_run(int nid)
2135 {
2136 	pg_data_t *pgdat = NODE_DATA(nid);
2137 	int ret = 0;
2138 
2139 	if (pgdat->kswapd)
2140 		return 0;
2141 
2142 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2143 	if (IS_ERR(pgdat->kswapd)) {
2144 		/* failure at boot is fatal */
2145 		BUG_ON(system_state == SYSTEM_BOOTING);
2146 		printk("Failed to start kswapd on node %d\n",nid);
2147 		ret = -1;
2148 	}
2149 	return ret;
2150 }
2151 
2152 static int __init kswapd_init(void)
2153 {
2154 	int nid;
2155 
2156 	swap_setup();
2157 	for_each_node_state(nid, N_HIGH_MEMORY)
2158  		kswapd_run(nid);
2159 	hotcpu_notifier(cpu_callback, 0);
2160 	return 0;
2161 }
2162 
2163 module_init(kswapd_init)
2164 
2165 #ifdef CONFIG_NUMA
2166 /*
2167  * Zone reclaim mode
2168  *
2169  * If non-zero call zone_reclaim when the number of free pages falls below
2170  * the watermarks.
2171  */
2172 int zone_reclaim_mode __read_mostly;
2173 
2174 #define RECLAIM_OFF 0
2175 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2176 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2177 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2178 
2179 /*
2180  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2181  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2182  * a zone.
2183  */
2184 #define ZONE_RECLAIM_PRIORITY 4
2185 
2186 /*
2187  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2188  * occur.
2189  */
2190 int sysctl_min_unmapped_ratio = 1;
2191 
2192 /*
2193  * If the number of slab pages in a zone grows beyond this percentage then
2194  * slab reclaim needs to occur.
2195  */
2196 int sysctl_min_slab_ratio = 5;
2197 
2198 /*
2199  * Try to free up some pages from this zone through reclaim.
2200  */
2201 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2202 {
2203 	/* Minimum pages needed in order to stay on node */
2204 	const unsigned long nr_pages = 1 << order;
2205 	struct task_struct *p = current;
2206 	struct reclaim_state reclaim_state;
2207 	int priority;
2208 	unsigned long nr_reclaimed = 0;
2209 	struct scan_control sc = {
2210 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2211 		.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2212 		.swap_cluster_max = max_t(unsigned long, nr_pages,
2213 					SWAP_CLUSTER_MAX),
2214 		.gfp_mask = gfp_mask,
2215 		.swappiness = vm_swappiness,
2216 		.isolate_pages = isolate_pages_global,
2217 	};
2218 	unsigned long slab_reclaimable;
2219 
2220 	disable_swap_token();
2221 	cond_resched();
2222 	/*
2223 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2224 	 * and we also need to be able to write out pages for RECLAIM_WRITE
2225 	 * and RECLAIM_SWAP.
2226 	 */
2227 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2228 	reclaim_state.reclaimed_slab = 0;
2229 	p->reclaim_state = &reclaim_state;
2230 
2231 	if (zone_page_state(zone, NR_FILE_PAGES) -
2232 		zone_page_state(zone, NR_FILE_MAPPED) >
2233 		zone->min_unmapped_pages) {
2234 		/*
2235 		 * Free memory by calling shrink zone with increasing
2236 		 * priorities until we have enough memory freed.
2237 		 */
2238 		priority = ZONE_RECLAIM_PRIORITY;
2239 		do {
2240 			note_zone_scanning_priority(zone, priority);
2241 			nr_reclaimed += shrink_zone(priority, zone, &sc);
2242 			priority--;
2243 		} while (priority >= 0 && nr_reclaimed < nr_pages);
2244 	}
2245 
2246 	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2247 	if (slab_reclaimable > zone->min_slab_pages) {
2248 		/*
2249 		 * shrink_slab() does not currently allow us to determine how
2250 		 * many pages were freed in this zone. So we take the current
2251 		 * number of slab pages and shake the slab until it is reduced
2252 		 * by the same nr_pages that we used for reclaiming unmapped
2253 		 * pages.
2254 		 *
2255 		 * Note that shrink_slab will free memory on all zones and may
2256 		 * take a long time.
2257 		 */
2258 		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2259 			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2260 				slab_reclaimable - nr_pages)
2261 			;
2262 
2263 		/*
2264 		 * Update nr_reclaimed by the number of slab pages we
2265 		 * reclaimed from this zone.
2266 		 */
2267 		nr_reclaimed += slab_reclaimable -
2268 			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2269 	}
2270 
2271 	p->reclaim_state = NULL;
2272 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2273 	return nr_reclaimed >= nr_pages;
2274 }
2275 
2276 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2277 {
2278 	int node_id;
2279 	int ret;
2280 
2281 	/*
2282 	 * Zone reclaim reclaims unmapped file backed pages and
2283 	 * slab pages if we are over the defined limits.
2284 	 *
2285 	 * A small portion of unmapped file backed pages is needed for
2286 	 * file I/O otherwise pages read by file I/O will be immediately
2287 	 * thrown out if the zone is overallocated. So we do not reclaim
2288 	 * if less than a specified percentage of the zone is used by
2289 	 * unmapped file backed pages.
2290 	 */
2291 	if (zone_page_state(zone, NR_FILE_PAGES) -
2292 	    zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2293 	    && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2294 			<= zone->min_slab_pages)
2295 		return 0;
2296 
2297 	if (zone_is_all_unreclaimable(zone))
2298 		return 0;
2299 
2300 	/*
2301 	 * Do not scan if the allocation should not be delayed.
2302 	 */
2303 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2304 			return 0;
2305 
2306 	/*
2307 	 * Only run zone reclaim on the local zone or on zones that do not
2308 	 * have associated processors. This will favor the local processor
2309 	 * over remote processors and spread off node memory allocations
2310 	 * as wide as possible.
2311 	 */
2312 	node_id = zone_to_nid(zone);
2313 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2314 		return 0;
2315 
2316 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2317 		return 0;
2318 	ret = __zone_reclaim(zone, gfp_mask, order);
2319 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2320 
2321 	return ret;
2322 }
2323 #endif
2324 
2325 #ifdef CONFIG_UNEVICTABLE_LRU
2326 /*
2327  * page_evictable - test whether a page is evictable
2328  * @page: the page to test
2329  * @vma: the VMA in which the page is or will be mapped, may be NULL
2330  *
2331  * Test whether page is evictable--i.e., should be placed on active/inactive
2332  * lists vs unevictable list.
2333  *
2334  * Reasons page might not be evictable:
2335  * (1) page's mapping marked unevictable
2336  *
2337  * TODO - later patches
2338  */
2339 int page_evictable(struct page *page, struct vm_area_struct *vma)
2340 {
2341 
2342 	if (mapping_unevictable(page_mapping(page)))
2343 		return 0;
2344 
2345 	/* TODO:  test page [!]evictable conditions */
2346 
2347 	return 1;
2348 }
2349 
2350 /**
2351  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2352  * @page: page to check evictability and move to appropriate lru list
2353  * @zone: zone page is in
2354  *
2355  * Checks a page for evictability and moves the page to the appropriate
2356  * zone lru list.
2357  *
2358  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2359  * have PageUnevictable set.
2360  */
2361 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2362 {
2363 	VM_BUG_ON(PageActive(page));
2364 
2365 retry:
2366 	ClearPageUnevictable(page);
2367 	if (page_evictable(page, NULL)) {
2368 		enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
2369 		__dec_zone_state(zone, NR_UNEVICTABLE);
2370 		list_move(&page->lru, &zone->lru[l].list);
2371 		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
2372 		__count_vm_event(UNEVICTABLE_PGRESCUED);
2373 	} else {
2374 		/*
2375 		 * rotate unevictable list
2376 		 */
2377 		SetPageUnevictable(page);
2378 		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2379 		if (page_evictable(page, NULL))
2380 			goto retry;
2381 	}
2382 }
2383 
2384 /**
2385  * scan_mapping_unevictable_pages - scan an address space for evictable pages
2386  * @mapping: struct address_space to scan for evictable pages
2387  *
2388  * Scan all pages in mapping.  Check unevictable pages for
2389  * evictability and move them to the appropriate zone lru list.
2390  */
2391 void scan_mapping_unevictable_pages(struct address_space *mapping)
2392 {
2393 	pgoff_t next = 0;
2394 	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2395 			 PAGE_CACHE_SHIFT;
2396 	struct zone *zone;
2397 	struct pagevec pvec;
2398 
2399 	if (mapping->nrpages == 0)
2400 		return;
2401 
2402 	pagevec_init(&pvec, 0);
2403 	while (next < end &&
2404 		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2405 		int i;
2406 		int pg_scanned = 0;
2407 
2408 		zone = NULL;
2409 
2410 		for (i = 0; i < pagevec_count(&pvec); i++) {
2411 			struct page *page = pvec.pages[i];
2412 			pgoff_t page_index = page->index;
2413 			struct zone *pagezone = page_zone(page);
2414 
2415 			pg_scanned++;
2416 			if (page_index > next)
2417 				next = page_index;
2418 			next++;
2419 
2420 			if (pagezone != zone) {
2421 				if (zone)
2422 					spin_unlock_irq(&zone->lru_lock);
2423 				zone = pagezone;
2424 				spin_lock_irq(&zone->lru_lock);
2425 			}
2426 
2427 			if (PageLRU(page) && PageUnevictable(page))
2428 				check_move_unevictable_page(page, zone);
2429 		}
2430 		if (zone)
2431 			spin_unlock_irq(&zone->lru_lock);
2432 		pagevec_release(&pvec);
2433 
2434 		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2435 	}
2436 
2437 }
2438 #endif
2439