1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/rwsem.h> 39 #include <linux/delay.h> 40 #include <linux/kthread.h> 41 #include <linux/freezer.h> 42 #include <linux/memcontrol.h> 43 #include <linux/migrate.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/memory-tiers.h> 47 #include <linux/oom.h> 48 #include <linux/pagevec.h> 49 #include <linux/prefetch.h> 50 #include <linux/printk.h> 51 #include <linux/dax.h> 52 #include <linux/psi.h> 53 #include <linux/pagewalk.h> 54 #include <linux/shmem_fs.h> 55 #include <linux/ctype.h> 56 #include <linux/debugfs.h> 57 #include <linux/khugepaged.h> 58 59 #include <asm/tlbflush.h> 60 #include <asm/div64.h> 61 62 #include <linux/swapops.h> 63 #include <linux/balloon_compaction.h> 64 #include <linux/sched/sysctl.h> 65 66 #include "internal.h" 67 #include "swap.h" 68 69 #define CREATE_TRACE_POINTS 70 #include <trace/events/vmscan.h> 71 72 struct scan_control { 73 /* How many pages shrink_list() should reclaim */ 74 unsigned long nr_to_reclaim; 75 76 /* 77 * Nodemask of nodes allowed by the caller. If NULL, all nodes 78 * are scanned. 79 */ 80 nodemask_t *nodemask; 81 82 /* 83 * The memory cgroup that hit its limit and as a result is the 84 * primary target of this reclaim invocation. 85 */ 86 struct mem_cgroup *target_mem_cgroup; 87 88 /* 89 * Scan pressure balancing between anon and file LRUs 90 */ 91 unsigned long anon_cost; 92 unsigned long file_cost; 93 94 /* Can active folios be deactivated as part of reclaim? */ 95 #define DEACTIVATE_ANON 1 96 #define DEACTIVATE_FILE 2 97 unsigned int may_deactivate:2; 98 unsigned int force_deactivate:1; 99 unsigned int skipped_deactivate:1; 100 101 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 102 unsigned int may_writepage:1; 103 104 /* Can mapped folios be reclaimed? */ 105 unsigned int may_unmap:1; 106 107 /* Can folios be swapped as part of reclaim? */ 108 unsigned int may_swap:1; 109 110 /* Proactive reclaim invoked by userspace through memory.reclaim */ 111 unsigned int proactive:1; 112 113 /* 114 * Cgroup memory below memory.low is protected as long as we 115 * don't threaten to OOM. If any cgroup is reclaimed at 116 * reduced force or passed over entirely due to its memory.low 117 * setting (memcg_low_skipped), and nothing is reclaimed as a 118 * result, then go back for one more cycle that reclaims the protected 119 * memory (memcg_low_reclaim) to avert OOM. 120 */ 121 unsigned int memcg_low_reclaim:1; 122 unsigned int memcg_low_skipped:1; 123 124 unsigned int hibernation_mode:1; 125 126 /* One of the zones is ready for compaction */ 127 unsigned int compaction_ready:1; 128 129 /* There is easily reclaimable cold cache in the current node */ 130 unsigned int cache_trim_mode:1; 131 132 /* The file folios on the current node are dangerously low */ 133 unsigned int file_is_tiny:1; 134 135 /* Always discard instead of demoting to lower tier memory */ 136 unsigned int no_demotion:1; 137 138 #ifdef CONFIG_LRU_GEN 139 /* help kswapd make better choices among multiple memcgs */ 140 unsigned long last_reclaimed; 141 #endif 142 143 /* Allocation order */ 144 s8 order; 145 146 /* Scan (total_size >> priority) pages at once */ 147 s8 priority; 148 149 /* The highest zone to isolate folios for reclaim from */ 150 s8 reclaim_idx; 151 152 /* This context's GFP mask */ 153 gfp_t gfp_mask; 154 155 /* Incremented by the number of inactive pages that were scanned */ 156 unsigned long nr_scanned; 157 158 /* Number of pages freed so far during a call to shrink_zones() */ 159 unsigned long nr_reclaimed; 160 161 struct { 162 unsigned int dirty; 163 unsigned int unqueued_dirty; 164 unsigned int congested; 165 unsigned int writeback; 166 unsigned int immediate; 167 unsigned int file_taken; 168 unsigned int taken; 169 } nr; 170 171 /* for recording the reclaimed slab by now */ 172 struct reclaim_state reclaim_state; 173 }; 174 175 #ifdef ARCH_HAS_PREFETCHW 176 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 177 do { \ 178 if ((_folio)->lru.prev != _base) { \ 179 struct folio *prev; \ 180 \ 181 prev = lru_to_folio(&(_folio->lru)); \ 182 prefetchw(&prev->_field); \ 183 } \ 184 } while (0) 185 #else 186 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 187 #endif 188 189 /* 190 * From 0 .. 200. Higher means more swappy. 191 */ 192 int vm_swappiness = 60; 193 194 static void set_task_reclaim_state(struct task_struct *task, 195 struct reclaim_state *rs) 196 { 197 /* Check for an overwrite */ 198 WARN_ON_ONCE(rs && task->reclaim_state); 199 200 /* Check for the nulling of an already-nulled member */ 201 WARN_ON_ONCE(!rs && !task->reclaim_state); 202 203 task->reclaim_state = rs; 204 } 205 206 LIST_HEAD(shrinker_list); 207 DECLARE_RWSEM(shrinker_rwsem); 208 209 #ifdef CONFIG_MEMCG 210 static int shrinker_nr_max; 211 212 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ 213 static inline int shrinker_map_size(int nr_items) 214 { 215 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); 216 } 217 218 static inline int shrinker_defer_size(int nr_items) 219 { 220 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); 221 } 222 223 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, 224 int nid) 225 { 226 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info, 227 lockdep_is_held(&shrinker_rwsem)); 228 } 229 230 static int expand_one_shrinker_info(struct mem_cgroup *memcg, 231 int map_size, int defer_size, 232 int old_map_size, int old_defer_size) 233 { 234 struct shrinker_info *new, *old; 235 struct mem_cgroup_per_node *pn; 236 int nid; 237 int size = map_size + defer_size; 238 239 for_each_node(nid) { 240 pn = memcg->nodeinfo[nid]; 241 old = shrinker_info_protected(memcg, nid); 242 /* Not yet online memcg */ 243 if (!old) 244 return 0; 245 246 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 247 if (!new) 248 return -ENOMEM; 249 250 new->nr_deferred = (atomic_long_t *)(new + 1); 251 new->map = (void *)new->nr_deferred + defer_size; 252 253 /* map: set all old bits, clear all new bits */ 254 memset(new->map, (int)0xff, old_map_size); 255 memset((void *)new->map + old_map_size, 0, map_size - old_map_size); 256 /* nr_deferred: copy old values, clear all new values */ 257 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); 258 memset((void *)new->nr_deferred + old_defer_size, 0, 259 defer_size - old_defer_size); 260 261 rcu_assign_pointer(pn->shrinker_info, new); 262 kvfree_rcu(old, rcu); 263 } 264 265 return 0; 266 } 267 268 void free_shrinker_info(struct mem_cgroup *memcg) 269 { 270 struct mem_cgroup_per_node *pn; 271 struct shrinker_info *info; 272 int nid; 273 274 for_each_node(nid) { 275 pn = memcg->nodeinfo[nid]; 276 info = rcu_dereference_protected(pn->shrinker_info, true); 277 kvfree(info); 278 rcu_assign_pointer(pn->shrinker_info, NULL); 279 } 280 } 281 282 int alloc_shrinker_info(struct mem_cgroup *memcg) 283 { 284 struct shrinker_info *info; 285 int nid, size, ret = 0; 286 int map_size, defer_size = 0; 287 288 down_write(&shrinker_rwsem); 289 map_size = shrinker_map_size(shrinker_nr_max); 290 defer_size = shrinker_defer_size(shrinker_nr_max); 291 size = map_size + defer_size; 292 for_each_node(nid) { 293 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); 294 if (!info) { 295 free_shrinker_info(memcg); 296 ret = -ENOMEM; 297 break; 298 } 299 info->nr_deferred = (atomic_long_t *)(info + 1); 300 info->map = (void *)info->nr_deferred + defer_size; 301 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); 302 } 303 up_write(&shrinker_rwsem); 304 305 return ret; 306 } 307 308 static inline bool need_expand(int nr_max) 309 { 310 return round_up(nr_max, BITS_PER_LONG) > 311 round_up(shrinker_nr_max, BITS_PER_LONG); 312 } 313 314 static int expand_shrinker_info(int new_id) 315 { 316 int ret = 0; 317 int new_nr_max = new_id + 1; 318 int map_size, defer_size = 0; 319 int old_map_size, old_defer_size = 0; 320 struct mem_cgroup *memcg; 321 322 if (!need_expand(new_nr_max)) 323 goto out; 324 325 if (!root_mem_cgroup) 326 goto out; 327 328 lockdep_assert_held(&shrinker_rwsem); 329 330 map_size = shrinker_map_size(new_nr_max); 331 defer_size = shrinker_defer_size(new_nr_max); 332 old_map_size = shrinker_map_size(shrinker_nr_max); 333 old_defer_size = shrinker_defer_size(shrinker_nr_max); 334 335 memcg = mem_cgroup_iter(NULL, NULL, NULL); 336 do { 337 ret = expand_one_shrinker_info(memcg, map_size, defer_size, 338 old_map_size, old_defer_size); 339 if (ret) { 340 mem_cgroup_iter_break(NULL, memcg); 341 goto out; 342 } 343 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 344 out: 345 if (!ret) 346 shrinker_nr_max = new_nr_max; 347 348 return ret; 349 } 350 351 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 352 { 353 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 354 struct shrinker_info *info; 355 356 rcu_read_lock(); 357 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); 358 /* Pairs with smp mb in shrink_slab() */ 359 smp_mb__before_atomic(); 360 set_bit(shrinker_id, info->map); 361 rcu_read_unlock(); 362 } 363 } 364 365 static DEFINE_IDR(shrinker_idr); 366 367 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 368 { 369 int id, ret = -ENOMEM; 370 371 if (mem_cgroup_disabled()) 372 return -ENOSYS; 373 374 down_write(&shrinker_rwsem); 375 /* This may call shrinker, so it must use down_read_trylock() */ 376 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 377 if (id < 0) 378 goto unlock; 379 380 if (id >= shrinker_nr_max) { 381 if (expand_shrinker_info(id)) { 382 idr_remove(&shrinker_idr, id); 383 goto unlock; 384 } 385 } 386 shrinker->id = id; 387 ret = 0; 388 unlock: 389 up_write(&shrinker_rwsem); 390 return ret; 391 } 392 393 static void unregister_memcg_shrinker(struct shrinker *shrinker) 394 { 395 int id = shrinker->id; 396 397 BUG_ON(id < 0); 398 399 lockdep_assert_held(&shrinker_rwsem); 400 401 idr_remove(&shrinker_idr, id); 402 } 403 404 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 405 struct mem_cgroup *memcg) 406 { 407 struct shrinker_info *info; 408 409 info = shrinker_info_protected(memcg, nid); 410 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); 411 } 412 413 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 414 struct mem_cgroup *memcg) 415 { 416 struct shrinker_info *info; 417 418 info = shrinker_info_protected(memcg, nid); 419 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); 420 } 421 422 void reparent_shrinker_deferred(struct mem_cgroup *memcg) 423 { 424 int i, nid; 425 long nr; 426 struct mem_cgroup *parent; 427 struct shrinker_info *child_info, *parent_info; 428 429 parent = parent_mem_cgroup(memcg); 430 if (!parent) 431 parent = root_mem_cgroup; 432 433 /* Prevent from concurrent shrinker_info expand */ 434 down_read(&shrinker_rwsem); 435 for_each_node(nid) { 436 child_info = shrinker_info_protected(memcg, nid); 437 parent_info = shrinker_info_protected(parent, nid); 438 for (i = 0; i < shrinker_nr_max; i++) { 439 nr = atomic_long_read(&child_info->nr_deferred[i]); 440 atomic_long_add(nr, &parent_info->nr_deferred[i]); 441 } 442 } 443 up_read(&shrinker_rwsem); 444 } 445 446 static bool cgroup_reclaim(struct scan_control *sc) 447 { 448 return sc->target_mem_cgroup; 449 } 450 451 static bool global_reclaim(struct scan_control *sc) 452 { 453 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); 454 } 455 456 /** 457 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 458 * @sc: scan_control in question 459 * 460 * The normal page dirty throttling mechanism in balance_dirty_pages() is 461 * completely broken with the legacy memcg and direct stalling in 462 * shrink_folio_list() is used for throttling instead, which lacks all the 463 * niceties such as fairness, adaptive pausing, bandwidth proportional 464 * allocation and configurability. 465 * 466 * This function tests whether the vmscan currently in progress can assume 467 * that the normal dirty throttling mechanism is operational. 468 */ 469 static bool writeback_throttling_sane(struct scan_control *sc) 470 { 471 if (!cgroup_reclaim(sc)) 472 return true; 473 #ifdef CONFIG_CGROUP_WRITEBACK 474 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 475 return true; 476 #endif 477 return false; 478 } 479 #else 480 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 481 { 482 return -ENOSYS; 483 } 484 485 static void unregister_memcg_shrinker(struct shrinker *shrinker) 486 { 487 } 488 489 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 490 struct mem_cgroup *memcg) 491 { 492 return 0; 493 } 494 495 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 496 struct mem_cgroup *memcg) 497 { 498 return 0; 499 } 500 501 static bool cgroup_reclaim(struct scan_control *sc) 502 { 503 return false; 504 } 505 506 static bool global_reclaim(struct scan_control *sc) 507 { 508 return true; 509 } 510 511 static bool writeback_throttling_sane(struct scan_control *sc) 512 { 513 return true; 514 } 515 #endif 516 517 static long xchg_nr_deferred(struct shrinker *shrinker, 518 struct shrink_control *sc) 519 { 520 int nid = sc->nid; 521 522 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 523 nid = 0; 524 525 if (sc->memcg && 526 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 527 return xchg_nr_deferred_memcg(nid, shrinker, 528 sc->memcg); 529 530 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 531 } 532 533 534 static long add_nr_deferred(long nr, struct shrinker *shrinker, 535 struct shrink_control *sc) 536 { 537 int nid = sc->nid; 538 539 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 540 nid = 0; 541 542 if (sc->memcg && 543 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 544 return add_nr_deferred_memcg(nr, nid, shrinker, 545 sc->memcg); 546 547 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); 548 } 549 550 static bool can_demote(int nid, struct scan_control *sc) 551 { 552 if (!numa_demotion_enabled) 553 return false; 554 if (sc && sc->no_demotion) 555 return false; 556 if (next_demotion_node(nid) == NUMA_NO_NODE) 557 return false; 558 559 return true; 560 } 561 562 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 563 int nid, 564 struct scan_control *sc) 565 { 566 if (memcg == NULL) { 567 /* 568 * For non-memcg reclaim, is there 569 * space in any swap device? 570 */ 571 if (get_nr_swap_pages() > 0) 572 return true; 573 } else { 574 /* Is the memcg below its swap limit? */ 575 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 576 return true; 577 } 578 579 /* 580 * The page can not be swapped. 581 * 582 * Can it be reclaimed from this node via demotion? 583 */ 584 return can_demote(nid, sc); 585 } 586 587 /* 588 * This misses isolated folios which are not accounted for to save counters. 589 * As the data only determines if reclaim or compaction continues, it is 590 * not expected that isolated folios will be a dominating factor. 591 */ 592 unsigned long zone_reclaimable_pages(struct zone *zone) 593 { 594 unsigned long nr; 595 596 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 597 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 598 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 599 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 600 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 601 602 return nr; 603 } 604 605 /** 606 * lruvec_lru_size - Returns the number of pages on the given LRU list. 607 * @lruvec: lru vector 608 * @lru: lru to use 609 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 610 */ 611 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 612 int zone_idx) 613 { 614 unsigned long size = 0; 615 int zid; 616 617 for (zid = 0; zid <= zone_idx; zid++) { 618 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 619 620 if (!managed_zone(zone)) 621 continue; 622 623 if (!mem_cgroup_disabled()) 624 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 625 else 626 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 627 } 628 return size; 629 } 630 631 /* 632 * Add a shrinker callback to be called from the vm. 633 */ 634 static int __prealloc_shrinker(struct shrinker *shrinker) 635 { 636 unsigned int size; 637 int err; 638 639 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 640 err = prealloc_memcg_shrinker(shrinker); 641 if (err != -ENOSYS) 642 return err; 643 644 shrinker->flags &= ~SHRINKER_MEMCG_AWARE; 645 } 646 647 size = sizeof(*shrinker->nr_deferred); 648 if (shrinker->flags & SHRINKER_NUMA_AWARE) 649 size *= nr_node_ids; 650 651 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 652 if (!shrinker->nr_deferred) 653 return -ENOMEM; 654 655 return 0; 656 } 657 658 #ifdef CONFIG_SHRINKER_DEBUG 659 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...) 660 { 661 va_list ap; 662 int err; 663 664 va_start(ap, fmt); 665 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); 666 va_end(ap); 667 if (!shrinker->name) 668 return -ENOMEM; 669 670 err = __prealloc_shrinker(shrinker); 671 if (err) { 672 kfree_const(shrinker->name); 673 shrinker->name = NULL; 674 } 675 676 return err; 677 } 678 #else 679 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...) 680 { 681 return __prealloc_shrinker(shrinker); 682 } 683 #endif 684 685 void free_prealloced_shrinker(struct shrinker *shrinker) 686 { 687 #ifdef CONFIG_SHRINKER_DEBUG 688 kfree_const(shrinker->name); 689 shrinker->name = NULL; 690 #endif 691 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 692 down_write(&shrinker_rwsem); 693 unregister_memcg_shrinker(shrinker); 694 up_write(&shrinker_rwsem); 695 return; 696 } 697 698 kfree(shrinker->nr_deferred); 699 shrinker->nr_deferred = NULL; 700 } 701 702 void register_shrinker_prepared(struct shrinker *shrinker) 703 { 704 down_write(&shrinker_rwsem); 705 list_add_tail(&shrinker->list, &shrinker_list); 706 shrinker->flags |= SHRINKER_REGISTERED; 707 shrinker_debugfs_add(shrinker); 708 up_write(&shrinker_rwsem); 709 } 710 711 static int __register_shrinker(struct shrinker *shrinker) 712 { 713 int err = __prealloc_shrinker(shrinker); 714 715 if (err) 716 return err; 717 register_shrinker_prepared(shrinker); 718 return 0; 719 } 720 721 #ifdef CONFIG_SHRINKER_DEBUG 722 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...) 723 { 724 va_list ap; 725 int err; 726 727 va_start(ap, fmt); 728 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); 729 va_end(ap); 730 if (!shrinker->name) 731 return -ENOMEM; 732 733 err = __register_shrinker(shrinker); 734 if (err) { 735 kfree_const(shrinker->name); 736 shrinker->name = NULL; 737 } 738 return err; 739 } 740 #else 741 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...) 742 { 743 return __register_shrinker(shrinker); 744 } 745 #endif 746 EXPORT_SYMBOL(register_shrinker); 747 748 /* 749 * Remove one 750 */ 751 void unregister_shrinker(struct shrinker *shrinker) 752 { 753 if (!(shrinker->flags & SHRINKER_REGISTERED)) 754 return; 755 756 down_write(&shrinker_rwsem); 757 list_del(&shrinker->list); 758 shrinker->flags &= ~SHRINKER_REGISTERED; 759 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 760 unregister_memcg_shrinker(shrinker); 761 shrinker_debugfs_remove(shrinker); 762 up_write(&shrinker_rwsem); 763 764 kfree(shrinker->nr_deferred); 765 shrinker->nr_deferred = NULL; 766 } 767 EXPORT_SYMBOL(unregister_shrinker); 768 769 /** 770 * synchronize_shrinkers - Wait for all running shrinkers to complete. 771 * 772 * This is equivalent to calling unregister_shrink() and register_shrinker(), 773 * but atomically and with less overhead. This is useful to guarantee that all 774 * shrinker invocations have seen an update, before freeing memory, similar to 775 * rcu. 776 */ 777 void synchronize_shrinkers(void) 778 { 779 down_write(&shrinker_rwsem); 780 up_write(&shrinker_rwsem); 781 } 782 EXPORT_SYMBOL(synchronize_shrinkers); 783 784 #define SHRINK_BATCH 128 785 786 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 787 struct shrinker *shrinker, int priority) 788 { 789 unsigned long freed = 0; 790 unsigned long long delta; 791 long total_scan; 792 long freeable; 793 long nr; 794 long new_nr; 795 long batch_size = shrinker->batch ? shrinker->batch 796 : SHRINK_BATCH; 797 long scanned = 0, next_deferred; 798 799 freeable = shrinker->count_objects(shrinker, shrinkctl); 800 if (freeable == 0 || freeable == SHRINK_EMPTY) 801 return freeable; 802 803 /* 804 * copy the current shrinker scan count into a local variable 805 * and zero it so that other concurrent shrinker invocations 806 * don't also do this scanning work. 807 */ 808 nr = xchg_nr_deferred(shrinker, shrinkctl); 809 810 if (shrinker->seeks) { 811 delta = freeable >> priority; 812 delta *= 4; 813 do_div(delta, shrinker->seeks); 814 } else { 815 /* 816 * These objects don't require any IO to create. Trim 817 * them aggressively under memory pressure to keep 818 * them from causing refetches in the IO caches. 819 */ 820 delta = freeable / 2; 821 } 822 823 total_scan = nr >> priority; 824 total_scan += delta; 825 total_scan = min(total_scan, (2 * freeable)); 826 827 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 828 freeable, delta, total_scan, priority); 829 830 /* 831 * Normally, we should not scan less than batch_size objects in one 832 * pass to avoid too frequent shrinker calls, but if the slab has less 833 * than batch_size objects in total and we are really tight on memory, 834 * we will try to reclaim all available objects, otherwise we can end 835 * up failing allocations although there are plenty of reclaimable 836 * objects spread over several slabs with usage less than the 837 * batch_size. 838 * 839 * We detect the "tight on memory" situations by looking at the total 840 * number of objects we want to scan (total_scan). If it is greater 841 * than the total number of objects on slab (freeable), we must be 842 * scanning at high prio and therefore should try to reclaim as much as 843 * possible. 844 */ 845 while (total_scan >= batch_size || 846 total_scan >= freeable) { 847 unsigned long ret; 848 unsigned long nr_to_scan = min(batch_size, total_scan); 849 850 shrinkctl->nr_to_scan = nr_to_scan; 851 shrinkctl->nr_scanned = nr_to_scan; 852 ret = shrinker->scan_objects(shrinker, shrinkctl); 853 if (ret == SHRINK_STOP) 854 break; 855 freed += ret; 856 857 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 858 total_scan -= shrinkctl->nr_scanned; 859 scanned += shrinkctl->nr_scanned; 860 861 cond_resched(); 862 } 863 864 /* 865 * The deferred work is increased by any new work (delta) that wasn't 866 * done, decreased by old deferred work that was done now. 867 * 868 * And it is capped to two times of the freeable items. 869 */ 870 next_deferred = max_t(long, (nr + delta - scanned), 0); 871 next_deferred = min(next_deferred, (2 * freeable)); 872 873 /* 874 * move the unused scan count back into the shrinker in a 875 * manner that handles concurrent updates. 876 */ 877 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); 878 879 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); 880 return freed; 881 } 882 883 #ifdef CONFIG_MEMCG 884 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 885 struct mem_cgroup *memcg, int priority) 886 { 887 struct shrinker_info *info; 888 unsigned long ret, freed = 0; 889 int i; 890 891 if (!mem_cgroup_online(memcg)) 892 return 0; 893 894 if (!down_read_trylock(&shrinker_rwsem)) 895 return 0; 896 897 info = shrinker_info_protected(memcg, nid); 898 if (unlikely(!info)) 899 goto unlock; 900 901 for_each_set_bit(i, info->map, shrinker_nr_max) { 902 struct shrink_control sc = { 903 .gfp_mask = gfp_mask, 904 .nid = nid, 905 .memcg = memcg, 906 }; 907 struct shrinker *shrinker; 908 909 shrinker = idr_find(&shrinker_idr, i); 910 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { 911 if (!shrinker) 912 clear_bit(i, info->map); 913 continue; 914 } 915 916 /* Call non-slab shrinkers even though kmem is disabled */ 917 if (!memcg_kmem_enabled() && 918 !(shrinker->flags & SHRINKER_NONSLAB)) 919 continue; 920 921 ret = do_shrink_slab(&sc, shrinker, priority); 922 if (ret == SHRINK_EMPTY) { 923 clear_bit(i, info->map); 924 /* 925 * After the shrinker reported that it had no objects to 926 * free, but before we cleared the corresponding bit in 927 * the memcg shrinker map, a new object might have been 928 * added. To make sure, we have the bit set in this 929 * case, we invoke the shrinker one more time and reset 930 * the bit if it reports that it is not empty anymore. 931 * The memory barrier here pairs with the barrier in 932 * set_shrinker_bit(): 933 * 934 * list_lru_add() shrink_slab_memcg() 935 * list_add_tail() clear_bit() 936 * <MB> <MB> 937 * set_bit() do_shrink_slab() 938 */ 939 smp_mb__after_atomic(); 940 ret = do_shrink_slab(&sc, shrinker, priority); 941 if (ret == SHRINK_EMPTY) 942 ret = 0; 943 else 944 set_shrinker_bit(memcg, nid, i); 945 } 946 freed += ret; 947 948 if (rwsem_is_contended(&shrinker_rwsem)) { 949 freed = freed ? : 1; 950 break; 951 } 952 } 953 unlock: 954 up_read(&shrinker_rwsem); 955 return freed; 956 } 957 #else /* CONFIG_MEMCG */ 958 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 959 struct mem_cgroup *memcg, int priority) 960 { 961 return 0; 962 } 963 #endif /* CONFIG_MEMCG */ 964 965 /** 966 * shrink_slab - shrink slab caches 967 * @gfp_mask: allocation context 968 * @nid: node whose slab caches to target 969 * @memcg: memory cgroup whose slab caches to target 970 * @priority: the reclaim priority 971 * 972 * Call the shrink functions to age shrinkable caches. 973 * 974 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 975 * unaware shrinkers will receive a node id of 0 instead. 976 * 977 * @memcg specifies the memory cgroup to target. Unaware shrinkers 978 * are called only if it is the root cgroup. 979 * 980 * @priority is sc->priority, we take the number of objects and >> by priority 981 * in order to get the scan target. 982 * 983 * Returns the number of reclaimed slab objects. 984 */ 985 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 986 struct mem_cgroup *memcg, 987 int priority) 988 { 989 unsigned long ret, freed = 0; 990 struct shrinker *shrinker; 991 992 /* 993 * The root memcg might be allocated even though memcg is disabled 994 * via "cgroup_disable=memory" boot parameter. This could make 995 * mem_cgroup_is_root() return false, then just run memcg slab 996 * shrink, but skip global shrink. This may result in premature 997 * oom. 998 */ 999 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 1000 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 1001 1002 if (!down_read_trylock(&shrinker_rwsem)) 1003 goto out; 1004 1005 list_for_each_entry(shrinker, &shrinker_list, list) { 1006 struct shrink_control sc = { 1007 .gfp_mask = gfp_mask, 1008 .nid = nid, 1009 .memcg = memcg, 1010 }; 1011 1012 ret = do_shrink_slab(&sc, shrinker, priority); 1013 if (ret == SHRINK_EMPTY) 1014 ret = 0; 1015 freed += ret; 1016 /* 1017 * Bail out if someone want to register a new shrinker to 1018 * prevent the registration from being stalled for long periods 1019 * by parallel ongoing shrinking. 1020 */ 1021 if (rwsem_is_contended(&shrinker_rwsem)) { 1022 freed = freed ? : 1; 1023 break; 1024 } 1025 } 1026 1027 up_read(&shrinker_rwsem); 1028 out: 1029 cond_resched(); 1030 return freed; 1031 } 1032 1033 static unsigned long drop_slab_node(int nid) 1034 { 1035 unsigned long freed = 0; 1036 struct mem_cgroup *memcg = NULL; 1037 1038 memcg = mem_cgroup_iter(NULL, NULL, NULL); 1039 do { 1040 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 1041 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 1042 1043 return freed; 1044 } 1045 1046 void drop_slab(void) 1047 { 1048 int nid; 1049 int shift = 0; 1050 unsigned long freed; 1051 1052 do { 1053 freed = 0; 1054 for_each_online_node(nid) { 1055 if (fatal_signal_pending(current)) 1056 return; 1057 1058 freed += drop_slab_node(nid); 1059 } 1060 } while ((freed >> shift++) > 1); 1061 } 1062 1063 static int reclaimer_offset(void) 1064 { 1065 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 1066 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD); 1067 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 1068 PGSCAN_DIRECT - PGSCAN_KSWAPD); 1069 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 1070 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD); 1071 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 1072 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD); 1073 1074 if (current_is_kswapd()) 1075 return 0; 1076 if (current_is_khugepaged()) 1077 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; 1078 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; 1079 } 1080 1081 static inline int is_page_cache_freeable(struct folio *folio) 1082 { 1083 /* 1084 * A freeable page cache folio is referenced only by the caller 1085 * that isolated the folio, the page cache and optional filesystem 1086 * private data at folio->private. 1087 */ 1088 return folio_ref_count(folio) - folio_test_private(folio) == 1089 1 + folio_nr_pages(folio); 1090 } 1091 1092 /* 1093 * We detected a synchronous write error writing a folio out. Probably 1094 * -ENOSPC. We need to propagate that into the address_space for a subsequent 1095 * fsync(), msync() or close(). 1096 * 1097 * The tricky part is that after writepage we cannot touch the mapping: nothing 1098 * prevents it from being freed up. But we have a ref on the folio and once 1099 * that folio is locked, the mapping is pinned. 1100 * 1101 * We're allowed to run sleeping folio_lock() here because we know the caller has 1102 * __GFP_FS. 1103 */ 1104 static void handle_write_error(struct address_space *mapping, 1105 struct folio *folio, int error) 1106 { 1107 folio_lock(folio); 1108 if (folio_mapping(folio) == mapping) 1109 mapping_set_error(mapping, error); 1110 folio_unlock(folio); 1111 } 1112 1113 static bool skip_throttle_noprogress(pg_data_t *pgdat) 1114 { 1115 int reclaimable = 0, write_pending = 0; 1116 int i; 1117 1118 /* 1119 * If kswapd is disabled, reschedule if necessary but do not 1120 * throttle as the system is likely near OOM. 1121 */ 1122 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 1123 return true; 1124 1125 /* 1126 * If there are a lot of dirty/writeback folios then do not 1127 * throttle as throttling will occur when the folios cycle 1128 * towards the end of the LRU if still under writeback. 1129 */ 1130 for (i = 0; i < MAX_NR_ZONES; i++) { 1131 struct zone *zone = pgdat->node_zones + i; 1132 1133 if (!managed_zone(zone)) 1134 continue; 1135 1136 reclaimable += zone_reclaimable_pages(zone); 1137 write_pending += zone_page_state_snapshot(zone, 1138 NR_ZONE_WRITE_PENDING); 1139 } 1140 if (2 * write_pending <= reclaimable) 1141 return true; 1142 1143 return false; 1144 } 1145 1146 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 1147 { 1148 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 1149 long timeout, ret; 1150 DEFINE_WAIT(wait); 1151 1152 /* 1153 * Do not throttle IO workers, kthreads other than kswapd or 1154 * workqueues. They may be required for reclaim to make 1155 * forward progress (e.g. journalling workqueues or kthreads). 1156 */ 1157 if (!current_is_kswapd() && 1158 current->flags & (PF_IO_WORKER|PF_KTHREAD)) { 1159 cond_resched(); 1160 return; 1161 } 1162 1163 /* 1164 * These figures are pulled out of thin air. 1165 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 1166 * parallel reclaimers which is a short-lived event so the timeout is 1167 * short. Failing to make progress or waiting on writeback are 1168 * potentially long-lived events so use a longer timeout. This is shaky 1169 * logic as a failure to make progress could be due to anything from 1170 * writeback to a slow device to excessive referenced folios at the tail 1171 * of the inactive LRU. 1172 */ 1173 switch(reason) { 1174 case VMSCAN_THROTTLE_WRITEBACK: 1175 timeout = HZ/10; 1176 1177 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 1178 WRITE_ONCE(pgdat->nr_reclaim_start, 1179 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 1180 } 1181 1182 break; 1183 case VMSCAN_THROTTLE_CONGESTED: 1184 fallthrough; 1185 case VMSCAN_THROTTLE_NOPROGRESS: 1186 if (skip_throttle_noprogress(pgdat)) { 1187 cond_resched(); 1188 return; 1189 } 1190 1191 timeout = 1; 1192 1193 break; 1194 case VMSCAN_THROTTLE_ISOLATED: 1195 timeout = HZ/50; 1196 break; 1197 default: 1198 WARN_ON_ONCE(1); 1199 timeout = HZ; 1200 break; 1201 } 1202 1203 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1204 ret = schedule_timeout(timeout); 1205 finish_wait(wqh, &wait); 1206 1207 if (reason == VMSCAN_THROTTLE_WRITEBACK) 1208 atomic_dec(&pgdat->nr_writeback_throttled); 1209 1210 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 1211 jiffies_to_usecs(timeout - ret), 1212 reason); 1213 } 1214 1215 /* 1216 * Account for folios written if tasks are throttled waiting on dirty 1217 * folios to clean. If enough folios have been cleaned since throttling 1218 * started then wakeup the throttled tasks. 1219 */ 1220 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 1221 int nr_throttled) 1222 { 1223 unsigned long nr_written; 1224 1225 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 1226 1227 /* 1228 * This is an inaccurate read as the per-cpu deltas may not 1229 * be synchronised. However, given that the system is 1230 * writeback throttled, it is not worth taking the penalty 1231 * of getting an accurate count. At worst, the throttle 1232 * timeout guarantees forward progress. 1233 */ 1234 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 1235 READ_ONCE(pgdat->nr_reclaim_start); 1236 1237 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 1238 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 1239 } 1240 1241 /* possible outcome of pageout() */ 1242 typedef enum { 1243 /* failed to write folio out, folio is locked */ 1244 PAGE_KEEP, 1245 /* move folio to the active list, folio is locked */ 1246 PAGE_ACTIVATE, 1247 /* folio has been sent to the disk successfully, folio is unlocked */ 1248 PAGE_SUCCESS, 1249 /* folio is clean and locked */ 1250 PAGE_CLEAN, 1251 } pageout_t; 1252 1253 /* 1254 * pageout is called by shrink_folio_list() for each dirty folio. 1255 * Calls ->writepage(). 1256 */ 1257 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 1258 struct swap_iocb **plug) 1259 { 1260 /* 1261 * If the folio is dirty, only perform writeback if that write 1262 * will be non-blocking. To prevent this allocation from being 1263 * stalled by pagecache activity. But note that there may be 1264 * stalls if we need to run get_block(). We could test 1265 * PagePrivate for that. 1266 * 1267 * If this process is currently in __generic_file_write_iter() against 1268 * this folio's queue, we can perform writeback even if that 1269 * will block. 1270 * 1271 * If the folio is swapcache, write it back even if that would 1272 * block, for some throttling. This happens by accident, because 1273 * swap_backing_dev_info is bust: it doesn't reflect the 1274 * congestion state of the swapdevs. Easy to fix, if needed. 1275 */ 1276 if (!is_page_cache_freeable(folio)) 1277 return PAGE_KEEP; 1278 if (!mapping) { 1279 /* 1280 * Some data journaling orphaned folios can have 1281 * folio->mapping == NULL while being dirty with clean buffers. 1282 */ 1283 if (folio_test_private(folio)) { 1284 if (try_to_free_buffers(folio)) { 1285 folio_clear_dirty(folio); 1286 pr_info("%s: orphaned folio\n", __func__); 1287 return PAGE_CLEAN; 1288 } 1289 } 1290 return PAGE_KEEP; 1291 } 1292 if (mapping->a_ops->writepage == NULL) 1293 return PAGE_ACTIVATE; 1294 1295 if (folio_clear_dirty_for_io(folio)) { 1296 int res; 1297 struct writeback_control wbc = { 1298 .sync_mode = WB_SYNC_NONE, 1299 .nr_to_write = SWAP_CLUSTER_MAX, 1300 .range_start = 0, 1301 .range_end = LLONG_MAX, 1302 .for_reclaim = 1, 1303 .swap_plug = plug, 1304 }; 1305 1306 folio_set_reclaim(folio); 1307 res = mapping->a_ops->writepage(&folio->page, &wbc); 1308 if (res < 0) 1309 handle_write_error(mapping, folio, res); 1310 if (res == AOP_WRITEPAGE_ACTIVATE) { 1311 folio_clear_reclaim(folio); 1312 return PAGE_ACTIVATE; 1313 } 1314 1315 if (!folio_test_writeback(folio)) { 1316 /* synchronous write or broken a_ops? */ 1317 folio_clear_reclaim(folio); 1318 } 1319 trace_mm_vmscan_write_folio(folio); 1320 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 1321 return PAGE_SUCCESS; 1322 } 1323 1324 return PAGE_CLEAN; 1325 } 1326 1327 /* 1328 * Same as remove_mapping, but if the folio is removed from the mapping, it 1329 * gets returned with a refcount of 0. 1330 */ 1331 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 1332 bool reclaimed, struct mem_cgroup *target_memcg) 1333 { 1334 int refcount; 1335 void *shadow = NULL; 1336 1337 BUG_ON(!folio_test_locked(folio)); 1338 BUG_ON(mapping != folio_mapping(folio)); 1339 1340 if (!folio_test_swapcache(folio)) 1341 spin_lock(&mapping->host->i_lock); 1342 xa_lock_irq(&mapping->i_pages); 1343 /* 1344 * The non racy check for a busy folio. 1345 * 1346 * Must be careful with the order of the tests. When someone has 1347 * a ref to the folio, it may be possible that they dirty it then 1348 * drop the reference. So if the dirty flag is tested before the 1349 * refcount here, then the following race may occur: 1350 * 1351 * get_user_pages(&page); 1352 * [user mapping goes away] 1353 * write_to(page); 1354 * !folio_test_dirty(folio) [good] 1355 * folio_set_dirty(folio); 1356 * folio_put(folio); 1357 * !refcount(folio) [good, discard it] 1358 * 1359 * [oops, our write_to data is lost] 1360 * 1361 * Reversing the order of the tests ensures such a situation cannot 1362 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 1363 * load is not satisfied before that of folio->_refcount. 1364 * 1365 * Note that if the dirty flag is always set via folio_mark_dirty, 1366 * and thus under the i_pages lock, then this ordering is not required. 1367 */ 1368 refcount = 1 + folio_nr_pages(folio); 1369 if (!folio_ref_freeze(folio, refcount)) 1370 goto cannot_free; 1371 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 1372 if (unlikely(folio_test_dirty(folio))) { 1373 folio_ref_unfreeze(folio, refcount); 1374 goto cannot_free; 1375 } 1376 1377 if (folio_test_swapcache(folio)) { 1378 swp_entry_t swap = folio_swap_entry(folio); 1379 1380 if (reclaimed && !mapping_exiting(mapping)) 1381 shadow = workingset_eviction(folio, target_memcg); 1382 __delete_from_swap_cache(folio, swap, shadow); 1383 mem_cgroup_swapout(folio, swap); 1384 xa_unlock_irq(&mapping->i_pages); 1385 put_swap_folio(folio, swap); 1386 } else { 1387 void (*free_folio)(struct folio *); 1388 1389 free_folio = mapping->a_ops->free_folio; 1390 /* 1391 * Remember a shadow entry for reclaimed file cache in 1392 * order to detect refaults, thus thrashing, later on. 1393 * 1394 * But don't store shadows in an address space that is 1395 * already exiting. This is not just an optimization, 1396 * inode reclaim needs to empty out the radix tree or 1397 * the nodes are lost. Don't plant shadows behind its 1398 * back. 1399 * 1400 * We also don't store shadows for DAX mappings because the 1401 * only page cache folios found in these are zero pages 1402 * covering holes, and because we don't want to mix DAX 1403 * exceptional entries and shadow exceptional entries in the 1404 * same address_space. 1405 */ 1406 if (reclaimed && folio_is_file_lru(folio) && 1407 !mapping_exiting(mapping) && !dax_mapping(mapping)) 1408 shadow = workingset_eviction(folio, target_memcg); 1409 __filemap_remove_folio(folio, shadow); 1410 xa_unlock_irq(&mapping->i_pages); 1411 if (mapping_shrinkable(mapping)) 1412 inode_add_lru(mapping->host); 1413 spin_unlock(&mapping->host->i_lock); 1414 1415 if (free_folio) 1416 free_folio(folio); 1417 } 1418 1419 return 1; 1420 1421 cannot_free: 1422 xa_unlock_irq(&mapping->i_pages); 1423 if (!folio_test_swapcache(folio)) 1424 spin_unlock(&mapping->host->i_lock); 1425 return 0; 1426 } 1427 1428 /** 1429 * remove_mapping() - Attempt to remove a folio from its mapping. 1430 * @mapping: The address space. 1431 * @folio: The folio to remove. 1432 * 1433 * If the folio is dirty, under writeback or if someone else has a ref 1434 * on it, removal will fail. 1435 * Return: The number of pages removed from the mapping. 0 if the folio 1436 * could not be removed. 1437 * Context: The caller should have a single refcount on the folio and 1438 * hold its lock. 1439 */ 1440 long remove_mapping(struct address_space *mapping, struct folio *folio) 1441 { 1442 if (__remove_mapping(mapping, folio, false, NULL)) { 1443 /* 1444 * Unfreezing the refcount with 1 effectively 1445 * drops the pagecache ref for us without requiring another 1446 * atomic operation. 1447 */ 1448 folio_ref_unfreeze(folio, 1); 1449 return folio_nr_pages(folio); 1450 } 1451 return 0; 1452 } 1453 1454 /** 1455 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 1456 * @folio: Folio to be returned to an LRU list. 1457 * 1458 * Add previously isolated @folio to appropriate LRU list. 1459 * The folio may still be unevictable for other reasons. 1460 * 1461 * Context: lru_lock must not be held, interrupts must be enabled. 1462 */ 1463 void folio_putback_lru(struct folio *folio) 1464 { 1465 folio_add_lru(folio); 1466 folio_put(folio); /* drop ref from isolate */ 1467 } 1468 1469 enum folio_references { 1470 FOLIOREF_RECLAIM, 1471 FOLIOREF_RECLAIM_CLEAN, 1472 FOLIOREF_KEEP, 1473 FOLIOREF_ACTIVATE, 1474 }; 1475 1476 static enum folio_references folio_check_references(struct folio *folio, 1477 struct scan_control *sc) 1478 { 1479 int referenced_ptes, referenced_folio; 1480 unsigned long vm_flags; 1481 1482 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 1483 &vm_flags); 1484 referenced_folio = folio_test_clear_referenced(folio); 1485 1486 /* 1487 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 1488 * Let the folio, now marked Mlocked, be moved to the unevictable list. 1489 */ 1490 if (vm_flags & VM_LOCKED) 1491 return FOLIOREF_ACTIVATE; 1492 1493 /* rmap lock contention: rotate */ 1494 if (referenced_ptes == -1) 1495 return FOLIOREF_KEEP; 1496 1497 if (referenced_ptes) { 1498 /* 1499 * All mapped folios start out with page table 1500 * references from the instantiating fault, so we need 1501 * to look twice if a mapped file/anon folio is used more 1502 * than once. 1503 * 1504 * Mark it and spare it for another trip around the 1505 * inactive list. Another page table reference will 1506 * lead to its activation. 1507 * 1508 * Note: the mark is set for activated folios as well 1509 * so that recently deactivated but used folios are 1510 * quickly recovered. 1511 */ 1512 folio_set_referenced(folio); 1513 1514 if (referenced_folio || referenced_ptes > 1) 1515 return FOLIOREF_ACTIVATE; 1516 1517 /* 1518 * Activate file-backed executable folios after first usage. 1519 */ 1520 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 1521 return FOLIOREF_ACTIVATE; 1522 1523 return FOLIOREF_KEEP; 1524 } 1525 1526 /* Reclaim if clean, defer dirty folios to writeback */ 1527 if (referenced_folio && folio_is_file_lru(folio)) 1528 return FOLIOREF_RECLAIM_CLEAN; 1529 1530 return FOLIOREF_RECLAIM; 1531 } 1532 1533 /* Check if a folio is dirty or under writeback */ 1534 static void folio_check_dirty_writeback(struct folio *folio, 1535 bool *dirty, bool *writeback) 1536 { 1537 struct address_space *mapping; 1538 1539 /* 1540 * Anonymous folios are not handled by flushers and must be written 1541 * from reclaim context. Do not stall reclaim based on them. 1542 * MADV_FREE anonymous folios are put into inactive file list too. 1543 * They could be mistakenly treated as file lru. So further anon 1544 * test is needed. 1545 */ 1546 if (!folio_is_file_lru(folio) || 1547 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 1548 *dirty = false; 1549 *writeback = false; 1550 return; 1551 } 1552 1553 /* By default assume that the folio flags are accurate */ 1554 *dirty = folio_test_dirty(folio); 1555 *writeback = folio_test_writeback(folio); 1556 1557 /* Verify dirty/writeback state if the filesystem supports it */ 1558 if (!folio_test_private(folio)) 1559 return; 1560 1561 mapping = folio_mapping(folio); 1562 if (mapping && mapping->a_ops->is_dirty_writeback) 1563 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 1564 } 1565 1566 static struct page *alloc_demote_page(struct page *page, unsigned long private) 1567 { 1568 struct page *target_page; 1569 nodemask_t *allowed_mask; 1570 struct migration_target_control *mtc; 1571 1572 mtc = (struct migration_target_control *)private; 1573 1574 allowed_mask = mtc->nmask; 1575 /* 1576 * make sure we allocate from the target node first also trying to 1577 * demote or reclaim pages from the target node via kswapd if we are 1578 * low on free memory on target node. If we don't do this and if 1579 * we have free memory on the slower(lower) memtier, we would start 1580 * allocating pages from slower(lower) memory tiers without even forcing 1581 * a demotion of cold pages from the target memtier. This can result 1582 * in the kernel placing hot pages in slower(lower) memory tiers. 1583 */ 1584 mtc->nmask = NULL; 1585 mtc->gfp_mask |= __GFP_THISNODE; 1586 target_page = alloc_migration_target(page, (unsigned long)mtc); 1587 if (target_page) 1588 return target_page; 1589 1590 mtc->gfp_mask &= ~__GFP_THISNODE; 1591 mtc->nmask = allowed_mask; 1592 1593 return alloc_migration_target(page, (unsigned long)mtc); 1594 } 1595 1596 /* 1597 * Take folios on @demote_folios and attempt to demote them to another node. 1598 * Folios which are not demoted are left on @demote_folios. 1599 */ 1600 static unsigned int demote_folio_list(struct list_head *demote_folios, 1601 struct pglist_data *pgdat) 1602 { 1603 int target_nid = next_demotion_node(pgdat->node_id); 1604 unsigned int nr_succeeded; 1605 nodemask_t allowed_mask; 1606 1607 struct migration_target_control mtc = { 1608 /* 1609 * Allocate from 'node', or fail quickly and quietly. 1610 * When this happens, 'page' will likely just be discarded 1611 * instead of migrated. 1612 */ 1613 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | 1614 __GFP_NOMEMALLOC | GFP_NOWAIT, 1615 .nid = target_nid, 1616 .nmask = &allowed_mask 1617 }; 1618 1619 if (list_empty(demote_folios)) 1620 return 0; 1621 1622 if (target_nid == NUMA_NO_NODE) 1623 return 0; 1624 1625 node_get_allowed_targets(pgdat, &allowed_mask); 1626 1627 /* Demotion ignores all cpuset and mempolicy settings */ 1628 migrate_pages(demote_folios, alloc_demote_page, NULL, 1629 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 1630 &nr_succeeded); 1631 1632 __count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded); 1633 1634 return nr_succeeded; 1635 } 1636 1637 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 1638 { 1639 if (gfp_mask & __GFP_FS) 1640 return true; 1641 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 1642 return false; 1643 /* 1644 * We can "enter_fs" for swap-cache with only __GFP_IO 1645 * providing this isn't SWP_FS_OPS. 1646 * ->flags can be updated non-atomicially (scan_swap_map_slots), 1647 * but that will never affect SWP_FS_OPS, so the data_race 1648 * is safe. 1649 */ 1650 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 1651 } 1652 1653 /* 1654 * shrink_folio_list() returns the number of reclaimed pages 1655 */ 1656 static unsigned int shrink_folio_list(struct list_head *folio_list, 1657 struct pglist_data *pgdat, struct scan_control *sc, 1658 struct reclaim_stat *stat, bool ignore_references) 1659 { 1660 LIST_HEAD(ret_folios); 1661 LIST_HEAD(free_folios); 1662 LIST_HEAD(demote_folios); 1663 unsigned int nr_reclaimed = 0; 1664 unsigned int pgactivate = 0; 1665 bool do_demote_pass; 1666 struct swap_iocb *plug = NULL; 1667 1668 memset(stat, 0, sizeof(*stat)); 1669 cond_resched(); 1670 do_demote_pass = can_demote(pgdat->node_id, sc); 1671 1672 retry: 1673 while (!list_empty(folio_list)) { 1674 struct address_space *mapping; 1675 struct folio *folio; 1676 enum folio_references references = FOLIOREF_RECLAIM; 1677 bool dirty, writeback; 1678 unsigned int nr_pages; 1679 1680 cond_resched(); 1681 1682 folio = lru_to_folio(folio_list); 1683 list_del(&folio->lru); 1684 1685 if (!folio_trylock(folio)) 1686 goto keep; 1687 1688 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1689 1690 nr_pages = folio_nr_pages(folio); 1691 1692 /* Account the number of base pages */ 1693 sc->nr_scanned += nr_pages; 1694 1695 if (unlikely(!folio_evictable(folio))) 1696 goto activate_locked; 1697 1698 if (!sc->may_unmap && folio_mapped(folio)) 1699 goto keep_locked; 1700 1701 /* folio_update_gen() tried to promote this page? */ 1702 if (lru_gen_enabled() && !ignore_references && 1703 folio_mapped(folio) && folio_test_referenced(folio)) 1704 goto keep_locked; 1705 1706 /* 1707 * The number of dirty pages determines if a node is marked 1708 * reclaim_congested. kswapd will stall and start writing 1709 * folios if the tail of the LRU is all dirty unqueued folios. 1710 */ 1711 folio_check_dirty_writeback(folio, &dirty, &writeback); 1712 if (dirty || writeback) 1713 stat->nr_dirty += nr_pages; 1714 1715 if (dirty && !writeback) 1716 stat->nr_unqueued_dirty += nr_pages; 1717 1718 /* 1719 * Treat this folio as congested if folios are cycling 1720 * through the LRU so quickly that the folios marked 1721 * for immediate reclaim are making it to the end of 1722 * the LRU a second time. 1723 */ 1724 if (writeback && folio_test_reclaim(folio)) 1725 stat->nr_congested += nr_pages; 1726 1727 /* 1728 * If a folio at the tail of the LRU is under writeback, there 1729 * are three cases to consider. 1730 * 1731 * 1) If reclaim is encountering an excessive number 1732 * of folios under writeback and this folio has both 1733 * the writeback and reclaim flags set, then it 1734 * indicates that folios are being queued for I/O but 1735 * are being recycled through the LRU before the I/O 1736 * can complete. Waiting on the folio itself risks an 1737 * indefinite stall if it is impossible to writeback 1738 * the folio due to I/O error or disconnected storage 1739 * so instead note that the LRU is being scanned too 1740 * quickly and the caller can stall after the folio 1741 * list has been processed. 1742 * 1743 * 2) Global or new memcg reclaim encounters a folio that is 1744 * not marked for immediate reclaim, or the caller does not 1745 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1746 * not to fs). In this case mark the folio for immediate 1747 * reclaim and continue scanning. 1748 * 1749 * Require may_enter_fs() because we would wait on fs, which 1750 * may not have submitted I/O yet. And the loop driver might 1751 * enter reclaim, and deadlock if it waits on a folio for 1752 * which it is needed to do the write (loop masks off 1753 * __GFP_IO|__GFP_FS for this reason); but more thought 1754 * would probably show more reasons. 1755 * 1756 * 3) Legacy memcg encounters a folio that already has the 1757 * reclaim flag set. memcg does not have any dirty folio 1758 * throttling so we could easily OOM just because too many 1759 * folios are in writeback and there is nothing else to 1760 * reclaim. Wait for the writeback to complete. 1761 * 1762 * In cases 1) and 2) we activate the folios to get them out of 1763 * the way while we continue scanning for clean folios on the 1764 * inactive list and refilling from the active list. The 1765 * observation here is that waiting for disk writes is more 1766 * expensive than potentially causing reloads down the line. 1767 * Since they're marked for immediate reclaim, they won't put 1768 * memory pressure on the cache working set any longer than it 1769 * takes to write them to disk. 1770 */ 1771 if (folio_test_writeback(folio)) { 1772 /* Case 1 above */ 1773 if (current_is_kswapd() && 1774 folio_test_reclaim(folio) && 1775 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1776 stat->nr_immediate += nr_pages; 1777 goto activate_locked; 1778 1779 /* Case 2 above */ 1780 } else if (writeback_throttling_sane(sc) || 1781 !folio_test_reclaim(folio) || 1782 !may_enter_fs(folio, sc->gfp_mask)) { 1783 /* 1784 * This is slightly racy - 1785 * folio_end_writeback() might have 1786 * just cleared the reclaim flag, then 1787 * setting the reclaim flag here ends up 1788 * interpreted as the readahead flag - but 1789 * that does not matter enough to care. 1790 * What we do want is for this folio to 1791 * have the reclaim flag set next time 1792 * memcg reclaim reaches the tests above, 1793 * so it will then wait for writeback to 1794 * avoid OOM; and it's also appropriate 1795 * in global reclaim. 1796 */ 1797 folio_set_reclaim(folio); 1798 stat->nr_writeback += nr_pages; 1799 goto activate_locked; 1800 1801 /* Case 3 above */ 1802 } else { 1803 folio_unlock(folio); 1804 folio_wait_writeback(folio); 1805 /* then go back and try same folio again */ 1806 list_add_tail(&folio->lru, folio_list); 1807 continue; 1808 } 1809 } 1810 1811 if (!ignore_references) 1812 references = folio_check_references(folio, sc); 1813 1814 switch (references) { 1815 case FOLIOREF_ACTIVATE: 1816 goto activate_locked; 1817 case FOLIOREF_KEEP: 1818 stat->nr_ref_keep += nr_pages; 1819 goto keep_locked; 1820 case FOLIOREF_RECLAIM: 1821 case FOLIOREF_RECLAIM_CLEAN: 1822 ; /* try to reclaim the folio below */ 1823 } 1824 1825 /* 1826 * Before reclaiming the folio, try to relocate 1827 * its contents to another node. 1828 */ 1829 if (do_demote_pass && 1830 (thp_migration_supported() || !folio_test_large(folio))) { 1831 list_add(&folio->lru, &demote_folios); 1832 folio_unlock(folio); 1833 continue; 1834 } 1835 1836 /* 1837 * Anonymous process memory has backing store? 1838 * Try to allocate it some swap space here. 1839 * Lazyfree folio could be freed directly 1840 */ 1841 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1842 if (!folio_test_swapcache(folio)) { 1843 if (!(sc->gfp_mask & __GFP_IO)) 1844 goto keep_locked; 1845 if (folio_maybe_dma_pinned(folio)) 1846 goto keep_locked; 1847 if (folio_test_large(folio)) { 1848 /* cannot split folio, skip it */ 1849 if (!can_split_folio(folio, NULL)) 1850 goto activate_locked; 1851 /* 1852 * Split folios without a PMD map right 1853 * away. Chances are some or all of the 1854 * tail pages can be freed without IO. 1855 */ 1856 if (!folio_entire_mapcount(folio) && 1857 split_folio_to_list(folio, 1858 folio_list)) 1859 goto activate_locked; 1860 } 1861 if (!add_to_swap(folio)) { 1862 if (!folio_test_large(folio)) 1863 goto activate_locked_split; 1864 /* Fallback to swap normal pages */ 1865 if (split_folio_to_list(folio, 1866 folio_list)) 1867 goto activate_locked; 1868 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1869 count_vm_event(THP_SWPOUT_FALLBACK); 1870 #endif 1871 if (!add_to_swap(folio)) 1872 goto activate_locked_split; 1873 } 1874 } 1875 } else if (folio_test_swapbacked(folio) && 1876 folio_test_large(folio)) { 1877 /* Split shmem folio */ 1878 if (split_folio_to_list(folio, folio_list)) 1879 goto keep_locked; 1880 } 1881 1882 /* 1883 * If the folio was split above, the tail pages will make 1884 * their own pass through this function and be accounted 1885 * then. 1886 */ 1887 if ((nr_pages > 1) && !folio_test_large(folio)) { 1888 sc->nr_scanned -= (nr_pages - 1); 1889 nr_pages = 1; 1890 } 1891 1892 /* 1893 * The folio is mapped into the page tables of one or more 1894 * processes. Try to unmap it here. 1895 */ 1896 if (folio_mapped(folio)) { 1897 enum ttu_flags flags = TTU_BATCH_FLUSH; 1898 bool was_swapbacked = folio_test_swapbacked(folio); 1899 1900 if (folio_test_pmd_mappable(folio)) 1901 flags |= TTU_SPLIT_HUGE_PMD; 1902 1903 try_to_unmap(folio, flags); 1904 if (folio_mapped(folio)) { 1905 stat->nr_unmap_fail += nr_pages; 1906 if (!was_swapbacked && 1907 folio_test_swapbacked(folio)) 1908 stat->nr_lazyfree_fail += nr_pages; 1909 goto activate_locked; 1910 } 1911 } 1912 1913 mapping = folio_mapping(folio); 1914 if (folio_test_dirty(folio)) { 1915 /* 1916 * Only kswapd can writeback filesystem folios 1917 * to avoid risk of stack overflow. But avoid 1918 * injecting inefficient single-folio I/O into 1919 * flusher writeback as much as possible: only 1920 * write folios when we've encountered many 1921 * dirty folios, and when we've already scanned 1922 * the rest of the LRU for clean folios and see 1923 * the same dirty folios again (with the reclaim 1924 * flag set). 1925 */ 1926 if (folio_is_file_lru(folio) && 1927 (!current_is_kswapd() || 1928 !folio_test_reclaim(folio) || 1929 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1930 /* 1931 * Immediately reclaim when written back. 1932 * Similar in principle to folio_deactivate() 1933 * except we already have the folio isolated 1934 * and know it's dirty 1935 */ 1936 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 1937 nr_pages); 1938 folio_set_reclaim(folio); 1939 1940 goto activate_locked; 1941 } 1942 1943 if (references == FOLIOREF_RECLAIM_CLEAN) 1944 goto keep_locked; 1945 if (!may_enter_fs(folio, sc->gfp_mask)) 1946 goto keep_locked; 1947 if (!sc->may_writepage) 1948 goto keep_locked; 1949 1950 /* 1951 * Folio is dirty. Flush the TLB if a writable entry 1952 * potentially exists to avoid CPU writes after I/O 1953 * starts and then write it out here. 1954 */ 1955 try_to_unmap_flush_dirty(); 1956 switch (pageout(folio, mapping, &plug)) { 1957 case PAGE_KEEP: 1958 goto keep_locked; 1959 case PAGE_ACTIVATE: 1960 goto activate_locked; 1961 case PAGE_SUCCESS: 1962 stat->nr_pageout += nr_pages; 1963 1964 if (folio_test_writeback(folio)) 1965 goto keep; 1966 if (folio_test_dirty(folio)) 1967 goto keep; 1968 1969 /* 1970 * A synchronous write - probably a ramdisk. Go 1971 * ahead and try to reclaim the folio. 1972 */ 1973 if (!folio_trylock(folio)) 1974 goto keep; 1975 if (folio_test_dirty(folio) || 1976 folio_test_writeback(folio)) 1977 goto keep_locked; 1978 mapping = folio_mapping(folio); 1979 fallthrough; 1980 case PAGE_CLEAN: 1981 ; /* try to free the folio below */ 1982 } 1983 } 1984 1985 /* 1986 * If the folio has buffers, try to free the buffer 1987 * mappings associated with this folio. If we succeed 1988 * we try to free the folio as well. 1989 * 1990 * We do this even if the folio is dirty. 1991 * filemap_release_folio() does not perform I/O, but it 1992 * is possible for a folio to have the dirty flag set, 1993 * but it is actually clean (all its buffers are clean). 1994 * This happens if the buffers were written out directly, 1995 * with submit_bh(). ext3 will do this, as well as 1996 * the blockdev mapping. filemap_release_folio() will 1997 * discover that cleanness and will drop the buffers 1998 * and mark the folio clean - it can be freed. 1999 * 2000 * Rarely, folios can have buffers and no ->mapping. 2001 * These are the folios which were not successfully 2002 * invalidated in truncate_cleanup_folio(). We try to 2003 * drop those buffers here and if that worked, and the 2004 * folio is no longer mapped into process address space 2005 * (refcount == 1) it can be freed. Otherwise, leave 2006 * the folio on the LRU so it is swappable. 2007 */ 2008 if (folio_has_private(folio)) { 2009 if (!filemap_release_folio(folio, sc->gfp_mask)) 2010 goto activate_locked; 2011 if (!mapping && folio_ref_count(folio) == 1) { 2012 folio_unlock(folio); 2013 if (folio_put_testzero(folio)) 2014 goto free_it; 2015 else { 2016 /* 2017 * rare race with speculative reference. 2018 * the speculative reference will free 2019 * this folio shortly, so we may 2020 * increment nr_reclaimed here (and 2021 * leave it off the LRU). 2022 */ 2023 nr_reclaimed += nr_pages; 2024 continue; 2025 } 2026 } 2027 } 2028 2029 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 2030 /* follow __remove_mapping for reference */ 2031 if (!folio_ref_freeze(folio, 1)) 2032 goto keep_locked; 2033 /* 2034 * The folio has only one reference left, which is 2035 * from the isolation. After the caller puts the 2036 * folio back on the lru and drops the reference, the 2037 * folio will be freed anyway. It doesn't matter 2038 * which lru it goes on. So we don't bother checking 2039 * the dirty flag here. 2040 */ 2041 count_vm_events(PGLAZYFREED, nr_pages); 2042 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 2043 } else if (!mapping || !__remove_mapping(mapping, folio, true, 2044 sc->target_mem_cgroup)) 2045 goto keep_locked; 2046 2047 folio_unlock(folio); 2048 free_it: 2049 /* 2050 * Folio may get swapped out as a whole, need to account 2051 * all pages in it. 2052 */ 2053 nr_reclaimed += nr_pages; 2054 2055 /* 2056 * Is there need to periodically free_folio_list? It would 2057 * appear not as the counts should be low 2058 */ 2059 if (unlikely(folio_test_large(folio))) 2060 destroy_large_folio(folio); 2061 else 2062 list_add(&folio->lru, &free_folios); 2063 continue; 2064 2065 activate_locked_split: 2066 /* 2067 * The tail pages that are failed to add into swap cache 2068 * reach here. Fixup nr_scanned and nr_pages. 2069 */ 2070 if (nr_pages > 1) { 2071 sc->nr_scanned -= (nr_pages - 1); 2072 nr_pages = 1; 2073 } 2074 activate_locked: 2075 /* Not a candidate for swapping, so reclaim swap space. */ 2076 if (folio_test_swapcache(folio) && 2077 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 2078 folio_free_swap(folio); 2079 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 2080 if (!folio_test_mlocked(folio)) { 2081 int type = folio_is_file_lru(folio); 2082 folio_set_active(folio); 2083 stat->nr_activate[type] += nr_pages; 2084 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 2085 } 2086 keep_locked: 2087 folio_unlock(folio); 2088 keep: 2089 list_add(&folio->lru, &ret_folios); 2090 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 2091 folio_test_unevictable(folio), folio); 2092 } 2093 /* 'folio_list' is always empty here */ 2094 2095 /* Migrate folios selected for demotion */ 2096 nr_reclaimed += demote_folio_list(&demote_folios, pgdat); 2097 /* Folios that could not be demoted are still in @demote_folios */ 2098 if (!list_empty(&demote_folios)) { 2099 /* Folios which weren't demoted go back on @folio_list */ 2100 list_splice_init(&demote_folios, folio_list); 2101 2102 /* 2103 * goto retry to reclaim the undemoted folios in folio_list if 2104 * desired. 2105 * 2106 * Reclaiming directly from top tier nodes is not often desired 2107 * due to it breaking the LRU ordering: in general memory 2108 * should be reclaimed from lower tier nodes and demoted from 2109 * top tier nodes. 2110 * 2111 * However, disabling reclaim from top tier nodes entirely 2112 * would cause ooms in edge scenarios where lower tier memory 2113 * is unreclaimable for whatever reason, eg memory being 2114 * mlocked or too hot to reclaim. We can disable reclaim 2115 * from top tier nodes in proactive reclaim though as that is 2116 * not real memory pressure. 2117 */ 2118 if (!sc->proactive) { 2119 do_demote_pass = false; 2120 goto retry; 2121 } 2122 } 2123 2124 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 2125 2126 mem_cgroup_uncharge_list(&free_folios); 2127 try_to_unmap_flush(); 2128 free_unref_page_list(&free_folios); 2129 2130 list_splice(&ret_folios, folio_list); 2131 count_vm_events(PGACTIVATE, pgactivate); 2132 2133 if (plug) 2134 swap_write_unplug(plug); 2135 return nr_reclaimed; 2136 } 2137 2138 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 2139 struct list_head *folio_list) 2140 { 2141 struct scan_control sc = { 2142 .gfp_mask = GFP_KERNEL, 2143 .may_unmap = 1, 2144 }; 2145 struct reclaim_stat stat; 2146 unsigned int nr_reclaimed; 2147 struct folio *folio, *next; 2148 LIST_HEAD(clean_folios); 2149 unsigned int noreclaim_flag; 2150 2151 list_for_each_entry_safe(folio, next, folio_list, lru) { 2152 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 2153 !folio_test_dirty(folio) && !__folio_test_movable(folio) && 2154 !folio_test_unevictable(folio)) { 2155 folio_clear_active(folio); 2156 list_move(&folio->lru, &clean_folios); 2157 } 2158 } 2159 2160 /* 2161 * We should be safe here since we are only dealing with file pages and 2162 * we are not kswapd and therefore cannot write dirty file pages. But 2163 * call memalloc_noreclaim_save() anyway, just in case these conditions 2164 * change in the future. 2165 */ 2166 noreclaim_flag = memalloc_noreclaim_save(); 2167 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 2168 &stat, true); 2169 memalloc_noreclaim_restore(noreclaim_flag); 2170 2171 list_splice(&clean_folios, folio_list); 2172 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2173 -(long)nr_reclaimed); 2174 /* 2175 * Since lazyfree pages are isolated from file LRU from the beginning, 2176 * they will rotate back to anonymous LRU in the end if it failed to 2177 * discard so isolated count will be mismatched. 2178 * Compensate the isolated count for both LRU lists. 2179 */ 2180 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 2181 stat.nr_lazyfree_fail); 2182 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 2183 -(long)stat.nr_lazyfree_fail); 2184 return nr_reclaimed; 2185 } 2186 2187 /* 2188 * Update LRU sizes after isolating pages. The LRU size updates must 2189 * be complete before mem_cgroup_update_lru_size due to a sanity check. 2190 */ 2191 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 2192 enum lru_list lru, unsigned long *nr_zone_taken) 2193 { 2194 int zid; 2195 2196 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2197 if (!nr_zone_taken[zid]) 2198 continue; 2199 2200 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 2201 } 2202 2203 } 2204 2205 /* 2206 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 2207 * 2208 * lruvec->lru_lock is heavily contended. Some of the functions that 2209 * shrink the lists perform better by taking out a batch of pages 2210 * and working on them outside the LRU lock. 2211 * 2212 * For pagecache intensive workloads, this function is the hottest 2213 * spot in the kernel (apart from copy_*_user functions). 2214 * 2215 * Lru_lock must be held before calling this function. 2216 * 2217 * @nr_to_scan: The number of eligible pages to look through on the list. 2218 * @lruvec: The LRU vector to pull pages from. 2219 * @dst: The temp list to put pages on to. 2220 * @nr_scanned: The number of pages that were scanned. 2221 * @sc: The scan_control struct for this reclaim session 2222 * @lru: LRU list id for isolating 2223 * 2224 * returns how many pages were moved onto *@dst. 2225 */ 2226 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 2227 struct lruvec *lruvec, struct list_head *dst, 2228 unsigned long *nr_scanned, struct scan_control *sc, 2229 enum lru_list lru) 2230 { 2231 struct list_head *src = &lruvec->lists[lru]; 2232 unsigned long nr_taken = 0; 2233 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 2234 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 2235 unsigned long skipped = 0; 2236 unsigned long scan, total_scan, nr_pages; 2237 LIST_HEAD(folios_skipped); 2238 2239 total_scan = 0; 2240 scan = 0; 2241 while (scan < nr_to_scan && !list_empty(src)) { 2242 struct list_head *move_to = src; 2243 struct folio *folio; 2244 2245 folio = lru_to_folio(src); 2246 prefetchw_prev_lru_folio(folio, src, flags); 2247 2248 nr_pages = folio_nr_pages(folio); 2249 total_scan += nr_pages; 2250 2251 if (folio_zonenum(folio) > sc->reclaim_idx) { 2252 nr_skipped[folio_zonenum(folio)] += nr_pages; 2253 move_to = &folios_skipped; 2254 goto move; 2255 } 2256 2257 /* 2258 * Do not count skipped folios because that makes the function 2259 * return with no isolated folios if the LRU mostly contains 2260 * ineligible folios. This causes the VM to not reclaim any 2261 * folios, triggering a premature OOM. 2262 * Account all pages in a folio. 2263 */ 2264 scan += nr_pages; 2265 2266 if (!folio_test_lru(folio)) 2267 goto move; 2268 if (!sc->may_unmap && folio_mapped(folio)) 2269 goto move; 2270 2271 /* 2272 * Be careful not to clear the lru flag until after we're 2273 * sure the folio is not being freed elsewhere -- the 2274 * folio release code relies on it. 2275 */ 2276 if (unlikely(!folio_try_get(folio))) 2277 goto move; 2278 2279 if (!folio_test_clear_lru(folio)) { 2280 /* Another thread is already isolating this folio */ 2281 folio_put(folio); 2282 goto move; 2283 } 2284 2285 nr_taken += nr_pages; 2286 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 2287 move_to = dst; 2288 move: 2289 list_move(&folio->lru, move_to); 2290 } 2291 2292 /* 2293 * Splice any skipped folios to the start of the LRU list. Note that 2294 * this disrupts the LRU order when reclaiming for lower zones but 2295 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 2296 * scanning would soon rescan the same folios to skip and waste lots 2297 * of cpu cycles. 2298 */ 2299 if (!list_empty(&folios_skipped)) { 2300 int zid; 2301 2302 list_splice(&folios_skipped, src); 2303 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2304 if (!nr_skipped[zid]) 2305 continue; 2306 2307 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 2308 skipped += nr_skipped[zid]; 2309 } 2310 } 2311 *nr_scanned = total_scan; 2312 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 2313 total_scan, skipped, nr_taken, 2314 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru); 2315 update_lru_sizes(lruvec, lru, nr_zone_taken); 2316 return nr_taken; 2317 } 2318 2319 /** 2320 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 2321 * @folio: Folio to isolate from its LRU list. 2322 * 2323 * Isolate a @folio from an LRU list and adjust the vmstat statistic 2324 * corresponding to whatever LRU list the folio was on. 2325 * 2326 * The folio will have its LRU flag cleared. If it was found on the 2327 * active list, it will have the Active flag set. If it was found on the 2328 * unevictable list, it will have the Unevictable flag set. These flags 2329 * may need to be cleared by the caller before letting the page go. 2330 * 2331 * Context: 2332 * 2333 * (1) Must be called with an elevated refcount on the folio. This is a 2334 * fundamental difference from isolate_lru_folios() (which is called 2335 * without a stable reference). 2336 * (2) The lru_lock must not be held. 2337 * (3) Interrupts must be enabled. 2338 * 2339 * Return: 0 if the folio was removed from an LRU list. 2340 * -EBUSY if the folio was not on an LRU list. 2341 */ 2342 int folio_isolate_lru(struct folio *folio) 2343 { 2344 int ret = -EBUSY; 2345 2346 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 2347 2348 if (folio_test_clear_lru(folio)) { 2349 struct lruvec *lruvec; 2350 2351 folio_get(folio); 2352 lruvec = folio_lruvec_lock_irq(folio); 2353 lruvec_del_folio(lruvec, folio); 2354 unlock_page_lruvec_irq(lruvec); 2355 ret = 0; 2356 } 2357 2358 return ret; 2359 } 2360 2361 /* 2362 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 2363 * then get rescheduled. When there are massive number of tasks doing page 2364 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 2365 * the LRU list will go small and be scanned faster than necessary, leading to 2366 * unnecessary swapping, thrashing and OOM. 2367 */ 2368 static int too_many_isolated(struct pglist_data *pgdat, int file, 2369 struct scan_control *sc) 2370 { 2371 unsigned long inactive, isolated; 2372 bool too_many; 2373 2374 if (current_is_kswapd()) 2375 return 0; 2376 2377 if (!writeback_throttling_sane(sc)) 2378 return 0; 2379 2380 if (file) { 2381 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 2382 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 2383 } else { 2384 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 2385 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 2386 } 2387 2388 /* 2389 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 2390 * won't get blocked by normal direct-reclaimers, forming a circular 2391 * deadlock. 2392 */ 2393 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 2394 inactive >>= 3; 2395 2396 too_many = isolated > inactive; 2397 2398 /* Wake up tasks throttled due to too_many_isolated. */ 2399 if (!too_many) 2400 wake_throttle_isolated(pgdat); 2401 2402 return too_many; 2403 } 2404 2405 /* 2406 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 2407 * On return, @list is reused as a list of folios to be freed by the caller. 2408 * 2409 * Returns the number of pages moved to the given lruvec. 2410 */ 2411 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 2412 struct list_head *list) 2413 { 2414 int nr_pages, nr_moved = 0; 2415 LIST_HEAD(folios_to_free); 2416 2417 while (!list_empty(list)) { 2418 struct folio *folio = lru_to_folio(list); 2419 2420 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 2421 list_del(&folio->lru); 2422 if (unlikely(!folio_evictable(folio))) { 2423 spin_unlock_irq(&lruvec->lru_lock); 2424 folio_putback_lru(folio); 2425 spin_lock_irq(&lruvec->lru_lock); 2426 continue; 2427 } 2428 2429 /* 2430 * The folio_set_lru needs to be kept here for list integrity. 2431 * Otherwise: 2432 * #0 move_folios_to_lru #1 release_pages 2433 * if (!folio_put_testzero()) 2434 * if (folio_put_testzero()) 2435 * !lru //skip lru_lock 2436 * folio_set_lru() 2437 * list_add(&folio->lru,) 2438 * list_add(&folio->lru,) 2439 */ 2440 folio_set_lru(folio); 2441 2442 if (unlikely(folio_put_testzero(folio))) { 2443 __folio_clear_lru_flags(folio); 2444 2445 if (unlikely(folio_test_large(folio))) { 2446 spin_unlock_irq(&lruvec->lru_lock); 2447 destroy_large_folio(folio); 2448 spin_lock_irq(&lruvec->lru_lock); 2449 } else 2450 list_add(&folio->lru, &folios_to_free); 2451 2452 continue; 2453 } 2454 2455 /* 2456 * All pages were isolated from the same lruvec (and isolation 2457 * inhibits memcg migration). 2458 */ 2459 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 2460 lruvec_add_folio(lruvec, folio); 2461 nr_pages = folio_nr_pages(folio); 2462 nr_moved += nr_pages; 2463 if (folio_test_active(folio)) 2464 workingset_age_nonresident(lruvec, nr_pages); 2465 } 2466 2467 /* 2468 * To save our caller's stack, now use input list for pages to free. 2469 */ 2470 list_splice(&folios_to_free, list); 2471 2472 return nr_moved; 2473 } 2474 2475 /* 2476 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 2477 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 2478 * we should not throttle. Otherwise it is safe to do so. 2479 */ 2480 static int current_may_throttle(void) 2481 { 2482 return !(current->flags & PF_LOCAL_THROTTLE); 2483 } 2484 2485 /* 2486 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 2487 * of reclaimed pages 2488 */ 2489 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 2490 struct lruvec *lruvec, struct scan_control *sc, 2491 enum lru_list lru) 2492 { 2493 LIST_HEAD(folio_list); 2494 unsigned long nr_scanned; 2495 unsigned int nr_reclaimed = 0; 2496 unsigned long nr_taken; 2497 struct reclaim_stat stat; 2498 bool file = is_file_lru(lru); 2499 enum vm_event_item item; 2500 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2501 bool stalled = false; 2502 2503 while (unlikely(too_many_isolated(pgdat, file, sc))) { 2504 if (stalled) 2505 return 0; 2506 2507 /* wait a bit for the reclaimer. */ 2508 stalled = true; 2509 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 2510 2511 /* We are about to die and free our memory. Return now. */ 2512 if (fatal_signal_pending(current)) 2513 return SWAP_CLUSTER_MAX; 2514 } 2515 2516 lru_add_drain(); 2517 2518 spin_lock_irq(&lruvec->lru_lock); 2519 2520 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 2521 &nr_scanned, sc, lru); 2522 2523 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2524 item = PGSCAN_KSWAPD + reclaimer_offset(); 2525 if (!cgroup_reclaim(sc)) 2526 __count_vm_events(item, nr_scanned); 2527 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 2528 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 2529 2530 spin_unlock_irq(&lruvec->lru_lock); 2531 2532 if (nr_taken == 0) 2533 return 0; 2534 2535 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false); 2536 2537 spin_lock_irq(&lruvec->lru_lock); 2538 move_folios_to_lru(lruvec, &folio_list); 2539 2540 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2541 item = PGSTEAL_KSWAPD + reclaimer_offset(); 2542 if (!cgroup_reclaim(sc)) 2543 __count_vm_events(item, nr_reclaimed); 2544 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2545 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 2546 spin_unlock_irq(&lruvec->lru_lock); 2547 2548 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed); 2549 mem_cgroup_uncharge_list(&folio_list); 2550 free_unref_page_list(&folio_list); 2551 2552 /* 2553 * If dirty folios are scanned that are not queued for IO, it 2554 * implies that flushers are not doing their job. This can 2555 * happen when memory pressure pushes dirty folios to the end of 2556 * the LRU before the dirty limits are breached and the dirty 2557 * data has expired. It can also happen when the proportion of 2558 * dirty folios grows not through writes but through memory 2559 * pressure reclaiming all the clean cache. And in some cases, 2560 * the flushers simply cannot keep up with the allocation 2561 * rate. Nudge the flusher threads in case they are asleep. 2562 */ 2563 if (stat.nr_unqueued_dirty == nr_taken) { 2564 wakeup_flusher_threads(WB_REASON_VMSCAN); 2565 /* 2566 * For cgroupv1 dirty throttling is achieved by waking up 2567 * the kernel flusher here and later waiting on folios 2568 * which are in writeback to finish (see shrink_folio_list()). 2569 * 2570 * Flusher may not be able to issue writeback quickly 2571 * enough for cgroupv1 writeback throttling to work 2572 * on a large system. 2573 */ 2574 if (!writeback_throttling_sane(sc)) 2575 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 2576 } 2577 2578 sc->nr.dirty += stat.nr_dirty; 2579 sc->nr.congested += stat.nr_congested; 2580 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2581 sc->nr.writeback += stat.nr_writeback; 2582 sc->nr.immediate += stat.nr_immediate; 2583 sc->nr.taken += nr_taken; 2584 if (file) 2585 sc->nr.file_taken += nr_taken; 2586 2587 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2588 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2589 return nr_reclaimed; 2590 } 2591 2592 /* 2593 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 2594 * 2595 * We move them the other way if the folio is referenced by one or more 2596 * processes. 2597 * 2598 * If the folios are mostly unmapped, the processing is fast and it is 2599 * appropriate to hold lru_lock across the whole operation. But if 2600 * the folios are mapped, the processing is slow (folio_referenced()), so 2601 * we should drop lru_lock around each folio. It's impossible to balance 2602 * this, so instead we remove the folios from the LRU while processing them. 2603 * It is safe to rely on the active flag against the non-LRU folios in here 2604 * because nobody will play with that bit on a non-LRU folio. 2605 * 2606 * The downside is that we have to touch folio->_refcount against each folio. 2607 * But we had to alter folio->flags anyway. 2608 */ 2609 static void shrink_active_list(unsigned long nr_to_scan, 2610 struct lruvec *lruvec, 2611 struct scan_control *sc, 2612 enum lru_list lru) 2613 { 2614 unsigned long nr_taken; 2615 unsigned long nr_scanned; 2616 unsigned long vm_flags; 2617 LIST_HEAD(l_hold); /* The folios which were snipped off */ 2618 LIST_HEAD(l_active); 2619 LIST_HEAD(l_inactive); 2620 unsigned nr_deactivate, nr_activate; 2621 unsigned nr_rotated = 0; 2622 int file = is_file_lru(lru); 2623 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2624 2625 lru_add_drain(); 2626 2627 spin_lock_irq(&lruvec->lru_lock); 2628 2629 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2630 &nr_scanned, sc, lru); 2631 2632 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2633 2634 if (!cgroup_reclaim(sc)) 2635 __count_vm_events(PGREFILL, nr_scanned); 2636 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2637 2638 spin_unlock_irq(&lruvec->lru_lock); 2639 2640 while (!list_empty(&l_hold)) { 2641 struct folio *folio; 2642 2643 cond_resched(); 2644 folio = lru_to_folio(&l_hold); 2645 list_del(&folio->lru); 2646 2647 if (unlikely(!folio_evictable(folio))) { 2648 folio_putback_lru(folio); 2649 continue; 2650 } 2651 2652 if (unlikely(buffer_heads_over_limit)) { 2653 if (folio_test_private(folio) && folio_trylock(folio)) { 2654 if (folio_test_private(folio)) 2655 filemap_release_folio(folio, 0); 2656 folio_unlock(folio); 2657 } 2658 } 2659 2660 /* Referenced or rmap lock contention: rotate */ 2661 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2662 &vm_flags) != 0) { 2663 /* 2664 * Identify referenced, file-backed active folios and 2665 * give them one more trip around the active list. So 2666 * that executable code get better chances to stay in 2667 * memory under moderate memory pressure. Anon folios 2668 * are not likely to be evicted by use-once streaming 2669 * IO, plus JVM can create lots of anon VM_EXEC folios, 2670 * so we ignore them here. 2671 */ 2672 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2673 nr_rotated += folio_nr_pages(folio); 2674 list_add(&folio->lru, &l_active); 2675 continue; 2676 } 2677 } 2678 2679 folio_clear_active(folio); /* we are de-activating */ 2680 folio_set_workingset(folio); 2681 list_add(&folio->lru, &l_inactive); 2682 } 2683 2684 /* 2685 * Move folios back to the lru list. 2686 */ 2687 spin_lock_irq(&lruvec->lru_lock); 2688 2689 nr_activate = move_folios_to_lru(lruvec, &l_active); 2690 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2691 /* Keep all free folios in l_active list */ 2692 list_splice(&l_inactive, &l_active); 2693 2694 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2695 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2696 2697 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2698 spin_unlock_irq(&lruvec->lru_lock); 2699 2700 if (nr_rotated) 2701 lru_note_cost(lruvec, file, 0, nr_rotated); 2702 mem_cgroup_uncharge_list(&l_active); 2703 free_unref_page_list(&l_active); 2704 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2705 nr_deactivate, nr_rotated, sc->priority, file); 2706 } 2707 2708 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2709 struct pglist_data *pgdat) 2710 { 2711 struct reclaim_stat dummy_stat; 2712 unsigned int nr_reclaimed; 2713 struct folio *folio; 2714 struct scan_control sc = { 2715 .gfp_mask = GFP_KERNEL, 2716 .may_writepage = 1, 2717 .may_unmap = 1, 2718 .may_swap = 1, 2719 .no_demotion = 1, 2720 }; 2721 2722 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false); 2723 while (!list_empty(folio_list)) { 2724 folio = lru_to_folio(folio_list); 2725 list_del(&folio->lru); 2726 folio_putback_lru(folio); 2727 } 2728 2729 return nr_reclaimed; 2730 } 2731 2732 unsigned long reclaim_pages(struct list_head *folio_list) 2733 { 2734 int nid; 2735 unsigned int nr_reclaimed = 0; 2736 LIST_HEAD(node_folio_list); 2737 unsigned int noreclaim_flag; 2738 2739 if (list_empty(folio_list)) 2740 return nr_reclaimed; 2741 2742 noreclaim_flag = memalloc_noreclaim_save(); 2743 2744 nid = folio_nid(lru_to_folio(folio_list)); 2745 do { 2746 struct folio *folio = lru_to_folio(folio_list); 2747 2748 if (nid == folio_nid(folio)) { 2749 folio_clear_active(folio); 2750 list_move(&folio->lru, &node_folio_list); 2751 continue; 2752 } 2753 2754 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2755 nid = folio_nid(lru_to_folio(folio_list)); 2756 } while (!list_empty(folio_list)); 2757 2758 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2759 2760 memalloc_noreclaim_restore(noreclaim_flag); 2761 2762 return nr_reclaimed; 2763 } 2764 2765 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2766 struct lruvec *lruvec, struct scan_control *sc) 2767 { 2768 if (is_active_lru(lru)) { 2769 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2770 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2771 else 2772 sc->skipped_deactivate = 1; 2773 return 0; 2774 } 2775 2776 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2777 } 2778 2779 /* 2780 * The inactive anon list should be small enough that the VM never has 2781 * to do too much work. 2782 * 2783 * The inactive file list should be small enough to leave most memory 2784 * to the established workingset on the scan-resistant active list, 2785 * but large enough to avoid thrashing the aggregate readahead window. 2786 * 2787 * Both inactive lists should also be large enough that each inactive 2788 * folio has a chance to be referenced again before it is reclaimed. 2789 * 2790 * If that fails and refaulting is observed, the inactive list grows. 2791 * 2792 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2793 * on this LRU, maintained by the pageout code. An inactive_ratio 2794 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2795 * 2796 * total target max 2797 * memory ratio inactive 2798 * ------------------------------------- 2799 * 10MB 1 5MB 2800 * 100MB 1 50MB 2801 * 1GB 3 250MB 2802 * 10GB 10 0.9GB 2803 * 100GB 31 3GB 2804 * 1TB 101 10GB 2805 * 10TB 320 32GB 2806 */ 2807 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2808 { 2809 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2810 unsigned long inactive, active; 2811 unsigned long inactive_ratio; 2812 unsigned long gb; 2813 2814 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2815 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2816 2817 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2818 if (gb) 2819 inactive_ratio = int_sqrt(10 * gb); 2820 else 2821 inactive_ratio = 1; 2822 2823 return inactive * inactive_ratio < active; 2824 } 2825 2826 enum scan_balance { 2827 SCAN_EQUAL, 2828 SCAN_FRACT, 2829 SCAN_ANON, 2830 SCAN_FILE, 2831 }; 2832 2833 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc) 2834 { 2835 unsigned long file; 2836 struct lruvec *target_lruvec; 2837 2838 if (lru_gen_enabled()) 2839 return; 2840 2841 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2842 2843 /* 2844 * Flush the memory cgroup stats, so that we read accurate per-memcg 2845 * lruvec stats for heuristics. 2846 */ 2847 mem_cgroup_flush_stats(); 2848 2849 /* 2850 * Determine the scan balance between anon and file LRUs. 2851 */ 2852 spin_lock_irq(&target_lruvec->lru_lock); 2853 sc->anon_cost = target_lruvec->anon_cost; 2854 sc->file_cost = target_lruvec->file_cost; 2855 spin_unlock_irq(&target_lruvec->lru_lock); 2856 2857 /* 2858 * Target desirable inactive:active list ratios for the anon 2859 * and file LRU lists. 2860 */ 2861 if (!sc->force_deactivate) { 2862 unsigned long refaults; 2863 2864 /* 2865 * When refaults are being observed, it means a new 2866 * workingset is being established. Deactivate to get 2867 * rid of any stale active pages quickly. 2868 */ 2869 refaults = lruvec_page_state(target_lruvec, 2870 WORKINGSET_ACTIVATE_ANON); 2871 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2872 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2873 sc->may_deactivate |= DEACTIVATE_ANON; 2874 else 2875 sc->may_deactivate &= ~DEACTIVATE_ANON; 2876 2877 refaults = lruvec_page_state(target_lruvec, 2878 WORKINGSET_ACTIVATE_FILE); 2879 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2880 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2881 sc->may_deactivate |= DEACTIVATE_FILE; 2882 else 2883 sc->may_deactivate &= ~DEACTIVATE_FILE; 2884 } else 2885 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2886 2887 /* 2888 * If we have plenty of inactive file pages that aren't 2889 * thrashing, try to reclaim those first before touching 2890 * anonymous pages. 2891 */ 2892 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2893 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2894 sc->cache_trim_mode = 1; 2895 else 2896 sc->cache_trim_mode = 0; 2897 2898 /* 2899 * Prevent the reclaimer from falling into the cache trap: as 2900 * cache pages start out inactive, every cache fault will tip 2901 * the scan balance towards the file LRU. And as the file LRU 2902 * shrinks, so does the window for rotation from references. 2903 * This means we have a runaway feedback loop where a tiny 2904 * thrashing file LRU becomes infinitely more attractive than 2905 * anon pages. Try to detect this based on file LRU size. 2906 */ 2907 if (!cgroup_reclaim(sc)) { 2908 unsigned long total_high_wmark = 0; 2909 unsigned long free, anon; 2910 int z; 2911 2912 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2913 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2914 node_page_state(pgdat, NR_INACTIVE_FILE); 2915 2916 for (z = 0; z < MAX_NR_ZONES; z++) { 2917 struct zone *zone = &pgdat->node_zones[z]; 2918 2919 if (!managed_zone(zone)) 2920 continue; 2921 2922 total_high_wmark += high_wmark_pages(zone); 2923 } 2924 2925 /* 2926 * Consider anon: if that's low too, this isn't a 2927 * runaway file reclaim problem, but rather just 2928 * extreme pressure. Reclaim as per usual then. 2929 */ 2930 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2931 2932 sc->file_is_tiny = 2933 file + free <= total_high_wmark && 2934 !(sc->may_deactivate & DEACTIVATE_ANON) && 2935 anon >> sc->priority; 2936 } 2937 } 2938 2939 /* 2940 * Determine how aggressively the anon and file LRU lists should be 2941 * scanned. 2942 * 2943 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 2944 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 2945 */ 2946 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2947 unsigned long *nr) 2948 { 2949 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2950 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2951 unsigned long anon_cost, file_cost, total_cost; 2952 int swappiness = mem_cgroup_swappiness(memcg); 2953 u64 fraction[ANON_AND_FILE]; 2954 u64 denominator = 0; /* gcc */ 2955 enum scan_balance scan_balance; 2956 unsigned long ap, fp; 2957 enum lru_list lru; 2958 2959 /* If we have no swap space, do not bother scanning anon folios. */ 2960 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2961 scan_balance = SCAN_FILE; 2962 goto out; 2963 } 2964 2965 /* 2966 * Global reclaim will swap to prevent OOM even with no 2967 * swappiness, but memcg users want to use this knob to 2968 * disable swapping for individual groups completely when 2969 * using the memory controller's swap limit feature would be 2970 * too expensive. 2971 */ 2972 if (cgroup_reclaim(sc) && !swappiness) { 2973 scan_balance = SCAN_FILE; 2974 goto out; 2975 } 2976 2977 /* 2978 * Do not apply any pressure balancing cleverness when the 2979 * system is close to OOM, scan both anon and file equally 2980 * (unless the swappiness setting disagrees with swapping). 2981 */ 2982 if (!sc->priority && swappiness) { 2983 scan_balance = SCAN_EQUAL; 2984 goto out; 2985 } 2986 2987 /* 2988 * If the system is almost out of file pages, force-scan anon. 2989 */ 2990 if (sc->file_is_tiny) { 2991 scan_balance = SCAN_ANON; 2992 goto out; 2993 } 2994 2995 /* 2996 * If there is enough inactive page cache, we do not reclaim 2997 * anything from the anonymous working right now. 2998 */ 2999 if (sc->cache_trim_mode) { 3000 scan_balance = SCAN_FILE; 3001 goto out; 3002 } 3003 3004 scan_balance = SCAN_FRACT; 3005 /* 3006 * Calculate the pressure balance between anon and file pages. 3007 * 3008 * The amount of pressure we put on each LRU is inversely 3009 * proportional to the cost of reclaiming each list, as 3010 * determined by the share of pages that are refaulting, times 3011 * the relative IO cost of bringing back a swapped out 3012 * anonymous page vs reloading a filesystem page (swappiness). 3013 * 3014 * Although we limit that influence to ensure no list gets 3015 * left behind completely: at least a third of the pressure is 3016 * applied, before swappiness. 3017 * 3018 * With swappiness at 100, anon and file have equal IO cost. 3019 */ 3020 total_cost = sc->anon_cost + sc->file_cost; 3021 anon_cost = total_cost + sc->anon_cost; 3022 file_cost = total_cost + sc->file_cost; 3023 total_cost = anon_cost + file_cost; 3024 3025 ap = swappiness * (total_cost + 1); 3026 ap /= anon_cost + 1; 3027 3028 fp = (200 - swappiness) * (total_cost + 1); 3029 fp /= file_cost + 1; 3030 3031 fraction[0] = ap; 3032 fraction[1] = fp; 3033 denominator = ap + fp; 3034 out: 3035 for_each_evictable_lru(lru) { 3036 int file = is_file_lru(lru); 3037 unsigned long lruvec_size; 3038 unsigned long low, min; 3039 unsigned long scan; 3040 3041 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 3042 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 3043 &min, &low); 3044 3045 if (min || low) { 3046 /* 3047 * Scale a cgroup's reclaim pressure by proportioning 3048 * its current usage to its memory.low or memory.min 3049 * setting. 3050 * 3051 * This is important, as otherwise scanning aggression 3052 * becomes extremely binary -- from nothing as we 3053 * approach the memory protection threshold, to totally 3054 * nominal as we exceed it. This results in requiring 3055 * setting extremely liberal protection thresholds. It 3056 * also means we simply get no protection at all if we 3057 * set it too low, which is not ideal. 3058 * 3059 * If there is any protection in place, we reduce scan 3060 * pressure by how much of the total memory used is 3061 * within protection thresholds. 3062 * 3063 * There is one special case: in the first reclaim pass, 3064 * we skip over all groups that are within their low 3065 * protection. If that fails to reclaim enough pages to 3066 * satisfy the reclaim goal, we come back and override 3067 * the best-effort low protection. However, we still 3068 * ideally want to honor how well-behaved groups are in 3069 * that case instead of simply punishing them all 3070 * equally. As such, we reclaim them based on how much 3071 * memory they are using, reducing the scan pressure 3072 * again by how much of the total memory used is under 3073 * hard protection. 3074 */ 3075 unsigned long cgroup_size = mem_cgroup_size(memcg); 3076 unsigned long protection; 3077 3078 /* memory.low scaling, make sure we retry before OOM */ 3079 if (!sc->memcg_low_reclaim && low > min) { 3080 protection = low; 3081 sc->memcg_low_skipped = 1; 3082 } else { 3083 protection = min; 3084 } 3085 3086 /* Avoid TOCTOU with earlier protection check */ 3087 cgroup_size = max(cgroup_size, protection); 3088 3089 scan = lruvec_size - lruvec_size * protection / 3090 (cgroup_size + 1); 3091 3092 /* 3093 * Minimally target SWAP_CLUSTER_MAX pages to keep 3094 * reclaim moving forwards, avoiding decrementing 3095 * sc->priority further than desirable. 3096 */ 3097 scan = max(scan, SWAP_CLUSTER_MAX); 3098 } else { 3099 scan = lruvec_size; 3100 } 3101 3102 scan >>= sc->priority; 3103 3104 /* 3105 * If the cgroup's already been deleted, make sure to 3106 * scrape out the remaining cache. 3107 */ 3108 if (!scan && !mem_cgroup_online(memcg)) 3109 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 3110 3111 switch (scan_balance) { 3112 case SCAN_EQUAL: 3113 /* Scan lists relative to size */ 3114 break; 3115 case SCAN_FRACT: 3116 /* 3117 * Scan types proportional to swappiness and 3118 * their relative recent reclaim efficiency. 3119 * Make sure we don't miss the last page on 3120 * the offlined memory cgroups because of a 3121 * round-off error. 3122 */ 3123 scan = mem_cgroup_online(memcg) ? 3124 div64_u64(scan * fraction[file], denominator) : 3125 DIV64_U64_ROUND_UP(scan * fraction[file], 3126 denominator); 3127 break; 3128 case SCAN_FILE: 3129 case SCAN_ANON: 3130 /* Scan one type exclusively */ 3131 if ((scan_balance == SCAN_FILE) != file) 3132 scan = 0; 3133 break; 3134 default: 3135 /* Look ma, no brain */ 3136 BUG(); 3137 } 3138 3139 nr[lru] = scan; 3140 } 3141 } 3142 3143 /* 3144 * Anonymous LRU management is a waste if there is 3145 * ultimately no way to reclaim the memory. 3146 */ 3147 static bool can_age_anon_pages(struct pglist_data *pgdat, 3148 struct scan_control *sc) 3149 { 3150 /* Aging the anon LRU is valuable if swap is present: */ 3151 if (total_swap_pages > 0) 3152 return true; 3153 3154 /* Also valuable if anon pages can be demoted: */ 3155 return can_demote(pgdat->node_id, sc); 3156 } 3157 3158 #ifdef CONFIG_LRU_GEN 3159 3160 #ifdef CONFIG_LRU_GEN_ENABLED 3161 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 3162 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 3163 #else 3164 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 3165 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 3166 #endif 3167 3168 /****************************************************************************** 3169 * shorthand helpers 3170 ******************************************************************************/ 3171 3172 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset)) 3173 3174 #define DEFINE_MAX_SEQ(lruvec) \ 3175 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 3176 3177 #define DEFINE_MIN_SEQ(lruvec) \ 3178 unsigned long min_seq[ANON_AND_FILE] = { \ 3179 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 3180 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 3181 } 3182 3183 #define for_each_gen_type_zone(gen, type, zone) \ 3184 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 3185 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 3186 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 3187 3188 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 3189 { 3190 struct pglist_data *pgdat = NODE_DATA(nid); 3191 3192 #ifdef CONFIG_MEMCG 3193 if (memcg) { 3194 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 3195 3196 /* see the comment in mem_cgroup_lruvec() */ 3197 if (!lruvec->pgdat) 3198 lruvec->pgdat = pgdat; 3199 3200 return lruvec; 3201 } 3202 #endif 3203 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 3204 3205 return &pgdat->__lruvec; 3206 } 3207 3208 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 3209 { 3210 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3211 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 3212 3213 if (!can_demote(pgdat->node_id, sc) && 3214 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 3215 return 0; 3216 3217 return mem_cgroup_swappiness(memcg); 3218 } 3219 3220 static int get_nr_gens(struct lruvec *lruvec, int type) 3221 { 3222 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 3223 } 3224 3225 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 3226 { 3227 /* see the comment on lru_gen_folio */ 3228 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS && 3229 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) && 3230 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS; 3231 } 3232 3233 /****************************************************************************** 3234 * mm_struct list 3235 ******************************************************************************/ 3236 3237 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 3238 { 3239 static struct lru_gen_mm_list mm_list = { 3240 .fifo = LIST_HEAD_INIT(mm_list.fifo), 3241 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 3242 }; 3243 3244 #ifdef CONFIG_MEMCG 3245 if (memcg) 3246 return &memcg->mm_list; 3247 #endif 3248 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 3249 3250 return &mm_list; 3251 } 3252 3253 void lru_gen_add_mm(struct mm_struct *mm) 3254 { 3255 int nid; 3256 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 3257 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3258 3259 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 3260 #ifdef CONFIG_MEMCG 3261 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 3262 mm->lru_gen.memcg = memcg; 3263 #endif 3264 spin_lock(&mm_list->lock); 3265 3266 for_each_node_state(nid, N_MEMORY) { 3267 struct lruvec *lruvec = get_lruvec(memcg, nid); 3268 3269 /* the first addition since the last iteration */ 3270 if (lruvec->mm_state.tail == &mm_list->fifo) 3271 lruvec->mm_state.tail = &mm->lru_gen.list; 3272 } 3273 3274 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 3275 3276 spin_unlock(&mm_list->lock); 3277 } 3278 3279 void lru_gen_del_mm(struct mm_struct *mm) 3280 { 3281 int nid; 3282 struct lru_gen_mm_list *mm_list; 3283 struct mem_cgroup *memcg = NULL; 3284 3285 if (list_empty(&mm->lru_gen.list)) 3286 return; 3287 3288 #ifdef CONFIG_MEMCG 3289 memcg = mm->lru_gen.memcg; 3290 #endif 3291 mm_list = get_mm_list(memcg); 3292 3293 spin_lock(&mm_list->lock); 3294 3295 for_each_node(nid) { 3296 struct lruvec *lruvec = get_lruvec(memcg, nid); 3297 3298 /* where the last iteration ended (exclusive) */ 3299 if (lruvec->mm_state.tail == &mm->lru_gen.list) 3300 lruvec->mm_state.tail = lruvec->mm_state.tail->next; 3301 3302 /* where the current iteration continues (inclusive) */ 3303 if (lruvec->mm_state.head != &mm->lru_gen.list) 3304 continue; 3305 3306 lruvec->mm_state.head = lruvec->mm_state.head->next; 3307 /* the deletion ends the current iteration */ 3308 if (lruvec->mm_state.head == &mm_list->fifo) 3309 WRITE_ONCE(lruvec->mm_state.seq, lruvec->mm_state.seq + 1); 3310 } 3311 3312 list_del_init(&mm->lru_gen.list); 3313 3314 spin_unlock(&mm_list->lock); 3315 3316 #ifdef CONFIG_MEMCG 3317 mem_cgroup_put(mm->lru_gen.memcg); 3318 mm->lru_gen.memcg = NULL; 3319 #endif 3320 } 3321 3322 #ifdef CONFIG_MEMCG 3323 void lru_gen_migrate_mm(struct mm_struct *mm) 3324 { 3325 struct mem_cgroup *memcg; 3326 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 3327 3328 VM_WARN_ON_ONCE(task->mm != mm); 3329 lockdep_assert_held(&task->alloc_lock); 3330 3331 /* for mm_update_next_owner() */ 3332 if (mem_cgroup_disabled()) 3333 return; 3334 3335 rcu_read_lock(); 3336 memcg = mem_cgroup_from_task(task); 3337 rcu_read_unlock(); 3338 if (memcg == mm->lru_gen.memcg) 3339 return; 3340 3341 VM_WARN_ON_ONCE(!mm->lru_gen.memcg); 3342 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 3343 3344 lru_gen_del_mm(mm); 3345 lru_gen_add_mm(mm); 3346 } 3347 #endif 3348 3349 /* 3350 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 3351 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 3352 * bits in a bitmap, k is the number of hash functions and n is the number of 3353 * inserted items. 3354 * 3355 * Page table walkers use one of the two filters to reduce their search space. 3356 * To get rid of non-leaf entries that no longer have enough leaf entries, the 3357 * aging uses the double-buffering technique to flip to the other filter each 3358 * time it produces a new generation. For non-leaf entries that have enough 3359 * leaf entries, the aging carries them over to the next generation in 3360 * walk_pmd_range(); the eviction also report them when walking the rmap 3361 * in lru_gen_look_around(). 3362 * 3363 * For future optimizations: 3364 * 1. It's not necessary to keep both filters all the time. The spare one can be 3365 * freed after the RCU grace period and reallocated if needed again. 3366 * 2. And when reallocating, it's worth scaling its size according to the number 3367 * of inserted entries in the other filter, to reduce the memory overhead on 3368 * small systems and false positives on large systems. 3369 * 3. Jenkins' hash function is an alternative to Knuth's. 3370 */ 3371 #define BLOOM_FILTER_SHIFT 15 3372 3373 static inline int filter_gen_from_seq(unsigned long seq) 3374 { 3375 return seq % NR_BLOOM_FILTERS; 3376 } 3377 3378 static void get_item_key(void *item, int *key) 3379 { 3380 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 3381 3382 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 3383 3384 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 3385 key[1] = hash >> BLOOM_FILTER_SHIFT; 3386 } 3387 3388 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq) 3389 { 3390 unsigned long *filter; 3391 int gen = filter_gen_from_seq(seq); 3392 3393 filter = lruvec->mm_state.filters[gen]; 3394 if (filter) { 3395 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 3396 return; 3397 } 3398 3399 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 3400 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3401 WRITE_ONCE(lruvec->mm_state.filters[gen], filter); 3402 } 3403 3404 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item) 3405 { 3406 int key[2]; 3407 unsigned long *filter; 3408 int gen = filter_gen_from_seq(seq); 3409 3410 filter = READ_ONCE(lruvec->mm_state.filters[gen]); 3411 if (!filter) 3412 return; 3413 3414 get_item_key(item, key); 3415 3416 if (!test_bit(key[0], filter)) 3417 set_bit(key[0], filter); 3418 if (!test_bit(key[1], filter)) 3419 set_bit(key[1], filter); 3420 } 3421 3422 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item) 3423 { 3424 int key[2]; 3425 unsigned long *filter; 3426 int gen = filter_gen_from_seq(seq); 3427 3428 filter = READ_ONCE(lruvec->mm_state.filters[gen]); 3429 if (!filter) 3430 return true; 3431 3432 get_item_key(item, key); 3433 3434 return test_bit(key[0], filter) && test_bit(key[1], filter); 3435 } 3436 3437 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last) 3438 { 3439 int i; 3440 int hist; 3441 3442 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 3443 3444 if (walk) { 3445 hist = lru_hist_from_seq(walk->max_seq); 3446 3447 for (i = 0; i < NR_MM_STATS; i++) { 3448 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 3449 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]); 3450 walk->mm_stats[i] = 0; 3451 } 3452 } 3453 3454 if (NR_HIST_GENS > 1 && last) { 3455 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1); 3456 3457 for (i = 0; i < NR_MM_STATS; i++) 3458 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0); 3459 } 3460 } 3461 3462 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3463 { 3464 int type; 3465 unsigned long size = 0; 3466 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3467 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 3468 3469 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 3470 return true; 3471 3472 clear_bit(key, &mm->lru_gen.bitmap); 3473 3474 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) { 3475 size += type ? get_mm_counter(mm, MM_FILEPAGES) : 3476 get_mm_counter(mm, MM_ANONPAGES) + 3477 get_mm_counter(mm, MM_SHMEMPAGES); 3478 } 3479 3480 if (size < MIN_LRU_BATCH) 3481 return true; 3482 3483 return !mmget_not_zero(mm); 3484 } 3485 3486 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, 3487 struct mm_struct **iter) 3488 { 3489 bool first = false; 3490 bool last = true; 3491 struct mm_struct *mm = NULL; 3492 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3493 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3494 struct lru_gen_mm_state *mm_state = &lruvec->mm_state; 3495 3496 /* 3497 * There are four interesting cases for this page table walker: 3498 * 1. It tries to start a new iteration of mm_list with a stale max_seq; 3499 * there is nothing left to do. 3500 * 2. It's the first of the current generation, and it needs to reset 3501 * the Bloom filter for the next generation. 3502 * 3. It reaches the end of mm_list, and it needs to increment 3503 * mm_state->seq; the iteration is done. 3504 * 4. It's the last of the current generation, and it needs to reset the 3505 * mm stats counters for the next generation. 3506 */ 3507 spin_lock(&mm_list->lock); 3508 3509 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq); 3510 VM_WARN_ON_ONCE(*iter && mm_state->seq > walk->max_seq); 3511 VM_WARN_ON_ONCE(*iter && !mm_state->nr_walkers); 3512 3513 if (walk->max_seq <= mm_state->seq) { 3514 if (!*iter) 3515 last = false; 3516 goto done; 3517 } 3518 3519 if (!mm_state->nr_walkers) { 3520 VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo); 3521 3522 mm_state->head = mm_list->fifo.next; 3523 first = true; 3524 } 3525 3526 while (!mm && mm_state->head != &mm_list->fifo) { 3527 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 3528 3529 mm_state->head = mm_state->head->next; 3530 3531 /* force scan for those added after the last iteration */ 3532 if (!mm_state->tail || mm_state->tail == &mm->lru_gen.list) { 3533 mm_state->tail = mm_state->head; 3534 walk->force_scan = true; 3535 } 3536 3537 if (should_skip_mm(mm, walk)) 3538 mm = NULL; 3539 } 3540 3541 if (mm_state->head == &mm_list->fifo) 3542 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3543 done: 3544 if (*iter && !mm) 3545 mm_state->nr_walkers--; 3546 if (!*iter && mm) 3547 mm_state->nr_walkers++; 3548 3549 if (mm_state->nr_walkers) 3550 last = false; 3551 3552 if (*iter || last) 3553 reset_mm_stats(lruvec, walk, last); 3554 3555 spin_unlock(&mm_list->lock); 3556 3557 if (mm && first) 3558 reset_bloom_filter(lruvec, walk->max_seq + 1); 3559 3560 if (*iter) 3561 mmput_async(*iter); 3562 3563 *iter = mm; 3564 3565 return last; 3566 } 3567 3568 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq) 3569 { 3570 bool success = false; 3571 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3572 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 3573 struct lru_gen_mm_state *mm_state = &lruvec->mm_state; 3574 3575 spin_lock(&mm_list->lock); 3576 3577 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq); 3578 3579 if (max_seq > mm_state->seq && !mm_state->nr_walkers) { 3580 VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo); 3581 3582 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3583 reset_mm_stats(lruvec, NULL, true); 3584 success = true; 3585 } 3586 3587 spin_unlock(&mm_list->lock); 3588 3589 return success; 3590 } 3591 3592 /****************************************************************************** 3593 * refault feedback loop 3594 ******************************************************************************/ 3595 3596 /* 3597 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 3598 * 3599 * The P term is refaulted/(evicted+protected) from a tier in the generation 3600 * currently being evicted; the I term is the exponential moving average of the 3601 * P term over the generations previously evicted, using the smoothing factor 3602 * 1/2; the D term isn't supported. 3603 * 3604 * The setpoint (SP) is always the first tier of one type; the process variable 3605 * (PV) is either any tier of the other type or any other tier of the same 3606 * type. 3607 * 3608 * The error is the difference between the SP and the PV; the correction is to 3609 * turn off protection when SP>PV or turn on protection when SP<PV. 3610 * 3611 * For future optimizations: 3612 * 1. The D term may discount the other two terms over time so that long-lived 3613 * generations can resist stale information. 3614 */ 3615 struct ctrl_pos { 3616 unsigned long refaulted; 3617 unsigned long total; 3618 int gain; 3619 }; 3620 3621 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3622 struct ctrl_pos *pos) 3623 { 3624 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3625 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3626 3627 pos->refaulted = lrugen->avg_refaulted[type][tier] + 3628 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3629 pos->total = lrugen->avg_total[type][tier] + 3630 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3631 if (tier) 3632 pos->total += lrugen->protected[hist][type][tier - 1]; 3633 pos->gain = gain; 3634 } 3635 3636 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3637 { 3638 int hist, tier; 3639 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3640 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3641 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3642 3643 lockdep_assert_held(&lruvec->lru_lock); 3644 3645 if (!carryover && !clear) 3646 return; 3647 3648 hist = lru_hist_from_seq(seq); 3649 3650 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3651 if (carryover) { 3652 unsigned long sum; 3653 3654 sum = lrugen->avg_refaulted[type][tier] + 3655 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3656 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3657 3658 sum = lrugen->avg_total[type][tier] + 3659 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3660 if (tier) 3661 sum += lrugen->protected[hist][type][tier - 1]; 3662 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3663 } 3664 3665 if (clear) { 3666 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3667 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3668 if (tier) 3669 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0); 3670 } 3671 } 3672 } 3673 3674 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3675 { 3676 /* 3677 * Return true if the PV has a limited number of refaults or a lower 3678 * refaulted/total than the SP. 3679 */ 3680 return pv->refaulted < MIN_LRU_BATCH || 3681 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3682 (sp->refaulted + 1) * pv->total * pv->gain; 3683 } 3684 3685 /****************************************************************************** 3686 * the aging 3687 ******************************************************************************/ 3688 3689 /* promote pages accessed through page tables */ 3690 static int folio_update_gen(struct folio *folio, int gen) 3691 { 3692 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3693 3694 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3695 VM_WARN_ON_ONCE(!rcu_read_lock_held()); 3696 3697 do { 3698 /* lru_gen_del_folio() has isolated this page? */ 3699 if (!(old_flags & LRU_GEN_MASK)) { 3700 /* for shrink_folio_list() */ 3701 new_flags = old_flags | BIT(PG_referenced); 3702 continue; 3703 } 3704 3705 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3706 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF; 3707 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3708 3709 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3710 } 3711 3712 /* protect pages accessed multiple times through file descriptors */ 3713 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3714 { 3715 int type = folio_is_file_lru(folio); 3716 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3717 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3718 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3719 3720 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3721 3722 do { 3723 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3724 /* folio_update_gen() has promoted this page? */ 3725 if (new_gen >= 0 && new_gen != old_gen) 3726 return new_gen; 3727 3728 new_gen = (old_gen + 1) % MAX_NR_GENS; 3729 3730 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3731 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3732 /* for folio_end_writeback() */ 3733 if (reclaiming) 3734 new_flags |= BIT(PG_reclaim); 3735 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3736 3737 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3738 3739 return new_gen; 3740 } 3741 3742 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3743 int old_gen, int new_gen) 3744 { 3745 int type = folio_is_file_lru(folio); 3746 int zone = folio_zonenum(folio); 3747 int delta = folio_nr_pages(folio); 3748 3749 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3750 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3751 3752 walk->batched++; 3753 3754 walk->nr_pages[old_gen][type][zone] -= delta; 3755 walk->nr_pages[new_gen][type][zone] += delta; 3756 } 3757 3758 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk) 3759 { 3760 int gen, type, zone; 3761 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3762 3763 walk->batched = 0; 3764 3765 for_each_gen_type_zone(gen, type, zone) { 3766 enum lru_list lru = type * LRU_INACTIVE_FILE; 3767 int delta = walk->nr_pages[gen][type][zone]; 3768 3769 if (!delta) 3770 continue; 3771 3772 walk->nr_pages[gen][type][zone] = 0; 3773 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3774 lrugen->nr_pages[gen][type][zone] + delta); 3775 3776 if (lru_gen_is_active(lruvec, gen)) 3777 lru += LRU_ACTIVE; 3778 __update_lru_size(lruvec, lru, zone, delta); 3779 } 3780 } 3781 3782 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3783 { 3784 struct address_space *mapping; 3785 struct vm_area_struct *vma = args->vma; 3786 struct lru_gen_mm_walk *walk = args->private; 3787 3788 if (!vma_is_accessible(vma)) 3789 return true; 3790 3791 if (is_vm_hugetlb_page(vma)) 3792 return true; 3793 3794 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL | VM_SEQ_READ | VM_RAND_READ)) 3795 return true; 3796 3797 if (vma == get_gate_vma(vma->vm_mm)) 3798 return true; 3799 3800 if (vma_is_anonymous(vma)) 3801 return !walk->can_swap; 3802 3803 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3804 return true; 3805 3806 mapping = vma->vm_file->f_mapping; 3807 if (mapping_unevictable(mapping)) 3808 return true; 3809 3810 if (shmem_mapping(mapping)) 3811 return !walk->can_swap; 3812 3813 /* to exclude special mappings like dax, etc. */ 3814 return !mapping->a_ops->read_folio; 3815 } 3816 3817 /* 3818 * Some userspace memory allocators map many single-page VMAs. Instead of 3819 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3820 * table to reduce zigzags and improve cache performance. 3821 */ 3822 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3823 unsigned long *vm_start, unsigned long *vm_end) 3824 { 3825 unsigned long start = round_up(*vm_end, size); 3826 unsigned long end = (start | ~mask) + 1; 3827 VMA_ITERATOR(vmi, args->mm, start); 3828 3829 VM_WARN_ON_ONCE(mask & size); 3830 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3831 3832 for_each_vma(vmi, args->vma) { 3833 if (end && end <= args->vma->vm_start) 3834 return false; 3835 3836 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3837 continue; 3838 3839 *vm_start = max(start, args->vma->vm_start); 3840 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3841 3842 return true; 3843 } 3844 3845 return false; 3846 } 3847 3848 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr) 3849 { 3850 unsigned long pfn = pte_pfn(pte); 3851 3852 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3853 3854 if (!pte_present(pte) || is_zero_pfn(pfn)) 3855 return -1; 3856 3857 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) 3858 return -1; 3859 3860 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3861 return -1; 3862 3863 return pfn; 3864 } 3865 3866 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 3867 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr) 3868 { 3869 unsigned long pfn = pmd_pfn(pmd); 3870 3871 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3872 3873 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3874 return -1; 3875 3876 if (WARN_ON_ONCE(pmd_devmap(pmd))) 3877 return -1; 3878 3879 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3880 return -1; 3881 3882 return pfn; 3883 } 3884 #endif 3885 3886 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3887 struct pglist_data *pgdat, bool can_swap) 3888 { 3889 struct folio *folio; 3890 3891 /* try to avoid unnecessary memory loads */ 3892 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3893 return NULL; 3894 3895 folio = pfn_folio(pfn); 3896 if (folio_nid(folio) != pgdat->node_id) 3897 return NULL; 3898 3899 if (folio_memcg_rcu(folio) != memcg) 3900 return NULL; 3901 3902 /* file VMAs can contain anon pages from COW */ 3903 if (!folio_is_file_lru(folio) && !can_swap) 3904 return NULL; 3905 3906 return folio; 3907 } 3908 3909 static bool suitable_to_scan(int total, int young) 3910 { 3911 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 3912 3913 /* suitable if the average number of young PTEs per cacheline is >=1 */ 3914 return young * n >= total; 3915 } 3916 3917 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 3918 struct mm_walk *args) 3919 { 3920 int i; 3921 pte_t *pte; 3922 spinlock_t *ptl; 3923 unsigned long addr; 3924 int total = 0; 3925 int young = 0; 3926 struct lru_gen_mm_walk *walk = args->private; 3927 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3928 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3929 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); 3930 3931 VM_WARN_ON_ONCE(pmd_leaf(*pmd)); 3932 3933 ptl = pte_lockptr(args->mm, pmd); 3934 if (!spin_trylock(ptl)) 3935 return false; 3936 3937 arch_enter_lazy_mmu_mode(); 3938 3939 pte = pte_offset_map(pmd, start & PMD_MASK); 3940 restart: 3941 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 3942 unsigned long pfn; 3943 struct folio *folio; 3944 3945 total++; 3946 walk->mm_stats[MM_LEAF_TOTAL]++; 3947 3948 pfn = get_pte_pfn(pte[i], args->vma, addr); 3949 if (pfn == -1) 3950 continue; 3951 3952 if (!pte_young(pte[i])) { 3953 walk->mm_stats[MM_LEAF_OLD]++; 3954 continue; 3955 } 3956 3957 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3958 if (!folio) 3959 continue; 3960 3961 if (!ptep_test_and_clear_young(args->vma, addr, pte + i)) 3962 VM_WARN_ON_ONCE(true); 3963 3964 young++; 3965 walk->mm_stats[MM_LEAF_YOUNG]++; 3966 3967 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) && 3968 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3969 !folio_test_swapcache(folio))) 3970 folio_mark_dirty(folio); 3971 3972 old_gen = folio_update_gen(folio, new_gen); 3973 if (old_gen >= 0 && old_gen != new_gen) 3974 update_batch_size(walk, folio, old_gen, new_gen); 3975 } 3976 3977 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 3978 goto restart; 3979 3980 pte_unmap(pte); 3981 3982 arch_leave_lazy_mmu_mode(); 3983 spin_unlock(ptl); 3984 3985 return suitable_to_scan(total, young); 3986 } 3987 3988 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 3989 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma, 3990 struct mm_walk *args, unsigned long *bitmap, unsigned long *start) 3991 { 3992 int i; 3993 pmd_t *pmd; 3994 spinlock_t *ptl; 3995 struct lru_gen_mm_walk *walk = args->private; 3996 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3997 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3998 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq); 3999 4000 VM_WARN_ON_ONCE(pud_leaf(*pud)); 4001 4002 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 4003 if (*start == -1) { 4004 *start = next; 4005 return; 4006 } 4007 4008 i = next == -1 ? 0 : pmd_index(next) - pmd_index(*start); 4009 if (i && i <= MIN_LRU_BATCH) { 4010 __set_bit(i - 1, bitmap); 4011 return; 4012 } 4013 4014 pmd = pmd_offset(pud, *start); 4015 4016 ptl = pmd_lockptr(args->mm, pmd); 4017 if (!spin_trylock(ptl)) 4018 goto done; 4019 4020 arch_enter_lazy_mmu_mode(); 4021 4022 do { 4023 unsigned long pfn; 4024 struct folio *folio; 4025 unsigned long addr = i ? (*start & PMD_MASK) + i * PMD_SIZE : *start; 4026 4027 pfn = get_pmd_pfn(pmd[i], vma, addr); 4028 if (pfn == -1) 4029 goto next; 4030 4031 if (!pmd_trans_huge(pmd[i])) { 4032 if (arch_has_hw_nonleaf_pmd_young() && 4033 get_cap(LRU_GEN_NONLEAF_YOUNG)) 4034 pmdp_test_and_clear_young(vma, addr, pmd + i); 4035 goto next; 4036 } 4037 4038 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 4039 if (!folio) 4040 goto next; 4041 4042 if (!pmdp_test_and_clear_young(vma, addr, pmd + i)) 4043 goto next; 4044 4045 walk->mm_stats[MM_LEAF_YOUNG]++; 4046 4047 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) && 4048 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4049 !folio_test_swapcache(folio))) 4050 folio_mark_dirty(folio); 4051 4052 old_gen = folio_update_gen(folio, new_gen); 4053 if (old_gen >= 0 && old_gen != new_gen) 4054 update_batch_size(walk, folio, old_gen, new_gen); 4055 next: 4056 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 4057 } while (i <= MIN_LRU_BATCH); 4058 4059 arch_leave_lazy_mmu_mode(); 4060 spin_unlock(ptl); 4061 done: 4062 *start = -1; 4063 bitmap_zero(bitmap, MIN_LRU_BATCH); 4064 } 4065 #else 4066 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma, 4067 struct mm_walk *args, unsigned long *bitmap, unsigned long *start) 4068 { 4069 } 4070 #endif 4071 4072 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 4073 struct mm_walk *args) 4074 { 4075 int i; 4076 pmd_t *pmd; 4077 unsigned long next; 4078 unsigned long addr; 4079 struct vm_area_struct *vma; 4080 unsigned long pos = -1; 4081 struct lru_gen_mm_walk *walk = args->private; 4082 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {}; 4083 4084 VM_WARN_ON_ONCE(pud_leaf(*pud)); 4085 4086 /* 4087 * Finish an entire PMD in two passes: the first only reaches to PTE 4088 * tables to avoid taking the PMD lock; the second, if necessary, takes 4089 * the PMD lock to clear the accessed bit in PMD entries. 4090 */ 4091 pmd = pmd_offset(pud, start & PUD_MASK); 4092 restart: 4093 /* walk_pte_range() may call get_next_vma() */ 4094 vma = args->vma; 4095 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 4096 pmd_t val = pmdp_get_lockless(pmd + i); 4097 4098 next = pmd_addr_end(addr, end); 4099 4100 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 4101 walk->mm_stats[MM_LEAF_TOTAL]++; 4102 continue; 4103 } 4104 4105 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4106 if (pmd_trans_huge(val)) { 4107 unsigned long pfn = pmd_pfn(val); 4108 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 4109 4110 walk->mm_stats[MM_LEAF_TOTAL]++; 4111 4112 if (!pmd_young(val)) { 4113 walk->mm_stats[MM_LEAF_OLD]++; 4114 continue; 4115 } 4116 4117 /* try to avoid unnecessary memory loads */ 4118 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 4119 continue; 4120 4121 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos); 4122 continue; 4123 } 4124 #endif 4125 walk->mm_stats[MM_NONLEAF_TOTAL]++; 4126 4127 if (arch_has_hw_nonleaf_pmd_young() && 4128 get_cap(LRU_GEN_NONLEAF_YOUNG)) { 4129 if (!pmd_young(val)) 4130 continue; 4131 4132 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos); 4133 } 4134 4135 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i)) 4136 continue; 4137 4138 walk->mm_stats[MM_NONLEAF_FOUND]++; 4139 4140 if (!walk_pte_range(&val, addr, next, args)) 4141 continue; 4142 4143 walk->mm_stats[MM_NONLEAF_ADDED]++; 4144 4145 /* carry over to the next generation */ 4146 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i); 4147 } 4148 4149 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &pos); 4150 4151 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 4152 goto restart; 4153 } 4154 4155 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 4156 struct mm_walk *args) 4157 { 4158 int i; 4159 pud_t *pud; 4160 unsigned long addr; 4161 unsigned long next; 4162 struct lru_gen_mm_walk *walk = args->private; 4163 4164 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 4165 4166 pud = pud_offset(p4d, start & P4D_MASK); 4167 restart: 4168 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 4169 pud_t val = READ_ONCE(pud[i]); 4170 4171 next = pud_addr_end(addr, end); 4172 4173 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 4174 continue; 4175 4176 walk_pmd_range(&val, addr, next, args); 4177 4178 /* a racy check to curtail the waiting time */ 4179 if (wq_has_sleeper(&walk->lruvec->mm_state.wait)) 4180 return 1; 4181 4182 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 4183 end = (addr | ~PUD_MASK) + 1; 4184 goto done; 4185 } 4186 } 4187 4188 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 4189 goto restart; 4190 4191 end = round_up(end, P4D_SIZE); 4192 done: 4193 if (!end || !args->vma) 4194 return 1; 4195 4196 walk->next_addr = max(end, args->vma->vm_start); 4197 4198 return -EAGAIN; 4199 } 4200 4201 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk) 4202 { 4203 static const struct mm_walk_ops mm_walk_ops = { 4204 .test_walk = should_skip_vma, 4205 .p4d_entry = walk_pud_range, 4206 }; 4207 4208 int err; 4209 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4210 4211 walk->next_addr = FIRST_USER_ADDRESS; 4212 4213 do { 4214 err = -EBUSY; 4215 4216 /* folio_update_gen() requires stable folio_memcg() */ 4217 if (!mem_cgroup_trylock_pages(memcg)) 4218 break; 4219 4220 /* the caller might be holding the lock for write */ 4221 if (mmap_read_trylock(mm)) { 4222 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 4223 4224 mmap_read_unlock(mm); 4225 } 4226 4227 mem_cgroup_unlock_pages(); 4228 4229 if (walk->batched) { 4230 spin_lock_irq(&lruvec->lru_lock); 4231 reset_batch_size(lruvec, walk); 4232 spin_unlock_irq(&lruvec->lru_lock); 4233 } 4234 4235 cond_resched(); 4236 } while (err == -EAGAIN); 4237 } 4238 4239 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat) 4240 { 4241 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 4242 4243 if (pgdat && current_is_kswapd()) { 4244 VM_WARN_ON_ONCE(walk); 4245 4246 walk = &pgdat->mm_walk; 4247 } else if (!pgdat && !walk) { 4248 VM_WARN_ON_ONCE(current_is_kswapd()); 4249 4250 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 4251 } 4252 4253 current->reclaim_state->mm_walk = walk; 4254 4255 return walk; 4256 } 4257 4258 static void clear_mm_walk(void) 4259 { 4260 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 4261 4262 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 4263 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 4264 4265 current->reclaim_state->mm_walk = NULL; 4266 4267 if (!current_is_kswapd()) 4268 kfree(walk); 4269 } 4270 4271 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap) 4272 { 4273 int zone; 4274 int remaining = MAX_LRU_BATCH; 4275 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4276 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 4277 4278 if (type == LRU_GEN_ANON && !can_swap) 4279 goto done; 4280 4281 /* prevent cold/hot inversion if force_scan is true */ 4282 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4283 struct list_head *head = &lrugen->folios[old_gen][type][zone]; 4284 4285 while (!list_empty(head)) { 4286 struct folio *folio = lru_to_folio(head); 4287 4288 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4289 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4290 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4291 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4292 4293 new_gen = folio_inc_gen(lruvec, folio, false); 4294 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); 4295 4296 if (!--remaining) 4297 return false; 4298 } 4299 } 4300 done: 4301 reset_ctrl_pos(lruvec, type, true); 4302 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 4303 4304 return true; 4305 } 4306 4307 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap) 4308 { 4309 int gen, type, zone; 4310 bool success = false; 4311 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4312 DEFINE_MIN_SEQ(lruvec); 4313 4314 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 4315 4316 /* find the oldest populated generation */ 4317 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4318 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 4319 gen = lru_gen_from_seq(min_seq[type]); 4320 4321 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4322 if (!list_empty(&lrugen->folios[gen][type][zone])) 4323 goto next; 4324 } 4325 4326 min_seq[type]++; 4327 } 4328 next: 4329 ; 4330 } 4331 4332 /* see the comment on lru_gen_folio */ 4333 if (can_swap) { 4334 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]); 4335 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]); 4336 } 4337 4338 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4339 if (min_seq[type] == lrugen->min_seq[type]) 4340 continue; 4341 4342 reset_ctrl_pos(lruvec, type, true); 4343 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 4344 success = true; 4345 } 4346 4347 return success; 4348 } 4349 4350 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan) 4351 { 4352 int prev, next; 4353 int type, zone; 4354 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4355 4356 spin_lock_irq(&lruvec->lru_lock); 4357 4358 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 4359 4360 for (type = ANON_AND_FILE - 1; type >= 0; type--) { 4361 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 4362 continue; 4363 4364 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap)); 4365 4366 while (!inc_min_seq(lruvec, type, can_swap)) { 4367 spin_unlock_irq(&lruvec->lru_lock); 4368 cond_resched(); 4369 spin_lock_irq(&lruvec->lru_lock); 4370 } 4371 } 4372 4373 /* 4374 * Update the active/inactive LRU sizes for compatibility. Both sides of 4375 * the current max_seq need to be covered, since max_seq+1 can overlap 4376 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 4377 * overlap, cold/hot inversion happens. 4378 */ 4379 prev = lru_gen_from_seq(lrugen->max_seq - 1); 4380 next = lru_gen_from_seq(lrugen->max_seq + 1); 4381 4382 for (type = 0; type < ANON_AND_FILE; type++) { 4383 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4384 enum lru_list lru = type * LRU_INACTIVE_FILE; 4385 long delta = lrugen->nr_pages[prev][type][zone] - 4386 lrugen->nr_pages[next][type][zone]; 4387 4388 if (!delta) 4389 continue; 4390 4391 __update_lru_size(lruvec, lru, zone, delta); 4392 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 4393 } 4394 } 4395 4396 for (type = 0; type < ANON_AND_FILE; type++) 4397 reset_ctrl_pos(lruvec, type, false); 4398 4399 WRITE_ONCE(lrugen->timestamps[next], jiffies); 4400 /* make sure preceding modifications appear */ 4401 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 4402 4403 spin_unlock_irq(&lruvec->lru_lock); 4404 } 4405 4406 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq, 4407 struct scan_control *sc, bool can_swap, bool force_scan) 4408 { 4409 bool success; 4410 struct lru_gen_mm_walk *walk; 4411 struct mm_struct *mm = NULL; 4412 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4413 4414 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq)); 4415 4416 /* see the comment in iterate_mm_list() */ 4417 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) { 4418 success = false; 4419 goto done; 4420 } 4421 4422 /* 4423 * If the hardware doesn't automatically set the accessed bit, fallback 4424 * to lru_gen_look_around(), which only clears the accessed bit in a 4425 * handful of PTEs. Spreading the work out over a period of time usually 4426 * is less efficient, but it avoids bursty page faults. 4427 */ 4428 if (!force_scan && !(arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))) { 4429 success = iterate_mm_list_nowalk(lruvec, max_seq); 4430 goto done; 4431 } 4432 4433 walk = set_mm_walk(NULL); 4434 if (!walk) { 4435 success = iterate_mm_list_nowalk(lruvec, max_seq); 4436 goto done; 4437 } 4438 4439 walk->lruvec = lruvec; 4440 walk->max_seq = max_seq; 4441 walk->can_swap = can_swap; 4442 walk->force_scan = force_scan; 4443 4444 do { 4445 success = iterate_mm_list(lruvec, walk, &mm); 4446 if (mm) 4447 walk_mm(lruvec, mm, walk); 4448 4449 cond_resched(); 4450 } while (mm); 4451 done: 4452 if (!success) { 4453 if (sc->priority <= DEF_PRIORITY - 2) 4454 wait_event_killable(lruvec->mm_state.wait, 4455 max_seq < READ_ONCE(lrugen->max_seq)); 4456 4457 return max_seq < READ_ONCE(lrugen->max_seq); 4458 } 4459 4460 VM_WARN_ON_ONCE(max_seq != READ_ONCE(lrugen->max_seq)); 4461 4462 inc_max_seq(lruvec, can_swap, force_scan); 4463 /* either this sees any waiters or they will see updated max_seq */ 4464 if (wq_has_sleeper(&lruvec->mm_state.wait)) 4465 wake_up_all(&lruvec->mm_state.wait); 4466 4467 return true; 4468 } 4469 4470 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, 4471 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan) 4472 { 4473 int gen, type, zone; 4474 unsigned long old = 0; 4475 unsigned long young = 0; 4476 unsigned long total = 0; 4477 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4478 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4479 DEFINE_MIN_SEQ(lruvec); 4480 4481 /* whether this lruvec is completely out of cold folios */ 4482 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) { 4483 *nr_to_scan = 0; 4484 return true; 4485 } 4486 4487 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4488 unsigned long seq; 4489 4490 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4491 unsigned long size = 0; 4492 4493 gen = lru_gen_from_seq(seq); 4494 4495 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4496 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4497 4498 total += size; 4499 if (seq == max_seq) 4500 young += size; 4501 else if (seq + MIN_NR_GENS == max_seq) 4502 old += size; 4503 } 4504 } 4505 4506 /* try to scrape all its memory if this memcg was deleted */ 4507 *nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 4508 4509 /* 4510 * The aging tries to be lazy to reduce the overhead, while the eviction 4511 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the 4512 * ideal number of generations is MIN_NR_GENS+1. 4513 */ 4514 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq) 4515 return false; 4516 4517 /* 4518 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1) 4519 * of the total number of pages for each generation. A reasonable range 4520 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The 4521 * aging cares about the upper bound of hot pages, while the eviction 4522 * cares about the lower bound of cold pages. 4523 */ 4524 if (young * MIN_NR_GENS > total) 4525 return true; 4526 if (old * (MIN_NR_GENS + 2) < total) 4527 return true; 4528 4529 return false; 4530 } 4531 4532 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) 4533 { 4534 int gen, type, zone; 4535 unsigned long total = 0; 4536 bool can_swap = get_swappiness(lruvec, sc); 4537 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4538 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4539 DEFINE_MAX_SEQ(lruvec); 4540 DEFINE_MIN_SEQ(lruvec); 4541 4542 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4543 unsigned long seq; 4544 4545 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4546 gen = lru_gen_from_seq(seq); 4547 4548 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4549 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4550 } 4551 } 4552 4553 /* whether the size is big enough to be helpful */ 4554 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 4555 } 4556 4557 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, 4558 unsigned long min_ttl) 4559 { 4560 int gen; 4561 unsigned long birth; 4562 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4563 DEFINE_MIN_SEQ(lruvec); 4564 4565 VM_WARN_ON_ONCE(sc->memcg_low_reclaim); 4566 4567 /* see the comment on lru_gen_folio */ 4568 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]); 4569 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 4570 4571 if (time_is_after_jiffies(birth + min_ttl)) 4572 return false; 4573 4574 if (!lruvec_is_sizable(lruvec, sc)) 4575 return false; 4576 4577 mem_cgroup_calculate_protection(NULL, memcg); 4578 4579 return !mem_cgroup_below_min(NULL, memcg); 4580 } 4581 4582 /* to protect the working set of the last N jiffies */ 4583 static unsigned long lru_gen_min_ttl __read_mostly; 4584 4585 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 4586 { 4587 struct mem_cgroup *memcg; 4588 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 4589 4590 VM_WARN_ON_ONCE(!current_is_kswapd()); 4591 4592 sc->last_reclaimed = sc->nr_reclaimed; 4593 4594 /* check the order to exclude compaction-induced reclaim */ 4595 if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY) 4596 return; 4597 4598 memcg = mem_cgroup_iter(NULL, NULL, NULL); 4599 do { 4600 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4601 4602 if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) { 4603 mem_cgroup_iter_break(NULL, memcg); 4604 return; 4605 } 4606 4607 cond_resched(); 4608 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 4609 4610 /* 4611 * The main goal is to OOM kill if every generation from all memcgs is 4612 * younger than min_ttl. However, another possibility is all memcgs are 4613 * either too small or below min. 4614 */ 4615 if (mutex_trylock(&oom_lock)) { 4616 struct oom_control oc = { 4617 .gfp_mask = sc->gfp_mask, 4618 }; 4619 4620 out_of_memory(&oc); 4621 4622 mutex_unlock(&oom_lock); 4623 } 4624 } 4625 4626 /* 4627 * This function exploits spatial locality when shrink_folio_list() walks the 4628 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 4629 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 4630 * the PTE table to the Bloom filter. This forms a feedback loop between the 4631 * eviction and the aging. 4632 */ 4633 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 4634 { 4635 int i; 4636 pte_t *pte; 4637 unsigned long start; 4638 unsigned long end; 4639 unsigned long addr; 4640 struct lru_gen_mm_walk *walk; 4641 int young = 0; 4642 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {}; 4643 struct folio *folio = pfn_folio(pvmw->pfn); 4644 struct mem_cgroup *memcg = folio_memcg(folio); 4645 struct pglist_data *pgdat = folio_pgdat(folio); 4646 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4647 DEFINE_MAX_SEQ(lruvec); 4648 int old_gen, new_gen = lru_gen_from_seq(max_seq); 4649 4650 lockdep_assert_held(pvmw->ptl); 4651 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 4652 4653 if (spin_is_contended(pvmw->ptl)) 4654 return; 4655 4656 /* avoid taking the LRU lock under the PTL when possible */ 4657 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 4658 4659 start = max(pvmw->address & PMD_MASK, pvmw->vma->vm_start); 4660 end = min(pvmw->address | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1; 4661 4662 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 4663 if (pvmw->address - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 4664 end = start + MIN_LRU_BATCH * PAGE_SIZE; 4665 else if (end - pvmw->address < MIN_LRU_BATCH * PAGE_SIZE / 2) 4666 start = end - MIN_LRU_BATCH * PAGE_SIZE; 4667 else { 4668 start = pvmw->address - MIN_LRU_BATCH * PAGE_SIZE / 2; 4669 end = pvmw->address + MIN_LRU_BATCH * PAGE_SIZE / 2; 4670 } 4671 } 4672 4673 pte = pvmw->pte - (pvmw->address - start) / PAGE_SIZE; 4674 4675 rcu_read_lock(); 4676 arch_enter_lazy_mmu_mode(); 4677 4678 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 4679 unsigned long pfn; 4680 4681 pfn = get_pte_pfn(pte[i], pvmw->vma, addr); 4682 if (pfn == -1) 4683 continue; 4684 4685 if (!pte_young(pte[i])) 4686 continue; 4687 4688 folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap); 4689 if (!folio) 4690 continue; 4691 4692 if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i)) 4693 VM_WARN_ON_ONCE(true); 4694 4695 young++; 4696 4697 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) && 4698 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4699 !folio_test_swapcache(folio))) 4700 folio_mark_dirty(folio); 4701 4702 old_gen = folio_lru_gen(folio); 4703 if (old_gen < 0) 4704 folio_set_referenced(folio); 4705 else if (old_gen != new_gen) 4706 __set_bit(i, bitmap); 4707 } 4708 4709 arch_leave_lazy_mmu_mode(); 4710 rcu_read_unlock(); 4711 4712 /* feedback from rmap walkers to page table walkers */ 4713 if (suitable_to_scan(i, young)) 4714 update_bloom_filter(lruvec, max_seq, pvmw->pmd); 4715 4716 if (!walk && bitmap_weight(bitmap, MIN_LRU_BATCH) < PAGEVEC_SIZE) { 4717 for_each_set_bit(i, bitmap, MIN_LRU_BATCH) { 4718 folio = pfn_folio(pte_pfn(pte[i])); 4719 folio_activate(folio); 4720 } 4721 return; 4722 } 4723 4724 /* folio_update_gen() requires stable folio_memcg() */ 4725 if (!mem_cgroup_trylock_pages(memcg)) 4726 return; 4727 4728 if (!walk) { 4729 spin_lock_irq(&lruvec->lru_lock); 4730 new_gen = lru_gen_from_seq(lruvec->lrugen.max_seq); 4731 } 4732 4733 for_each_set_bit(i, bitmap, MIN_LRU_BATCH) { 4734 folio = pfn_folio(pte_pfn(pte[i])); 4735 if (folio_memcg_rcu(folio) != memcg) 4736 continue; 4737 4738 old_gen = folio_update_gen(folio, new_gen); 4739 if (old_gen < 0 || old_gen == new_gen) 4740 continue; 4741 4742 if (walk) 4743 update_batch_size(walk, folio, old_gen, new_gen); 4744 else 4745 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 4746 } 4747 4748 if (!walk) 4749 spin_unlock_irq(&lruvec->lru_lock); 4750 4751 mem_cgroup_unlock_pages(); 4752 } 4753 4754 /****************************************************************************** 4755 * the eviction 4756 ******************************************************************************/ 4757 4758 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx) 4759 { 4760 bool success; 4761 int gen = folio_lru_gen(folio); 4762 int type = folio_is_file_lru(folio); 4763 int zone = folio_zonenum(folio); 4764 int delta = folio_nr_pages(folio); 4765 int refs = folio_lru_refs(folio); 4766 int tier = lru_tier_from_refs(refs); 4767 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4768 4769 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4770 4771 /* unevictable */ 4772 if (!folio_evictable(folio)) { 4773 success = lru_gen_del_folio(lruvec, folio, true); 4774 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4775 folio_set_unevictable(folio); 4776 lruvec_add_folio(lruvec, folio); 4777 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4778 return true; 4779 } 4780 4781 /* dirty lazyfree */ 4782 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) { 4783 success = lru_gen_del_folio(lruvec, folio, true); 4784 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4785 folio_set_swapbacked(folio); 4786 lruvec_add_folio_tail(lruvec, folio); 4787 return true; 4788 } 4789 4790 /* promoted */ 4791 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4792 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4793 return true; 4794 } 4795 4796 /* protected */ 4797 if (tier > tier_idx) { 4798 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4799 4800 gen = folio_inc_gen(lruvec, folio, false); 4801 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4802 4803 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 4804 lrugen->protected[hist][type][tier - 1] + delta); 4805 __mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta); 4806 return true; 4807 } 4808 4809 /* waiting for writeback */ 4810 if (folio_test_locked(folio) || folio_test_writeback(folio) || 4811 (type == LRU_GEN_FILE && folio_test_dirty(folio))) { 4812 gen = folio_inc_gen(lruvec, folio, true); 4813 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4814 return true; 4815 } 4816 4817 return false; 4818 } 4819 4820 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4821 { 4822 bool success; 4823 4824 /* unmapping inhibited */ 4825 if (!sc->may_unmap && folio_mapped(folio)) 4826 return false; 4827 4828 /* swapping inhibited */ 4829 if (!(sc->may_writepage && (sc->gfp_mask & __GFP_IO)) && 4830 (folio_test_dirty(folio) || 4831 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4832 return false; 4833 4834 /* raced with release_pages() */ 4835 if (!folio_try_get(folio)) 4836 return false; 4837 4838 /* raced with another isolation */ 4839 if (!folio_test_clear_lru(folio)) { 4840 folio_put(folio); 4841 return false; 4842 } 4843 4844 /* see the comment on MAX_NR_TIERS */ 4845 if (!folio_test_referenced(folio)) 4846 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0); 4847 4848 /* for shrink_folio_list() */ 4849 folio_clear_reclaim(folio); 4850 folio_clear_referenced(folio); 4851 4852 success = lru_gen_del_folio(lruvec, folio, true); 4853 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4854 4855 return true; 4856 } 4857 4858 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, 4859 int type, int tier, struct list_head *list) 4860 { 4861 int gen, zone; 4862 enum vm_event_item item; 4863 int sorted = 0; 4864 int scanned = 0; 4865 int isolated = 0; 4866 int remaining = MAX_LRU_BATCH; 4867 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4868 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4869 4870 VM_WARN_ON_ONCE(!list_empty(list)); 4871 4872 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 4873 return 0; 4874 4875 gen = lru_gen_from_seq(lrugen->min_seq[type]); 4876 4877 for (zone = sc->reclaim_idx; zone >= 0; zone--) { 4878 LIST_HEAD(moved); 4879 int skipped = 0; 4880 struct list_head *head = &lrugen->folios[gen][type][zone]; 4881 4882 while (!list_empty(head)) { 4883 struct folio *folio = lru_to_folio(head); 4884 int delta = folio_nr_pages(folio); 4885 4886 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4887 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4888 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4889 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4890 4891 scanned += delta; 4892 4893 if (sort_folio(lruvec, folio, tier)) 4894 sorted += delta; 4895 else if (isolate_folio(lruvec, folio, sc)) { 4896 list_add(&folio->lru, list); 4897 isolated += delta; 4898 } else { 4899 list_move(&folio->lru, &moved); 4900 skipped += delta; 4901 } 4902 4903 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH) 4904 break; 4905 } 4906 4907 if (skipped) { 4908 list_splice(&moved, head); 4909 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped); 4910 } 4911 4912 if (!remaining || isolated >= MIN_LRU_BATCH) 4913 break; 4914 } 4915 4916 item = PGSCAN_KSWAPD + reclaimer_offset(); 4917 if (!cgroup_reclaim(sc)) { 4918 __count_vm_events(item, isolated); 4919 __count_vm_events(PGREFILL, sorted); 4920 } 4921 __count_memcg_events(memcg, item, isolated); 4922 __count_memcg_events(memcg, PGREFILL, sorted); 4923 __count_vm_events(PGSCAN_ANON + type, isolated); 4924 4925 /* 4926 * There might not be eligible pages due to reclaim_idx, may_unmap and 4927 * may_writepage. Check the remaining to prevent livelock if it's not 4928 * making progress. 4929 */ 4930 return isolated || !remaining ? scanned : 0; 4931 } 4932 4933 static int get_tier_idx(struct lruvec *lruvec, int type) 4934 { 4935 int tier; 4936 struct ctrl_pos sp, pv; 4937 4938 /* 4939 * To leave a margin for fluctuations, use a larger gain factor (1:2). 4940 * This value is chosen because any other tier would have at least twice 4941 * as many refaults as the first tier. 4942 */ 4943 read_ctrl_pos(lruvec, type, 0, 1, &sp); 4944 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4945 read_ctrl_pos(lruvec, type, tier, 2, &pv); 4946 if (!positive_ctrl_err(&sp, &pv)) 4947 break; 4948 } 4949 4950 return tier - 1; 4951 } 4952 4953 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx) 4954 { 4955 int type, tier; 4956 struct ctrl_pos sp, pv; 4957 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness }; 4958 4959 /* 4960 * Compare the first tier of anon with that of file to determine which 4961 * type to scan. Also need to compare other tiers of the selected type 4962 * with the first tier of the other type to determine the last tier (of 4963 * the selected type) to evict. 4964 */ 4965 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp); 4966 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv); 4967 type = positive_ctrl_err(&sp, &pv); 4968 4969 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp); 4970 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4971 read_ctrl_pos(lruvec, type, tier, gain[type], &pv); 4972 if (!positive_ctrl_err(&sp, &pv)) 4973 break; 4974 } 4975 4976 *tier_idx = tier - 1; 4977 4978 return type; 4979 } 4980 4981 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, 4982 int *type_scanned, struct list_head *list) 4983 { 4984 int i; 4985 int type; 4986 int scanned; 4987 int tier = -1; 4988 DEFINE_MIN_SEQ(lruvec); 4989 4990 /* 4991 * Try to make the obvious choice first. When anon and file are both 4992 * available from the same generation, interpret swappiness 1 as file 4993 * first and 200 as anon first. 4994 */ 4995 if (!swappiness) 4996 type = LRU_GEN_FILE; 4997 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE]) 4998 type = LRU_GEN_ANON; 4999 else if (swappiness == 1) 5000 type = LRU_GEN_FILE; 5001 else if (swappiness == 200) 5002 type = LRU_GEN_ANON; 5003 else 5004 type = get_type_to_scan(lruvec, swappiness, &tier); 5005 5006 for (i = !swappiness; i < ANON_AND_FILE; i++) { 5007 if (tier < 0) 5008 tier = get_tier_idx(lruvec, type); 5009 5010 scanned = scan_folios(lruvec, sc, type, tier, list); 5011 if (scanned) 5012 break; 5013 5014 type = !type; 5015 tier = -1; 5016 } 5017 5018 *type_scanned = type; 5019 5020 return scanned; 5021 } 5022 5023 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness) 5024 { 5025 int type; 5026 int scanned; 5027 int reclaimed; 5028 LIST_HEAD(list); 5029 LIST_HEAD(clean); 5030 struct folio *folio; 5031 struct folio *next; 5032 enum vm_event_item item; 5033 struct reclaim_stat stat; 5034 struct lru_gen_mm_walk *walk; 5035 bool skip_retry = false; 5036 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5037 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 5038 5039 spin_lock_irq(&lruvec->lru_lock); 5040 5041 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list); 5042 5043 scanned += try_to_inc_min_seq(lruvec, swappiness); 5044 5045 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS) 5046 scanned = 0; 5047 5048 spin_unlock_irq(&lruvec->lru_lock); 5049 5050 if (list_empty(&list)) 5051 return scanned; 5052 retry: 5053 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false); 5054 sc->nr_reclaimed += reclaimed; 5055 5056 list_for_each_entry_safe_reverse(folio, next, &list, lru) { 5057 if (!folio_evictable(folio)) { 5058 list_del(&folio->lru); 5059 folio_putback_lru(folio); 5060 continue; 5061 } 5062 5063 if (folio_test_reclaim(folio) && 5064 (folio_test_dirty(folio) || folio_test_writeback(folio))) { 5065 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */ 5066 if (folio_test_workingset(folio)) 5067 folio_set_referenced(folio); 5068 continue; 5069 } 5070 5071 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) || 5072 folio_mapped(folio) || folio_test_locked(folio) || 5073 folio_test_dirty(folio) || folio_test_writeback(folio)) { 5074 /* don't add rejected folios to the oldest generation */ 5075 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 5076 BIT(PG_active)); 5077 continue; 5078 } 5079 5080 /* retry folios that may have missed folio_rotate_reclaimable() */ 5081 list_move(&folio->lru, &clean); 5082 sc->nr_scanned -= folio_nr_pages(folio); 5083 } 5084 5085 spin_lock_irq(&lruvec->lru_lock); 5086 5087 move_folios_to_lru(lruvec, &list); 5088 5089 walk = current->reclaim_state->mm_walk; 5090 if (walk && walk->batched) 5091 reset_batch_size(lruvec, walk); 5092 5093 item = PGSTEAL_KSWAPD + reclaimer_offset(); 5094 if (!cgroup_reclaim(sc)) 5095 __count_vm_events(item, reclaimed); 5096 __count_memcg_events(memcg, item, reclaimed); 5097 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 5098 5099 spin_unlock_irq(&lruvec->lru_lock); 5100 5101 mem_cgroup_uncharge_list(&list); 5102 free_unref_page_list(&list); 5103 5104 INIT_LIST_HEAD(&list); 5105 list_splice_init(&clean, &list); 5106 5107 if (!list_empty(&list)) { 5108 skip_retry = true; 5109 goto retry; 5110 } 5111 5112 return scanned; 5113 } 5114 5115 /* 5116 * For future optimizations: 5117 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 5118 * reclaim. 5119 */ 5120 static unsigned long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, 5121 bool can_swap) 5122 { 5123 unsigned long nr_to_scan; 5124 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5125 DEFINE_MAX_SEQ(lruvec); 5126 5127 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg) || 5128 (mem_cgroup_below_low(sc->target_mem_cgroup, memcg) && 5129 !sc->memcg_low_reclaim)) 5130 return 0; 5131 5132 if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan)) 5133 return nr_to_scan; 5134 5135 /* skip the aging path at the default priority */ 5136 if (sc->priority == DEF_PRIORITY) 5137 return nr_to_scan; 5138 5139 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false); 5140 5141 /* skip this lruvec as it's low on cold folios */ 5142 return 0; 5143 } 5144 5145 static unsigned long get_nr_to_reclaim(struct scan_control *sc) 5146 { 5147 /* don't abort memcg reclaim to ensure fairness */ 5148 if (!global_reclaim(sc)) 5149 return -1; 5150 5151 /* discount the previous progress for kswapd */ 5152 if (current_is_kswapd()) 5153 return sc->nr_to_reclaim + sc->last_reclaimed; 5154 5155 return max(sc->nr_to_reclaim, compact_gap(sc->order)); 5156 } 5157 5158 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5159 { 5160 struct blk_plug plug; 5161 unsigned long scanned = 0; 5162 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc); 5163 5164 lru_add_drain(); 5165 5166 blk_start_plug(&plug); 5167 5168 set_mm_walk(lruvec_pgdat(lruvec)); 5169 5170 while (true) { 5171 int delta; 5172 int swappiness; 5173 unsigned long nr_to_scan; 5174 5175 if (sc->may_swap) 5176 swappiness = get_swappiness(lruvec, sc); 5177 else if (!cgroup_reclaim(sc) && get_swappiness(lruvec, sc)) 5178 swappiness = 1; 5179 else 5180 swappiness = 0; 5181 5182 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); 5183 if (!nr_to_scan) 5184 break; 5185 5186 delta = evict_folios(lruvec, sc, swappiness); 5187 if (!delta) 5188 break; 5189 5190 scanned += delta; 5191 if (scanned >= nr_to_scan) 5192 break; 5193 5194 if (sc->nr_reclaimed >= nr_to_reclaim) 5195 break; 5196 5197 cond_resched(); 5198 } 5199 5200 clear_mm_walk(); 5201 5202 blk_finish_plug(&plug); 5203 } 5204 5205 /****************************************************************************** 5206 * state change 5207 ******************************************************************************/ 5208 5209 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 5210 { 5211 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5212 5213 if (lrugen->enabled) { 5214 enum lru_list lru; 5215 5216 for_each_evictable_lru(lru) { 5217 if (!list_empty(&lruvec->lists[lru])) 5218 return false; 5219 } 5220 } else { 5221 int gen, type, zone; 5222 5223 for_each_gen_type_zone(gen, type, zone) { 5224 if (!list_empty(&lrugen->folios[gen][type][zone])) 5225 return false; 5226 } 5227 } 5228 5229 return true; 5230 } 5231 5232 static bool fill_evictable(struct lruvec *lruvec) 5233 { 5234 enum lru_list lru; 5235 int remaining = MAX_LRU_BATCH; 5236 5237 for_each_evictable_lru(lru) { 5238 int type = is_file_lru(lru); 5239 bool active = is_active_lru(lru); 5240 struct list_head *head = &lruvec->lists[lru]; 5241 5242 while (!list_empty(head)) { 5243 bool success; 5244 struct folio *folio = lru_to_folio(head); 5245 5246 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5247 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 5248 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5249 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 5250 5251 lruvec_del_folio(lruvec, folio); 5252 success = lru_gen_add_folio(lruvec, folio, false); 5253 VM_WARN_ON_ONCE(!success); 5254 5255 if (!--remaining) 5256 return false; 5257 } 5258 } 5259 5260 return true; 5261 } 5262 5263 static bool drain_evictable(struct lruvec *lruvec) 5264 { 5265 int gen, type, zone; 5266 int remaining = MAX_LRU_BATCH; 5267 5268 for_each_gen_type_zone(gen, type, zone) { 5269 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; 5270 5271 while (!list_empty(head)) { 5272 bool success; 5273 struct folio *folio = lru_to_folio(head); 5274 5275 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5276 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5277 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5278 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5279 5280 success = lru_gen_del_folio(lruvec, folio, false); 5281 VM_WARN_ON_ONCE(!success); 5282 lruvec_add_folio(lruvec, folio); 5283 5284 if (!--remaining) 5285 return false; 5286 } 5287 } 5288 5289 return true; 5290 } 5291 5292 static void lru_gen_change_state(bool enabled) 5293 { 5294 static DEFINE_MUTEX(state_mutex); 5295 5296 struct mem_cgroup *memcg; 5297 5298 cgroup_lock(); 5299 cpus_read_lock(); 5300 get_online_mems(); 5301 mutex_lock(&state_mutex); 5302 5303 if (enabled == lru_gen_enabled()) 5304 goto unlock; 5305 5306 if (enabled) 5307 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5308 else 5309 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5310 5311 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5312 do { 5313 int nid; 5314 5315 for_each_node(nid) { 5316 struct lruvec *lruvec = get_lruvec(memcg, nid); 5317 5318 spin_lock_irq(&lruvec->lru_lock); 5319 5320 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5321 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5322 5323 lruvec->lrugen.enabled = enabled; 5324 5325 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5326 spin_unlock_irq(&lruvec->lru_lock); 5327 cond_resched(); 5328 spin_lock_irq(&lruvec->lru_lock); 5329 } 5330 5331 spin_unlock_irq(&lruvec->lru_lock); 5332 } 5333 5334 cond_resched(); 5335 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5336 unlock: 5337 mutex_unlock(&state_mutex); 5338 put_online_mems(); 5339 cpus_read_unlock(); 5340 cgroup_unlock(); 5341 } 5342 5343 /****************************************************************************** 5344 * sysfs interface 5345 ******************************************************************************/ 5346 5347 static ssize_t show_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5348 { 5349 return sprintf(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5350 } 5351 5352 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5353 static ssize_t store_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, 5354 const char *buf, size_t len) 5355 { 5356 unsigned int msecs; 5357 5358 if (kstrtouint(buf, 0, &msecs)) 5359 return -EINVAL; 5360 5361 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5362 5363 return len; 5364 } 5365 5366 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR( 5367 min_ttl_ms, 0644, show_min_ttl, store_min_ttl 5368 ); 5369 5370 static ssize_t show_enabled(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5371 { 5372 unsigned int caps = 0; 5373 5374 if (get_cap(LRU_GEN_CORE)) 5375 caps |= BIT(LRU_GEN_CORE); 5376 5377 if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK)) 5378 caps |= BIT(LRU_GEN_MM_WALK); 5379 5380 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) 5381 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5382 5383 return sysfs_emit(buf, "0x%04x\n", caps); 5384 } 5385 5386 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5387 static ssize_t store_enabled(struct kobject *kobj, struct kobj_attribute *attr, 5388 const char *buf, size_t len) 5389 { 5390 int i; 5391 unsigned int caps; 5392 5393 if (tolower(*buf) == 'n') 5394 caps = 0; 5395 else if (tolower(*buf) == 'y') 5396 caps = -1; 5397 else if (kstrtouint(buf, 0, &caps)) 5398 return -EINVAL; 5399 5400 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5401 bool enabled = caps & BIT(i); 5402 5403 if (i == LRU_GEN_CORE) 5404 lru_gen_change_state(enabled); 5405 else if (enabled) 5406 static_branch_enable(&lru_gen_caps[i]); 5407 else 5408 static_branch_disable(&lru_gen_caps[i]); 5409 } 5410 5411 return len; 5412 } 5413 5414 static struct kobj_attribute lru_gen_enabled_attr = __ATTR( 5415 enabled, 0644, show_enabled, store_enabled 5416 ); 5417 5418 static struct attribute *lru_gen_attrs[] = { 5419 &lru_gen_min_ttl_attr.attr, 5420 &lru_gen_enabled_attr.attr, 5421 NULL 5422 }; 5423 5424 static struct attribute_group lru_gen_attr_group = { 5425 .name = "lru_gen", 5426 .attrs = lru_gen_attrs, 5427 }; 5428 5429 /****************************************************************************** 5430 * debugfs interface 5431 ******************************************************************************/ 5432 5433 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5434 { 5435 struct mem_cgroup *memcg; 5436 loff_t nr_to_skip = *pos; 5437 5438 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5439 if (!m->private) 5440 return ERR_PTR(-ENOMEM); 5441 5442 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5443 do { 5444 int nid; 5445 5446 for_each_node_state(nid, N_MEMORY) { 5447 if (!nr_to_skip--) 5448 return get_lruvec(memcg, nid); 5449 } 5450 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5451 5452 return NULL; 5453 } 5454 5455 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5456 { 5457 if (!IS_ERR_OR_NULL(v)) 5458 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5459 5460 kvfree(m->private); 5461 m->private = NULL; 5462 } 5463 5464 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5465 { 5466 int nid = lruvec_pgdat(v)->node_id; 5467 struct mem_cgroup *memcg = lruvec_memcg(v); 5468 5469 ++*pos; 5470 5471 nid = next_memory_node(nid); 5472 if (nid == MAX_NUMNODES) { 5473 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5474 if (!memcg) 5475 return NULL; 5476 5477 nid = first_memory_node; 5478 } 5479 5480 return get_lruvec(memcg, nid); 5481 } 5482 5483 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5484 unsigned long max_seq, unsigned long *min_seq, 5485 unsigned long seq) 5486 { 5487 int i; 5488 int type, tier; 5489 int hist = lru_hist_from_seq(seq); 5490 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5491 5492 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5493 seq_printf(m, " %10d", tier); 5494 for (type = 0; type < ANON_AND_FILE; type++) { 5495 const char *s = " "; 5496 unsigned long n[3] = {}; 5497 5498 if (seq == max_seq) { 5499 s = "RT "; 5500 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5501 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5502 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5503 s = "rep"; 5504 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5505 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5506 if (tier) 5507 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]); 5508 } 5509 5510 for (i = 0; i < 3; i++) 5511 seq_printf(m, " %10lu%c", n[i], s[i]); 5512 } 5513 seq_putc(m, '\n'); 5514 } 5515 5516 seq_puts(m, " "); 5517 for (i = 0; i < NR_MM_STATS; i++) { 5518 const char *s = " "; 5519 unsigned long n = 0; 5520 5521 if (seq == max_seq && NR_HIST_GENS == 1) { 5522 s = "LOYNFA"; 5523 n = READ_ONCE(lruvec->mm_state.stats[hist][i]); 5524 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5525 s = "loynfa"; 5526 n = READ_ONCE(lruvec->mm_state.stats[hist][i]); 5527 } 5528 5529 seq_printf(m, " %10lu%c", n, s[i]); 5530 } 5531 seq_putc(m, '\n'); 5532 } 5533 5534 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5535 static int lru_gen_seq_show(struct seq_file *m, void *v) 5536 { 5537 unsigned long seq; 5538 bool full = !debugfs_real_fops(m->file)->write; 5539 struct lruvec *lruvec = v; 5540 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5541 int nid = lruvec_pgdat(lruvec)->node_id; 5542 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5543 DEFINE_MAX_SEQ(lruvec); 5544 DEFINE_MIN_SEQ(lruvec); 5545 5546 if (nid == first_memory_node) { 5547 const char *path = memcg ? m->private : ""; 5548 5549 #ifdef CONFIG_MEMCG 5550 if (memcg) 5551 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5552 #endif 5553 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); 5554 } 5555 5556 seq_printf(m, " node %5d\n", nid); 5557 5558 if (!full) 5559 seq = min_seq[LRU_GEN_ANON]; 5560 else if (max_seq >= MAX_NR_GENS) 5561 seq = max_seq - MAX_NR_GENS + 1; 5562 else 5563 seq = 0; 5564 5565 for (; seq <= max_seq; seq++) { 5566 int type, zone; 5567 int gen = lru_gen_from_seq(seq); 5568 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5569 5570 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5571 5572 for (type = 0; type < ANON_AND_FILE; type++) { 5573 unsigned long size = 0; 5574 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5575 5576 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5577 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5578 5579 seq_printf(m, " %10lu%c", size, mark); 5580 } 5581 5582 seq_putc(m, '\n'); 5583 5584 if (full) 5585 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5586 } 5587 5588 return 0; 5589 } 5590 5591 static const struct seq_operations lru_gen_seq_ops = { 5592 .start = lru_gen_seq_start, 5593 .stop = lru_gen_seq_stop, 5594 .next = lru_gen_seq_next, 5595 .show = lru_gen_seq_show, 5596 }; 5597 5598 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5599 bool can_swap, bool force_scan) 5600 { 5601 DEFINE_MAX_SEQ(lruvec); 5602 DEFINE_MIN_SEQ(lruvec); 5603 5604 if (seq < max_seq) 5605 return 0; 5606 5607 if (seq > max_seq) 5608 return -EINVAL; 5609 5610 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq) 5611 return -ERANGE; 5612 5613 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan); 5614 5615 return 0; 5616 } 5617 5618 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5619 int swappiness, unsigned long nr_to_reclaim) 5620 { 5621 DEFINE_MAX_SEQ(lruvec); 5622 5623 if (seq + MIN_NR_GENS > max_seq) 5624 return -EINVAL; 5625 5626 sc->nr_reclaimed = 0; 5627 5628 while (!signal_pending(current)) { 5629 DEFINE_MIN_SEQ(lruvec); 5630 5631 if (seq < min_seq[!swappiness]) 5632 return 0; 5633 5634 if (sc->nr_reclaimed >= nr_to_reclaim) 5635 return 0; 5636 5637 if (!evict_folios(lruvec, sc, swappiness)) 5638 return 0; 5639 5640 cond_resched(); 5641 } 5642 5643 return -EINTR; 5644 } 5645 5646 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, 5647 struct scan_control *sc, int swappiness, unsigned long opt) 5648 { 5649 struct lruvec *lruvec; 5650 int err = -EINVAL; 5651 struct mem_cgroup *memcg = NULL; 5652 5653 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 5654 return -EINVAL; 5655 5656 if (!mem_cgroup_disabled()) { 5657 rcu_read_lock(); 5658 memcg = mem_cgroup_from_id(memcg_id); 5659 #ifdef CONFIG_MEMCG 5660 if (memcg && !css_tryget(&memcg->css)) 5661 memcg = NULL; 5662 #endif 5663 rcu_read_unlock(); 5664 5665 if (!memcg) 5666 return -EINVAL; 5667 } 5668 5669 if (memcg_id != mem_cgroup_id(memcg)) 5670 goto done; 5671 5672 lruvec = get_lruvec(memcg, nid); 5673 5674 if (swappiness < 0) 5675 swappiness = get_swappiness(lruvec, sc); 5676 else if (swappiness > 200) 5677 goto done; 5678 5679 switch (cmd) { 5680 case '+': 5681 err = run_aging(lruvec, seq, sc, swappiness, opt); 5682 break; 5683 case '-': 5684 err = run_eviction(lruvec, seq, sc, swappiness, opt); 5685 break; 5686 } 5687 done: 5688 mem_cgroup_put(memcg); 5689 5690 return err; 5691 } 5692 5693 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5694 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 5695 size_t len, loff_t *pos) 5696 { 5697 void *buf; 5698 char *cur, *next; 5699 unsigned int flags; 5700 struct blk_plug plug; 5701 int err = -EINVAL; 5702 struct scan_control sc = { 5703 .may_writepage = true, 5704 .may_unmap = true, 5705 .may_swap = true, 5706 .reclaim_idx = MAX_NR_ZONES - 1, 5707 .gfp_mask = GFP_KERNEL, 5708 }; 5709 5710 buf = kvmalloc(len + 1, GFP_KERNEL); 5711 if (!buf) 5712 return -ENOMEM; 5713 5714 if (copy_from_user(buf, src, len)) { 5715 kvfree(buf); 5716 return -EFAULT; 5717 } 5718 5719 set_task_reclaim_state(current, &sc.reclaim_state); 5720 flags = memalloc_noreclaim_save(); 5721 blk_start_plug(&plug); 5722 if (!set_mm_walk(NULL)) { 5723 err = -ENOMEM; 5724 goto done; 5725 } 5726 5727 next = buf; 5728 next[len] = '\0'; 5729 5730 while ((cur = strsep(&next, ",;\n"))) { 5731 int n; 5732 int end; 5733 char cmd; 5734 unsigned int memcg_id; 5735 unsigned int nid; 5736 unsigned long seq; 5737 unsigned int swappiness = -1; 5738 unsigned long opt = -1; 5739 5740 cur = skip_spaces(cur); 5741 if (!*cur) 5742 continue; 5743 5744 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid, 5745 &seq, &end, &swappiness, &end, &opt, &end); 5746 if (n < 4 || cur[end]) { 5747 err = -EINVAL; 5748 break; 5749 } 5750 5751 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 5752 if (err) 5753 break; 5754 } 5755 done: 5756 clear_mm_walk(); 5757 blk_finish_plug(&plug); 5758 memalloc_noreclaim_restore(flags); 5759 set_task_reclaim_state(current, NULL); 5760 5761 kvfree(buf); 5762 5763 return err ? : len; 5764 } 5765 5766 static int lru_gen_seq_open(struct inode *inode, struct file *file) 5767 { 5768 return seq_open(file, &lru_gen_seq_ops); 5769 } 5770 5771 static const struct file_operations lru_gen_rw_fops = { 5772 .open = lru_gen_seq_open, 5773 .read = seq_read, 5774 .write = lru_gen_seq_write, 5775 .llseek = seq_lseek, 5776 .release = seq_release, 5777 }; 5778 5779 static const struct file_operations lru_gen_ro_fops = { 5780 .open = lru_gen_seq_open, 5781 .read = seq_read, 5782 .llseek = seq_lseek, 5783 .release = seq_release, 5784 }; 5785 5786 /****************************************************************************** 5787 * initialization 5788 ******************************************************************************/ 5789 5790 void lru_gen_init_lruvec(struct lruvec *lruvec) 5791 { 5792 int i; 5793 int gen, type, zone; 5794 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5795 5796 lrugen->max_seq = MIN_NR_GENS + 1; 5797 lrugen->enabled = lru_gen_enabled(); 5798 5799 for (i = 0; i <= MIN_NR_GENS + 1; i++) 5800 lrugen->timestamps[i] = jiffies; 5801 5802 for_each_gen_type_zone(gen, type, zone) 5803 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); 5804 5805 lruvec->mm_state.seq = MIN_NR_GENS; 5806 init_waitqueue_head(&lruvec->mm_state.wait); 5807 } 5808 5809 #ifdef CONFIG_MEMCG 5810 void lru_gen_init_memcg(struct mem_cgroup *memcg) 5811 { 5812 INIT_LIST_HEAD(&memcg->mm_list.fifo); 5813 spin_lock_init(&memcg->mm_list.lock); 5814 } 5815 5816 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 5817 { 5818 int i; 5819 int nid; 5820 5821 for_each_node(nid) { 5822 struct lruvec *lruvec = get_lruvec(memcg, nid); 5823 5824 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 5825 sizeof(lruvec->lrugen.nr_pages))); 5826 5827 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 5828 bitmap_free(lruvec->mm_state.filters[i]); 5829 lruvec->mm_state.filters[i] = NULL; 5830 } 5831 } 5832 } 5833 #endif 5834 5835 static int __init init_lru_gen(void) 5836 { 5837 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 5838 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 5839 5840 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 5841 pr_err("lru_gen: failed to create sysfs group\n"); 5842 5843 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); 5844 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); 5845 5846 return 0; 5847 }; 5848 late_initcall(init_lru_gen); 5849 5850 #else /* !CONFIG_LRU_GEN */ 5851 5852 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 5853 { 5854 } 5855 5856 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5857 { 5858 } 5859 5860 #endif /* CONFIG_LRU_GEN */ 5861 5862 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5863 { 5864 unsigned long nr[NR_LRU_LISTS]; 5865 unsigned long targets[NR_LRU_LISTS]; 5866 unsigned long nr_to_scan; 5867 enum lru_list lru; 5868 unsigned long nr_reclaimed = 0; 5869 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 5870 bool proportional_reclaim; 5871 struct blk_plug plug; 5872 5873 if (lru_gen_enabled()) { 5874 lru_gen_shrink_lruvec(lruvec, sc); 5875 return; 5876 } 5877 5878 get_scan_count(lruvec, sc, nr); 5879 5880 /* Record the original scan target for proportional adjustments later */ 5881 memcpy(targets, nr, sizeof(nr)); 5882 5883 /* 5884 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 5885 * event that can occur when there is little memory pressure e.g. 5886 * multiple streaming readers/writers. Hence, we do not abort scanning 5887 * when the requested number of pages are reclaimed when scanning at 5888 * DEF_PRIORITY on the assumption that the fact we are direct 5889 * reclaiming implies that kswapd is not keeping up and it is best to 5890 * do a batch of work at once. For memcg reclaim one check is made to 5891 * abort proportional reclaim if either the file or anon lru has already 5892 * dropped to zero at the first pass. 5893 */ 5894 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 5895 sc->priority == DEF_PRIORITY); 5896 5897 blk_start_plug(&plug); 5898 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 5899 nr[LRU_INACTIVE_FILE]) { 5900 unsigned long nr_anon, nr_file, percentage; 5901 unsigned long nr_scanned; 5902 5903 for_each_evictable_lru(lru) { 5904 if (nr[lru]) { 5905 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 5906 nr[lru] -= nr_to_scan; 5907 5908 nr_reclaimed += shrink_list(lru, nr_to_scan, 5909 lruvec, sc); 5910 } 5911 } 5912 5913 cond_resched(); 5914 5915 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 5916 continue; 5917 5918 /* 5919 * For kswapd and memcg, reclaim at least the number of pages 5920 * requested. Ensure that the anon and file LRUs are scanned 5921 * proportionally what was requested by get_scan_count(). We 5922 * stop reclaiming one LRU and reduce the amount scanning 5923 * proportional to the original scan target. 5924 */ 5925 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 5926 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 5927 5928 /* 5929 * It's just vindictive to attack the larger once the smaller 5930 * has gone to zero. And given the way we stop scanning the 5931 * smaller below, this makes sure that we only make one nudge 5932 * towards proportionality once we've got nr_to_reclaim. 5933 */ 5934 if (!nr_file || !nr_anon) 5935 break; 5936 5937 if (nr_file > nr_anon) { 5938 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 5939 targets[LRU_ACTIVE_ANON] + 1; 5940 lru = LRU_BASE; 5941 percentage = nr_anon * 100 / scan_target; 5942 } else { 5943 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 5944 targets[LRU_ACTIVE_FILE] + 1; 5945 lru = LRU_FILE; 5946 percentage = nr_file * 100 / scan_target; 5947 } 5948 5949 /* Stop scanning the smaller of the LRU */ 5950 nr[lru] = 0; 5951 nr[lru + LRU_ACTIVE] = 0; 5952 5953 /* 5954 * Recalculate the other LRU scan count based on its original 5955 * scan target and the percentage scanning already complete 5956 */ 5957 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 5958 nr_scanned = targets[lru] - nr[lru]; 5959 nr[lru] = targets[lru] * (100 - percentage) / 100; 5960 nr[lru] -= min(nr[lru], nr_scanned); 5961 5962 lru += LRU_ACTIVE; 5963 nr_scanned = targets[lru] - nr[lru]; 5964 nr[lru] = targets[lru] * (100 - percentage) / 100; 5965 nr[lru] -= min(nr[lru], nr_scanned); 5966 } 5967 blk_finish_plug(&plug); 5968 sc->nr_reclaimed += nr_reclaimed; 5969 5970 /* 5971 * Even if we did not try to evict anon pages at all, we want to 5972 * rebalance the anon lru active/inactive ratio. 5973 */ 5974 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 5975 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 5976 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 5977 sc, LRU_ACTIVE_ANON); 5978 } 5979 5980 /* Use reclaim/compaction for costly allocs or under memory pressure */ 5981 static bool in_reclaim_compaction(struct scan_control *sc) 5982 { 5983 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 5984 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 5985 sc->priority < DEF_PRIORITY - 2)) 5986 return true; 5987 5988 return false; 5989 } 5990 5991 /* 5992 * Reclaim/compaction is used for high-order allocation requests. It reclaims 5993 * order-0 pages before compacting the zone. should_continue_reclaim() returns 5994 * true if more pages should be reclaimed such that when the page allocator 5995 * calls try_to_compact_pages() that it will have enough free pages to succeed. 5996 * It will give up earlier than that if there is difficulty reclaiming pages. 5997 */ 5998 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 5999 unsigned long nr_reclaimed, 6000 struct scan_control *sc) 6001 { 6002 unsigned long pages_for_compaction; 6003 unsigned long inactive_lru_pages; 6004 int z; 6005 6006 /* If not in reclaim/compaction mode, stop */ 6007 if (!in_reclaim_compaction(sc)) 6008 return false; 6009 6010 /* 6011 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 6012 * number of pages that were scanned. This will return to the caller 6013 * with the risk reclaim/compaction and the resulting allocation attempt 6014 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 6015 * allocations through requiring that the full LRU list has been scanned 6016 * first, by assuming that zero delta of sc->nr_scanned means full LRU 6017 * scan, but that approximation was wrong, and there were corner cases 6018 * where always a non-zero amount of pages were scanned. 6019 */ 6020 if (!nr_reclaimed) 6021 return false; 6022 6023 /* If compaction would go ahead or the allocation would succeed, stop */ 6024 for (z = 0; z <= sc->reclaim_idx; z++) { 6025 struct zone *zone = &pgdat->node_zones[z]; 6026 if (!managed_zone(zone)) 6027 continue; 6028 6029 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 6030 case COMPACT_SUCCESS: 6031 case COMPACT_CONTINUE: 6032 return false; 6033 default: 6034 /* check next zone */ 6035 ; 6036 } 6037 } 6038 6039 /* 6040 * If we have not reclaimed enough pages for compaction and the 6041 * inactive lists are large enough, continue reclaiming 6042 */ 6043 pages_for_compaction = compact_gap(sc->order); 6044 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 6045 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 6046 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 6047 6048 return inactive_lru_pages > pages_for_compaction; 6049 } 6050 6051 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 6052 { 6053 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 6054 struct mem_cgroup *memcg; 6055 6056 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 6057 do { 6058 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6059 unsigned long reclaimed; 6060 unsigned long scanned; 6061 6062 /* 6063 * This loop can become CPU-bound when target memcgs 6064 * aren't eligible for reclaim - either because they 6065 * don't have any reclaimable pages, or because their 6066 * memory is explicitly protected. Avoid soft lockups. 6067 */ 6068 cond_resched(); 6069 6070 mem_cgroup_calculate_protection(target_memcg, memcg); 6071 6072 if (mem_cgroup_below_min(target_memcg, memcg)) { 6073 /* 6074 * Hard protection. 6075 * If there is no reclaimable memory, OOM. 6076 */ 6077 continue; 6078 } else if (mem_cgroup_below_low(target_memcg, memcg)) { 6079 /* 6080 * Soft protection. 6081 * Respect the protection only as long as 6082 * there is an unprotected supply 6083 * of reclaimable memory from other cgroups. 6084 */ 6085 if (!sc->memcg_low_reclaim) { 6086 sc->memcg_low_skipped = 1; 6087 continue; 6088 } 6089 memcg_memory_event(memcg, MEMCG_LOW); 6090 } 6091 6092 reclaimed = sc->nr_reclaimed; 6093 scanned = sc->nr_scanned; 6094 6095 shrink_lruvec(lruvec, sc); 6096 6097 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 6098 sc->priority); 6099 6100 /* Record the group's reclaim efficiency */ 6101 if (!sc->proactive) 6102 vmpressure(sc->gfp_mask, memcg, false, 6103 sc->nr_scanned - scanned, 6104 sc->nr_reclaimed - reclaimed); 6105 6106 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 6107 } 6108 6109 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 6110 { 6111 struct reclaim_state *reclaim_state = current->reclaim_state; 6112 unsigned long nr_reclaimed, nr_scanned; 6113 struct lruvec *target_lruvec; 6114 bool reclaimable = false; 6115 6116 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 6117 6118 again: 6119 memset(&sc->nr, 0, sizeof(sc->nr)); 6120 6121 nr_reclaimed = sc->nr_reclaimed; 6122 nr_scanned = sc->nr_scanned; 6123 6124 prepare_scan_count(pgdat, sc); 6125 6126 shrink_node_memcgs(pgdat, sc); 6127 6128 if (reclaim_state) { 6129 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 6130 reclaim_state->reclaimed_slab = 0; 6131 } 6132 6133 /* Record the subtree's reclaim efficiency */ 6134 if (!sc->proactive) 6135 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 6136 sc->nr_scanned - nr_scanned, 6137 sc->nr_reclaimed - nr_reclaimed); 6138 6139 if (sc->nr_reclaimed - nr_reclaimed) 6140 reclaimable = true; 6141 6142 if (current_is_kswapd()) { 6143 /* 6144 * If reclaim is isolating dirty pages under writeback, 6145 * it implies that the long-lived page allocation rate 6146 * is exceeding the page laundering rate. Either the 6147 * global limits are not being effective at throttling 6148 * processes due to the page distribution throughout 6149 * zones or there is heavy usage of a slow backing 6150 * device. The only option is to throttle from reclaim 6151 * context which is not ideal as there is no guarantee 6152 * the dirtying process is throttled in the same way 6153 * balance_dirty_pages() manages. 6154 * 6155 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 6156 * count the number of pages under pages flagged for 6157 * immediate reclaim and stall if any are encountered 6158 * in the nr_immediate check below. 6159 */ 6160 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 6161 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 6162 6163 /* Allow kswapd to start writing pages during reclaim.*/ 6164 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 6165 set_bit(PGDAT_DIRTY, &pgdat->flags); 6166 6167 /* 6168 * If kswapd scans pages marked for immediate 6169 * reclaim and under writeback (nr_immediate), it 6170 * implies that pages are cycling through the LRU 6171 * faster than they are written so forcibly stall 6172 * until some pages complete writeback. 6173 */ 6174 if (sc->nr.immediate) 6175 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 6176 } 6177 6178 /* 6179 * Tag a node/memcg as congested if all the dirty pages were marked 6180 * for writeback and immediate reclaim (counted in nr.congested). 6181 * 6182 * Legacy memcg will stall in page writeback so avoid forcibly 6183 * stalling in reclaim_throttle(). 6184 */ 6185 if ((current_is_kswapd() || 6186 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 6187 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 6188 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 6189 6190 /* 6191 * Stall direct reclaim for IO completions if the lruvec is 6192 * node is congested. Allow kswapd to continue until it 6193 * starts encountering unqueued dirty pages or cycling through 6194 * the LRU too quickly. 6195 */ 6196 if (!current_is_kswapd() && current_may_throttle() && 6197 !sc->hibernation_mode && 6198 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 6199 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 6200 6201 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 6202 sc)) 6203 goto again; 6204 6205 /* 6206 * Kswapd gives up on balancing particular nodes after too 6207 * many failures to reclaim anything from them and goes to 6208 * sleep. On reclaim progress, reset the failure counter. A 6209 * successful direct reclaim run will revive a dormant kswapd. 6210 */ 6211 if (reclaimable) 6212 pgdat->kswapd_failures = 0; 6213 } 6214 6215 /* 6216 * Returns true if compaction should go ahead for a costly-order request, or 6217 * the allocation would already succeed without compaction. Return false if we 6218 * should reclaim first. 6219 */ 6220 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 6221 { 6222 unsigned long watermark; 6223 enum compact_result suitable; 6224 6225 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 6226 if (suitable == COMPACT_SUCCESS) 6227 /* Allocation should succeed already. Don't reclaim. */ 6228 return true; 6229 if (suitable == COMPACT_SKIPPED) 6230 /* Compaction cannot yet proceed. Do reclaim. */ 6231 return false; 6232 6233 /* 6234 * Compaction is already possible, but it takes time to run and there 6235 * are potentially other callers using the pages just freed. So proceed 6236 * with reclaim to make a buffer of free pages available to give 6237 * compaction a reasonable chance of completing and allocating the page. 6238 * Note that we won't actually reclaim the whole buffer in one attempt 6239 * as the target watermark in should_continue_reclaim() is lower. But if 6240 * we are already above the high+gap watermark, don't reclaim at all. 6241 */ 6242 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 6243 6244 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 6245 } 6246 6247 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6248 { 6249 /* 6250 * If reclaim is making progress greater than 12% efficiency then 6251 * wake all the NOPROGRESS throttled tasks. 6252 */ 6253 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6254 wait_queue_head_t *wqh; 6255 6256 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6257 if (waitqueue_active(wqh)) 6258 wake_up(wqh); 6259 6260 return; 6261 } 6262 6263 /* 6264 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6265 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6266 * under writeback and marked for immediate reclaim at the tail of the 6267 * LRU. 6268 */ 6269 if (current_is_kswapd() || cgroup_reclaim(sc)) 6270 return; 6271 6272 /* Throttle if making no progress at high prioities. */ 6273 if (sc->priority == 1 && !sc->nr_reclaimed) 6274 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6275 } 6276 6277 /* 6278 * This is the direct reclaim path, for page-allocating processes. We only 6279 * try to reclaim pages from zones which will satisfy the caller's allocation 6280 * request. 6281 * 6282 * If a zone is deemed to be full of pinned pages then just give it a light 6283 * scan then give up on it. 6284 */ 6285 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6286 { 6287 struct zoneref *z; 6288 struct zone *zone; 6289 unsigned long nr_soft_reclaimed; 6290 unsigned long nr_soft_scanned; 6291 gfp_t orig_mask; 6292 pg_data_t *last_pgdat = NULL; 6293 pg_data_t *first_pgdat = NULL; 6294 6295 /* 6296 * If the number of buffer_heads in the machine exceeds the maximum 6297 * allowed level, force direct reclaim to scan the highmem zone as 6298 * highmem pages could be pinning lowmem pages storing buffer_heads 6299 */ 6300 orig_mask = sc->gfp_mask; 6301 if (buffer_heads_over_limit) { 6302 sc->gfp_mask |= __GFP_HIGHMEM; 6303 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6304 } 6305 6306 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6307 sc->reclaim_idx, sc->nodemask) { 6308 /* 6309 * Take care memory controller reclaiming has small influence 6310 * to global LRU. 6311 */ 6312 if (!cgroup_reclaim(sc)) { 6313 if (!cpuset_zone_allowed(zone, 6314 GFP_KERNEL | __GFP_HARDWALL)) 6315 continue; 6316 6317 /* 6318 * If we already have plenty of memory free for 6319 * compaction in this zone, don't free any more. 6320 * Even though compaction is invoked for any 6321 * non-zero order, only frequent costly order 6322 * reclamation is disruptive enough to become a 6323 * noticeable problem, like transparent huge 6324 * page allocations. 6325 */ 6326 if (IS_ENABLED(CONFIG_COMPACTION) && 6327 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6328 compaction_ready(zone, sc)) { 6329 sc->compaction_ready = true; 6330 continue; 6331 } 6332 6333 /* 6334 * Shrink each node in the zonelist once. If the 6335 * zonelist is ordered by zone (not the default) then a 6336 * node may be shrunk multiple times but in that case 6337 * the user prefers lower zones being preserved. 6338 */ 6339 if (zone->zone_pgdat == last_pgdat) 6340 continue; 6341 6342 /* 6343 * This steals pages from memory cgroups over softlimit 6344 * and returns the number of reclaimed pages and 6345 * scanned pages. This works for global memory pressure 6346 * and balancing, not for a memcg's limit. 6347 */ 6348 nr_soft_scanned = 0; 6349 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 6350 sc->order, sc->gfp_mask, 6351 &nr_soft_scanned); 6352 sc->nr_reclaimed += nr_soft_reclaimed; 6353 sc->nr_scanned += nr_soft_scanned; 6354 /* need some check for avoid more shrink_zone() */ 6355 } 6356 6357 if (!first_pgdat) 6358 first_pgdat = zone->zone_pgdat; 6359 6360 /* See comment about same check for global reclaim above */ 6361 if (zone->zone_pgdat == last_pgdat) 6362 continue; 6363 last_pgdat = zone->zone_pgdat; 6364 shrink_node(zone->zone_pgdat, sc); 6365 } 6366 6367 if (first_pgdat) 6368 consider_reclaim_throttle(first_pgdat, sc); 6369 6370 /* 6371 * Restore to original mask to avoid the impact on the caller if we 6372 * promoted it to __GFP_HIGHMEM. 6373 */ 6374 sc->gfp_mask = orig_mask; 6375 } 6376 6377 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6378 { 6379 struct lruvec *target_lruvec; 6380 unsigned long refaults; 6381 6382 if (lru_gen_enabled()) 6383 return; 6384 6385 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6386 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6387 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6388 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6389 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6390 } 6391 6392 /* 6393 * This is the main entry point to direct page reclaim. 6394 * 6395 * If a full scan of the inactive list fails to free enough memory then we 6396 * are "out of memory" and something needs to be killed. 6397 * 6398 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6399 * high - the zone may be full of dirty or under-writeback pages, which this 6400 * caller can't do much about. We kick the writeback threads and take explicit 6401 * naps in the hope that some of these pages can be written. But if the 6402 * allocating task holds filesystem locks which prevent writeout this might not 6403 * work, and the allocation attempt will fail. 6404 * 6405 * returns: 0, if no pages reclaimed 6406 * else, the number of pages reclaimed 6407 */ 6408 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6409 struct scan_control *sc) 6410 { 6411 int initial_priority = sc->priority; 6412 pg_data_t *last_pgdat; 6413 struct zoneref *z; 6414 struct zone *zone; 6415 retry: 6416 delayacct_freepages_start(); 6417 6418 if (!cgroup_reclaim(sc)) 6419 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6420 6421 do { 6422 if (!sc->proactive) 6423 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6424 sc->priority); 6425 sc->nr_scanned = 0; 6426 shrink_zones(zonelist, sc); 6427 6428 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6429 break; 6430 6431 if (sc->compaction_ready) 6432 break; 6433 6434 /* 6435 * If we're getting trouble reclaiming, start doing 6436 * writepage even in laptop mode. 6437 */ 6438 if (sc->priority < DEF_PRIORITY - 2) 6439 sc->may_writepage = 1; 6440 } while (--sc->priority >= 0); 6441 6442 last_pgdat = NULL; 6443 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6444 sc->nodemask) { 6445 if (zone->zone_pgdat == last_pgdat) 6446 continue; 6447 last_pgdat = zone->zone_pgdat; 6448 6449 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6450 6451 if (cgroup_reclaim(sc)) { 6452 struct lruvec *lruvec; 6453 6454 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6455 zone->zone_pgdat); 6456 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 6457 } 6458 } 6459 6460 delayacct_freepages_end(); 6461 6462 if (sc->nr_reclaimed) 6463 return sc->nr_reclaimed; 6464 6465 /* Aborted reclaim to try compaction? don't OOM, then */ 6466 if (sc->compaction_ready) 6467 return 1; 6468 6469 /* 6470 * We make inactive:active ratio decisions based on the node's 6471 * composition of memory, but a restrictive reclaim_idx or a 6472 * memory.low cgroup setting can exempt large amounts of 6473 * memory from reclaim. Neither of which are very common, so 6474 * instead of doing costly eligibility calculations of the 6475 * entire cgroup subtree up front, we assume the estimates are 6476 * good, and retry with forcible deactivation if that fails. 6477 */ 6478 if (sc->skipped_deactivate) { 6479 sc->priority = initial_priority; 6480 sc->force_deactivate = 1; 6481 sc->skipped_deactivate = 0; 6482 goto retry; 6483 } 6484 6485 /* Untapped cgroup reserves? Don't OOM, retry. */ 6486 if (sc->memcg_low_skipped) { 6487 sc->priority = initial_priority; 6488 sc->force_deactivate = 0; 6489 sc->memcg_low_reclaim = 1; 6490 sc->memcg_low_skipped = 0; 6491 goto retry; 6492 } 6493 6494 return 0; 6495 } 6496 6497 static bool allow_direct_reclaim(pg_data_t *pgdat) 6498 { 6499 struct zone *zone; 6500 unsigned long pfmemalloc_reserve = 0; 6501 unsigned long free_pages = 0; 6502 int i; 6503 bool wmark_ok; 6504 6505 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6506 return true; 6507 6508 for (i = 0; i <= ZONE_NORMAL; i++) { 6509 zone = &pgdat->node_zones[i]; 6510 if (!managed_zone(zone)) 6511 continue; 6512 6513 if (!zone_reclaimable_pages(zone)) 6514 continue; 6515 6516 pfmemalloc_reserve += min_wmark_pages(zone); 6517 free_pages += zone_page_state(zone, NR_FREE_PAGES); 6518 } 6519 6520 /* If there are no reserves (unexpected config) then do not throttle */ 6521 if (!pfmemalloc_reserve) 6522 return true; 6523 6524 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6525 6526 /* kswapd must be awake if processes are being throttled */ 6527 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6528 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6529 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6530 6531 wake_up_interruptible(&pgdat->kswapd_wait); 6532 } 6533 6534 return wmark_ok; 6535 } 6536 6537 /* 6538 * Throttle direct reclaimers if backing storage is backed by the network 6539 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6540 * depleted. kswapd will continue to make progress and wake the processes 6541 * when the low watermark is reached. 6542 * 6543 * Returns true if a fatal signal was delivered during throttling. If this 6544 * happens, the page allocator should not consider triggering the OOM killer. 6545 */ 6546 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6547 nodemask_t *nodemask) 6548 { 6549 struct zoneref *z; 6550 struct zone *zone; 6551 pg_data_t *pgdat = NULL; 6552 6553 /* 6554 * Kernel threads should not be throttled as they may be indirectly 6555 * responsible for cleaning pages necessary for reclaim to make forward 6556 * progress. kjournald for example may enter direct reclaim while 6557 * committing a transaction where throttling it could forcing other 6558 * processes to block on log_wait_commit(). 6559 */ 6560 if (current->flags & PF_KTHREAD) 6561 goto out; 6562 6563 /* 6564 * If a fatal signal is pending, this process should not throttle. 6565 * It should return quickly so it can exit and free its memory 6566 */ 6567 if (fatal_signal_pending(current)) 6568 goto out; 6569 6570 /* 6571 * Check if the pfmemalloc reserves are ok by finding the first node 6572 * with a usable ZONE_NORMAL or lower zone. The expectation is that 6573 * GFP_KERNEL will be required for allocating network buffers when 6574 * swapping over the network so ZONE_HIGHMEM is unusable. 6575 * 6576 * Throttling is based on the first usable node and throttled processes 6577 * wait on a queue until kswapd makes progress and wakes them. There 6578 * is an affinity then between processes waking up and where reclaim 6579 * progress has been made assuming the process wakes on the same node. 6580 * More importantly, processes running on remote nodes will not compete 6581 * for remote pfmemalloc reserves and processes on different nodes 6582 * should make reasonable progress. 6583 */ 6584 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6585 gfp_zone(gfp_mask), nodemask) { 6586 if (zone_idx(zone) > ZONE_NORMAL) 6587 continue; 6588 6589 /* Throttle based on the first usable node */ 6590 pgdat = zone->zone_pgdat; 6591 if (allow_direct_reclaim(pgdat)) 6592 goto out; 6593 break; 6594 } 6595 6596 /* If no zone was usable by the allocation flags then do not throttle */ 6597 if (!pgdat) 6598 goto out; 6599 6600 /* Account for the throttling */ 6601 count_vm_event(PGSCAN_DIRECT_THROTTLE); 6602 6603 /* 6604 * If the caller cannot enter the filesystem, it's possible that it 6605 * is due to the caller holding an FS lock or performing a journal 6606 * transaction in the case of a filesystem like ext[3|4]. In this case, 6607 * it is not safe to block on pfmemalloc_wait as kswapd could be 6608 * blocked waiting on the same lock. Instead, throttle for up to a 6609 * second before continuing. 6610 */ 6611 if (!(gfp_mask & __GFP_FS)) 6612 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 6613 allow_direct_reclaim(pgdat), HZ); 6614 else 6615 /* Throttle until kswapd wakes the process */ 6616 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 6617 allow_direct_reclaim(pgdat)); 6618 6619 if (fatal_signal_pending(current)) 6620 return true; 6621 6622 out: 6623 return false; 6624 } 6625 6626 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 6627 gfp_t gfp_mask, nodemask_t *nodemask) 6628 { 6629 unsigned long nr_reclaimed; 6630 struct scan_control sc = { 6631 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6632 .gfp_mask = current_gfp_context(gfp_mask), 6633 .reclaim_idx = gfp_zone(gfp_mask), 6634 .order = order, 6635 .nodemask = nodemask, 6636 .priority = DEF_PRIORITY, 6637 .may_writepage = !laptop_mode, 6638 .may_unmap = 1, 6639 .may_swap = 1, 6640 }; 6641 6642 /* 6643 * scan_control uses s8 fields for order, priority, and reclaim_idx. 6644 * Confirm they are large enough for max values. 6645 */ 6646 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 6647 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 6648 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 6649 6650 /* 6651 * Do not enter reclaim if fatal signal was delivered while throttled. 6652 * 1 is returned so that the page allocator does not OOM kill at this 6653 * point. 6654 */ 6655 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 6656 return 1; 6657 6658 set_task_reclaim_state(current, &sc.reclaim_state); 6659 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 6660 6661 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6662 6663 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 6664 set_task_reclaim_state(current, NULL); 6665 6666 return nr_reclaimed; 6667 } 6668 6669 #ifdef CONFIG_MEMCG 6670 6671 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 6672 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 6673 gfp_t gfp_mask, bool noswap, 6674 pg_data_t *pgdat, 6675 unsigned long *nr_scanned) 6676 { 6677 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6678 struct scan_control sc = { 6679 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6680 .target_mem_cgroup = memcg, 6681 .may_writepage = !laptop_mode, 6682 .may_unmap = 1, 6683 .reclaim_idx = MAX_NR_ZONES - 1, 6684 .may_swap = !noswap, 6685 }; 6686 6687 WARN_ON_ONCE(!current->reclaim_state); 6688 6689 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 6690 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 6691 6692 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 6693 sc.gfp_mask); 6694 6695 /* 6696 * NOTE: Although we can get the priority field, using it 6697 * here is not a good idea, since it limits the pages we can scan. 6698 * if we don't reclaim here, the shrink_node from balance_pgdat 6699 * will pick up pages from other mem cgroup's as well. We hack 6700 * the priority and make it zero. 6701 */ 6702 shrink_lruvec(lruvec, &sc); 6703 6704 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 6705 6706 *nr_scanned = sc.nr_scanned; 6707 6708 return sc.nr_reclaimed; 6709 } 6710 6711 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 6712 unsigned long nr_pages, 6713 gfp_t gfp_mask, 6714 unsigned int reclaim_options, 6715 nodemask_t *nodemask) 6716 { 6717 unsigned long nr_reclaimed; 6718 unsigned int noreclaim_flag; 6719 struct scan_control sc = { 6720 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 6721 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 6722 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 6723 .reclaim_idx = MAX_NR_ZONES - 1, 6724 .target_mem_cgroup = memcg, 6725 .priority = DEF_PRIORITY, 6726 .may_writepage = !laptop_mode, 6727 .may_unmap = 1, 6728 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 6729 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 6730 .nodemask = nodemask, 6731 }; 6732 /* 6733 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 6734 * equal pressure on all the nodes. This is based on the assumption that 6735 * the reclaim does not bail out early. 6736 */ 6737 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 6738 6739 set_task_reclaim_state(current, &sc.reclaim_state); 6740 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 6741 noreclaim_flag = memalloc_noreclaim_save(); 6742 6743 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6744 6745 memalloc_noreclaim_restore(noreclaim_flag); 6746 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 6747 set_task_reclaim_state(current, NULL); 6748 6749 return nr_reclaimed; 6750 } 6751 #endif 6752 6753 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6754 { 6755 struct mem_cgroup *memcg; 6756 struct lruvec *lruvec; 6757 6758 if (lru_gen_enabled()) { 6759 lru_gen_age_node(pgdat, sc); 6760 return; 6761 } 6762 6763 if (!can_age_anon_pages(pgdat, sc)) 6764 return; 6765 6766 lruvec = mem_cgroup_lruvec(NULL, pgdat); 6767 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6768 return; 6769 6770 memcg = mem_cgroup_iter(NULL, NULL, NULL); 6771 do { 6772 lruvec = mem_cgroup_lruvec(memcg, pgdat); 6773 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6774 sc, LRU_ACTIVE_ANON); 6775 memcg = mem_cgroup_iter(NULL, memcg, NULL); 6776 } while (memcg); 6777 } 6778 6779 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 6780 { 6781 int i; 6782 struct zone *zone; 6783 6784 /* 6785 * Check for watermark boosts top-down as the higher zones 6786 * are more likely to be boosted. Both watermarks and boosts 6787 * should not be checked at the same time as reclaim would 6788 * start prematurely when there is no boosting and a lower 6789 * zone is balanced. 6790 */ 6791 for (i = highest_zoneidx; i >= 0; i--) { 6792 zone = pgdat->node_zones + i; 6793 if (!managed_zone(zone)) 6794 continue; 6795 6796 if (zone->watermark_boost) 6797 return true; 6798 } 6799 6800 return false; 6801 } 6802 6803 /* 6804 * Returns true if there is an eligible zone balanced for the request order 6805 * and highest_zoneidx 6806 */ 6807 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 6808 { 6809 int i; 6810 unsigned long mark = -1; 6811 struct zone *zone; 6812 6813 /* 6814 * Check watermarks bottom-up as lower zones are more likely to 6815 * meet watermarks. 6816 */ 6817 for (i = 0; i <= highest_zoneidx; i++) { 6818 zone = pgdat->node_zones + i; 6819 6820 if (!managed_zone(zone)) 6821 continue; 6822 6823 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 6824 mark = wmark_pages(zone, WMARK_PROMO); 6825 else 6826 mark = high_wmark_pages(zone); 6827 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 6828 return true; 6829 } 6830 6831 /* 6832 * If a node has no managed zone within highest_zoneidx, it does not 6833 * need balancing by definition. This can happen if a zone-restricted 6834 * allocation tries to wake a remote kswapd. 6835 */ 6836 if (mark == -1) 6837 return true; 6838 6839 return false; 6840 } 6841 6842 /* Clear pgdat state for congested, dirty or under writeback. */ 6843 static void clear_pgdat_congested(pg_data_t *pgdat) 6844 { 6845 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 6846 6847 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 6848 clear_bit(PGDAT_DIRTY, &pgdat->flags); 6849 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 6850 } 6851 6852 /* 6853 * Prepare kswapd for sleeping. This verifies that there are no processes 6854 * waiting in throttle_direct_reclaim() and that watermarks have been met. 6855 * 6856 * Returns true if kswapd is ready to sleep 6857 */ 6858 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 6859 int highest_zoneidx) 6860 { 6861 /* 6862 * The throttled processes are normally woken up in balance_pgdat() as 6863 * soon as allow_direct_reclaim() is true. But there is a potential 6864 * race between when kswapd checks the watermarks and a process gets 6865 * throttled. There is also a potential race if processes get 6866 * throttled, kswapd wakes, a large process exits thereby balancing the 6867 * zones, which causes kswapd to exit balance_pgdat() before reaching 6868 * the wake up checks. If kswapd is going to sleep, no process should 6869 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 6870 * the wake up is premature, processes will wake kswapd and get 6871 * throttled again. The difference from wake ups in balance_pgdat() is 6872 * that here we are under prepare_to_wait(). 6873 */ 6874 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 6875 wake_up_all(&pgdat->pfmemalloc_wait); 6876 6877 /* Hopeless node, leave it to direct reclaim */ 6878 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6879 return true; 6880 6881 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 6882 clear_pgdat_congested(pgdat); 6883 return true; 6884 } 6885 6886 return false; 6887 } 6888 6889 /* 6890 * kswapd shrinks a node of pages that are at or below the highest usable 6891 * zone that is currently unbalanced. 6892 * 6893 * Returns true if kswapd scanned at least the requested number of pages to 6894 * reclaim or if the lack of progress was due to pages under writeback. 6895 * This is used to determine if the scanning priority needs to be raised. 6896 */ 6897 static bool kswapd_shrink_node(pg_data_t *pgdat, 6898 struct scan_control *sc) 6899 { 6900 struct zone *zone; 6901 int z; 6902 6903 /* Reclaim a number of pages proportional to the number of zones */ 6904 sc->nr_to_reclaim = 0; 6905 for (z = 0; z <= sc->reclaim_idx; z++) { 6906 zone = pgdat->node_zones + z; 6907 if (!managed_zone(zone)) 6908 continue; 6909 6910 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 6911 } 6912 6913 /* 6914 * Historically care was taken to put equal pressure on all zones but 6915 * now pressure is applied based on node LRU order. 6916 */ 6917 shrink_node(pgdat, sc); 6918 6919 /* 6920 * Fragmentation may mean that the system cannot be rebalanced for 6921 * high-order allocations. If twice the allocation size has been 6922 * reclaimed then recheck watermarks only at order-0 to prevent 6923 * excessive reclaim. Assume that a process requested a high-order 6924 * can direct reclaim/compact. 6925 */ 6926 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 6927 sc->order = 0; 6928 6929 return sc->nr_scanned >= sc->nr_to_reclaim; 6930 } 6931 6932 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 6933 static inline void 6934 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 6935 { 6936 int i; 6937 struct zone *zone; 6938 6939 for (i = 0; i <= highest_zoneidx; i++) { 6940 zone = pgdat->node_zones + i; 6941 6942 if (!managed_zone(zone)) 6943 continue; 6944 6945 if (active) 6946 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6947 else 6948 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6949 } 6950 } 6951 6952 static inline void 6953 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6954 { 6955 update_reclaim_active(pgdat, highest_zoneidx, true); 6956 } 6957 6958 static inline void 6959 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6960 { 6961 update_reclaim_active(pgdat, highest_zoneidx, false); 6962 } 6963 6964 /* 6965 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 6966 * that are eligible for use by the caller until at least one zone is 6967 * balanced. 6968 * 6969 * Returns the order kswapd finished reclaiming at. 6970 * 6971 * kswapd scans the zones in the highmem->normal->dma direction. It skips 6972 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 6973 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 6974 * or lower is eligible for reclaim until at least one usable zone is 6975 * balanced. 6976 */ 6977 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 6978 { 6979 int i; 6980 unsigned long nr_soft_reclaimed; 6981 unsigned long nr_soft_scanned; 6982 unsigned long pflags; 6983 unsigned long nr_boost_reclaim; 6984 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 6985 bool boosted; 6986 struct zone *zone; 6987 struct scan_control sc = { 6988 .gfp_mask = GFP_KERNEL, 6989 .order = order, 6990 .may_unmap = 1, 6991 }; 6992 6993 set_task_reclaim_state(current, &sc.reclaim_state); 6994 psi_memstall_enter(&pflags); 6995 __fs_reclaim_acquire(_THIS_IP_); 6996 6997 count_vm_event(PAGEOUTRUN); 6998 6999 /* 7000 * Account for the reclaim boost. Note that the zone boost is left in 7001 * place so that parallel allocations that are near the watermark will 7002 * stall or direct reclaim until kswapd is finished. 7003 */ 7004 nr_boost_reclaim = 0; 7005 for (i = 0; i <= highest_zoneidx; i++) { 7006 zone = pgdat->node_zones + i; 7007 if (!managed_zone(zone)) 7008 continue; 7009 7010 nr_boost_reclaim += zone->watermark_boost; 7011 zone_boosts[i] = zone->watermark_boost; 7012 } 7013 boosted = nr_boost_reclaim; 7014 7015 restart: 7016 set_reclaim_active(pgdat, highest_zoneidx); 7017 sc.priority = DEF_PRIORITY; 7018 do { 7019 unsigned long nr_reclaimed = sc.nr_reclaimed; 7020 bool raise_priority = true; 7021 bool balanced; 7022 bool ret; 7023 7024 sc.reclaim_idx = highest_zoneidx; 7025 7026 /* 7027 * If the number of buffer_heads exceeds the maximum allowed 7028 * then consider reclaiming from all zones. This has a dual 7029 * purpose -- on 64-bit systems it is expected that 7030 * buffer_heads are stripped during active rotation. On 32-bit 7031 * systems, highmem pages can pin lowmem memory and shrinking 7032 * buffers can relieve lowmem pressure. Reclaim may still not 7033 * go ahead if all eligible zones for the original allocation 7034 * request are balanced to avoid excessive reclaim from kswapd. 7035 */ 7036 if (buffer_heads_over_limit) { 7037 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 7038 zone = pgdat->node_zones + i; 7039 if (!managed_zone(zone)) 7040 continue; 7041 7042 sc.reclaim_idx = i; 7043 break; 7044 } 7045 } 7046 7047 /* 7048 * If the pgdat is imbalanced then ignore boosting and preserve 7049 * the watermarks for a later time and restart. Note that the 7050 * zone watermarks will be still reset at the end of balancing 7051 * on the grounds that the normal reclaim should be enough to 7052 * re-evaluate if boosting is required when kswapd next wakes. 7053 */ 7054 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 7055 if (!balanced && nr_boost_reclaim) { 7056 nr_boost_reclaim = 0; 7057 goto restart; 7058 } 7059 7060 /* 7061 * If boosting is not active then only reclaim if there are no 7062 * eligible zones. Note that sc.reclaim_idx is not used as 7063 * buffer_heads_over_limit may have adjusted it. 7064 */ 7065 if (!nr_boost_reclaim && balanced) 7066 goto out; 7067 7068 /* Limit the priority of boosting to avoid reclaim writeback */ 7069 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 7070 raise_priority = false; 7071 7072 /* 7073 * Do not writeback or swap pages for boosted reclaim. The 7074 * intent is to relieve pressure not issue sub-optimal IO 7075 * from reclaim context. If no pages are reclaimed, the 7076 * reclaim will be aborted. 7077 */ 7078 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 7079 sc.may_swap = !nr_boost_reclaim; 7080 7081 /* 7082 * Do some background aging, to give pages a chance to be 7083 * referenced before reclaiming. All pages are rotated 7084 * regardless of classzone as this is about consistent aging. 7085 */ 7086 kswapd_age_node(pgdat, &sc); 7087 7088 /* 7089 * If we're getting trouble reclaiming, start doing writepage 7090 * even in laptop mode. 7091 */ 7092 if (sc.priority < DEF_PRIORITY - 2) 7093 sc.may_writepage = 1; 7094 7095 /* Call soft limit reclaim before calling shrink_node. */ 7096 sc.nr_scanned = 0; 7097 nr_soft_scanned = 0; 7098 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 7099 sc.gfp_mask, &nr_soft_scanned); 7100 sc.nr_reclaimed += nr_soft_reclaimed; 7101 7102 /* 7103 * There should be no need to raise the scanning priority if 7104 * enough pages are already being scanned that that high 7105 * watermark would be met at 100% efficiency. 7106 */ 7107 if (kswapd_shrink_node(pgdat, &sc)) 7108 raise_priority = false; 7109 7110 /* 7111 * If the low watermark is met there is no need for processes 7112 * to be throttled on pfmemalloc_wait as they should not be 7113 * able to safely make forward progress. Wake them 7114 */ 7115 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 7116 allow_direct_reclaim(pgdat)) 7117 wake_up_all(&pgdat->pfmemalloc_wait); 7118 7119 /* Check if kswapd should be suspending */ 7120 __fs_reclaim_release(_THIS_IP_); 7121 ret = try_to_freeze(); 7122 __fs_reclaim_acquire(_THIS_IP_); 7123 if (ret || kthread_should_stop()) 7124 break; 7125 7126 /* 7127 * Raise priority if scanning rate is too low or there was no 7128 * progress in reclaiming pages 7129 */ 7130 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 7131 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 7132 7133 /* 7134 * If reclaim made no progress for a boost, stop reclaim as 7135 * IO cannot be queued and it could be an infinite loop in 7136 * extreme circumstances. 7137 */ 7138 if (nr_boost_reclaim && !nr_reclaimed) 7139 break; 7140 7141 if (raise_priority || !nr_reclaimed) 7142 sc.priority--; 7143 } while (sc.priority >= 1); 7144 7145 if (!sc.nr_reclaimed) 7146 pgdat->kswapd_failures++; 7147 7148 out: 7149 clear_reclaim_active(pgdat, highest_zoneidx); 7150 7151 /* If reclaim was boosted, account for the reclaim done in this pass */ 7152 if (boosted) { 7153 unsigned long flags; 7154 7155 for (i = 0; i <= highest_zoneidx; i++) { 7156 if (!zone_boosts[i]) 7157 continue; 7158 7159 /* Increments are under the zone lock */ 7160 zone = pgdat->node_zones + i; 7161 spin_lock_irqsave(&zone->lock, flags); 7162 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 7163 spin_unlock_irqrestore(&zone->lock, flags); 7164 } 7165 7166 /* 7167 * As there is now likely space, wakeup kcompact to defragment 7168 * pageblocks. 7169 */ 7170 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 7171 } 7172 7173 snapshot_refaults(NULL, pgdat); 7174 __fs_reclaim_release(_THIS_IP_); 7175 psi_memstall_leave(&pflags); 7176 set_task_reclaim_state(current, NULL); 7177 7178 /* 7179 * Return the order kswapd stopped reclaiming at as 7180 * prepare_kswapd_sleep() takes it into account. If another caller 7181 * entered the allocator slow path while kswapd was awake, order will 7182 * remain at the higher level. 7183 */ 7184 return sc.order; 7185 } 7186 7187 /* 7188 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 7189 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 7190 * not a valid index then either kswapd runs for first time or kswapd couldn't 7191 * sleep after previous reclaim attempt (node is still unbalanced). In that 7192 * case return the zone index of the previous kswapd reclaim cycle. 7193 */ 7194 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 7195 enum zone_type prev_highest_zoneidx) 7196 { 7197 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7198 7199 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 7200 } 7201 7202 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 7203 unsigned int highest_zoneidx) 7204 { 7205 long remaining = 0; 7206 DEFINE_WAIT(wait); 7207 7208 if (freezing(current) || kthread_should_stop()) 7209 return; 7210 7211 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7212 7213 /* 7214 * Try to sleep for a short interval. Note that kcompactd will only be 7215 * woken if it is possible to sleep for a short interval. This is 7216 * deliberate on the assumption that if reclaim cannot keep an 7217 * eligible zone balanced that it's also unlikely that compaction will 7218 * succeed. 7219 */ 7220 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7221 /* 7222 * Compaction records what page blocks it recently failed to 7223 * isolate pages from and skips them in the future scanning. 7224 * When kswapd is going to sleep, it is reasonable to assume 7225 * that pages and compaction may succeed so reset the cache. 7226 */ 7227 reset_isolation_suitable(pgdat); 7228 7229 /* 7230 * We have freed the memory, now we should compact it to make 7231 * allocation of the requested order possible. 7232 */ 7233 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 7234 7235 remaining = schedule_timeout(HZ/10); 7236 7237 /* 7238 * If woken prematurely then reset kswapd_highest_zoneidx and 7239 * order. The values will either be from a wakeup request or 7240 * the previous request that slept prematurely. 7241 */ 7242 if (remaining) { 7243 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 7244 kswapd_highest_zoneidx(pgdat, 7245 highest_zoneidx)); 7246 7247 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 7248 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7249 } 7250 7251 finish_wait(&pgdat->kswapd_wait, &wait); 7252 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7253 } 7254 7255 /* 7256 * After a short sleep, check if it was a premature sleep. If not, then 7257 * go fully to sleep until explicitly woken up. 7258 */ 7259 if (!remaining && 7260 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7261 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7262 7263 /* 7264 * vmstat counters are not perfectly accurate and the estimated 7265 * value for counters such as NR_FREE_PAGES can deviate from the 7266 * true value by nr_online_cpus * threshold. To avoid the zone 7267 * watermarks being breached while under pressure, we reduce the 7268 * per-cpu vmstat threshold while kswapd is awake and restore 7269 * them before going back to sleep. 7270 */ 7271 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7272 7273 if (!kthread_should_stop()) 7274 schedule(); 7275 7276 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7277 } else { 7278 if (remaining) 7279 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7280 else 7281 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7282 } 7283 finish_wait(&pgdat->kswapd_wait, &wait); 7284 } 7285 7286 /* 7287 * The background pageout daemon, started as a kernel thread 7288 * from the init process. 7289 * 7290 * This basically trickles out pages so that we have _some_ 7291 * free memory available even if there is no other activity 7292 * that frees anything up. This is needed for things like routing 7293 * etc, where we otherwise might have all activity going on in 7294 * asynchronous contexts that cannot page things out. 7295 * 7296 * If there are applications that are active memory-allocators 7297 * (most normal use), this basically shouldn't matter. 7298 */ 7299 static int kswapd(void *p) 7300 { 7301 unsigned int alloc_order, reclaim_order; 7302 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7303 pg_data_t *pgdat = (pg_data_t *)p; 7304 struct task_struct *tsk = current; 7305 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 7306 7307 if (!cpumask_empty(cpumask)) 7308 set_cpus_allowed_ptr(tsk, cpumask); 7309 7310 /* 7311 * Tell the memory management that we're a "memory allocator", 7312 * and that if we need more memory we should get access to it 7313 * regardless (see "__alloc_pages()"). "kswapd" should 7314 * never get caught in the normal page freeing logic. 7315 * 7316 * (Kswapd normally doesn't need memory anyway, but sometimes 7317 * you need a small amount of memory in order to be able to 7318 * page out something else, and this flag essentially protects 7319 * us from recursively trying to free more memory as we're 7320 * trying to free the first piece of memory in the first place). 7321 */ 7322 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7323 set_freezable(); 7324 7325 WRITE_ONCE(pgdat->kswapd_order, 0); 7326 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7327 atomic_set(&pgdat->nr_writeback_throttled, 0); 7328 for ( ; ; ) { 7329 bool ret; 7330 7331 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7332 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7333 highest_zoneidx); 7334 7335 kswapd_try_sleep: 7336 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7337 highest_zoneidx); 7338 7339 /* Read the new order and highest_zoneidx */ 7340 alloc_order = READ_ONCE(pgdat->kswapd_order); 7341 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7342 highest_zoneidx); 7343 WRITE_ONCE(pgdat->kswapd_order, 0); 7344 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7345 7346 ret = try_to_freeze(); 7347 if (kthread_should_stop()) 7348 break; 7349 7350 /* 7351 * We can speed up thawing tasks if we don't call balance_pgdat 7352 * after returning from the refrigerator 7353 */ 7354 if (ret) 7355 continue; 7356 7357 /* 7358 * Reclaim begins at the requested order but if a high-order 7359 * reclaim fails then kswapd falls back to reclaiming for 7360 * order-0. If that happens, kswapd will consider sleeping 7361 * for the order it finished reclaiming at (reclaim_order) 7362 * but kcompactd is woken to compact for the original 7363 * request (alloc_order). 7364 */ 7365 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7366 alloc_order); 7367 reclaim_order = balance_pgdat(pgdat, alloc_order, 7368 highest_zoneidx); 7369 if (reclaim_order < alloc_order) 7370 goto kswapd_try_sleep; 7371 } 7372 7373 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7374 7375 return 0; 7376 } 7377 7378 /* 7379 * A zone is low on free memory or too fragmented for high-order memory. If 7380 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7381 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7382 * has failed or is not needed, still wake up kcompactd if only compaction is 7383 * needed. 7384 */ 7385 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7386 enum zone_type highest_zoneidx) 7387 { 7388 pg_data_t *pgdat; 7389 enum zone_type curr_idx; 7390 7391 if (!managed_zone(zone)) 7392 return; 7393 7394 if (!cpuset_zone_allowed(zone, gfp_flags)) 7395 return; 7396 7397 pgdat = zone->zone_pgdat; 7398 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7399 7400 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7401 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7402 7403 if (READ_ONCE(pgdat->kswapd_order) < order) 7404 WRITE_ONCE(pgdat->kswapd_order, order); 7405 7406 if (!waitqueue_active(&pgdat->kswapd_wait)) 7407 return; 7408 7409 /* Hopeless node, leave it to direct reclaim if possible */ 7410 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 7411 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7412 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7413 /* 7414 * There may be plenty of free memory available, but it's too 7415 * fragmented for high-order allocations. Wake up kcompactd 7416 * and rely on compaction_suitable() to determine if it's 7417 * needed. If it fails, it will defer subsequent attempts to 7418 * ratelimit its work. 7419 */ 7420 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7421 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7422 return; 7423 } 7424 7425 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7426 gfp_flags); 7427 wake_up_interruptible(&pgdat->kswapd_wait); 7428 } 7429 7430 #ifdef CONFIG_HIBERNATION 7431 /* 7432 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7433 * freed pages. 7434 * 7435 * Rather than trying to age LRUs the aim is to preserve the overall 7436 * LRU order by reclaiming preferentially 7437 * inactive > active > active referenced > active mapped 7438 */ 7439 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7440 { 7441 struct scan_control sc = { 7442 .nr_to_reclaim = nr_to_reclaim, 7443 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7444 .reclaim_idx = MAX_NR_ZONES - 1, 7445 .priority = DEF_PRIORITY, 7446 .may_writepage = 1, 7447 .may_unmap = 1, 7448 .may_swap = 1, 7449 .hibernation_mode = 1, 7450 }; 7451 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7452 unsigned long nr_reclaimed; 7453 unsigned int noreclaim_flag; 7454 7455 fs_reclaim_acquire(sc.gfp_mask); 7456 noreclaim_flag = memalloc_noreclaim_save(); 7457 set_task_reclaim_state(current, &sc.reclaim_state); 7458 7459 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7460 7461 set_task_reclaim_state(current, NULL); 7462 memalloc_noreclaim_restore(noreclaim_flag); 7463 fs_reclaim_release(sc.gfp_mask); 7464 7465 return nr_reclaimed; 7466 } 7467 #endif /* CONFIG_HIBERNATION */ 7468 7469 /* 7470 * This kswapd start function will be called by init and node-hot-add. 7471 */ 7472 void kswapd_run(int nid) 7473 { 7474 pg_data_t *pgdat = NODE_DATA(nid); 7475 7476 pgdat_kswapd_lock(pgdat); 7477 if (!pgdat->kswapd) { 7478 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 7479 if (IS_ERR(pgdat->kswapd)) { 7480 /* failure at boot is fatal */ 7481 BUG_ON(system_state < SYSTEM_RUNNING); 7482 pr_err("Failed to start kswapd on node %d\n", nid); 7483 pgdat->kswapd = NULL; 7484 } 7485 } 7486 pgdat_kswapd_unlock(pgdat); 7487 } 7488 7489 /* 7490 * Called by memory hotplug when all memory in a node is offlined. Caller must 7491 * be holding mem_hotplug_begin/done(). 7492 */ 7493 void kswapd_stop(int nid) 7494 { 7495 pg_data_t *pgdat = NODE_DATA(nid); 7496 struct task_struct *kswapd; 7497 7498 pgdat_kswapd_lock(pgdat); 7499 kswapd = pgdat->kswapd; 7500 if (kswapd) { 7501 kthread_stop(kswapd); 7502 pgdat->kswapd = NULL; 7503 } 7504 pgdat_kswapd_unlock(pgdat); 7505 } 7506 7507 static int __init kswapd_init(void) 7508 { 7509 int nid; 7510 7511 swap_setup(); 7512 for_each_node_state(nid, N_MEMORY) 7513 kswapd_run(nid); 7514 return 0; 7515 } 7516 7517 module_init(kswapd_init) 7518 7519 #ifdef CONFIG_NUMA 7520 /* 7521 * Node reclaim mode 7522 * 7523 * If non-zero call node_reclaim when the number of free pages falls below 7524 * the watermarks. 7525 */ 7526 int node_reclaim_mode __read_mostly; 7527 7528 /* 7529 * Priority for NODE_RECLAIM. This determines the fraction of pages 7530 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7531 * a zone. 7532 */ 7533 #define NODE_RECLAIM_PRIORITY 4 7534 7535 /* 7536 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7537 * occur. 7538 */ 7539 int sysctl_min_unmapped_ratio = 1; 7540 7541 /* 7542 * If the number of slab pages in a zone grows beyond this percentage then 7543 * slab reclaim needs to occur. 7544 */ 7545 int sysctl_min_slab_ratio = 5; 7546 7547 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7548 { 7549 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7550 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7551 node_page_state(pgdat, NR_ACTIVE_FILE); 7552 7553 /* 7554 * It's possible for there to be more file mapped pages than 7555 * accounted for by the pages on the file LRU lists because 7556 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7557 */ 7558 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7559 } 7560 7561 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7562 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7563 { 7564 unsigned long nr_pagecache_reclaimable; 7565 unsigned long delta = 0; 7566 7567 /* 7568 * If RECLAIM_UNMAP is set, then all file pages are considered 7569 * potentially reclaimable. Otherwise, we have to worry about 7570 * pages like swapcache and node_unmapped_file_pages() provides 7571 * a better estimate 7572 */ 7573 if (node_reclaim_mode & RECLAIM_UNMAP) 7574 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 7575 else 7576 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 7577 7578 /* If we can't clean pages, remove dirty pages from consideration */ 7579 if (!(node_reclaim_mode & RECLAIM_WRITE)) 7580 delta += node_page_state(pgdat, NR_FILE_DIRTY); 7581 7582 /* Watch for any possible underflows due to delta */ 7583 if (unlikely(delta > nr_pagecache_reclaimable)) 7584 delta = nr_pagecache_reclaimable; 7585 7586 return nr_pagecache_reclaimable - delta; 7587 } 7588 7589 /* 7590 * Try to free up some pages from this node through reclaim. 7591 */ 7592 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7593 { 7594 /* Minimum pages needed in order to stay on node */ 7595 const unsigned long nr_pages = 1 << order; 7596 struct task_struct *p = current; 7597 unsigned int noreclaim_flag; 7598 struct scan_control sc = { 7599 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7600 .gfp_mask = current_gfp_context(gfp_mask), 7601 .order = order, 7602 .priority = NODE_RECLAIM_PRIORITY, 7603 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 7604 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 7605 .may_swap = 1, 7606 .reclaim_idx = gfp_zone(gfp_mask), 7607 }; 7608 unsigned long pflags; 7609 7610 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 7611 sc.gfp_mask); 7612 7613 cond_resched(); 7614 psi_memstall_enter(&pflags); 7615 fs_reclaim_acquire(sc.gfp_mask); 7616 /* 7617 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 7618 */ 7619 noreclaim_flag = memalloc_noreclaim_save(); 7620 set_task_reclaim_state(p, &sc.reclaim_state); 7621 7622 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 7623 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 7624 /* 7625 * Free memory by calling shrink node with increasing 7626 * priorities until we have enough memory freed. 7627 */ 7628 do { 7629 shrink_node(pgdat, &sc); 7630 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 7631 } 7632 7633 set_task_reclaim_state(p, NULL); 7634 memalloc_noreclaim_restore(noreclaim_flag); 7635 fs_reclaim_release(sc.gfp_mask); 7636 psi_memstall_leave(&pflags); 7637 7638 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 7639 7640 return sc.nr_reclaimed >= nr_pages; 7641 } 7642 7643 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7644 { 7645 int ret; 7646 7647 /* 7648 * Node reclaim reclaims unmapped file backed pages and 7649 * slab pages if we are over the defined limits. 7650 * 7651 * A small portion of unmapped file backed pages is needed for 7652 * file I/O otherwise pages read by file I/O will be immediately 7653 * thrown out if the node is overallocated. So we do not reclaim 7654 * if less than a specified percentage of the node is used by 7655 * unmapped file backed pages. 7656 */ 7657 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 7658 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 7659 pgdat->min_slab_pages) 7660 return NODE_RECLAIM_FULL; 7661 7662 /* 7663 * Do not scan if the allocation should not be delayed. 7664 */ 7665 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 7666 return NODE_RECLAIM_NOSCAN; 7667 7668 /* 7669 * Only run node reclaim on the local node or on nodes that do not 7670 * have associated processors. This will favor the local processor 7671 * over remote processors and spread off node memory allocations 7672 * as wide as possible. 7673 */ 7674 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 7675 return NODE_RECLAIM_NOSCAN; 7676 7677 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 7678 return NODE_RECLAIM_NOSCAN; 7679 7680 ret = __node_reclaim(pgdat, gfp_mask, order); 7681 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 7682 7683 if (!ret) 7684 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 7685 7686 return ret; 7687 } 7688 #endif 7689 7690 void check_move_unevictable_pages(struct pagevec *pvec) 7691 { 7692 struct folio_batch fbatch; 7693 unsigned i; 7694 7695 folio_batch_init(&fbatch); 7696 for (i = 0; i < pvec->nr; i++) { 7697 struct page *page = pvec->pages[i]; 7698 7699 if (PageTransTail(page)) 7700 continue; 7701 folio_batch_add(&fbatch, page_folio(page)); 7702 } 7703 check_move_unevictable_folios(&fbatch); 7704 } 7705 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 7706 7707 /** 7708 * check_move_unevictable_folios - Move evictable folios to appropriate zone 7709 * lru list 7710 * @fbatch: Batch of lru folios to check. 7711 * 7712 * Checks folios for evictability, if an evictable folio is in the unevictable 7713 * lru list, moves it to the appropriate evictable lru list. This function 7714 * should be only used for lru folios. 7715 */ 7716 void check_move_unevictable_folios(struct folio_batch *fbatch) 7717 { 7718 struct lruvec *lruvec = NULL; 7719 int pgscanned = 0; 7720 int pgrescued = 0; 7721 int i; 7722 7723 for (i = 0; i < fbatch->nr; i++) { 7724 struct folio *folio = fbatch->folios[i]; 7725 int nr_pages = folio_nr_pages(folio); 7726 7727 pgscanned += nr_pages; 7728 7729 /* block memcg migration while the folio moves between lrus */ 7730 if (!folio_test_clear_lru(folio)) 7731 continue; 7732 7733 lruvec = folio_lruvec_relock_irq(folio, lruvec); 7734 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 7735 lruvec_del_folio(lruvec, folio); 7736 folio_clear_unevictable(folio); 7737 lruvec_add_folio(lruvec, folio); 7738 pgrescued += nr_pages; 7739 } 7740 folio_set_lru(folio); 7741 } 7742 7743 if (lruvec) { 7744 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 7745 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7746 unlock_page_lruvec_irq(lruvec); 7747 } else if (pgscanned) { 7748 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7749 } 7750 } 7751 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 7752