1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/oom.h> 47 #include <linux/prefetch.h> 48 #include <linux/printk.h> 49 #include <linux/dax.h> 50 51 #include <asm/tlbflush.h> 52 #include <asm/div64.h> 53 54 #include <linux/swapops.h> 55 #include <linux/balloon_compaction.h> 56 57 #include "internal.h" 58 59 #define CREATE_TRACE_POINTS 60 #include <trace/events/vmscan.h> 61 62 struct scan_control { 63 /* How many pages shrink_list() should reclaim */ 64 unsigned long nr_to_reclaim; 65 66 /* This context's GFP mask */ 67 gfp_t gfp_mask; 68 69 /* Allocation order */ 70 int order; 71 72 /* 73 * Nodemask of nodes allowed by the caller. If NULL, all nodes 74 * are scanned. 75 */ 76 nodemask_t *nodemask; 77 78 /* 79 * The memory cgroup that hit its limit and as a result is the 80 * primary target of this reclaim invocation. 81 */ 82 struct mem_cgroup *target_mem_cgroup; 83 84 /* Scan (total_size >> priority) pages at once */ 85 int priority; 86 87 /* The highest zone to isolate pages for reclaim from */ 88 enum zone_type reclaim_idx; 89 90 unsigned int may_writepage:1; 91 92 /* Can mapped pages be reclaimed? */ 93 unsigned int may_unmap:1; 94 95 /* Can pages be swapped as part of reclaim? */ 96 unsigned int may_swap:1; 97 98 /* Can cgroups be reclaimed below their normal consumption range? */ 99 unsigned int may_thrash:1; 100 101 unsigned int hibernation_mode:1; 102 103 /* One of the zones is ready for compaction */ 104 unsigned int compaction_ready:1; 105 106 /* Incremented by the number of inactive pages that were scanned */ 107 unsigned long nr_scanned; 108 109 /* Number of pages freed so far during a call to shrink_zones() */ 110 unsigned long nr_reclaimed; 111 }; 112 113 #ifdef ARCH_HAS_PREFETCH 114 #define prefetch_prev_lru_page(_page, _base, _field) \ 115 do { \ 116 if ((_page)->lru.prev != _base) { \ 117 struct page *prev; \ 118 \ 119 prev = lru_to_page(&(_page->lru)); \ 120 prefetch(&prev->_field); \ 121 } \ 122 } while (0) 123 #else 124 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 125 #endif 126 127 #ifdef ARCH_HAS_PREFETCHW 128 #define prefetchw_prev_lru_page(_page, _base, _field) \ 129 do { \ 130 if ((_page)->lru.prev != _base) { \ 131 struct page *prev; \ 132 \ 133 prev = lru_to_page(&(_page->lru)); \ 134 prefetchw(&prev->_field); \ 135 } \ 136 } while (0) 137 #else 138 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 139 #endif 140 141 /* 142 * From 0 .. 100. Higher means more swappy. 143 */ 144 int vm_swappiness = 60; 145 /* 146 * The total number of pages which are beyond the high watermark within all 147 * zones. 148 */ 149 unsigned long vm_total_pages; 150 151 static LIST_HEAD(shrinker_list); 152 static DECLARE_RWSEM(shrinker_rwsem); 153 154 #ifdef CONFIG_MEMCG 155 static bool global_reclaim(struct scan_control *sc) 156 { 157 return !sc->target_mem_cgroup; 158 } 159 160 /** 161 * sane_reclaim - is the usual dirty throttling mechanism operational? 162 * @sc: scan_control in question 163 * 164 * The normal page dirty throttling mechanism in balance_dirty_pages() is 165 * completely broken with the legacy memcg and direct stalling in 166 * shrink_page_list() is used for throttling instead, which lacks all the 167 * niceties such as fairness, adaptive pausing, bandwidth proportional 168 * allocation and configurability. 169 * 170 * This function tests whether the vmscan currently in progress can assume 171 * that the normal dirty throttling mechanism is operational. 172 */ 173 static bool sane_reclaim(struct scan_control *sc) 174 { 175 struct mem_cgroup *memcg = sc->target_mem_cgroup; 176 177 if (!memcg) 178 return true; 179 #ifdef CONFIG_CGROUP_WRITEBACK 180 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 181 return true; 182 #endif 183 return false; 184 } 185 #else 186 static bool global_reclaim(struct scan_control *sc) 187 { 188 return true; 189 } 190 191 static bool sane_reclaim(struct scan_control *sc) 192 { 193 return true; 194 } 195 #endif 196 197 /* 198 * This misses isolated pages which are not accounted for to save counters. 199 * As the data only determines if reclaim or compaction continues, it is 200 * not expected that isolated pages will be a dominating factor. 201 */ 202 unsigned long zone_reclaimable_pages(struct zone *zone) 203 { 204 unsigned long nr; 205 206 nr = zone_page_state_snapshot(zone, NR_ZONE_LRU_FILE); 207 if (get_nr_swap_pages() > 0) 208 nr += zone_page_state_snapshot(zone, NR_ZONE_LRU_ANON); 209 210 return nr; 211 } 212 213 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat) 214 { 215 unsigned long nr; 216 217 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) + 218 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) + 219 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE); 220 221 if (get_nr_swap_pages() > 0) 222 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) + 223 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) + 224 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON); 225 226 return nr; 227 } 228 229 bool pgdat_reclaimable(struct pglist_data *pgdat) 230 { 231 return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) < 232 pgdat_reclaimable_pages(pgdat) * 6; 233 } 234 235 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru) 236 { 237 if (!mem_cgroup_disabled()) 238 return mem_cgroup_get_lru_size(lruvec, lru); 239 240 return node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 241 } 242 243 /* 244 * Add a shrinker callback to be called from the vm. 245 */ 246 int register_shrinker(struct shrinker *shrinker) 247 { 248 size_t size = sizeof(*shrinker->nr_deferred); 249 250 if (shrinker->flags & SHRINKER_NUMA_AWARE) 251 size *= nr_node_ids; 252 253 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 254 if (!shrinker->nr_deferred) 255 return -ENOMEM; 256 257 down_write(&shrinker_rwsem); 258 list_add_tail(&shrinker->list, &shrinker_list); 259 up_write(&shrinker_rwsem); 260 return 0; 261 } 262 EXPORT_SYMBOL(register_shrinker); 263 264 /* 265 * Remove one 266 */ 267 void unregister_shrinker(struct shrinker *shrinker) 268 { 269 down_write(&shrinker_rwsem); 270 list_del(&shrinker->list); 271 up_write(&shrinker_rwsem); 272 kfree(shrinker->nr_deferred); 273 } 274 EXPORT_SYMBOL(unregister_shrinker); 275 276 #define SHRINK_BATCH 128 277 278 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 279 struct shrinker *shrinker, 280 unsigned long nr_scanned, 281 unsigned long nr_eligible) 282 { 283 unsigned long freed = 0; 284 unsigned long long delta; 285 long total_scan; 286 long freeable; 287 long nr; 288 long new_nr; 289 int nid = shrinkctl->nid; 290 long batch_size = shrinker->batch ? shrinker->batch 291 : SHRINK_BATCH; 292 293 freeable = shrinker->count_objects(shrinker, shrinkctl); 294 if (freeable == 0) 295 return 0; 296 297 /* 298 * copy the current shrinker scan count into a local variable 299 * and zero it so that other concurrent shrinker invocations 300 * don't also do this scanning work. 301 */ 302 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 303 304 total_scan = nr; 305 delta = (4 * nr_scanned) / shrinker->seeks; 306 delta *= freeable; 307 do_div(delta, nr_eligible + 1); 308 total_scan += delta; 309 if (total_scan < 0) { 310 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 311 shrinker->scan_objects, total_scan); 312 total_scan = freeable; 313 } 314 315 /* 316 * We need to avoid excessive windup on filesystem shrinkers 317 * due to large numbers of GFP_NOFS allocations causing the 318 * shrinkers to return -1 all the time. This results in a large 319 * nr being built up so when a shrink that can do some work 320 * comes along it empties the entire cache due to nr >>> 321 * freeable. This is bad for sustaining a working set in 322 * memory. 323 * 324 * Hence only allow the shrinker to scan the entire cache when 325 * a large delta change is calculated directly. 326 */ 327 if (delta < freeable / 4) 328 total_scan = min(total_scan, freeable / 2); 329 330 /* 331 * Avoid risking looping forever due to too large nr value: 332 * never try to free more than twice the estimate number of 333 * freeable entries. 334 */ 335 if (total_scan > freeable * 2) 336 total_scan = freeable * 2; 337 338 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 339 nr_scanned, nr_eligible, 340 freeable, delta, total_scan); 341 342 /* 343 * Normally, we should not scan less than batch_size objects in one 344 * pass to avoid too frequent shrinker calls, but if the slab has less 345 * than batch_size objects in total and we are really tight on memory, 346 * we will try to reclaim all available objects, otherwise we can end 347 * up failing allocations although there are plenty of reclaimable 348 * objects spread over several slabs with usage less than the 349 * batch_size. 350 * 351 * We detect the "tight on memory" situations by looking at the total 352 * number of objects we want to scan (total_scan). If it is greater 353 * than the total number of objects on slab (freeable), we must be 354 * scanning at high prio and therefore should try to reclaim as much as 355 * possible. 356 */ 357 while (total_scan >= batch_size || 358 total_scan >= freeable) { 359 unsigned long ret; 360 unsigned long nr_to_scan = min(batch_size, total_scan); 361 362 shrinkctl->nr_to_scan = nr_to_scan; 363 ret = shrinker->scan_objects(shrinker, shrinkctl); 364 if (ret == SHRINK_STOP) 365 break; 366 freed += ret; 367 368 count_vm_events(SLABS_SCANNED, nr_to_scan); 369 total_scan -= nr_to_scan; 370 371 cond_resched(); 372 } 373 374 /* 375 * move the unused scan count back into the shrinker in a 376 * manner that handles concurrent updates. If we exhausted the 377 * scan, there is no need to do an update. 378 */ 379 if (total_scan > 0) 380 new_nr = atomic_long_add_return(total_scan, 381 &shrinker->nr_deferred[nid]); 382 else 383 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 384 385 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 386 return freed; 387 } 388 389 /** 390 * shrink_slab - shrink slab caches 391 * @gfp_mask: allocation context 392 * @nid: node whose slab caches to target 393 * @memcg: memory cgroup whose slab caches to target 394 * @nr_scanned: pressure numerator 395 * @nr_eligible: pressure denominator 396 * 397 * Call the shrink functions to age shrinkable caches. 398 * 399 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 400 * unaware shrinkers will receive a node id of 0 instead. 401 * 402 * @memcg specifies the memory cgroup to target. If it is not NULL, 403 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan 404 * objects from the memory cgroup specified. Otherwise, only unaware 405 * shrinkers are called. 406 * 407 * @nr_scanned and @nr_eligible form a ratio that indicate how much of 408 * the available objects should be scanned. Page reclaim for example 409 * passes the number of pages scanned and the number of pages on the 410 * LRU lists that it considered on @nid, plus a bias in @nr_scanned 411 * when it encountered mapped pages. The ratio is further biased by 412 * the ->seeks setting of the shrink function, which indicates the 413 * cost to recreate an object relative to that of an LRU page. 414 * 415 * Returns the number of reclaimed slab objects. 416 */ 417 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 418 struct mem_cgroup *memcg, 419 unsigned long nr_scanned, 420 unsigned long nr_eligible) 421 { 422 struct shrinker *shrinker; 423 unsigned long freed = 0; 424 425 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))) 426 return 0; 427 428 if (nr_scanned == 0) 429 nr_scanned = SWAP_CLUSTER_MAX; 430 431 if (!down_read_trylock(&shrinker_rwsem)) { 432 /* 433 * If we would return 0, our callers would understand that we 434 * have nothing else to shrink and give up trying. By returning 435 * 1 we keep it going and assume we'll be able to shrink next 436 * time. 437 */ 438 freed = 1; 439 goto out; 440 } 441 442 list_for_each_entry(shrinker, &shrinker_list, list) { 443 struct shrink_control sc = { 444 .gfp_mask = gfp_mask, 445 .nid = nid, 446 .memcg = memcg, 447 }; 448 449 /* 450 * If kernel memory accounting is disabled, we ignore 451 * SHRINKER_MEMCG_AWARE flag and call all shrinkers 452 * passing NULL for memcg. 453 */ 454 if (memcg_kmem_enabled() && 455 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE)) 456 continue; 457 458 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 459 sc.nid = 0; 460 461 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible); 462 } 463 464 up_read(&shrinker_rwsem); 465 out: 466 cond_resched(); 467 return freed; 468 } 469 470 void drop_slab_node(int nid) 471 { 472 unsigned long freed; 473 474 do { 475 struct mem_cgroup *memcg = NULL; 476 477 freed = 0; 478 do { 479 freed += shrink_slab(GFP_KERNEL, nid, memcg, 480 1000, 1000); 481 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 482 } while (freed > 10); 483 } 484 485 void drop_slab(void) 486 { 487 int nid; 488 489 for_each_online_node(nid) 490 drop_slab_node(nid); 491 } 492 493 static inline int is_page_cache_freeable(struct page *page) 494 { 495 /* 496 * A freeable page cache page is referenced only by the caller 497 * that isolated the page, the page cache radix tree and 498 * optional buffer heads at page->private. 499 */ 500 return page_count(page) - page_has_private(page) == 2; 501 } 502 503 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 504 { 505 if (current->flags & PF_SWAPWRITE) 506 return 1; 507 if (!inode_write_congested(inode)) 508 return 1; 509 if (inode_to_bdi(inode) == current->backing_dev_info) 510 return 1; 511 return 0; 512 } 513 514 /* 515 * We detected a synchronous write error writing a page out. Probably 516 * -ENOSPC. We need to propagate that into the address_space for a subsequent 517 * fsync(), msync() or close(). 518 * 519 * The tricky part is that after writepage we cannot touch the mapping: nothing 520 * prevents it from being freed up. But we have a ref on the page and once 521 * that page is locked, the mapping is pinned. 522 * 523 * We're allowed to run sleeping lock_page() here because we know the caller has 524 * __GFP_FS. 525 */ 526 static void handle_write_error(struct address_space *mapping, 527 struct page *page, int error) 528 { 529 lock_page(page); 530 if (page_mapping(page) == mapping) 531 mapping_set_error(mapping, error); 532 unlock_page(page); 533 } 534 535 /* possible outcome of pageout() */ 536 typedef enum { 537 /* failed to write page out, page is locked */ 538 PAGE_KEEP, 539 /* move page to the active list, page is locked */ 540 PAGE_ACTIVATE, 541 /* page has been sent to the disk successfully, page is unlocked */ 542 PAGE_SUCCESS, 543 /* page is clean and locked */ 544 PAGE_CLEAN, 545 } pageout_t; 546 547 /* 548 * pageout is called by shrink_page_list() for each dirty page. 549 * Calls ->writepage(). 550 */ 551 static pageout_t pageout(struct page *page, struct address_space *mapping, 552 struct scan_control *sc) 553 { 554 /* 555 * If the page is dirty, only perform writeback if that write 556 * will be non-blocking. To prevent this allocation from being 557 * stalled by pagecache activity. But note that there may be 558 * stalls if we need to run get_block(). We could test 559 * PagePrivate for that. 560 * 561 * If this process is currently in __generic_file_write_iter() against 562 * this page's queue, we can perform writeback even if that 563 * will block. 564 * 565 * If the page is swapcache, write it back even if that would 566 * block, for some throttling. This happens by accident, because 567 * swap_backing_dev_info is bust: it doesn't reflect the 568 * congestion state of the swapdevs. Easy to fix, if needed. 569 */ 570 if (!is_page_cache_freeable(page)) 571 return PAGE_KEEP; 572 if (!mapping) { 573 /* 574 * Some data journaling orphaned pages can have 575 * page->mapping == NULL while being dirty with clean buffers. 576 */ 577 if (page_has_private(page)) { 578 if (try_to_free_buffers(page)) { 579 ClearPageDirty(page); 580 pr_info("%s: orphaned page\n", __func__); 581 return PAGE_CLEAN; 582 } 583 } 584 return PAGE_KEEP; 585 } 586 if (mapping->a_ops->writepage == NULL) 587 return PAGE_ACTIVATE; 588 if (!may_write_to_inode(mapping->host, sc)) 589 return PAGE_KEEP; 590 591 if (clear_page_dirty_for_io(page)) { 592 int res; 593 struct writeback_control wbc = { 594 .sync_mode = WB_SYNC_NONE, 595 .nr_to_write = SWAP_CLUSTER_MAX, 596 .range_start = 0, 597 .range_end = LLONG_MAX, 598 .for_reclaim = 1, 599 }; 600 601 SetPageReclaim(page); 602 res = mapping->a_ops->writepage(page, &wbc); 603 if (res < 0) 604 handle_write_error(mapping, page, res); 605 if (res == AOP_WRITEPAGE_ACTIVATE) { 606 ClearPageReclaim(page); 607 return PAGE_ACTIVATE; 608 } 609 610 if (!PageWriteback(page)) { 611 /* synchronous write or broken a_ops? */ 612 ClearPageReclaim(page); 613 } 614 trace_mm_vmscan_writepage(page); 615 inc_node_page_state(page, NR_VMSCAN_WRITE); 616 return PAGE_SUCCESS; 617 } 618 619 return PAGE_CLEAN; 620 } 621 622 /* 623 * Same as remove_mapping, but if the page is removed from the mapping, it 624 * gets returned with a refcount of 0. 625 */ 626 static int __remove_mapping(struct address_space *mapping, struct page *page, 627 bool reclaimed) 628 { 629 unsigned long flags; 630 631 BUG_ON(!PageLocked(page)); 632 BUG_ON(mapping != page_mapping(page)); 633 634 spin_lock_irqsave(&mapping->tree_lock, flags); 635 /* 636 * The non racy check for a busy page. 637 * 638 * Must be careful with the order of the tests. When someone has 639 * a ref to the page, it may be possible that they dirty it then 640 * drop the reference. So if PageDirty is tested before page_count 641 * here, then the following race may occur: 642 * 643 * get_user_pages(&page); 644 * [user mapping goes away] 645 * write_to(page); 646 * !PageDirty(page) [good] 647 * SetPageDirty(page); 648 * put_page(page); 649 * !page_count(page) [good, discard it] 650 * 651 * [oops, our write_to data is lost] 652 * 653 * Reversing the order of the tests ensures such a situation cannot 654 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 655 * load is not satisfied before that of page->_refcount. 656 * 657 * Note that if SetPageDirty is always performed via set_page_dirty, 658 * and thus under tree_lock, then this ordering is not required. 659 */ 660 if (!page_ref_freeze(page, 2)) 661 goto cannot_free; 662 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 663 if (unlikely(PageDirty(page))) { 664 page_ref_unfreeze(page, 2); 665 goto cannot_free; 666 } 667 668 if (PageSwapCache(page)) { 669 swp_entry_t swap = { .val = page_private(page) }; 670 mem_cgroup_swapout(page, swap); 671 __delete_from_swap_cache(page); 672 spin_unlock_irqrestore(&mapping->tree_lock, flags); 673 swapcache_free(swap); 674 } else { 675 void (*freepage)(struct page *); 676 void *shadow = NULL; 677 678 freepage = mapping->a_ops->freepage; 679 /* 680 * Remember a shadow entry for reclaimed file cache in 681 * order to detect refaults, thus thrashing, later on. 682 * 683 * But don't store shadows in an address space that is 684 * already exiting. This is not just an optizimation, 685 * inode reclaim needs to empty out the radix tree or 686 * the nodes are lost. Don't plant shadows behind its 687 * back. 688 * 689 * We also don't store shadows for DAX mappings because the 690 * only page cache pages found in these are zero pages 691 * covering holes, and because we don't want to mix DAX 692 * exceptional entries and shadow exceptional entries in the 693 * same page_tree. 694 */ 695 if (reclaimed && page_is_file_cache(page) && 696 !mapping_exiting(mapping) && !dax_mapping(mapping)) 697 shadow = workingset_eviction(mapping, page); 698 __delete_from_page_cache(page, shadow); 699 spin_unlock_irqrestore(&mapping->tree_lock, flags); 700 701 if (freepage != NULL) 702 freepage(page); 703 } 704 705 return 1; 706 707 cannot_free: 708 spin_unlock_irqrestore(&mapping->tree_lock, flags); 709 return 0; 710 } 711 712 /* 713 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 714 * someone else has a ref on the page, abort and return 0. If it was 715 * successfully detached, return 1. Assumes the caller has a single ref on 716 * this page. 717 */ 718 int remove_mapping(struct address_space *mapping, struct page *page) 719 { 720 if (__remove_mapping(mapping, page, false)) { 721 /* 722 * Unfreezing the refcount with 1 rather than 2 effectively 723 * drops the pagecache ref for us without requiring another 724 * atomic operation. 725 */ 726 page_ref_unfreeze(page, 1); 727 return 1; 728 } 729 return 0; 730 } 731 732 /** 733 * putback_lru_page - put previously isolated page onto appropriate LRU list 734 * @page: page to be put back to appropriate lru list 735 * 736 * Add previously isolated @page to appropriate LRU list. 737 * Page may still be unevictable for other reasons. 738 * 739 * lru_lock must not be held, interrupts must be enabled. 740 */ 741 void putback_lru_page(struct page *page) 742 { 743 bool is_unevictable; 744 int was_unevictable = PageUnevictable(page); 745 746 VM_BUG_ON_PAGE(PageLRU(page), page); 747 748 redo: 749 ClearPageUnevictable(page); 750 751 if (page_evictable(page)) { 752 /* 753 * For evictable pages, we can use the cache. 754 * In event of a race, worst case is we end up with an 755 * unevictable page on [in]active list. 756 * We know how to handle that. 757 */ 758 is_unevictable = false; 759 lru_cache_add(page); 760 } else { 761 /* 762 * Put unevictable pages directly on zone's unevictable 763 * list. 764 */ 765 is_unevictable = true; 766 add_page_to_unevictable_list(page); 767 /* 768 * When racing with an mlock or AS_UNEVICTABLE clearing 769 * (page is unlocked) make sure that if the other thread 770 * does not observe our setting of PG_lru and fails 771 * isolation/check_move_unevictable_pages, 772 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 773 * the page back to the evictable list. 774 * 775 * The other side is TestClearPageMlocked() or shmem_lock(). 776 */ 777 smp_mb(); 778 } 779 780 /* 781 * page's status can change while we move it among lru. If an evictable 782 * page is on unevictable list, it never be freed. To avoid that, 783 * check after we added it to the list, again. 784 */ 785 if (is_unevictable && page_evictable(page)) { 786 if (!isolate_lru_page(page)) { 787 put_page(page); 788 goto redo; 789 } 790 /* This means someone else dropped this page from LRU 791 * So, it will be freed or putback to LRU again. There is 792 * nothing to do here. 793 */ 794 } 795 796 if (was_unevictable && !is_unevictable) 797 count_vm_event(UNEVICTABLE_PGRESCUED); 798 else if (!was_unevictable && is_unevictable) 799 count_vm_event(UNEVICTABLE_PGCULLED); 800 801 put_page(page); /* drop ref from isolate */ 802 } 803 804 enum page_references { 805 PAGEREF_RECLAIM, 806 PAGEREF_RECLAIM_CLEAN, 807 PAGEREF_KEEP, 808 PAGEREF_ACTIVATE, 809 }; 810 811 static enum page_references page_check_references(struct page *page, 812 struct scan_control *sc) 813 { 814 int referenced_ptes, referenced_page; 815 unsigned long vm_flags; 816 817 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 818 &vm_flags); 819 referenced_page = TestClearPageReferenced(page); 820 821 /* 822 * Mlock lost the isolation race with us. Let try_to_unmap() 823 * move the page to the unevictable list. 824 */ 825 if (vm_flags & VM_LOCKED) 826 return PAGEREF_RECLAIM; 827 828 if (referenced_ptes) { 829 if (PageSwapBacked(page)) 830 return PAGEREF_ACTIVATE; 831 /* 832 * All mapped pages start out with page table 833 * references from the instantiating fault, so we need 834 * to look twice if a mapped file page is used more 835 * than once. 836 * 837 * Mark it and spare it for another trip around the 838 * inactive list. Another page table reference will 839 * lead to its activation. 840 * 841 * Note: the mark is set for activated pages as well 842 * so that recently deactivated but used pages are 843 * quickly recovered. 844 */ 845 SetPageReferenced(page); 846 847 if (referenced_page || referenced_ptes > 1) 848 return PAGEREF_ACTIVATE; 849 850 /* 851 * Activate file-backed executable pages after first usage. 852 */ 853 if (vm_flags & VM_EXEC) 854 return PAGEREF_ACTIVATE; 855 856 return PAGEREF_KEEP; 857 } 858 859 /* Reclaim if clean, defer dirty pages to writeback */ 860 if (referenced_page && !PageSwapBacked(page)) 861 return PAGEREF_RECLAIM_CLEAN; 862 863 return PAGEREF_RECLAIM; 864 } 865 866 /* Check if a page is dirty or under writeback */ 867 static void page_check_dirty_writeback(struct page *page, 868 bool *dirty, bool *writeback) 869 { 870 struct address_space *mapping; 871 872 /* 873 * Anonymous pages are not handled by flushers and must be written 874 * from reclaim context. Do not stall reclaim based on them 875 */ 876 if (!page_is_file_cache(page)) { 877 *dirty = false; 878 *writeback = false; 879 return; 880 } 881 882 /* By default assume that the page flags are accurate */ 883 *dirty = PageDirty(page); 884 *writeback = PageWriteback(page); 885 886 /* Verify dirty/writeback state if the filesystem supports it */ 887 if (!page_has_private(page)) 888 return; 889 890 mapping = page_mapping(page); 891 if (mapping && mapping->a_ops->is_dirty_writeback) 892 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 893 } 894 895 /* 896 * shrink_page_list() returns the number of reclaimed pages 897 */ 898 static unsigned long shrink_page_list(struct list_head *page_list, 899 struct pglist_data *pgdat, 900 struct scan_control *sc, 901 enum ttu_flags ttu_flags, 902 unsigned long *ret_nr_dirty, 903 unsigned long *ret_nr_unqueued_dirty, 904 unsigned long *ret_nr_congested, 905 unsigned long *ret_nr_writeback, 906 unsigned long *ret_nr_immediate, 907 bool force_reclaim) 908 { 909 LIST_HEAD(ret_pages); 910 LIST_HEAD(free_pages); 911 int pgactivate = 0; 912 unsigned long nr_unqueued_dirty = 0; 913 unsigned long nr_dirty = 0; 914 unsigned long nr_congested = 0; 915 unsigned long nr_reclaimed = 0; 916 unsigned long nr_writeback = 0; 917 unsigned long nr_immediate = 0; 918 919 cond_resched(); 920 921 while (!list_empty(page_list)) { 922 struct address_space *mapping; 923 struct page *page; 924 int may_enter_fs; 925 enum page_references references = PAGEREF_RECLAIM_CLEAN; 926 bool dirty, writeback; 927 bool lazyfree = false; 928 int ret = SWAP_SUCCESS; 929 930 cond_resched(); 931 932 page = lru_to_page(page_list); 933 list_del(&page->lru); 934 935 if (!trylock_page(page)) 936 goto keep; 937 938 VM_BUG_ON_PAGE(PageActive(page), page); 939 940 sc->nr_scanned++; 941 942 if (unlikely(!page_evictable(page))) 943 goto cull_mlocked; 944 945 if (!sc->may_unmap && page_mapped(page)) 946 goto keep_locked; 947 948 /* Double the slab pressure for mapped and swapcache pages */ 949 if (page_mapped(page) || PageSwapCache(page)) 950 sc->nr_scanned++; 951 952 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 953 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 954 955 /* 956 * The number of dirty pages determines if a zone is marked 957 * reclaim_congested which affects wait_iff_congested. kswapd 958 * will stall and start writing pages if the tail of the LRU 959 * is all dirty unqueued pages. 960 */ 961 page_check_dirty_writeback(page, &dirty, &writeback); 962 if (dirty || writeback) 963 nr_dirty++; 964 965 if (dirty && !writeback) 966 nr_unqueued_dirty++; 967 968 /* 969 * Treat this page as congested if the underlying BDI is or if 970 * pages are cycling through the LRU so quickly that the 971 * pages marked for immediate reclaim are making it to the 972 * end of the LRU a second time. 973 */ 974 mapping = page_mapping(page); 975 if (((dirty || writeback) && mapping && 976 inode_write_congested(mapping->host)) || 977 (writeback && PageReclaim(page))) 978 nr_congested++; 979 980 /* 981 * If a page at the tail of the LRU is under writeback, there 982 * are three cases to consider. 983 * 984 * 1) If reclaim is encountering an excessive number of pages 985 * under writeback and this page is both under writeback and 986 * PageReclaim then it indicates that pages are being queued 987 * for IO but are being recycled through the LRU before the 988 * IO can complete. Waiting on the page itself risks an 989 * indefinite stall if it is impossible to writeback the 990 * page due to IO error or disconnected storage so instead 991 * note that the LRU is being scanned too quickly and the 992 * caller can stall after page list has been processed. 993 * 994 * 2) Global or new memcg reclaim encounters a page that is 995 * not marked for immediate reclaim, or the caller does not 996 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 997 * not to fs). In this case mark the page for immediate 998 * reclaim and continue scanning. 999 * 1000 * Require may_enter_fs because we would wait on fs, which 1001 * may not have submitted IO yet. And the loop driver might 1002 * enter reclaim, and deadlock if it waits on a page for 1003 * which it is needed to do the write (loop masks off 1004 * __GFP_IO|__GFP_FS for this reason); but more thought 1005 * would probably show more reasons. 1006 * 1007 * 3) Legacy memcg encounters a page that is already marked 1008 * PageReclaim. memcg does not have any dirty pages 1009 * throttling so we could easily OOM just because too many 1010 * pages are in writeback and there is nothing else to 1011 * reclaim. Wait for the writeback to complete. 1012 */ 1013 if (PageWriteback(page)) { 1014 /* Case 1 above */ 1015 if (current_is_kswapd() && 1016 PageReclaim(page) && 1017 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1018 nr_immediate++; 1019 goto keep_locked; 1020 1021 /* Case 2 above */ 1022 } else if (sane_reclaim(sc) || 1023 !PageReclaim(page) || !may_enter_fs) { 1024 /* 1025 * This is slightly racy - end_page_writeback() 1026 * might have just cleared PageReclaim, then 1027 * setting PageReclaim here end up interpreted 1028 * as PageReadahead - but that does not matter 1029 * enough to care. What we do want is for this 1030 * page to have PageReclaim set next time memcg 1031 * reclaim reaches the tests above, so it will 1032 * then wait_on_page_writeback() to avoid OOM; 1033 * and it's also appropriate in global reclaim. 1034 */ 1035 SetPageReclaim(page); 1036 nr_writeback++; 1037 goto keep_locked; 1038 1039 /* Case 3 above */ 1040 } else { 1041 unlock_page(page); 1042 wait_on_page_writeback(page); 1043 /* then go back and try same page again */ 1044 list_add_tail(&page->lru, page_list); 1045 continue; 1046 } 1047 } 1048 1049 if (!force_reclaim) 1050 references = page_check_references(page, sc); 1051 1052 switch (references) { 1053 case PAGEREF_ACTIVATE: 1054 goto activate_locked; 1055 case PAGEREF_KEEP: 1056 goto keep_locked; 1057 case PAGEREF_RECLAIM: 1058 case PAGEREF_RECLAIM_CLEAN: 1059 ; /* try to reclaim the page below */ 1060 } 1061 1062 /* 1063 * Anonymous process memory has backing store? 1064 * Try to allocate it some swap space here. 1065 */ 1066 if (PageAnon(page) && !PageSwapCache(page)) { 1067 if (!(sc->gfp_mask & __GFP_IO)) 1068 goto keep_locked; 1069 if (!add_to_swap(page, page_list)) 1070 goto activate_locked; 1071 lazyfree = true; 1072 may_enter_fs = 1; 1073 1074 /* Adding to swap updated mapping */ 1075 mapping = page_mapping(page); 1076 } else if (unlikely(PageTransHuge(page))) { 1077 /* Split file THP */ 1078 if (split_huge_page_to_list(page, page_list)) 1079 goto keep_locked; 1080 } 1081 1082 VM_BUG_ON_PAGE(PageTransHuge(page), page); 1083 1084 /* 1085 * The page is mapped into the page tables of one or more 1086 * processes. Try to unmap it here. 1087 */ 1088 if (page_mapped(page) && mapping) { 1089 switch (ret = try_to_unmap(page, lazyfree ? 1090 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) : 1091 (ttu_flags | TTU_BATCH_FLUSH))) { 1092 case SWAP_FAIL: 1093 goto activate_locked; 1094 case SWAP_AGAIN: 1095 goto keep_locked; 1096 case SWAP_MLOCK: 1097 goto cull_mlocked; 1098 case SWAP_LZFREE: 1099 goto lazyfree; 1100 case SWAP_SUCCESS: 1101 ; /* try to free the page below */ 1102 } 1103 } 1104 1105 if (PageDirty(page)) { 1106 /* 1107 * Only kswapd can writeback filesystem pages to 1108 * avoid risk of stack overflow but only writeback 1109 * if many dirty pages have been encountered. 1110 */ 1111 if (page_is_file_cache(page) && 1112 (!current_is_kswapd() || 1113 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1114 /* 1115 * Immediately reclaim when written back. 1116 * Similar in principal to deactivate_page() 1117 * except we already have the page isolated 1118 * and know it's dirty 1119 */ 1120 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1121 SetPageReclaim(page); 1122 1123 goto keep_locked; 1124 } 1125 1126 if (references == PAGEREF_RECLAIM_CLEAN) 1127 goto keep_locked; 1128 if (!may_enter_fs) 1129 goto keep_locked; 1130 if (!sc->may_writepage) 1131 goto keep_locked; 1132 1133 /* 1134 * Page is dirty. Flush the TLB if a writable entry 1135 * potentially exists to avoid CPU writes after IO 1136 * starts and then write it out here. 1137 */ 1138 try_to_unmap_flush_dirty(); 1139 switch (pageout(page, mapping, sc)) { 1140 case PAGE_KEEP: 1141 goto keep_locked; 1142 case PAGE_ACTIVATE: 1143 goto activate_locked; 1144 case PAGE_SUCCESS: 1145 if (PageWriteback(page)) 1146 goto keep; 1147 if (PageDirty(page)) 1148 goto keep; 1149 1150 /* 1151 * A synchronous write - probably a ramdisk. Go 1152 * ahead and try to reclaim the page. 1153 */ 1154 if (!trylock_page(page)) 1155 goto keep; 1156 if (PageDirty(page) || PageWriteback(page)) 1157 goto keep_locked; 1158 mapping = page_mapping(page); 1159 case PAGE_CLEAN: 1160 ; /* try to free the page below */ 1161 } 1162 } 1163 1164 /* 1165 * If the page has buffers, try to free the buffer mappings 1166 * associated with this page. If we succeed we try to free 1167 * the page as well. 1168 * 1169 * We do this even if the page is PageDirty(). 1170 * try_to_release_page() does not perform I/O, but it is 1171 * possible for a page to have PageDirty set, but it is actually 1172 * clean (all its buffers are clean). This happens if the 1173 * buffers were written out directly, with submit_bh(). ext3 1174 * will do this, as well as the blockdev mapping. 1175 * try_to_release_page() will discover that cleanness and will 1176 * drop the buffers and mark the page clean - it can be freed. 1177 * 1178 * Rarely, pages can have buffers and no ->mapping. These are 1179 * the pages which were not successfully invalidated in 1180 * truncate_complete_page(). We try to drop those buffers here 1181 * and if that worked, and the page is no longer mapped into 1182 * process address space (page_count == 1) it can be freed. 1183 * Otherwise, leave the page on the LRU so it is swappable. 1184 */ 1185 if (page_has_private(page)) { 1186 if (!try_to_release_page(page, sc->gfp_mask)) 1187 goto activate_locked; 1188 if (!mapping && page_count(page) == 1) { 1189 unlock_page(page); 1190 if (put_page_testzero(page)) 1191 goto free_it; 1192 else { 1193 /* 1194 * rare race with speculative reference. 1195 * the speculative reference will free 1196 * this page shortly, so we may 1197 * increment nr_reclaimed here (and 1198 * leave it off the LRU). 1199 */ 1200 nr_reclaimed++; 1201 continue; 1202 } 1203 } 1204 } 1205 1206 lazyfree: 1207 if (!mapping || !__remove_mapping(mapping, page, true)) 1208 goto keep_locked; 1209 1210 /* 1211 * At this point, we have no other references and there is 1212 * no way to pick any more up (removed from LRU, removed 1213 * from pagecache). Can use non-atomic bitops now (and 1214 * we obviously don't have to worry about waking up a process 1215 * waiting on the page lock, because there are no references. 1216 */ 1217 __ClearPageLocked(page); 1218 free_it: 1219 if (ret == SWAP_LZFREE) 1220 count_vm_event(PGLAZYFREED); 1221 1222 nr_reclaimed++; 1223 1224 /* 1225 * Is there need to periodically free_page_list? It would 1226 * appear not as the counts should be low 1227 */ 1228 list_add(&page->lru, &free_pages); 1229 continue; 1230 1231 cull_mlocked: 1232 if (PageSwapCache(page)) 1233 try_to_free_swap(page); 1234 unlock_page(page); 1235 list_add(&page->lru, &ret_pages); 1236 continue; 1237 1238 activate_locked: 1239 /* Not a candidate for swapping, so reclaim swap space. */ 1240 if (PageSwapCache(page) && mem_cgroup_swap_full(page)) 1241 try_to_free_swap(page); 1242 VM_BUG_ON_PAGE(PageActive(page), page); 1243 SetPageActive(page); 1244 pgactivate++; 1245 keep_locked: 1246 unlock_page(page); 1247 keep: 1248 list_add(&page->lru, &ret_pages); 1249 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1250 } 1251 1252 mem_cgroup_uncharge_list(&free_pages); 1253 try_to_unmap_flush(); 1254 free_hot_cold_page_list(&free_pages, true); 1255 1256 list_splice(&ret_pages, page_list); 1257 count_vm_events(PGACTIVATE, pgactivate); 1258 1259 *ret_nr_dirty += nr_dirty; 1260 *ret_nr_congested += nr_congested; 1261 *ret_nr_unqueued_dirty += nr_unqueued_dirty; 1262 *ret_nr_writeback += nr_writeback; 1263 *ret_nr_immediate += nr_immediate; 1264 return nr_reclaimed; 1265 } 1266 1267 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1268 struct list_head *page_list) 1269 { 1270 struct scan_control sc = { 1271 .gfp_mask = GFP_KERNEL, 1272 .priority = DEF_PRIORITY, 1273 .may_unmap = 1, 1274 }; 1275 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; 1276 struct page *page, *next; 1277 LIST_HEAD(clean_pages); 1278 1279 list_for_each_entry_safe(page, next, page_list, lru) { 1280 if (page_is_file_cache(page) && !PageDirty(page) && 1281 !__PageMovable(page)) { 1282 ClearPageActive(page); 1283 list_move(&page->lru, &clean_pages); 1284 } 1285 } 1286 1287 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1288 TTU_UNMAP|TTU_IGNORE_ACCESS, 1289 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); 1290 list_splice(&clean_pages, page_list); 1291 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1292 return ret; 1293 } 1294 1295 /* 1296 * Attempt to remove the specified page from its LRU. Only take this page 1297 * if it is of the appropriate PageActive status. Pages which are being 1298 * freed elsewhere are also ignored. 1299 * 1300 * page: page to consider 1301 * mode: one of the LRU isolation modes defined above 1302 * 1303 * returns 0 on success, -ve errno on failure. 1304 */ 1305 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1306 { 1307 int ret = -EINVAL; 1308 1309 /* Only take pages on the LRU. */ 1310 if (!PageLRU(page)) 1311 return ret; 1312 1313 /* Compaction should not handle unevictable pages but CMA can do so */ 1314 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1315 return ret; 1316 1317 ret = -EBUSY; 1318 1319 /* 1320 * To minimise LRU disruption, the caller can indicate that it only 1321 * wants to isolate pages it will be able to operate on without 1322 * blocking - clean pages for the most part. 1323 * 1324 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1325 * is used by reclaim when it is cannot write to backing storage 1326 * 1327 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1328 * that it is possible to migrate without blocking 1329 */ 1330 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1331 /* All the caller can do on PageWriteback is block */ 1332 if (PageWriteback(page)) 1333 return ret; 1334 1335 if (PageDirty(page)) { 1336 struct address_space *mapping; 1337 1338 /* ISOLATE_CLEAN means only clean pages */ 1339 if (mode & ISOLATE_CLEAN) 1340 return ret; 1341 1342 /* 1343 * Only pages without mappings or that have a 1344 * ->migratepage callback are possible to migrate 1345 * without blocking 1346 */ 1347 mapping = page_mapping(page); 1348 if (mapping && !mapping->a_ops->migratepage) 1349 return ret; 1350 } 1351 } 1352 1353 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1354 return ret; 1355 1356 if (likely(get_page_unless_zero(page))) { 1357 /* 1358 * Be careful not to clear PageLRU until after we're 1359 * sure the page is not being freed elsewhere -- the 1360 * page release code relies on it. 1361 */ 1362 ClearPageLRU(page); 1363 ret = 0; 1364 } 1365 1366 return ret; 1367 } 1368 1369 /* 1370 * zone_lru_lock is heavily contended. Some of the functions that 1371 * shrink the lists perform better by taking out a batch of pages 1372 * and working on them outside the LRU lock. 1373 * 1374 * For pagecache intensive workloads, this function is the hottest 1375 * spot in the kernel (apart from copy_*_user functions). 1376 * 1377 * Appropriate locks must be held before calling this function. 1378 * 1379 * @nr_to_scan: The number of pages to look through on the list. 1380 * @lruvec: The LRU vector to pull pages from. 1381 * @dst: The temp list to put pages on to. 1382 * @nr_scanned: The number of pages that were scanned. 1383 * @sc: The scan_control struct for this reclaim session 1384 * @mode: One of the LRU isolation modes 1385 * @lru: LRU list id for isolating 1386 * 1387 * returns how many pages were moved onto *@dst. 1388 */ 1389 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1390 struct lruvec *lruvec, struct list_head *dst, 1391 unsigned long *nr_scanned, struct scan_control *sc, 1392 isolate_mode_t mode, enum lru_list lru) 1393 { 1394 struct list_head *src = &lruvec->lists[lru]; 1395 unsigned long nr_taken = 0; 1396 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1397 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1398 unsigned long scan, nr_pages; 1399 LIST_HEAD(pages_skipped); 1400 1401 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan && 1402 !list_empty(src); scan++) { 1403 struct page *page; 1404 1405 page = lru_to_page(src); 1406 prefetchw_prev_lru_page(page, src, flags); 1407 1408 VM_BUG_ON_PAGE(!PageLRU(page), page); 1409 1410 if (page_zonenum(page) > sc->reclaim_idx) { 1411 list_move(&page->lru, &pages_skipped); 1412 nr_skipped[page_zonenum(page)]++; 1413 continue; 1414 } 1415 1416 switch (__isolate_lru_page(page, mode)) { 1417 case 0: 1418 nr_pages = hpage_nr_pages(page); 1419 nr_taken += nr_pages; 1420 nr_zone_taken[page_zonenum(page)] += nr_pages; 1421 list_move(&page->lru, dst); 1422 break; 1423 1424 case -EBUSY: 1425 /* else it is being freed elsewhere */ 1426 list_move(&page->lru, src); 1427 continue; 1428 1429 default: 1430 BUG(); 1431 } 1432 } 1433 1434 /* 1435 * Splice any skipped pages to the start of the LRU list. Note that 1436 * this disrupts the LRU order when reclaiming for lower zones but 1437 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1438 * scanning would soon rescan the same pages to skip and put the 1439 * system at risk of premature OOM. 1440 */ 1441 if (!list_empty(&pages_skipped)) { 1442 int zid; 1443 1444 list_splice(&pages_skipped, src); 1445 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1446 if (!nr_skipped[zid]) 1447 continue; 1448 1449 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1450 } 1451 } 1452 *nr_scanned = scan; 1453 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, scan, 1454 nr_taken, mode, is_file_lru(lru)); 1455 for (scan = 0; scan < MAX_NR_ZONES; scan++) { 1456 nr_pages = nr_zone_taken[scan]; 1457 if (!nr_pages) 1458 continue; 1459 1460 update_lru_size(lruvec, lru, scan, -nr_pages); 1461 } 1462 return nr_taken; 1463 } 1464 1465 /** 1466 * isolate_lru_page - tries to isolate a page from its LRU list 1467 * @page: page to isolate from its LRU list 1468 * 1469 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1470 * vmstat statistic corresponding to whatever LRU list the page was on. 1471 * 1472 * Returns 0 if the page was removed from an LRU list. 1473 * Returns -EBUSY if the page was not on an LRU list. 1474 * 1475 * The returned page will have PageLRU() cleared. If it was found on 1476 * the active list, it will have PageActive set. If it was found on 1477 * the unevictable list, it will have the PageUnevictable bit set. That flag 1478 * may need to be cleared by the caller before letting the page go. 1479 * 1480 * The vmstat statistic corresponding to the list on which the page was 1481 * found will be decremented. 1482 * 1483 * Restrictions: 1484 * (1) Must be called with an elevated refcount on the page. This is a 1485 * fundamentnal difference from isolate_lru_pages (which is called 1486 * without a stable reference). 1487 * (2) the lru_lock must not be held. 1488 * (3) interrupts must be enabled. 1489 */ 1490 int isolate_lru_page(struct page *page) 1491 { 1492 int ret = -EBUSY; 1493 1494 VM_BUG_ON_PAGE(!page_count(page), page); 1495 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1496 1497 if (PageLRU(page)) { 1498 struct zone *zone = page_zone(page); 1499 struct lruvec *lruvec; 1500 1501 spin_lock_irq(zone_lru_lock(zone)); 1502 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 1503 if (PageLRU(page)) { 1504 int lru = page_lru(page); 1505 get_page(page); 1506 ClearPageLRU(page); 1507 del_page_from_lru_list(page, lruvec, lru); 1508 ret = 0; 1509 } 1510 spin_unlock_irq(zone_lru_lock(zone)); 1511 } 1512 return ret; 1513 } 1514 1515 /* 1516 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1517 * then get resheduled. When there are massive number of tasks doing page 1518 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1519 * the LRU list will go small and be scanned faster than necessary, leading to 1520 * unnecessary swapping, thrashing and OOM. 1521 */ 1522 static int too_many_isolated(struct pglist_data *pgdat, int file, 1523 struct scan_control *sc) 1524 { 1525 unsigned long inactive, isolated; 1526 1527 if (current_is_kswapd()) 1528 return 0; 1529 1530 if (!sane_reclaim(sc)) 1531 return 0; 1532 1533 if (file) { 1534 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1535 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1536 } else { 1537 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1538 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1539 } 1540 1541 /* 1542 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1543 * won't get blocked by normal direct-reclaimers, forming a circular 1544 * deadlock. 1545 */ 1546 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1547 inactive >>= 3; 1548 1549 return isolated > inactive; 1550 } 1551 1552 static noinline_for_stack void 1553 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1554 { 1555 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1556 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1557 LIST_HEAD(pages_to_free); 1558 1559 /* 1560 * Put back any unfreeable pages. 1561 */ 1562 while (!list_empty(page_list)) { 1563 struct page *page = lru_to_page(page_list); 1564 int lru; 1565 1566 VM_BUG_ON_PAGE(PageLRU(page), page); 1567 list_del(&page->lru); 1568 if (unlikely(!page_evictable(page))) { 1569 spin_unlock_irq(&pgdat->lru_lock); 1570 putback_lru_page(page); 1571 spin_lock_irq(&pgdat->lru_lock); 1572 continue; 1573 } 1574 1575 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1576 1577 SetPageLRU(page); 1578 lru = page_lru(page); 1579 add_page_to_lru_list(page, lruvec, lru); 1580 1581 if (is_active_lru(lru)) { 1582 int file = is_file_lru(lru); 1583 int numpages = hpage_nr_pages(page); 1584 reclaim_stat->recent_rotated[file] += numpages; 1585 } 1586 if (put_page_testzero(page)) { 1587 __ClearPageLRU(page); 1588 __ClearPageActive(page); 1589 del_page_from_lru_list(page, lruvec, lru); 1590 1591 if (unlikely(PageCompound(page))) { 1592 spin_unlock_irq(&pgdat->lru_lock); 1593 mem_cgroup_uncharge(page); 1594 (*get_compound_page_dtor(page))(page); 1595 spin_lock_irq(&pgdat->lru_lock); 1596 } else 1597 list_add(&page->lru, &pages_to_free); 1598 } 1599 } 1600 1601 /* 1602 * To save our caller's stack, now use input list for pages to free. 1603 */ 1604 list_splice(&pages_to_free, page_list); 1605 } 1606 1607 /* 1608 * If a kernel thread (such as nfsd for loop-back mounts) services 1609 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1610 * In that case we should only throttle if the backing device it is 1611 * writing to is congested. In other cases it is safe to throttle. 1612 */ 1613 static int current_may_throttle(void) 1614 { 1615 return !(current->flags & PF_LESS_THROTTLE) || 1616 current->backing_dev_info == NULL || 1617 bdi_write_congested(current->backing_dev_info); 1618 } 1619 1620 /* 1621 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1622 * of reclaimed pages 1623 */ 1624 static noinline_for_stack unsigned long 1625 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1626 struct scan_control *sc, enum lru_list lru) 1627 { 1628 LIST_HEAD(page_list); 1629 unsigned long nr_scanned; 1630 unsigned long nr_reclaimed = 0; 1631 unsigned long nr_taken; 1632 unsigned long nr_dirty = 0; 1633 unsigned long nr_congested = 0; 1634 unsigned long nr_unqueued_dirty = 0; 1635 unsigned long nr_writeback = 0; 1636 unsigned long nr_immediate = 0; 1637 isolate_mode_t isolate_mode = 0; 1638 int file = is_file_lru(lru); 1639 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1640 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1641 1642 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1643 congestion_wait(BLK_RW_ASYNC, HZ/10); 1644 1645 /* We are about to die and free our memory. Return now. */ 1646 if (fatal_signal_pending(current)) 1647 return SWAP_CLUSTER_MAX; 1648 } 1649 1650 lru_add_drain(); 1651 1652 if (!sc->may_unmap) 1653 isolate_mode |= ISOLATE_UNMAPPED; 1654 if (!sc->may_writepage) 1655 isolate_mode |= ISOLATE_CLEAN; 1656 1657 spin_lock_irq(&pgdat->lru_lock); 1658 1659 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1660 &nr_scanned, sc, isolate_mode, lru); 1661 1662 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1663 reclaim_stat->recent_scanned[file] += nr_taken; 1664 1665 if (global_reclaim(sc)) { 1666 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned); 1667 if (current_is_kswapd()) 1668 __count_vm_events(PGSCAN_KSWAPD, nr_scanned); 1669 else 1670 __count_vm_events(PGSCAN_DIRECT, nr_scanned); 1671 } 1672 spin_unlock_irq(&pgdat->lru_lock); 1673 1674 if (nr_taken == 0) 1675 return 0; 1676 1677 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP, 1678 &nr_dirty, &nr_unqueued_dirty, &nr_congested, 1679 &nr_writeback, &nr_immediate, 1680 false); 1681 1682 spin_lock_irq(&pgdat->lru_lock); 1683 1684 if (global_reclaim(sc)) { 1685 if (current_is_kswapd()) 1686 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed); 1687 else 1688 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed); 1689 } 1690 1691 putback_inactive_pages(lruvec, &page_list); 1692 1693 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1694 1695 spin_unlock_irq(&pgdat->lru_lock); 1696 1697 mem_cgroup_uncharge_list(&page_list); 1698 free_hot_cold_page_list(&page_list, true); 1699 1700 /* 1701 * If reclaim is isolating dirty pages under writeback, it implies 1702 * that the long-lived page allocation rate is exceeding the page 1703 * laundering rate. Either the global limits are not being effective 1704 * at throttling processes due to the page distribution throughout 1705 * zones or there is heavy usage of a slow backing device. The 1706 * only option is to throttle from reclaim context which is not ideal 1707 * as there is no guarantee the dirtying process is throttled in the 1708 * same way balance_dirty_pages() manages. 1709 * 1710 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1711 * of pages under pages flagged for immediate reclaim and stall if any 1712 * are encountered in the nr_immediate check below. 1713 */ 1714 if (nr_writeback && nr_writeback == nr_taken) 1715 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 1716 1717 /* 1718 * Legacy memcg will stall in page writeback so avoid forcibly 1719 * stalling here. 1720 */ 1721 if (sane_reclaim(sc)) { 1722 /* 1723 * Tag a zone as congested if all the dirty pages scanned were 1724 * backed by a congested BDI and wait_iff_congested will stall. 1725 */ 1726 if (nr_dirty && nr_dirty == nr_congested) 1727 set_bit(PGDAT_CONGESTED, &pgdat->flags); 1728 1729 /* 1730 * If dirty pages are scanned that are not queued for IO, it 1731 * implies that flushers are not keeping up. In this case, flag 1732 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from 1733 * reclaim context. 1734 */ 1735 if (nr_unqueued_dirty == nr_taken) 1736 set_bit(PGDAT_DIRTY, &pgdat->flags); 1737 1738 /* 1739 * If kswapd scans pages marked marked for immediate 1740 * reclaim and under writeback (nr_immediate), it implies 1741 * that pages are cycling through the LRU faster than 1742 * they are written so also forcibly stall. 1743 */ 1744 if (nr_immediate && current_may_throttle()) 1745 congestion_wait(BLK_RW_ASYNC, HZ/10); 1746 } 1747 1748 /* 1749 * Stall direct reclaim for IO completions if underlying BDIs or zone 1750 * is congested. Allow kswapd to continue until it starts encountering 1751 * unqueued dirty pages or cycling through the LRU too quickly. 1752 */ 1753 if (!sc->hibernation_mode && !current_is_kswapd() && 1754 current_may_throttle()) 1755 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10); 1756 1757 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1758 nr_scanned, nr_reclaimed, 1759 sc->priority, file); 1760 return nr_reclaimed; 1761 } 1762 1763 /* 1764 * This moves pages from the active list to the inactive list. 1765 * 1766 * We move them the other way if the page is referenced by one or more 1767 * processes, from rmap. 1768 * 1769 * If the pages are mostly unmapped, the processing is fast and it is 1770 * appropriate to hold zone_lru_lock across the whole operation. But if 1771 * the pages are mapped, the processing is slow (page_referenced()) so we 1772 * should drop zone_lru_lock around each page. It's impossible to balance 1773 * this, so instead we remove the pages from the LRU while processing them. 1774 * It is safe to rely on PG_active against the non-LRU pages in here because 1775 * nobody will play with that bit on a non-LRU page. 1776 * 1777 * The downside is that we have to touch page->_refcount against each page. 1778 * But we had to alter page->flags anyway. 1779 */ 1780 1781 static void move_active_pages_to_lru(struct lruvec *lruvec, 1782 struct list_head *list, 1783 struct list_head *pages_to_free, 1784 enum lru_list lru) 1785 { 1786 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1787 unsigned long pgmoved = 0; 1788 struct page *page; 1789 int nr_pages; 1790 1791 while (!list_empty(list)) { 1792 page = lru_to_page(list); 1793 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1794 1795 VM_BUG_ON_PAGE(PageLRU(page), page); 1796 SetPageLRU(page); 1797 1798 nr_pages = hpage_nr_pages(page); 1799 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1800 list_move(&page->lru, &lruvec->lists[lru]); 1801 pgmoved += nr_pages; 1802 1803 if (put_page_testzero(page)) { 1804 __ClearPageLRU(page); 1805 __ClearPageActive(page); 1806 del_page_from_lru_list(page, lruvec, lru); 1807 1808 if (unlikely(PageCompound(page))) { 1809 spin_unlock_irq(&pgdat->lru_lock); 1810 mem_cgroup_uncharge(page); 1811 (*get_compound_page_dtor(page))(page); 1812 spin_lock_irq(&pgdat->lru_lock); 1813 } else 1814 list_add(&page->lru, pages_to_free); 1815 } 1816 } 1817 1818 if (!is_active_lru(lru)) 1819 __count_vm_events(PGDEACTIVATE, pgmoved); 1820 } 1821 1822 static void shrink_active_list(unsigned long nr_to_scan, 1823 struct lruvec *lruvec, 1824 struct scan_control *sc, 1825 enum lru_list lru) 1826 { 1827 unsigned long nr_taken; 1828 unsigned long nr_scanned; 1829 unsigned long vm_flags; 1830 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1831 LIST_HEAD(l_active); 1832 LIST_HEAD(l_inactive); 1833 struct page *page; 1834 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1835 unsigned long nr_rotated = 0; 1836 isolate_mode_t isolate_mode = 0; 1837 int file = is_file_lru(lru); 1838 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1839 1840 lru_add_drain(); 1841 1842 if (!sc->may_unmap) 1843 isolate_mode |= ISOLATE_UNMAPPED; 1844 if (!sc->may_writepage) 1845 isolate_mode |= ISOLATE_CLEAN; 1846 1847 spin_lock_irq(&pgdat->lru_lock); 1848 1849 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1850 &nr_scanned, sc, isolate_mode, lru); 1851 1852 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1853 reclaim_stat->recent_scanned[file] += nr_taken; 1854 1855 if (global_reclaim(sc)) 1856 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned); 1857 __count_vm_events(PGREFILL, nr_scanned); 1858 1859 spin_unlock_irq(&pgdat->lru_lock); 1860 1861 while (!list_empty(&l_hold)) { 1862 cond_resched(); 1863 page = lru_to_page(&l_hold); 1864 list_del(&page->lru); 1865 1866 if (unlikely(!page_evictable(page))) { 1867 putback_lru_page(page); 1868 continue; 1869 } 1870 1871 if (unlikely(buffer_heads_over_limit)) { 1872 if (page_has_private(page) && trylock_page(page)) { 1873 if (page_has_private(page)) 1874 try_to_release_page(page, 0); 1875 unlock_page(page); 1876 } 1877 } 1878 1879 if (page_referenced(page, 0, sc->target_mem_cgroup, 1880 &vm_flags)) { 1881 nr_rotated += hpage_nr_pages(page); 1882 /* 1883 * Identify referenced, file-backed active pages and 1884 * give them one more trip around the active list. So 1885 * that executable code get better chances to stay in 1886 * memory under moderate memory pressure. Anon pages 1887 * are not likely to be evicted by use-once streaming 1888 * IO, plus JVM can create lots of anon VM_EXEC pages, 1889 * so we ignore them here. 1890 */ 1891 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1892 list_add(&page->lru, &l_active); 1893 continue; 1894 } 1895 } 1896 1897 ClearPageActive(page); /* we are de-activating */ 1898 list_add(&page->lru, &l_inactive); 1899 } 1900 1901 /* 1902 * Move pages back to the lru list. 1903 */ 1904 spin_lock_irq(&pgdat->lru_lock); 1905 /* 1906 * Count referenced pages from currently used mappings as rotated, 1907 * even though only some of them are actually re-activated. This 1908 * helps balance scan pressure between file and anonymous pages in 1909 * get_scan_count. 1910 */ 1911 reclaim_stat->recent_rotated[file] += nr_rotated; 1912 1913 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1914 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1915 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1916 spin_unlock_irq(&pgdat->lru_lock); 1917 1918 mem_cgroup_uncharge_list(&l_hold); 1919 free_hot_cold_page_list(&l_hold, true); 1920 } 1921 1922 /* 1923 * The inactive anon list should be small enough that the VM never has 1924 * to do too much work. 1925 * 1926 * The inactive file list should be small enough to leave most memory 1927 * to the established workingset on the scan-resistant active list, 1928 * but large enough to avoid thrashing the aggregate readahead window. 1929 * 1930 * Both inactive lists should also be large enough that each inactive 1931 * page has a chance to be referenced again before it is reclaimed. 1932 * 1933 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 1934 * on this LRU, maintained by the pageout code. A zone->inactive_ratio 1935 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 1936 * 1937 * total target max 1938 * memory ratio inactive 1939 * ------------------------------------- 1940 * 10MB 1 5MB 1941 * 100MB 1 50MB 1942 * 1GB 3 250MB 1943 * 10GB 10 0.9GB 1944 * 100GB 31 3GB 1945 * 1TB 101 10GB 1946 * 10TB 320 32GB 1947 */ 1948 static bool inactive_list_is_low(struct lruvec *lruvec, bool file) 1949 { 1950 unsigned long inactive_ratio; 1951 unsigned long inactive; 1952 unsigned long active; 1953 unsigned long gb; 1954 1955 /* 1956 * If we don't have swap space, anonymous page deactivation 1957 * is pointless. 1958 */ 1959 if (!file && !total_swap_pages) 1960 return false; 1961 1962 inactive = lruvec_lru_size(lruvec, file * LRU_FILE); 1963 active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE); 1964 1965 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1966 if (gb) 1967 inactive_ratio = int_sqrt(10 * gb); 1968 else 1969 inactive_ratio = 1; 1970 1971 return inactive * inactive_ratio < active; 1972 } 1973 1974 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1975 struct lruvec *lruvec, struct scan_control *sc) 1976 { 1977 if (is_active_lru(lru)) { 1978 if (inactive_list_is_low(lruvec, is_file_lru(lru))) 1979 shrink_active_list(nr_to_scan, lruvec, sc, lru); 1980 return 0; 1981 } 1982 1983 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 1984 } 1985 1986 enum scan_balance { 1987 SCAN_EQUAL, 1988 SCAN_FRACT, 1989 SCAN_ANON, 1990 SCAN_FILE, 1991 }; 1992 1993 /* 1994 * Determine how aggressively the anon and file LRU lists should be 1995 * scanned. The relative value of each set of LRU lists is determined 1996 * by looking at the fraction of the pages scanned we did rotate back 1997 * onto the active list instead of evict. 1998 * 1999 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2000 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2001 */ 2002 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2003 struct scan_control *sc, unsigned long *nr, 2004 unsigned long *lru_pages) 2005 { 2006 int swappiness = mem_cgroup_swappiness(memcg); 2007 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2008 u64 fraction[2]; 2009 u64 denominator = 0; /* gcc */ 2010 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2011 unsigned long anon_prio, file_prio; 2012 enum scan_balance scan_balance; 2013 unsigned long anon, file; 2014 bool force_scan = false; 2015 unsigned long ap, fp; 2016 enum lru_list lru; 2017 bool some_scanned; 2018 int pass; 2019 2020 /* 2021 * If the zone or memcg is small, nr[l] can be 0. This 2022 * results in no scanning on this priority and a potential 2023 * priority drop. Global direct reclaim can go to the next 2024 * zone and tends to have no problems. Global kswapd is for 2025 * zone balancing and it needs to scan a minimum amount. When 2026 * reclaiming for a memcg, a priority drop can cause high 2027 * latencies, so it's better to scan a minimum amount there as 2028 * well. 2029 */ 2030 if (current_is_kswapd()) { 2031 if (!pgdat_reclaimable(pgdat)) 2032 force_scan = true; 2033 if (!mem_cgroup_online(memcg)) 2034 force_scan = true; 2035 } 2036 if (!global_reclaim(sc)) 2037 force_scan = true; 2038 2039 /* If we have no swap space, do not bother scanning anon pages. */ 2040 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2041 scan_balance = SCAN_FILE; 2042 goto out; 2043 } 2044 2045 /* 2046 * Global reclaim will swap to prevent OOM even with no 2047 * swappiness, but memcg users want to use this knob to 2048 * disable swapping for individual groups completely when 2049 * using the memory controller's swap limit feature would be 2050 * too expensive. 2051 */ 2052 if (!global_reclaim(sc) && !swappiness) { 2053 scan_balance = SCAN_FILE; 2054 goto out; 2055 } 2056 2057 /* 2058 * Do not apply any pressure balancing cleverness when the 2059 * system is close to OOM, scan both anon and file equally 2060 * (unless the swappiness setting disagrees with swapping). 2061 */ 2062 if (!sc->priority && swappiness) { 2063 scan_balance = SCAN_EQUAL; 2064 goto out; 2065 } 2066 2067 /* 2068 * Prevent the reclaimer from falling into the cache trap: as 2069 * cache pages start out inactive, every cache fault will tip 2070 * the scan balance towards the file LRU. And as the file LRU 2071 * shrinks, so does the window for rotation from references. 2072 * This means we have a runaway feedback loop where a tiny 2073 * thrashing file LRU becomes infinitely more attractive than 2074 * anon pages. Try to detect this based on file LRU size. 2075 */ 2076 if (global_reclaim(sc)) { 2077 unsigned long pgdatfile; 2078 unsigned long pgdatfree; 2079 int z; 2080 unsigned long total_high_wmark = 0; 2081 2082 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2083 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2084 node_page_state(pgdat, NR_INACTIVE_FILE); 2085 2086 for (z = 0; z < MAX_NR_ZONES; z++) { 2087 struct zone *zone = &pgdat->node_zones[z]; 2088 if (!populated_zone(zone)) 2089 continue; 2090 2091 total_high_wmark += high_wmark_pages(zone); 2092 } 2093 2094 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2095 scan_balance = SCAN_ANON; 2096 goto out; 2097 } 2098 } 2099 2100 /* 2101 * If there is enough inactive page cache, i.e. if the size of the 2102 * inactive list is greater than that of the active list *and* the 2103 * inactive list actually has some pages to scan on this priority, we 2104 * do not reclaim anything from the anonymous working set right now. 2105 * Without the second condition we could end up never scanning an 2106 * lruvec even if it has plenty of old anonymous pages unless the 2107 * system is under heavy pressure. 2108 */ 2109 if (!inactive_list_is_low(lruvec, true) && 2110 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) { 2111 scan_balance = SCAN_FILE; 2112 goto out; 2113 } 2114 2115 scan_balance = SCAN_FRACT; 2116 2117 /* 2118 * With swappiness at 100, anonymous and file have the same priority. 2119 * This scanning priority is essentially the inverse of IO cost. 2120 */ 2121 anon_prio = swappiness; 2122 file_prio = 200 - anon_prio; 2123 2124 /* 2125 * OK, so we have swap space and a fair amount of page cache 2126 * pages. We use the recently rotated / recently scanned 2127 * ratios to determine how valuable each cache is. 2128 * 2129 * Because workloads change over time (and to avoid overflow) 2130 * we keep these statistics as a floating average, which ends 2131 * up weighing recent references more than old ones. 2132 * 2133 * anon in [0], file in [1] 2134 */ 2135 2136 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) + 2137 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON); 2138 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) + 2139 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE); 2140 2141 spin_lock_irq(&pgdat->lru_lock); 2142 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2143 reclaim_stat->recent_scanned[0] /= 2; 2144 reclaim_stat->recent_rotated[0] /= 2; 2145 } 2146 2147 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2148 reclaim_stat->recent_scanned[1] /= 2; 2149 reclaim_stat->recent_rotated[1] /= 2; 2150 } 2151 2152 /* 2153 * The amount of pressure on anon vs file pages is inversely 2154 * proportional to the fraction of recently scanned pages on 2155 * each list that were recently referenced and in active use. 2156 */ 2157 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2158 ap /= reclaim_stat->recent_rotated[0] + 1; 2159 2160 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2161 fp /= reclaim_stat->recent_rotated[1] + 1; 2162 spin_unlock_irq(&pgdat->lru_lock); 2163 2164 fraction[0] = ap; 2165 fraction[1] = fp; 2166 denominator = ap + fp + 1; 2167 out: 2168 some_scanned = false; 2169 /* Only use force_scan on second pass. */ 2170 for (pass = 0; !some_scanned && pass < 2; pass++) { 2171 *lru_pages = 0; 2172 for_each_evictable_lru(lru) { 2173 int file = is_file_lru(lru); 2174 unsigned long size; 2175 unsigned long scan; 2176 2177 size = lruvec_lru_size(lruvec, lru); 2178 scan = size >> sc->priority; 2179 2180 if (!scan && pass && force_scan) 2181 scan = min(size, SWAP_CLUSTER_MAX); 2182 2183 switch (scan_balance) { 2184 case SCAN_EQUAL: 2185 /* Scan lists relative to size */ 2186 break; 2187 case SCAN_FRACT: 2188 /* 2189 * Scan types proportional to swappiness and 2190 * their relative recent reclaim efficiency. 2191 */ 2192 scan = div64_u64(scan * fraction[file], 2193 denominator); 2194 break; 2195 case SCAN_FILE: 2196 case SCAN_ANON: 2197 /* Scan one type exclusively */ 2198 if ((scan_balance == SCAN_FILE) != file) { 2199 size = 0; 2200 scan = 0; 2201 } 2202 break; 2203 default: 2204 /* Look ma, no brain */ 2205 BUG(); 2206 } 2207 2208 *lru_pages += size; 2209 nr[lru] = scan; 2210 2211 /* 2212 * Skip the second pass and don't force_scan, 2213 * if we found something to scan. 2214 */ 2215 some_scanned |= !!scan; 2216 } 2217 } 2218 } 2219 2220 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 2221 static void init_tlb_ubc(void) 2222 { 2223 /* 2224 * This deliberately does not clear the cpumask as it's expensive 2225 * and unnecessary. If there happens to be data in there then the 2226 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and 2227 * then will be cleared. 2228 */ 2229 current->tlb_ubc.flush_required = false; 2230 } 2231 #else 2232 static inline void init_tlb_ubc(void) 2233 { 2234 } 2235 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 2236 2237 /* 2238 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2239 */ 2240 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2241 struct scan_control *sc, unsigned long *lru_pages) 2242 { 2243 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2244 unsigned long nr[NR_LRU_LISTS]; 2245 unsigned long targets[NR_LRU_LISTS]; 2246 unsigned long nr_to_scan; 2247 enum lru_list lru; 2248 unsigned long nr_reclaimed = 0; 2249 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2250 struct blk_plug plug; 2251 bool scan_adjusted; 2252 2253 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2254 2255 /* Record the original scan target for proportional adjustments later */ 2256 memcpy(targets, nr, sizeof(nr)); 2257 2258 /* 2259 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2260 * event that can occur when there is little memory pressure e.g. 2261 * multiple streaming readers/writers. Hence, we do not abort scanning 2262 * when the requested number of pages are reclaimed when scanning at 2263 * DEF_PRIORITY on the assumption that the fact we are direct 2264 * reclaiming implies that kswapd is not keeping up and it is best to 2265 * do a batch of work at once. For memcg reclaim one check is made to 2266 * abort proportional reclaim if either the file or anon lru has already 2267 * dropped to zero at the first pass. 2268 */ 2269 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2270 sc->priority == DEF_PRIORITY); 2271 2272 init_tlb_ubc(); 2273 2274 blk_start_plug(&plug); 2275 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2276 nr[LRU_INACTIVE_FILE]) { 2277 unsigned long nr_anon, nr_file, percentage; 2278 unsigned long nr_scanned; 2279 2280 for_each_evictable_lru(lru) { 2281 if (nr[lru]) { 2282 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2283 nr[lru] -= nr_to_scan; 2284 2285 nr_reclaimed += shrink_list(lru, nr_to_scan, 2286 lruvec, sc); 2287 } 2288 } 2289 2290 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2291 continue; 2292 2293 /* 2294 * For kswapd and memcg, reclaim at least the number of pages 2295 * requested. Ensure that the anon and file LRUs are scanned 2296 * proportionally what was requested by get_scan_count(). We 2297 * stop reclaiming one LRU and reduce the amount scanning 2298 * proportional to the original scan target. 2299 */ 2300 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2301 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2302 2303 /* 2304 * It's just vindictive to attack the larger once the smaller 2305 * has gone to zero. And given the way we stop scanning the 2306 * smaller below, this makes sure that we only make one nudge 2307 * towards proportionality once we've got nr_to_reclaim. 2308 */ 2309 if (!nr_file || !nr_anon) 2310 break; 2311 2312 if (nr_file > nr_anon) { 2313 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2314 targets[LRU_ACTIVE_ANON] + 1; 2315 lru = LRU_BASE; 2316 percentage = nr_anon * 100 / scan_target; 2317 } else { 2318 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2319 targets[LRU_ACTIVE_FILE] + 1; 2320 lru = LRU_FILE; 2321 percentage = nr_file * 100 / scan_target; 2322 } 2323 2324 /* Stop scanning the smaller of the LRU */ 2325 nr[lru] = 0; 2326 nr[lru + LRU_ACTIVE] = 0; 2327 2328 /* 2329 * Recalculate the other LRU scan count based on its original 2330 * scan target and the percentage scanning already complete 2331 */ 2332 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2333 nr_scanned = targets[lru] - nr[lru]; 2334 nr[lru] = targets[lru] * (100 - percentage) / 100; 2335 nr[lru] -= min(nr[lru], nr_scanned); 2336 2337 lru += LRU_ACTIVE; 2338 nr_scanned = targets[lru] - nr[lru]; 2339 nr[lru] = targets[lru] * (100 - percentage) / 100; 2340 nr[lru] -= min(nr[lru], nr_scanned); 2341 2342 scan_adjusted = true; 2343 } 2344 blk_finish_plug(&plug); 2345 sc->nr_reclaimed += nr_reclaimed; 2346 2347 /* 2348 * Even if we did not try to evict anon pages at all, we want to 2349 * rebalance the anon lru active/inactive ratio. 2350 */ 2351 if (inactive_list_is_low(lruvec, false)) 2352 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2353 sc, LRU_ACTIVE_ANON); 2354 2355 throttle_vm_writeout(sc->gfp_mask); 2356 } 2357 2358 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2359 static bool in_reclaim_compaction(struct scan_control *sc) 2360 { 2361 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2362 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2363 sc->priority < DEF_PRIORITY - 2)) 2364 return true; 2365 2366 return false; 2367 } 2368 2369 /* 2370 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2371 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2372 * true if more pages should be reclaimed such that when the page allocator 2373 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2374 * It will give up earlier than that if there is difficulty reclaiming pages. 2375 */ 2376 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2377 unsigned long nr_reclaimed, 2378 unsigned long nr_scanned, 2379 struct scan_control *sc) 2380 { 2381 unsigned long pages_for_compaction; 2382 unsigned long inactive_lru_pages; 2383 int z; 2384 2385 /* If not in reclaim/compaction mode, stop */ 2386 if (!in_reclaim_compaction(sc)) 2387 return false; 2388 2389 /* Consider stopping depending on scan and reclaim activity */ 2390 if (sc->gfp_mask & __GFP_REPEAT) { 2391 /* 2392 * For __GFP_REPEAT allocations, stop reclaiming if the 2393 * full LRU list has been scanned and we are still failing 2394 * to reclaim pages. This full LRU scan is potentially 2395 * expensive but a __GFP_REPEAT caller really wants to succeed 2396 */ 2397 if (!nr_reclaimed && !nr_scanned) 2398 return false; 2399 } else { 2400 /* 2401 * For non-__GFP_REPEAT allocations which can presumably 2402 * fail without consequence, stop if we failed to reclaim 2403 * any pages from the last SWAP_CLUSTER_MAX number of 2404 * pages that were scanned. This will return to the 2405 * caller faster at the risk reclaim/compaction and 2406 * the resulting allocation attempt fails 2407 */ 2408 if (!nr_reclaimed) 2409 return false; 2410 } 2411 2412 /* 2413 * If we have not reclaimed enough pages for compaction and the 2414 * inactive lists are large enough, continue reclaiming 2415 */ 2416 pages_for_compaction = (2UL << sc->order); 2417 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2418 if (get_nr_swap_pages() > 0) 2419 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2420 if (sc->nr_reclaimed < pages_for_compaction && 2421 inactive_lru_pages > pages_for_compaction) 2422 return true; 2423 2424 /* If compaction would go ahead or the allocation would succeed, stop */ 2425 for (z = 0; z <= sc->reclaim_idx; z++) { 2426 struct zone *zone = &pgdat->node_zones[z]; 2427 if (!populated_zone(zone)) 2428 continue; 2429 2430 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2431 case COMPACT_PARTIAL: 2432 case COMPACT_CONTINUE: 2433 return false; 2434 default: 2435 /* check next zone */ 2436 ; 2437 } 2438 } 2439 return true; 2440 } 2441 2442 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2443 { 2444 struct reclaim_state *reclaim_state = current->reclaim_state; 2445 unsigned long nr_reclaimed, nr_scanned; 2446 bool reclaimable = false; 2447 2448 do { 2449 struct mem_cgroup *root = sc->target_mem_cgroup; 2450 struct mem_cgroup_reclaim_cookie reclaim = { 2451 .pgdat = pgdat, 2452 .priority = sc->priority, 2453 }; 2454 unsigned long node_lru_pages = 0; 2455 struct mem_cgroup *memcg; 2456 2457 nr_reclaimed = sc->nr_reclaimed; 2458 nr_scanned = sc->nr_scanned; 2459 2460 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2461 do { 2462 unsigned long lru_pages; 2463 unsigned long reclaimed; 2464 unsigned long scanned; 2465 2466 if (mem_cgroup_low(root, memcg)) { 2467 if (!sc->may_thrash) 2468 continue; 2469 mem_cgroup_events(memcg, MEMCG_LOW, 1); 2470 } 2471 2472 reclaimed = sc->nr_reclaimed; 2473 scanned = sc->nr_scanned; 2474 2475 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2476 node_lru_pages += lru_pages; 2477 2478 if (!global_reclaim(sc)) 2479 shrink_slab(sc->gfp_mask, pgdat->node_id, 2480 memcg, sc->nr_scanned - scanned, 2481 lru_pages); 2482 2483 /* Record the group's reclaim efficiency */ 2484 vmpressure(sc->gfp_mask, memcg, false, 2485 sc->nr_scanned - scanned, 2486 sc->nr_reclaimed - reclaimed); 2487 2488 /* 2489 * Direct reclaim and kswapd have to scan all memory 2490 * cgroups to fulfill the overall scan target for the 2491 * node. 2492 * 2493 * Limit reclaim, on the other hand, only cares about 2494 * nr_to_reclaim pages to be reclaimed and it will 2495 * retry with decreasing priority if one round over the 2496 * whole hierarchy is not sufficient. 2497 */ 2498 if (!global_reclaim(sc) && 2499 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2500 mem_cgroup_iter_break(root, memcg); 2501 break; 2502 } 2503 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2504 2505 /* 2506 * Shrink the slab caches in the same proportion that 2507 * the eligible LRU pages were scanned. 2508 */ 2509 if (global_reclaim(sc)) 2510 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL, 2511 sc->nr_scanned - nr_scanned, 2512 node_lru_pages); 2513 2514 if (reclaim_state) { 2515 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2516 reclaim_state->reclaimed_slab = 0; 2517 } 2518 2519 /* Record the subtree's reclaim efficiency */ 2520 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2521 sc->nr_scanned - nr_scanned, 2522 sc->nr_reclaimed - nr_reclaimed); 2523 2524 if (sc->nr_reclaimed - nr_reclaimed) 2525 reclaimable = true; 2526 2527 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2528 sc->nr_scanned - nr_scanned, sc)); 2529 2530 return reclaimable; 2531 } 2532 2533 /* 2534 * Returns true if compaction should go ahead for a high-order request, or 2535 * the high-order allocation would succeed without compaction. 2536 */ 2537 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2538 { 2539 unsigned long watermark; 2540 bool watermark_ok; 2541 2542 /* 2543 * Compaction takes time to run and there are potentially other 2544 * callers using the pages just freed. Continue reclaiming until 2545 * there is a buffer of free pages available to give compaction 2546 * a reasonable chance of completing and allocating the page 2547 */ 2548 watermark = high_wmark_pages(zone) + (2UL << sc->order); 2549 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2550 2551 /* 2552 * If compaction is deferred, reclaim up to a point where 2553 * compaction will have a chance of success when re-enabled 2554 */ 2555 if (compaction_deferred(zone, sc->order)) 2556 return watermark_ok; 2557 2558 /* 2559 * If compaction is not ready to start and allocation is not likely 2560 * to succeed without it, then keep reclaiming. 2561 */ 2562 if (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx) == COMPACT_SKIPPED) 2563 return false; 2564 2565 return watermark_ok; 2566 } 2567 2568 /* 2569 * This is the direct reclaim path, for page-allocating processes. We only 2570 * try to reclaim pages from zones which will satisfy the caller's allocation 2571 * request. 2572 * 2573 * If a zone is deemed to be full of pinned pages then just give it a light 2574 * scan then give up on it. 2575 */ 2576 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2577 { 2578 struct zoneref *z; 2579 struct zone *zone; 2580 unsigned long nr_soft_reclaimed; 2581 unsigned long nr_soft_scanned; 2582 gfp_t orig_mask; 2583 pg_data_t *last_pgdat = NULL; 2584 2585 /* 2586 * If the number of buffer_heads in the machine exceeds the maximum 2587 * allowed level, force direct reclaim to scan the highmem zone as 2588 * highmem pages could be pinning lowmem pages storing buffer_heads 2589 */ 2590 orig_mask = sc->gfp_mask; 2591 if (buffer_heads_over_limit) { 2592 sc->gfp_mask |= __GFP_HIGHMEM; 2593 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2594 } 2595 2596 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2597 sc->reclaim_idx, sc->nodemask) { 2598 if (!populated_zone(zone)) 2599 continue; 2600 2601 /* 2602 * Take care memory controller reclaiming has small influence 2603 * to global LRU. 2604 */ 2605 if (global_reclaim(sc)) { 2606 if (!cpuset_zone_allowed(zone, 2607 GFP_KERNEL | __GFP_HARDWALL)) 2608 continue; 2609 2610 if (sc->priority != DEF_PRIORITY && 2611 !pgdat_reclaimable(zone->zone_pgdat)) 2612 continue; /* Let kswapd poll it */ 2613 2614 /* 2615 * If we already have plenty of memory free for 2616 * compaction in this zone, don't free any more. 2617 * Even though compaction is invoked for any 2618 * non-zero order, only frequent costly order 2619 * reclamation is disruptive enough to become a 2620 * noticeable problem, like transparent huge 2621 * page allocations. 2622 */ 2623 if (IS_ENABLED(CONFIG_COMPACTION) && 2624 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2625 compaction_ready(zone, sc)) { 2626 sc->compaction_ready = true; 2627 continue; 2628 } 2629 2630 /* 2631 * Shrink each node in the zonelist once. If the 2632 * zonelist is ordered by zone (not the default) then a 2633 * node may be shrunk multiple times but in that case 2634 * the user prefers lower zones being preserved. 2635 */ 2636 if (zone->zone_pgdat == last_pgdat) 2637 continue; 2638 2639 /* 2640 * This steals pages from memory cgroups over softlimit 2641 * and returns the number of reclaimed pages and 2642 * scanned pages. This works for global memory pressure 2643 * and balancing, not for a memcg's limit. 2644 */ 2645 nr_soft_scanned = 0; 2646 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2647 sc->order, sc->gfp_mask, 2648 &nr_soft_scanned); 2649 sc->nr_reclaimed += nr_soft_reclaimed; 2650 sc->nr_scanned += nr_soft_scanned; 2651 /* need some check for avoid more shrink_zone() */ 2652 } 2653 2654 /* See comment about same check for global reclaim above */ 2655 if (zone->zone_pgdat == last_pgdat) 2656 continue; 2657 last_pgdat = zone->zone_pgdat; 2658 shrink_node(zone->zone_pgdat, sc); 2659 } 2660 2661 /* 2662 * Restore to original mask to avoid the impact on the caller if we 2663 * promoted it to __GFP_HIGHMEM. 2664 */ 2665 sc->gfp_mask = orig_mask; 2666 } 2667 2668 /* 2669 * This is the main entry point to direct page reclaim. 2670 * 2671 * If a full scan of the inactive list fails to free enough memory then we 2672 * are "out of memory" and something needs to be killed. 2673 * 2674 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2675 * high - the zone may be full of dirty or under-writeback pages, which this 2676 * caller can't do much about. We kick the writeback threads and take explicit 2677 * naps in the hope that some of these pages can be written. But if the 2678 * allocating task holds filesystem locks which prevent writeout this might not 2679 * work, and the allocation attempt will fail. 2680 * 2681 * returns: 0, if no pages reclaimed 2682 * else, the number of pages reclaimed 2683 */ 2684 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2685 struct scan_control *sc) 2686 { 2687 int initial_priority = sc->priority; 2688 unsigned long total_scanned = 0; 2689 unsigned long writeback_threshold; 2690 retry: 2691 delayacct_freepages_start(); 2692 2693 if (global_reclaim(sc)) 2694 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 2695 2696 do { 2697 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2698 sc->priority); 2699 sc->nr_scanned = 0; 2700 shrink_zones(zonelist, sc); 2701 2702 total_scanned += sc->nr_scanned; 2703 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2704 break; 2705 2706 if (sc->compaction_ready) 2707 break; 2708 2709 /* 2710 * If we're getting trouble reclaiming, start doing 2711 * writepage even in laptop mode. 2712 */ 2713 if (sc->priority < DEF_PRIORITY - 2) 2714 sc->may_writepage = 1; 2715 2716 /* 2717 * Try to write back as many pages as we just scanned. This 2718 * tends to cause slow streaming writers to write data to the 2719 * disk smoothly, at the dirtying rate, which is nice. But 2720 * that's undesirable in laptop mode, where we *want* lumpy 2721 * writeout. So in laptop mode, write out the whole world. 2722 */ 2723 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2724 if (total_scanned > writeback_threshold) { 2725 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2726 WB_REASON_TRY_TO_FREE_PAGES); 2727 sc->may_writepage = 1; 2728 } 2729 } while (--sc->priority >= 0); 2730 2731 delayacct_freepages_end(); 2732 2733 if (sc->nr_reclaimed) 2734 return sc->nr_reclaimed; 2735 2736 /* Aborted reclaim to try compaction? don't OOM, then */ 2737 if (sc->compaction_ready) 2738 return 1; 2739 2740 /* Untapped cgroup reserves? Don't OOM, retry. */ 2741 if (!sc->may_thrash) { 2742 sc->priority = initial_priority; 2743 sc->may_thrash = 1; 2744 goto retry; 2745 } 2746 2747 return 0; 2748 } 2749 2750 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2751 { 2752 struct zone *zone; 2753 unsigned long pfmemalloc_reserve = 0; 2754 unsigned long free_pages = 0; 2755 int i; 2756 bool wmark_ok; 2757 2758 for (i = 0; i <= ZONE_NORMAL; i++) { 2759 zone = &pgdat->node_zones[i]; 2760 if (!populated_zone(zone) || 2761 pgdat_reclaimable_pages(pgdat) == 0) 2762 continue; 2763 2764 pfmemalloc_reserve += min_wmark_pages(zone); 2765 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2766 } 2767 2768 /* If there are no reserves (unexpected config) then do not throttle */ 2769 if (!pfmemalloc_reserve) 2770 return true; 2771 2772 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2773 2774 /* kswapd must be awake if processes are being throttled */ 2775 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2776 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 2777 (enum zone_type)ZONE_NORMAL); 2778 wake_up_interruptible(&pgdat->kswapd_wait); 2779 } 2780 2781 return wmark_ok; 2782 } 2783 2784 /* 2785 * Throttle direct reclaimers if backing storage is backed by the network 2786 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2787 * depleted. kswapd will continue to make progress and wake the processes 2788 * when the low watermark is reached. 2789 * 2790 * Returns true if a fatal signal was delivered during throttling. If this 2791 * happens, the page allocator should not consider triggering the OOM killer. 2792 */ 2793 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2794 nodemask_t *nodemask) 2795 { 2796 struct zoneref *z; 2797 struct zone *zone; 2798 pg_data_t *pgdat = NULL; 2799 2800 /* 2801 * Kernel threads should not be throttled as they may be indirectly 2802 * responsible for cleaning pages necessary for reclaim to make forward 2803 * progress. kjournald for example may enter direct reclaim while 2804 * committing a transaction where throttling it could forcing other 2805 * processes to block on log_wait_commit(). 2806 */ 2807 if (current->flags & PF_KTHREAD) 2808 goto out; 2809 2810 /* 2811 * If a fatal signal is pending, this process should not throttle. 2812 * It should return quickly so it can exit and free its memory 2813 */ 2814 if (fatal_signal_pending(current)) 2815 goto out; 2816 2817 /* 2818 * Check if the pfmemalloc reserves are ok by finding the first node 2819 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2820 * GFP_KERNEL will be required for allocating network buffers when 2821 * swapping over the network so ZONE_HIGHMEM is unusable. 2822 * 2823 * Throttling is based on the first usable node and throttled processes 2824 * wait on a queue until kswapd makes progress and wakes them. There 2825 * is an affinity then between processes waking up and where reclaim 2826 * progress has been made assuming the process wakes on the same node. 2827 * More importantly, processes running on remote nodes will not compete 2828 * for remote pfmemalloc reserves and processes on different nodes 2829 * should make reasonable progress. 2830 */ 2831 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2832 gfp_zone(gfp_mask), nodemask) { 2833 if (zone_idx(zone) > ZONE_NORMAL) 2834 continue; 2835 2836 /* Throttle based on the first usable node */ 2837 pgdat = zone->zone_pgdat; 2838 if (pfmemalloc_watermark_ok(pgdat)) 2839 goto out; 2840 break; 2841 } 2842 2843 /* If no zone was usable by the allocation flags then do not throttle */ 2844 if (!pgdat) 2845 goto out; 2846 2847 /* Account for the throttling */ 2848 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2849 2850 /* 2851 * If the caller cannot enter the filesystem, it's possible that it 2852 * is due to the caller holding an FS lock or performing a journal 2853 * transaction in the case of a filesystem like ext[3|4]. In this case, 2854 * it is not safe to block on pfmemalloc_wait as kswapd could be 2855 * blocked waiting on the same lock. Instead, throttle for up to a 2856 * second before continuing. 2857 */ 2858 if (!(gfp_mask & __GFP_FS)) { 2859 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2860 pfmemalloc_watermark_ok(pgdat), HZ); 2861 2862 goto check_pending; 2863 } 2864 2865 /* Throttle until kswapd wakes the process */ 2866 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2867 pfmemalloc_watermark_ok(pgdat)); 2868 2869 check_pending: 2870 if (fatal_signal_pending(current)) 2871 return true; 2872 2873 out: 2874 return false; 2875 } 2876 2877 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2878 gfp_t gfp_mask, nodemask_t *nodemask) 2879 { 2880 unsigned long nr_reclaimed; 2881 struct scan_control sc = { 2882 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2883 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2884 .reclaim_idx = gfp_zone(gfp_mask), 2885 .order = order, 2886 .nodemask = nodemask, 2887 .priority = DEF_PRIORITY, 2888 .may_writepage = !laptop_mode, 2889 .may_unmap = 1, 2890 .may_swap = 1, 2891 }; 2892 2893 /* 2894 * Do not enter reclaim if fatal signal was delivered while throttled. 2895 * 1 is returned so that the page allocator does not OOM kill at this 2896 * point. 2897 */ 2898 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2899 return 1; 2900 2901 trace_mm_vmscan_direct_reclaim_begin(order, 2902 sc.may_writepage, 2903 gfp_mask, 2904 sc.reclaim_idx); 2905 2906 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2907 2908 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2909 2910 return nr_reclaimed; 2911 } 2912 2913 #ifdef CONFIG_MEMCG 2914 2915 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 2916 gfp_t gfp_mask, bool noswap, 2917 pg_data_t *pgdat, 2918 unsigned long *nr_scanned) 2919 { 2920 struct scan_control sc = { 2921 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2922 .target_mem_cgroup = memcg, 2923 .may_writepage = !laptop_mode, 2924 .may_unmap = 1, 2925 .reclaim_idx = MAX_NR_ZONES - 1, 2926 .may_swap = !noswap, 2927 }; 2928 unsigned long lru_pages; 2929 2930 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2931 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2932 2933 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 2934 sc.may_writepage, 2935 sc.gfp_mask, 2936 sc.reclaim_idx); 2937 2938 /* 2939 * NOTE: Although we can get the priority field, using it 2940 * here is not a good idea, since it limits the pages we can scan. 2941 * if we don't reclaim here, the shrink_node from balance_pgdat 2942 * will pick up pages from other mem cgroup's as well. We hack 2943 * the priority and make it zero. 2944 */ 2945 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 2946 2947 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2948 2949 *nr_scanned = sc.nr_scanned; 2950 return sc.nr_reclaimed; 2951 } 2952 2953 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 2954 unsigned long nr_pages, 2955 gfp_t gfp_mask, 2956 bool may_swap) 2957 { 2958 struct zonelist *zonelist; 2959 unsigned long nr_reclaimed; 2960 int nid; 2961 struct scan_control sc = { 2962 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 2963 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2964 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 2965 .reclaim_idx = MAX_NR_ZONES - 1, 2966 .target_mem_cgroup = memcg, 2967 .priority = DEF_PRIORITY, 2968 .may_writepage = !laptop_mode, 2969 .may_unmap = 1, 2970 .may_swap = may_swap, 2971 }; 2972 2973 /* 2974 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 2975 * take care of from where we get pages. So the node where we start the 2976 * scan does not need to be the current node. 2977 */ 2978 nid = mem_cgroup_select_victim_node(memcg); 2979 2980 zonelist = NODE_DATA(nid)->node_zonelists; 2981 2982 trace_mm_vmscan_memcg_reclaim_begin(0, 2983 sc.may_writepage, 2984 sc.gfp_mask, 2985 sc.reclaim_idx); 2986 2987 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2988 2989 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2990 2991 return nr_reclaimed; 2992 } 2993 #endif 2994 2995 static void age_active_anon(struct pglist_data *pgdat, 2996 struct scan_control *sc) 2997 { 2998 struct mem_cgroup *memcg; 2999 3000 if (!total_swap_pages) 3001 return; 3002 3003 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3004 do { 3005 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3006 3007 if (inactive_list_is_low(lruvec, false)) 3008 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3009 sc, LRU_ACTIVE_ANON); 3010 3011 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3012 } while (memcg); 3013 } 3014 3015 static bool zone_balanced(struct zone *zone, int order, int classzone_idx) 3016 { 3017 unsigned long mark = high_wmark_pages(zone); 3018 3019 if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3020 return false; 3021 3022 /* 3023 * If any eligible zone is balanced then the node is not considered 3024 * to be congested or dirty 3025 */ 3026 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags); 3027 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags); 3028 3029 return true; 3030 } 3031 3032 /* 3033 * Prepare kswapd for sleeping. This verifies that there are no processes 3034 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3035 * 3036 * Returns true if kswapd is ready to sleep 3037 */ 3038 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3039 { 3040 int i; 3041 3042 /* 3043 * The throttled processes are normally woken up in balance_pgdat() as 3044 * soon as pfmemalloc_watermark_ok() is true. But there is a potential 3045 * race between when kswapd checks the watermarks and a process gets 3046 * throttled. There is also a potential race if processes get 3047 * throttled, kswapd wakes, a large process exits thereby balancing the 3048 * zones, which causes kswapd to exit balance_pgdat() before reaching 3049 * the wake up checks. If kswapd is going to sleep, no process should 3050 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3051 * the wake up is premature, processes will wake kswapd and get 3052 * throttled again. The difference from wake ups in balance_pgdat() is 3053 * that here we are under prepare_to_wait(). 3054 */ 3055 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3056 wake_up_all(&pgdat->pfmemalloc_wait); 3057 3058 for (i = 0; i <= classzone_idx; i++) { 3059 struct zone *zone = pgdat->node_zones + i; 3060 3061 if (!populated_zone(zone)) 3062 continue; 3063 3064 if (!zone_balanced(zone, order, classzone_idx)) 3065 return false; 3066 } 3067 3068 return true; 3069 } 3070 3071 /* 3072 * kswapd shrinks a node of pages that are at or below the highest usable 3073 * zone that is currently unbalanced. 3074 * 3075 * Returns true if kswapd scanned at least the requested number of pages to 3076 * reclaim or if the lack of progress was due to pages under writeback. 3077 * This is used to determine if the scanning priority needs to be raised. 3078 */ 3079 static bool kswapd_shrink_node(pg_data_t *pgdat, 3080 struct scan_control *sc) 3081 { 3082 struct zone *zone; 3083 int z; 3084 3085 /* Reclaim a number of pages proportional to the number of zones */ 3086 sc->nr_to_reclaim = 0; 3087 for (z = 0; z <= sc->reclaim_idx; z++) { 3088 zone = pgdat->node_zones + z; 3089 if (!populated_zone(zone)) 3090 continue; 3091 3092 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3093 } 3094 3095 /* 3096 * Historically care was taken to put equal pressure on all zones but 3097 * now pressure is applied based on node LRU order. 3098 */ 3099 shrink_node(pgdat, sc); 3100 3101 /* 3102 * Fragmentation may mean that the system cannot be rebalanced for 3103 * high-order allocations. If twice the allocation size has been 3104 * reclaimed then recheck watermarks only at order-0 to prevent 3105 * excessive reclaim. Assume that a process requested a high-order 3106 * can direct reclaim/compact. 3107 */ 3108 if (sc->order && sc->nr_reclaimed >= 2UL << sc->order) 3109 sc->order = 0; 3110 3111 return sc->nr_scanned >= sc->nr_to_reclaim; 3112 } 3113 3114 /* 3115 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3116 * that are eligible for use by the caller until at least one zone is 3117 * balanced. 3118 * 3119 * Returns the order kswapd finished reclaiming at. 3120 * 3121 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3122 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3123 * found to have free_pages <= high_wmark_pages(zone), any page is that zone 3124 * or lower is eligible for reclaim until at least one usable zone is 3125 * balanced. 3126 */ 3127 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3128 { 3129 int i; 3130 unsigned long nr_soft_reclaimed; 3131 unsigned long nr_soft_scanned; 3132 struct zone *zone; 3133 struct scan_control sc = { 3134 .gfp_mask = GFP_KERNEL, 3135 .order = order, 3136 .priority = DEF_PRIORITY, 3137 .may_writepage = !laptop_mode, 3138 .may_unmap = 1, 3139 .may_swap = 1, 3140 }; 3141 count_vm_event(PAGEOUTRUN); 3142 3143 do { 3144 bool raise_priority = true; 3145 3146 sc.nr_reclaimed = 0; 3147 sc.reclaim_idx = classzone_idx; 3148 3149 /* 3150 * If the number of buffer_heads exceeds the maximum allowed 3151 * then consider reclaiming from all zones. This has a dual 3152 * purpose -- on 64-bit systems it is expected that 3153 * buffer_heads are stripped during active rotation. On 32-bit 3154 * systems, highmem pages can pin lowmem memory and shrinking 3155 * buffers can relieve lowmem pressure. Reclaim may still not 3156 * go ahead if all eligible zones for the original allocation 3157 * request are balanced to avoid excessive reclaim from kswapd. 3158 */ 3159 if (buffer_heads_over_limit) { 3160 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3161 zone = pgdat->node_zones + i; 3162 if (!populated_zone(zone)) 3163 continue; 3164 3165 sc.reclaim_idx = i; 3166 break; 3167 } 3168 } 3169 3170 /* 3171 * Only reclaim if there are no eligible zones. Check from 3172 * high to low zone as allocations prefer higher zones. 3173 * Scanning from low to high zone would allow congestion to be 3174 * cleared during a very small window when a small low 3175 * zone was balanced even under extreme pressure when the 3176 * overall node may be congested. Note that sc.reclaim_idx 3177 * is not used as buffer_heads_over_limit may have adjusted 3178 * it. 3179 */ 3180 for (i = classzone_idx; i >= 0; i--) { 3181 zone = pgdat->node_zones + i; 3182 if (!populated_zone(zone)) 3183 continue; 3184 3185 if (zone_balanced(zone, sc.order, classzone_idx)) 3186 goto out; 3187 } 3188 3189 /* 3190 * Do some background aging of the anon list, to give 3191 * pages a chance to be referenced before reclaiming. All 3192 * pages are rotated regardless of classzone as this is 3193 * about consistent aging. 3194 */ 3195 age_active_anon(pgdat, &sc); 3196 3197 /* 3198 * If we're getting trouble reclaiming, start doing writepage 3199 * even in laptop mode. 3200 */ 3201 if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat)) 3202 sc.may_writepage = 1; 3203 3204 /* Call soft limit reclaim before calling shrink_node. */ 3205 sc.nr_scanned = 0; 3206 nr_soft_scanned = 0; 3207 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3208 sc.gfp_mask, &nr_soft_scanned); 3209 sc.nr_reclaimed += nr_soft_reclaimed; 3210 3211 /* 3212 * There should be no need to raise the scanning priority if 3213 * enough pages are already being scanned that that high 3214 * watermark would be met at 100% efficiency. 3215 */ 3216 if (kswapd_shrink_node(pgdat, &sc)) 3217 raise_priority = false; 3218 3219 /* 3220 * If the low watermark is met there is no need for processes 3221 * to be throttled on pfmemalloc_wait as they should not be 3222 * able to safely make forward progress. Wake them 3223 */ 3224 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3225 pfmemalloc_watermark_ok(pgdat)) 3226 wake_up_all(&pgdat->pfmemalloc_wait); 3227 3228 /* Check if kswapd should be suspending */ 3229 if (try_to_freeze() || kthread_should_stop()) 3230 break; 3231 3232 /* 3233 * Raise priority if scanning rate is too low or there was no 3234 * progress in reclaiming pages 3235 */ 3236 if (raise_priority || !sc.nr_reclaimed) 3237 sc.priority--; 3238 } while (sc.priority >= 1); 3239 3240 out: 3241 /* 3242 * Return the order kswapd stopped reclaiming at as 3243 * prepare_kswapd_sleep() takes it into account. If another caller 3244 * entered the allocator slow path while kswapd was awake, order will 3245 * remain at the higher level. 3246 */ 3247 return sc.order; 3248 } 3249 3250 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3251 unsigned int classzone_idx) 3252 { 3253 long remaining = 0; 3254 DEFINE_WAIT(wait); 3255 3256 if (freezing(current) || kthread_should_stop()) 3257 return; 3258 3259 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3260 3261 /* Try to sleep for a short interval */ 3262 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3263 /* 3264 * Compaction records what page blocks it recently failed to 3265 * isolate pages from and skips them in the future scanning. 3266 * When kswapd is going to sleep, it is reasonable to assume 3267 * that pages and compaction may succeed so reset the cache. 3268 */ 3269 reset_isolation_suitable(pgdat); 3270 3271 /* 3272 * We have freed the memory, now we should compact it to make 3273 * allocation of the requested order possible. 3274 */ 3275 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3276 3277 remaining = schedule_timeout(HZ/10); 3278 3279 /* 3280 * If woken prematurely then reset kswapd_classzone_idx and 3281 * order. The values will either be from a wakeup request or 3282 * the previous request that slept prematurely. 3283 */ 3284 if (remaining) { 3285 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx); 3286 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3287 } 3288 3289 finish_wait(&pgdat->kswapd_wait, &wait); 3290 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3291 } 3292 3293 /* 3294 * After a short sleep, check if it was a premature sleep. If not, then 3295 * go fully to sleep until explicitly woken up. 3296 */ 3297 if (!remaining && 3298 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3299 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3300 3301 /* 3302 * vmstat counters are not perfectly accurate and the estimated 3303 * value for counters such as NR_FREE_PAGES can deviate from the 3304 * true value by nr_online_cpus * threshold. To avoid the zone 3305 * watermarks being breached while under pressure, we reduce the 3306 * per-cpu vmstat threshold while kswapd is awake and restore 3307 * them before going back to sleep. 3308 */ 3309 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3310 3311 if (!kthread_should_stop()) 3312 schedule(); 3313 3314 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3315 } else { 3316 if (remaining) 3317 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3318 else 3319 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3320 } 3321 finish_wait(&pgdat->kswapd_wait, &wait); 3322 } 3323 3324 /* 3325 * The background pageout daemon, started as a kernel thread 3326 * from the init process. 3327 * 3328 * This basically trickles out pages so that we have _some_ 3329 * free memory available even if there is no other activity 3330 * that frees anything up. This is needed for things like routing 3331 * etc, where we otherwise might have all activity going on in 3332 * asynchronous contexts that cannot page things out. 3333 * 3334 * If there are applications that are active memory-allocators 3335 * (most normal use), this basically shouldn't matter. 3336 */ 3337 static int kswapd(void *p) 3338 { 3339 unsigned int alloc_order, reclaim_order, classzone_idx; 3340 pg_data_t *pgdat = (pg_data_t*)p; 3341 struct task_struct *tsk = current; 3342 3343 struct reclaim_state reclaim_state = { 3344 .reclaimed_slab = 0, 3345 }; 3346 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3347 3348 lockdep_set_current_reclaim_state(GFP_KERNEL); 3349 3350 if (!cpumask_empty(cpumask)) 3351 set_cpus_allowed_ptr(tsk, cpumask); 3352 current->reclaim_state = &reclaim_state; 3353 3354 /* 3355 * Tell the memory management that we're a "memory allocator", 3356 * and that if we need more memory we should get access to it 3357 * regardless (see "__alloc_pages()"). "kswapd" should 3358 * never get caught in the normal page freeing logic. 3359 * 3360 * (Kswapd normally doesn't need memory anyway, but sometimes 3361 * you need a small amount of memory in order to be able to 3362 * page out something else, and this flag essentially protects 3363 * us from recursively trying to free more memory as we're 3364 * trying to free the first piece of memory in the first place). 3365 */ 3366 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3367 set_freezable(); 3368 3369 pgdat->kswapd_order = alloc_order = reclaim_order = 0; 3370 pgdat->kswapd_classzone_idx = classzone_idx = 0; 3371 for ( ; ; ) { 3372 bool ret; 3373 3374 kswapd_try_sleep: 3375 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3376 classzone_idx); 3377 3378 /* Read the new order and classzone_idx */ 3379 alloc_order = reclaim_order = pgdat->kswapd_order; 3380 classzone_idx = pgdat->kswapd_classzone_idx; 3381 pgdat->kswapd_order = 0; 3382 pgdat->kswapd_classzone_idx = 0; 3383 3384 ret = try_to_freeze(); 3385 if (kthread_should_stop()) 3386 break; 3387 3388 /* 3389 * We can speed up thawing tasks if we don't call balance_pgdat 3390 * after returning from the refrigerator 3391 */ 3392 if (ret) 3393 continue; 3394 3395 /* 3396 * Reclaim begins at the requested order but if a high-order 3397 * reclaim fails then kswapd falls back to reclaiming for 3398 * order-0. If that happens, kswapd will consider sleeping 3399 * for the order it finished reclaiming at (reclaim_order) 3400 * but kcompactd is woken to compact for the original 3401 * request (alloc_order). 3402 */ 3403 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3404 alloc_order); 3405 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3406 if (reclaim_order < alloc_order) 3407 goto kswapd_try_sleep; 3408 3409 alloc_order = reclaim_order = pgdat->kswapd_order; 3410 classzone_idx = pgdat->kswapd_classzone_idx; 3411 } 3412 3413 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3414 current->reclaim_state = NULL; 3415 lockdep_clear_current_reclaim_state(); 3416 3417 return 0; 3418 } 3419 3420 /* 3421 * A zone is low on free memory, so wake its kswapd task to service it. 3422 */ 3423 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3424 { 3425 pg_data_t *pgdat; 3426 int z; 3427 3428 if (!populated_zone(zone)) 3429 return; 3430 3431 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) 3432 return; 3433 pgdat = zone->zone_pgdat; 3434 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx); 3435 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3436 if (!waitqueue_active(&pgdat->kswapd_wait)) 3437 return; 3438 3439 /* Only wake kswapd if all zones are unbalanced */ 3440 for (z = 0; z <= classzone_idx; z++) { 3441 zone = pgdat->node_zones + z; 3442 if (!populated_zone(zone)) 3443 continue; 3444 3445 if (zone_balanced(zone, order, classzone_idx)) 3446 return; 3447 } 3448 3449 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3450 wake_up_interruptible(&pgdat->kswapd_wait); 3451 } 3452 3453 #ifdef CONFIG_HIBERNATION 3454 /* 3455 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3456 * freed pages. 3457 * 3458 * Rather than trying to age LRUs the aim is to preserve the overall 3459 * LRU order by reclaiming preferentially 3460 * inactive > active > active referenced > active mapped 3461 */ 3462 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3463 { 3464 struct reclaim_state reclaim_state; 3465 struct scan_control sc = { 3466 .nr_to_reclaim = nr_to_reclaim, 3467 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3468 .reclaim_idx = MAX_NR_ZONES - 1, 3469 .priority = DEF_PRIORITY, 3470 .may_writepage = 1, 3471 .may_unmap = 1, 3472 .may_swap = 1, 3473 .hibernation_mode = 1, 3474 }; 3475 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3476 struct task_struct *p = current; 3477 unsigned long nr_reclaimed; 3478 3479 p->flags |= PF_MEMALLOC; 3480 lockdep_set_current_reclaim_state(sc.gfp_mask); 3481 reclaim_state.reclaimed_slab = 0; 3482 p->reclaim_state = &reclaim_state; 3483 3484 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3485 3486 p->reclaim_state = NULL; 3487 lockdep_clear_current_reclaim_state(); 3488 p->flags &= ~PF_MEMALLOC; 3489 3490 return nr_reclaimed; 3491 } 3492 #endif /* CONFIG_HIBERNATION */ 3493 3494 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3495 not required for correctness. So if the last cpu in a node goes 3496 away, we get changed to run anywhere: as the first one comes back, 3497 restore their cpu bindings. */ 3498 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 3499 void *hcpu) 3500 { 3501 int nid; 3502 3503 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 3504 for_each_node_state(nid, N_MEMORY) { 3505 pg_data_t *pgdat = NODE_DATA(nid); 3506 const struct cpumask *mask; 3507 3508 mask = cpumask_of_node(pgdat->node_id); 3509 3510 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3511 /* One of our CPUs online: restore mask */ 3512 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3513 } 3514 } 3515 return NOTIFY_OK; 3516 } 3517 3518 /* 3519 * This kswapd start function will be called by init and node-hot-add. 3520 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3521 */ 3522 int kswapd_run(int nid) 3523 { 3524 pg_data_t *pgdat = NODE_DATA(nid); 3525 int ret = 0; 3526 3527 if (pgdat->kswapd) 3528 return 0; 3529 3530 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3531 if (IS_ERR(pgdat->kswapd)) { 3532 /* failure at boot is fatal */ 3533 BUG_ON(system_state == SYSTEM_BOOTING); 3534 pr_err("Failed to start kswapd on node %d\n", nid); 3535 ret = PTR_ERR(pgdat->kswapd); 3536 pgdat->kswapd = NULL; 3537 } 3538 return ret; 3539 } 3540 3541 /* 3542 * Called by memory hotplug when all memory in a node is offlined. Caller must 3543 * hold mem_hotplug_begin/end(). 3544 */ 3545 void kswapd_stop(int nid) 3546 { 3547 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3548 3549 if (kswapd) { 3550 kthread_stop(kswapd); 3551 NODE_DATA(nid)->kswapd = NULL; 3552 } 3553 } 3554 3555 static int __init kswapd_init(void) 3556 { 3557 int nid; 3558 3559 swap_setup(); 3560 for_each_node_state(nid, N_MEMORY) 3561 kswapd_run(nid); 3562 hotcpu_notifier(cpu_callback, 0); 3563 return 0; 3564 } 3565 3566 module_init(kswapd_init) 3567 3568 #ifdef CONFIG_NUMA 3569 /* 3570 * Node reclaim mode 3571 * 3572 * If non-zero call node_reclaim when the number of free pages falls below 3573 * the watermarks. 3574 */ 3575 int node_reclaim_mode __read_mostly; 3576 3577 #define RECLAIM_OFF 0 3578 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3579 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3580 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 3581 3582 /* 3583 * Priority for NODE_RECLAIM. This determines the fraction of pages 3584 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3585 * a zone. 3586 */ 3587 #define NODE_RECLAIM_PRIORITY 4 3588 3589 /* 3590 * Percentage of pages in a zone that must be unmapped for node_reclaim to 3591 * occur. 3592 */ 3593 int sysctl_min_unmapped_ratio = 1; 3594 3595 /* 3596 * If the number of slab pages in a zone grows beyond this percentage then 3597 * slab reclaim needs to occur. 3598 */ 3599 int sysctl_min_slab_ratio = 5; 3600 3601 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 3602 { 3603 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 3604 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 3605 node_page_state(pgdat, NR_ACTIVE_FILE); 3606 3607 /* 3608 * It's possible for there to be more file mapped pages than 3609 * accounted for by the pages on the file LRU lists because 3610 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3611 */ 3612 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3613 } 3614 3615 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3616 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 3617 { 3618 unsigned long nr_pagecache_reclaimable; 3619 unsigned long delta = 0; 3620 3621 /* 3622 * If RECLAIM_UNMAP is set, then all file pages are considered 3623 * potentially reclaimable. Otherwise, we have to worry about 3624 * pages like swapcache and node_unmapped_file_pages() provides 3625 * a better estimate 3626 */ 3627 if (node_reclaim_mode & RECLAIM_UNMAP) 3628 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 3629 else 3630 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 3631 3632 /* If we can't clean pages, remove dirty pages from consideration */ 3633 if (!(node_reclaim_mode & RECLAIM_WRITE)) 3634 delta += node_page_state(pgdat, NR_FILE_DIRTY); 3635 3636 /* Watch for any possible underflows due to delta */ 3637 if (unlikely(delta > nr_pagecache_reclaimable)) 3638 delta = nr_pagecache_reclaimable; 3639 3640 return nr_pagecache_reclaimable - delta; 3641 } 3642 3643 /* 3644 * Try to free up some pages from this node through reclaim. 3645 */ 3646 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3647 { 3648 /* Minimum pages needed in order to stay on node */ 3649 const unsigned long nr_pages = 1 << order; 3650 struct task_struct *p = current; 3651 struct reclaim_state reclaim_state; 3652 int classzone_idx = gfp_zone(gfp_mask); 3653 struct scan_control sc = { 3654 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3655 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3656 .order = order, 3657 .priority = NODE_RECLAIM_PRIORITY, 3658 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 3659 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 3660 .may_swap = 1, 3661 .reclaim_idx = classzone_idx, 3662 }; 3663 3664 cond_resched(); 3665 /* 3666 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 3667 * and we also need to be able to write out pages for RECLAIM_WRITE 3668 * and RECLAIM_UNMAP. 3669 */ 3670 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3671 lockdep_set_current_reclaim_state(gfp_mask); 3672 reclaim_state.reclaimed_slab = 0; 3673 p->reclaim_state = &reclaim_state; 3674 3675 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 3676 /* 3677 * Free memory by calling shrink zone with increasing 3678 * priorities until we have enough memory freed. 3679 */ 3680 do { 3681 shrink_node(pgdat, &sc); 3682 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3683 } 3684 3685 p->reclaim_state = NULL; 3686 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3687 lockdep_clear_current_reclaim_state(); 3688 return sc.nr_reclaimed >= nr_pages; 3689 } 3690 3691 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3692 { 3693 int ret; 3694 3695 /* 3696 * Node reclaim reclaims unmapped file backed pages and 3697 * slab pages if we are over the defined limits. 3698 * 3699 * A small portion of unmapped file backed pages is needed for 3700 * file I/O otherwise pages read by file I/O will be immediately 3701 * thrown out if the node is overallocated. So we do not reclaim 3702 * if less than a specified percentage of the node is used by 3703 * unmapped file backed pages. 3704 */ 3705 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 3706 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 3707 return NODE_RECLAIM_FULL; 3708 3709 if (!pgdat_reclaimable(pgdat)) 3710 return NODE_RECLAIM_FULL; 3711 3712 /* 3713 * Do not scan if the allocation should not be delayed. 3714 */ 3715 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 3716 return NODE_RECLAIM_NOSCAN; 3717 3718 /* 3719 * Only run node reclaim on the local node or on nodes that do not 3720 * have associated processors. This will favor the local processor 3721 * over remote processors and spread off node memory allocations 3722 * as wide as possible. 3723 */ 3724 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 3725 return NODE_RECLAIM_NOSCAN; 3726 3727 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 3728 return NODE_RECLAIM_NOSCAN; 3729 3730 ret = __node_reclaim(pgdat, gfp_mask, order); 3731 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 3732 3733 if (!ret) 3734 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3735 3736 return ret; 3737 } 3738 #endif 3739 3740 /* 3741 * page_evictable - test whether a page is evictable 3742 * @page: the page to test 3743 * 3744 * Test whether page is evictable--i.e., should be placed on active/inactive 3745 * lists vs unevictable list. 3746 * 3747 * Reasons page might not be evictable: 3748 * (1) page's mapping marked unevictable 3749 * (2) page is part of an mlocked VMA 3750 * 3751 */ 3752 int page_evictable(struct page *page) 3753 { 3754 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3755 } 3756 3757 #ifdef CONFIG_SHMEM 3758 /** 3759 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3760 * @pages: array of pages to check 3761 * @nr_pages: number of pages to check 3762 * 3763 * Checks pages for evictability and moves them to the appropriate lru list. 3764 * 3765 * This function is only used for SysV IPC SHM_UNLOCK. 3766 */ 3767 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3768 { 3769 struct lruvec *lruvec; 3770 struct zone *zone = NULL; 3771 int pgscanned = 0; 3772 int pgrescued = 0; 3773 int i; 3774 3775 for (i = 0; i < nr_pages; i++) { 3776 struct page *page = pages[i]; 3777 struct zone *pagezone; 3778 3779 pgscanned++; 3780 pagezone = page_zone(page); 3781 if (pagezone != zone) { 3782 if (zone) 3783 spin_unlock_irq(zone_lru_lock(zone)); 3784 zone = pagezone; 3785 spin_lock_irq(zone_lru_lock(zone)); 3786 } 3787 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 3788 3789 if (!PageLRU(page) || !PageUnevictable(page)) 3790 continue; 3791 3792 if (page_evictable(page)) { 3793 enum lru_list lru = page_lru_base_type(page); 3794 3795 VM_BUG_ON_PAGE(PageActive(page), page); 3796 ClearPageUnevictable(page); 3797 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3798 add_page_to_lru_list(page, lruvec, lru); 3799 pgrescued++; 3800 } 3801 } 3802 3803 if (zone) { 3804 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3805 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3806 spin_unlock_irq(zone_lru_lock(zone)); 3807 } 3808 } 3809 #endif /* CONFIG_SHMEM */ 3810