xref: /openbmc/linux/mm/vmscan.c (revision 703c270887bb5106c4c46a00cc7477d30d5e04f5)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 
53 #include <linux/swapops.h>
54 #include <linux/balloon_compaction.h>
55 
56 #include "internal.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/vmscan.h>
60 
61 struct scan_control {
62 	/* How many pages shrink_list() should reclaim */
63 	unsigned long nr_to_reclaim;
64 
65 	/* This context's GFP mask */
66 	gfp_t gfp_mask;
67 
68 	/* Allocation order */
69 	int order;
70 
71 	/*
72 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 	 * are scanned.
74 	 */
75 	nodemask_t	*nodemask;
76 
77 	/*
78 	 * The memory cgroup that hit its limit and as a result is the
79 	 * primary target of this reclaim invocation.
80 	 */
81 	struct mem_cgroup *target_mem_cgroup;
82 
83 	/* Scan (total_size >> priority) pages at once */
84 	int priority;
85 
86 	unsigned int may_writepage:1;
87 
88 	/* Can mapped pages be reclaimed? */
89 	unsigned int may_unmap:1;
90 
91 	/* Can pages be swapped as part of reclaim? */
92 	unsigned int may_swap:1;
93 
94 	/* Can cgroups be reclaimed below their normal consumption range? */
95 	unsigned int may_thrash:1;
96 
97 	unsigned int hibernation_mode:1;
98 
99 	/* One of the zones is ready for compaction */
100 	unsigned int compaction_ready:1;
101 
102 	/* Incremented by the number of inactive pages that were scanned */
103 	unsigned long nr_scanned;
104 
105 	/* Number of pages freed so far during a call to shrink_zones() */
106 	unsigned long nr_reclaimed;
107 };
108 
109 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
110 
111 #ifdef ARCH_HAS_PREFETCH
112 #define prefetch_prev_lru_page(_page, _base, _field)			\
113 	do {								\
114 		if ((_page)->lru.prev != _base) {			\
115 			struct page *prev;				\
116 									\
117 			prev = lru_to_page(&(_page->lru));		\
118 			prefetch(&prev->_field);			\
119 		}							\
120 	} while (0)
121 #else
122 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
123 #endif
124 
125 #ifdef ARCH_HAS_PREFETCHW
126 #define prefetchw_prev_lru_page(_page, _base, _field)			\
127 	do {								\
128 		if ((_page)->lru.prev != _base) {			\
129 			struct page *prev;				\
130 									\
131 			prev = lru_to_page(&(_page->lru));		\
132 			prefetchw(&prev->_field);			\
133 		}							\
134 	} while (0)
135 #else
136 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
137 #endif
138 
139 /*
140  * From 0 .. 100.  Higher means more swappy.
141  */
142 int vm_swappiness = 60;
143 /*
144  * The total number of pages which are beyond the high watermark within all
145  * zones.
146  */
147 unsigned long vm_total_pages;
148 
149 static LIST_HEAD(shrinker_list);
150 static DECLARE_RWSEM(shrinker_rwsem);
151 
152 #ifdef CONFIG_MEMCG
153 static bool global_reclaim(struct scan_control *sc)
154 {
155 	return !sc->target_mem_cgroup;
156 }
157 #else
158 static bool global_reclaim(struct scan_control *sc)
159 {
160 	return true;
161 }
162 #endif
163 
164 static unsigned long zone_reclaimable_pages(struct zone *zone)
165 {
166 	int nr;
167 
168 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
169 	     zone_page_state(zone, NR_INACTIVE_FILE);
170 
171 	if (get_nr_swap_pages() > 0)
172 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
173 		      zone_page_state(zone, NR_INACTIVE_ANON);
174 
175 	return nr;
176 }
177 
178 bool zone_reclaimable(struct zone *zone)
179 {
180 	return zone_page_state(zone, NR_PAGES_SCANNED) <
181 		zone_reclaimable_pages(zone) * 6;
182 }
183 
184 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
185 {
186 	if (!mem_cgroup_disabled())
187 		return mem_cgroup_get_lru_size(lruvec, lru);
188 
189 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
190 }
191 
192 /*
193  * Add a shrinker callback to be called from the vm.
194  */
195 int register_shrinker(struct shrinker *shrinker)
196 {
197 	size_t size = sizeof(*shrinker->nr_deferred);
198 
199 	/*
200 	 * If we only have one possible node in the system anyway, save
201 	 * ourselves the trouble and disable NUMA aware behavior. This way we
202 	 * will save memory and some small loop time later.
203 	 */
204 	if (nr_node_ids == 1)
205 		shrinker->flags &= ~SHRINKER_NUMA_AWARE;
206 
207 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
208 		size *= nr_node_ids;
209 
210 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
211 	if (!shrinker->nr_deferred)
212 		return -ENOMEM;
213 
214 	down_write(&shrinker_rwsem);
215 	list_add_tail(&shrinker->list, &shrinker_list);
216 	up_write(&shrinker_rwsem);
217 	return 0;
218 }
219 EXPORT_SYMBOL(register_shrinker);
220 
221 /*
222  * Remove one
223  */
224 void unregister_shrinker(struct shrinker *shrinker)
225 {
226 	down_write(&shrinker_rwsem);
227 	list_del(&shrinker->list);
228 	up_write(&shrinker_rwsem);
229 	kfree(shrinker->nr_deferred);
230 }
231 EXPORT_SYMBOL(unregister_shrinker);
232 
233 #define SHRINK_BATCH 128
234 
235 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
236 				    struct shrinker *shrinker,
237 				    unsigned long nr_scanned,
238 				    unsigned long nr_eligible)
239 {
240 	unsigned long freed = 0;
241 	unsigned long long delta;
242 	long total_scan;
243 	long freeable;
244 	long nr;
245 	long new_nr;
246 	int nid = shrinkctl->nid;
247 	long batch_size = shrinker->batch ? shrinker->batch
248 					  : SHRINK_BATCH;
249 
250 	freeable = shrinker->count_objects(shrinker, shrinkctl);
251 	if (freeable == 0)
252 		return 0;
253 
254 	/*
255 	 * copy the current shrinker scan count into a local variable
256 	 * and zero it so that other concurrent shrinker invocations
257 	 * don't also do this scanning work.
258 	 */
259 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
260 
261 	total_scan = nr;
262 	delta = (4 * nr_scanned) / shrinker->seeks;
263 	delta *= freeable;
264 	do_div(delta, nr_eligible + 1);
265 	total_scan += delta;
266 	if (total_scan < 0) {
267 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
268 		       shrinker->scan_objects, total_scan);
269 		total_scan = freeable;
270 	}
271 
272 	/*
273 	 * We need to avoid excessive windup on filesystem shrinkers
274 	 * due to large numbers of GFP_NOFS allocations causing the
275 	 * shrinkers to return -1 all the time. This results in a large
276 	 * nr being built up so when a shrink that can do some work
277 	 * comes along it empties the entire cache due to nr >>>
278 	 * freeable. This is bad for sustaining a working set in
279 	 * memory.
280 	 *
281 	 * Hence only allow the shrinker to scan the entire cache when
282 	 * a large delta change is calculated directly.
283 	 */
284 	if (delta < freeable / 4)
285 		total_scan = min(total_scan, freeable / 2);
286 
287 	/*
288 	 * Avoid risking looping forever due to too large nr value:
289 	 * never try to free more than twice the estimate number of
290 	 * freeable entries.
291 	 */
292 	if (total_scan > freeable * 2)
293 		total_scan = freeable * 2;
294 
295 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
296 				   nr_scanned, nr_eligible,
297 				   freeable, delta, total_scan);
298 
299 	/*
300 	 * Normally, we should not scan less than batch_size objects in one
301 	 * pass to avoid too frequent shrinker calls, but if the slab has less
302 	 * than batch_size objects in total and we are really tight on memory,
303 	 * we will try to reclaim all available objects, otherwise we can end
304 	 * up failing allocations although there are plenty of reclaimable
305 	 * objects spread over several slabs with usage less than the
306 	 * batch_size.
307 	 *
308 	 * We detect the "tight on memory" situations by looking at the total
309 	 * number of objects we want to scan (total_scan). If it is greater
310 	 * than the total number of objects on slab (freeable), we must be
311 	 * scanning at high prio and therefore should try to reclaim as much as
312 	 * possible.
313 	 */
314 	while (total_scan >= batch_size ||
315 	       total_scan >= freeable) {
316 		unsigned long ret;
317 		unsigned long nr_to_scan = min(batch_size, total_scan);
318 
319 		shrinkctl->nr_to_scan = nr_to_scan;
320 		ret = shrinker->scan_objects(shrinker, shrinkctl);
321 		if (ret == SHRINK_STOP)
322 			break;
323 		freed += ret;
324 
325 		count_vm_events(SLABS_SCANNED, nr_to_scan);
326 		total_scan -= nr_to_scan;
327 
328 		cond_resched();
329 	}
330 
331 	/*
332 	 * move the unused scan count back into the shrinker in a
333 	 * manner that handles concurrent updates. If we exhausted the
334 	 * scan, there is no need to do an update.
335 	 */
336 	if (total_scan > 0)
337 		new_nr = atomic_long_add_return(total_scan,
338 						&shrinker->nr_deferred[nid]);
339 	else
340 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
341 
342 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
343 	return freed;
344 }
345 
346 /**
347  * shrink_slab - shrink slab caches
348  * @gfp_mask: allocation context
349  * @nid: node whose slab caches to target
350  * @memcg: memory cgroup whose slab caches to target
351  * @nr_scanned: pressure numerator
352  * @nr_eligible: pressure denominator
353  *
354  * Call the shrink functions to age shrinkable caches.
355  *
356  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
357  * unaware shrinkers will receive a node id of 0 instead.
358  *
359  * @memcg specifies the memory cgroup to target. If it is not NULL,
360  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
361  * objects from the memory cgroup specified. Otherwise all shrinkers
362  * are called, and memcg aware shrinkers are supposed to scan the
363  * global list then.
364  *
365  * @nr_scanned and @nr_eligible form a ratio that indicate how much of
366  * the available objects should be scanned.  Page reclaim for example
367  * passes the number of pages scanned and the number of pages on the
368  * LRU lists that it considered on @nid, plus a bias in @nr_scanned
369  * when it encountered mapped pages.  The ratio is further biased by
370  * the ->seeks setting of the shrink function, which indicates the
371  * cost to recreate an object relative to that of an LRU page.
372  *
373  * Returns the number of reclaimed slab objects.
374  */
375 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
376 				 struct mem_cgroup *memcg,
377 				 unsigned long nr_scanned,
378 				 unsigned long nr_eligible)
379 {
380 	struct shrinker *shrinker;
381 	unsigned long freed = 0;
382 
383 	if (memcg && !memcg_kmem_is_active(memcg))
384 		return 0;
385 
386 	if (nr_scanned == 0)
387 		nr_scanned = SWAP_CLUSTER_MAX;
388 
389 	if (!down_read_trylock(&shrinker_rwsem)) {
390 		/*
391 		 * If we would return 0, our callers would understand that we
392 		 * have nothing else to shrink and give up trying. By returning
393 		 * 1 we keep it going and assume we'll be able to shrink next
394 		 * time.
395 		 */
396 		freed = 1;
397 		goto out;
398 	}
399 
400 	list_for_each_entry(shrinker, &shrinker_list, list) {
401 		struct shrink_control sc = {
402 			.gfp_mask = gfp_mask,
403 			.nid = nid,
404 			.memcg = memcg,
405 		};
406 
407 		if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
408 			continue;
409 
410 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
411 			sc.nid = 0;
412 
413 		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
414 	}
415 
416 	up_read(&shrinker_rwsem);
417 out:
418 	cond_resched();
419 	return freed;
420 }
421 
422 void drop_slab_node(int nid)
423 {
424 	unsigned long freed;
425 
426 	do {
427 		struct mem_cgroup *memcg = NULL;
428 
429 		freed = 0;
430 		do {
431 			freed += shrink_slab(GFP_KERNEL, nid, memcg,
432 					     1000, 1000);
433 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
434 	} while (freed > 10);
435 }
436 
437 void drop_slab(void)
438 {
439 	int nid;
440 
441 	for_each_online_node(nid)
442 		drop_slab_node(nid);
443 }
444 
445 static inline int is_page_cache_freeable(struct page *page)
446 {
447 	/*
448 	 * A freeable page cache page is referenced only by the caller
449 	 * that isolated the page, the page cache radix tree and
450 	 * optional buffer heads at page->private.
451 	 */
452 	return page_count(page) - page_has_private(page) == 2;
453 }
454 
455 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
456 {
457 	if (current->flags & PF_SWAPWRITE)
458 		return 1;
459 	if (!inode_write_congested(inode))
460 		return 1;
461 	if (inode_to_bdi(inode) == current->backing_dev_info)
462 		return 1;
463 	return 0;
464 }
465 
466 /*
467  * We detected a synchronous write error writing a page out.  Probably
468  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
469  * fsync(), msync() or close().
470  *
471  * The tricky part is that after writepage we cannot touch the mapping: nothing
472  * prevents it from being freed up.  But we have a ref on the page and once
473  * that page is locked, the mapping is pinned.
474  *
475  * We're allowed to run sleeping lock_page() here because we know the caller has
476  * __GFP_FS.
477  */
478 static void handle_write_error(struct address_space *mapping,
479 				struct page *page, int error)
480 {
481 	lock_page(page);
482 	if (page_mapping(page) == mapping)
483 		mapping_set_error(mapping, error);
484 	unlock_page(page);
485 }
486 
487 /* possible outcome of pageout() */
488 typedef enum {
489 	/* failed to write page out, page is locked */
490 	PAGE_KEEP,
491 	/* move page to the active list, page is locked */
492 	PAGE_ACTIVATE,
493 	/* page has been sent to the disk successfully, page is unlocked */
494 	PAGE_SUCCESS,
495 	/* page is clean and locked */
496 	PAGE_CLEAN,
497 } pageout_t;
498 
499 /*
500  * pageout is called by shrink_page_list() for each dirty page.
501  * Calls ->writepage().
502  */
503 static pageout_t pageout(struct page *page, struct address_space *mapping,
504 			 struct scan_control *sc)
505 {
506 	/*
507 	 * If the page is dirty, only perform writeback if that write
508 	 * will be non-blocking.  To prevent this allocation from being
509 	 * stalled by pagecache activity.  But note that there may be
510 	 * stalls if we need to run get_block().  We could test
511 	 * PagePrivate for that.
512 	 *
513 	 * If this process is currently in __generic_file_write_iter() against
514 	 * this page's queue, we can perform writeback even if that
515 	 * will block.
516 	 *
517 	 * If the page is swapcache, write it back even if that would
518 	 * block, for some throttling. This happens by accident, because
519 	 * swap_backing_dev_info is bust: it doesn't reflect the
520 	 * congestion state of the swapdevs.  Easy to fix, if needed.
521 	 */
522 	if (!is_page_cache_freeable(page))
523 		return PAGE_KEEP;
524 	if (!mapping) {
525 		/*
526 		 * Some data journaling orphaned pages can have
527 		 * page->mapping == NULL while being dirty with clean buffers.
528 		 */
529 		if (page_has_private(page)) {
530 			if (try_to_free_buffers(page)) {
531 				ClearPageDirty(page);
532 				pr_info("%s: orphaned page\n", __func__);
533 				return PAGE_CLEAN;
534 			}
535 		}
536 		return PAGE_KEEP;
537 	}
538 	if (mapping->a_ops->writepage == NULL)
539 		return PAGE_ACTIVATE;
540 	if (!may_write_to_inode(mapping->host, sc))
541 		return PAGE_KEEP;
542 
543 	if (clear_page_dirty_for_io(page)) {
544 		int res;
545 		struct writeback_control wbc = {
546 			.sync_mode = WB_SYNC_NONE,
547 			.nr_to_write = SWAP_CLUSTER_MAX,
548 			.range_start = 0,
549 			.range_end = LLONG_MAX,
550 			.for_reclaim = 1,
551 		};
552 
553 		SetPageReclaim(page);
554 		res = mapping->a_ops->writepage(page, &wbc);
555 		if (res < 0)
556 			handle_write_error(mapping, page, res);
557 		if (res == AOP_WRITEPAGE_ACTIVATE) {
558 			ClearPageReclaim(page);
559 			return PAGE_ACTIVATE;
560 		}
561 
562 		if (!PageWriteback(page)) {
563 			/* synchronous write or broken a_ops? */
564 			ClearPageReclaim(page);
565 		}
566 		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
567 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
568 		return PAGE_SUCCESS;
569 	}
570 
571 	return PAGE_CLEAN;
572 }
573 
574 /*
575  * Same as remove_mapping, but if the page is removed from the mapping, it
576  * gets returned with a refcount of 0.
577  */
578 static int __remove_mapping(struct address_space *mapping, struct page *page,
579 			    bool reclaimed)
580 {
581 	unsigned long flags;
582 	struct mem_cgroup *memcg;
583 
584 	BUG_ON(!PageLocked(page));
585 	BUG_ON(mapping != page_mapping(page));
586 
587 	memcg = mem_cgroup_begin_page_stat(page);
588 	spin_lock_irqsave(&mapping->tree_lock, flags);
589 	/*
590 	 * The non racy check for a busy page.
591 	 *
592 	 * Must be careful with the order of the tests. When someone has
593 	 * a ref to the page, it may be possible that they dirty it then
594 	 * drop the reference. So if PageDirty is tested before page_count
595 	 * here, then the following race may occur:
596 	 *
597 	 * get_user_pages(&page);
598 	 * [user mapping goes away]
599 	 * write_to(page);
600 	 *				!PageDirty(page)    [good]
601 	 * SetPageDirty(page);
602 	 * put_page(page);
603 	 *				!page_count(page)   [good, discard it]
604 	 *
605 	 * [oops, our write_to data is lost]
606 	 *
607 	 * Reversing the order of the tests ensures such a situation cannot
608 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
609 	 * load is not satisfied before that of page->_count.
610 	 *
611 	 * Note that if SetPageDirty is always performed via set_page_dirty,
612 	 * and thus under tree_lock, then this ordering is not required.
613 	 */
614 	if (!page_freeze_refs(page, 2))
615 		goto cannot_free;
616 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
617 	if (unlikely(PageDirty(page))) {
618 		page_unfreeze_refs(page, 2);
619 		goto cannot_free;
620 	}
621 
622 	if (PageSwapCache(page)) {
623 		swp_entry_t swap = { .val = page_private(page) };
624 		mem_cgroup_swapout(page, swap);
625 		__delete_from_swap_cache(page);
626 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
627 		mem_cgroup_end_page_stat(memcg);
628 		swapcache_free(swap);
629 	} else {
630 		void (*freepage)(struct page *);
631 		void *shadow = NULL;
632 
633 		freepage = mapping->a_ops->freepage;
634 		/*
635 		 * Remember a shadow entry for reclaimed file cache in
636 		 * order to detect refaults, thus thrashing, later on.
637 		 *
638 		 * But don't store shadows in an address space that is
639 		 * already exiting.  This is not just an optizimation,
640 		 * inode reclaim needs to empty out the radix tree or
641 		 * the nodes are lost.  Don't plant shadows behind its
642 		 * back.
643 		 */
644 		if (reclaimed && page_is_file_cache(page) &&
645 		    !mapping_exiting(mapping))
646 			shadow = workingset_eviction(mapping, page);
647 		__delete_from_page_cache(page, shadow, memcg);
648 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
649 		mem_cgroup_end_page_stat(memcg);
650 
651 		if (freepage != NULL)
652 			freepage(page);
653 	}
654 
655 	return 1;
656 
657 cannot_free:
658 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
659 	mem_cgroup_end_page_stat(memcg);
660 	return 0;
661 }
662 
663 /*
664  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
665  * someone else has a ref on the page, abort and return 0.  If it was
666  * successfully detached, return 1.  Assumes the caller has a single ref on
667  * this page.
668  */
669 int remove_mapping(struct address_space *mapping, struct page *page)
670 {
671 	if (__remove_mapping(mapping, page, false)) {
672 		/*
673 		 * Unfreezing the refcount with 1 rather than 2 effectively
674 		 * drops the pagecache ref for us without requiring another
675 		 * atomic operation.
676 		 */
677 		page_unfreeze_refs(page, 1);
678 		return 1;
679 	}
680 	return 0;
681 }
682 
683 /**
684  * putback_lru_page - put previously isolated page onto appropriate LRU list
685  * @page: page to be put back to appropriate lru list
686  *
687  * Add previously isolated @page to appropriate LRU list.
688  * Page may still be unevictable for other reasons.
689  *
690  * lru_lock must not be held, interrupts must be enabled.
691  */
692 void putback_lru_page(struct page *page)
693 {
694 	bool is_unevictable;
695 	int was_unevictable = PageUnevictable(page);
696 
697 	VM_BUG_ON_PAGE(PageLRU(page), page);
698 
699 redo:
700 	ClearPageUnevictable(page);
701 
702 	if (page_evictable(page)) {
703 		/*
704 		 * For evictable pages, we can use the cache.
705 		 * In event of a race, worst case is we end up with an
706 		 * unevictable page on [in]active list.
707 		 * We know how to handle that.
708 		 */
709 		is_unevictable = false;
710 		lru_cache_add(page);
711 	} else {
712 		/*
713 		 * Put unevictable pages directly on zone's unevictable
714 		 * list.
715 		 */
716 		is_unevictable = true;
717 		add_page_to_unevictable_list(page);
718 		/*
719 		 * When racing with an mlock or AS_UNEVICTABLE clearing
720 		 * (page is unlocked) make sure that if the other thread
721 		 * does not observe our setting of PG_lru and fails
722 		 * isolation/check_move_unevictable_pages,
723 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
724 		 * the page back to the evictable list.
725 		 *
726 		 * The other side is TestClearPageMlocked() or shmem_lock().
727 		 */
728 		smp_mb();
729 	}
730 
731 	/*
732 	 * page's status can change while we move it among lru. If an evictable
733 	 * page is on unevictable list, it never be freed. To avoid that,
734 	 * check after we added it to the list, again.
735 	 */
736 	if (is_unevictable && page_evictable(page)) {
737 		if (!isolate_lru_page(page)) {
738 			put_page(page);
739 			goto redo;
740 		}
741 		/* This means someone else dropped this page from LRU
742 		 * So, it will be freed or putback to LRU again. There is
743 		 * nothing to do here.
744 		 */
745 	}
746 
747 	if (was_unevictable && !is_unevictable)
748 		count_vm_event(UNEVICTABLE_PGRESCUED);
749 	else if (!was_unevictable && is_unevictable)
750 		count_vm_event(UNEVICTABLE_PGCULLED);
751 
752 	put_page(page);		/* drop ref from isolate */
753 }
754 
755 enum page_references {
756 	PAGEREF_RECLAIM,
757 	PAGEREF_RECLAIM_CLEAN,
758 	PAGEREF_KEEP,
759 	PAGEREF_ACTIVATE,
760 };
761 
762 static enum page_references page_check_references(struct page *page,
763 						  struct scan_control *sc)
764 {
765 	int referenced_ptes, referenced_page;
766 	unsigned long vm_flags;
767 
768 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
769 					  &vm_flags);
770 	referenced_page = TestClearPageReferenced(page);
771 
772 	/*
773 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
774 	 * move the page to the unevictable list.
775 	 */
776 	if (vm_flags & VM_LOCKED)
777 		return PAGEREF_RECLAIM;
778 
779 	if (referenced_ptes) {
780 		if (PageSwapBacked(page))
781 			return PAGEREF_ACTIVATE;
782 		/*
783 		 * All mapped pages start out with page table
784 		 * references from the instantiating fault, so we need
785 		 * to look twice if a mapped file page is used more
786 		 * than once.
787 		 *
788 		 * Mark it and spare it for another trip around the
789 		 * inactive list.  Another page table reference will
790 		 * lead to its activation.
791 		 *
792 		 * Note: the mark is set for activated pages as well
793 		 * so that recently deactivated but used pages are
794 		 * quickly recovered.
795 		 */
796 		SetPageReferenced(page);
797 
798 		if (referenced_page || referenced_ptes > 1)
799 			return PAGEREF_ACTIVATE;
800 
801 		/*
802 		 * Activate file-backed executable pages after first usage.
803 		 */
804 		if (vm_flags & VM_EXEC)
805 			return PAGEREF_ACTIVATE;
806 
807 		return PAGEREF_KEEP;
808 	}
809 
810 	/* Reclaim if clean, defer dirty pages to writeback */
811 	if (referenced_page && !PageSwapBacked(page))
812 		return PAGEREF_RECLAIM_CLEAN;
813 
814 	return PAGEREF_RECLAIM;
815 }
816 
817 /* Check if a page is dirty or under writeback */
818 static void page_check_dirty_writeback(struct page *page,
819 				       bool *dirty, bool *writeback)
820 {
821 	struct address_space *mapping;
822 
823 	/*
824 	 * Anonymous pages are not handled by flushers and must be written
825 	 * from reclaim context. Do not stall reclaim based on them
826 	 */
827 	if (!page_is_file_cache(page)) {
828 		*dirty = false;
829 		*writeback = false;
830 		return;
831 	}
832 
833 	/* By default assume that the page flags are accurate */
834 	*dirty = PageDirty(page);
835 	*writeback = PageWriteback(page);
836 
837 	/* Verify dirty/writeback state if the filesystem supports it */
838 	if (!page_has_private(page))
839 		return;
840 
841 	mapping = page_mapping(page);
842 	if (mapping && mapping->a_ops->is_dirty_writeback)
843 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
844 }
845 
846 /*
847  * shrink_page_list() returns the number of reclaimed pages
848  */
849 static unsigned long shrink_page_list(struct list_head *page_list,
850 				      struct zone *zone,
851 				      struct scan_control *sc,
852 				      enum ttu_flags ttu_flags,
853 				      unsigned long *ret_nr_dirty,
854 				      unsigned long *ret_nr_unqueued_dirty,
855 				      unsigned long *ret_nr_congested,
856 				      unsigned long *ret_nr_writeback,
857 				      unsigned long *ret_nr_immediate,
858 				      bool force_reclaim)
859 {
860 	LIST_HEAD(ret_pages);
861 	LIST_HEAD(free_pages);
862 	int pgactivate = 0;
863 	unsigned long nr_unqueued_dirty = 0;
864 	unsigned long nr_dirty = 0;
865 	unsigned long nr_congested = 0;
866 	unsigned long nr_reclaimed = 0;
867 	unsigned long nr_writeback = 0;
868 	unsigned long nr_immediate = 0;
869 
870 	cond_resched();
871 
872 	while (!list_empty(page_list)) {
873 		struct address_space *mapping;
874 		struct page *page;
875 		int may_enter_fs;
876 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
877 		bool dirty, writeback;
878 
879 		cond_resched();
880 
881 		page = lru_to_page(page_list);
882 		list_del(&page->lru);
883 
884 		if (!trylock_page(page))
885 			goto keep;
886 
887 		VM_BUG_ON_PAGE(PageActive(page), page);
888 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
889 
890 		sc->nr_scanned++;
891 
892 		if (unlikely(!page_evictable(page)))
893 			goto cull_mlocked;
894 
895 		if (!sc->may_unmap && page_mapped(page))
896 			goto keep_locked;
897 
898 		/* Double the slab pressure for mapped and swapcache pages */
899 		if (page_mapped(page) || PageSwapCache(page))
900 			sc->nr_scanned++;
901 
902 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
903 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
904 
905 		/*
906 		 * The number of dirty pages determines if a zone is marked
907 		 * reclaim_congested which affects wait_iff_congested. kswapd
908 		 * will stall and start writing pages if the tail of the LRU
909 		 * is all dirty unqueued pages.
910 		 */
911 		page_check_dirty_writeback(page, &dirty, &writeback);
912 		if (dirty || writeback)
913 			nr_dirty++;
914 
915 		if (dirty && !writeback)
916 			nr_unqueued_dirty++;
917 
918 		/*
919 		 * Treat this page as congested if the underlying BDI is or if
920 		 * pages are cycling through the LRU so quickly that the
921 		 * pages marked for immediate reclaim are making it to the
922 		 * end of the LRU a second time.
923 		 */
924 		mapping = page_mapping(page);
925 		if (((dirty || writeback) && mapping &&
926 		     inode_write_congested(mapping->host)) ||
927 		    (writeback && PageReclaim(page)))
928 			nr_congested++;
929 
930 		/*
931 		 * If a page at the tail of the LRU is under writeback, there
932 		 * are three cases to consider.
933 		 *
934 		 * 1) If reclaim is encountering an excessive number of pages
935 		 *    under writeback and this page is both under writeback and
936 		 *    PageReclaim then it indicates that pages are being queued
937 		 *    for IO but are being recycled through the LRU before the
938 		 *    IO can complete. Waiting on the page itself risks an
939 		 *    indefinite stall if it is impossible to writeback the
940 		 *    page due to IO error or disconnected storage so instead
941 		 *    note that the LRU is being scanned too quickly and the
942 		 *    caller can stall after page list has been processed.
943 		 *
944 		 * 2) Global reclaim encounters a page, memcg encounters a
945 		 *    page that is not marked for immediate reclaim or
946 		 *    the caller does not have __GFP_IO. In this case mark
947 		 *    the page for immediate reclaim and continue scanning.
948 		 *
949 		 *    __GFP_IO is checked  because a loop driver thread might
950 		 *    enter reclaim, and deadlock if it waits on a page for
951 		 *    which it is needed to do the write (loop masks off
952 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
953 		 *    would probably show more reasons.
954 		 *
955 		 *    Don't require __GFP_FS, since we're not going into the
956 		 *    FS, just waiting on its writeback completion. Worryingly,
957 		 *    ext4 gfs2 and xfs allocate pages with
958 		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
959 		 *    may_enter_fs here is liable to OOM on them.
960 		 *
961 		 * 3) memcg encounters a page that is not already marked
962 		 *    PageReclaim. memcg does not have any dirty pages
963 		 *    throttling so we could easily OOM just because too many
964 		 *    pages are in writeback and there is nothing else to
965 		 *    reclaim. Wait for the writeback to complete.
966 		 */
967 		if (PageWriteback(page)) {
968 			/* Case 1 above */
969 			if (current_is_kswapd() &&
970 			    PageReclaim(page) &&
971 			    test_bit(ZONE_WRITEBACK, &zone->flags)) {
972 				nr_immediate++;
973 				goto keep_locked;
974 
975 			/* Case 2 above */
976 			} else if (global_reclaim(sc) ||
977 			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
978 				/*
979 				 * This is slightly racy - end_page_writeback()
980 				 * might have just cleared PageReclaim, then
981 				 * setting PageReclaim here end up interpreted
982 				 * as PageReadahead - but that does not matter
983 				 * enough to care.  What we do want is for this
984 				 * page to have PageReclaim set next time memcg
985 				 * reclaim reaches the tests above, so it will
986 				 * then wait_on_page_writeback() to avoid OOM;
987 				 * and it's also appropriate in global reclaim.
988 				 */
989 				SetPageReclaim(page);
990 				nr_writeback++;
991 
992 				goto keep_locked;
993 
994 			/* Case 3 above */
995 			} else {
996 				wait_on_page_writeback(page);
997 			}
998 		}
999 
1000 		if (!force_reclaim)
1001 			references = page_check_references(page, sc);
1002 
1003 		switch (references) {
1004 		case PAGEREF_ACTIVATE:
1005 			goto activate_locked;
1006 		case PAGEREF_KEEP:
1007 			goto keep_locked;
1008 		case PAGEREF_RECLAIM:
1009 		case PAGEREF_RECLAIM_CLEAN:
1010 			; /* try to reclaim the page below */
1011 		}
1012 
1013 		/*
1014 		 * Anonymous process memory has backing store?
1015 		 * Try to allocate it some swap space here.
1016 		 */
1017 		if (PageAnon(page) && !PageSwapCache(page)) {
1018 			if (!(sc->gfp_mask & __GFP_IO))
1019 				goto keep_locked;
1020 			if (!add_to_swap(page, page_list))
1021 				goto activate_locked;
1022 			may_enter_fs = 1;
1023 
1024 			/* Adding to swap updated mapping */
1025 			mapping = page_mapping(page);
1026 		}
1027 
1028 		/*
1029 		 * The page is mapped into the page tables of one or more
1030 		 * processes. Try to unmap it here.
1031 		 */
1032 		if (page_mapped(page) && mapping) {
1033 			switch (try_to_unmap(page, ttu_flags)) {
1034 			case SWAP_FAIL:
1035 				goto activate_locked;
1036 			case SWAP_AGAIN:
1037 				goto keep_locked;
1038 			case SWAP_MLOCK:
1039 				goto cull_mlocked;
1040 			case SWAP_SUCCESS:
1041 				; /* try to free the page below */
1042 			}
1043 		}
1044 
1045 		if (PageDirty(page)) {
1046 			/*
1047 			 * Only kswapd can writeback filesystem pages to
1048 			 * avoid risk of stack overflow but only writeback
1049 			 * if many dirty pages have been encountered.
1050 			 */
1051 			if (page_is_file_cache(page) &&
1052 					(!current_is_kswapd() ||
1053 					 !test_bit(ZONE_DIRTY, &zone->flags))) {
1054 				/*
1055 				 * Immediately reclaim when written back.
1056 				 * Similar in principal to deactivate_page()
1057 				 * except we already have the page isolated
1058 				 * and know it's dirty
1059 				 */
1060 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1061 				SetPageReclaim(page);
1062 
1063 				goto keep_locked;
1064 			}
1065 
1066 			if (references == PAGEREF_RECLAIM_CLEAN)
1067 				goto keep_locked;
1068 			if (!may_enter_fs)
1069 				goto keep_locked;
1070 			if (!sc->may_writepage)
1071 				goto keep_locked;
1072 
1073 			/* Page is dirty, try to write it out here */
1074 			switch (pageout(page, mapping, sc)) {
1075 			case PAGE_KEEP:
1076 				goto keep_locked;
1077 			case PAGE_ACTIVATE:
1078 				goto activate_locked;
1079 			case PAGE_SUCCESS:
1080 				if (PageWriteback(page))
1081 					goto keep;
1082 				if (PageDirty(page))
1083 					goto keep;
1084 
1085 				/*
1086 				 * A synchronous write - probably a ramdisk.  Go
1087 				 * ahead and try to reclaim the page.
1088 				 */
1089 				if (!trylock_page(page))
1090 					goto keep;
1091 				if (PageDirty(page) || PageWriteback(page))
1092 					goto keep_locked;
1093 				mapping = page_mapping(page);
1094 			case PAGE_CLEAN:
1095 				; /* try to free the page below */
1096 			}
1097 		}
1098 
1099 		/*
1100 		 * If the page has buffers, try to free the buffer mappings
1101 		 * associated with this page. If we succeed we try to free
1102 		 * the page as well.
1103 		 *
1104 		 * We do this even if the page is PageDirty().
1105 		 * try_to_release_page() does not perform I/O, but it is
1106 		 * possible for a page to have PageDirty set, but it is actually
1107 		 * clean (all its buffers are clean).  This happens if the
1108 		 * buffers were written out directly, with submit_bh(). ext3
1109 		 * will do this, as well as the blockdev mapping.
1110 		 * try_to_release_page() will discover that cleanness and will
1111 		 * drop the buffers and mark the page clean - it can be freed.
1112 		 *
1113 		 * Rarely, pages can have buffers and no ->mapping.  These are
1114 		 * the pages which were not successfully invalidated in
1115 		 * truncate_complete_page().  We try to drop those buffers here
1116 		 * and if that worked, and the page is no longer mapped into
1117 		 * process address space (page_count == 1) it can be freed.
1118 		 * Otherwise, leave the page on the LRU so it is swappable.
1119 		 */
1120 		if (page_has_private(page)) {
1121 			if (!try_to_release_page(page, sc->gfp_mask))
1122 				goto activate_locked;
1123 			if (!mapping && page_count(page) == 1) {
1124 				unlock_page(page);
1125 				if (put_page_testzero(page))
1126 					goto free_it;
1127 				else {
1128 					/*
1129 					 * rare race with speculative reference.
1130 					 * the speculative reference will free
1131 					 * this page shortly, so we may
1132 					 * increment nr_reclaimed here (and
1133 					 * leave it off the LRU).
1134 					 */
1135 					nr_reclaimed++;
1136 					continue;
1137 				}
1138 			}
1139 		}
1140 
1141 		if (!mapping || !__remove_mapping(mapping, page, true))
1142 			goto keep_locked;
1143 
1144 		/*
1145 		 * At this point, we have no other references and there is
1146 		 * no way to pick any more up (removed from LRU, removed
1147 		 * from pagecache). Can use non-atomic bitops now (and
1148 		 * we obviously don't have to worry about waking up a process
1149 		 * waiting on the page lock, because there are no references.
1150 		 */
1151 		__clear_page_locked(page);
1152 free_it:
1153 		nr_reclaimed++;
1154 
1155 		/*
1156 		 * Is there need to periodically free_page_list? It would
1157 		 * appear not as the counts should be low
1158 		 */
1159 		list_add(&page->lru, &free_pages);
1160 		continue;
1161 
1162 cull_mlocked:
1163 		if (PageSwapCache(page))
1164 			try_to_free_swap(page);
1165 		unlock_page(page);
1166 		putback_lru_page(page);
1167 		continue;
1168 
1169 activate_locked:
1170 		/* Not a candidate for swapping, so reclaim swap space. */
1171 		if (PageSwapCache(page) && vm_swap_full())
1172 			try_to_free_swap(page);
1173 		VM_BUG_ON_PAGE(PageActive(page), page);
1174 		SetPageActive(page);
1175 		pgactivate++;
1176 keep_locked:
1177 		unlock_page(page);
1178 keep:
1179 		list_add(&page->lru, &ret_pages);
1180 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1181 	}
1182 
1183 	mem_cgroup_uncharge_list(&free_pages);
1184 	free_hot_cold_page_list(&free_pages, true);
1185 
1186 	list_splice(&ret_pages, page_list);
1187 	count_vm_events(PGACTIVATE, pgactivate);
1188 
1189 	*ret_nr_dirty += nr_dirty;
1190 	*ret_nr_congested += nr_congested;
1191 	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1192 	*ret_nr_writeback += nr_writeback;
1193 	*ret_nr_immediate += nr_immediate;
1194 	return nr_reclaimed;
1195 }
1196 
1197 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1198 					    struct list_head *page_list)
1199 {
1200 	struct scan_control sc = {
1201 		.gfp_mask = GFP_KERNEL,
1202 		.priority = DEF_PRIORITY,
1203 		.may_unmap = 1,
1204 	};
1205 	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1206 	struct page *page, *next;
1207 	LIST_HEAD(clean_pages);
1208 
1209 	list_for_each_entry_safe(page, next, page_list, lru) {
1210 		if (page_is_file_cache(page) && !PageDirty(page) &&
1211 		    !isolated_balloon_page(page)) {
1212 			ClearPageActive(page);
1213 			list_move(&page->lru, &clean_pages);
1214 		}
1215 	}
1216 
1217 	ret = shrink_page_list(&clean_pages, zone, &sc,
1218 			TTU_UNMAP|TTU_IGNORE_ACCESS,
1219 			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1220 	list_splice(&clean_pages, page_list);
1221 	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1222 	return ret;
1223 }
1224 
1225 /*
1226  * Attempt to remove the specified page from its LRU.  Only take this page
1227  * if it is of the appropriate PageActive status.  Pages which are being
1228  * freed elsewhere are also ignored.
1229  *
1230  * page:	page to consider
1231  * mode:	one of the LRU isolation modes defined above
1232  *
1233  * returns 0 on success, -ve errno on failure.
1234  */
1235 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1236 {
1237 	int ret = -EINVAL;
1238 
1239 	/* Only take pages on the LRU. */
1240 	if (!PageLRU(page))
1241 		return ret;
1242 
1243 	/* Compaction should not handle unevictable pages but CMA can do so */
1244 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1245 		return ret;
1246 
1247 	ret = -EBUSY;
1248 
1249 	/*
1250 	 * To minimise LRU disruption, the caller can indicate that it only
1251 	 * wants to isolate pages it will be able to operate on without
1252 	 * blocking - clean pages for the most part.
1253 	 *
1254 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1255 	 * is used by reclaim when it is cannot write to backing storage
1256 	 *
1257 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1258 	 * that it is possible to migrate without blocking
1259 	 */
1260 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1261 		/* All the caller can do on PageWriteback is block */
1262 		if (PageWriteback(page))
1263 			return ret;
1264 
1265 		if (PageDirty(page)) {
1266 			struct address_space *mapping;
1267 
1268 			/* ISOLATE_CLEAN means only clean pages */
1269 			if (mode & ISOLATE_CLEAN)
1270 				return ret;
1271 
1272 			/*
1273 			 * Only pages without mappings or that have a
1274 			 * ->migratepage callback are possible to migrate
1275 			 * without blocking
1276 			 */
1277 			mapping = page_mapping(page);
1278 			if (mapping && !mapping->a_ops->migratepage)
1279 				return ret;
1280 		}
1281 	}
1282 
1283 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1284 		return ret;
1285 
1286 	if (likely(get_page_unless_zero(page))) {
1287 		/*
1288 		 * Be careful not to clear PageLRU until after we're
1289 		 * sure the page is not being freed elsewhere -- the
1290 		 * page release code relies on it.
1291 		 */
1292 		ClearPageLRU(page);
1293 		ret = 0;
1294 	}
1295 
1296 	return ret;
1297 }
1298 
1299 /*
1300  * zone->lru_lock is heavily contended.  Some of the functions that
1301  * shrink the lists perform better by taking out a batch of pages
1302  * and working on them outside the LRU lock.
1303  *
1304  * For pagecache intensive workloads, this function is the hottest
1305  * spot in the kernel (apart from copy_*_user functions).
1306  *
1307  * Appropriate locks must be held before calling this function.
1308  *
1309  * @nr_to_scan:	The number of pages to look through on the list.
1310  * @lruvec:	The LRU vector to pull pages from.
1311  * @dst:	The temp list to put pages on to.
1312  * @nr_scanned:	The number of pages that were scanned.
1313  * @sc:		The scan_control struct for this reclaim session
1314  * @mode:	One of the LRU isolation modes
1315  * @lru:	LRU list id for isolating
1316  *
1317  * returns how many pages were moved onto *@dst.
1318  */
1319 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1320 		struct lruvec *lruvec, struct list_head *dst,
1321 		unsigned long *nr_scanned, struct scan_control *sc,
1322 		isolate_mode_t mode, enum lru_list lru)
1323 {
1324 	struct list_head *src = &lruvec->lists[lru];
1325 	unsigned long nr_taken = 0;
1326 	unsigned long scan;
1327 
1328 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1329 		struct page *page;
1330 		int nr_pages;
1331 
1332 		page = lru_to_page(src);
1333 		prefetchw_prev_lru_page(page, src, flags);
1334 
1335 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1336 
1337 		switch (__isolate_lru_page(page, mode)) {
1338 		case 0:
1339 			nr_pages = hpage_nr_pages(page);
1340 			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1341 			list_move(&page->lru, dst);
1342 			nr_taken += nr_pages;
1343 			break;
1344 
1345 		case -EBUSY:
1346 			/* else it is being freed elsewhere */
1347 			list_move(&page->lru, src);
1348 			continue;
1349 
1350 		default:
1351 			BUG();
1352 		}
1353 	}
1354 
1355 	*nr_scanned = scan;
1356 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1357 				    nr_taken, mode, is_file_lru(lru));
1358 	return nr_taken;
1359 }
1360 
1361 /**
1362  * isolate_lru_page - tries to isolate a page from its LRU list
1363  * @page: page to isolate from its LRU list
1364  *
1365  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1366  * vmstat statistic corresponding to whatever LRU list the page was on.
1367  *
1368  * Returns 0 if the page was removed from an LRU list.
1369  * Returns -EBUSY if the page was not on an LRU list.
1370  *
1371  * The returned page will have PageLRU() cleared.  If it was found on
1372  * the active list, it will have PageActive set.  If it was found on
1373  * the unevictable list, it will have the PageUnevictable bit set. That flag
1374  * may need to be cleared by the caller before letting the page go.
1375  *
1376  * The vmstat statistic corresponding to the list on which the page was
1377  * found will be decremented.
1378  *
1379  * Restrictions:
1380  * (1) Must be called with an elevated refcount on the page. This is a
1381  *     fundamentnal difference from isolate_lru_pages (which is called
1382  *     without a stable reference).
1383  * (2) the lru_lock must not be held.
1384  * (3) interrupts must be enabled.
1385  */
1386 int isolate_lru_page(struct page *page)
1387 {
1388 	int ret = -EBUSY;
1389 
1390 	VM_BUG_ON_PAGE(!page_count(page), page);
1391 
1392 	if (PageLRU(page)) {
1393 		struct zone *zone = page_zone(page);
1394 		struct lruvec *lruvec;
1395 
1396 		spin_lock_irq(&zone->lru_lock);
1397 		lruvec = mem_cgroup_page_lruvec(page, zone);
1398 		if (PageLRU(page)) {
1399 			int lru = page_lru(page);
1400 			get_page(page);
1401 			ClearPageLRU(page);
1402 			del_page_from_lru_list(page, lruvec, lru);
1403 			ret = 0;
1404 		}
1405 		spin_unlock_irq(&zone->lru_lock);
1406 	}
1407 	return ret;
1408 }
1409 
1410 /*
1411  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1412  * then get resheduled. When there are massive number of tasks doing page
1413  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1414  * the LRU list will go small and be scanned faster than necessary, leading to
1415  * unnecessary swapping, thrashing and OOM.
1416  */
1417 static int too_many_isolated(struct zone *zone, int file,
1418 		struct scan_control *sc)
1419 {
1420 	unsigned long inactive, isolated;
1421 
1422 	if (current_is_kswapd())
1423 		return 0;
1424 
1425 	if (!global_reclaim(sc))
1426 		return 0;
1427 
1428 	if (file) {
1429 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1430 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1431 	} else {
1432 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1433 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1434 	}
1435 
1436 	/*
1437 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1438 	 * won't get blocked by normal direct-reclaimers, forming a circular
1439 	 * deadlock.
1440 	 */
1441 	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1442 		inactive >>= 3;
1443 
1444 	return isolated > inactive;
1445 }
1446 
1447 static noinline_for_stack void
1448 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1449 {
1450 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1451 	struct zone *zone = lruvec_zone(lruvec);
1452 	LIST_HEAD(pages_to_free);
1453 
1454 	/*
1455 	 * Put back any unfreeable pages.
1456 	 */
1457 	while (!list_empty(page_list)) {
1458 		struct page *page = lru_to_page(page_list);
1459 		int lru;
1460 
1461 		VM_BUG_ON_PAGE(PageLRU(page), page);
1462 		list_del(&page->lru);
1463 		if (unlikely(!page_evictable(page))) {
1464 			spin_unlock_irq(&zone->lru_lock);
1465 			putback_lru_page(page);
1466 			spin_lock_irq(&zone->lru_lock);
1467 			continue;
1468 		}
1469 
1470 		lruvec = mem_cgroup_page_lruvec(page, zone);
1471 
1472 		SetPageLRU(page);
1473 		lru = page_lru(page);
1474 		add_page_to_lru_list(page, lruvec, lru);
1475 
1476 		if (is_active_lru(lru)) {
1477 			int file = is_file_lru(lru);
1478 			int numpages = hpage_nr_pages(page);
1479 			reclaim_stat->recent_rotated[file] += numpages;
1480 		}
1481 		if (put_page_testzero(page)) {
1482 			__ClearPageLRU(page);
1483 			__ClearPageActive(page);
1484 			del_page_from_lru_list(page, lruvec, lru);
1485 
1486 			if (unlikely(PageCompound(page))) {
1487 				spin_unlock_irq(&zone->lru_lock);
1488 				mem_cgroup_uncharge(page);
1489 				(*get_compound_page_dtor(page))(page);
1490 				spin_lock_irq(&zone->lru_lock);
1491 			} else
1492 				list_add(&page->lru, &pages_to_free);
1493 		}
1494 	}
1495 
1496 	/*
1497 	 * To save our caller's stack, now use input list for pages to free.
1498 	 */
1499 	list_splice(&pages_to_free, page_list);
1500 }
1501 
1502 /*
1503  * If a kernel thread (such as nfsd for loop-back mounts) services
1504  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1505  * In that case we should only throttle if the backing device it is
1506  * writing to is congested.  In other cases it is safe to throttle.
1507  */
1508 static int current_may_throttle(void)
1509 {
1510 	return !(current->flags & PF_LESS_THROTTLE) ||
1511 		current->backing_dev_info == NULL ||
1512 		bdi_write_congested(current->backing_dev_info);
1513 }
1514 
1515 /*
1516  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1517  * of reclaimed pages
1518  */
1519 static noinline_for_stack unsigned long
1520 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1521 		     struct scan_control *sc, enum lru_list lru)
1522 {
1523 	LIST_HEAD(page_list);
1524 	unsigned long nr_scanned;
1525 	unsigned long nr_reclaimed = 0;
1526 	unsigned long nr_taken;
1527 	unsigned long nr_dirty = 0;
1528 	unsigned long nr_congested = 0;
1529 	unsigned long nr_unqueued_dirty = 0;
1530 	unsigned long nr_writeback = 0;
1531 	unsigned long nr_immediate = 0;
1532 	isolate_mode_t isolate_mode = 0;
1533 	int file = is_file_lru(lru);
1534 	struct zone *zone = lruvec_zone(lruvec);
1535 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1536 
1537 	while (unlikely(too_many_isolated(zone, file, sc))) {
1538 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1539 
1540 		/* We are about to die and free our memory. Return now. */
1541 		if (fatal_signal_pending(current))
1542 			return SWAP_CLUSTER_MAX;
1543 	}
1544 
1545 	lru_add_drain();
1546 
1547 	if (!sc->may_unmap)
1548 		isolate_mode |= ISOLATE_UNMAPPED;
1549 	if (!sc->may_writepage)
1550 		isolate_mode |= ISOLATE_CLEAN;
1551 
1552 	spin_lock_irq(&zone->lru_lock);
1553 
1554 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1555 				     &nr_scanned, sc, isolate_mode, lru);
1556 
1557 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1558 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1559 
1560 	if (global_reclaim(sc)) {
1561 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1562 		if (current_is_kswapd())
1563 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1564 		else
1565 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1566 	}
1567 	spin_unlock_irq(&zone->lru_lock);
1568 
1569 	if (nr_taken == 0)
1570 		return 0;
1571 
1572 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1573 				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1574 				&nr_writeback, &nr_immediate,
1575 				false);
1576 
1577 	spin_lock_irq(&zone->lru_lock);
1578 
1579 	reclaim_stat->recent_scanned[file] += nr_taken;
1580 
1581 	if (global_reclaim(sc)) {
1582 		if (current_is_kswapd())
1583 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1584 					       nr_reclaimed);
1585 		else
1586 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1587 					       nr_reclaimed);
1588 	}
1589 
1590 	putback_inactive_pages(lruvec, &page_list);
1591 
1592 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1593 
1594 	spin_unlock_irq(&zone->lru_lock);
1595 
1596 	mem_cgroup_uncharge_list(&page_list);
1597 	free_hot_cold_page_list(&page_list, true);
1598 
1599 	/*
1600 	 * If reclaim is isolating dirty pages under writeback, it implies
1601 	 * that the long-lived page allocation rate is exceeding the page
1602 	 * laundering rate. Either the global limits are not being effective
1603 	 * at throttling processes due to the page distribution throughout
1604 	 * zones or there is heavy usage of a slow backing device. The
1605 	 * only option is to throttle from reclaim context which is not ideal
1606 	 * as there is no guarantee the dirtying process is throttled in the
1607 	 * same way balance_dirty_pages() manages.
1608 	 *
1609 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1610 	 * of pages under pages flagged for immediate reclaim and stall if any
1611 	 * are encountered in the nr_immediate check below.
1612 	 */
1613 	if (nr_writeback && nr_writeback == nr_taken)
1614 		set_bit(ZONE_WRITEBACK, &zone->flags);
1615 
1616 	/*
1617 	 * memcg will stall in page writeback so only consider forcibly
1618 	 * stalling for global reclaim
1619 	 */
1620 	if (global_reclaim(sc)) {
1621 		/*
1622 		 * Tag a zone as congested if all the dirty pages scanned were
1623 		 * backed by a congested BDI and wait_iff_congested will stall.
1624 		 */
1625 		if (nr_dirty && nr_dirty == nr_congested)
1626 			set_bit(ZONE_CONGESTED, &zone->flags);
1627 
1628 		/*
1629 		 * If dirty pages are scanned that are not queued for IO, it
1630 		 * implies that flushers are not keeping up. In this case, flag
1631 		 * the zone ZONE_DIRTY and kswapd will start writing pages from
1632 		 * reclaim context.
1633 		 */
1634 		if (nr_unqueued_dirty == nr_taken)
1635 			set_bit(ZONE_DIRTY, &zone->flags);
1636 
1637 		/*
1638 		 * If kswapd scans pages marked marked for immediate
1639 		 * reclaim and under writeback (nr_immediate), it implies
1640 		 * that pages are cycling through the LRU faster than
1641 		 * they are written so also forcibly stall.
1642 		 */
1643 		if (nr_immediate && current_may_throttle())
1644 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1645 	}
1646 
1647 	/*
1648 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1649 	 * is congested. Allow kswapd to continue until it starts encountering
1650 	 * unqueued dirty pages or cycling through the LRU too quickly.
1651 	 */
1652 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1653 	    current_may_throttle())
1654 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1655 
1656 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1657 		zone_idx(zone),
1658 		nr_scanned, nr_reclaimed,
1659 		sc->priority,
1660 		trace_shrink_flags(file));
1661 	return nr_reclaimed;
1662 }
1663 
1664 /*
1665  * This moves pages from the active list to the inactive list.
1666  *
1667  * We move them the other way if the page is referenced by one or more
1668  * processes, from rmap.
1669  *
1670  * If the pages are mostly unmapped, the processing is fast and it is
1671  * appropriate to hold zone->lru_lock across the whole operation.  But if
1672  * the pages are mapped, the processing is slow (page_referenced()) so we
1673  * should drop zone->lru_lock around each page.  It's impossible to balance
1674  * this, so instead we remove the pages from the LRU while processing them.
1675  * It is safe to rely on PG_active against the non-LRU pages in here because
1676  * nobody will play with that bit on a non-LRU page.
1677  *
1678  * The downside is that we have to touch page->_count against each page.
1679  * But we had to alter page->flags anyway.
1680  */
1681 
1682 static void move_active_pages_to_lru(struct lruvec *lruvec,
1683 				     struct list_head *list,
1684 				     struct list_head *pages_to_free,
1685 				     enum lru_list lru)
1686 {
1687 	struct zone *zone = lruvec_zone(lruvec);
1688 	unsigned long pgmoved = 0;
1689 	struct page *page;
1690 	int nr_pages;
1691 
1692 	while (!list_empty(list)) {
1693 		page = lru_to_page(list);
1694 		lruvec = mem_cgroup_page_lruvec(page, zone);
1695 
1696 		VM_BUG_ON_PAGE(PageLRU(page), page);
1697 		SetPageLRU(page);
1698 
1699 		nr_pages = hpage_nr_pages(page);
1700 		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1701 		list_move(&page->lru, &lruvec->lists[lru]);
1702 		pgmoved += nr_pages;
1703 
1704 		if (put_page_testzero(page)) {
1705 			__ClearPageLRU(page);
1706 			__ClearPageActive(page);
1707 			del_page_from_lru_list(page, lruvec, lru);
1708 
1709 			if (unlikely(PageCompound(page))) {
1710 				spin_unlock_irq(&zone->lru_lock);
1711 				mem_cgroup_uncharge(page);
1712 				(*get_compound_page_dtor(page))(page);
1713 				spin_lock_irq(&zone->lru_lock);
1714 			} else
1715 				list_add(&page->lru, pages_to_free);
1716 		}
1717 	}
1718 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1719 	if (!is_active_lru(lru))
1720 		__count_vm_events(PGDEACTIVATE, pgmoved);
1721 }
1722 
1723 static void shrink_active_list(unsigned long nr_to_scan,
1724 			       struct lruvec *lruvec,
1725 			       struct scan_control *sc,
1726 			       enum lru_list lru)
1727 {
1728 	unsigned long nr_taken;
1729 	unsigned long nr_scanned;
1730 	unsigned long vm_flags;
1731 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1732 	LIST_HEAD(l_active);
1733 	LIST_HEAD(l_inactive);
1734 	struct page *page;
1735 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1736 	unsigned long nr_rotated = 0;
1737 	isolate_mode_t isolate_mode = 0;
1738 	int file = is_file_lru(lru);
1739 	struct zone *zone = lruvec_zone(lruvec);
1740 
1741 	lru_add_drain();
1742 
1743 	if (!sc->may_unmap)
1744 		isolate_mode |= ISOLATE_UNMAPPED;
1745 	if (!sc->may_writepage)
1746 		isolate_mode |= ISOLATE_CLEAN;
1747 
1748 	spin_lock_irq(&zone->lru_lock);
1749 
1750 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1751 				     &nr_scanned, sc, isolate_mode, lru);
1752 	if (global_reclaim(sc))
1753 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1754 
1755 	reclaim_stat->recent_scanned[file] += nr_taken;
1756 
1757 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1758 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1759 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1760 	spin_unlock_irq(&zone->lru_lock);
1761 
1762 	while (!list_empty(&l_hold)) {
1763 		cond_resched();
1764 		page = lru_to_page(&l_hold);
1765 		list_del(&page->lru);
1766 
1767 		if (unlikely(!page_evictable(page))) {
1768 			putback_lru_page(page);
1769 			continue;
1770 		}
1771 
1772 		if (unlikely(buffer_heads_over_limit)) {
1773 			if (page_has_private(page) && trylock_page(page)) {
1774 				if (page_has_private(page))
1775 					try_to_release_page(page, 0);
1776 				unlock_page(page);
1777 			}
1778 		}
1779 
1780 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1781 				    &vm_flags)) {
1782 			nr_rotated += hpage_nr_pages(page);
1783 			/*
1784 			 * Identify referenced, file-backed active pages and
1785 			 * give them one more trip around the active list. So
1786 			 * that executable code get better chances to stay in
1787 			 * memory under moderate memory pressure.  Anon pages
1788 			 * are not likely to be evicted by use-once streaming
1789 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1790 			 * so we ignore them here.
1791 			 */
1792 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1793 				list_add(&page->lru, &l_active);
1794 				continue;
1795 			}
1796 		}
1797 
1798 		ClearPageActive(page);	/* we are de-activating */
1799 		list_add(&page->lru, &l_inactive);
1800 	}
1801 
1802 	/*
1803 	 * Move pages back to the lru list.
1804 	 */
1805 	spin_lock_irq(&zone->lru_lock);
1806 	/*
1807 	 * Count referenced pages from currently used mappings as rotated,
1808 	 * even though only some of them are actually re-activated.  This
1809 	 * helps balance scan pressure between file and anonymous pages in
1810 	 * get_scan_count.
1811 	 */
1812 	reclaim_stat->recent_rotated[file] += nr_rotated;
1813 
1814 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1815 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1816 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1817 	spin_unlock_irq(&zone->lru_lock);
1818 
1819 	mem_cgroup_uncharge_list(&l_hold);
1820 	free_hot_cold_page_list(&l_hold, true);
1821 }
1822 
1823 #ifdef CONFIG_SWAP
1824 static int inactive_anon_is_low_global(struct zone *zone)
1825 {
1826 	unsigned long active, inactive;
1827 
1828 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1829 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1830 
1831 	if (inactive * zone->inactive_ratio < active)
1832 		return 1;
1833 
1834 	return 0;
1835 }
1836 
1837 /**
1838  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1839  * @lruvec: LRU vector to check
1840  *
1841  * Returns true if the zone does not have enough inactive anon pages,
1842  * meaning some active anon pages need to be deactivated.
1843  */
1844 static int inactive_anon_is_low(struct lruvec *lruvec)
1845 {
1846 	/*
1847 	 * If we don't have swap space, anonymous page deactivation
1848 	 * is pointless.
1849 	 */
1850 	if (!total_swap_pages)
1851 		return 0;
1852 
1853 	if (!mem_cgroup_disabled())
1854 		return mem_cgroup_inactive_anon_is_low(lruvec);
1855 
1856 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1857 }
1858 #else
1859 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1860 {
1861 	return 0;
1862 }
1863 #endif
1864 
1865 /**
1866  * inactive_file_is_low - check if file pages need to be deactivated
1867  * @lruvec: LRU vector to check
1868  *
1869  * When the system is doing streaming IO, memory pressure here
1870  * ensures that active file pages get deactivated, until more
1871  * than half of the file pages are on the inactive list.
1872  *
1873  * Once we get to that situation, protect the system's working
1874  * set from being evicted by disabling active file page aging.
1875  *
1876  * This uses a different ratio than the anonymous pages, because
1877  * the page cache uses a use-once replacement algorithm.
1878  */
1879 static int inactive_file_is_low(struct lruvec *lruvec)
1880 {
1881 	unsigned long inactive;
1882 	unsigned long active;
1883 
1884 	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1885 	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1886 
1887 	return active > inactive;
1888 }
1889 
1890 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1891 {
1892 	if (is_file_lru(lru))
1893 		return inactive_file_is_low(lruvec);
1894 	else
1895 		return inactive_anon_is_low(lruvec);
1896 }
1897 
1898 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1899 				 struct lruvec *lruvec, struct scan_control *sc)
1900 {
1901 	if (is_active_lru(lru)) {
1902 		if (inactive_list_is_low(lruvec, lru))
1903 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1904 		return 0;
1905 	}
1906 
1907 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1908 }
1909 
1910 enum scan_balance {
1911 	SCAN_EQUAL,
1912 	SCAN_FRACT,
1913 	SCAN_ANON,
1914 	SCAN_FILE,
1915 };
1916 
1917 /*
1918  * Determine how aggressively the anon and file LRU lists should be
1919  * scanned.  The relative value of each set of LRU lists is determined
1920  * by looking at the fraction of the pages scanned we did rotate back
1921  * onto the active list instead of evict.
1922  *
1923  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1924  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1925  */
1926 static void get_scan_count(struct lruvec *lruvec, int swappiness,
1927 			   struct scan_control *sc, unsigned long *nr,
1928 			   unsigned long *lru_pages)
1929 {
1930 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1931 	u64 fraction[2];
1932 	u64 denominator = 0;	/* gcc */
1933 	struct zone *zone = lruvec_zone(lruvec);
1934 	unsigned long anon_prio, file_prio;
1935 	enum scan_balance scan_balance;
1936 	unsigned long anon, file;
1937 	bool force_scan = false;
1938 	unsigned long ap, fp;
1939 	enum lru_list lru;
1940 	bool some_scanned;
1941 	int pass;
1942 
1943 	/*
1944 	 * If the zone or memcg is small, nr[l] can be 0.  This
1945 	 * results in no scanning on this priority and a potential
1946 	 * priority drop.  Global direct reclaim can go to the next
1947 	 * zone and tends to have no problems. Global kswapd is for
1948 	 * zone balancing and it needs to scan a minimum amount. When
1949 	 * reclaiming for a memcg, a priority drop can cause high
1950 	 * latencies, so it's better to scan a minimum amount there as
1951 	 * well.
1952 	 */
1953 	if (current_is_kswapd()) {
1954 		if (!zone_reclaimable(zone))
1955 			force_scan = true;
1956 		if (!mem_cgroup_lruvec_online(lruvec))
1957 			force_scan = true;
1958 	}
1959 	if (!global_reclaim(sc))
1960 		force_scan = true;
1961 
1962 	/* If we have no swap space, do not bother scanning anon pages. */
1963 	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1964 		scan_balance = SCAN_FILE;
1965 		goto out;
1966 	}
1967 
1968 	/*
1969 	 * Global reclaim will swap to prevent OOM even with no
1970 	 * swappiness, but memcg users want to use this knob to
1971 	 * disable swapping for individual groups completely when
1972 	 * using the memory controller's swap limit feature would be
1973 	 * too expensive.
1974 	 */
1975 	if (!global_reclaim(sc) && !swappiness) {
1976 		scan_balance = SCAN_FILE;
1977 		goto out;
1978 	}
1979 
1980 	/*
1981 	 * Do not apply any pressure balancing cleverness when the
1982 	 * system is close to OOM, scan both anon and file equally
1983 	 * (unless the swappiness setting disagrees with swapping).
1984 	 */
1985 	if (!sc->priority && swappiness) {
1986 		scan_balance = SCAN_EQUAL;
1987 		goto out;
1988 	}
1989 
1990 	/*
1991 	 * Prevent the reclaimer from falling into the cache trap: as
1992 	 * cache pages start out inactive, every cache fault will tip
1993 	 * the scan balance towards the file LRU.  And as the file LRU
1994 	 * shrinks, so does the window for rotation from references.
1995 	 * This means we have a runaway feedback loop where a tiny
1996 	 * thrashing file LRU becomes infinitely more attractive than
1997 	 * anon pages.  Try to detect this based on file LRU size.
1998 	 */
1999 	if (global_reclaim(sc)) {
2000 		unsigned long zonefile;
2001 		unsigned long zonefree;
2002 
2003 		zonefree = zone_page_state(zone, NR_FREE_PAGES);
2004 		zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2005 			   zone_page_state(zone, NR_INACTIVE_FILE);
2006 
2007 		if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2008 			scan_balance = SCAN_ANON;
2009 			goto out;
2010 		}
2011 	}
2012 
2013 	/*
2014 	 * There is enough inactive page cache, do not reclaim
2015 	 * anything from the anonymous working set right now.
2016 	 */
2017 	if (!inactive_file_is_low(lruvec)) {
2018 		scan_balance = SCAN_FILE;
2019 		goto out;
2020 	}
2021 
2022 	scan_balance = SCAN_FRACT;
2023 
2024 	/*
2025 	 * With swappiness at 100, anonymous and file have the same priority.
2026 	 * This scanning priority is essentially the inverse of IO cost.
2027 	 */
2028 	anon_prio = swappiness;
2029 	file_prio = 200 - anon_prio;
2030 
2031 	/*
2032 	 * OK, so we have swap space and a fair amount of page cache
2033 	 * pages.  We use the recently rotated / recently scanned
2034 	 * ratios to determine how valuable each cache is.
2035 	 *
2036 	 * Because workloads change over time (and to avoid overflow)
2037 	 * we keep these statistics as a floating average, which ends
2038 	 * up weighing recent references more than old ones.
2039 	 *
2040 	 * anon in [0], file in [1]
2041 	 */
2042 
2043 	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2044 		get_lru_size(lruvec, LRU_INACTIVE_ANON);
2045 	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2046 		get_lru_size(lruvec, LRU_INACTIVE_FILE);
2047 
2048 	spin_lock_irq(&zone->lru_lock);
2049 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2050 		reclaim_stat->recent_scanned[0] /= 2;
2051 		reclaim_stat->recent_rotated[0] /= 2;
2052 	}
2053 
2054 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2055 		reclaim_stat->recent_scanned[1] /= 2;
2056 		reclaim_stat->recent_rotated[1] /= 2;
2057 	}
2058 
2059 	/*
2060 	 * The amount of pressure on anon vs file pages is inversely
2061 	 * proportional to the fraction of recently scanned pages on
2062 	 * each list that were recently referenced and in active use.
2063 	 */
2064 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2065 	ap /= reclaim_stat->recent_rotated[0] + 1;
2066 
2067 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2068 	fp /= reclaim_stat->recent_rotated[1] + 1;
2069 	spin_unlock_irq(&zone->lru_lock);
2070 
2071 	fraction[0] = ap;
2072 	fraction[1] = fp;
2073 	denominator = ap + fp + 1;
2074 out:
2075 	some_scanned = false;
2076 	/* Only use force_scan on second pass. */
2077 	for (pass = 0; !some_scanned && pass < 2; pass++) {
2078 		*lru_pages = 0;
2079 		for_each_evictable_lru(lru) {
2080 			int file = is_file_lru(lru);
2081 			unsigned long size;
2082 			unsigned long scan;
2083 
2084 			size = get_lru_size(lruvec, lru);
2085 			scan = size >> sc->priority;
2086 
2087 			if (!scan && pass && force_scan)
2088 				scan = min(size, SWAP_CLUSTER_MAX);
2089 
2090 			switch (scan_balance) {
2091 			case SCAN_EQUAL:
2092 				/* Scan lists relative to size */
2093 				break;
2094 			case SCAN_FRACT:
2095 				/*
2096 				 * Scan types proportional to swappiness and
2097 				 * their relative recent reclaim efficiency.
2098 				 */
2099 				scan = div64_u64(scan * fraction[file],
2100 							denominator);
2101 				break;
2102 			case SCAN_FILE:
2103 			case SCAN_ANON:
2104 				/* Scan one type exclusively */
2105 				if ((scan_balance == SCAN_FILE) != file) {
2106 					size = 0;
2107 					scan = 0;
2108 				}
2109 				break;
2110 			default:
2111 				/* Look ma, no brain */
2112 				BUG();
2113 			}
2114 
2115 			*lru_pages += size;
2116 			nr[lru] = scan;
2117 
2118 			/*
2119 			 * Skip the second pass and don't force_scan,
2120 			 * if we found something to scan.
2121 			 */
2122 			some_scanned |= !!scan;
2123 		}
2124 	}
2125 }
2126 
2127 /*
2128  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2129  */
2130 static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2131 			  struct scan_control *sc, unsigned long *lru_pages)
2132 {
2133 	unsigned long nr[NR_LRU_LISTS];
2134 	unsigned long targets[NR_LRU_LISTS];
2135 	unsigned long nr_to_scan;
2136 	enum lru_list lru;
2137 	unsigned long nr_reclaimed = 0;
2138 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2139 	struct blk_plug plug;
2140 	bool scan_adjusted;
2141 
2142 	get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
2143 
2144 	/* Record the original scan target for proportional adjustments later */
2145 	memcpy(targets, nr, sizeof(nr));
2146 
2147 	/*
2148 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2149 	 * event that can occur when there is little memory pressure e.g.
2150 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2151 	 * when the requested number of pages are reclaimed when scanning at
2152 	 * DEF_PRIORITY on the assumption that the fact we are direct
2153 	 * reclaiming implies that kswapd is not keeping up and it is best to
2154 	 * do a batch of work at once. For memcg reclaim one check is made to
2155 	 * abort proportional reclaim if either the file or anon lru has already
2156 	 * dropped to zero at the first pass.
2157 	 */
2158 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2159 			 sc->priority == DEF_PRIORITY);
2160 
2161 	blk_start_plug(&plug);
2162 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2163 					nr[LRU_INACTIVE_FILE]) {
2164 		unsigned long nr_anon, nr_file, percentage;
2165 		unsigned long nr_scanned;
2166 
2167 		for_each_evictable_lru(lru) {
2168 			if (nr[lru]) {
2169 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2170 				nr[lru] -= nr_to_scan;
2171 
2172 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2173 							    lruvec, sc);
2174 			}
2175 		}
2176 
2177 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2178 			continue;
2179 
2180 		/*
2181 		 * For kswapd and memcg, reclaim at least the number of pages
2182 		 * requested. Ensure that the anon and file LRUs are scanned
2183 		 * proportionally what was requested by get_scan_count(). We
2184 		 * stop reclaiming one LRU and reduce the amount scanning
2185 		 * proportional to the original scan target.
2186 		 */
2187 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2188 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2189 
2190 		/*
2191 		 * It's just vindictive to attack the larger once the smaller
2192 		 * has gone to zero.  And given the way we stop scanning the
2193 		 * smaller below, this makes sure that we only make one nudge
2194 		 * towards proportionality once we've got nr_to_reclaim.
2195 		 */
2196 		if (!nr_file || !nr_anon)
2197 			break;
2198 
2199 		if (nr_file > nr_anon) {
2200 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2201 						targets[LRU_ACTIVE_ANON] + 1;
2202 			lru = LRU_BASE;
2203 			percentage = nr_anon * 100 / scan_target;
2204 		} else {
2205 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2206 						targets[LRU_ACTIVE_FILE] + 1;
2207 			lru = LRU_FILE;
2208 			percentage = nr_file * 100 / scan_target;
2209 		}
2210 
2211 		/* Stop scanning the smaller of the LRU */
2212 		nr[lru] = 0;
2213 		nr[lru + LRU_ACTIVE] = 0;
2214 
2215 		/*
2216 		 * Recalculate the other LRU scan count based on its original
2217 		 * scan target and the percentage scanning already complete
2218 		 */
2219 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2220 		nr_scanned = targets[lru] - nr[lru];
2221 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2222 		nr[lru] -= min(nr[lru], nr_scanned);
2223 
2224 		lru += LRU_ACTIVE;
2225 		nr_scanned = targets[lru] - nr[lru];
2226 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2227 		nr[lru] -= min(nr[lru], nr_scanned);
2228 
2229 		scan_adjusted = true;
2230 	}
2231 	blk_finish_plug(&plug);
2232 	sc->nr_reclaimed += nr_reclaimed;
2233 
2234 	/*
2235 	 * Even if we did not try to evict anon pages at all, we want to
2236 	 * rebalance the anon lru active/inactive ratio.
2237 	 */
2238 	if (inactive_anon_is_low(lruvec))
2239 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2240 				   sc, LRU_ACTIVE_ANON);
2241 
2242 	throttle_vm_writeout(sc->gfp_mask);
2243 }
2244 
2245 /* Use reclaim/compaction for costly allocs or under memory pressure */
2246 static bool in_reclaim_compaction(struct scan_control *sc)
2247 {
2248 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2249 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2250 			 sc->priority < DEF_PRIORITY - 2))
2251 		return true;
2252 
2253 	return false;
2254 }
2255 
2256 /*
2257  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2258  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2259  * true if more pages should be reclaimed such that when the page allocator
2260  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2261  * It will give up earlier than that if there is difficulty reclaiming pages.
2262  */
2263 static inline bool should_continue_reclaim(struct zone *zone,
2264 					unsigned long nr_reclaimed,
2265 					unsigned long nr_scanned,
2266 					struct scan_control *sc)
2267 {
2268 	unsigned long pages_for_compaction;
2269 	unsigned long inactive_lru_pages;
2270 
2271 	/* If not in reclaim/compaction mode, stop */
2272 	if (!in_reclaim_compaction(sc))
2273 		return false;
2274 
2275 	/* Consider stopping depending on scan and reclaim activity */
2276 	if (sc->gfp_mask & __GFP_REPEAT) {
2277 		/*
2278 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2279 		 * full LRU list has been scanned and we are still failing
2280 		 * to reclaim pages. This full LRU scan is potentially
2281 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2282 		 */
2283 		if (!nr_reclaimed && !nr_scanned)
2284 			return false;
2285 	} else {
2286 		/*
2287 		 * For non-__GFP_REPEAT allocations which can presumably
2288 		 * fail without consequence, stop if we failed to reclaim
2289 		 * any pages from the last SWAP_CLUSTER_MAX number of
2290 		 * pages that were scanned. This will return to the
2291 		 * caller faster at the risk reclaim/compaction and
2292 		 * the resulting allocation attempt fails
2293 		 */
2294 		if (!nr_reclaimed)
2295 			return false;
2296 	}
2297 
2298 	/*
2299 	 * If we have not reclaimed enough pages for compaction and the
2300 	 * inactive lists are large enough, continue reclaiming
2301 	 */
2302 	pages_for_compaction = (2UL << sc->order);
2303 	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2304 	if (get_nr_swap_pages() > 0)
2305 		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2306 	if (sc->nr_reclaimed < pages_for_compaction &&
2307 			inactive_lru_pages > pages_for_compaction)
2308 		return true;
2309 
2310 	/* If compaction would go ahead or the allocation would succeed, stop */
2311 	switch (compaction_suitable(zone, sc->order, 0, 0)) {
2312 	case COMPACT_PARTIAL:
2313 	case COMPACT_CONTINUE:
2314 		return false;
2315 	default:
2316 		return true;
2317 	}
2318 }
2319 
2320 static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2321 			bool is_classzone)
2322 {
2323 	struct reclaim_state *reclaim_state = current->reclaim_state;
2324 	unsigned long nr_reclaimed, nr_scanned;
2325 	bool reclaimable = false;
2326 
2327 	do {
2328 		struct mem_cgroup *root = sc->target_mem_cgroup;
2329 		struct mem_cgroup_reclaim_cookie reclaim = {
2330 			.zone = zone,
2331 			.priority = sc->priority,
2332 		};
2333 		unsigned long zone_lru_pages = 0;
2334 		struct mem_cgroup *memcg;
2335 
2336 		nr_reclaimed = sc->nr_reclaimed;
2337 		nr_scanned = sc->nr_scanned;
2338 
2339 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2340 		do {
2341 			unsigned long lru_pages;
2342 			unsigned long scanned;
2343 			struct lruvec *lruvec;
2344 			int swappiness;
2345 
2346 			if (mem_cgroup_low(root, memcg)) {
2347 				if (!sc->may_thrash)
2348 					continue;
2349 				mem_cgroup_events(memcg, MEMCG_LOW, 1);
2350 			}
2351 
2352 			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2353 			swappiness = mem_cgroup_swappiness(memcg);
2354 			scanned = sc->nr_scanned;
2355 
2356 			shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
2357 			zone_lru_pages += lru_pages;
2358 
2359 			if (memcg && is_classzone)
2360 				shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2361 					    memcg, sc->nr_scanned - scanned,
2362 					    lru_pages);
2363 
2364 			/*
2365 			 * Direct reclaim and kswapd have to scan all memory
2366 			 * cgroups to fulfill the overall scan target for the
2367 			 * zone.
2368 			 *
2369 			 * Limit reclaim, on the other hand, only cares about
2370 			 * nr_to_reclaim pages to be reclaimed and it will
2371 			 * retry with decreasing priority if one round over the
2372 			 * whole hierarchy is not sufficient.
2373 			 */
2374 			if (!global_reclaim(sc) &&
2375 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2376 				mem_cgroup_iter_break(root, memcg);
2377 				break;
2378 			}
2379 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2380 
2381 		/*
2382 		 * Shrink the slab caches in the same proportion that
2383 		 * the eligible LRU pages were scanned.
2384 		 */
2385 		if (global_reclaim(sc) && is_classzone)
2386 			shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2387 				    sc->nr_scanned - nr_scanned,
2388 				    zone_lru_pages);
2389 
2390 		if (reclaim_state) {
2391 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2392 			reclaim_state->reclaimed_slab = 0;
2393 		}
2394 
2395 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2396 			   sc->nr_scanned - nr_scanned,
2397 			   sc->nr_reclaimed - nr_reclaimed);
2398 
2399 		if (sc->nr_reclaimed - nr_reclaimed)
2400 			reclaimable = true;
2401 
2402 	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2403 					 sc->nr_scanned - nr_scanned, sc));
2404 
2405 	return reclaimable;
2406 }
2407 
2408 /*
2409  * Returns true if compaction should go ahead for a high-order request, or
2410  * the high-order allocation would succeed without compaction.
2411  */
2412 static inline bool compaction_ready(struct zone *zone, int order)
2413 {
2414 	unsigned long balance_gap, watermark;
2415 	bool watermark_ok;
2416 
2417 	/*
2418 	 * Compaction takes time to run and there are potentially other
2419 	 * callers using the pages just freed. Continue reclaiming until
2420 	 * there is a buffer of free pages available to give compaction
2421 	 * a reasonable chance of completing and allocating the page
2422 	 */
2423 	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2424 			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2425 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2426 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2427 
2428 	/*
2429 	 * If compaction is deferred, reclaim up to a point where
2430 	 * compaction will have a chance of success when re-enabled
2431 	 */
2432 	if (compaction_deferred(zone, order))
2433 		return watermark_ok;
2434 
2435 	/*
2436 	 * If compaction is not ready to start and allocation is not likely
2437 	 * to succeed without it, then keep reclaiming.
2438 	 */
2439 	if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2440 		return false;
2441 
2442 	return watermark_ok;
2443 }
2444 
2445 /*
2446  * This is the direct reclaim path, for page-allocating processes.  We only
2447  * try to reclaim pages from zones which will satisfy the caller's allocation
2448  * request.
2449  *
2450  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2451  * Because:
2452  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2453  *    allocation or
2454  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2455  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2456  *    zone defense algorithm.
2457  *
2458  * If a zone is deemed to be full of pinned pages then just give it a light
2459  * scan then give up on it.
2460  *
2461  * Returns true if a zone was reclaimable.
2462  */
2463 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2464 {
2465 	struct zoneref *z;
2466 	struct zone *zone;
2467 	unsigned long nr_soft_reclaimed;
2468 	unsigned long nr_soft_scanned;
2469 	gfp_t orig_mask;
2470 	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2471 	bool reclaimable = false;
2472 
2473 	/*
2474 	 * If the number of buffer_heads in the machine exceeds the maximum
2475 	 * allowed level, force direct reclaim to scan the highmem zone as
2476 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2477 	 */
2478 	orig_mask = sc->gfp_mask;
2479 	if (buffer_heads_over_limit)
2480 		sc->gfp_mask |= __GFP_HIGHMEM;
2481 
2482 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2483 					requested_highidx, sc->nodemask) {
2484 		enum zone_type classzone_idx;
2485 
2486 		if (!populated_zone(zone))
2487 			continue;
2488 
2489 		classzone_idx = requested_highidx;
2490 		while (!populated_zone(zone->zone_pgdat->node_zones +
2491 							classzone_idx))
2492 			classzone_idx--;
2493 
2494 		/*
2495 		 * Take care memory controller reclaiming has small influence
2496 		 * to global LRU.
2497 		 */
2498 		if (global_reclaim(sc)) {
2499 			if (!cpuset_zone_allowed(zone,
2500 						 GFP_KERNEL | __GFP_HARDWALL))
2501 				continue;
2502 
2503 			if (sc->priority != DEF_PRIORITY &&
2504 			    !zone_reclaimable(zone))
2505 				continue;	/* Let kswapd poll it */
2506 
2507 			/*
2508 			 * If we already have plenty of memory free for
2509 			 * compaction in this zone, don't free any more.
2510 			 * Even though compaction is invoked for any
2511 			 * non-zero order, only frequent costly order
2512 			 * reclamation is disruptive enough to become a
2513 			 * noticeable problem, like transparent huge
2514 			 * page allocations.
2515 			 */
2516 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2517 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2518 			    zonelist_zone_idx(z) <= requested_highidx &&
2519 			    compaction_ready(zone, sc->order)) {
2520 				sc->compaction_ready = true;
2521 				continue;
2522 			}
2523 
2524 			/*
2525 			 * This steals pages from memory cgroups over softlimit
2526 			 * and returns the number of reclaimed pages and
2527 			 * scanned pages. This works for global memory pressure
2528 			 * and balancing, not for a memcg's limit.
2529 			 */
2530 			nr_soft_scanned = 0;
2531 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2532 						sc->order, sc->gfp_mask,
2533 						&nr_soft_scanned);
2534 			sc->nr_reclaimed += nr_soft_reclaimed;
2535 			sc->nr_scanned += nr_soft_scanned;
2536 			if (nr_soft_reclaimed)
2537 				reclaimable = true;
2538 			/* need some check for avoid more shrink_zone() */
2539 		}
2540 
2541 		if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2542 			reclaimable = true;
2543 
2544 		if (global_reclaim(sc) &&
2545 		    !reclaimable && zone_reclaimable(zone))
2546 			reclaimable = true;
2547 	}
2548 
2549 	/*
2550 	 * Restore to original mask to avoid the impact on the caller if we
2551 	 * promoted it to __GFP_HIGHMEM.
2552 	 */
2553 	sc->gfp_mask = orig_mask;
2554 
2555 	return reclaimable;
2556 }
2557 
2558 /*
2559  * This is the main entry point to direct page reclaim.
2560  *
2561  * If a full scan of the inactive list fails to free enough memory then we
2562  * are "out of memory" and something needs to be killed.
2563  *
2564  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2565  * high - the zone may be full of dirty or under-writeback pages, which this
2566  * caller can't do much about.  We kick the writeback threads and take explicit
2567  * naps in the hope that some of these pages can be written.  But if the
2568  * allocating task holds filesystem locks which prevent writeout this might not
2569  * work, and the allocation attempt will fail.
2570  *
2571  * returns:	0, if no pages reclaimed
2572  * 		else, the number of pages reclaimed
2573  */
2574 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2575 					  struct scan_control *sc)
2576 {
2577 	int initial_priority = sc->priority;
2578 	unsigned long total_scanned = 0;
2579 	unsigned long writeback_threshold;
2580 	bool zones_reclaimable;
2581 retry:
2582 	delayacct_freepages_start();
2583 
2584 	if (global_reclaim(sc))
2585 		count_vm_event(ALLOCSTALL);
2586 
2587 	do {
2588 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2589 				sc->priority);
2590 		sc->nr_scanned = 0;
2591 		zones_reclaimable = shrink_zones(zonelist, sc);
2592 
2593 		total_scanned += sc->nr_scanned;
2594 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2595 			break;
2596 
2597 		if (sc->compaction_ready)
2598 			break;
2599 
2600 		/*
2601 		 * If we're getting trouble reclaiming, start doing
2602 		 * writepage even in laptop mode.
2603 		 */
2604 		if (sc->priority < DEF_PRIORITY - 2)
2605 			sc->may_writepage = 1;
2606 
2607 		/*
2608 		 * Try to write back as many pages as we just scanned.  This
2609 		 * tends to cause slow streaming writers to write data to the
2610 		 * disk smoothly, at the dirtying rate, which is nice.   But
2611 		 * that's undesirable in laptop mode, where we *want* lumpy
2612 		 * writeout.  So in laptop mode, write out the whole world.
2613 		 */
2614 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2615 		if (total_scanned > writeback_threshold) {
2616 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2617 						WB_REASON_TRY_TO_FREE_PAGES);
2618 			sc->may_writepage = 1;
2619 		}
2620 	} while (--sc->priority >= 0);
2621 
2622 	delayacct_freepages_end();
2623 
2624 	if (sc->nr_reclaimed)
2625 		return sc->nr_reclaimed;
2626 
2627 	/* Aborted reclaim to try compaction? don't OOM, then */
2628 	if (sc->compaction_ready)
2629 		return 1;
2630 
2631 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2632 	if (!sc->may_thrash) {
2633 		sc->priority = initial_priority;
2634 		sc->may_thrash = 1;
2635 		goto retry;
2636 	}
2637 
2638 	/* Any of the zones still reclaimable?  Don't OOM. */
2639 	if (zones_reclaimable)
2640 		return 1;
2641 
2642 	return 0;
2643 }
2644 
2645 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2646 {
2647 	struct zone *zone;
2648 	unsigned long pfmemalloc_reserve = 0;
2649 	unsigned long free_pages = 0;
2650 	int i;
2651 	bool wmark_ok;
2652 
2653 	for (i = 0; i <= ZONE_NORMAL; i++) {
2654 		zone = &pgdat->node_zones[i];
2655 		if (!populated_zone(zone))
2656 			continue;
2657 
2658 		pfmemalloc_reserve += min_wmark_pages(zone);
2659 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2660 	}
2661 
2662 	/* If there are no reserves (unexpected config) then do not throttle */
2663 	if (!pfmemalloc_reserve)
2664 		return true;
2665 
2666 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2667 
2668 	/* kswapd must be awake if processes are being throttled */
2669 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2670 		pgdat->classzone_idx = min(pgdat->classzone_idx,
2671 						(enum zone_type)ZONE_NORMAL);
2672 		wake_up_interruptible(&pgdat->kswapd_wait);
2673 	}
2674 
2675 	return wmark_ok;
2676 }
2677 
2678 /*
2679  * Throttle direct reclaimers if backing storage is backed by the network
2680  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2681  * depleted. kswapd will continue to make progress and wake the processes
2682  * when the low watermark is reached.
2683  *
2684  * Returns true if a fatal signal was delivered during throttling. If this
2685  * happens, the page allocator should not consider triggering the OOM killer.
2686  */
2687 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2688 					nodemask_t *nodemask)
2689 {
2690 	struct zoneref *z;
2691 	struct zone *zone;
2692 	pg_data_t *pgdat = NULL;
2693 
2694 	/*
2695 	 * Kernel threads should not be throttled as they may be indirectly
2696 	 * responsible for cleaning pages necessary for reclaim to make forward
2697 	 * progress. kjournald for example may enter direct reclaim while
2698 	 * committing a transaction where throttling it could forcing other
2699 	 * processes to block on log_wait_commit().
2700 	 */
2701 	if (current->flags & PF_KTHREAD)
2702 		goto out;
2703 
2704 	/*
2705 	 * If a fatal signal is pending, this process should not throttle.
2706 	 * It should return quickly so it can exit and free its memory
2707 	 */
2708 	if (fatal_signal_pending(current))
2709 		goto out;
2710 
2711 	/*
2712 	 * Check if the pfmemalloc reserves are ok by finding the first node
2713 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2714 	 * GFP_KERNEL will be required for allocating network buffers when
2715 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2716 	 *
2717 	 * Throttling is based on the first usable node and throttled processes
2718 	 * wait on a queue until kswapd makes progress and wakes them. There
2719 	 * is an affinity then between processes waking up and where reclaim
2720 	 * progress has been made assuming the process wakes on the same node.
2721 	 * More importantly, processes running on remote nodes will not compete
2722 	 * for remote pfmemalloc reserves and processes on different nodes
2723 	 * should make reasonable progress.
2724 	 */
2725 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2726 					gfp_zone(gfp_mask), nodemask) {
2727 		if (zone_idx(zone) > ZONE_NORMAL)
2728 			continue;
2729 
2730 		/* Throttle based on the first usable node */
2731 		pgdat = zone->zone_pgdat;
2732 		if (pfmemalloc_watermark_ok(pgdat))
2733 			goto out;
2734 		break;
2735 	}
2736 
2737 	/* If no zone was usable by the allocation flags then do not throttle */
2738 	if (!pgdat)
2739 		goto out;
2740 
2741 	/* Account for the throttling */
2742 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2743 
2744 	/*
2745 	 * If the caller cannot enter the filesystem, it's possible that it
2746 	 * is due to the caller holding an FS lock or performing a journal
2747 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2748 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2749 	 * blocked waiting on the same lock. Instead, throttle for up to a
2750 	 * second before continuing.
2751 	 */
2752 	if (!(gfp_mask & __GFP_FS)) {
2753 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2754 			pfmemalloc_watermark_ok(pgdat), HZ);
2755 
2756 		goto check_pending;
2757 	}
2758 
2759 	/* Throttle until kswapd wakes the process */
2760 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2761 		pfmemalloc_watermark_ok(pgdat));
2762 
2763 check_pending:
2764 	if (fatal_signal_pending(current))
2765 		return true;
2766 
2767 out:
2768 	return false;
2769 }
2770 
2771 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2772 				gfp_t gfp_mask, nodemask_t *nodemask)
2773 {
2774 	unsigned long nr_reclaimed;
2775 	struct scan_control sc = {
2776 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2777 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2778 		.order = order,
2779 		.nodemask = nodemask,
2780 		.priority = DEF_PRIORITY,
2781 		.may_writepage = !laptop_mode,
2782 		.may_unmap = 1,
2783 		.may_swap = 1,
2784 	};
2785 
2786 	/*
2787 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2788 	 * 1 is returned so that the page allocator does not OOM kill at this
2789 	 * point.
2790 	 */
2791 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2792 		return 1;
2793 
2794 	trace_mm_vmscan_direct_reclaim_begin(order,
2795 				sc.may_writepage,
2796 				gfp_mask);
2797 
2798 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2799 
2800 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2801 
2802 	return nr_reclaimed;
2803 }
2804 
2805 #ifdef CONFIG_MEMCG
2806 
2807 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2808 						gfp_t gfp_mask, bool noswap,
2809 						struct zone *zone,
2810 						unsigned long *nr_scanned)
2811 {
2812 	struct scan_control sc = {
2813 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2814 		.target_mem_cgroup = memcg,
2815 		.may_writepage = !laptop_mode,
2816 		.may_unmap = 1,
2817 		.may_swap = !noswap,
2818 	};
2819 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2820 	int swappiness = mem_cgroup_swappiness(memcg);
2821 	unsigned long lru_pages;
2822 
2823 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2824 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2825 
2826 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2827 						      sc.may_writepage,
2828 						      sc.gfp_mask);
2829 
2830 	/*
2831 	 * NOTE: Although we can get the priority field, using it
2832 	 * here is not a good idea, since it limits the pages we can scan.
2833 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2834 	 * will pick up pages from other mem cgroup's as well. We hack
2835 	 * the priority and make it zero.
2836 	 */
2837 	shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
2838 
2839 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2840 
2841 	*nr_scanned = sc.nr_scanned;
2842 	return sc.nr_reclaimed;
2843 }
2844 
2845 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2846 					   unsigned long nr_pages,
2847 					   gfp_t gfp_mask,
2848 					   bool may_swap)
2849 {
2850 	struct zonelist *zonelist;
2851 	unsigned long nr_reclaimed;
2852 	int nid;
2853 	struct scan_control sc = {
2854 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2855 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2856 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2857 		.target_mem_cgroup = memcg,
2858 		.priority = DEF_PRIORITY,
2859 		.may_writepage = !laptop_mode,
2860 		.may_unmap = 1,
2861 		.may_swap = may_swap,
2862 	};
2863 
2864 	/*
2865 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2866 	 * take care of from where we get pages. So the node where we start the
2867 	 * scan does not need to be the current node.
2868 	 */
2869 	nid = mem_cgroup_select_victim_node(memcg);
2870 
2871 	zonelist = NODE_DATA(nid)->node_zonelists;
2872 
2873 	trace_mm_vmscan_memcg_reclaim_begin(0,
2874 					    sc.may_writepage,
2875 					    sc.gfp_mask);
2876 
2877 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2878 
2879 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2880 
2881 	return nr_reclaimed;
2882 }
2883 #endif
2884 
2885 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2886 {
2887 	struct mem_cgroup *memcg;
2888 
2889 	if (!total_swap_pages)
2890 		return;
2891 
2892 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2893 	do {
2894 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2895 
2896 		if (inactive_anon_is_low(lruvec))
2897 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2898 					   sc, LRU_ACTIVE_ANON);
2899 
2900 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2901 	} while (memcg);
2902 }
2903 
2904 static bool zone_balanced(struct zone *zone, int order,
2905 			  unsigned long balance_gap, int classzone_idx)
2906 {
2907 	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2908 				    balance_gap, classzone_idx, 0))
2909 		return false;
2910 
2911 	if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2912 				order, 0, classzone_idx) == COMPACT_SKIPPED)
2913 		return false;
2914 
2915 	return true;
2916 }
2917 
2918 /*
2919  * pgdat_balanced() is used when checking if a node is balanced.
2920  *
2921  * For order-0, all zones must be balanced!
2922  *
2923  * For high-order allocations only zones that meet watermarks and are in a
2924  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2925  * total of balanced pages must be at least 25% of the zones allowed by
2926  * classzone_idx for the node to be considered balanced. Forcing all zones to
2927  * be balanced for high orders can cause excessive reclaim when there are
2928  * imbalanced zones.
2929  * The choice of 25% is due to
2930  *   o a 16M DMA zone that is balanced will not balance a zone on any
2931  *     reasonable sized machine
2932  *   o On all other machines, the top zone must be at least a reasonable
2933  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2934  *     would need to be at least 256M for it to be balance a whole node.
2935  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2936  *     to balance a node on its own. These seemed like reasonable ratios.
2937  */
2938 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2939 {
2940 	unsigned long managed_pages = 0;
2941 	unsigned long balanced_pages = 0;
2942 	int i;
2943 
2944 	/* Check the watermark levels */
2945 	for (i = 0; i <= classzone_idx; i++) {
2946 		struct zone *zone = pgdat->node_zones + i;
2947 
2948 		if (!populated_zone(zone))
2949 			continue;
2950 
2951 		managed_pages += zone->managed_pages;
2952 
2953 		/*
2954 		 * A special case here:
2955 		 *
2956 		 * balance_pgdat() skips over all_unreclaimable after
2957 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2958 		 * they must be considered balanced here as well!
2959 		 */
2960 		if (!zone_reclaimable(zone)) {
2961 			balanced_pages += zone->managed_pages;
2962 			continue;
2963 		}
2964 
2965 		if (zone_balanced(zone, order, 0, i))
2966 			balanced_pages += zone->managed_pages;
2967 		else if (!order)
2968 			return false;
2969 	}
2970 
2971 	if (order)
2972 		return balanced_pages >= (managed_pages >> 2);
2973 	else
2974 		return true;
2975 }
2976 
2977 /*
2978  * Prepare kswapd for sleeping. This verifies that there are no processes
2979  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2980  *
2981  * Returns true if kswapd is ready to sleep
2982  */
2983 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2984 					int classzone_idx)
2985 {
2986 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2987 	if (remaining)
2988 		return false;
2989 
2990 	/*
2991 	 * The throttled processes are normally woken up in balance_pgdat() as
2992 	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
2993 	 * race between when kswapd checks the watermarks and a process gets
2994 	 * throttled. There is also a potential race if processes get
2995 	 * throttled, kswapd wakes, a large process exits thereby balancing the
2996 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
2997 	 * the wake up checks. If kswapd is going to sleep, no process should
2998 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
2999 	 * the wake up is premature, processes will wake kswapd and get
3000 	 * throttled again. The difference from wake ups in balance_pgdat() is
3001 	 * that here we are under prepare_to_wait().
3002 	 */
3003 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3004 		wake_up_all(&pgdat->pfmemalloc_wait);
3005 
3006 	return pgdat_balanced(pgdat, order, classzone_idx);
3007 }
3008 
3009 /*
3010  * kswapd shrinks the zone by the number of pages required to reach
3011  * the high watermark.
3012  *
3013  * Returns true if kswapd scanned at least the requested number of pages to
3014  * reclaim or if the lack of progress was due to pages under writeback.
3015  * This is used to determine if the scanning priority needs to be raised.
3016  */
3017 static bool kswapd_shrink_zone(struct zone *zone,
3018 			       int classzone_idx,
3019 			       struct scan_control *sc,
3020 			       unsigned long *nr_attempted)
3021 {
3022 	int testorder = sc->order;
3023 	unsigned long balance_gap;
3024 	bool lowmem_pressure;
3025 
3026 	/* Reclaim above the high watermark. */
3027 	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3028 
3029 	/*
3030 	 * Kswapd reclaims only single pages with compaction enabled. Trying
3031 	 * too hard to reclaim until contiguous free pages have become
3032 	 * available can hurt performance by evicting too much useful data
3033 	 * from memory. Do not reclaim more than needed for compaction.
3034 	 */
3035 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3036 			compaction_suitable(zone, sc->order, 0, classzone_idx)
3037 							!= COMPACT_SKIPPED)
3038 		testorder = 0;
3039 
3040 	/*
3041 	 * We put equal pressure on every zone, unless one zone has way too
3042 	 * many pages free already. The "too many pages" is defined as the
3043 	 * high wmark plus a "gap" where the gap is either the low
3044 	 * watermark or 1% of the zone, whichever is smaller.
3045 	 */
3046 	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3047 			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3048 
3049 	/*
3050 	 * If there is no low memory pressure or the zone is balanced then no
3051 	 * reclaim is necessary
3052 	 */
3053 	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3054 	if (!lowmem_pressure && zone_balanced(zone, testorder,
3055 						balance_gap, classzone_idx))
3056 		return true;
3057 
3058 	shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3059 
3060 	/* Account for the number of pages attempted to reclaim */
3061 	*nr_attempted += sc->nr_to_reclaim;
3062 
3063 	clear_bit(ZONE_WRITEBACK, &zone->flags);
3064 
3065 	/*
3066 	 * If a zone reaches its high watermark, consider it to be no longer
3067 	 * congested. It's possible there are dirty pages backed by congested
3068 	 * BDIs but as pressure is relieved, speculatively avoid congestion
3069 	 * waits.
3070 	 */
3071 	if (zone_reclaimable(zone) &&
3072 	    zone_balanced(zone, testorder, 0, classzone_idx)) {
3073 		clear_bit(ZONE_CONGESTED, &zone->flags);
3074 		clear_bit(ZONE_DIRTY, &zone->flags);
3075 	}
3076 
3077 	return sc->nr_scanned >= sc->nr_to_reclaim;
3078 }
3079 
3080 /*
3081  * For kswapd, balance_pgdat() will work across all this node's zones until
3082  * they are all at high_wmark_pages(zone).
3083  *
3084  * Returns the final order kswapd was reclaiming at
3085  *
3086  * There is special handling here for zones which are full of pinned pages.
3087  * This can happen if the pages are all mlocked, or if they are all used by
3088  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
3089  * What we do is to detect the case where all pages in the zone have been
3090  * scanned twice and there has been zero successful reclaim.  Mark the zone as
3091  * dead and from now on, only perform a short scan.  Basically we're polling
3092  * the zone for when the problem goes away.
3093  *
3094  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3095  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3096  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3097  * lower zones regardless of the number of free pages in the lower zones. This
3098  * interoperates with the page allocator fallback scheme to ensure that aging
3099  * of pages is balanced across the zones.
3100  */
3101 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3102 							int *classzone_idx)
3103 {
3104 	int i;
3105 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
3106 	unsigned long nr_soft_reclaimed;
3107 	unsigned long nr_soft_scanned;
3108 	struct scan_control sc = {
3109 		.gfp_mask = GFP_KERNEL,
3110 		.order = order,
3111 		.priority = DEF_PRIORITY,
3112 		.may_writepage = !laptop_mode,
3113 		.may_unmap = 1,
3114 		.may_swap = 1,
3115 	};
3116 	count_vm_event(PAGEOUTRUN);
3117 
3118 	do {
3119 		unsigned long nr_attempted = 0;
3120 		bool raise_priority = true;
3121 		bool pgdat_needs_compaction = (order > 0);
3122 
3123 		sc.nr_reclaimed = 0;
3124 
3125 		/*
3126 		 * Scan in the highmem->dma direction for the highest
3127 		 * zone which needs scanning
3128 		 */
3129 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3130 			struct zone *zone = pgdat->node_zones + i;
3131 
3132 			if (!populated_zone(zone))
3133 				continue;
3134 
3135 			if (sc.priority != DEF_PRIORITY &&
3136 			    !zone_reclaimable(zone))
3137 				continue;
3138 
3139 			/*
3140 			 * Do some background aging of the anon list, to give
3141 			 * pages a chance to be referenced before reclaiming.
3142 			 */
3143 			age_active_anon(zone, &sc);
3144 
3145 			/*
3146 			 * If the number of buffer_heads in the machine
3147 			 * exceeds the maximum allowed level and this node
3148 			 * has a highmem zone, force kswapd to reclaim from
3149 			 * it to relieve lowmem pressure.
3150 			 */
3151 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
3152 				end_zone = i;
3153 				break;
3154 			}
3155 
3156 			if (!zone_balanced(zone, order, 0, 0)) {
3157 				end_zone = i;
3158 				break;
3159 			} else {
3160 				/*
3161 				 * If balanced, clear the dirty and congested
3162 				 * flags
3163 				 */
3164 				clear_bit(ZONE_CONGESTED, &zone->flags);
3165 				clear_bit(ZONE_DIRTY, &zone->flags);
3166 			}
3167 		}
3168 
3169 		if (i < 0)
3170 			goto out;
3171 
3172 		for (i = 0; i <= end_zone; i++) {
3173 			struct zone *zone = pgdat->node_zones + i;
3174 
3175 			if (!populated_zone(zone))
3176 				continue;
3177 
3178 			/*
3179 			 * If any zone is currently balanced then kswapd will
3180 			 * not call compaction as it is expected that the
3181 			 * necessary pages are already available.
3182 			 */
3183 			if (pgdat_needs_compaction &&
3184 					zone_watermark_ok(zone, order,
3185 						low_wmark_pages(zone),
3186 						*classzone_idx, 0))
3187 				pgdat_needs_compaction = false;
3188 		}
3189 
3190 		/*
3191 		 * If we're getting trouble reclaiming, start doing writepage
3192 		 * even in laptop mode.
3193 		 */
3194 		if (sc.priority < DEF_PRIORITY - 2)
3195 			sc.may_writepage = 1;
3196 
3197 		/*
3198 		 * Now scan the zone in the dma->highmem direction, stopping
3199 		 * at the last zone which needs scanning.
3200 		 *
3201 		 * We do this because the page allocator works in the opposite
3202 		 * direction.  This prevents the page allocator from allocating
3203 		 * pages behind kswapd's direction of progress, which would
3204 		 * cause too much scanning of the lower zones.
3205 		 */
3206 		for (i = 0; i <= end_zone; i++) {
3207 			struct zone *zone = pgdat->node_zones + i;
3208 
3209 			if (!populated_zone(zone))
3210 				continue;
3211 
3212 			if (sc.priority != DEF_PRIORITY &&
3213 			    !zone_reclaimable(zone))
3214 				continue;
3215 
3216 			sc.nr_scanned = 0;
3217 
3218 			nr_soft_scanned = 0;
3219 			/*
3220 			 * Call soft limit reclaim before calling shrink_zone.
3221 			 */
3222 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3223 							order, sc.gfp_mask,
3224 							&nr_soft_scanned);
3225 			sc.nr_reclaimed += nr_soft_reclaimed;
3226 
3227 			/*
3228 			 * There should be no need to raise the scanning
3229 			 * priority if enough pages are already being scanned
3230 			 * that that high watermark would be met at 100%
3231 			 * efficiency.
3232 			 */
3233 			if (kswapd_shrink_zone(zone, end_zone,
3234 					       &sc, &nr_attempted))
3235 				raise_priority = false;
3236 		}
3237 
3238 		/*
3239 		 * If the low watermark is met there is no need for processes
3240 		 * to be throttled on pfmemalloc_wait as they should not be
3241 		 * able to safely make forward progress. Wake them
3242 		 */
3243 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3244 				pfmemalloc_watermark_ok(pgdat))
3245 			wake_up_all(&pgdat->pfmemalloc_wait);
3246 
3247 		/*
3248 		 * Fragmentation may mean that the system cannot be rebalanced
3249 		 * for high-order allocations in all zones. If twice the
3250 		 * allocation size has been reclaimed and the zones are still
3251 		 * not balanced then recheck the watermarks at order-0 to
3252 		 * prevent kswapd reclaiming excessively. Assume that a
3253 		 * process requested a high-order can direct reclaim/compact.
3254 		 */
3255 		if (order && sc.nr_reclaimed >= 2UL << order)
3256 			order = sc.order = 0;
3257 
3258 		/* Check if kswapd should be suspending */
3259 		if (try_to_freeze() || kthread_should_stop())
3260 			break;
3261 
3262 		/*
3263 		 * Compact if necessary and kswapd is reclaiming at least the
3264 		 * high watermark number of pages as requsted
3265 		 */
3266 		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3267 			compact_pgdat(pgdat, order);
3268 
3269 		/*
3270 		 * Raise priority if scanning rate is too low or there was no
3271 		 * progress in reclaiming pages
3272 		 */
3273 		if (raise_priority || !sc.nr_reclaimed)
3274 			sc.priority--;
3275 	} while (sc.priority >= 1 &&
3276 		 !pgdat_balanced(pgdat, order, *classzone_idx));
3277 
3278 out:
3279 	/*
3280 	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3281 	 * makes a decision on the order we were last reclaiming at. However,
3282 	 * if another caller entered the allocator slow path while kswapd
3283 	 * was awake, order will remain at the higher level
3284 	 */
3285 	*classzone_idx = end_zone;
3286 	return order;
3287 }
3288 
3289 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3290 {
3291 	long remaining = 0;
3292 	DEFINE_WAIT(wait);
3293 
3294 	if (freezing(current) || kthread_should_stop())
3295 		return;
3296 
3297 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3298 
3299 	/* Try to sleep for a short interval */
3300 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3301 		remaining = schedule_timeout(HZ/10);
3302 		finish_wait(&pgdat->kswapd_wait, &wait);
3303 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3304 	}
3305 
3306 	/*
3307 	 * After a short sleep, check if it was a premature sleep. If not, then
3308 	 * go fully to sleep until explicitly woken up.
3309 	 */
3310 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3311 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3312 
3313 		/*
3314 		 * vmstat counters are not perfectly accurate and the estimated
3315 		 * value for counters such as NR_FREE_PAGES can deviate from the
3316 		 * true value by nr_online_cpus * threshold. To avoid the zone
3317 		 * watermarks being breached while under pressure, we reduce the
3318 		 * per-cpu vmstat threshold while kswapd is awake and restore
3319 		 * them before going back to sleep.
3320 		 */
3321 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3322 
3323 		/*
3324 		 * Compaction records what page blocks it recently failed to
3325 		 * isolate pages from and skips them in the future scanning.
3326 		 * When kswapd is going to sleep, it is reasonable to assume
3327 		 * that pages and compaction may succeed so reset the cache.
3328 		 */
3329 		reset_isolation_suitable(pgdat);
3330 
3331 		if (!kthread_should_stop())
3332 			schedule();
3333 
3334 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3335 	} else {
3336 		if (remaining)
3337 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3338 		else
3339 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3340 	}
3341 	finish_wait(&pgdat->kswapd_wait, &wait);
3342 }
3343 
3344 /*
3345  * The background pageout daemon, started as a kernel thread
3346  * from the init process.
3347  *
3348  * This basically trickles out pages so that we have _some_
3349  * free memory available even if there is no other activity
3350  * that frees anything up. This is needed for things like routing
3351  * etc, where we otherwise might have all activity going on in
3352  * asynchronous contexts that cannot page things out.
3353  *
3354  * If there are applications that are active memory-allocators
3355  * (most normal use), this basically shouldn't matter.
3356  */
3357 static int kswapd(void *p)
3358 {
3359 	unsigned long order, new_order;
3360 	unsigned balanced_order;
3361 	int classzone_idx, new_classzone_idx;
3362 	int balanced_classzone_idx;
3363 	pg_data_t *pgdat = (pg_data_t*)p;
3364 	struct task_struct *tsk = current;
3365 
3366 	struct reclaim_state reclaim_state = {
3367 		.reclaimed_slab = 0,
3368 	};
3369 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3370 
3371 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3372 
3373 	if (!cpumask_empty(cpumask))
3374 		set_cpus_allowed_ptr(tsk, cpumask);
3375 	current->reclaim_state = &reclaim_state;
3376 
3377 	/*
3378 	 * Tell the memory management that we're a "memory allocator",
3379 	 * and that if we need more memory we should get access to it
3380 	 * regardless (see "__alloc_pages()"). "kswapd" should
3381 	 * never get caught in the normal page freeing logic.
3382 	 *
3383 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3384 	 * you need a small amount of memory in order to be able to
3385 	 * page out something else, and this flag essentially protects
3386 	 * us from recursively trying to free more memory as we're
3387 	 * trying to free the first piece of memory in the first place).
3388 	 */
3389 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3390 	set_freezable();
3391 
3392 	order = new_order = 0;
3393 	balanced_order = 0;
3394 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3395 	balanced_classzone_idx = classzone_idx;
3396 	for ( ; ; ) {
3397 		bool ret;
3398 
3399 		/*
3400 		 * If the last balance_pgdat was unsuccessful it's unlikely a
3401 		 * new request of a similar or harder type will succeed soon
3402 		 * so consider going to sleep on the basis we reclaimed at
3403 		 */
3404 		if (balanced_classzone_idx >= new_classzone_idx &&
3405 					balanced_order == new_order) {
3406 			new_order = pgdat->kswapd_max_order;
3407 			new_classzone_idx = pgdat->classzone_idx;
3408 			pgdat->kswapd_max_order =  0;
3409 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3410 		}
3411 
3412 		if (order < new_order || classzone_idx > new_classzone_idx) {
3413 			/*
3414 			 * Don't sleep if someone wants a larger 'order'
3415 			 * allocation or has tigher zone constraints
3416 			 */
3417 			order = new_order;
3418 			classzone_idx = new_classzone_idx;
3419 		} else {
3420 			kswapd_try_to_sleep(pgdat, balanced_order,
3421 						balanced_classzone_idx);
3422 			order = pgdat->kswapd_max_order;
3423 			classzone_idx = pgdat->classzone_idx;
3424 			new_order = order;
3425 			new_classzone_idx = classzone_idx;
3426 			pgdat->kswapd_max_order = 0;
3427 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3428 		}
3429 
3430 		ret = try_to_freeze();
3431 		if (kthread_should_stop())
3432 			break;
3433 
3434 		/*
3435 		 * We can speed up thawing tasks if we don't call balance_pgdat
3436 		 * after returning from the refrigerator
3437 		 */
3438 		if (!ret) {
3439 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3440 			balanced_classzone_idx = classzone_idx;
3441 			balanced_order = balance_pgdat(pgdat, order,
3442 						&balanced_classzone_idx);
3443 		}
3444 	}
3445 
3446 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3447 	current->reclaim_state = NULL;
3448 	lockdep_clear_current_reclaim_state();
3449 
3450 	return 0;
3451 }
3452 
3453 /*
3454  * A zone is low on free memory, so wake its kswapd task to service it.
3455  */
3456 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3457 {
3458 	pg_data_t *pgdat;
3459 
3460 	if (!populated_zone(zone))
3461 		return;
3462 
3463 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3464 		return;
3465 	pgdat = zone->zone_pgdat;
3466 	if (pgdat->kswapd_max_order < order) {
3467 		pgdat->kswapd_max_order = order;
3468 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3469 	}
3470 	if (!waitqueue_active(&pgdat->kswapd_wait))
3471 		return;
3472 	if (zone_balanced(zone, order, 0, 0))
3473 		return;
3474 
3475 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3476 	wake_up_interruptible(&pgdat->kswapd_wait);
3477 }
3478 
3479 #ifdef CONFIG_HIBERNATION
3480 /*
3481  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3482  * freed pages.
3483  *
3484  * Rather than trying to age LRUs the aim is to preserve the overall
3485  * LRU order by reclaiming preferentially
3486  * inactive > active > active referenced > active mapped
3487  */
3488 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3489 {
3490 	struct reclaim_state reclaim_state;
3491 	struct scan_control sc = {
3492 		.nr_to_reclaim = nr_to_reclaim,
3493 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3494 		.priority = DEF_PRIORITY,
3495 		.may_writepage = 1,
3496 		.may_unmap = 1,
3497 		.may_swap = 1,
3498 		.hibernation_mode = 1,
3499 	};
3500 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3501 	struct task_struct *p = current;
3502 	unsigned long nr_reclaimed;
3503 
3504 	p->flags |= PF_MEMALLOC;
3505 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3506 	reclaim_state.reclaimed_slab = 0;
3507 	p->reclaim_state = &reclaim_state;
3508 
3509 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3510 
3511 	p->reclaim_state = NULL;
3512 	lockdep_clear_current_reclaim_state();
3513 	p->flags &= ~PF_MEMALLOC;
3514 
3515 	return nr_reclaimed;
3516 }
3517 #endif /* CONFIG_HIBERNATION */
3518 
3519 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3520    not required for correctness.  So if the last cpu in a node goes
3521    away, we get changed to run anywhere: as the first one comes back,
3522    restore their cpu bindings. */
3523 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3524 			void *hcpu)
3525 {
3526 	int nid;
3527 
3528 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3529 		for_each_node_state(nid, N_MEMORY) {
3530 			pg_data_t *pgdat = NODE_DATA(nid);
3531 			const struct cpumask *mask;
3532 
3533 			mask = cpumask_of_node(pgdat->node_id);
3534 
3535 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3536 				/* One of our CPUs online: restore mask */
3537 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3538 		}
3539 	}
3540 	return NOTIFY_OK;
3541 }
3542 
3543 /*
3544  * This kswapd start function will be called by init and node-hot-add.
3545  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3546  */
3547 int kswapd_run(int nid)
3548 {
3549 	pg_data_t *pgdat = NODE_DATA(nid);
3550 	int ret = 0;
3551 
3552 	if (pgdat->kswapd)
3553 		return 0;
3554 
3555 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3556 	if (IS_ERR(pgdat->kswapd)) {
3557 		/* failure at boot is fatal */
3558 		BUG_ON(system_state == SYSTEM_BOOTING);
3559 		pr_err("Failed to start kswapd on node %d\n", nid);
3560 		ret = PTR_ERR(pgdat->kswapd);
3561 		pgdat->kswapd = NULL;
3562 	}
3563 	return ret;
3564 }
3565 
3566 /*
3567  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3568  * hold mem_hotplug_begin/end().
3569  */
3570 void kswapd_stop(int nid)
3571 {
3572 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3573 
3574 	if (kswapd) {
3575 		kthread_stop(kswapd);
3576 		NODE_DATA(nid)->kswapd = NULL;
3577 	}
3578 }
3579 
3580 static int __init kswapd_init(void)
3581 {
3582 	int nid;
3583 
3584 	swap_setup();
3585 	for_each_node_state(nid, N_MEMORY)
3586  		kswapd_run(nid);
3587 	hotcpu_notifier(cpu_callback, 0);
3588 	return 0;
3589 }
3590 
3591 module_init(kswapd_init)
3592 
3593 #ifdef CONFIG_NUMA
3594 /*
3595  * Zone reclaim mode
3596  *
3597  * If non-zero call zone_reclaim when the number of free pages falls below
3598  * the watermarks.
3599  */
3600 int zone_reclaim_mode __read_mostly;
3601 
3602 #define RECLAIM_OFF 0
3603 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3604 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3605 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3606 
3607 /*
3608  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3609  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3610  * a zone.
3611  */
3612 #define ZONE_RECLAIM_PRIORITY 4
3613 
3614 /*
3615  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3616  * occur.
3617  */
3618 int sysctl_min_unmapped_ratio = 1;
3619 
3620 /*
3621  * If the number of slab pages in a zone grows beyond this percentage then
3622  * slab reclaim needs to occur.
3623  */
3624 int sysctl_min_slab_ratio = 5;
3625 
3626 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3627 {
3628 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3629 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3630 		zone_page_state(zone, NR_ACTIVE_FILE);
3631 
3632 	/*
3633 	 * It's possible for there to be more file mapped pages than
3634 	 * accounted for by the pages on the file LRU lists because
3635 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3636 	 */
3637 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3638 }
3639 
3640 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3641 static long zone_pagecache_reclaimable(struct zone *zone)
3642 {
3643 	long nr_pagecache_reclaimable;
3644 	long delta = 0;
3645 
3646 	/*
3647 	 * If RECLAIM_SWAP is set, then all file pages are considered
3648 	 * potentially reclaimable. Otherwise, we have to worry about
3649 	 * pages like swapcache and zone_unmapped_file_pages() provides
3650 	 * a better estimate
3651 	 */
3652 	if (zone_reclaim_mode & RECLAIM_SWAP)
3653 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3654 	else
3655 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3656 
3657 	/* If we can't clean pages, remove dirty pages from consideration */
3658 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3659 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3660 
3661 	/* Watch for any possible underflows due to delta */
3662 	if (unlikely(delta > nr_pagecache_reclaimable))
3663 		delta = nr_pagecache_reclaimable;
3664 
3665 	return nr_pagecache_reclaimable - delta;
3666 }
3667 
3668 /*
3669  * Try to free up some pages from this zone through reclaim.
3670  */
3671 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3672 {
3673 	/* Minimum pages needed in order to stay on node */
3674 	const unsigned long nr_pages = 1 << order;
3675 	struct task_struct *p = current;
3676 	struct reclaim_state reclaim_state;
3677 	struct scan_control sc = {
3678 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3679 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3680 		.order = order,
3681 		.priority = ZONE_RECLAIM_PRIORITY,
3682 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3683 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3684 		.may_swap = 1,
3685 	};
3686 
3687 	cond_resched();
3688 	/*
3689 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3690 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3691 	 * and RECLAIM_SWAP.
3692 	 */
3693 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3694 	lockdep_set_current_reclaim_state(gfp_mask);
3695 	reclaim_state.reclaimed_slab = 0;
3696 	p->reclaim_state = &reclaim_state;
3697 
3698 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3699 		/*
3700 		 * Free memory by calling shrink zone with increasing
3701 		 * priorities until we have enough memory freed.
3702 		 */
3703 		do {
3704 			shrink_zone(zone, &sc, true);
3705 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3706 	}
3707 
3708 	p->reclaim_state = NULL;
3709 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3710 	lockdep_clear_current_reclaim_state();
3711 	return sc.nr_reclaimed >= nr_pages;
3712 }
3713 
3714 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3715 {
3716 	int node_id;
3717 	int ret;
3718 
3719 	/*
3720 	 * Zone reclaim reclaims unmapped file backed pages and
3721 	 * slab pages if we are over the defined limits.
3722 	 *
3723 	 * A small portion of unmapped file backed pages is needed for
3724 	 * file I/O otherwise pages read by file I/O will be immediately
3725 	 * thrown out if the zone is overallocated. So we do not reclaim
3726 	 * if less than a specified percentage of the zone is used by
3727 	 * unmapped file backed pages.
3728 	 */
3729 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3730 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3731 		return ZONE_RECLAIM_FULL;
3732 
3733 	if (!zone_reclaimable(zone))
3734 		return ZONE_RECLAIM_FULL;
3735 
3736 	/*
3737 	 * Do not scan if the allocation should not be delayed.
3738 	 */
3739 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3740 		return ZONE_RECLAIM_NOSCAN;
3741 
3742 	/*
3743 	 * Only run zone reclaim on the local zone or on zones that do not
3744 	 * have associated processors. This will favor the local processor
3745 	 * over remote processors and spread off node memory allocations
3746 	 * as wide as possible.
3747 	 */
3748 	node_id = zone_to_nid(zone);
3749 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3750 		return ZONE_RECLAIM_NOSCAN;
3751 
3752 	if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3753 		return ZONE_RECLAIM_NOSCAN;
3754 
3755 	ret = __zone_reclaim(zone, gfp_mask, order);
3756 	clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3757 
3758 	if (!ret)
3759 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3760 
3761 	return ret;
3762 }
3763 #endif
3764 
3765 /*
3766  * page_evictable - test whether a page is evictable
3767  * @page: the page to test
3768  *
3769  * Test whether page is evictable--i.e., should be placed on active/inactive
3770  * lists vs unevictable list.
3771  *
3772  * Reasons page might not be evictable:
3773  * (1) page's mapping marked unevictable
3774  * (2) page is part of an mlocked VMA
3775  *
3776  */
3777 int page_evictable(struct page *page)
3778 {
3779 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3780 }
3781 
3782 #ifdef CONFIG_SHMEM
3783 /**
3784  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3785  * @pages:	array of pages to check
3786  * @nr_pages:	number of pages to check
3787  *
3788  * Checks pages for evictability and moves them to the appropriate lru list.
3789  *
3790  * This function is only used for SysV IPC SHM_UNLOCK.
3791  */
3792 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3793 {
3794 	struct lruvec *lruvec;
3795 	struct zone *zone = NULL;
3796 	int pgscanned = 0;
3797 	int pgrescued = 0;
3798 	int i;
3799 
3800 	for (i = 0; i < nr_pages; i++) {
3801 		struct page *page = pages[i];
3802 		struct zone *pagezone;
3803 
3804 		pgscanned++;
3805 		pagezone = page_zone(page);
3806 		if (pagezone != zone) {
3807 			if (zone)
3808 				spin_unlock_irq(&zone->lru_lock);
3809 			zone = pagezone;
3810 			spin_lock_irq(&zone->lru_lock);
3811 		}
3812 		lruvec = mem_cgroup_page_lruvec(page, zone);
3813 
3814 		if (!PageLRU(page) || !PageUnevictable(page))
3815 			continue;
3816 
3817 		if (page_evictable(page)) {
3818 			enum lru_list lru = page_lru_base_type(page);
3819 
3820 			VM_BUG_ON_PAGE(PageActive(page), page);
3821 			ClearPageUnevictable(page);
3822 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3823 			add_page_to_lru_list(page, lruvec, lru);
3824 			pgrescued++;
3825 		}
3826 	}
3827 
3828 	if (zone) {
3829 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3830 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3831 		spin_unlock_irq(&zone->lru_lock);
3832 	}
3833 }
3834 #endif /* CONFIG_SHMEM */
3835