xref: /openbmc/linux/mm/vmscan.c (revision 7cc30fcfd2a894589d832a192cac3dc5cd302bb8)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
50 
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53 
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
56 
57 #include "internal.h"
58 
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
61 
62 struct scan_control {
63 	/* How many pages shrink_list() should reclaim */
64 	unsigned long nr_to_reclaim;
65 
66 	/* This context's GFP mask */
67 	gfp_t gfp_mask;
68 
69 	/* Allocation order */
70 	int order;
71 
72 	/*
73 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 	 * are scanned.
75 	 */
76 	nodemask_t	*nodemask;
77 
78 	/*
79 	 * The memory cgroup that hit its limit and as a result is the
80 	 * primary target of this reclaim invocation.
81 	 */
82 	struct mem_cgroup *target_mem_cgroup;
83 
84 	/* Scan (total_size >> priority) pages at once */
85 	int priority;
86 
87 	/* The highest zone to isolate pages for reclaim from */
88 	enum zone_type reclaim_idx;
89 
90 	unsigned int may_writepage:1;
91 
92 	/* Can mapped pages be reclaimed? */
93 	unsigned int may_unmap:1;
94 
95 	/* Can pages be swapped as part of reclaim? */
96 	unsigned int may_swap:1;
97 
98 	/* Can cgroups be reclaimed below their normal consumption range? */
99 	unsigned int may_thrash:1;
100 
101 	unsigned int hibernation_mode:1;
102 
103 	/* One of the zones is ready for compaction */
104 	unsigned int compaction_ready:1;
105 
106 	/* Incremented by the number of inactive pages that were scanned */
107 	unsigned long nr_scanned;
108 
109 	/* Number of pages freed so far during a call to shrink_zones() */
110 	unsigned long nr_reclaimed;
111 };
112 
113 #ifdef ARCH_HAS_PREFETCH
114 #define prefetch_prev_lru_page(_page, _base, _field)			\
115 	do {								\
116 		if ((_page)->lru.prev != _base) {			\
117 			struct page *prev;				\
118 									\
119 			prev = lru_to_page(&(_page->lru));		\
120 			prefetch(&prev->_field);			\
121 		}							\
122 	} while (0)
123 #else
124 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126 
127 #ifdef ARCH_HAS_PREFETCHW
128 #define prefetchw_prev_lru_page(_page, _base, _field)			\
129 	do {								\
130 		if ((_page)->lru.prev != _base) {			\
131 			struct page *prev;				\
132 									\
133 			prev = lru_to_page(&(_page->lru));		\
134 			prefetchw(&prev->_field);			\
135 		}							\
136 	} while (0)
137 #else
138 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
139 #endif
140 
141 /*
142  * From 0 .. 100.  Higher means more swappy.
143  */
144 int vm_swappiness = 60;
145 /*
146  * The total number of pages which are beyond the high watermark within all
147  * zones.
148  */
149 unsigned long vm_total_pages;
150 
151 static LIST_HEAD(shrinker_list);
152 static DECLARE_RWSEM(shrinker_rwsem);
153 
154 #ifdef CONFIG_MEMCG
155 static bool global_reclaim(struct scan_control *sc)
156 {
157 	return !sc->target_mem_cgroup;
158 }
159 
160 /**
161  * sane_reclaim - is the usual dirty throttling mechanism operational?
162  * @sc: scan_control in question
163  *
164  * The normal page dirty throttling mechanism in balance_dirty_pages() is
165  * completely broken with the legacy memcg and direct stalling in
166  * shrink_page_list() is used for throttling instead, which lacks all the
167  * niceties such as fairness, adaptive pausing, bandwidth proportional
168  * allocation and configurability.
169  *
170  * This function tests whether the vmscan currently in progress can assume
171  * that the normal dirty throttling mechanism is operational.
172  */
173 static bool sane_reclaim(struct scan_control *sc)
174 {
175 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
176 
177 	if (!memcg)
178 		return true;
179 #ifdef CONFIG_CGROUP_WRITEBACK
180 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
181 		return true;
182 #endif
183 	return false;
184 }
185 #else
186 static bool global_reclaim(struct scan_control *sc)
187 {
188 	return true;
189 }
190 
191 static bool sane_reclaim(struct scan_control *sc)
192 {
193 	return true;
194 }
195 #endif
196 
197 /*
198  * This misses isolated pages which are not accounted for to save counters.
199  * As the data only determines if reclaim or compaction continues, it is
200  * not expected that isolated pages will be a dominating factor.
201  */
202 unsigned long zone_reclaimable_pages(struct zone *zone)
203 {
204 	unsigned long nr;
205 
206 	nr = zone_page_state_snapshot(zone, NR_ZONE_LRU_FILE);
207 	if (get_nr_swap_pages() > 0)
208 		nr += zone_page_state_snapshot(zone, NR_ZONE_LRU_ANON);
209 
210 	return nr;
211 }
212 
213 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
214 {
215 	unsigned long nr;
216 
217 	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
218 	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
219 	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
220 
221 	if (get_nr_swap_pages() > 0)
222 		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
223 		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
224 		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
225 
226 	return nr;
227 }
228 
229 bool pgdat_reclaimable(struct pglist_data *pgdat)
230 {
231 	return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
232 		pgdat_reclaimable_pages(pgdat) * 6;
233 }
234 
235 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
236 {
237 	if (!mem_cgroup_disabled())
238 		return mem_cgroup_get_lru_size(lruvec, lru);
239 
240 	return node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
241 }
242 
243 /*
244  * Add a shrinker callback to be called from the vm.
245  */
246 int register_shrinker(struct shrinker *shrinker)
247 {
248 	size_t size = sizeof(*shrinker->nr_deferred);
249 
250 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
251 		size *= nr_node_ids;
252 
253 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
254 	if (!shrinker->nr_deferred)
255 		return -ENOMEM;
256 
257 	down_write(&shrinker_rwsem);
258 	list_add_tail(&shrinker->list, &shrinker_list);
259 	up_write(&shrinker_rwsem);
260 	return 0;
261 }
262 EXPORT_SYMBOL(register_shrinker);
263 
264 /*
265  * Remove one
266  */
267 void unregister_shrinker(struct shrinker *shrinker)
268 {
269 	down_write(&shrinker_rwsem);
270 	list_del(&shrinker->list);
271 	up_write(&shrinker_rwsem);
272 	kfree(shrinker->nr_deferred);
273 }
274 EXPORT_SYMBOL(unregister_shrinker);
275 
276 #define SHRINK_BATCH 128
277 
278 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
279 				    struct shrinker *shrinker,
280 				    unsigned long nr_scanned,
281 				    unsigned long nr_eligible)
282 {
283 	unsigned long freed = 0;
284 	unsigned long long delta;
285 	long total_scan;
286 	long freeable;
287 	long nr;
288 	long new_nr;
289 	int nid = shrinkctl->nid;
290 	long batch_size = shrinker->batch ? shrinker->batch
291 					  : SHRINK_BATCH;
292 
293 	freeable = shrinker->count_objects(shrinker, shrinkctl);
294 	if (freeable == 0)
295 		return 0;
296 
297 	/*
298 	 * copy the current shrinker scan count into a local variable
299 	 * and zero it so that other concurrent shrinker invocations
300 	 * don't also do this scanning work.
301 	 */
302 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
303 
304 	total_scan = nr;
305 	delta = (4 * nr_scanned) / shrinker->seeks;
306 	delta *= freeable;
307 	do_div(delta, nr_eligible + 1);
308 	total_scan += delta;
309 	if (total_scan < 0) {
310 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
311 		       shrinker->scan_objects, total_scan);
312 		total_scan = freeable;
313 	}
314 
315 	/*
316 	 * We need to avoid excessive windup on filesystem shrinkers
317 	 * due to large numbers of GFP_NOFS allocations causing the
318 	 * shrinkers to return -1 all the time. This results in a large
319 	 * nr being built up so when a shrink that can do some work
320 	 * comes along it empties the entire cache due to nr >>>
321 	 * freeable. This is bad for sustaining a working set in
322 	 * memory.
323 	 *
324 	 * Hence only allow the shrinker to scan the entire cache when
325 	 * a large delta change is calculated directly.
326 	 */
327 	if (delta < freeable / 4)
328 		total_scan = min(total_scan, freeable / 2);
329 
330 	/*
331 	 * Avoid risking looping forever due to too large nr value:
332 	 * never try to free more than twice the estimate number of
333 	 * freeable entries.
334 	 */
335 	if (total_scan > freeable * 2)
336 		total_scan = freeable * 2;
337 
338 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
339 				   nr_scanned, nr_eligible,
340 				   freeable, delta, total_scan);
341 
342 	/*
343 	 * Normally, we should not scan less than batch_size objects in one
344 	 * pass to avoid too frequent shrinker calls, but if the slab has less
345 	 * than batch_size objects in total and we are really tight on memory,
346 	 * we will try to reclaim all available objects, otherwise we can end
347 	 * up failing allocations although there are plenty of reclaimable
348 	 * objects spread over several slabs with usage less than the
349 	 * batch_size.
350 	 *
351 	 * We detect the "tight on memory" situations by looking at the total
352 	 * number of objects we want to scan (total_scan). If it is greater
353 	 * than the total number of objects on slab (freeable), we must be
354 	 * scanning at high prio and therefore should try to reclaim as much as
355 	 * possible.
356 	 */
357 	while (total_scan >= batch_size ||
358 	       total_scan >= freeable) {
359 		unsigned long ret;
360 		unsigned long nr_to_scan = min(batch_size, total_scan);
361 
362 		shrinkctl->nr_to_scan = nr_to_scan;
363 		ret = shrinker->scan_objects(shrinker, shrinkctl);
364 		if (ret == SHRINK_STOP)
365 			break;
366 		freed += ret;
367 
368 		count_vm_events(SLABS_SCANNED, nr_to_scan);
369 		total_scan -= nr_to_scan;
370 
371 		cond_resched();
372 	}
373 
374 	/*
375 	 * move the unused scan count back into the shrinker in a
376 	 * manner that handles concurrent updates. If we exhausted the
377 	 * scan, there is no need to do an update.
378 	 */
379 	if (total_scan > 0)
380 		new_nr = atomic_long_add_return(total_scan,
381 						&shrinker->nr_deferred[nid]);
382 	else
383 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
384 
385 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
386 	return freed;
387 }
388 
389 /**
390  * shrink_slab - shrink slab caches
391  * @gfp_mask: allocation context
392  * @nid: node whose slab caches to target
393  * @memcg: memory cgroup whose slab caches to target
394  * @nr_scanned: pressure numerator
395  * @nr_eligible: pressure denominator
396  *
397  * Call the shrink functions to age shrinkable caches.
398  *
399  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
400  * unaware shrinkers will receive a node id of 0 instead.
401  *
402  * @memcg specifies the memory cgroup to target. If it is not NULL,
403  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
404  * objects from the memory cgroup specified. Otherwise, only unaware
405  * shrinkers are called.
406  *
407  * @nr_scanned and @nr_eligible form a ratio that indicate how much of
408  * the available objects should be scanned.  Page reclaim for example
409  * passes the number of pages scanned and the number of pages on the
410  * LRU lists that it considered on @nid, plus a bias in @nr_scanned
411  * when it encountered mapped pages.  The ratio is further biased by
412  * the ->seeks setting of the shrink function, which indicates the
413  * cost to recreate an object relative to that of an LRU page.
414  *
415  * Returns the number of reclaimed slab objects.
416  */
417 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
418 				 struct mem_cgroup *memcg,
419 				 unsigned long nr_scanned,
420 				 unsigned long nr_eligible)
421 {
422 	struct shrinker *shrinker;
423 	unsigned long freed = 0;
424 
425 	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
426 		return 0;
427 
428 	if (nr_scanned == 0)
429 		nr_scanned = SWAP_CLUSTER_MAX;
430 
431 	if (!down_read_trylock(&shrinker_rwsem)) {
432 		/*
433 		 * If we would return 0, our callers would understand that we
434 		 * have nothing else to shrink and give up trying. By returning
435 		 * 1 we keep it going and assume we'll be able to shrink next
436 		 * time.
437 		 */
438 		freed = 1;
439 		goto out;
440 	}
441 
442 	list_for_each_entry(shrinker, &shrinker_list, list) {
443 		struct shrink_control sc = {
444 			.gfp_mask = gfp_mask,
445 			.nid = nid,
446 			.memcg = memcg,
447 		};
448 
449 		/*
450 		 * If kernel memory accounting is disabled, we ignore
451 		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
452 		 * passing NULL for memcg.
453 		 */
454 		if (memcg_kmem_enabled() &&
455 		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
456 			continue;
457 
458 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
459 			sc.nid = 0;
460 
461 		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
462 	}
463 
464 	up_read(&shrinker_rwsem);
465 out:
466 	cond_resched();
467 	return freed;
468 }
469 
470 void drop_slab_node(int nid)
471 {
472 	unsigned long freed;
473 
474 	do {
475 		struct mem_cgroup *memcg = NULL;
476 
477 		freed = 0;
478 		do {
479 			freed += shrink_slab(GFP_KERNEL, nid, memcg,
480 					     1000, 1000);
481 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
482 	} while (freed > 10);
483 }
484 
485 void drop_slab(void)
486 {
487 	int nid;
488 
489 	for_each_online_node(nid)
490 		drop_slab_node(nid);
491 }
492 
493 static inline int is_page_cache_freeable(struct page *page)
494 {
495 	/*
496 	 * A freeable page cache page is referenced only by the caller
497 	 * that isolated the page, the page cache radix tree and
498 	 * optional buffer heads at page->private.
499 	 */
500 	return page_count(page) - page_has_private(page) == 2;
501 }
502 
503 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
504 {
505 	if (current->flags & PF_SWAPWRITE)
506 		return 1;
507 	if (!inode_write_congested(inode))
508 		return 1;
509 	if (inode_to_bdi(inode) == current->backing_dev_info)
510 		return 1;
511 	return 0;
512 }
513 
514 /*
515  * We detected a synchronous write error writing a page out.  Probably
516  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
517  * fsync(), msync() or close().
518  *
519  * The tricky part is that after writepage we cannot touch the mapping: nothing
520  * prevents it from being freed up.  But we have a ref on the page and once
521  * that page is locked, the mapping is pinned.
522  *
523  * We're allowed to run sleeping lock_page() here because we know the caller has
524  * __GFP_FS.
525  */
526 static void handle_write_error(struct address_space *mapping,
527 				struct page *page, int error)
528 {
529 	lock_page(page);
530 	if (page_mapping(page) == mapping)
531 		mapping_set_error(mapping, error);
532 	unlock_page(page);
533 }
534 
535 /* possible outcome of pageout() */
536 typedef enum {
537 	/* failed to write page out, page is locked */
538 	PAGE_KEEP,
539 	/* move page to the active list, page is locked */
540 	PAGE_ACTIVATE,
541 	/* page has been sent to the disk successfully, page is unlocked */
542 	PAGE_SUCCESS,
543 	/* page is clean and locked */
544 	PAGE_CLEAN,
545 } pageout_t;
546 
547 /*
548  * pageout is called by shrink_page_list() for each dirty page.
549  * Calls ->writepage().
550  */
551 static pageout_t pageout(struct page *page, struct address_space *mapping,
552 			 struct scan_control *sc)
553 {
554 	/*
555 	 * If the page is dirty, only perform writeback if that write
556 	 * will be non-blocking.  To prevent this allocation from being
557 	 * stalled by pagecache activity.  But note that there may be
558 	 * stalls if we need to run get_block().  We could test
559 	 * PagePrivate for that.
560 	 *
561 	 * If this process is currently in __generic_file_write_iter() against
562 	 * this page's queue, we can perform writeback even if that
563 	 * will block.
564 	 *
565 	 * If the page is swapcache, write it back even if that would
566 	 * block, for some throttling. This happens by accident, because
567 	 * swap_backing_dev_info is bust: it doesn't reflect the
568 	 * congestion state of the swapdevs.  Easy to fix, if needed.
569 	 */
570 	if (!is_page_cache_freeable(page))
571 		return PAGE_KEEP;
572 	if (!mapping) {
573 		/*
574 		 * Some data journaling orphaned pages can have
575 		 * page->mapping == NULL while being dirty with clean buffers.
576 		 */
577 		if (page_has_private(page)) {
578 			if (try_to_free_buffers(page)) {
579 				ClearPageDirty(page);
580 				pr_info("%s: orphaned page\n", __func__);
581 				return PAGE_CLEAN;
582 			}
583 		}
584 		return PAGE_KEEP;
585 	}
586 	if (mapping->a_ops->writepage == NULL)
587 		return PAGE_ACTIVATE;
588 	if (!may_write_to_inode(mapping->host, sc))
589 		return PAGE_KEEP;
590 
591 	if (clear_page_dirty_for_io(page)) {
592 		int res;
593 		struct writeback_control wbc = {
594 			.sync_mode = WB_SYNC_NONE,
595 			.nr_to_write = SWAP_CLUSTER_MAX,
596 			.range_start = 0,
597 			.range_end = LLONG_MAX,
598 			.for_reclaim = 1,
599 		};
600 
601 		SetPageReclaim(page);
602 		res = mapping->a_ops->writepage(page, &wbc);
603 		if (res < 0)
604 			handle_write_error(mapping, page, res);
605 		if (res == AOP_WRITEPAGE_ACTIVATE) {
606 			ClearPageReclaim(page);
607 			return PAGE_ACTIVATE;
608 		}
609 
610 		if (!PageWriteback(page)) {
611 			/* synchronous write or broken a_ops? */
612 			ClearPageReclaim(page);
613 		}
614 		trace_mm_vmscan_writepage(page);
615 		inc_node_page_state(page, NR_VMSCAN_WRITE);
616 		return PAGE_SUCCESS;
617 	}
618 
619 	return PAGE_CLEAN;
620 }
621 
622 /*
623  * Same as remove_mapping, but if the page is removed from the mapping, it
624  * gets returned with a refcount of 0.
625  */
626 static int __remove_mapping(struct address_space *mapping, struct page *page,
627 			    bool reclaimed)
628 {
629 	unsigned long flags;
630 
631 	BUG_ON(!PageLocked(page));
632 	BUG_ON(mapping != page_mapping(page));
633 
634 	spin_lock_irqsave(&mapping->tree_lock, flags);
635 	/*
636 	 * The non racy check for a busy page.
637 	 *
638 	 * Must be careful with the order of the tests. When someone has
639 	 * a ref to the page, it may be possible that they dirty it then
640 	 * drop the reference. So if PageDirty is tested before page_count
641 	 * here, then the following race may occur:
642 	 *
643 	 * get_user_pages(&page);
644 	 * [user mapping goes away]
645 	 * write_to(page);
646 	 *				!PageDirty(page)    [good]
647 	 * SetPageDirty(page);
648 	 * put_page(page);
649 	 *				!page_count(page)   [good, discard it]
650 	 *
651 	 * [oops, our write_to data is lost]
652 	 *
653 	 * Reversing the order of the tests ensures such a situation cannot
654 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
655 	 * load is not satisfied before that of page->_refcount.
656 	 *
657 	 * Note that if SetPageDirty is always performed via set_page_dirty,
658 	 * and thus under tree_lock, then this ordering is not required.
659 	 */
660 	if (!page_ref_freeze(page, 2))
661 		goto cannot_free;
662 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
663 	if (unlikely(PageDirty(page))) {
664 		page_ref_unfreeze(page, 2);
665 		goto cannot_free;
666 	}
667 
668 	if (PageSwapCache(page)) {
669 		swp_entry_t swap = { .val = page_private(page) };
670 		mem_cgroup_swapout(page, swap);
671 		__delete_from_swap_cache(page);
672 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
673 		swapcache_free(swap);
674 	} else {
675 		void (*freepage)(struct page *);
676 		void *shadow = NULL;
677 
678 		freepage = mapping->a_ops->freepage;
679 		/*
680 		 * Remember a shadow entry for reclaimed file cache in
681 		 * order to detect refaults, thus thrashing, later on.
682 		 *
683 		 * But don't store shadows in an address space that is
684 		 * already exiting.  This is not just an optizimation,
685 		 * inode reclaim needs to empty out the radix tree or
686 		 * the nodes are lost.  Don't plant shadows behind its
687 		 * back.
688 		 *
689 		 * We also don't store shadows for DAX mappings because the
690 		 * only page cache pages found in these are zero pages
691 		 * covering holes, and because we don't want to mix DAX
692 		 * exceptional entries and shadow exceptional entries in the
693 		 * same page_tree.
694 		 */
695 		if (reclaimed && page_is_file_cache(page) &&
696 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
697 			shadow = workingset_eviction(mapping, page);
698 		__delete_from_page_cache(page, shadow);
699 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
700 
701 		if (freepage != NULL)
702 			freepage(page);
703 	}
704 
705 	return 1;
706 
707 cannot_free:
708 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
709 	return 0;
710 }
711 
712 /*
713  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
714  * someone else has a ref on the page, abort and return 0.  If it was
715  * successfully detached, return 1.  Assumes the caller has a single ref on
716  * this page.
717  */
718 int remove_mapping(struct address_space *mapping, struct page *page)
719 {
720 	if (__remove_mapping(mapping, page, false)) {
721 		/*
722 		 * Unfreezing the refcount with 1 rather than 2 effectively
723 		 * drops the pagecache ref for us without requiring another
724 		 * atomic operation.
725 		 */
726 		page_ref_unfreeze(page, 1);
727 		return 1;
728 	}
729 	return 0;
730 }
731 
732 /**
733  * putback_lru_page - put previously isolated page onto appropriate LRU list
734  * @page: page to be put back to appropriate lru list
735  *
736  * Add previously isolated @page to appropriate LRU list.
737  * Page may still be unevictable for other reasons.
738  *
739  * lru_lock must not be held, interrupts must be enabled.
740  */
741 void putback_lru_page(struct page *page)
742 {
743 	bool is_unevictable;
744 	int was_unevictable = PageUnevictable(page);
745 
746 	VM_BUG_ON_PAGE(PageLRU(page), page);
747 
748 redo:
749 	ClearPageUnevictable(page);
750 
751 	if (page_evictable(page)) {
752 		/*
753 		 * For evictable pages, we can use the cache.
754 		 * In event of a race, worst case is we end up with an
755 		 * unevictable page on [in]active list.
756 		 * We know how to handle that.
757 		 */
758 		is_unevictable = false;
759 		lru_cache_add(page);
760 	} else {
761 		/*
762 		 * Put unevictable pages directly on zone's unevictable
763 		 * list.
764 		 */
765 		is_unevictable = true;
766 		add_page_to_unevictable_list(page);
767 		/*
768 		 * When racing with an mlock or AS_UNEVICTABLE clearing
769 		 * (page is unlocked) make sure that if the other thread
770 		 * does not observe our setting of PG_lru and fails
771 		 * isolation/check_move_unevictable_pages,
772 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
773 		 * the page back to the evictable list.
774 		 *
775 		 * The other side is TestClearPageMlocked() or shmem_lock().
776 		 */
777 		smp_mb();
778 	}
779 
780 	/*
781 	 * page's status can change while we move it among lru. If an evictable
782 	 * page is on unevictable list, it never be freed. To avoid that,
783 	 * check after we added it to the list, again.
784 	 */
785 	if (is_unevictable && page_evictable(page)) {
786 		if (!isolate_lru_page(page)) {
787 			put_page(page);
788 			goto redo;
789 		}
790 		/* This means someone else dropped this page from LRU
791 		 * So, it will be freed or putback to LRU again. There is
792 		 * nothing to do here.
793 		 */
794 	}
795 
796 	if (was_unevictable && !is_unevictable)
797 		count_vm_event(UNEVICTABLE_PGRESCUED);
798 	else if (!was_unevictable && is_unevictable)
799 		count_vm_event(UNEVICTABLE_PGCULLED);
800 
801 	put_page(page);		/* drop ref from isolate */
802 }
803 
804 enum page_references {
805 	PAGEREF_RECLAIM,
806 	PAGEREF_RECLAIM_CLEAN,
807 	PAGEREF_KEEP,
808 	PAGEREF_ACTIVATE,
809 };
810 
811 static enum page_references page_check_references(struct page *page,
812 						  struct scan_control *sc)
813 {
814 	int referenced_ptes, referenced_page;
815 	unsigned long vm_flags;
816 
817 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
818 					  &vm_flags);
819 	referenced_page = TestClearPageReferenced(page);
820 
821 	/*
822 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
823 	 * move the page to the unevictable list.
824 	 */
825 	if (vm_flags & VM_LOCKED)
826 		return PAGEREF_RECLAIM;
827 
828 	if (referenced_ptes) {
829 		if (PageSwapBacked(page))
830 			return PAGEREF_ACTIVATE;
831 		/*
832 		 * All mapped pages start out with page table
833 		 * references from the instantiating fault, so we need
834 		 * to look twice if a mapped file page is used more
835 		 * than once.
836 		 *
837 		 * Mark it and spare it for another trip around the
838 		 * inactive list.  Another page table reference will
839 		 * lead to its activation.
840 		 *
841 		 * Note: the mark is set for activated pages as well
842 		 * so that recently deactivated but used pages are
843 		 * quickly recovered.
844 		 */
845 		SetPageReferenced(page);
846 
847 		if (referenced_page || referenced_ptes > 1)
848 			return PAGEREF_ACTIVATE;
849 
850 		/*
851 		 * Activate file-backed executable pages after first usage.
852 		 */
853 		if (vm_flags & VM_EXEC)
854 			return PAGEREF_ACTIVATE;
855 
856 		return PAGEREF_KEEP;
857 	}
858 
859 	/* Reclaim if clean, defer dirty pages to writeback */
860 	if (referenced_page && !PageSwapBacked(page))
861 		return PAGEREF_RECLAIM_CLEAN;
862 
863 	return PAGEREF_RECLAIM;
864 }
865 
866 /* Check if a page is dirty or under writeback */
867 static void page_check_dirty_writeback(struct page *page,
868 				       bool *dirty, bool *writeback)
869 {
870 	struct address_space *mapping;
871 
872 	/*
873 	 * Anonymous pages are not handled by flushers and must be written
874 	 * from reclaim context. Do not stall reclaim based on them
875 	 */
876 	if (!page_is_file_cache(page)) {
877 		*dirty = false;
878 		*writeback = false;
879 		return;
880 	}
881 
882 	/* By default assume that the page flags are accurate */
883 	*dirty = PageDirty(page);
884 	*writeback = PageWriteback(page);
885 
886 	/* Verify dirty/writeback state if the filesystem supports it */
887 	if (!page_has_private(page))
888 		return;
889 
890 	mapping = page_mapping(page);
891 	if (mapping && mapping->a_ops->is_dirty_writeback)
892 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
893 }
894 
895 /*
896  * shrink_page_list() returns the number of reclaimed pages
897  */
898 static unsigned long shrink_page_list(struct list_head *page_list,
899 				      struct pglist_data *pgdat,
900 				      struct scan_control *sc,
901 				      enum ttu_flags ttu_flags,
902 				      unsigned long *ret_nr_dirty,
903 				      unsigned long *ret_nr_unqueued_dirty,
904 				      unsigned long *ret_nr_congested,
905 				      unsigned long *ret_nr_writeback,
906 				      unsigned long *ret_nr_immediate,
907 				      bool force_reclaim)
908 {
909 	LIST_HEAD(ret_pages);
910 	LIST_HEAD(free_pages);
911 	int pgactivate = 0;
912 	unsigned long nr_unqueued_dirty = 0;
913 	unsigned long nr_dirty = 0;
914 	unsigned long nr_congested = 0;
915 	unsigned long nr_reclaimed = 0;
916 	unsigned long nr_writeback = 0;
917 	unsigned long nr_immediate = 0;
918 
919 	cond_resched();
920 
921 	while (!list_empty(page_list)) {
922 		struct address_space *mapping;
923 		struct page *page;
924 		int may_enter_fs;
925 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
926 		bool dirty, writeback;
927 		bool lazyfree = false;
928 		int ret = SWAP_SUCCESS;
929 
930 		cond_resched();
931 
932 		page = lru_to_page(page_list);
933 		list_del(&page->lru);
934 
935 		if (!trylock_page(page))
936 			goto keep;
937 
938 		VM_BUG_ON_PAGE(PageActive(page), page);
939 
940 		sc->nr_scanned++;
941 
942 		if (unlikely(!page_evictable(page)))
943 			goto cull_mlocked;
944 
945 		if (!sc->may_unmap && page_mapped(page))
946 			goto keep_locked;
947 
948 		/* Double the slab pressure for mapped and swapcache pages */
949 		if (page_mapped(page) || PageSwapCache(page))
950 			sc->nr_scanned++;
951 
952 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
953 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
954 
955 		/*
956 		 * The number of dirty pages determines if a zone is marked
957 		 * reclaim_congested which affects wait_iff_congested. kswapd
958 		 * will stall and start writing pages if the tail of the LRU
959 		 * is all dirty unqueued pages.
960 		 */
961 		page_check_dirty_writeback(page, &dirty, &writeback);
962 		if (dirty || writeback)
963 			nr_dirty++;
964 
965 		if (dirty && !writeback)
966 			nr_unqueued_dirty++;
967 
968 		/*
969 		 * Treat this page as congested if the underlying BDI is or if
970 		 * pages are cycling through the LRU so quickly that the
971 		 * pages marked for immediate reclaim are making it to the
972 		 * end of the LRU a second time.
973 		 */
974 		mapping = page_mapping(page);
975 		if (((dirty || writeback) && mapping &&
976 		     inode_write_congested(mapping->host)) ||
977 		    (writeback && PageReclaim(page)))
978 			nr_congested++;
979 
980 		/*
981 		 * If a page at the tail of the LRU is under writeback, there
982 		 * are three cases to consider.
983 		 *
984 		 * 1) If reclaim is encountering an excessive number of pages
985 		 *    under writeback and this page is both under writeback and
986 		 *    PageReclaim then it indicates that pages are being queued
987 		 *    for IO but are being recycled through the LRU before the
988 		 *    IO can complete. Waiting on the page itself risks an
989 		 *    indefinite stall if it is impossible to writeback the
990 		 *    page due to IO error or disconnected storage so instead
991 		 *    note that the LRU is being scanned too quickly and the
992 		 *    caller can stall after page list has been processed.
993 		 *
994 		 * 2) Global or new memcg reclaim encounters a page that is
995 		 *    not marked for immediate reclaim, or the caller does not
996 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
997 		 *    not to fs). In this case mark the page for immediate
998 		 *    reclaim and continue scanning.
999 		 *
1000 		 *    Require may_enter_fs because we would wait on fs, which
1001 		 *    may not have submitted IO yet. And the loop driver might
1002 		 *    enter reclaim, and deadlock if it waits on a page for
1003 		 *    which it is needed to do the write (loop masks off
1004 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1005 		 *    would probably show more reasons.
1006 		 *
1007 		 * 3) Legacy memcg encounters a page that is already marked
1008 		 *    PageReclaim. memcg does not have any dirty pages
1009 		 *    throttling so we could easily OOM just because too many
1010 		 *    pages are in writeback and there is nothing else to
1011 		 *    reclaim. Wait for the writeback to complete.
1012 		 */
1013 		if (PageWriteback(page)) {
1014 			/* Case 1 above */
1015 			if (current_is_kswapd() &&
1016 			    PageReclaim(page) &&
1017 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1018 				nr_immediate++;
1019 				goto keep_locked;
1020 
1021 			/* Case 2 above */
1022 			} else if (sane_reclaim(sc) ||
1023 			    !PageReclaim(page) || !may_enter_fs) {
1024 				/*
1025 				 * This is slightly racy - end_page_writeback()
1026 				 * might have just cleared PageReclaim, then
1027 				 * setting PageReclaim here end up interpreted
1028 				 * as PageReadahead - but that does not matter
1029 				 * enough to care.  What we do want is for this
1030 				 * page to have PageReclaim set next time memcg
1031 				 * reclaim reaches the tests above, so it will
1032 				 * then wait_on_page_writeback() to avoid OOM;
1033 				 * and it's also appropriate in global reclaim.
1034 				 */
1035 				SetPageReclaim(page);
1036 				nr_writeback++;
1037 				goto keep_locked;
1038 
1039 			/* Case 3 above */
1040 			} else {
1041 				unlock_page(page);
1042 				wait_on_page_writeback(page);
1043 				/* then go back and try same page again */
1044 				list_add_tail(&page->lru, page_list);
1045 				continue;
1046 			}
1047 		}
1048 
1049 		if (!force_reclaim)
1050 			references = page_check_references(page, sc);
1051 
1052 		switch (references) {
1053 		case PAGEREF_ACTIVATE:
1054 			goto activate_locked;
1055 		case PAGEREF_KEEP:
1056 			goto keep_locked;
1057 		case PAGEREF_RECLAIM:
1058 		case PAGEREF_RECLAIM_CLEAN:
1059 			; /* try to reclaim the page below */
1060 		}
1061 
1062 		/*
1063 		 * Anonymous process memory has backing store?
1064 		 * Try to allocate it some swap space here.
1065 		 */
1066 		if (PageAnon(page) && !PageSwapCache(page)) {
1067 			if (!(sc->gfp_mask & __GFP_IO))
1068 				goto keep_locked;
1069 			if (!add_to_swap(page, page_list))
1070 				goto activate_locked;
1071 			lazyfree = true;
1072 			may_enter_fs = 1;
1073 
1074 			/* Adding to swap updated mapping */
1075 			mapping = page_mapping(page);
1076 		} else if (unlikely(PageTransHuge(page))) {
1077 			/* Split file THP */
1078 			if (split_huge_page_to_list(page, page_list))
1079 				goto keep_locked;
1080 		}
1081 
1082 		VM_BUG_ON_PAGE(PageTransHuge(page), page);
1083 
1084 		/*
1085 		 * The page is mapped into the page tables of one or more
1086 		 * processes. Try to unmap it here.
1087 		 */
1088 		if (page_mapped(page) && mapping) {
1089 			switch (ret = try_to_unmap(page, lazyfree ?
1090 				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1091 				(ttu_flags | TTU_BATCH_FLUSH))) {
1092 			case SWAP_FAIL:
1093 				goto activate_locked;
1094 			case SWAP_AGAIN:
1095 				goto keep_locked;
1096 			case SWAP_MLOCK:
1097 				goto cull_mlocked;
1098 			case SWAP_LZFREE:
1099 				goto lazyfree;
1100 			case SWAP_SUCCESS:
1101 				; /* try to free the page below */
1102 			}
1103 		}
1104 
1105 		if (PageDirty(page)) {
1106 			/*
1107 			 * Only kswapd can writeback filesystem pages to
1108 			 * avoid risk of stack overflow but only writeback
1109 			 * if many dirty pages have been encountered.
1110 			 */
1111 			if (page_is_file_cache(page) &&
1112 					(!current_is_kswapd() ||
1113 					 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1114 				/*
1115 				 * Immediately reclaim when written back.
1116 				 * Similar in principal to deactivate_page()
1117 				 * except we already have the page isolated
1118 				 * and know it's dirty
1119 				 */
1120 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1121 				SetPageReclaim(page);
1122 
1123 				goto keep_locked;
1124 			}
1125 
1126 			if (references == PAGEREF_RECLAIM_CLEAN)
1127 				goto keep_locked;
1128 			if (!may_enter_fs)
1129 				goto keep_locked;
1130 			if (!sc->may_writepage)
1131 				goto keep_locked;
1132 
1133 			/*
1134 			 * Page is dirty. Flush the TLB if a writable entry
1135 			 * potentially exists to avoid CPU writes after IO
1136 			 * starts and then write it out here.
1137 			 */
1138 			try_to_unmap_flush_dirty();
1139 			switch (pageout(page, mapping, sc)) {
1140 			case PAGE_KEEP:
1141 				goto keep_locked;
1142 			case PAGE_ACTIVATE:
1143 				goto activate_locked;
1144 			case PAGE_SUCCESS:
1145 				if (PageWriteback(page))
1146 					goto keep;
1147 				if (PageDirty(page))
1148 					goto keep;
1149 
1150 				/*
1151 				 * A synchronous write - probably a ramdisk.  Go
1152 				 * ahead and try to reclaim the page.
1153 				 */
1154 				if (!trylock_page(page))
1155 					goto keep;
1156 				if (PageDirty(page) || PageWriteback(page))
1157 					goto keep_locked;
1158 				mapping = page_mapping(page);
1159 			case PAGE_CLEAN:
1160 				; /* try to free the page below */
1161 			}
1162 		}
1163 
1164 		/*
1165 		 * If the page has buffers, try to free the buffer mappings
1166 		 * associated with this page. If we succeed we try to free
1167 		 * the page as well.
1168 		 *
1169 		 * We do this even if the page is PageDirty().
1170 		 * try_to_release_page() does not perform I/O, but it is
1171 		 * possible for a page to have PageDirty set, but it is actually
1172 		 * clean (all its buffers are clean).  This happens if the
1173 		 * buffers were written out directly, with submit_bh(). ext3
1174 		 * will do this, as well as the blockdev mapping.
1175 		 * try_to_release_page() will discover that cleanness and will
1176 		 * drop the buffers and mark the page clean - it can be freed.
1177 		 *
1178 		 * Rarely, pages can have buffers and no ->mapping.  These are
1179 		 * the pages which were not successfully invalidated in
1180 		 * truncate_complete_page().  We try to drop those buffers here
1181 		 * and if that worked, and the page is no longer mapped into
1182 		 * process address space (page_count == 1) it can be freed.
1183 		 * Otherwise, leave the page on the LRU so it is swappable.
1184 		 */
1185 		if (page_has_private(page)) {
1186 			if (!try_to_release_page(page, sc->gfp_mask))
1187 				goto activate_locked;
1188 			if (!mapping && page_count(page) == 1) {
1189 				unlock_page(page);
1190 				if (put_page_testzero(page))
1191 					goto free_it;
1192 				else {
1193 					/*
1194 					 * rare race with speculative reference.
1195 					 * the speculative reference will free
1196 					 * this page shortly, so we may
1197 					 * increment nr_reclaimed here (and
1198 					 * leave it off the LRU).
1199 					 */
1200 					nr_reclaimed++;
1201 					continue;
1202 				}
1203 			}
1204 		}
1205 
1206 lazyfree:
1207 		if (!mapping || !__remove_mapping(mapping, page, true))
1208 			goto keep_locked;
1209 
1210 		/*
1211 		 * At this point, we have no other references and there is
1212 		 * no way to pick any more up (removed from LRU, removed
1213 		 * from pagecache). Can use non-atomic bitops now (and
1214 		 * we obviously don't have to worry about waking up a process
1215 		 * waiting on the page lock, because there are no references.
1216 		 */
1217 		__ClearPageLocked(page);
1218 free_it:
1219 		if (ret == SWAP_LZFREE)
1220 			count_vm_event(PGLAZYFREED);
1221 
1222 		nr_reclaimed++;
1223 
1224 		/*
1225 		 * Is there need to periodically free_page_list? It would
1226 		 * appear not as the counts should be low
1227 		 */
1228 		list_add(&page->lru, &free_pages);
1229 		continue;
1230 
1231 cull_mlocked:
1232 		if (PageSwapCache(page))
1233 			try_to_free_swap(page);
1234 		unlock_page(page);
1235 		list_add(&page->lru, &ret_pages);
1236 		continue;
1237 
1238 activate_locked:
1239 		/* Not a candidate for swapping, so reclaim swap space. */
1240 		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1241 			try_to_free_swap(page);
1242 		VM_BUG_ON_PAGE(PageActive(page), page);
1243 		SetPageActive(page);
1244 		pgactivate++;
1245 keep_locked:
1246 		unlock_page(page);
1247 keep:
1248 		list_add(&page->lru, &ret_pages);
1249 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1250 	}
1251 
1252 	mem_cgroup_uncharge_list(&free_pages);
1253 	try_to_unmap_flush();
1254 	free_hot_cold_page_list(&free_pages, true);
1255 
1256 	list_splice(&ret_pages, page_list);
1257 	count_vm_events(PGACTIVATE, pgactivate);
1258 
1259 	*ret_nr_dirty += nr_dirty;
1260 	*ret_nr_congested += nr_congested;
1261 	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1262 	*ret_nr_writeback += nr_writeback;
1263 	*ret_nr_immediate += nr_immediate;
1264 	return nr_reclaimed;
1265 }
1266 
1267 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1268 					    struct list_head *page_list)
1269 {
1270 	struct scan_control sc = {
1271 		.gfp_mask = GFP_KERNEL,
1272 		.priority = DEF_PRIORITY,
1273 		.may_unmap = 1,
1274 	};
1275 	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1276 	struct page *page, *next;
1277 	LIST_HEAD(clean_pages);
1278 
1279 	list_for_each_entry_safe(page, next, page_list, lru) {
1280 		if (page_is_file_cache(page) && !PageDirty(page) &&
1281 		    !__PageMovable(page)) {
1282 			ClearPageActive(page);
1283 			list_move(&page->lru, &clean_pages);
1284 		}
1285 	}
1286 
1287 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1288 			TTU_UNMAP|TTU_IGNORE_ACCESS,
1289 			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1290 	list_splice(&clean_pages, page_list);
1291 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1292 	return ret;
1293 }
1294 
1295 /*
1296  * Attempt to remove the specified page from its LRU.  Only take this page
1297  * if it is of the appropriate PageActive status.  Pages which are being
1298  * freed elsewhere are also ignored.
1299  *
1300  * page:	page to consider
1301  * mode:	one of the LRU isolation modes defined above
1302  *
1303  * returns 0 on success, -ve errno on failure.
1304  */
1305 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1306 {
1307 	int ret = -EINVAL;
1308 
1309 	/* Only take pages on the LRU. */
1310 	if (!PageLRU(page))
1311 		return ret;
1312 
1313 	/* Compaction should not handle unevictable pages but CMA can do so */
1314 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1315 		return ret;
1316 
1317 	ret = -EBUSY;
1318 
1319 	/*
1320 	 * To minimise LRU disruption, the caller can indicate that it only
1321 	 * wants to isolate pages it will be able to operate on without
1322 	 * blocking - clean pages for the most part.
1323 	 *
1324 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1325 	 * is used by reclaim when it is cannot write to backing storage
1326 	 *
1327 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1328 	 * that it is possible to migrate without blocking
1329 	 */
1330 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1331 		/* All the caller can do on PageWriteback is block */
1332 		if (PageWriteback(page))
1333 			return ret;
1334 
1335 		if (PageDirty(page)) {
1336 			struct address_space *mapping;
1337 
1338 			/* ISOLATE_CLEAN means only clean pages */
1339 			if (mode & ISOLATE_CLEAN)
1340 				return ret;
1341 
1342 			/*
1343 			 * Only pages without mappings or that have a
1344 			 * ->migratepage callback are possible to migrate
1345 			 * without blocking
1346 			 */
1347 			mapping = page_mapping(page);
1348 			if (mapping && !mapping->a_ops->migratepage)
1349 				return ret;
1350 		}
1351 	}
1352 
1353 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1354 		return ret;
1355 
1356 	if (likely(get_page_unless_zero(page))) {
1357 		/*
1358 		 * Be careful not to clear PageLRU until after we're
1359 		 * sure the page is not being freed elsewhere -- the
1360 		 * page release code relies on it.
1361 		 */
1362 		ClearPageLRU(page);
1363 		ret = 0;
1364 	}
1365 
1366 	return ret;
1367 }
1368 
1369 /*
1370  * zone_lru_lock is heavily contended.  Some of the functions that
1371  * shrink the lists perform better by taking out a batch of pages
1372  * and working on them outside the LRU lock.
1373  *
1374  * For pagecache intensive workloads, this function is the hottest
1375  * spot in the kernel (apart from copy_*_user functions).
1376  *
1377  * Appropriate locks must be held before calling this function.
1378  *
1379  * @nr_to_scan:	The number of pages to look through on the list.
1380  * @lruvec:	The LRU vector to pull pages from.
1381  * @dst:	The temp list to put pages on to.
1382  * @nr_scanned:	The number of pages that were scanned.
1383  * @sc:		The scan_control struct for this reclaim session
1384  * @mode:	One of the LRU isolation modes
1385  * @lru:	LRU list id for isolating
1386  *
1387  * returns how many pages were moved onto *@dst.
1388  */
1389 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1390 		struct lruvec *lruvec, struct list_head *dst,
1391 		unsigned long *nr_scanned, struct scan_control *sc,
1392 		isolate_mode_t mode, enum lru_list lru)
1393 {
1394 	struct list_head *src = &lruvec->lists[lru];
1395 	unsigned long nr_taken = 0;
1396 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1397 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1398 	unsigned long scan, nr_pages;
1399 	LIST_HEAD(pages_skipped);
1400 
1401 	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1402 					!list_empty(src); scan++) {
1403 		struct page *page;
1404 
1405 		page = lru_to_page(src);
1406 		prefetchw_prev_lru_page(page, src, flags);
1407 
1408 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1409 
1410 		if (page_zonenum(page) > sc->reclaim_idx) {
1411 			list_move(&page->lru, &pages_skipped);
1412 			nr_skipped[page_zonenum(page)]++;
1413 			continue;
1414 		}
1415 
1416 		switch (__isolate_lru_page(page, mode)) {
1417 		case 0:
1418 			nr_pages = hpage_nr_pages(page);
1419 			nr_taken += nr_pages;
1420 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1421 			list_move(&page->lru, dst);
1422 			break;
1423 
1424 		case -EBUSY:
1425 			/* else it is being freed elsewhere */
1426 			list_move(&page->lru, src);
1427 			continue;
1428 
1429 		default:
1430 			BUG();
1431 		}
1432 	}
1433 
1434 	/*
1435 	 * Splice any skipped pages to the start of the LRU list. Note that
1436 	 * this disrupts the LRU order when reclaiming for lower zones but
1437 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1438 	 * scanning would soon rescan the same pages to skip and put the
1439 	 * system at risk of premature OOM.
1440 	 */
1441 	if (!list_empty(&pages_skipped)) {
1442 		int zid;
1443 
1444 		list_splice(&pages_skipped, src);
1445 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1446 			if (!nr_skipped[zid])
1447 				continue;
1448 
1449 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1450 		}
1451 	}
1452 	*nr_scanned = scan;
1453 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, scan,
1454 				    nr_taken, mode, is_file_lru(lru));
1455 	for (scan = 0; scan < MAX_NR_ZONES; scan++) {
1456 		nr_pages = nr_zone_taken[scan];
1457 		if (!nr_pages)
1458 			continue;
1459 
1460 		update_lru_size(lruvec, lru, scan, -nr_pages);
1461 	}
1462 	return nr_taken;
1463 }
1464 
1465 /**
1466  * isolate_lru_page - tries to isolate a page from its LRU list
1467  * @page: page to isolate from its LRU list
1468  *
1469  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1470  * vmstat statistic corresponding to whatever LRU list the page was on.
1471  *
1472  * Returns 0 if the page was removed from an LRU list.
1473  * Returns -EBUSY if the page was not on an LRU list.
1474  *
1475  * The returned page will have PageLRU() cleared.  If it was found on
1476  * the active list, it will have PageActive set.  If it was found on
1477  * the unevictable list, it will have the PageUnevictable bit set. That flag
1478  * may need to be cleared by the caller before letting the page go.
1479  *
1480  * The vmstat statistic corresponding to the list on which the page was
1481  * found will be decremented.
1482  *
1483  * Restrictions:
1484  * (1) Must be called with an elevated refcount on the page. This is a
1485  *     fundamentnal difference from isolate_lru_pages (which is called
1486  *     without a stable reference).
1487  * (2) the lru_lock must not be held.
1488  * (3) interrupts must be enabled.
1489  */
1490 int isolate_lru_page(struct page *page)
1491 {
1492 	int ret = -EBUSY;
1493 
1494 	VM_BUG_ON_PAGE(!page_count(page), page);
1495 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1496 
1497 	if (PageLRU(page)) {
1498 		struct zone *zone = page_zone(page);
1499 		struct lruvec *lruvec;
1500 
1501 		spin_lock_irq(zone_lru_lock(zone));
1502 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1503 		if (PageLRU(page)) {
1504 			int lru = page_lru(page);
1505 			get_page(page);
1506 			ClearPageLRU(page);
1507 			del_page_from_lru_list(page, lruvec, lru);
1508 			ret = 0;
1509 		}
1510 		spin_unlock_irq(zone_lru_lock(zone));
1511 	}
1512 	return ret;
1513 }
1514 
1515 /*
1516  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1517  * then get resheduled. When there are massive number of tasks doing page
1518  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1519  * the LRU list will go small and be scanned faster than necessary, leading to
1520  * unnecessary swapping, thrashing and OOM.
1521  */
1522 static int too_many_isolated(struct pglist_data *pgdat, int file,
1523 		struct scan_control *sc)
1524 {
1525 	unsigned long inactive, isolated;
1526 
1527 	if (current_is_kswapd())
1528 		return 0;
1529 
1530 	if (!sane_reclaim(sc))
1531 		return 0;
1532 
1533 	if (file) {
1534 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1535 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1536 	} else {
1537 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1538 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1539 	}
1540 
1541 	/*
1542 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1543 	 * won't get blocked by normal direct-reclaimers, forming a circular
1544 	 * deadlock.
1545 	 */
1546 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1547 		inactive >>= 3;
1548 
1549 	return isolated > inactive;
1550 }
1551 
1552 static noinline_for_stack void
1553 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1554 {
1555 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1556 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1557 	LIST_HEAD(pages_to_free);
1558 
1559 	/*
1560 	 * Put back any unfreeable pages.
1561 	 */
1562 	while (!list_empty(page_list)) {
1563 		struct page *page = lru_to_page(page_list);
1564 		int lru;
1565 
1566 		VM_BUG_ON_PAGE(PageLRU(page), page);
1567 		list_del(&page->lru);
1568 		if (unlikely(!page_evictable(page))) {
1569 			spin_unlock_irq(&pgdat->lru_lock);
1570 			putback_lru_page(page);
1571 			spin_lock_irq(&pgdat->lru_lock);
1572 			continue;
1573 		}
1574 
1575 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1576 
1577 		SetPageLRU(page);
1578 		lru = page_lru(page);
1579 		add_page_to_lru_list(page, lruvec, lru);
1580 
1581 		if (is_active_lru(lru)) {
1582 			int file = is_file_lru(lru);
1583 			int numpages = hpage_nr_pages(page);
1584 			reclaim_stat->recent_rotated[file] += numpages;
1585 		}
1586 		if (put_page_testzero(page)) {
1587 			__ClearPageLRU(page);
1588 			__ClearPageActive(page);
1589 			del_page_from_lru_list(page, lruvec, lru);
1590 
1591 			if (unlikely(PageCompound(page))) {
1592 				spin_unlock_irq(&pgdat->lru_lock);
1593 				mem_cgroup_uncharge(page);
1594 				(*get_compound_page_dtor(page))(page);
1595 				spin_lock_irq(&pgdat->lru_lock);
1596 			} else
1597 				list_add(&page->lru, &pages_to_free);
1598 		}
1599 	}
1600 
1601 	/*
1602 	 * To save our caller's stack, now use input list for pages to free.
1603 	 */
1604 	list_splice(&pages_to_free, page_list);
1605 }
1606 
1607 /*
1608  * If a kernel thread (such as nfsd for loop-back mounts) services
1609  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1610  * In that case we should only throttle if the backing device it is
1611  * writing to is congested.  In other cases it is safe to throttle.
1612  */
1613 static int current_may_throttle(void)
1614 {
1615 	return !(current->flags & PF_LESS_THROTTLE) ||
1616 		current->backing_dev_info == NULL ||
1617 		bdi_write_congested(current->backing_dev_info);
1618 }
1619 
1620 /*
1621  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1622  * of reclaimed pages
1623  */
1624 static noinline_for_stack unsigned long
1625 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1626 		     struct scan_control *sc, enum lru_list lru)
1627 {
1628 	LIST_HEAD(page_list);
1629 	unsigned long nr_scanned;
1630 	unsigned long nr_reclaimed = 0;
1631 	unsigned long nr_taken;
1632 	unsigned long nr_dirty = 0;
1633 	unsigned long nr_congested = 0;
1634 	unsigned long nr_unqueued_dirty = 0;
1635 	unsigned long nr_writeback = 0;
1636 	unsigned long nr_immediate = 0;
1637 	isolate_mode_t isolate_mode = 0;
1638 	int file = is_file_lru(lru);
1639 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1640 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1641 
1642 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1643 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1644 
1645 		/* We are about to die and free our memory. Return now. */
1646 		if (fatal_signal_pending(current))
1647 			return SWAP_CLUSTER_MAX;
1648 	}
1649 
1650 	lru_add_drain();
1651 
1652 	if (!sc->may_unmap)
1653 		isolate_mode |= ISOLATE_UNMAPPED;
1654 	if (!sc->may_writepage)
1655 		isolate_mode |= ISOLATE_CLEAN;
1656 
1657 	spin_lock_irq(&pgdat->lru_lock);
1658 
1659 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1660 				     &nr_scanned, sc, isolate_mode, lru);
1661 
1662 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1663 	reclaim_stat->recent_scanned[file] += nr_taken;
1664 
1665 	if (global_reclaim(sc)) {
1666 		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1667 		if (current_is_kswapd())
1668 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1669 		else
1670 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1671 	}
1672 	spin_unlock_irq(&pgdat->lru_lock);
1673 
1674 	if (nr_taken == 0)
1675 		return 0;
1676 
1677 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1678 				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1679 				&nr_writeback, &nr_immediate,
1680 				false);
1681 
1682 	spin_lock_irq(&pgdat->lru_lock);
1683 
1684 	if (global_reclaim(sc)) {
1685 		if (current_is_kswapd())
1686 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1687 		else
1688 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1689 	}
1690 
1691 	putback_inactive_pages(lruvec, &page_list);
1692 
1693 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1694 
1695 	spin_unlock_irq(&pgdat->lru_lock);
1696 
1697 	mem_cgroup_uncharge_list(&page_list);
1698 	free_hot_cold_page_list(&page_list, true);
1699 
1700 	/*
1701 	 * If reclaim is isolating dirty pages under writeback, it implies
1702 	 * that the long-lived page allocation rate is exceeding the page
1703 	 * laundering rate. Either the global limits are not being effective
1704 	 * at throttling processes due to the page distribution throughout
1705 	 * zones or there is heavy usage of a slow backing device. The
1706 	 * only option is to throttle from reclaim context which is not ideal
1707 	 * as there is no guarantee the dirtying process is throttled in the
1708 	 * same way balance_dirty_pages() manages.
1709 	 *
1710 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1711 	 * of pages under pages flagged for immediate reclaim and stall if any
1712 	 * are encountered in the nr_immediate check below.
1713 	 */
1714 	if (nr_writeback && nr_writeback == nr_taken)
1715 		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1716 
1717 	/*
1718 	 * Legacy memcg will stall in page writeback so avoid forcibly
1719 	 * stalling here.
1720 	 */
1721 	if (sane_reclaim(sc)) {
1722 		/*
1723 		 * Tag a zone as congested if all the dirty pages scanned were
1724 		 * backed by a congested BDI and wait_iff_congested will stall.
1725 		 */
1726 		if (nr_dirty && nr_dirty == nr_congested)
1727 			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1728 
1729 		/*
1730 		 * If dirty pages are scanned that are not queued for IO, it
1731 		 * implies that flushers are not keeping up. In this case, flag
1732 		 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
1733 		 * reclaim context.
1734 		 */
1735 		if (nr_unqueued_dirty == nr_taken)
1736 			set_bit(PGDAT_DIRTY, &pgdat->flags);
1737 
1738 		/*
1739 		 * If kswapd scans pages marked marked for immediate
1740 		 * reclaim and under writeback (nr_immediate), it implies
1741 		 * that pages are cycling through the LRU faster than
1742 		 * they are written so also forcibly stall.
1743 		 */
1744 		if (nr_immediate && current_may_throttle())
1745 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1746 	}
1747 
1748 	/*
1749 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1750 	 * is congested. Allow kswapd to continue until it starts encountering
1751 	 * unqueued dirty pages or cycling through the LRU too quickly.
1752 	 */
1753 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1754 	    current_may_throttle())
1755 		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1756 
1757 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1758 			nr_scanned, nr_reclaimed,
1759 			sc->priority, file);
1760 	return nr_reclaimed;
1761 }
1762 
1763 /*
1764  * This moves pages from the active list to the inactive list.
1765  *
1766  * We move them the other way if the page is referenced by one or more
1767  * processes, from rmap.
1768  *
1769  * If the pages are mostly unmapped, the processing is fast and it is
1770  * appropriate to hold zone_lru_lock across the whole operation.  But if
1771  * the pages are mapped, the processing is slow (page_referenced()) so we
1772  * should drop zone_lru_lock around each page.  It's impossible to balance
1773  * this, so instead we remove the pages from the LRU while processing them.
1774  * It is safe to rely on PG_active against the non-LRU pages in here because
1775  * nobody will play with that bit on a non-LRU page.
1776  *
1777  * The downside is that we have to touch page->_refcount against each page.
1778  * But we had to alter page->flags anyway.
1779  */
1780 
1781 static void move_active_pages_to_lru(struct lruvec *lruvec,
1782 				     struct list_head *list,
1783 				     struct list_head *pages_to_free,
1784 				     enum lru_list lru)
1785 {
1786 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1787 	unsigned long pgmoved = 0;
1788 	struct page *page;
1789 	int nr_pages;
1790 
1791 	while (!list_empty(list)) {
1792 		page = lru_to_page(list);
1793 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1794 
1795 		VM_BUG_ON_PAGE(PageLRU(page), page);
1796 		SetPageLRU(page);
1797 
1798 		nr_pages = hpage_nr_pages(page);
1799 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1800 		list_move(&page->lru, &lruvec->lists[lru]);
1801 		pgmoved += nr_pages;
1802 
1803 		if (put_page_testzero(page)) {
1804 			__ClearPageLRU(page);
1805 			__ClearPageActive(page);
1806 			del_page_from_lru_list(page, lruvec, lru);
1807 
1808 			if (unlikely(PageCompound(page))) {
1809 				spin_unlock_irq(&pgdat->lru_lock);
1810 				mem_cgroup_uncharge(page);
1811 				(*get_compound_page_dtor(page))(page);
1812 				spin_lock_irq(&pgdat->lru_lock);
1813 			} else
1814 				list_add(&page->lru, pages_to_free);
1815 		}
1816 	}
1817 
1818 	if (!is_active_lru(lru))
1819 		__count_vm_events(PGDEACTIVATE, pgmoved);
1820 }
1821 
1822 static void shrink_active_list(unsigned long nr_to_scan,
1823 			       struct lruvec *lruvec,
1824 			       struct scan_control *sc,
1825 			       enum lru_list lru)
1826 {
1827 	unsigned long nr_taken;
1828 	unsigned long nr_scanned;
1829 	unsigned long vm_flags;
1830 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1831 	LIST_HEAD(l_active);
1832 	LIST_HEAD(l_inactive);
1833 	struct page *page;
1834 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1835 	unsigned long nr_rotated = 0;
1836 	isolate_mode_t isolate_mode = 0;
1837 	int file = is_file_lru(lru);
1838 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1839 
1840 	lru_add_drain();
1841 
1842 	if (!sc->may_unmap)
1843 		isolate_mode |= ISOLATE_UNMAPPED;
1844 	if (!sc->may_writepage)
1845 		isolate_mode |= ISOLATE_CLEAN;
1846 
1847 	spin_lock_irq(&pgdat->lru_lock);
1848 
1849 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1850 				     &nr_scanned, sc, isolate_mode, lru);
1851 
1852 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1853 	reclaim_stat->recent_scanned[file] += nr_taken;
1854 
1855 	if (global_reclaim(sc))
1856 		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1857 	__count_vm_events(PGREFILL, nr_scanned);
1858 
1859 	spin_unlock_irq(&pgdat->lru_lock);
1860 
1861 	while (!list_empty(&l_hold)) {
1862 		cond_resched();
1863 		page = lru_to_page(&l_hold);
1864 		list_del(&page->lru);
1865 
1866 		if (unlikely(!page_evictable(page))) {
1867 			putback_lru_page(page);
1868 			continue;
1869 		}
1870 
1871 		if (unlikely(buffer_heads_over_limit)) {
1872 			if (page_has_private(page) && trylock_page(page)) {
1873 				if (page_has_private(page))
1874 					try_to_release_page(page, 0);
1875 				unlock_page(page);
1876 			}
1877 		}
1878 
1879 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1880 				    &vm_flags)) {
1881 			nr_rotated += hpage_nr_pages(page);
1882 			/*
1883 			 * Identify referenced, file-backed active pages and
1884 			 * give them one more trip around the active list. So
1885 			 * that executable code get better chances to stay in
1886 			 * memory under moderate memory pressure.  Anon pages
1887 			 * are not likely to be evicted by use-once streaming
1888 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1889 			 * so we ignore them here.
1890 			 */
1891 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1892 				list_add(&page->lru, &l_active);
1893 				continue;
1894 			}
1895 		}
1896 
1897 		ClearPageActive(page);	/* we are de-activating */
1898 		list_add(&page->lru, &l_inactive);
1899 	}
1900 
1901 	/*
1902 	 * Move pages back to the lru list.
1903 	 */
1904 	spin_lock_irq(&pgdat->lru_lock);
1905 	/*
1906 	 * Count referenced pages from currently used mappings as rotated,
1907 	 * even though only some of them are actually re-activated.  This
1908 	 * helps balance scan pressure between file and anonymous pages in
1909 	 * get_scan_count.
1910 	 */
1911 	reclaim_stat->recent_rotated[file] += nr_rotated;
1912 
1913 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1914 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1915 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1916 	spin_unlock_irq(&pgdat->lru_lock);
1917 
1918 	mem_cgroup_uncharge_list(&l_hold);
1919 	free_hot_cold_page_list(&l_hold, true);
1920 }
1921 
1922 /*
1923  * The inactive anon list should be small enough that the VM never has
1924  * to do too much work.
1925  *
1926  * The inactive file list should be small enough to leave most memory
1927  * to the established workingset on the scan-resistant active list,
1928  * but large enough to avoid thrashing the aggregate readahead window.
1929  *
1930  * Both inactive lists should also be large enough that each inactive
1931  * page has a chance to be referenced again before it is reclaimed.
1932  *
1933  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
1934  * on this LRU, maintained by the pageout code. A zone->inactive_ratio
1935  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
1936  *
1937  * total     target    max
1938  * memory    ratio     inactive
1939  * -------------------------------------
1940  *   10MB       1         5MB
1941  *  100MB       1        50MB
1942  *    1GB       3       250MB
1943  *   10GB      10       0.9GB
1944  *  100GB      31         3GB
1945  *    1TB     101        10GB
1946  *   10TB     320        32GB
1947  */
1948 static bool inactive_list_is_low(struct lruvec *lruvec, bool file)
1949 {
1950 	unsigned long inactive_ratio;
1951 	unsigned long inactive;
1952 	unsigned long active;
1953 	unsigned long gb;
1954 
1955 	/*
1956 	 * If we don't have swap space, anonymous page deactivation
1957 	 * is pointless.
1958 	 */
1959 	if (!file && !total_swap_pages)
1960 		return false;
1961 
1962 	inactive = lruvec_lru_size(lruvec, file * LRU_FILE);
1963 	active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE);
1964 
1965 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1966 	if (gb)
1967 		inactive_ratio = int_sqrt(10 * gb);
1968 	else
1969 		inactive_ratio = 1;
1970 
1971 	return inactive * inactive_ratio < active;
1972 }
1973 
1974 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1975 				 struct lruvec *lruvec, struct scan_control *sc)
1976 {
1977 	if (is_active_lru(lru)) {
1978 		if (inactive_list_is_low(lruvec, is_file_lru(lru)))
1979 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1980 		return 0;
1981 	}
1982 
1983 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1984 }
1985 
1986 enum scan_balance {
1987 	SCAN_EQUAL,
1988 	SCAN_FRACT,
1989 	SCAN_ANON,
1990 	SCAN_FILE,
1991 };
1992 
1993 /*
1994  * Determine how aggressively the anon and file LRU lists should be
1995  * scanned.  The relative value of each set of LRU lists is determined
1996  * by looking at the fraction of the pages scanned we did rotate back
1997  * onto the active list instead of evict.
1998  *
1999  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2000  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2001  */
2002 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2003 			   struct scan_control *sc, unsigned long *nr,
2004 			   unsigned long *lru_pages)
2005 {
2006 	int swappiness = mem_cgroup_swappiness(memcg);
2007 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2008 	u64 fraction[2];
2009 	u64 denominator = 0;	/* gcc */
2010 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2011 	unsigned long anon_prio, file_prio;
2012 	enum scan_balance scan_balance;
2013 	unsigned long anon, file;
2014 	bool force_scan = false;
2015 	unsigned long ap, fp;
2016 	enum lru_list lru;
2017 	bool some_scanned;
2018 	int pass;
2019 
2020 	/*
2021 	 * If the zone or memcg is small, nr[l] can be 0.  This
2022 	 * results in no scanning on this priority and a potential
2023 	 * priority drop.  Global direct reclaim can go to the next
2024 	 * zone and tends to have no problems. Global kswapd is for
2025 	 * zone balancing and it needs to scan a minimum amount. When
2026 	 * reclaiming for a memcg, a priority drop can cause high
2027 	 * latencies, so it's better to scan a minimum amount there as
2028 	 * well.
2029 	 */
2030 	if (current_is_kswapd()) {
2031 		if (!pgdat_reclaimable(pgdat))
2032 			force_scan = true;
2033 		if (!mem_cgroup_online(memcg))
2034 			force_scan = true;
2035 	}
2036 	if (!global_reclaim(sc))
2037 		force_scan = true;
2038 
2039 	/* If we have no swap space, do not bother scanning anon pages. */
2040 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2041 		scan_balance = SCAN_FILE;
2042 		goto out;
2043 	}
2044 
2045 	/*
2046 	 * Global reclaim will swap to prevent OOM even with no
2047 	 * swappiness, but memcg users want to use this knob to
2048 	 * disable swapping for individual groups completely when
2049 	 * using the memory controller's swap limit feature would be
2050 	 * too expensive.
2051 	 */
2052 	if (!global_reclaim(sc) && !swappiness) {
2053 		scan_balance = SCAN_FILE;
2054 		goto out;
2055 	}
2056 
2057 	/*
2058 	 * Do not apply any pressure balancing cleverness when the
2059 	 * system is close to OOM, scan both anon and file equally
2060 	 * (unless the swappiness setting disagrees with swapping).
2061 	 */
2062 	if (!sc->priority && swappiness) {
2063 		scan_balance = SCAN_EQUAL;
2064 		goto out;
2065 	}
2066 
2067 	/*
2068 	 * Prevent the reclaimer from falling into the cache trap: as
2069 	 * cache pages start out inactive, every cache fault will tip
2070 	 * the scan balance towards the file LRU.  And as the file LRU
2071 	 * shrinks, so does the window for rotation from references.
2072 	 * This means we have a runaway feedback loop where a tiny
2073 	 * thrashing file LRU becomes infinitely more attractive than
2074 	 * anon pages.  Try to detect this based on file LRU size.
2075 	 */
2076 	if (global_reclaim(sc)) {
2077 		unsigned long pgdatfile;
2078 		unsigned long pgdatfree;
2079 		int z;
2080 		unsigned long total_high_wmark = 0;
2081 
2082 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2083 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2084 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2085 
2086 		for (z = 0; z < MAX_NR_ZONES; z++) {
2087 			struct zone *zone = &pgdat->node_zones[z];
2088 			if (!populated_zone(zone))
2089 				continue;
2090 
2091 			total_high_wmark += high_wmark_pages(zone);
2092 		}
2093 
2094 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2095 			scan_balance = SCAN_ANON;
2096 			goto out;
2097 		}
2098 	}
2099 
2100 	/*
2101 	 * If there is enough inactive page cache, i.e. if the size of the
2102 	 * inactive list is greater than that of the active list *and* the
2103 	 * inactive list actually has some pages to scan on this priority, we
2104 	 * do not reclaim anything from the anonymous working set right now.
2105 	 * Without the second condition we could end up never scanning an
2106 	 * lruvec even if it has plenty of old anonymous pages unless the
2107 	 * system is under heavy pressure.
2108 	 */
2109 	if (!inactive_list_is_low(lruvec, true) &&
2110 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2111 		scan_balance = SCAN_FILE;
2112 		goto out;
2113 	}
2114 
2115 	scan_balance = SCAN_FRACT;
2116 
2117 	/*
2118 	 * With swappiness at 100, anonymous and file have the same priority.
2119 	 * This scanning priority is essentially the inverse of IO cost.
2120 	 */
2121 	anon_prio = swappiness;
2122 	file_prio = 200 - anon_prio;
2123 
2124 	/*
2125 	 * OK, so we have swap space and a fair amount of page cache
2126 	 * pages.  We use the recently rotated / recently scanned
2127 	 * ratios to determine how valuable each cache is.
2128 	 *
2129 	 * Because workloads change over time (and to avoid overflow)
2130 	 * we keep these statistics as a floating average, which ends
2131 	 * up weighing recent references more than old ones.
2132 	 *
2133 	 * anon in [0], file in [1]
2134 	 */
2135 
2136 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
2137 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
2138 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
2139 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2140 
2141 	spin_lock_irq(&pgdat->lru_lock);
2142 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2143 		reclaim_stat->recent_scanned[0] /= 2;
2144 		reclaim_stat->recent_rotated[0] /= 2;
2145 	}
2146 
2147 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2148 		reclaim_stat->recent_scanned[1] /= 2;
2149 		reclaim_stat->recent_rotated[1] /= 2;
2150 	}
2151 
2152 	/*
2153 	 * The amount of pressure on anon vs file pages is inversely
2154 	 * proportional to the fraction of recently scanned pages on
2155 	 * each list that were recently referenced and in active use.
2156 	 */
2157 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2158 	ap /= reclaim_stat->recent_rotated[0] + 1;
2159 
2160 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2161 	fp /= reclaim_stat->recent_rotated[1] + 1;
2162 	spin_unlock_irq(&pgdat->lru_lock);
2163 
2164 	fraction[0] = ap;
2165 	fraction[1] = fp;
2166 	denominator = ap + fp + 1;
2167 out:
2168 	some_scanned = false;
2169 	/* Only use force_scan on second pass. */
2170 	for (pass = 0; !some_scanned && pass < 2; pass++) {
2171 		*lru_pages = 0;
2172 		for_each_evictable_lru(lru) {
2173 			int file = is_file_lru(lru);
2174 			unsigned long size;
2175 			unsigned long scan;
2176 
2177 			size = lruvec_lru_size(lruvec, lru);
2178 			scan = size >> sc->priority;
2179 
2180 			if (!scan && pass && force_scan)
2181 				scan = min(size, SWAP_CLUSTER_MAX);
2182 
2183 			switch (scan_balance) {
2184 			case SCAN_EQUAL:
2185 				/* Scan lists relative to size */
2186 				break;
2187 			case SCAN_FRACT:
2188 				/*
2189 				 * Scan types proportional to swappiness and
2190 				 * their relative recent reclaim efficiency.
2191 				 */
2192 				scan = div64_u64(scan * fraction[file],
2193 							denominator);
2194 				break;
2195 			case SCAN_FILE:
2196 			case SCAN_ANON:
2197 				/* Scan one type exclusively */
2198 				if ((scan_balance == SCAN_FILE) != file) {
2199 					size = 0;
2200 					scan = 0;
2201 				}
2202 				break;
2203 			default:
2204 				/* Look ma, no brain */
2205 				BUG();
2206 			}
2207 
2208 			*lru_pages += size;
2209 			nr[lru] = scan;
2210 
2211 			/*
2212 			 * Skip the second pass and don't force_scan,
2213 			 * if we found something to scan.
2214 			 */
2215 			some_scanned |= !!scan;
2216 		}
2217 	}
2218 }
2219 
2220 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2221 static void init_tlb_ubc(void)
2222 {
2223 	/*
2224 	 * This deliberately does not clear the cpumask as it's expensive
2225 	 * and unnecessary. If there happens to be data in there then the
2226 	 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2227 	 * then will be cleared.
2228 	 */
2229 	current->tlb_ubc.flush_required = false;
2230 }
2231 #else
2232 static inline void init_tlb_ubc(void)
2233 {
2234 }
2235 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2236 
2237 /*
2238  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2239  */
2240 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2241 			      struct scan_control *sc, unsigned long *lru_pages)
2242 {
2243 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2244 	unsigned long nr[NR_LRU_LISTS];
2245 	unsigned long targets[NR_LRU_LISTS];
2246 	unsigned long nr_to_scan;
2247 	enum lru_list lru;
2248 	unsigned long nr_reclaimed = 0;
2249 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2250 	struct blk_plug plug;
2251 	bool scan_adjusted;
2252 
2253 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2254 
2255 	/* Record the original scan target for proportional adjustments later */
2256 	memcpy(targets, nr, sizeof(nr));
2257 
2258 	/*
2259 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2260 	 * event that can occur when there is little memory pressure e.g.
2261 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2262 	 * when the requested number of pages are reclaimed when scanning at
2263 	 * DEF_PRIORITY on the assumption that the fact we are direct
2264 	 * reclaiming implies that kswapd is not keeping up and it is best to
2265 	 * do a batch of work at once. For memcg reclaim one check is made to
2266 	 * abort proportional reclaim if either the file or anon lru has already
2267 	 * dropped to zero at the first pass.
2268 	 */
2269 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2270 			 sc->priority == DEF_PRIORITY);
2271 
2272 	init_tlb_ubc();
2273 
2274 	blk_start_plug(&plug);
2275 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2276 					nr[LRU_INACTIVE_FILE]) {
2277 		unsigned long nr_anon, nr_file, percentage;
2278 		unsigned long nr_scanned;
2279 
2280 		for_each_evictable_lru(lru) {
2281 			if (nr[lru]) {
2282 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2283 				nr[lru] -= nr_to_scan;
2284 
2285 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2286 							    lruvec, sc);
2287 			}
2288 		}
2289 
2290 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2291 			continue;
2292 
2293 		/*
2294 		 * For kswapd and memcg, reclaim at least the number of pages
2295 		 * requested. Ensure that the anon and file LRUs are scanned
2296 		 * proportionally what was requested by get_scan_count(). We
2297 		 * stop reclaiming one LRU and reduce the amount scanning
2298 		 * proportional to the original scan target.
2299 		 */
2300 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2301 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2302 
2303 		/*
2304 		 * It's just vindictive to attack the larger once the smaller
2305 		 * has gone to zero.  And given the way we stop scanning the
2306 		 * smaller below, this makes sure that we only make one nudge
2307 		 * towards proportionality once we've got nr_to_reclaim.
2308 		 */
2309 		if (!nr_file || !nr_anon)
2310 			break;
2311 
2312 		if (nr_file > nr_anon) {
2313 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2314 						targets[LRU_ACTIVE_ANON] + 1;
2315 			lru = LRU_BASE;
2316 			percentage = nr_anon * 100 / scan_target;
2317 		} else {
2318 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2319 						targets[LRU_ACTIVE_FILE] + 1;
2320 			lru = LRU_FILE;
2321 			percentage = nr_file * 100 / scan_target;
2322 		}
2323 
2324 		/* Stop scanning the smaller of the LRU */
2325 		nr[lru] = 0;
2326 		nr[lru + LRU_ACTIVE] = 0;
2327 
2328 		/*
2329 		 * Recalculate the other LRU scan count based on its original
2330 		 * scan target and the percentage scanning already complete
2331 		 */
2332 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2333 		nr_scanned = targets[lru] - nr[lru];
2334 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2335 		nr[lru] -= min(nr[lru], nr_scanned);
2336 
2337 		lru += LRU_ACTIVE;
2338 		nr_scanned = targets[lru] - nr[lru];
2339 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2340 		nr[lru] -= min(nr[lru], nr_scanned);
2341 
2342 		scan_adjusted = true;
2343 	}
2344 	blk_finish_plug(&plug);
2345 	sc->nr_reclaimed += nr_reclaimed;
2346 
2347 	/*
2348 	 * Even if we did not try to evict anon pages at all, we want to
2349 	 * rebalance the anon lru active/inactive ratio.
2350 	 */
2351 	if (inactive_list_is_low(lruvec, false))
2352 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2353 				   sc, LRU_ACTIVE_ANON);
2354 
2355 	throttle_vm_writeout(sc->gfp_mask);
2356 }
2357 
2358 /* Use reclaim/compaction for costly allocs or under memory pressure */
2359 static bool in_reclaim_compaction(struct scan_control *sc)
2360 {
2361 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2362 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2363 			 sc->priority < DEF_PRIORITY - 2))
2364 		return true;
2365 
2366 	return false;
2367 }
2368 
2369 /*
2370  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2371  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2372  * true if more pages should be reclaimed such that when the page allocator
2373  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2374  * It will give up earlier than that if there is difficulty reclaiming pages.
2375  */
2376 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2377 					unsigned long nr_reclaimed,
2378 					unsigned long nr_scanned,
2379 					struct scan_control *sc)
2380 {
2381 	unsigned long pages_for_compaction;
2382 	unsigned long inactive_lru_pages;
2383 	int z;
2384 
2385 	/* If not in reclaim/compaction mode, stop */
2386 	if (!in_reclaim_compaction(sc))
2387 		return false;
2388 
2389 	/* Consider stopping depending on scan and reclaim activity */
2390 	if (sc->gfp_mask & __GFP_REPEAT) {
2391 		/*
2392 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2393 		 * full LRU list has been scanned and we are still failing
2394 		 * to reclaim pages. This full LRU scan is potentially
2395 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2396 		 */
2397 		if (!nr_reclaimed && !nr_scanned)
2398 			return false;
2399 	} else {
2400 		/*
2401 		 * For non-__GFP_REPEAT allocations which can presumably
2402 		 * fail without consequence, stop if we failed to reclaim
2403 		 * any pages from the last SWAP_CLUSTER_MAX number of
2404 		 * pages that were scanned. This will return to the
2405 		 * caller faster at the risk reclaim/compaction and
2406 		 * the resulting allocation attempt fails
2407 		 */
2408 		if (!nr_reclaimed)
2409 			return false;
2410 	}
2411 
2412 	/*
2413 	 * If we have not reclaimed enough pages for compaction and the
2414 	 * inactive lists are large enough, continue reclaiming
2415 	 */
2416 	pages_for_compaction = (2UL << sc->order);
2417 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2418 	if (get_nr_swap_pages() > 0)
2419 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2420 	if (sc->nr_reclaimed < pages_for_compaction &&
2421 			inactive_lru_pages > pages_for_compaction)
2422 		return true;
2423 
2424 	/* If compaction would go ahead or the allocation would succeed, stop */
2425 	for (z = 0; z <= sc->reclaim_idx; z++) {
2426 		struct zone *zone = &pgdat->node_zones[z];
2427 		if (!populated_zone(zone))
2428 			continue;
2429 
2430 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2431 		case COMPACT_PARTIAL:
2432 		case COMPACT_CONTINUE:
2433 			return false;
2434 		default:
2435 			/* check next zone */
2436 			;
2437 		}
2438 	}
2439 	return true;
2440 }
2441 
2442 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2443 {
2444 	struct reclaim_state *reclaim_state = current->reclaim_state;
2445 	unsigned long nr_reclaimed, nr_scanned;
2446 	bool reclaimable = false;
2447 
2448 	do {
2449 		struct mem_cgroup *root = sc->target_mem_cgroup;
2450 		struct mem_cgroup_reclaim_cookie reclaim = {
2451 			.pgdat = pgdat,
2452 			.priority = sc->priority,
2453 		};
2454 		unsigned long node_lru_pages = 0;
2455 		struct mem_cgroup *memcg;
2456 
2457 		nr_reclaimed = sc->nr_reclaimed;
2458 		nr_scanned = sc->nr_scanned;
2459 
2460 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2461 		do {
2462 			unsigned long lru_pages;
2463 			unsigned long reclaimed;
2464 			unsigned long scanned;
2465 
2466 			if (mem_cgroup_low(root, memcg)) {
2467 				if (!sc->may_thrash)
2468 					continue;
2469 				mem_cgroup_events(memcg, MEMCG_LOW, 1);
2470 			}
2471 
2472 			reclaimed = sc->nr_reclaimed;
2473 			scanned = sc->nr_scanned;
2474 
2475 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2476 			node_lru_pages += lru_pages;
2477 
2478 			if (!global_reclaim(sc))
2479 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2480 					    memcg, sc->nr_scanned - scanned,
2481 					    lru_pages);
2482 
2483 			/* Record the group's reclaim efficiency */
2484 			vmpressure(sc->gfp_mask, memcg, false,
2485 				   sc->nr_scanned - scanned,
2486 				   sc->nr_reclaimed - reclaimed);
2487 
2488 			/*
2489 			 * Direct reclaim and kswapd have to scan all memory
2490 			 * cgroups to fulfill the overall scan target for the
2491 			 * node.
2492 			 *
2493 			 * Limit reclaim, on the other hand, only cares about
2494 			 * nr_to_reclaim pages to be reclaimed and it will
2495 			 * retry with decreasing priority if one round over the
2496 			 * whole hierarchy is not sufficient.
2497 			 */
2498 			if (!global_reclaim(sc) &&
2499 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2500 				mem_cgroup_iter_break(root, memcg);
2501 				break;
2502 			}
2503 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2504 
2505 		/*
2506 		 * Shrink the slab caches in the same proportion that
2507 		 * the eligible LRU pages were scanned.
2508 		 */
2509 		if (global_reclaim(sc))
2510 			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2511 				    sc->nr_scanned - nr_scanned,
2512 				    node_lru_pages);
2513 
2514 		if (reclaim_state) {
2515 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2516 			reclaim_state->reclaimed_slab = 0;
2517 		}
2518 
2519 		/* Record the subtree's reclaim efficiency */
2520 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2521 			   sc->nr_scanned - nr_scanned,
2522 			   sc->nr_reclaimed - nr_reclaimed);
2523 
2524 		if (sc->nr_reclaimed - nr_reclaimed)
2525 			reclaimable = true;
2526 
2527 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2528 					 sc->nr_scanned - nr_scanned, sc));
2529 
2530 	return reclaimable;
2531 }
2532 
2533 /*
2534  * Returns true if compaction should go ahead for a high-order request, or
2535  * the high-order allocation would succeed without compaction.
2536  */
2537 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2538 {
2539 	unsigned long watermark;
2540 	bool watermark_ok;
2541 
2542 	/*
2543 	 * Compaction takes time to run and there are potentially other
2544 	 * callers using the pages just freed. Continue reclaiming until
2545 	 * there is a buffer of free pages available to give compaction
2546 	 * a reasonable chance of completing and allocating the page
2547 	 */
2548 	watermark = high_wmark_pages(zone) + (2UL << sc->order);
2549 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2550 
2551 	/*
2552 	 * If compaction is deferred, reclaim up to a point where
2553 	 * compaction will have a chance of success when re-enabled
2554 	 */
2555 	if (compaction_deferred(zone, sc->order))
2556 		return watermark_ok;
2557 
2558 	/*
2559 	 * If compaction is not ready to start and allocation is not likely
2560 	 * to succeed without it, then keep reclaiming.
2561 	 */
2562 	if (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx) == COMPACT_SKIPPED)
2563 		return false;
2564 
2565 	return watermark_ok;
2566 }
2567 
2568 /*
2569  * This is the direct reclaim path, for page-allocating processes.  We only
2570  * try to reclaim pages from zones which will satisfy the caller's allocation
2571  * request.
2572  *
2573  * If a zone is deemed to be full of pinned pages then just give it a light
2574  * scan then give up on it.
2575  */
2576 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2577 {
2578 	struct zoneref *z;
2579 	struct zone *zone;
2580 	unsigned long nr_soft_reclaimed;
2581 	unsigned long nr_soft_scanned;
2582 	gfp_t orig_mask;
2583 	pg_data_t *last_pgdat = NULL;
2584 
2585 	/*
2586 	 * If the number of buffer_heads in the machine exceeds the maximum
2587 	 * allowed level, force direct reclaim to scan the highmem zone as
2588 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2589 	 */
2590 	orig_mask = sc->gfp_mask;
2591 	if (buffer_heads_over_limit) {
2592 		sc->gfp_mask |= __GFP_HIGHMEM;
2593 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2594 	}
2595 
2596 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2597 					sc->reclaim_idx, sc->nodemask) {
2598 		if (!populated_zone(zone))
2599 			continue;
2600 
2601 		/*
2602 		 * Take care memory controller reclaiming has small influence
2603 		 * to global LRU.
2604 		 */
2605 		if (global_reclaim(sc)) {
2606 			if (!cpuset_zone_allowed(zone,
2607 						 GFP_KERNEL | __GFP_HARDWALL))
2608 				continue;
2609 
2610 			if (sc->priority != DEF_PRIORITY &&
2611 			    !pgdat_reclaimable(zone->zone_pgdat))
2612 				continue;	/* Let kswapd poll it */
2613 
2614 			/*
2615 			 * If we already have plenty of memory free for
2616 			 * compaction in this zone, don't free any more.
2617 			 * Even though compaction is invoked for any
2618 			 * non-zero order, only frequent costly order
2619 			 * reclamation is disruptive enough to become a
2620 			 * noticeable problem, like transparent huge
2621 			 * page allocations.
2622 			 */
2623 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2624 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2625 			    compaction_ready(zone, sc)) {
2626 				sc->compaction_ready = true;
2627 				continue;
2628 			}
2629 
2630 			/*
2631 			 * Shrink each node in the zonelist once. If the
2632 			 * zonelist is ordered by zone (not the default) then a
2633 			 * node may be shrunk multiple times but in that case
2634 			 * the user prefers lower zones being preserved.
2635 			 */
2636 			if (zone->zone_pgdat == last_pgdat)
2637 				continue;
2638 
2639 			/*
2640 			 * This steals pages from memory cgroups over softlimit
2641 			 * and returns the number of reclaimed pages and
2642 			 * scanned pages. This works for global memory pressure
2643 			 * and balancing, not for a memcg's limit.
2644 			 */
2645 			nr_soft_scanned = 0;
2646 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2647 						sc->order, sc->gfp_mask,
2648 						&nr_soft_scanned);
2649 			sc->nr_reclaimed += nr_soft_reclaimed;
2650 			sc->nr_scanned += nr_soft_scanned;
2651 			/* need some check for avoid more shrink_zone() */
2652 		}
2653 
2654 		/* See comment about same check for global reclaim above */
2655 		if (zone->zone_pgdat == last_pgdat)
2656 			continue;
2657 		last_pgdat = zone->zone_pgdat;
2658 		shrink_node(zone->zone_pgdat, sc);
2659 	}
2660 
2661 	/*
2662 	 * Restore to original mask to avoid the impact on the caller if we
2663 	 * promoted it to __GFP_HIGHMEM.
2664 	 */
2665 	sc->gfp_mask = orig_mask;
2666 }
2667 
2668 /*
2669  * This is the main entry point to direct page reclaim.
2670  *
2671  * If a full scan of the inactive list fails to free enough memory then we
2672  * are "out of memory" and something needs to be killed.
2673  *
2674  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2675  * high - the zone may be full of dirty or under-writeback pages, which this
2676  * caller can't do much about.  We kick the writeback threads and take explicit
2677  * naps in the hope that some of these pages can be written.  But if the
2678  * allocating task holds filesystem locks which prevent writeout this might not
2679  * work, and the allocation attempt will fail.
2680  *
2681  * returns:	0, if no pages reclaimed
2682  * 		else, the number of pages reclaimed
2683  */
2684 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2685 					  struct scan_control *sc)
2686 {
2687 	int initial_priority = sc->priority;
2688 	unsigned long total_scanned = 0;
2689 	unsigned long writeback_threshold;
2690 retry:
2691 	delayacct_freepages_start();
2692 
2693 	if (global_reclaim(sc))
2694 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2695 
2696 	do {
2697 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2698 				sc->priority);
2699 		sc->nr_scanned = 0;
2700 		shrink_zones(zonelist, sc);
2701 
2702 		total_scanned += sc->nr_scanned;
2703 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2704 			break;
2705 
2706 		if (sc->compaction_ready)
2707 			break;
2708 
2709 		/*
2710 		 * If we're getting trouble reclaiming, start doing
2711 		 * writepage even in laptop mode.
2712 		 */
2713 		if (sc->priority < DEF_PRIORITY - 2)
2714 			sc->may_writepage = 1;
2715 
2716 		/*
2717 		 * Try to write back as many pages as we just scanned.  This
2718 		 * tends to cause slow streaming writers to write data to the
2719 		 * disk smoothly, at the dirtying rate, which is nice.   But
2720 		 * that's undesirable in laptop mode, where we *want* lumpy
2721 		 * writeout.  So in laptop mode, write out the whole world.
2722 		 */
2723 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2724 		if (total_scanned > writeback_threshold) {
2725 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2726 						WB_REASON_TRY_TO_FREE_PAGES);
2727 			sc->may_writepage = 1;
2728 		}
2729 	} while (--sc->priority >= 0);
2730 
2731 	delayacct_freepages_end();
2732 
2733 	if (sc->nr_reclaimed)
2734 		return sc->nr_reclaimed;
2735 
2736 	/* Aborted reclaim to try compaction? don't OOM, then */
2737 	if (sc->compaction_ready)
2738 		return 1;
2739 
2740 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2741 	if (!sc->may_thrash) {
2742 		sc->priority = initial_priority;
2743 		sc->may_thrash = 1;
2744 		goto retry;
2745 	}
2746 
2747 	return 0;
2748 }
2749 
2750 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2751 {
2752 	struct zone *zone;
2753 	unsigned long pfmemalloc_reserve = 0;
2754 	unsigned long free_pages = 0;
2755 	int i;
2756 	bool wmark_ok;
2757 
2758 	for (i = 0; i <= ZONE_NORMAL; i++) {
2759 		zone = &pgdat->node_zones[i];
2760 		if (!populated_zone(zone) ||
2761 		    pgdat_reclaimable_pages(pgdat) == 0)
2762 			continue;
2763 
2764 		pfmemalloc_reserve += min_wmark_pages(zone);
2765 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2766 	}
2767 
2768 	/* If there are no reserves (unexpected config) then do not throttle */
2769 	if (!pfmemalloc_reserve)
2770 		return true;
2771 
2772 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2773 
2774 	/* kswapd must be awake if processes are being throttled */
2775 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2776 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2777 						(enum zone_type)ZONE_NORMAL);
2778 		wake_up_interruptible(&pgdat->kswapd_wait);
2779 	}
2780 
2781 	return wmark_ok;
2782 }
2783 
2784 /*
2785  * Throttle direct reclaimers if backing storage is backed by the network
2786  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2787  * depleted. kswapd will continue to make progress and wake the processes
2788  * when the low watermark is reached.
2789  *
2790  * Returns true if a fatal signal was delivered during throttling. If this
2791  * happens, the page allocator should not consider triggering the OOM killer.
2792  */
2793 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2794 					nodemask_t *nodemask)
2795 {
2796 	struct zoneref *z;
2797 	struct zone *zone;
2798 	pg_data_t *pgdat = NULL;
2799 
2800 	/*
2801 	 * Kernel threads should not be throttled as they may be indirectly
2802 	 * responsible for cleaning pages necessary for reclaim to make forward
2803 	 * progress. kjournald for example may enter direct reclaim while
2804 	 * committing a transaction where throttling it could forcing other
2805 	 * processes to block on log_wait_commit().
2806 	 */
2807 	if (current->flags & PF_KTHREAD)
2808 		goto out;
2809 
2810 	/*
2811 	 * If a fatal signal is pending, this process should not throttle.
2812 	 * It should return quickly so it can exit and free its memory
2813 	 */
2814 	if (fatal_signal_pending(current))
2815 		goto out;
2816 
2817 	/*
2818 	 * Check if the pfmemalloc reserves are ok by finding the first node
2819 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2820 	 * GFP_KERNEL will be required for allocating network buffers when
2821 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2822 	 *
2823 	 * Throttling is based on the first usable node and throttled processes
2824 	 * wait on a queue until kswapd makes progress and wakes them. There
2825 	 * is an affinity then between processes waking up and where reclaim
2826 	 * progress has been made assuming the process wakes on the same node.
2827 	 * More importantly, processes running on remote nodes will not compete
2828 	 * for remote pfmemalloc reserves and processes on different nodes
2829 	 * should make reasonable progress.
2830 	 */
2831 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2832 					gfp_zone(gfp_mask), nodemask) {
2833 		if (zone_idx(zone) > ZONE_NORMAL)
2834 			continue;
2835 
2836 		/* Throttle based on the first usable node */
2837 		pgdat = zone->zone_pgdat;
2838 		if (pfmemalloc_watermark_ok(pgdat))
2839 			goto out;
2840 		break;
2841 	}
2842 
2843 	/* If no zone was usable by the allocation flags then do not throttle */
2844 	if (!pgdat)
2845 		goto out;
2846 
2847 	/* Account for the throttling */
2848 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2849 
2850 	/*
2851 	 * If the caller cannot enter the filesystem, it's possible that it
2852 	 * is due to the caller holding an FS lock or performing a journal
2853 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2854 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2855 	 * blocked waiting on the same lock. Instead, throttle for up to a
2856 	 * second before continuing.
2857 	 */
2858 	if (!(gfp_mask & __GFP_FS)) {
2859 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2860 			pfmemalloc_watermark_ok(pgdat), HZ);
2861 
2862 		goto check_pending;
2863 	}
2864 
2865 	/* Throttle until kswapd wakes the process */
2866 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2867 		pfmemalloc_watermark_ok(pgdat));
2868 
2869 check_pending:
2870 	if (fatal_signal_pending(current))
2871 		return true;
2872 
2873 out:
2874 	return false;
2875 }
2876 
2877 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2878 				gfp_t gfp_mask, nodemask_t *nodemask)
2879 {
2880 	unsigned long nr_reclaimed;
2881 	struct scan_control sc = {
2882 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2883 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2884 		.reclaim_idx = gfp_zone(gfp_mask),
2885 		.order = order,
2886 		.nodemask = nodemask,
2887 		.priority = DEF_PRIORITY,
2888 		.may_writepage = !laptop_mode,
2889 		.may_unmap = 1,
2890 		.may_swap = 1,
2891 	};
2892 
2893 	/*
2894 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2895 	 * 1 is returned so that the page allocator does not OOM kill at this
2896 	 * point.
2897 	 */
2898 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2899 		return 1;
2900 
2901 	trace_mm_vmscan_direct_reclaim_begin(order,
2902 				sc.may_writepage,
2903 				gfp_mask,
2904 				sc.reclaim_idx);
2905 
2906 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2907 
2908 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2909 
2910 	return nr_reclaimed;
2911 }
2912 
2913 #ifdef CONFIG_MEMCG
2914 
2915 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2916 						gfp_t gfp_mask, bool noswap,
2917 						pg_data_t *pgdat,
2918 						unsigned long *nr_scanned)
2919 {
2920 	struct scan_control sc = {
2921 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2922 		.target_mem_cgroup = memcg,
2923 		.may_writepage = !laptop_mode,
2924 		.may_unmap = 1,
2925 		.reclaim_idx = MAX_NR_ZONES - 1,
2926 		.may_swap = !noswap,
2927 	};
2928 	unsigned long lru_pages;
2929 
2930 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2931 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2932 
2933 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2934 						      sc.may_writepage,
2935 						      sc.gfp_mask,
2936 						      sc.reclaim_idx);
2937 
2938 	/*
2939 	 * NOTE: Although we can get the priority field, using it
2940 	 * here is not a good idea, since it limits the pages we can scan.
2941 	 * if we don't reclaim here, the shrink_node from balance_pgdat
2942 	 * will pick up pages from other mem cgroup's as well. We hack
2943 	 * the priority and make it zero.
2944 	 */
2945 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
2946 
2947 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2948 
2949 	*nr_scanned = sc.nr_scanned;
2950 	return sc.nr_reclaimed;
2951 }
2952 
2953 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2954 					   unsigned long nr_pages,
2955 					   gfp_t gfp_mask,
2956 					   bool may_swap)
2957 {
2958 	struct zonelist *zonelist;
2959 	unsigned long nr_reclaimed;
2960 	int nid;
2961 	struct scan_control sc = {
2962 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2963 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2964 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2965 		.reclaim_idx = MAX_NR_ZONES - 1,
2966 		.target_mem_cgroup = memcg,
2967 		.priority = DEF_PRIORITY,
2968 		.may_writepage = !laptop_mode,
2969 		.may_unmap = 1,
2970 		.may_swap = may_swap,
2971 	};
2972 
2973 	/*
2974 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2975 	 * take care of from where we get pages. So the node where we start the
2976 	 * scan does not need to be the current node.
2977 	 */
2978 	nid = mem_cgroup_select_victim_node(memcg);
2979 
2980 	zonelist = NODE_DATA(nid)->node_zonelists;
2981 
2982 	trace_mm_vmscan_memcg_reclaim_begin(0,
2983 					    sc.may_writepage,
2984 					    sc.gfp_mask,
2985 					    sc.reclaim_idx);
2986 
2987 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2988 
2989 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2990 
2991 	return nr_reclaimed;
2992 }
2993 #endif
2994 
2995 static void age_active_anon(struct pglist_data *pgdat,
2996 				struct scan_control *sc)
2997 {
2998 	struct mem_cgroup *memcg;
2999 
3000 	if (!total_swap_pages)
3001 		return;
3002 
3003 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3004 	do {
3005 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3006 
3007 		if (inactive_list_is_low(lruvec, false))
3008 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3009 					   sc, LRU_ACTIVE_ANON);
3010 
3011 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3012 	} while (memcg);
3013 }
3014 
3015 static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3016 {
3017 	unsigned long mark = high_wmark_pages(zone);
3018 
3019 	if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3020 		return false;
3021 
3022 	/*
3023 	 * If any eligible zone is balanced then the node is not considered
3024 	 * to be congested or dirty
3025 	 */
3026 	clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3027 	clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3028 
3029 	return true;
3030 }
3031 
3032 /*
3033  * Prepare kswapd for sleeping. This verifies that there are no processes
3034  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3035  *
3036  * Returns true if kswapd is ready to sleep
3037  */
3038 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3039 {
3040 	int i;
3041 
3042 	/*
3043 	 * The throttled processes are normally woken up in balance_pgdat() as
3044 	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3045 	 * race between when kswapd checks the watermarks and a process gets
3046 	 * throttled. There is also a potential race if processes get
3047 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3048 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3049 	 * the wake up checks. If kswapd is going to sleep, no process should
3050 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3051 	 * the wake up is premature, processes will wake kswapd and get
3052 	 * throttled again. The difference from wake ups in balance_pgdat() is
3053 	 * that here we are under prepare_to_wait().
3054 	 */
3055 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3056 		wake_up_all(&pgdat->pfmemalloc_wait);
3057 
3058 	for (i = 0; i <= classzone_idx; i++) {
3059 		struct zone *zone = pgdat->node_zones + i;
3060 
3061 		if (!populated_zone(zone))
3062 			continue;
3063 
3064 		if (!zone_balanced(zone, order, classzone_idx))
3065 			return false;
3066 	}
3067 
3068 	return true;
3069 }
3070 
3071 /*
3072  * kswapd shrinks a node of pages that are at or below the highest usable
3073  * zone that is currently unbalanced.
3074  *
3075  * Returns true if kswapd scanned at least the requested number of pages to
3076  * reclaim or if the lack of progress was due to pages under writeback.
3077  * This is used to determine if the scanning priority needs to be raised.
3078  */
3079 static bool kswapd_shrink_node(pg_data_t *pgdat,
3080 			       struct scan_control *sc)
3081 {
3082 	struct zone *zone;
3083 	int z;
3084 
3085 	/* Reclaim a number of pages proportional to the number of zones */
3086 	sc->nr_to_reclaim = 0;
3087 	for (z = 0; z <= sc->reclaim_idx; z++) {
3088 		zone = pgdat->node_zones + z;
3089 		if (!populated_zone(zone))
3090 			continue;
3091 
3092 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3093 	}
3094 
3095 	/*
3096 	 * Historically care was taken to put equal pressure on all zones but
3097 	 * now pressure is applied based on node LRU order.
3098 	 */
3099 	shrink_node(pgdat, sc);
3100 
3101 	/*
3102 	 * Fragmentation may mean that the system cannot be rebalanced for
3103 	 * high-order allocations. If twice the allocation size has been
3104 	 * reclaimed then recheck watermarks only at order-0 to prevent
3105 	 * excessive reclaim. Assume that a process requested a high-order
3106 	 * can direct reclaim/compact.
3107 	 */
3108 	if (sc->order && sc->nr_reclaimed >= 2UL << sc->order)
3109 		sc->order = 0;
3110 
3111 	return sc->nr_scanned >= sc->nr_to_reclaim;
3112 }
3113 
3114 /*
3115  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3116  * that are eligible for use by the caller until at least one zone is
3117  * balanced.
3118  *
3119  * Returns the order kswapd finished reclaiming at.
3120  *
3121  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3122  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3123  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3124  * or lower is eligible for reclaim until at least one usable zone is
3125  * balanced.
3126  */
3127 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3128 {
3129 	int i;
3130 	unsigned long nr_soft_reclaimed;
3131 	unsigned long nr_soft_scanned;
3132 	struct zone *zone;
3133 	struct scan_control sc = {
3134 		.gfp_mask = GFP_KERNEL,
3135 		.order = order,
3136 		.priority = DEF_PRIORITY,
3137 		.may_writepage = !laptop_mode,
3138 		.may_unmap = 1,
3139 		.may_swap = 1,
3140 	};
3141 	count_vm_event(PAGEOUTRUN);
3142 
3143 	do {
3144 		bool raise_priority = true;
3145 
3146 		sc.nr_reclaimed = 0;
3147 		sc.reclaim_idx = classzone_idx;
3148 
3149 		/*
3150 		 * If the number of buffer_heads exceeds the maximum allowed
3151 		 * then consider reclaiming from all zones. This has a dual
3152 		 * purpose -- on 64-bit systems it is expected that
3153 		 * buffer_heads are stripped during active rotation. On 32-bit
3154 		 * systems, highmem pages can pin lowmem memory and shrinking
3155 		 * buffers can relieve lowmem pressure. Reclaim may still not
3156 		 * go ahead if all eligible zones for the original allocation
3157 		 * request are balanced to avoid excessive reclaim from kswapd.
3158 		 */
3159 		if (buffer_heads_over_limit) {
3160 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3161 				zone = pgdat->node_zones + i;
3162 				if (!populated_zone(zone))
3163 					continue;
3164 
3165 				sc.reclaim_idx = i;
3166 				break;
3167 			}
3168 		}
3169 
3170 		/*
3171 		 * Only reclaim if there are no eligible zones. Check from
3172 		 * high to low zone as allocations prefer higher zones.
3173 		 * Scanning from low to high zone would allow congestion to be
3174 		 * cleared during a very small window when a small low
3175 		 * zone was balanced even under extreme pressure when the
3176 		 * overall node may be congested. Note that sc.reclaim_idx
3177 		 * is not used as buffer_heads_over_limit may have adjusted
3178 		 * it.
3179 		 */
3180 		for (i = classzone_idx; i >= 0; i--) {
3181 			zone = pgdat->node_zones + i;
3182 			if (!populated_zone(zone))
3183 				continue;
3184 
3185 			if (zone_balanced(zone, sc.order, classzone_idx))
3186 				goto out;
3187 		}
3188 
3189 		/*
3190 		 * Do some background aging of the anon list, to give
3191 		 * pages a chance to be referenced before reclaiming. All
3192 		 * pages are rotated regardless of classzone as this is
3193 		 * about consistent aging.
3194 		 */
3195 		age_active_anon(pgdat, &sc);
3196 
3197 		/*
3198 		 * If we're getting trouble reclaiming, start doing writepage
3199 		 * even in laptop mode.
3200 		 */
3201 		if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3202 			sc.may_writepage = 1;
3203 
3204 		/* Call soft limit reclaim before calling shrink_node. */
3205 		sc.nr_scanned = 0;
3206 		nr_soft_scanned = 0;
3207 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3208 						sc.gfp_mask, &nr_soft_scanned);
3209 		sc.nr_reclaimed += nr_soft_reclaimed;
3210 
3211 		/*
3212 		 * There should be no need to raise the scanning priority if
3213 		 * enough pages are already being scanned that that high
3214 		 * watermark would be met at 100% efficiency.
3215 		 */
3216 		if (kswapd_shrink_node(pgdat, &sc))
3217 			raise_priority = false;
3218 
3219 		/*
3220 		 * If the low watermark is met there is no need for processes
3221 		 * to be throttled on pfmemalloc_wait as they should not be
3222 		 * able to safely make forward progress. Wake them
3223 		 */
3224 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3225 				pfmemalloc_watermark_ok(pgdat))
3226 			wake_up_all(&pgdat->pfmemalloc_wait);
3227 
3228 		/* Check if kswapd should be suspending */
3229 		if (try_to_freeze() || kthread_should_stop())
3230 			break;
3231 
3232 		/*
3233 		 * Raise priority if scanning rate is too low or there was no
3234 		 * progress in reclaiming pages
3235 		 */
3236 		if (raise_priority || !sc.nr_reclaimed)
3237 			sc.priority--;
3238 	} while (sc.priority >= 1);
3239 
3240 out:
3241 	/*
3242 	 * Return the order kswapd stopped reclaiming at as
3243 	 * prepare_kswapd_sleep() takes it into account. If another caller
3244 	 * entered the allocator slow path while kswapd was awake, order will
3245 	 * remain at the higher level.
3246 	 */
3247 	return sc.order;
3248 }
3249 
3250 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3251 				unsigned int classzone_idx)
3252 {
3253 	long remaining = 0;
3254 	DEFINE_WAIT(wait);
3255 
3256 	if (freezing(current) || kthread_should_stop())
3257 		return;
3258 
3259 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3260 
3261 	/* Try to sleep for a short interval */
3262 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3263 		/*
3264 		 * Compaction records what page blocks it recently failed to
3265 		 * isolate pages from and skips them in the future scanning.
3266 		 * When kswapd is going to sleep, it is reasonable to assume
3267 		 * that pages and compaction may succeed so reset the cache.
3268 		 */
3269 		reset_isolation_suitable(pgdat);
3270 
3271 		/*
3272 		 * We have freed the memory, now we should compact it to make
3273 		 * allocation of the requested order possible.
3274 		 */
3275 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3276 
3277 		remaining = schedule_timeout(HZ/10);
3278 
3279 		/*
3280 		 * If woken prematurely then reset kswapd_classzone_idx and
3281 		 * order. The values will either be from a wakeup request or
3282 		 * the previous request that slept prematurely.
3283 		 */
3284 		if (remaining) {
3285 			pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3286 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3287 		}
3288 
3289 		finish_wait(&pgdat->kswapd_wait, &wait);
3290 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3291 	}
3292 
3293 	/*
3294 	 * After a short sleep, check if it was a premature sleep. If not, then
3295 	 * go fully to sleep until explicitly woken up.
3296 	 */
3297 	if (!remaining &&
3298 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3299 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3300 
3301 		/*
3302 		 * vmstat counters are not perfectly accurate and the estimated
3303 		 * value for counters such as NR_FREE_PAGES can deviate from the
3304 		 * true value by nr_online_cpus * threshold. To avoid the zone
3305 		 * watermarks being breached while under pressure, we reduce the
3306 		 * per-cpu vmstat threshold while kswapd is awake and restore
3307 		 * them before going back to sleep.
3308 		 */
3309 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3310 
3311 		if (!kthread_should_stop())
3312 			schedule();
3313 
3314 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3315 	} else {
3316 		if (remaining)
3317 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3318 		else
3319 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3320 	}
3321 	finish_wait(&pgdat->kswapd_wait, &wait);
3322 }
3323 
3324 /*
3325  * The background pageout daemon, started as a kernel thread
3326  * from the init process.
3327  *
3328  * This basically trickles out pages so that we have _some_
3329  * free memory available even if there is no other activity
3330  * that frees anything up. This is needed for things like routing
3331  * etc, where we otherwise might have all activity going on in
3332  * asynchronous contexts that cannot page things out.
3333  *
3334  * If there are applications that are active memory-allocators
3335  * (most normal use), this basically shouldn't matter.
3336  */
3337 static int kswapd(void *p)
3338 {
3339 	unsigned int alloc_order, reclaim_order, classzone_idx;
3340 	pg_data_t *pgdat = (pg_data_t*)p;
3341 	struct task_struct *tsk = current;
3342 
3343 	struct reclaim_state reclaim_state = {
3344 		.reclaimed_slab = 0,
3345 	};
3346 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3347 
3348 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3349 
3350 	if (!cpumask_empty(cpumask))
3351 		set_cpus_allowed_ptr(tsk, cpumask);
3352 	current->reclaim_state = &reclaim_state;
3353 
3354 	/*
3355 	 * Tell the memory management that we're a "memory allocator",
3356 	 * and that if we need more memory we should get access to it
3357 	 * regardless (see "__alloc_pages()"). "kswapd" should
3358 	 * never get caught in the normal page freeing logic.
3359 	 *
3360 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3361 	 * you need a small amount of memory in order to be able to
3362 	 * page out something else, and this flag essentially protects
3363 	 * us from recursively trying to free more memory as we're
3364 	 * trying to free the first piece of memory in the first place).
3365 	 */
3366 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3367 	set_freezable();
3368 
3369 	pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3370 	pgdat->kswapd_classzone_idx = classzone_idx = 0;
3371 	for ( ; ; ) {
3372 		bool ret;
3373 
3374 kswapd_try_sleep:
3375 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3376 					classzone_idx);
3377 
3378 		/* Read the new order and classzone_idx */
3379 		alloc_order = reclaim_order = pgdat->kswapd_order;
3380 		classzone_idx = pgdat->kswapd_classzone_idx;
3381 		pgdat->kswapd_order = 0;
3382 		pgdat->kswapd_classzone_idx = 0;
3383 
3384 		ret = try_to_freeze();
3385 		if (kthread_should_stop())
3386 			break;
3387 
3388 		/*
3389 		 * We can speed up thawing tasks if we don't call balance_pgdat
3390 		 * after returning from the refrigerator
3391 		 */
3392 		if (ret)
3393 			continue;
3394 
3395 		/*
3396 		 * Reclaim begins at the requested order but if a high-order
3397 		 * reclaim fails then kswapd falls back to reclaiming for
3398 		 * order-0. If that happens, kswapd will consider sleeping
3399 		 * for the order it finished reclaiming at (reclaim_order)
3400 		 * but kcompactd is woken to compact for the original
3401 		 * request (alloc_order).
3402 		 */
3403 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3404 						alloc_order);
3405 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3406 		if (reclaim_order < alloc_order)
3407 			goto kswapd_try_sleep;
3408 
3409 		alloc_order = reclaim_order = pgdat->kswapd_order;
3410 		classzone_idx = pgdat->kswapd_classzone_idx;
3411 	}
3412 
3413 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3414 	current->reclaim_state = NULL;
3415 	lockdep_clear_current_reclaim_state();
3416 
3417 	return 0;
3418 }
3419 
3420 /*
3421  * A zone is low on free memory, so wake its kswapd task to service it.
3422  */
3423 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3424 {
3425 	pg_data_t *pgdat;
3426 	int z;
3427 
3428 	if (!populated_zone(zone))
3429 		return;
3430 
3431 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3432 		return;
3433 	pgdat = zone->zone_pgdat;
3434 	pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3435 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3436 	if (!waitqueue_active(&pgdat->kswapd_wait))
3437 		return;
3438 
3439 	/* Only wake kswapd if all zones are unbalanced */
3440 	for (z = 0; z <= classzone_idx; z++) {
3441 		zone = pgdat->node_zones + z;
3442 		if (!populated_zone(zone))
3443 			continue;
3444 
3445 		if (zone_balanced(zone, order, classzone_idx))
3446 			return;
3447 	}
3448 
3449 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3450 	wake_up_interruptible(&pgdat->kswapd_wait);
3451 }
3452 
3453 #ifdef CONFIG_HIBERNATION
3454 /*
3455  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3456  * freed pages.
3457  *
3458  * Rather than trying to age LRUs the aim is to preserve the overall
3459  * LRU order by reclaiming preferentially
3460  * inactive > active > active referenced > active mapped
3461  */
3462 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3463 {
3464 	struct reclaim_state reclaim_state;
3465 	struct scan_control sc = {
3466 		.nr_to_reclaim = nr_to_reclaim,
3467 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3468 		.reclaim_idx = MAX_NR_ZONES - 1,
3469 		.priority = DEF_PRIORITY,
3470 		.may_writepage = 1,
3471 		.may_unmap = 1,
3472 		.may_swap = 1,
3473 		.hibernation_mode = 1,
3474 	};
3475 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3476 	struct task_struct *p = current;
3477 	unsigned long nr_reclaimed;
3478 
3479 	p->flags |= PF_MEMALLOC;
3480 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3481 	reclaim_state.reclaimed_slab = 0;
3482 	p->reclaim_state = &reclaim_state;
3483 
3484 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3485 
3486 	p->reclaim_state = NULL;
3487 	lockdep_clear_current_reclaim_state();
3488 	p->flags &= ~PF_MEMALLOC;
3489 
3490 	return nr_reclaimed;
3491 }
3492 #endif /* CONFIG_HIBERNATION */
3493 
3494 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3495    not required for correctness.  So if the last cpu in a node goes
3496    away, we get changed to run anywhere: as the first one comes back,
3497    restore their cpu bindings. */
3498 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3499 			void *hcpu)
3500 {
3501 	int nid;
3502 
3503 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3504 		for_each_node_state(nid, N_MEMORY) {
3505 			pg_data_t *pgdat = NODE_DATA(nid);
3506 			const struct cpumask *mask;
3507 
3508 			mask = cpumask_of_node(pgdat->node_id);
3509 
3510 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3511 				/* One of our CPUs online: restore mask */
3512 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3513 		}
3514 	}
3515 	return NOTIFY_OK;
3516 }
3517 
3518 /*
3519  * This kswapd start function will be called by init and node-hot-add.
3520  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3521  */
3522 int kswapd_run(int nid)
3523 {
3524 	pg_data_t *pgdat = NODE_DATA(nid);
3525 	int ret = 0;
3526 
3527 	if (pgdat->kswapd)
3528 		return 0;
3529 
3530 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3531 	if (IS_ERR(pgdat->kswapd)) {
3532 		/* failure at boot is fatal */
3533 		BUG_ON(system_state == SYSTEM_BOOTING);
3534 		pr_err("Failed to start kswapd on node %d\n", nid);
3535 		ret = PTR_ERR(pgdat->kswapd);
3536 		pgdat->kswapd = NULL;
3537 	}
3538 	return ret;
3539 }
3540 
3541 /*
3542  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3543  * hold mem_hotplug_begin/end().
3544  */
3545 void kswapd_stop(int nid)
3546 {
3547 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3548 
3549 	if (kswapd) {
3550 		kthread_stop(kswapd);
3551 		NODE_DATA(nid)->kswapd = NULL;
3552 	}
3553 }
3554 
3555 static int __init kswapd_init(void)
3556 {
3557 	int nid;
3558 
3559 	swap_setup();
3560 	for_each_node_state(nid, N_MEMORY)
3561  		kswapd_run(nid);
3562 	hotcpu_notifier(cpu_callback, 0);
3563 	return 0;
3564 }
3565 
3566 module_init(kswapd_init)
3567 
3568 #ifdef CONFIG_NUMA
3569 /*
3570  * Node reclaim mode
3571  *
3572  * If non-zero call node_reclaim when the number of free pages falls below
3573  * the watermarks.
3574  */
3575 int node_reclaim_mode __read_mostly;
3576 
3577 #define RECLAIM_OFF 0
3578 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3579 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3580 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3581 
3582 /*
3583  * Priority for NODE_RECLAIM. This determines the fraction of pages
3584  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3585  * a zone.
3586  */
3587 #define NODE_RECLAIM_PRIORITY 4
3588 
3589 /*
3590  * Percentage of pages in a zone that must be unmapped for node_reclaim to
3591  * occur.
3592  */
3593 int sysctl_min_unmapped_ratio = 1;
3594 
3595 /*
3596  * If the number of slab pages in a zone grows beyond this percentage then
3597  * slab reclaim needs to occur.
3598  */
3599 int sysctl_min_slab_ratio = 5;
3600 
3601 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3602 {
3603 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3604 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3605 		node_page_state(pgdat, NR_ACTIVE_FILE);
3606 
3607 	/*
3608 	 * It's possible for there to be more file mapped pages than
3609 	 * accounted for by the pages on the file LRU lists because
3610 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3611 	 */
3612 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3613 }
3614 
3615 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3616 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3617 {
3618 	unsigned long nr_pagecache_reclaimable;
3619 	unsigned long delta = 0;
3620 
3621 	/*
3622 	 * If RECLAIM_UNMAP is set, then all file pages are considered
3623 	 * potentially reclaimable. Otherwise, we have to worry about
3624 	 * pages like swapcache and node_unmapped_file_pages() provides
3625 	 * a better estimate
3626 	 */
3627 	if (node_reclaim_mode & RECLAIM_UNMAP)
3628 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3629 	else
3630 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3631 
3632 	/* If we can't clean pages, remove dirty pages from consideration */
3633 	if (!(node_reclaim_mode & RECLAIM_WRITE))
3634 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3635 
3636 	/* Watch for any possible underflows due to delta */
3637 	if (unlikely(delta > nr_pagecache_reclaimable))
3638 		delta = nr_pagecache_reclaimable;
3639 
3640 	return nr_pagecache_reclaimable - delta;
3641 }
3642 
3643 /*
3644  * Try to free up some pages from this node through reclaim.
3645  */
3646 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3647 {
3648 	/* Minimum pages needed in order to stay on node */
3649 	const unsigned long nr_pages = 1 << order;
3650 	struct task_struct *p = current;
3651 	struct reclaim_state reclaim_state;
3652 	int classzone_idx = gfp_zone(gfp_mask);
3653 	struct scan_control sc = {
3654 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3655 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3656 		.order = order,
3657 		.priority = NODE_RECLAIM_PRIORITY,
3658 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3659 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3660 		.may_swap = 1,
3661 		.reclaim_idx = classzone_idx,
3662 	};
3663 
3664 	cond_resched();
3665 	/*
3666 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3667 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3668 	 * and RECLAIM_UNMAP.
3669 	 */
3670 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3671 	lockdep_set_current_reclaim_state(gfp_mask);
3672 	reclaim_state.reclaimed_slab = 0;
3673 	p->reclaim_state = &reclaim_state;
3674 
3675 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3676 		/*
3677 		 * Free memory by calling shrink zone with increasing
3678 		 * priorities until we have enough memory freed.
3679 		 */
3680 		do {
3681 			shrink_node(pgdat, &sc);
3682 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3683 	}
3684 
3685 	p->reclaim_state = NULL;
3686 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3687 	lockdep_clear_current_reclaim_state();
3688 	return sc.nr_reclaimed >= nr_pages;
3689 }
3690 
3691 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3692 {
3693 	int ret;
3694 
3695 	/*
3696 	 * Node reclaim reclaims unmapped file backed pages and
3697 	 * slab pages if we are over the defined limits.
3698 	 *
3699 	 * A small portion of unmapped file backed pages is needed for
3700 	 * file I/O otherwise pages read by file I/O will be immediately
3701 	 * thrown out if the node is overallocated. So we do not reclaim
3702 	 * if less than a specified percentage of the node is used by
3703 	 * unmapped file backed pages.
3704 	 */
3705 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3706 	    sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3707 		return NODE_RECLAIM_FULL;
3708 
3709 	if (!pgdat_reclaimable(pgdat))
3710 		return NODE_RECLAIM_FULL;
3711 
3712 	/*
3713 	 * Do not scan if the allocation should not be delayed.
3714 	 */
3715 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3716 		return NODE_RECLAIM_NOSCAN;
3717 
3718 	/*
3719 	 * Only run node reclaim on the local node or on nodes that do not
3720 	 * have associated processors. This will favor the local processor
3721 	 * over remote processors and spread off node memory allocations
3722 	 * as wide as possible.
3723 	 */
3724 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3725 		return NODE_RECLAIM_NOSCAN;
3726 
3727 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3728 		return NODE_RECLAIM_NOSCAN;
3729 
3730 	ret = __node_reclaim(pgdat, gfp_mask, order);
3731 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3732 
3733 	if (!ret)
3734 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3735 
3736 	return ret;
3737 }
3738 #endif
3739 
3740 /*
3741  * page_evictable - test whether a page is evictable
3742  * @page: the page to test
3743  *
3744  * Test whether page is evictable--i.e., should be placed on active/inactive
3745  * lists vs unevictable list.
3746  *
3747  * Reasons page might not be evictable:
3748  * (1) page's mapping marked unevictable
3749  * (2) page is part of an mlocked VMA
3750  *
3751  */
3752 int page_evictable(struct page *page)
3753 {
3754 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3755 }
3756 
3757 #ifdef CONFIG_SHMEM
3758 /**
3759  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3760  * @pages:	array of pages to check
3761  * @nr_pages:	number of pages to check
3762  *
3763  * Checks pages for evictability and moves them to the appropriate lru list.
3764  *
3765  * This function is only used for SysV IPC SHM_UNLOCK.
3766  */
3767 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3768 {
3769 	struct lruvec *lruvec;
3770 	struct zone *zone = NULL;
3771 	int pgscanned = 0;
3772 	int pgrescued = 0;
3773 	int i;
3774 
3775 	for (i = 0; i < nr_pages; i++) {
3776 		struct page *page = pages[i];
3777 		struct zone *pagezone;
3778 
3779 		pgscanned++;
3780 		pagezone = page_zone(page);
3781 		if (pagezone != zone) {
3782 			if (zone)
3783 				spin_unlock_irq(zone_lru_lock(zone));
3784 			zone = pagezone;
3785 			spin_lock_irq(zone_lru_lock(zone));
3786 		}
3787 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
3788 
3789 		if (!PageLRU(page) || !PageUnevictable(page))
3790 			continue;
3791 
3792 		if (page_evictable(page)) {
3793 			enum lru_list lru = page_lru_base_type(page);
3794 
3795 			VM_BUG_ON_PAGE(PageActive(page), page);
3796 			ClearPageUnevictable(page);
3797 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3798 			add_page_to_lru_list(page, lruvec, lru);
3799 			pgrescued++;
3800 		}
3801 	}
3802 
3803 	if (zone) {
3804 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3805 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3806 		spin_unlock_irq(zone_lru_lock(zone));
3807 	}
3808 }
3809 #endif /* CONFIG_SHMEM */
3810