1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/oom.h> 47 #include <linux/prefetch.h> 48 #include <linux/printk.h> 49 50 #include <asm/tlbflush.h> 51 #include <asm/div64.h> 52 53 #include <linux/swapops.h> 54 #include <linux/balloon_compaction.h> 55 56 #include "internal.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/vmscan.h> 60 61 struct scan_control { 62 /* How many pages shrink_list() should reclaim */ 63 unsigned long nr_to_reclaim; 64 65 /* This context's GFP mask */ 66 gfp_t gfp_mask; 67 68 /* Allocation order */ 69 int order; 70 71 /* 72 * Nodemask of nodes allowed by the caller. If NULL, all nodes 73 * are scanned. 74 */ 75 nodemask_t *nodemask; 76 77 /* 78 * The memory cgroup that hit its limit and as a result is the 79 * primary target of this reclaim invocation. 80 */ 81 struct mem_cgroup *target_mem_cgroup; 82 83 /* Scan (total_size >> priority) pages at once */ 84 int priority; 85 86 unsigned int may_writepage:1; 87 88 /* Can mapped pages be reclaimed? */ 89 unsigned int may_unmap:1; 90 91 /* Can pages be swapped as part of reclaim? */ 92 unsigned int may_swap:1; 93 94 /* Can cgroups be reclaimed below their normal consumption range? */ 95 unsigned int may_thrash:1; 96 97 unsigned int hibernation_mode:1; 98 99 /* One of the zones is ready for compaction */ 100 unsigned int compaction_ready:1; 101 102 /* Incremented by the number of inactive pages that were scanned */ 103 unsigned long nr_scanned; 104 105 /* Number of pages freed so far during a call to shrink_zones() */ 106 unsigned long nr_reclaimed; 107 }; 108 109 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 110 111 #ifdef ARCH_HAS_PREFETCH 112 #define prefetch_prev_lru_page(_page, _base, _field) \ 113 do { \ 114 if ((_page)->lru.prev != _base) { \ 115 struct page *prev; \ 116 \ 117 prev = lru_to_page(&(_page->lru)); \ 118 prefetch(&prev->_field); \ 119 } \ 120 } while (0) 121 #else 122 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 123 #endif 124 125 #ifdef ARCH_HAS_PREFETCHW 126 #define prefetchw_prev_lru_page(_page, _base, _field) \ 127 do { \ 128 if ((_page)->lru.prev != _base) { \ 129 struct page *prev; \ 130 \ 131 prev = lru_to_page(&(_page->lru)); \ 132 prefetchw(&prev->_field); \ 133 } \ 134 } while (0) 135 #else 136 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 137 #endif 138 139 /* 140 * From 0 .. 100. Higher means more swappy. 141 */ 142 int vm_swappiness = 60; 143 /* 144 * The total number of pages which are beyond the high watermark within all 145 * zones. 146 */ 147 unsigned long vm_total_pages; 148 149 static LIST_HEAD(shrinker_list); 150 static DECLARE_RWSEM(shrinker_rwsem); 151 152 #ifdef CONFIG_MEMCG 153 static bool global_reclaim(struct scan_control *sc) 154 { 155 return !sc->target_mem_cgroup; 156 } 157 #else 158 static bool global_reclaim(struct scan_control *sc) 159 { 160 return true; 161 } 162 #endif 163 164 static unsigned long zone_reclaimable_pages(struct zone *zone) 165 { 166 int nr; 167 168 nr = zone_page_state(zone, NR_ACTIVE_FILE) + 169 zone_page_state(zone, NR_INACTIVE_FILE); 170 171 if (get_nr_swap_pages() > 0) 172 nr += zone_page_state(zone, NR_ACTIVE_ANON) + 173 zone_page_state(zone, NR_INACTIVE_ANON); 174 175 return nr; 176 } 177 178 bool zone_reclaimable(struct zone *zone) 179 { 180 return zone_page_state(zone, NR_PAGES_SCANNED) < 181 zone_reclaimable_pages(zone) * 6; 182 } 183 184 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) 185 { 186 if (!mem_cgroup_disabled()) 187 return mem_cgroup_get_lru_size(lruvec, lru); 188 189 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); 190 } 191 192 /* 193 * Add a shrinker callback to be called from the vm. 194 */ 195 int register_shrinker(struct shrinker *shrinker) 196 { 197 size_t size = sizeof(*shrinker->nr_deferred); 198 199 /* 200 * If we only have one possible node in the system anyway, save 201 * ourselves the trouble and disable NUMA aware behavior. This way we 202 * will save memory and some small loop time later. 203 */ 204 if (nr_node_ids == 1) 205 shrinker->flags &= ~SHRINKER_NUMA_AWARE; 206 207 if (shrinker->flags & SHRINKER_NUMA_AWARE) 208 size *= nr_node_ids; 209 210 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 211 if (!shrinker->nr_deferred) 212 return -ENOMEM; 213 214 down_write(&shrinker_rwsem); 215 list_add_tail(&shrinker->list, &shrinker_list); 216 up_write(&shrinker_rwsem); 217 return 0; 218 } 219 EXPORT_SYMBOL(register_shrinker); 220 221 /* 222 * Remove one 223 */ 224 void unregister_shrinker(struct shrinker *shrinker) 225 { 226 down_write(&shrinker_rwsem); 227 list_del(&shrinker->list); 228 up_write(&shrinker_rwsem); 229 kfree(shrinker->nr_deferred); 230 } 231 EXPORT_SYMBOL(unregister_shrinker); 232 233 #define SHRINK_BATCH 128 234 235 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 236 struct shrinker *shrinker, 237 unsigned long nr_scanned, 238 unsigned long nr_eligible) 239 { 240 unsigned long freed = 0; 241 unsigned long long delta; 242 long total_scan; 243 long freeable; 244 long nr; 245 long new_nr; 246 int nid = shrinkctl->nid; 247 long batch_size = shrinker->batch ? shrinker->batch 248 : SHRINK_BATCH; 249 250 freeable = shrinker->count_objects(shrinker, shrinkctl); 251 if (freeable == 0) 252 return 0; 253 254 /* 255 * copy the current shrinker scan count into a local variable 256 * and zero it so that other concurrent shrinker invocations 257 * don't also do this scanning work. 258 */ 259 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 260 261 total_scan = nr; 262 delta = (4 * nr_scanned) / shrinker->seeks; 263 delta *= freeable; 264 do_div(delta, nr_eligible + 1); 265 total_scan += delta; 266 if (total_scan < 0) { 267 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 268 shrinker->scan_objects, total_scan); 269 total_scan = freeable; 270 } 271 272 /* 273 * We need to avoid excessive windup on filesystem shrinkers 274 * due to large numbers of GFP_NOFS allocations causing the 275 * shrinkers to return -1 all the time. This results in a large 276 * nr being built up so when a shrink that can do some work 277 * comes along it empties the entire cache due to nr >>> 278 * freeable. This is bad for sustaining a working set in 279 * memory. 280 * 281 * Hence only allow the shrinker to scan the entire cache when 282 * a large delta change is calculated directly. 283 */ 284 if (delta < freeable / 4) 285 total_scan = min(total_scan, freeable / 2); 286 287 /* 288 * Avoid risking looping forever due to too large nr value: 289 * never try to free more than twice the estimate number of 290 * freeable entries. 291 */ 292 if (total_scan > freeable * 2) 293 total_scan = freeable * 2; 294 295 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 296 nr_scanned, nr_eligible, 297 freeable, delta, total_scan); 298 299 /* 300 * Normally, we should not scan less than batch_size objects in one 301 * pass to avoid too frequent shrinker calls, but if the slab has less 302 * than batch_size objects in total and we are really tight on memory, 303 * we will try to reclaim all available objects, otherwise we can end 304 * up failing allocations although there are plenty of reclaimable 305 * objects spread over several slabs with usage less than the 306 * batch_size. 307 * 308 * We detect the "tight on memory" situations by looking at the total 309 * number of objects we want to scan (total_scan). If it is greater 310 * than the total number of objects on slab (freeable), we must be 311 * scanning at high prio and therefore should try to reclaim as much as 312 * possible. 313 */ 314 while (total_scan >= batch_size || 315 total_scan >= freeable) { 316 unsigned long ret; 317 unsigned long nr_to_scan = min(batch_size, total_scan); 318 319 shrinkctl->nr_to_scan = nr_to_scan; 320 ret = shrinker->scan_objects(shrinker, shrinkctl); 321 if (ret == SHRINK_STOP) 322 break; 323 freed += ret; 324 325 count_vm_events(SLABS_SCANNED, nr_to_scan); 326 total_scan -= nr_to_scan; 327 328 cond_resched(); 329 } 330 331 /* 332 * move the unused scan count back into the shrinker in a 333 * manner that handles concurrent updates. If we exhausted the 334 * scan, there is no need to do an update. 335 */ 336 if (total_scan > 0) 337 new_nr = atomic_long_add_return(total_scan, 338 &shrinker->nr_deferred[nid]); 339 else 340 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 341 342 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 343 return freed; 344 } 345 346 /** 347 * shrink_slab - shrink slab caches 348 * @gfp_mask: allocation context 349 * @nid: node whose slab caches to target 350 * @memcg: memory cgroup whose slab caches to target 351 * @nr_scanned: pressure numerator 352 * @nr_eligible: pressure denominator 353 * 354 * Call the shrink functions to age shrinkable caches. 355 * 356 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 357 * unaware shrinkers will receive a node id of 0 instead. 358 * 359 * @memcg specifies the memory cgroup to target. If it is not NULL, 360 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan 361 * objects from the memory cgroup specified. Otherwise all shrinkers 362 * are called, and memcg aware shrinkers are supposed to scan the 363 * global list then. 364 * 365 * @nr_scanned and @nr_eligible form a ratio that indicate how much of 366 * the available objects should be scanned. Page reclaim for example 367 * passes the number of pages scanned and the number of pages on the 368 * LRU lists that it considered on @nid, plus a bias in @nr_scanned 369 * when it encountered mapped pages. The ratio is further biased by 370 * the ->seeks setting of the shrink function, which indicates the 371 * cost to recreate an object relative to that of an LRU page. 372 * 373 * Returns the number of reclaimed slab objects. 374 */ 375 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 376 struct mem_cgroup *memcg, 377 unsigned long nr_scanned, 378 unsigned long nr_eligible) 379 { 380 struct shrinker *shrinker; 381 unsigned long freed = 0; 382 383 if (memcg && !memcg_kmem_is_active(memcg)) 384 return 0; 385 386 if (nr_scanned == 0) 387 nr_scanned = SWAP_CLUSTER_MAX; 388 389 if (!down_read_trylock(&shrinker_rwsem)) { 390 /* 391 * If we would return 0, our callers would understand that we 392 * have nothing else to shrink and give up trying. By returning 393 * 1 we keep it going and assume we'll be able to shrink next 394 * time. 395 */ 396 freed = 1; 397 goto out; 398 } 399 400 list_for_each_entry(shrinker, &shrinker_list, list) { 401 struct shrink_control sc = { 402 .gfp_mask = gfp_mask, 403 .nid = nid, 404 .memcg = memcg, 405 }; 406 407 if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE)) 408 continue; 409 410 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 411 sc.nid = 0; 412 413 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible); 414 } 415 416 up_read(&shrinker_rwsem); 417 out: 418 cond_resched(); 419 return freed; 420 } 421 422 void drop_slab_node(int nid) 423 { 424 unsigned long freed; 425 426 do { 427 struct mem_cgroup *memcg = NULL; 428 429 freed = 0; 430 do { 431 freed += shrink_slab(GFP_KERNEL, nid, memcg, 432 1000, 1000); 433 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 434 } while (freed > 10); 435 } 436 437 void drop_slab(void) 438 { 439 int nid; 440 441 for_each_online_node(nid) 442 drop_slab_node(nid); 443 } 444 445 static inline int is_page_cache_freeable(struct page *page) 446 { 447 /* 448 * A freeable page cache page is referenced only by the caller 449 * that isolated the page, the page cache radix tree and 450 * optional buffer heads at page->private. 451 */ 452 return page_count(page) - page_has_private(page) == 2; 453 } 454 455 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 456 { 457 if (current->flags & PF_SWAPWRITE) 458 return 1; 459 if (!inode_write_congested(inode)) 460 return 1; 461 if (inode_to_bdi(inode) == current->backing_dev_info) 462 return 1; 463 return 0; 464 } 465 466 /* 467 * We detected a synchronous write error writing a page out. Probably 468 * -ENOSPC. We need to propagate that into the address_space for a subsequent 469 * fsync(), msync() or close(). 470 * 471 * The tricky part is that after writepage we cannot touch the mapping: nothing 472 * prevents it from being freed up. But we have a ref on the page and once 473 * that page is locked, the mapping is pinned. 474 * 475 * We're allowed to run sleeping lock_page() here because we know the caller has 476 * __GFP_FS. 477 */ 478 static void handle_write_error(struct address_space *mapping, 479 struct page *page, int error) 480 { 481 lock_page(page); 482 if (page_mapping(page) == mapping) 483 mapping_set_error(mapping, error); 484 unlock_page(page); 485 } 486 487 /* possible outcome of pageout() */ 488 typedef enum { 489 /* failed to write page out, page is locked */ 490 PAGE_KEEP, 491 /* move page to the active list, page is locked */ 492 PAGE_ACTIVATE, 493 /* page has been sent to the disk successfully, page is unlocked */ 494 PAGE_SUCCESS, 495 /* page is clean and locked */ 496 PAGE_CLEAN, 497 } pageout_t; 498 499 /* 500 * pageout is called by shrink_page_list() for each dirty page. 501 * Calls ->writepage(). 502 */ 503 static pageout_t pageout(struct page *page, struct address_space *mapping, 504 struct scan_control *sc) 505 { 506 /* 507 * If the page is dirty, only perform writeback if that write 508 * will be non-blocking. To prevent this allocation from being 509 * stalled by pagecache activity. But note that there may be 510 * stalls if we need to run get_block(). We could test 511 * PagePrivate for that. 512 * 513 * If this process is currently in __generic_file_write_iter() against 514 * this page's queue, we can perform writeback even if that 515 * will block. 516 * 517 * If the page is swapcache, write it back even if that would 518 * block, for some throttling. This happens by accident, because 519 * swap_backing_dev_info is bust: it doesn't reflect the 520 * congestion state of the swapdevs. Easy to fix, if needed. 521 */ 522 if (!is_page_cache_freeable(page)) 523 return PAGE_KEEP; 524 if (!mapping) { 525 /* 526 * Some data journaling orphaned pages can have 527 * page->mapping == NULL while being dirty with clean buffers. 528 */ 529 if (page_has_private(page)) { 530 if (try_to_free_buffers(page)) { 531 ClearPageDirty(page); 532 pr_info("%s: orphaned page\n", __func__); 533 return PAGE_CLEAN; 534 } 535 } 536 return PAGE_KEEP; 537 } 538 if (mapping->a_ops->writepage == NULL) 539 return PAGE_ACTIVATE; 540 if (!may_write_to_inode(mapping->host, sc)) 541 return PAGE_KEEP; 542 543 if (clear_page_dirty_for_io(page)) { 544 int res; 545 struct writeback_control wbc = { 546 .sync_mode = WB_SYNC_NONE, 547 .nr_to_write = SWAP_CLUSTER_MAX, 548 .range_start = 0, 549 .range_end = LLONG_MAX, 550 .for_reclaim = 1, 551 }; 552 553 SetPageReclaim(page); 554 res = mapping->a_ops->writepage(page, &wbc); 555 if (res < 0) 556 handle_write_error(mapping, page, res); 557 if (res == AOP_WRITEPAGE_ACTIVATE) { 558 ClearPageReclaim(page); 559 return PAGE_ACTIVATE; 560 } 561 562 if (!PageWriteback(page)) { 563 /* synchronous write or broken a_ops? */ 564 ClearPageReclaim(page); 565 } 566 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page)); 567 inc_zone_page_state(page, NR_VMSCAN_WRITE); 568 return PAGE_SUCCESS; 569 } 570 571 return PAGE_CLEAN; 572 } 573 574 /* 575 * Same as remove_mapping, but if the page is removed from the mapping, it 576 * gets returned with a refcount of 0. 577 */ 578 static int __remove_mapping(struct address_space *mapping, struct page *page, 579 bool reclaimed) 580 { 581 unsigned long flags; 582 struct mem_cgroup *memcg; 583 584 BUG_ON(!PageLocked(page)); 585 BUG_ON(mapping != page_mapping(page)); 586 587 memcg = mem_cgroup_begin_page_stat(page); 588 spin_lock_irqsave(&mapping->tree_lock, flags); 589 /* 590 * The non racy check for a busy page. 591 * 592 * Must be careful with the order of the tests. When someone has 593 * a ref to the page, it may be possible that they dirty it then 594 * drop the reference. So if PageDirty is tested before page_count 595 * here, then the following race may occur: 596 * 597 * get_user_pages(&page); 598 * [user mapping goes away] 599 * write_to(page); 600 * !PageDirty(page) [good] 601 * SetPageDirty(page); 602 * put_page(page); 603 * !page_count(page) [good, discard it] 604 * 605 * [oops, our write_to data is lost] 606 * 607 * Reversing the order of the tests ensures such a situation cannot 608 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 609 * load is not satisfied before that of page->_count. 610 * 611 * Note that if SetPageDirty is always performed via set_page_dirty, 612 * and thus under tree_lock, then this ordering is not required. 613 */ 614 if (!page_freeze_refs(page, 2)) 615 goto cannot_free; 616 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 617 if (unlikely(PageDirty(page))) { 618 page_unfreeze_refs(page, 2); 619 goto cannot_free; 620 } 621 622 if (PageSwapCache(page)) { 623 swp_entry_t swap = { .val = page_private(page) }; 624 mem_cgroup_swapout(page, swap); 625 __delete_from_swap_cache(page); 626 spin_unlock_irqrestore(&mapping->tree_lock, flags); 627 mem_cgroup_end_page_stat(memcg); 628 swapcache_free(swap); 629 } else { 630 void (*freepage)(struct page *); 631 void *shadow = NULL; 632 633 freepage = mapping->a_ops->freepage; 634 /* 635 * Remember a shadow entry for reclaimed file cache in 636 * order to detect refaults, thus thrashing, later on. 637 * 638 * But don't store shadows in an address space that is 639 * already exiting. This is not just an optizimation, 640 * inode reclaim needs to empty out the radix tree or 641 * the nodes are lost. Don't plant shadows behind its 642 * back. 643 */ 644 if (reclaimed && page_is_file_cache(page) && 645 !mapping_exiting(mapping)) 646 shadow = workingset_eviction(mapping, page); 647 __delete_from_page_cache(page, shadow, memcg); 648 spin_unlock_irqrestore(&mapping->tree_lock, flags); 649 mem_cgroup_end_page_stat(memcg); 650 651 if (freepage != NULL) 652 freepage(page); 653 } 654 655 return 1; 656 657 cannot_free: 658 spin_unlock_irqrestore(&mapping->tree_lock, flags); 659 mem_cgroup_end_page_stat(memcg); 660 return 0; 661 } 662 663 /* 664 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 665 * someone else has a ref on the page, abort and return 0. If it was 666 * successfully detached, return 1. Assumes the caller has a single ref on 667 * this page. 668 */ 669 int remove_mapping(struct address_space *mapping, struct page *page) 670 { 671 if (__remove_mapping(mapping, page, false)) { 672 /* 673 * Unfreezing the refcount with 1 rather than 2 effectively 674 * drops the pagecache ref for us without requiring another 675 * atomic operation. 676 */ 677 page_unfreeze_refs(page, 1); 678 return 1; 679 } 680 return 0; 681 } 682 683 /** 684 * putback_lru_page - put previously isolated page onto appropriate LRU list 685 * @page: page to be put back to appropriate lru list 686 * 687 * Add previously isolated @page to appropriate LRU list. 688 * Page may still be unevictable for other reasons. 689 * 690 * lru_lock must not be held, interrupts must be enabled. 691 */ 692 void putback_lru_page(struct page *page) 693 { 694 bool is_unevictable; 695 int was_unevictable = PageUnevictable(page); 696 697 VM_BUG_ON_PAGE(PageLRU(page), page); 698 699 redo: 700 ClearPageUnevictable(page); 701 702 if (page_evictable(page)) { 703 /* 704 * For evictable pages, we can use the cache. 705 * In event of a race, worst case is we end up with an 706 * unevictable page on [in]active list. 707 * We know how to handle that. 708 */ 709 is_unevictable = false; 710 lru_cache_add(page); 711 } else { 712 /* 713 * Put unevictable pages directly on zone's unevictable 714 * list. 715 */ 716 is_unevictable = true; 717 add_page_to_unevictable_list(page); 718 /* 719 * When racing with an mlock or AS_UNEVICTABLE clearing 720 * (page is unlocked) make sure that if the other thread 721 * does not observe our setting of PG_lru and fails 722 * isolation/check_move_unevictable_pages, 723 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 724 * the page back to the evictable list. 725 * 726 * The other side is TestClearPageMlocked() or shmem_lock(). 727 */ 728 smp_mb(); 729 } 730 731 /* 732 * page's status can change while we move it among lru. If an evictable 733 * page is on unevictable list, it never be freed. To avoid that, 734 * check after we added it to the list, again. 735 */ 736 if (is_unevictable && page_evictable(page)) { 737 if (!isolate_lru_page(page)) { 738 put_page(page); 739 goto redo; 740 } 741 /* This means someone else dropped this page from LRU 742 * So, it will be freed or putback to LRU again. There is 743 * nothing to do here. 744 */ 745 } 746 747 if (was_unevictable && !is_unevictable) 748 count_vm_event(UNEVICTABLE_PGRESCUED); 749 else if (!was_unevictable && is_unevictable) 750 count_vm_event(UNEVICTABLE_PGCULLED); 751 752 put_page(page); /* drop ref from isolate */ 753 } 754 755 enum page_references { 756 PAGEREF_RECLAIM, 757 PAGEREF_RECLAIM_CLEAN, 758 PAGEREF_KEEP, 759 PAGEREF_ACTIVATE, 760 }; 761 762 static enum page_references page_check_references(struct page *page, 763 struct scan_control *sc) 764 { 765 int referenced_ptes, referenced_page; 766 unsigned long vm_flags; 767 768 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 769 &vm_flags); 770 referenced_page = TestClearPageReferenced(page); 771 772 /* 773 * Mlock lost the isolation race with us. Let try_to_unmap() 774 * move the page to the unevictable list. 775 */ 776 if (vm_flags & VM_LOCKED) 777 return PAGEREF_RECLAIM; 778 779 if (referenced_ptes) { 780 if (PageSwapBacked(page)) 781 return PAGEREF_ACTIVATE; 782 /* 783 * All mapped pages start out with page table 784 * references from the instantiating fault, so we need 785 * to look twice if a mapped file page is used more 786 * than once. 787 * 788 * Mark it and spare it for another trip around the 789 * inactive list. Another page table reference will 790 * lead to its activation. 791 * 792 * Note: the mark is set for activated pages as well 793 * so that recently deactivated but used pages are 794 * quickly recovered. 795 */ 796 SetPageReferenced(page); 797 798 if (referenced_page || referenced_ptes > 1) 799 return PAGEREF_ACTIVATE; 800 801 /* 802 * Activate file-backed executable pages after first usage. 803 */ 804 if (vm_flags & VM_EXEC) 805 return PAGEREF_ACTIVATE; 806 807 return PAGEREF_KEEP; 808 } 809 810 /* Reclaim if clean, defer dirty pages to writeback */ 811 if (referenced_page && !PageSwapBacked(page)) 812 return PAGEREF_RECLAIM_CLEAN; 813 814 return PAGEREF_RECLAIM; 815 } 816 817 /* Check if a page is dirty or under writeback */ 818 static void page_check_dirty_writeback(struct page *page, 819 bool *dirty, bool *writeback) 820 { 821 struct address_space *mapping; 822 823 /* 824 * Anonymous pages are not handled by flushers and must be written 825 * from reclaim context. Do not stall reclaim based on them 826 */ 827 if (!page_is_file_cache(page)) { 828 *dirty = false; 829 *writeback = false; 830 return; 831 } 832 833 /* By default assume that the page flags are accurate */ 834 *dirty = PageDirty(page); 835 *writeback = PageWriteback(page); 836 837 /* Verify dirty/writeback state if the filesystem supports it */ 838 if (!page_has_private(page)) 839 return; 840 841 mapping = page_mapping(page); 842 if (mapping && mapping->a_ops->is_dirty_writeback) 843 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 844 } 845 846 /* 847 * shrink_page_list() returns the number of reclaimed pages 848 */ 849 static unsigned long shrink_page_list(struct list_head *page_list, 850 struct zone *zone, 851 struct scan_control *sc, 852 enum ttu_flags ttu_flags, 853 unsigned long *ret_nr_dirty, 854 unsigned long *ret_nr_unqueued_dirty, 855 unsigned long *ret_nr_congested, 856 unsigned long *ret_nr_writeback, 857 unsigned long *ret_nr_immediate, 858 bool force_reclaim) 859 { 860 LIST_HEAD(ret_pages); 861 LIST_HEAD(free_pages); 862 int pgactivate = 0; 863 unsigned long nr_unqueued_dirty = 0; 864 unsigned long nr_dirty = 0; 865 unsigned long nr_congested = 0; 866 unsigned long nr_reclaimed = 0; 867 unsigned long nr_writeback = 0; 868 unsigned long nr_immediate = 0; 869 870 cond_resched(); 871 872 while (!list_empty(page_list)) { 873 struct address_space *mapping; 874 struct page *page; 875 int may_enter_fs; 876 enum page_references references = PAGEREF_RECLAIM_CLEAN; 877 bool dirty, writeback; 878 879 cond_resched(); 880 881 page = lru_to_page(page_list); 882 list_del(&page->lru); 883 884 if (!trylock_page(page)) 885 goto keep; 886 887 VM_BUG_ON_PAGE(PageActive(page), page); 888 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 889 890 sc->nr_scanned++; 891 892 if (unlikely(!page_evictable(page))) 893 goto cull_mlocked; 894 895 if (!sc->may_unmap && page_mapped(page)) 896 goto keep_locked; 897 898 /* Double the slab pressure for mapped and swapcache pages */ 899 if (page_mapped(page) || PageSwapCache(page)) 900 sc->nr_scanned++; 901 902 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 903 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 904 905 /* 906 * The number of dirty pages determines if a zone is marked 907 * reclaim_congested which affects wait_iff_congested. kswapd 908 * will stall and start writing pages if the tail of the LRU 909 * is all dirty unqueued pages. 910 */ 911 page_check_dirty_writeback(page, &dirty, &writeback); 912 if (dirty || writeback) 913 nr_dirty++; 914 915 if (dirty && !writeback) 916 nr_unqueued_dirty++; 917 918 /* 919 * Treat this page as congested if the underlying BDI is or if 920 * pages are cycling through the LRU so quickly that the 921 * pages marked for immediate reclaim are making it to the 922 * end of the LRU a second time. 923 */ 924 mapping = page_mapping(page); 925 if (((dirty || writeback) && mapping && 926 inode_write_congested(mapping->host)) || 927 (writeback && PageReclaim(page))) 928 nr_congested++; 929 930 /* 931 * If a page at the tail of the LRU is under writeback, there 932 * are three cases to consider. 933 * 934 * 1) If reclaim is encountering an excessive number of pages 935 * under writeback and this page is both under writeback and 936 * PageReclaim then it indicates that pages are being queued 937 * for IO but are being recycled through the LRU before the 938 * IO can complete. Waiting on the page itself risks an 939 * indefinite stall if it is impossible to writeback the 940 * page due to IO error or disconnected storage so instead 941 * note that the LRU is being scanned too quickly and the 942 * caller can stall after page list has been processed. 943 * 944 * 2) Global reclaim encounters a page, memcg encounters a 945 * page that is not marked for immediate reclaim or 946 * the caller does not have __GFP_IO. In this case mark 947 * the page for immediate reclaim and continue scanning. 948 * 949 * __GFP_IO is checked because a loop driver thread might 950 * enter reclaim, and deadlock if it waits on a page for 951 * which it is needed to do the write (loop masks off 952 * __GFP_IO|__GFP_FS for this reason); but more thought 953 * would probably show more reasons. 954 * 955 * Don't require __GFP_FS, since we're not going into the 956 * FS, just waiting on its writeback completion. Worryingly, 957 * ext4 gfs2 and xfs allocate pages with 958 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing 959 * may_enter_fs here is liable to OOM on them. 960 * 961 * 3) memcg encounters a page that is not already marked 962 * PageReclaim. memcg does not have any dirty pages 963 * throttling so we could easily OOM just because too many 964 * pages are in writeback and there is nothing else to 965 * reclaim. Wait for the writeback to complete. 966 */ 967 if (PageWriteback(page)) { 968 /* Case 1 above */ 969 if (current_is_kswapd() && 970 PageReclaim(page) && 971 test_bit(ZONE_WRITEBACK, &zone->flags)) { 972 nr_immediate++; 973 goto keep_locked; 974 975 /* Case 2 above */ 976 } else if (global_reclaim(sc) || 977 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) { 978 /* 979 * This is slightly racy - end_page_writeback() 980 * might have just cleared PageReclaim, then 981 * setting PageReclaim here end up interpreted 982 * as PageReadahead - but that does not matter 983 * enough to care. What we do want is for this 984 * page to have PageReclaim set next time memcg 985 * reclaim reaches the tests above, so it will 986 * then wait_on_page_writeback() to avoid OOM; 987 * and it's also appropriate in global reclaim. 988 */ 989 SetPageReclaim(page); 990 nr_writeback++; 991 992 goto keep_locked; 993 994 /* Case 3 above */ 995 } else { 996 wait_on_page_writeback(page); 997 } 998 } 999 1000 if (!force_reclaim) 1001 references = page_check_references(page, sc); 1002 1003 switch (references) { 1004 case PAGEREF_ACTIVATE: 1005 goto activate_locked; 1006 case PAGEREF_KEEP: 1007 goto keep_locked; 1008 case PAGEREF_RECLAIM: 1009 case PAGEREF_RECLAIM_CLEAN: 1010 ; /* try to reclaim the page below */ 1011 } 1012 1013 /* 1014 * Anonymous process memory has backing store? 1015 * Try to allocate it some swap space here. 1016 */ 1017 if (PageAnon(page) && !PageSwapCache(page)) { 1018 if (!(sc->gfp_mask & __GFP_IO)) 1019 goto keep_locked; 1020 if (!add_to_swap(page, page_list)) 1021 goto activate_locked; 1022 may_enter_fs = 1; 1023 1024 /* Adding to swap updated mapping */ 1025 mapping = page_mapping(page); 1026 } 1027 1028 /* 1029 * The page is mapped into the page tables of one or more 1030 * processes. Try to unmap it here. 1031 */ 1032 if (page_mapped(page) && mapping) { 1033 switch (try_to_unmap(page, ttu_flags)) { 1034 case SWAP_FAIL: 1035 goto activate_locked; 1036 case SWAP_AGAIN: 1037 goto keep_locked; 1038 case SWAP_MLOCK: 1039 goto cull_mlocked; 1040 case SWAP_SUCCESS: 1041 ; /* try to free the page below */ 1042 } 1043 } 1044 1045 if (PageDirty(page)) { 1046 /* 1047 * Only kswapd can writeback filesystem pages to 1048 * avoid risk of stack overflow but only writeback 1049 * if many dirty pages have been encountered. 1050 */ 1051 if (page_is_file_cache(page) && 1052 (!current_is_kswapd() || 1053 !test_bit(ZONE_DIRTY, &zone->flags))) { 1054 /* 1055 * Immediately reclaim when written back. 1056 * Similar in principal to deactivate_page() 1057 * except we already have the page isolated 1058 * and know it's dirty 1059 */ 1060 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); 1061 SetPageReclaim(page); 1062 1063 goto keep_locked; 1064 } 1065 1066 if (references == PAGEREF_RECLAIM_CLEAN) 1067 goto keep_locked; 1068 if (!may_enter_fs) 1069 goto keep_locked; 1070 if (!sc->may_writepage) 1071 goto keep_locked; 1072 1073 /* Page is dirty, try to write it out here */ 1074 switch (pageout(page, mapping, sc)) { 1075 case PAGE_KEEP: 1076 goto keep_locked; 1077 case PAGE_ACTIVATE: 1078 goto activate_locked; 1079 case PAGE_SUCCESS: 1080 if (PageWriteback(page)) 1081 goto keep; 1082 if (PageDirty(page)) 1083 goto keep; 1084 1085 /* 1086 * A synchronous write - probably a ramdisk. Go 1087 * ahead and try to reclaim the page. 1088 */ 1089 if (!trylock_page(page)) 1090 goto keep; 1091 if (PageDirty(page) || PageWriteback(page)) 1092 goto keep_locked; 1093 mapping = page_mapping(page); 1094 case PAGE_CLEAN: 1095 ; /* try to free the page below */ 1096 } 1097 } 1098 1099 /* 1100 * If the page has buffers, try to free the buffer mappings 1101 * associated with this page. If we succeed we try to free 1102 * the page as well. 1103 * 1104 * We do this even if the page is PageDirty(). 1105 * try_to_release_page() does not perform I/O, but it is 1106 * possible for a page to have PageDirty set, but it is actually 1107 * clean (all its buffers are clean). This happens if the 1108 * buffers were written out directly, with submit_bh(). ext3 1109 * will do this, as well as the blockdev mapping. 1110 * try_to_release_page() will discover that cleanness and will 1111 * drop the buffers and mark the page clean - it can be freed. 1112 * 1113 * Rarely, pages can have buffers and no ->mapping. These are 1114 * the pages which were not successfully invalidated in 1115 * truncate_complete_page(). We try to drop those buffers here 1116 * and if that worked, and the page is no longer mapped into 1117 * process address space (page_count == 1) it can be freed. 1118 * Otherwise, leave the page on the LRU so it is swappable. 1119 */ 1120 if (page_has_private(page)) { 1121 if (!try_to_release_page(page, sc->gfp_mask)) 1122 goto activate_locked; 1123 if (!mapping && page_count(page) == 1) { 1124 unlock_page(page); 1125 if (put_page_testzero(page)) 1126 goto free_it; 1127 else { 1128 /* 1129 * rare race with speculative reference. 1130 * the speculative reference will free 1131 * this page shortly, so we may 1132 * increment nr_reclaimed here (and 1133 * leave it off the LRU). 1134 */ 1135 nr_reclaimed++; 1136 continue; 1137 } 1138 } 1139 } 1140 1141 if (!mapping || !__remove_mapping(mapping, page, true)) 1142 goto keep_locked; 1143 1144 /* 1145 * At this point, we have no other references and there is 1146 * no way to pick any more up (removed from LRU, removed 1147 * from pagecache). Can use non-atomic bitops now (and 1148 * we obviously don't have to worry about waking up a process 1149 * waiting on the page lock, because there are no references. 1150 */ 1151 __clear_page_locked(page); 1152 free_it: 1153 nr_reclaimed++; 1154 1155 /* 1156 * Is there need to periodically free_page_list? It would 1157 * appear not as the counts should be low 1158 */ 1159 list_add(&page->lru, &free_pages); 1160 continue; 1161 1162 cull_mlocked: 1163 if (PageSwapCache(page)) 1164 try_to_free_swap(page); 1165 unlock_page(page); 1166 putback_lru_page(page); 1167 continue; 1168 1169 activate_locked: 1170 /* Not a candidate for swapping, so reclaim swap space. */ 1171 if (PageSwapCache(page) && vm_swap_full()) 1172 try_to_free_swap(page); 1173 VM_BUG_ON_PAGE(PageActive(page), page); 1174 SetPageActive(page); 1175 pgactivate++; 1176 keep_locked: 1177 unlock_page(page); 1178 keep: 1179 list_add(&page->lru, &ret_pages); 1180 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1181 } 1182 1183 mem_cgroup_uncharge_list(&free_pages); 1184 free_hot_cold_page_list(&free_pages, true); 1185 1186 list_splice(&ret_pages, page_list); 1187 count_vm_events(PGACTIVATE, pgactivate); 1188 1189 *ret_nr_dirty += nr_dirty; 1190 *ret_nr_congested += nr_congested; 1191 *ret_nr_unqueued_dirty += nr_unqueued_dirty; 1192 *ret_nr_writeback += nr_writeback; 1193 *ret_nr_immediate += nr_immediate; 1194 return nr_reclaimed; 1195 } 1196 1197 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1198 struct list_head *page_list) 1199 { 1200 struct scan_control sc = { 1201 .gfp_mask = GFP_KERNEL, 1202 .priority = DEF_PRIORITY, 1203 .may_unmap = 1, 1204 }; 1205 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; 1206 struct page *page, *next; 1207 LIST_HEAD(clean_pages); 1208 1209 list_for_each_entry_safe(page, next, page_list, lru) { 1210 if (page_is_file_cache(page) && !PageDirty(page) && 1211 !isolated_balloon_page(page)) { 1212 ClearPageActive(page); 1213 list_move(&page->lru, &clean_pages); 1214 } 1215 } 1216 1217 ret = shrink_page_list(&clean_pages, zone, &sc, 1218 TTU_UNMAP|TTU_IGNORE_ACCESS, 1219 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); 1220 list_splice(&clean_pages, page_list); 1221 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); 1222 return ret; 1223 } 1224 1225 /* 1226 * Attempt to remove the specified page from its LRU. Only take this page 1227 * if it is of the appropriate PageActive status. Pages which are being 1228 * freed elsewhere are also ignored. 1229 * 1230 * page: page to consider 1231 * mode: one of the LRU isolation modes defined above 1232 * 1233 * returns 0 on success, -ve errno on failure. 1234 */ 1235 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1236 { 1237 int ret = -EINVAL; 1238 1239 /* Only take pages on the LRU. */ 1240 if (!PageLRU(page)) 1241 return ret; 1242 1243 /* Compaction should not handle unevictable pages but CMA can do so */ 1244 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1245 return ret; 1246 1247 ret = -EBUSY; 1248 1249 /* 1250 * To minimise LRU disruption, the caller can indicate that it only 1251 * wants to isolate pages it will be able to operate on without 1252 * blocking - clean pages for the most part. 1253 * 1254 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1255 * is used by reclaim when it is cannot write to backing storage 1256 * 1257 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1258 * that it is possible to migrate without blocking 1259 */ 1260 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1261 /* All the caller can do on PageWriteback is block */ 1262 if (PageWriteback(page)) 1263 return ret; 1264 1265 if (PageDirty(page)) { 1266 struct address_space *mapping; 1267 1268 /* ISOLATE_CLEAN means only clean pages */ 1269 if (mode & ISOLATE_CLEAN) 1270 return ret; 1271 1272 /* 1273 * Only pages without mappings or that have a 1274 * ->migratepage callback are possible to migrate 1275 * without blocking 1276 */ 1277 mapping = page_mapping(page); 1278 if (mapping && !mapping->a_ops->migratepage) 1279 return ret; 1280 } 1281 } 1282 1283 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1284 return ret; 1285 1286 if (likely(get_page_unless_zero(page))) { 1287 /* 1288 * Be careful not to clear PageLRU until after we're 1289 * sure the page is not being freed elsewhere -- the 1290 * page release code relies on it. 1291 */ 1292 ClearPageLRU(page); 1293 ret = 0; 1294 } 1295 1296 return ret; 1297 } 1298 1299 /* 1300 * zone->lru_lock is heavily contended. Some of the functions that 1301 * shrink the lists perform better by taking out a batch of pages 1302 * and working on them outside the LRU lock. 1303 * 1304 * For pagecache intensive workloads, this function is the hottest 1305 * spot in the kernel (apart from copy_*_user functions). 1306 * 1307 * Appropriate locks must be held before calling this function. 1308 * 1309 * @nr_to_scan: The number of pages to look through on the list. 1310 * @lruvec: The LRU vector to pull pages from. 1311 * @dst: The temp list to put pages on to. 1312 * @nr_scanned: The number of pages that were scanned. 1313 * @sc: The scan_control struct for this reclaim session 1314 * @mode: One of the LRU isolation modes 1315 * @lru: LRU list id for isolating 1316 * 1317 * returns how many pages were moved onto *@dst. 1318 */ 1319 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1320 struct lruvec *lruvec, struct list_head *dst, 1321 unsigned long *nr_scanned, struct scan_control *sc, 1322 isolate_mode_t mode, enum lru_list lru) 1323 { 1324 struct list_head *src = &lruvec->lists[lru]; 1325 unsigned long nr_taken = 0; 1326 unsigned long scan; 1327 1328 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 1329 struct page *page; 1330 int nr_pages; 1331 1332 page = lru_to_page(src); 1333 prefetchw_prev_lru_page(page, src, flags); 1334 1335 VM_BUG_ON_PAGE(!PageLRU(page), page); 1336 1337 switch (__isolate_lru_page(page, mode)) { 1338 case 0: 1339 nr_pages = hpage_nr_pages(page); 1340 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages); 1341 list_move(&page->lru, dst); 1342 nr_taken += nr_pages; 1343 break; 1344 1345 case -EBUSY: 1346 /* else it is being freed elsewhere */ 1347 list_move(&page->lru, src); 1348 continue; 1349 1350 default: 1351 BUG(); 1352 } 1353 } 1354 1355 *nr_scanned = scan; 1356 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, 1357 nr_taken, mode, is_file_lru(lru)); 1358 return nr_taken; 1359 } 1360 1361 /** 1362 * isolate_lru_page - tries to isolate a page from its LRU list 1363 * @page: page to isolate from its LRU list 1364 * 1365 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1366 * vmstat statistic corresponding to whatever LRU list the page was on. 1367 * 1368 * Returns 0 if the page was removed from an LRU list. 1369 * Returns -EBUSY if the page was not on an LRU list. 1370 * 1371 * The returned page will have PageLRU() cleared. If it was found on 1372 * the active list, it will have PageActive set. If it was found on 1373 * the unevictable list, it will have the PageUnevictable bit set. That flag 1374 * may need to be cleared by the caller before letting the page go. 1375 * 1376 * The vmstat statistic corresponding to the list on which the page was 1377 * found will be decremented. 1378 * 1379 * Restrictions: 1380 * (1) Must be called with an elevated refcount on the page. This is a 1381 * fundamentnal difference from isolate_lru_pages (which is called 1382 * without a stable reference). 1383 * (2) the lru_lock must not be held. 1384 * (3) interrupts must be enabled. 1385 */ 1386 int isolate_lru_page(struct page *page) 1387 { 1388 int ret = -EBUSY; 1389 1390 VM_BUG_ON_PAGE(!page_count(page), page); 1391 1392 if (PageLRU(page)) { 1393 struct zone *zone = page_zone(page); 1394 struct lruvec *lruvec; 1395 1396 spin_lock_irq(&zone->lru_lock); 1397 lruvec = mem_cgroup_page_lruvec(page, zone); 1398 if (PageLRU(page)) { 1399 int lru = page_lru(page); 1400 get_page(page); 1401 ClearPageLRU(page); 1402 del_page_from_lru_list(page, lruvec, lru); 1403 ret = 0; 1404 } 1405 spin_unlock_irq(&zone->lru_lock); 1406 } 1407 return ret; 1408 } 1409 1410 /* 1411 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1412 * then get resheduled. When there are massive number of tasks doing page 1413 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1414 * the LRU list will go small and be scanned faster than necessary, leading to 1415 * unnecessary swapping, thrashing and OOM. 1416 */ 1417 static int too_many_isolated(struct zone *zone, int file, 1418 struct scan_control *sc) 1419 { 1420 unsigned long inactive, isolated; 1421 1422 if (current_is_kswapd()) 1423 return 0; 1424 1425 if (!global_reclaim(sc)) 1426 return 0; 1427 1428 if (file) { 1429 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1430 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1431 } else { 1432 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1433 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1434 } 1435 1436 /* 1437 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1438 * won't get blocked by normal direct-reclaimers, forming a circular 1439 * deadlock. 1440 */ 1441 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS) 1442 inactive >>= 3; 1443 1444 return isolated > inactive; 1445 } 1446 1447 static noinline_for_stack void 1448 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1449 { 1450 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1451 struct zone *zone = lruvec_zone(lruvec); 1452 LIST_HEAD(pages_to_free); 1453 1454 /* 1455 * Put back any unfreeable pages. 1456 */ 1457 while (!list_empty(page_list)) { 1458 struct page *page = lru_to_page(page_list); 1459 int lru; 1460 1461 VM_BUG_ON_PAGE(PageLRU(page), page); 1462 list_del(&page->lru); 1463 if (unlikely(!page_evictable(page))) { 1464 spin_unlock_irq(&zone->lru_lock); 1465 putback_lru_page(page); 1466 spin_lock_irq(&zone->lru_lock); 1467 continue; 1468 } 1469 1470 lruvec = mem_cgroup_page_lruvec(page, zone); 1471 1472 SetPageLRU(page); 1473 lru = page_lru(page); 1474 add_page_to_lru_list(page, lruvec, lru); 1475 1476 if (is_active_lru(lru)) { 1477 int file = is_file_lru(lru); 1478 int numpages = hpage_nr_pages(page); 1479 reclaim_stat->recent_rotated[file] += numpages; 1480 } 1481 if (put_page_testzero(page)) { 1482 __ClearPageLRU(page); 1483 __ClearPageActive(page); 1484 del_page_from_lru_list(page, lruvec, lru); 1485 1486 if (unlikely(PageCompound(page))) { 1487 spin_unlock_irq(&zone->lru_lock); 1488 mem_cgroup_uncharge(page); 1489 (*get_compound_page_dtor(page))(page); 1490 spin_lock_irq(&zone->lru_lock); 1491 } else 1492 list_add(&page->lru, &pages_to_free); 1493 } 1494 } 1495 1496 /* 1497 * To save our caller's stack, now use input list for pages to free. 1498 */ 1499 list_splice(&pages_to_free, page_list); 1500 } 1501 1502 /* 1503 * If a kernel thread (such as nfsd for loop-back mounts) services 1504 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1505 * In that case we should only throttle if the backing device it is 1506 * writing to is congested. In other cases it is safe to throttle. 1507 */ 1508 static int current_may_throttle(void) 1509 { 1510 return !(current->flags & PF_LESS_THROTTLE) || 1511 current->backing_dev_info == NULL || 1512 bdi_write_congested(current->backing_dev_info); 1513 } 1514 1515 /* 1516 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1517 * of reclaimed pages 1518 */ 1519 static noinline_for_stack unsigned long 1520 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1521 struct scan_control *sc, enum lru_list lru) 1522 { 1523 LIST_HEAD(page_list); 1524 unsigned long nr_scanned; 1525 unsigned long nr_reclaimed = 0; 1526 unsigned long nr_taken; 1527 unsigned long nr_dirty = 0; 1528 unsigned long nr_congested = 0; 1529 unsigned long nr_unqueued_dirty = 0; 1530 unsigned long nr_writeback = 0; 1531 unsigned long nr_immediate = 0; 1532 isolate_mode_t isolate_mode = 0; 1533 int file = is_file_lru(lru); 1534 struct zone *zone = lruvec_zone(lruvec); 1535 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1536 1537 while (unlikely(too_many_isolated(zone, file, sc))) { 1538 congestion_wait(BLK_RW_ASYNC, HZ/10); 1539 1540 /* We are about to die and free our memory. Return now. */ 1541 if (fatal_signal_pending(current)) 1542 return SWAP_CLUSTER_MAX; 1543 } 1544 1545 lru_add_drain(); 1546 1547 if (!sc->may_unmap) 1548 isolate_mode |= ISOLATE_UNMAPPED; 1549 if (!sc->may_writepage) 1550 isolate_mode |= ISOLATE_CLEAN; 1551 1552 spin_lock_irq(&zone->lru_lock); 1553 1554 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1555 &nr_scanned, sc, isolate_mode, lru); 1556 1557 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1558 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1559 1560 if (global_reclaim(sc)) { 1561 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned); 1562 if (current_is_kswapd()) 1563 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); 1564 else 1565 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); 1566 } 1567 spin_unlock_irq(&zone->lru_lock); 1568 1569 if (nr_taken == 0) 1570 return 0; 1571 1572 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, 1573 &nr_dirty, &nr_unqueued_dirty, &nr_congested, 1574 &nr_writeback, &nr_immediate, 1575 false); 1576 1577 spin_lock_irq(&zone->lru_lock); 1578 1579 reclaim_stat->recent_scanned[file] += nr_taken; 1580 1581 if (global_reclaim(sc)) { 1582 if (current_is_kswapd()) 1583 __count_zone_vm_events(PGSTEAL_KSWAPD, zone, 1584 nr_reclaimed); 1585 else 1586 __count_zone_vm_events(PGSTEAL_DIRECT, zone, 1587 nr_reclaimed); 1588 } 1589 1590 putback_inactive_pages(lruvec, &page_list); 1591 1592 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1593 1594 spin_unlock_irq(&zone->lru_lock); 1595 1596 mem_cgroup_uncharge_list(&page_list); 1597 free_hot_cold_page_list(&page_list, true); 1598 1599 /* 1600 * If reclaim is isolating dirty pages under writeback, it implies 1601 * that the long-lived page allocation rate is exceeding the page 1602 * laundering rate. Either the global limits are not being effective 1603 * at throttling processes due to the page distribution throughout 1604 * zones or there is heavy usage of a slow backing device. The 1605 * only option is to throttle from reclaim context which is not ideal 1606 * as there is no guarantee the dirtying process is throttled in the 1607 * same way balance_dirty_pages() manages. 1608 * 1609 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1610 * of pages under pages flagged for immediate reclaim and stall if any 1611 * are encountered in the nr_immediate check below. 1612 */ 1613 if (nr_writeback && nr_writeback == nr_taken) 1614 set_bit(ZONE_WRITEBACK, &zone->flags); 1615 1616 /* 1617 * memcg will stall in page writeback so only consider forcibly 1618 * stalling for global reclaim 1619 */ 1620 if (global_reclaim(sc)) { 1621 /* 1622 * Tag a zone as congested if all the dirty pages scanned were 1623 * backed by a congested BDI and wait_iff_congested will stall. 1624 */ 1625 if (nr_dirty && nr_dirty == nr_congested) 1626 set_bit(ZONE_CONGESTED, &zone->flags); 1627 1628 /* 1629 * If dirty pages are scanned that are not queued for IO, it 1630 * implies that flushers are not keeping up. In this case, flag 1631 * the zone ZONE_DIRTY and kswapd will start writing pages from 1632 * reclaim context. 1633 */ 1634 if (nr_unqueued_dirty == nr_taken) 1635 set_bit(ZONE_DIRTY, &zone->flags); 1636 1637 /* 1638 * If kswapd scans pages marked marked for immediate 1639 * reclaim and under writeback (nr_immediate), it implies 1640 * that pages are cycling through the LRU faster than 1641 * they are written so also forcibly stall. 1642 */ 1643 if (nr_immediate && current_may_throttle()) 1644 congestion_wait(BLK_RW_ASYNC, HZ/10); 1645 } 1646 1647 /* 1648 * Stall direct reclaim for IO completions if underlying BDIs or zone 1649 * is congested. Allow kswapd to continue until it starts encountering 1650 * unqueued dirty pages or cycling through the LRU too quickly. 1651 */ 1652 if (!sc->hibernation_mode && !current_is_kswapd() && 1653 current_may_throttle()) 1654 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); 1655 1656 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, 1657 zone_idx(zone), 1658 nr_scanned, nr_reclaimed, 1659 sc->priority, 1660 trace_shrink_flags(file)); 1661 return nr_reclaimed; 1662 } 1663 1664 /* 1665 * This moves pages from the active list to the inactive list. 1666 * 1667 * We move them the other way if the page is referenced by one or more 1668 * processes, from rmap. 1669 * 1670 * If the pages are mostly unmapped, the processing is fast and it is 1671 * appropriate to hold zone->lru_lock across the whole operation. But if 1672 * the pages are mapped, the processing is slow (page_referenced()) so we 1673 * should drop zone->lru_lock around each page. It's impossible to balance 1674 * this, so instead we remove the pages from the LRU while processing them. 1675 * It is safe to rely on PG_active against the non-LRU pages in here because 1676 * nobody will play with that bit on a non-LRU page. 1677 * 1678 * The downside is that we have to touch page->_count against each page. 1679 * But we had to alter page->flags anyway. 1680 */ 1681 1682 static void move_active_pages_to_lru(struct lruvec *lruvec, 1683 struct list_head *list, 1684 struct list_head *pages_to_free, 1685 enum lru_list lru) 1686 { 1687 struct zone *zone = lruvec_zone(lruvec); 1688 unsigned long pgmoved = 0; 1689 struct page *page; 1690 int nr_pages; 1691 1692 while (!list_empty(list)) { 1693 page = lru_to_page(list); 1694 lruvec = mem_cgroup_page_lruvec(page, zone); 1695 1696 VM_BUG_ON_PAGE(PageLRU(page), page); 1697 SetPageLRU(page); 1698 1699 nr_pages = hpage_nr_pages(page); 1700 mem_cgroup_update_lru_size(lruvec, lru, nr_pages); 1701 list_move(&page->lru, &lruvec->lists[lru]); 1702 pgmoved += nr_pages; 1703 1704 if (put_page_testzero(page)) { 1705 __ClearPageLRU(page); 1706 __ClearPageActive(page); 1707 del_page_from_lru_list(page, lruvec, lru); 1708 1709 if (unlikely(PageCompound(page))) { 1710 spin_unlock_irq(&zone->lru_lock); 1711 mem_cgroup_uncharge(page); 1712 (*get_compound_page_dtor(page))(page); 1713 spin_lock_irq(&zone->lru_lock); 1714 } else 1715 list_add(&page->lru, pages_to_free); 1716 } 1717 } 1718 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1719 if (!is_active_lru(lru)) 1720 __count_vm_events(PGDEACTIVATE, pgmoved); 1721 } 1722 1723 static void shrink_active_list(unsigned long nr_to_scan, 1724 struct lruvec *lruvec, 1725 struct scan_control *sc, 1726 enum lru_list lru) 1727 { 1728 unsigned long nr_taken; 1729 unsigned long nr_scanned; 1730 unsigned long vm_flags; 1731 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1732 LIST_HEAD(l_active); 1733 LIST_HEAD(l_inactive); 1734 struct page *page; 1735 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1736 unsigned long nr_rotated = 0; 1737 isolate_mode_t isolate_mode = 0; 1738 int file = is_file_lru(lru); 1739 struct zone *zone = lruvec_zone(lruvec); 1740 1741 lru_add_drain(); 1742 1743 if (!sc->may_unmap) 1744 isolate_mode |= ISOLATE_UNMAPPED; 1745 if (!sc->may_writepage) 1746 isolate_mode |= ISOLATE_CLEAN; 1747 1748 spin_lock_irq(&zone->lru_lock); 1749 1750 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1751 &nr_scanned, sc, isolate_mode, lru); 1752 if (global_reclaim(sc)) 1753 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned); 1754 1755 reclaim_stat->recent_scanned[file] += nr_taken; 1756 1757 __count_zone_vm_events(PGREFILL, zone, nr_scanned); 1758 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1759 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1760 spin_unlock_irq(&zone->lru_lock); 1761 1762 while (!list_empty(&l_hold)) { 1763 cond_resched(); 1764 page = lru_to_page(&l_hold); 1765 list_del(&page->lru); 1766 1767 if (unlikely(!page_evictable(page))) { 1768 putback_lru_page(page); 1769 continue; 1770 } 1771 1772 if (unlikely(buffer_heads_over_limit)) { 1773 if (page_has_private(page) && trylock_page(page)) { 1774 if (page_has_private(page)) 1775 try_to_release_page(page, 0); 1776 unlock_page(page); 1777 } 1778 } 1779 1780 if (page_referenced(page, 0, sc->target_mem_cgroup, 1781 &vm_flags)) { 1782 nr_rotated += hpage_nr_pages(page); 1783 /* 1784 * Identify referenced, file-backed active pages and 1785 * give them one more trip around the active list. So 1786 * that executable code get better chances to stay in 1787 * memory under moderate memory pressure. Anon pages 1788 * are not likely to be evicted by use-once streaming 1789 * IO, plus JVM can create lots of anon VM_EXEC pages, 1790 * so we ignore them here. 1791 */ 1792 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1793 list_add(&page->lru, &l_active); 1794 continue; 1795 } 1796 } 1797 1798 ClearPageActive(page); /* we are de-activating */ 1799 list_add(&page->lru, &l_inactive); 1800 } 1801 1802 /* 1803 * Move pages back to the lru list. 1804 */ 1805 spin_lock_irq(&zone->lru_lock); 1806 /* 1807 * Count referenced pages from currently used mappings as rotated, 1808 * even though only some of them are actually re-activated. This 1809 * helps balance scan pressure between file and anonymous pages in 1810 * get_scan_count. 1811 */ 1812 reclaim_stat->recent_rotated[file] += nr_rotated; 1813 1814 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1815 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1816 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1817 spin_unlock_irq(&zone->lru_lock); 1818 1819 mem_cgroup_uncharge_list(&l_hold); 1820 free_hot_cold_page_list(&l_hold, true); 1821 } 1822 1823 #ifdef CONFIG_SWAP 1824 static int inactive_anon_is_low_global(struct zone *zone) 1825 { 1826 unsigned long active, inactive; 1827 1828 active = zone_page_state(zone, NR_ACTIVE_ANON); 1829 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1830 1831 if (inactive * zone->inactive_ratio < active) 1832 return 1; 1833 1834 return 0; 1835 } 1836 1837 /** 1838 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1839 * @lruvec: LRU vector to check 1840 * 1841 * Returns true if the zone does not have enough inactive anon pages, 1842 * meaning some active anon pages need to be deactivated. 1843 */ 1844 static int inactive_anon_is_low(struct lruvec *lruvec) 1845 { 1846 /* 1847 * If we don't have swap space, anonymous page deactivation 1848 * is pointless. 1849 */ 1850 if (!total_swap_pages) 1851 return 0; 1852 1853 if (!mem_cgroup_disabled()) 1854 return mem_cgroup_inactive_anon_is_low(lruvec); 1855 1856 return inactive_anon_is_low_global(lruvec_zone(lruvec)); 1857 } 1858 #else 1859 static inline int inactive_anon_is_low(struct lruvec *lruvec) 1860 { 1861 return 0; 1862 } 1863 #endif 1864 1865 /** 1866 * inactive_file_is_low - check if file pages need to be deactivated 1867 * @lruvec: LRU vector to check 1868 * 1869 * When the system is doing streaming IO, memory pressure here 1870 * ensures that active file pages get deactivated, until more 1871 * than half of the file pages are on the inactive list. 1872 * 1873 * Once we get to that situation, protect the system's working 1874 * set from being evicted by disabling active file page aging. 1875 * 1876 * This uses a different ratio than the anonymous pages, because 1877 * the page cache uses a use-once replacement algorithm. 1878 */ 1879 static int inactive_file_is_low(struct lruvec *lruvec) 1880 { 1881 unsigned long inactive; 1882 unsigned long active; 1883 1884 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE); 1885 active = get_lru_size(lruvec, LRU_ACTIVE_FILE); 1886 1887 return active > inactive; 1888 } 1889 1890 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) 1891 { 1892 if (is_file_lru(lru)) 1893 return inactive_file_is_low(lruvec); 1894 else 1895 return inactive_anon_is_low(lruvec); 1896 } 1897 1898 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1899 struct lruvec *lruvec, struct scan_control *sc) 1900 { 1901 if (is_active_lru(lru)) { 1902 if (inactive_list_is_low(lruvec, lru)) 1903 shrink_active_list(nr_to_scan, lruvec, sc, lru); 1904 return 0; 1905 } 1906 1907 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 1908 } 1909 1910 enum scan_balance { 1911 SCAN_EQUAL, 1912 SCAN_FRACT, 1913 SCAN_ANON, 1914 SCAN_FILE, 1915 }; 1916 1917 /* 1918 * Determine how aggressively the anon and file LRU lists should be 1919 * scanned. The relative value of each set of LRU lists is determined 1920 * by looking at the fraction of the pages scanned we did rotate back 1921 * onto the active list instead of evict. 1922 * 1923 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 1924 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 1925 */ 1926 static void get_scan_count(struct lruvec *lruvec, int swappiness, 1927 struct scan_control *sc, unsigned long *nr, 1928 unsigned long *lru_pages) 1929 { 1930 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1931 u64 fraction[2]; 1932 u64 denominator = 0; /* gcc */ 1933 struct zone *zone = lruvec_zone(lruvec); 1934 unsigned long anon_prio, file_prio; 1935 enum scan_balance scan_balance; 1936 unsigned long anon, file; 1937 bool force_scan = false; 1938 unsigned long ap, fp; 1939 enum lru_list lru; 1940 bool some_scanned; 1941 int pass; 1942 1943 /* 1944 * If the zone or memcg is small, nr[l] can be 0. This 1945 * results in no scanning on this priority and a potential 1946 * priority drop. Global direct reclaim can go to the next 1947 * zone and tends to have no problems. Global kswapd is for 1948 * zone balancing and it needs to scan a minimum amount. When 1949 * reclaiming for a memcg, a priority drop can cause high 1950 * latencies, so it's better to scan a minimum amount there as 1951 * well. 1952 */ 1953 if (current_is_kswapd()) { 1954 if (!zone_reclaimable(zone)) 1955 force_scan = true; 1956 if (!mem_cgroup_lruvec_online(lruvec)) 1957 force_scan = true; 1958 } 1959 if (!global_reclaim(sc)) 1960 force_scan = true; 1961 1962 /* If we have no swap space, do not bother scanning anon pages. */ 1963 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) { 1964 scan_balance = SCAN_FILE; 1965 goto out; 1966 } 1967 1968 /* 1969 * Global reclaim will swap to prevent OOM even with no 1970 * swappiness, but memcg users want to use this knob to 1971 * disable swapping for individual groups completely when 1972 * using the memory controller's swap limit feature would be 1973 * too expensive. 1974 */ 1975 if (!global_reclaim(sc) && !swappiness) { 1976 scan_balance = SCAN_FILE; 1977 goto out; 1978 } 1979 1980 /* 1981 * Do not apply any pressure balancing cleverness when the 1982 * system is close to OOM, scan both anon and file equally 1983 * (unless the swappiness setting disagrees with swapping). 1984 */ 1985 if (!sc->priority && swappiness) { 1986 scan_balance = SCAN_EQUAL; 1987 goto out; 1988 } 1989 1990 /* 1991 * Prevent the reclaimer from falling into the cache trap: as 1992 * cache pages start out inactive, every cache fault will tip 1993 * the scan balance towards the file LRU. And as the file LRU 1994 * shrinks, so does the window for rotation from references. 1995 * This means we have a runaway feedback loop where a tiny 1996 * thrashing file LRU becomes infinitely more attractive than 1997 * anon pages. Try to detect this based on file LRU size. 1998 */ 1999 if (global_reclaim(sc)) { 2000 unsigned long zonefile; 2001 unsigned long zonefree; 2002 2003 zonefree = zone_page_state(zone, NR_FREE_PAGES); 2004 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) + 2005 zone_page_state(zone, NR_INACTIVE_FILE); 2006 2007 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) { 2008 scan_balance = SCAN_ANON; 2009 goto out; 2010 } 2011 } 2012 2013 /* 2014 * There is enough inactive page cache, do not reclaim 2015 * anything from the anonymous working set right now. 2016 */ 2017 if (!inactive_file_is_low(lruvec)) { 2018 scan_balance = SCAN_FILE; 2019 goto out; 2020 } 2021 2022 scan_balance = SCAN_FRACT; 2023 2024 /* 2025 * With swappiness at 100, anonymous and file have the same priority. 2026 * This scanning priority is essentially the inverse of IO cost. 2027 */ 2028 anon_prio = swappiness; 2029 file_prio = 200 - anon_prio; 2030 2031 /* 2032 * OK, so we have swap space and a fair amount of page cache 2033 * pages. We use the recently rotated / recently scanned 2034 * ratios to determine how valuable each cache is. 2035 * 2036 * Because workloads change over time (and to avoid overflow) 2037 * we keep these statistics as a floating average, which ends 2038 * up weighing recent references more than old ones. 2039 * 2040 * anon in [0], file in [1] 2041 */ 2042 2043 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) + 2044 get_lru_size(lruvec, LRU_INACTIVE_ANON); 2045 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) + 2046 get_lru_size(lruvec, LRU_INACTIVE_FILE); 2047 2048 spin_lock_irq(&zone->lru_lock); 2049 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2050 reclaim_stat->recent_scanned[0] /= 2; 2051 reclaim_stat->recent_rotated[0] /= 2; 2052 } 2053 2054 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2055 reclaim_stat->recent_scanned[1] /= 2; 2056 reclaim_stat->recent_rotated[1] /= 2; 2057 } 2058 2059 /* 2060 * The amount of pressure on anon vs file pages is inversely 2061 * proportional to the fraction of recently scanned pages on 2062 * each list that were recently referenced and in active use. 2063 */ 2064 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2065 ap /= reclaim_stat->recent_rotated[0] + 1; 2066 2067 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2068 fp /= reclaim_stat->recent_rotated[1] + 1; 2069 spin_unlock_irq(&zone->lru_lock); 2070 2071 fraction[0] = ap; 2072 fraction[1] = fp; 2073 denominator = ap + fp + 1; 2074 out: 2075 some_scanned = false; 2076 /* Only use force_scan on second pass. */ 2077 for (pass = 0; !some_scanned && pass < 2; pass++) { 2078 *lru_pages = 0; 2079 for_each_evictable_lru(lru) { 2080 int file = is_file_lru(lru); 2081 unsigned long size; 2082 unsigned long scan; 2083 2084 size = get_lru_size(lruvec, lru); 2085 scan = size >> sc->priority; 2086 2087 if (!scan && pass && force_scan) 2088 scan = min(size, SWAP_CLUSTER_MAX); 2089 2090 switch (scan_balance) { 2091 case SCAN_EQUAL: 2092 /* Scan lists relative to size */ 2093 break; 2094 case SCAN_FRACT: 2095 /* 2096 * Scan types proportional to swappiness and 2097 * their relative recent reclaim efficiency. 2098 */ 2099 scan = div64_u64(scan * fraction[file], 2100 denominator); 2101 break; 2102 case SCAN_FILE: 2103 case SCAN_ANON: 2104 /* Scan one type exclusively */ 2105 if ((scan_balance == SCAN_FILE) != file) { 2106 size = 0; 2107 scan = 0; 2108 } 2109 break; 2110 default: 2111 /* Look ma, no brain */ 2112 BUG(); 2113 } 2114 2115 *lru_pages += size; 2116 nr[lru] = scan; 2117 2118 /* 2119 * Skip the second pass and don't force_scan, 2120 * if we found something to scan. 2121 */ 2122 some_scanned |= !!scan; 2123 } 2124 } 2125 } 2126 2127 /* 2128 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 2129 */ 2130 static void shrink_lruvec(struct lruvec *lruvec, int swappiness, 2131 struct scan_control *sc, unsigned long *lru_pages) 2132 { 2133 unsigned long nr[NR_LRU_LISTS]; 2134 unsigned long targets[NR_LRU_LISTS]; 2135 unsigned long nr_to_scan; 2136 enum lru_list lru; 2137 unsigned long nr_reclaimed = 0; 2138 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2139 struct blk_plug plug; 2140 bool scan_adjusted; 2141 2142 get_scan_count(lruvec, swappiness, sc, nr, lru_pages); 2143 2144 /* Record the original scan target for proportional adjustments later */ 2145 memcpy(targets, nr, sizeof(nr)); 2146 2147 /* 2148 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2149 * event that can occur when there is little memory pressure e.g. 2150 * multiple streaming readers/writers. Hence, we do not abort scanning 2151 * when the requested number of pages are reclaimed when scanning at 2152 * DEF_PRIORITY on the assumption that the fact we are direct 2153 * reclaiming implies that kswapd is not keeping up and it is best to 2154 * do a batch of work at once. For memcg reclaim one check is made to 2155 * abort proportional reclaim if either the file or anon lru has already 2156 * dropped to zero at the first pass. 2157 */ 2158 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2159 sc->priority == DEF_PRIORITY); 2160 2161 blk_start_plug(&plug); 2162 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2163 nr[LRU_INACTIVE_FILE]) { 2164 unsigned long nr_anon, nr_file, percentage; 2165 unsigned long nr_scanned; 2166 2167 for_each_evictable_lru(lru) { 2168 if (nr[lru]) { 2169 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2170 nr[lru] -= nr_to_scan; 2171 2172 nr_reclaimed += shrink_list(lru, nr_to_scan, 2173 lruvec, sc); 2174 } 2175 } 2176 2177 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2178 continue; 2179 2180 /* 2181 * For kswapd and memcg, reclaim at least the number of pages 2182 * requested. Ensure that the anon and file LRUs are scanned 2183 * proportionally what was requested by get_scan_count(). We 2184 * stop reclaiming one LRU and reduce the amount scanning 2185 * proportional to the original scan target. 2186 */ 2187 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2188 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2189 2190 /* 2191 * It's just vindictive to attack the larger once the smaller 2192 * has gone to zero. And given the way we stop scanning the 2193 * smaller below, this makes sure that we only make one nudge 2194 * towards proportionality once we've got nr_to_reclaim. 2195 */ 2196 if (!nr_file || !nr_anon) 2197 break; 2198 2199 if (nr_file > nr_anon) { 2200 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2201 targets[LRU_ACTIVE_ANON] + 1; 2202 lru = LRU_BASE; 2203 percentage = nr_anon * 100 / scan_target; 2204 } else { 2205 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2206 targets[LRU_ACTIVE_FILE] + 1; 2207 lru = LRU_FILE; 2208 percentage = nr_file * 100 / scan_target; 2209 } 2210 2211 /* Stop scanning the smaller of the LRU */ 2212 nr[lru] = 0; 2213 nr[lru + LRU_ACTIVE] = 0; 2214 2215 /* 2216 * Recalculate the other LRU scan count based on its original 2217 * scan target and the percentage scanning already complete 2218 */ 2219 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2220 nr_scanned = targets[lru] - nr[lru]; 2221 nr[lru] = targets[lru] * (100 - percentage) / 100; 2222 nr[lru] -= min(nr[lru], nr_scanned); 2223 2224 lru += LRU_ACTIVE; 2225 nr_scanned = targets[lru] - nr[lru]; 2226 nr[lru] = targets[lru] * (100 - percentage) / 100; 2227 nr[lru] -= min(nr[lru], nr_scanned); 2228 2229 scan_adjusted = true; 2230 } 2231 blk_finish_plug(&plug); 2232 sc->nr_reclaimed += nr_reclaimed; 2233 2234 /* 2235 * Even if we did not try to evict anon pages at all, we want to 2236 * rebalance the anon lru active/inactive ratio. 2237 */ 2238 if (inactive_anon_is_low(lruvec)) 2239 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2240 sc, LRU_ACTIVE_ANON); 2241 2242 throttle_vm_writeout(sc->gfp_mask); 2243 } 2244 2245 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2246 static bool in_reclaim_compaction(struct scan_control *sc) 2247 { 2248 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2249 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2250 sc->priority < DEF_PRIORITY - 2)) 2251 return true; 2252 2253 return false; 2254 } 2255 2256 /* 2257 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2258 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2259 * true if more pages should be reclaimed such that when the page allocator 2260 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2261 * It will give up earlier than that if there is difficulty reclaiming pages. 2262 */ 2263 static inline bool should_continue_reclaim(struct zone *zone, 2264 unsigned long nr_reclaimed, 2265 unsigned long nr_scanned, 2266 struct scan_control *sc) 2267 { 2268 unsigned long pages_for_compaction; 2269 unsigned long inactive_lru_pages; 2270 2271 /* If not in reclaim/compaction mode, stop */ 2272 if (!in_reclaim_compaction(sc)) 2273 return false; 2274 2275 /* Consider stopping depending on scan and reclaim activity */ 2276 if (sc->gfp_mask & __GFP_REPEAT) { 2277 /* 2278 * For __GFP_REPEAT allocations, stop reclaiming if the 2279 * full LRU list has been scanned and we are still failing 2280 * to reclaim pages. This full LRU scan is potentially 2281 * expensive but a __GFP_REPEAT caller really wants to succeed 2282 */ 2283 if (!nr_reclaimed && !nr_scanned) 2284 return false; 2285 } else { 2286 /* 2287 * For non-__GFP_REPEAT allocations which can presumably 2288 * fail without consequence, stop if we failed to reclaim 2289 * any pages from the last SWAP_CLUSTER_MAX number of 2290 * pages that were scanned. This will return to the 2291 * caller faster at the risk reclaim/compaction and 2292 * the resulting allocation attempt fails 2293 */ 2294 if (!nr_reclaimed) 2295 return false; 2296 } 2297 2298 /* 2299 * If we have not reclaimed enough pages for compaction and the 2300 * inactive lists are large enough, continue reclaiming 2301 */ 2302 pages_for_compaction = (2UL << sc->order); 2303 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE); 2304 if (get_nr_swap_pages() > 0) 2305 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON); 2306 if (sc->nr_reclaimed < pages_for_compaction && 2307 inactive_lru_pages > pages_for_compaction) 2308 return true; 2309 2310 /* If compaction would go ahead or the allocation would succeed, stop */ 2311 switch (compaction_suitable(zone, sc->order, 0, 0)) { 2312 case COMPACT_PARTIAL: 2313 case COMPACT_CONTINUE: 2314 return false; 2315 default: 2316 return true; 2317 } 2318 } 2319 2320 static bool shrink_zone(struct zone *zone, struct scan_control *sc, 2321 bool is_classzone) 2322 { 2323 struct reclaim_state *reclaim_state = current->reclaim_state; 2324 unsigned long nr_reclaimed, nr_scanned; 2325 bool reclaimable = false; 2326 2327 do { 2328 struct mem_cgroup *root = sc->target_mem_cgroup; 2329 struct mem_cgroup_reclaim_cookie reclaim = { 2330 .zone = zone, 2331 .priority = sc->priority, 2332 }; 2333 unsigned long zone_lru_pages = 0; 2334 struct mem_cgroup *memcg; 2335 2336 nr_reclaimed = sc->nr_reclaimed; 2337 nr_scanned = sc->nr_scanned; 2338 2339 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2340 do { 2341 unsigned long lru_pages; 2342 unsigned long scanned; 2343 struct lruvec *lruvec; 2344 int swappiness; 2345 2346 if (mem_cgroup_low(root, memcg)) { 2347 if (!sc->may_thrash) 2348 continue; 2349 mem_cgroup_events(memcg, MEMCG_LOW, 1); 2350 } 2351 2352 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2353 swappiness = mem_cgroup_swappiness(memcg); 2354 scanned = sc->nr_scanned; 2355 2356 shrink_lruvec(lruvec, swappiness, sc, &lru_pages); 2357 zone_lru_pages += lru_pages; 2358 2359 if (memcg && is_classzone) 2360 shrink_slab(sc->gfp_mask, zone_to_nid(zone), 2361 memcg, sc->nr_scanned - scanned, 2362 lru_pages); 2363 2364 /* 2365 * Direct reclaim and kswapd have to scan all memory 2366 * cgroups to fulfill the overall scan target for the 2367 * zone. 2368 * 2369 * Limit reclaim, on the other hand, only cares about 2370 * nr_to_reclaim pages to be reclaimed and it will 2371 * retry with decreasing priority if one round over the 2372 * whole hierarchy is not sufficient. 2373 */ 2374 if (!global_reclaim(sc) && 2375 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2376 mem_cgroup_iter_break(root, memcg); 2377 break; 2378 } 2379 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2380 2381 /* 2382 * Shrink the slab caches in the same proportion that 2383 * the eligible LRU pages were scanned. 2384 */ 2385 if (global_reclaim(sc) && is_classzone) 2386 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL, 2387 sc->nr_scanned - nr_scanned, 2388 zone_lru_pages); 2389 2390 if (reclaim_state) { 2391 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2392 reclaim_state->reclaimed_slab = 0; 2393 } 2394 2395 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, 2396 sc->nr_scanned - nr_scanned, 2397 sc->nr_reclaimed - nr_reclaimed); 2398 2399 if (sc->nr_reclaimed - nr_reclaimed) 2400 reclaimable = true; 2401 2402 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed, 2403 sc->nr_scanned - nr_scanned, sc)); 2404 2405 return reclaimable; 2406 } 2407 2408 /* 2409 * Returns true if compaction should go ahead for a high-order request, or 2410 * the high-order allocation would succeed without compaction. 2411 */ 2412 static inline bool compaction_ready(struct zone *zone, int order) 2413 { 2414 unsigned long balance_gap, watermark; 2415 bool watermark_ok; 2416 2417 /* 2418 * Compaction takes time to run and there are potentially other 2419 * callers using the pages just freed. Continue reclaiming until 2420 * there is a buffer of free pages available to give compaction 2421 * a reasonable chance of completing and allocating the page 2422 */ 2423 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( 2424 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); 2425 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order); 2426 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0); 2427 2428 /* 2429 * If compaction is deferred, reclaim up to a point where 2430 * compaction will have a chance of success when re-enabled 2431 */ 2432 if (compaction_deferred(zone, order)) 2433 return watermark_ok; 2434 2435 /* 2436 * If compaction is not ready to start and allocation is not likely 2437 * to succeed without it, then keep reclaiming. 2438 */ 2439 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED) 2440 return false; 2441 2442 return watermark_ok; 2443 } 2444 2445 /* 2446 * This is the direct reclaim path, for page-allocating processes. We only 2447 * try to reclaim pages from zones which will satisfy the caller's allocation 2448 * request. 2449 * 2450 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 2451 * Because: 2452 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 2453 * allocation or 2454 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 2455 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 2456 * zone defense algorithm. 2457 * 2458 * If a zone is deemed to be full of pinned pages then just give it a light 2459 * scan then give up on it. 2460 * 2461 * Returns true if a zone was reclaimable. 2462 */ 2463 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2464 { 2465 struct zoneref *z; 2466 struct zone *zone; 2467 unsigned long nr_soft_reclaimed; 2468 unsigned long nr_soft_scanned; 2469 gfp_t orig_mask; 2470 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask); 2471 bool reclaimable = false; 2472 2473 /* 2474 * If the number of buffer_heads in the machine exceeds the maximum 2475 * allowed level, force direct reclaim to scan the highmem zone as 2476 * highmem pages could be pinning lowmem pages storing buffer_heads 2477 */ 2478 orig_mask = sc->gfp_mask; 2479 if (buffer_heads_over_limit) 2480 sc->gfp_mask |= __GFP_HIGHMEM; 2481 2482 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2483 requested_highidx, sc->nodemask) { 2484 enum zone_type classzone_idx; 2485 2486 if (!populated_zone(zone)) 2487 continue; 2488 2489 classzone_idx = requested_highidx; 2490 while (!populated_zone(zone->zone_pgdat->node_zones + 2491 classzone_idx)) 2492 classzone_idx--; 2493 2494 /* 2495 * Take care memory controller reclaiming has small influence 2496 * to global LRU. 2497 */ 2498 if (global_reclaim(sc)) { 2499 if (!cpuset_zone_allowed(zone, 2500 GFP_KERNEL | __GFP_HARDWALL)) 2501 continue; 2502 2503 if (sc->priority != DEF_PRIORITY && 2504 !zone_reclaimable(zone)) 2505 continue; /* Let kswapd poll it */ 2506 2507 /* 2508 * If we already have plenty of memory free for 2509 * compaction in this zone, don't free any more. 2510 * Even though compaction is invoked for any 2511 * non-zero order, only frequent costly order 2512 * reclamation is disruptive enough to become a 2513 * noticeable problem, like transparent huge 2514 * page allocations. 2515 */ 2516 if (IS_ENABLED(CONFIG_COMPACTION) && 2517 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2518 zonelist_zone_idx(z) <= requested_highidx && 2519 compaction_ready(zone, sc->order)) { 2520 sc->compaction_ready = true; 2521 continue; 2522 } 2523 2524 /* 2525 * This steals pages from memory cgroups over softlimit 2526 * and returns the number of reclaimed pages and 2527 * scanned pages. This works for global memory pressure 2528 * and balancing, not for a memcg's limit. 2529 */ 2530 nr_soft_scanned = 0; 2531 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 2532 sc->order, sc->gfp_mask, 2533 &nr_soft_scanned); 2534 sc->nr_reclaimed += nr_soft_reclaimed; 2535 sc->nr_scanned += nr_soft_scanned; 2536 if (nr_soft_reclaimed) 2537 reclaimable = true; 2538 /* need some check for avoid more shrink_zone() */ 2539 } 2540 2541 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx)) 2542 reclaimable = true; 2543 2544 if (global_reclaim(sc) && 2545 !reclaimable && zone_reclaimable(zone)) 2546 reclaimable = true; 2547 } 2548 2549 /* 2550 * Restore to original mask to avoid the impact on the caller if we 2551 * promoted it to __GFP_HIGHMEM. 2552 */ 2553 sc->gfp_mask = orig_mask; 2554 2555 return reclaimable; 2556 } 2557 2558 /* 2559 * This is the main entry point to direct page reclaim. 2560 * 2561 * If a full scan of the inactive list fails to free enough memory then we 2562 * are "out of memory" and something needs to be killed. 2563 * 2564 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2565 * high - the zone may be full of dirty or under-writeback pages, which this 2566 * caller can't do much about. We kick the writeback threads and take explicit 2567 * naps in the hope that some of these pages can be written. But if the 2568 * allocating task holds filesystem locks which prevent writeout this might not 2569 * work, and the allocation attempt will fail. 2570 * 2571 * returns: 0, if no pages reclaimed 2572 * else, the number of pages reclaimed 2573 */ 2574 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2575 struct scan_control *sc) 2576 { 2577 int initial_priority = sc->priority; 2578 unsigned long total_scanned = 0; 2579 unsigned long writeback_threshold; 2580 bool zones_reclaimable; 2581 retry: 2582 delayacct_freepages_start(); 2583 2584 if (global_reclaim(sc)) 2585 count_vm_event(ALLOCSTALL); 2586 2587 do { 2588 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2589 sc->priority); 2590 sc->nr_scanned = 0; 2591 zones_reclaimable = shrink_zones(zonelist, sc); 2592 2593 total_scanned += sc->nr_scanned; 2594 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2595 break; 2596 2597 if (sc->compaction_ready) 2598 break; 2599 2600 /* 2601 * If we're getting trouble reclaiming, start doing 2602 * writepage even in laptop mode. 2603 */ 2604 if (sc->priority < DEF_PRIORITY - 2) 2605 sc->may_writepage = 1; 2606 2607 /* 2608 * Try to write back as many pages as we just scanned. This 2609 * tends to cause slow streaming writers to write data to the 2610 * disk smoothly, at the dirtying rate, which is nice. But 2611 * that's undesirable in laptop mode, where we *want* lumpy 2612 * writeout. So in laptop mode, write out the whole world. 2613 */ 2614 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2615 if (total_scanned > writeback_threshold) { 2616 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2617 WB_REASON_TRY_TO_FREE_PAGES); 2618 sc->may_writepage = 1; 2619 } 2620 } while (--sc->priority >= 0); 2621 2622 delayacct_freepages_end(); 2623 2624 if (sc->nr_reclaimed) 2625 return sc->nr_reclaimed; 2626 2627 /* Aborted reclaim to try compaction? don't OOM, then */ 2628 if (sc->compaction_ready) 2629 return 1; 2630 2631 /* Untapped cgroup reserves? Don't OOM, retry. */ 2632 if (!sc->may_thrash) { 2633 sc->priority = initial_priority; 2634 sc->may_thrash = 1; 2635 goto retry; 2636 } 2637 2638 /* Any of the zones still reclaimable? Don't OOM. */ 2639 if (zones_reclaimable) 2640 return 1; 2641 2642 return 0; 2643 } 2644 2645 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2646 { 2647 struct zone *zone; 2648 unsigned long pfmemalloc_reserve = 0; 2649 unsigned long free_pages = 0; 2650 int i; 2651 bool wmark_ok; 2652 2653 for (i = 0; i <= ZONE_NORMAL; i++) { 2654 zone = &pgdat->node_zones[i]; 2655 if (!populated_zone(zone)) 2656 continue; 2657 2658 pfmemalloc_reserve += min_wmark_pages(zone); 2659 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2660 } 2661 2662 /* If there are no reserves (unexpected config) then do not throttle */ 2663 if (!pfmemalloc_reserve) 2664 return true; 2665 2666 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2667 2668 /* kswapd must be awake if processes are being throttled */ 2669 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2670 pgdat->classzone_idx = min(pgdat->classzone_idx, 2671 (enum zone_type)ZONE_NORMAL); 2672 wake_up_interruptible(&pgdat->kswapd_wait); 2673 } 2674 2675 return wmark_ok; 2676 } 2677 2678 /* 2679 * Throttle direct reclaimers if backing storage is backed by the network 2680 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2681 * depleted. kswapd will continue to make progress and wake the processes 2682 * when the low watermark is reached. 2683 * 2684 * Returns true if a fatal signal was delivered during throttling. If this 2685 * happens, the page allocator should not consider triggering the OOM killer. 2686 */ 2687 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2688 nodemask_t *nodemask) 2689 { 2690 struct zoneref *z; 2691 struct zone *zone; 2692 pg_data_t *pgdat = NULL; 2693 2694 /* 2695 * Kernel threads should not be throttled as they may be indirectly 2696 * responsible for cleaning pages necessary for reclaim to make forward 2697 * progress. kjournald for example may enter direct reclaim while 2698 * committing a transaction where throttling it could forcing other 2699 * processes to block on log_wait_commit(). 2700 */ 2701 if (current->flags & PF_KTHREAD) 2702 goto out; 2703 2704 /* 2705 * If a fatal signal is pending, this process should not throttle. 2706 * It should return quickly so it can exit and free its memory 2707 */ 2708 if (fatal_signal_pending(current)) 2709 goto out; 2710 2711 /* 2712 * Check if the pfmemalloc reserves are ok by finding the first node 2713 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2714 * GFP_KERNEL will be required for allocating network buffers when 2715 * swapping over the network so ZONE_HIGHMEM is unusable. 2716 * 2717 * Throttling is based on the first usable node and throttled processes 2718 * wait on a queue until kswapd makes progress and wakes them. There 2719 * is an affinity then between processes waking up and where reclaim 2720 * progress has been made assuming the process wakes on the same node. 2721 * More importantly, processes running on remote nodes will not compete 2722 * for remote pfmemalloc reserves and processes on different nodes 2723 * should make reasonable progress. 2724 */ 2725 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2726 gfp_zone(gfp_mask), nodemask) { 2727 if (zone_idx(zone) > ZONE_NORMAL) 2728 continue; 2729 2730 /* Throttle based on the first usable node */ 2731 pgdat = zone->zone_pgdat; 2732 if (pfmemalloc_watermark_ok(pgdat)) 2733 goto out; 2734 break; 2735 } 2736 2737 /* If no zone was usable by the allocation flags then do not throttle */ 2738 if (!pgdat) 2739 goto out; 2740 2741 /* Account for the throttling */ 2742 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2743 2744 /* 2745 * If the caller cannot enter the filesystem, it's possible that it 2746 * is due to the caller holding an FS lock or performing a journal 2747 * transaction in the case of a filesystem like ext[3|4]. In this case, 2748 * it is not safe to block on pfmemalloc_wait as kswapd could be 2749 * blocked waiting on the same lock. Instead, throttle for up to a 2750 * second before continuing. 2751 */ 2752 if (!(gfp_mask & __GFP_FS)) { 2753 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2754 pfmemalloc_watermark_ok(pgdat), HZ); 2755 2756 goto check_pending; 2757 } 2758 2759 /* Throttle until kswapd wakes the process */ 2760 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2761 pfmemalloc_watermark_ok(pgdat)); 2762 2763 check_pending: 2764 if (fatal_signal_pending(current)) 2765 return true; 2766 2767 out: 2768 return false; 2769 } 2770 2771 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2772 gfp_t gfp_mask, nodemask_t *nodemask) 2773 { 2774 unsigned long nr_reclaimed; 2775 struct scan_control sc = { 2776 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2777 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2778 .order = order, 2779 .nodemask = nodemask, 2780 .priority = DEF_PRIORITY, 2781 .may_writepage = !laptop_mode, 2782 .may_unmap = 1, 2783 .may_swap = 1, 2784 }; 2785 2786 /* 2787 * Do not enter reclaim if fatal signal was delivered while throttled. 2788 * 1 is returned so that the page allocator does not OOM kill at this 2789 * point. 2790 */ 2791 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2792 return 1; 2793 2794 trace_mm_vmscan_direct_reclaim_begin(order, 2795 sc.may_writepage, 2796 gfp_mask); 2797 2798 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2799 2800 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2801 2802 return nr_reclaimed; 2803 } 2804 2805 #ifdef CONFIG_MEMCG 2806 2807 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, 2808 gfp_t gfp_mask, bool noswap, 2809 struct zone *zone, 2810 unsigned long *nr_scanned) 2811 { 2812 struct scan_control sc = { 2813 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2814 .target_mem_cgroup = memcg, 2815 .may_writepage = !laptop_mode, 2816 .may_unmap = 1, 2817 .may_swap = !noswap, 2818 }; 2819 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2820 int swappiness = mem_cgroup_swappiness(memcg); 2821 unsigned long lru_pages; 2822 2823 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2824 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2825 2826 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 2827 sc.may_writepage, 2828 sc.gfp_mask); 2829 2830 /* 2831 * NOTE: Although we can get the priority field, using it 2832 * here is not a good idea, since it limits the pages we can scan. 2833 * if we don't reclaim here, the shrink_zone from balance_pgdat 2834 * will pick up pages from other mem cgroup's as well. We hack 2835 * the priority and make it zero. 2836 */ 2837 shrink_lruvec(lruvec, swappiness, &sc, &lru_pages); 2838 2839 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2840 2841 *nr_scanned = sc.nr_scanned; 2842 return sc.nr_reclaimed; 2843 } 2844 2845 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 2846 unsigned long nr_pages, 2847 gfp_t gfp_mask, 2848 bool may_swap) 2849 { 2850 struct zonelist *zonelist; 2851 unsigned long nr_reclaimed; 2852 int nid; 2853 struct scan_control sc = { 2854 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 2855 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2856 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 2857 .target_mem_cgroup = memcg, 2858 .priority = DEF_PRIORITY, 2859 .may_writepage = !laptop_mode, 2860 .may_unmap = 1, 2861 .may_swap = may_swap, 2862 }; 2863 2864 /* 2865 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 2866 * take care of from where we get pages. So the node where we start the 2867 * scan does not need to be the current node. 2868 */ 2869 nid = mem_cgroup_select_victim_node(memcg); 2870 2871 zonelist = NODE_DATA(nid)->node_zonelists; 2872 2873 trace_mm_vmscan_memcg_reclaim_begin(0, 2874 sc.may_writepage, 2875 sc.gfp_mask); 2876 2877 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2878 2879 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2880 2881 return nr_reclaimed; 2882 } 2883 #endif 2884 2885 static void age_active_anon(struct zone *zone, struct scan_control *sc) 2886 { 2887 struct mem_cgroup *memcg; 2888 2889 if (!total_swap_pages) 2890 return; 2891 2892 memcg = mem_cgroup_iter(NULL, NULL, NULL); 2893 do { 2894 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2895 2896 if (inactive_anon_is_low(lruvec)) 2897 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2898 sc, LRU_ACTIVE_ANON); 2899 2900 memcg = mem_cgroup_iter(NULL, memcg, NULL); 2901 } while (memcg); 2902 } 2903 2904 static bool zone_balanced(struct zone *zone, int order, 2905 unsigned long balance_gap, int classzone_idx) 2906 { 2907 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) + 2908 balance_gap, classzone_idx, 0)) 2909 return false; 2910 2911 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone, 2912 order, 0, classzone_idx) == COMPACT_SKIPPED) 2913 return false; 2914 2915 return true; 2916 } 2917 2918 /* 2919 * pgdat_balanced() is used when checking if a node is balanced. 2920 * 2921 * For order-0, all zones must be balanced! 2922 * 2923 * For high-order allocations only zones that meet watermarks and are in a 2924 * zone allowed by the callers classzone_idx are added to balanced_pages. The 2925 * total of balanced pages must be at least 25% of the zones allowed by 2926 * classzone_idx for the node to be considered balanced. Forcing all zones to 2927 * be balanced for high orders can cause excessive reclaim when there are 2928 * imbalanced zones. 2929 * The choice of 25% is due to 2930 * o a 16M DMA zone that is balanced will not balance a zone on any 2931 * reasonable sized machine 2932 * o On all other machines, the top zone must be at least a reasonable 2933 * percentage of the middle zones. For example, on 32-bit x86, highmem 2934 * would need to be at least 256M for it to be balance a whole node. 2935 * Similarly, on x86-64 the Normal zone would need to be at least 1G 2936 * to balance a node on its own. These seemed like reasonable ratios. 2937 */ 2938 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 2939 { 2940 unsigned long managed_pages = 0; 2941 unsigned long balanced_pages = 0; 2942 int i; 2943 2944 /* Check the watermark levels */ 2945 for (i = 0; i <= classzone_idx; i++) { 2946 struct zone *zone = pgdat->node_zones + i; 2947 2948 if (!populated_zone(zone)) 2949 continue; 2950 2951 managed_pages += zone->managed_pages; 2952 2953 /* 2954 * A special case here: 2955 * 2956 * balance_pgdat() skips over all_unreclaimable after 2957 * DEF_PRIORITY. Effectively, it considers them balanced so 2958 * they must be considered balanced here as well! 2959 */ 2960 if (!zone_reclaimable(zone)) { 2961 balanced_pages += zone->managed_pages; 2962 continue; 2963 } 2964 2965 if (zone_balanced(zone, order, 0, i)) 2966 balanced_pages += zone->managed_pages; 2967 else if (!order) 2968 return false; 2969 } 2970 2971 if (order) 2972 return balanced_pages >= (managed_pages >> 2); 2973 else 2974 return true; 2975 } 2976 2977 /* 2978 * Prepare kswapd for sleeping. This verifies that there are no processes 2979 * waiting in throttle_direct_reclaim() and that watermarks have been met. 2980 * 2981 * Returns true if kswapd is ready to sleep 2982 */ 2983 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, 2984 int classzone_idx) 2985 { 2986 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 2987 if (remaining) 2988 return false; 2989 2990 /* 2991 * The throttled processes are normally woken up in balance_pgdat() as 2992 * soon as pfmemalloc_watermark_ok() is true. But there is a potential 2993 * race between when kswapd checks the watermarks and a process gets 2994 * throttled. There is also a potential race if processes get 2995 * throttled, kswapd wakes, a large process exits thereby balancing the 2996 * zones, which causes kswapd to exit balance_pgdat() before reaching 2997 * the wake up checks. If kswapd is going to sleep, no process should 2998 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 2999 * the wake up is premature, processes will wake kswapd and get 3000 * throttled again. The difference from wake ups in balance_pgdat() is 3001 * that here we are under prepare_to_wait(). 3002 */ 3003 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3004 wake_up_all(&pgdat->pfmemalloc_wait); 3005 3006 return pgdat_balanced(pgdat, order, classzone_idx); 3007 } 3008 3009 /* 3010 * kswapd shrinks the zone by the number of pages required to reach 3011 * the high watermark. 3012 * 3013 * Returns true if kswapd scanned at least the requested number of pages to 3014 * reclaim or if the lack of progress was due to pages under writeback. 3015 * This is used to determine if the scanning priority needs to be raised. 3016 */ 3017 static bool kswapd_shrink_zone(struct zone *zone, 3018 int classzone_idx, 3019 struct scan_control *sc, 3020 unsigned long *nr_attempted) 3021 { 3022 int testorder = sc->order; 3023 unsigned long balance_gap; 3024 bool lowmem_pressure; 3025 3026 /* Reclaim above the high watermark. */ 3027 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone)); 3028 3029 /* 3030 * Kswapd reclaims only single pages with compaction enabled. Trying 3031 * too hard to reclaim until contiguous free pages have become 3032 * available can hurt performance by evicting too much useful data 3033 * from memory. Do not reclaim more than needed for compaction. 3034 */ 3035 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 3036 compaction_suitable(zone, sc->order, 0, classzone_idx) 3037 != COMPACT_SKIPPED) 3038 testorder = 0; 3039 3040 /* 3041 * We put equal pressure on every zone, unless one zone has way too 3042 * many pages free already. The "too many pages" is defined as the 3043 * high wmark plus a "gap" where the gap is either the low 3044 * watermark or 1% of the zone, whichever is smaller. 3045 */ 3046 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( 3047 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); 3048 3049 /* 3050 * If there is no low memory pressure or the zone is balanced then no 3051 * reclaim is necessary 3052 */ 3053 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone)); 3054 if (!lowmem_pressure && zone_balanced(zone, testorder, 3055 balance_gap, classzone_idx)) 3056 return true; 3057 3058 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx); 3059 3060 /* Account for the number of pages attempted to reclaim */ 3061 *nr_attempted += sc->nr_to_reclaim; 3062 3063 clear_bit(ZONE_WRITEBACK, &zone->flags); 3064 3065 /* 3066 * If a zone reaches its high watermark, consider it to be no longer 3067 * congested. It's possible there are dirty pages backed by congested 3068 * BDIs but as pressure is relieved, speculatively avoid congestion 3069 * waits. 3070 */ 3071 if (zone_reclaimable(zone) && 3072 zone_balanced(zone, testorder, 0, classzone_idx)) { 3073 clear_bit(ZONE_CONGESTED, &zone->flags); 3074 clear_bit(ZONE_DIRTY, &zone->flags); 3075 } 3076 3077 return sc->nr_scanned >= sc->nr_to_reclaim; 3078 } 3079 3080 /* 3081 * For kswapd, balance_pgdat() will work across all this node's zones until 3082 * they are all at high_wmark_pages(zone). 3083 * 3084 * Returns the final order kswapd was reclaiming at 3085 * 3086 * There is special handling here for zones which are full of pinned pages. 3087 * This can happen if the pages are all mlocked, or if they are all used by 3088 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 3089 * What we do is to detect the case where all pages in the zone have been 3090 * scanned twice and there has been zero successful reclaim. Mark the zone as 3091 * dead and from now on, only perform a short scan. Basically we're polling 3092 * the zone for when the problem goes away. 3093 * 3094 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3095 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3096 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 3097 * lower zones regardless of the number of free pages in the lower zones. This 3098 * interoperates with the page allocator fallback scheme to ensure that aging 3099 * of pages is balanced across the zones. 3100 */ 3101 static unsigned long balance_pgdat(pg_data_t *pgdat, int order, 3102 int *classzone_idx) 3103 { 3104 int i; 3105 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 3106 unsigned long nr_soft_reclaimed; 3107 unsigned long nr_soft_scanned; 3108 struct scan_control sc = { 3109 .gfp_mask = GFP_KERNEL, 3110 .order = order, 3111 .priority = DEF_PRIORITY, 3112 .may_writepage = !laptop_mode, 3113 .may_unmap = 1, 3114 .may_swap = 1, 3115 }; 3116 count_vm_event(PAGEOUTRUN); 3117 3118 do { 3119 unsigned long nr_attempted = 0; 3120 bool raise_priority = true; 3121 bool pgdat_needs_compaction = (order > 0); 3122 3123 sc.nr_reclaimed = 0; 3124 3125 /* 3126 * Scan in the highmem->dma direction for the highest 3127 * zone which needs scanning 3128 */ 3129 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 3130 struct zone *zone = pgdat->node_zones + i; 3131 3132 if (!populated_zone(zone)) 3133 continue; 3134 3135 if (sc.priority != DEF_PRIORITY && 3136 !zone_reclaimable(zone)) 3137 continue; 3138 3139 /* 3140 * Do some background aging of the anon list, to give 3141 * pages a chance to be referenced before reclaiming. 3142 */ 3143 age_active_anon(zone, &sc); 3144 3145 /* 3146 * If the number of buffer_heads in the machine 3147 * exceeds the maximum allowed level and this node 3148 * has a highmem zone, force kswapd to reclaim from 3149 * it to relieve lowmem pressure. 3150 */ 3151 if (buffer_heads_over_limit && is_highmem_idx(i)) { 3152 end_zone = i; 3153 break; 3154 } 3155 3156 if (!zone_balanced(zone, order, 0, 0)) { 3157 end_zone = i; 3158 break; 3159 } else { 3160 /* 3161 * If balanced, clear the dirty and congested 3162 * flags 3163 */ 3164 clear_bit(ZONE_CONGESTED, &zone->flags); 3165 clear_bit(ZONE_DIRTY, &zone->flags); 3166 } 3167 } 3168 3169 if (i < 0) 3170 goto out; 3171 3172 for (i = 0; i <= end_zone; i++) { 3173 struct zone *zone = pgdat->node_zones + i; 3174 3175 if (!populated_zone(zone)) 3176 continue; 3177 3178 /* 3179 * If any zone is currently balanced then kswapd will 3180 * not call compaction as it is expected that the 3181 * necessary pages are already available. 3182 */ 3183 if (pgdat_needs_compaction && 3184 zone_watermark_ok(zone, order, 3185 low_wmark_pages(zone), 3186 *classzone_idx, 0)) 3187 pgdat_needs_compaction = false; 3188 } 3189 3190 /* 3191 * If we're getting trouble reclaiming, start doing writepage 3192 * even in laptop mode. 3193 */ 3194 if (sc.priority < DEF_PRIORITY - 2) 3195 sc.may_writepage = 1; 3196 3197 /* 3198 * Now scan the zone in the dma->highmem direction, stopping 3199 * at the last zone which needs scanning. 3200 * 3201 * We do this because the page allocator works in the opposite 3202 * direction. This prevents the page allocator from allocating 3203 * pages behind kswapd's direction of progress, which would 3204 * cause too much scanning of the lower zones. 3205 */ 3206 for (i = 0; i <= end_zone; i++) { 3207 struct zone *zone = pgdat->node_zones + i; 3208 3209 if (!populated_zone(zone)) 3210 continue; 3211 3212 if (sc.priority != DEF_PRIORITY && 3213 !zone_reclaimable(zone)) 3214 continue; 3215 3216 sc.nr_scanned = 0; 3217 3218 nr_soft_scanned = 0; 3219 /* 3220 * Call soft limit reclaim before calling shrink_zone. 3221 */ 3222 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 3223 order, sc.gfp_mask, 3224 &nr_soft_scanned); 3225 sc.nr_reclaimed += nr_soft_reclaimed; 3226 3227 /* 3228 * There should be no need to raise the scanning 3229 * priority if enough pages are already being scanned 3230 * that that high watermark would be met at 100% 3231 * efficiency. 3232 */ 3233 if (kswapd_shrink_zone(zone, end_zone, 3234 &sc, &nr_attempted)) 3235 raise_priority = false; 3236 } 3237 3238 /* 3239 * If the low watermark is met there is no need for processes 3240 * to be throttled on pfmemalloc_wait as they should not be 3241 * able to safely make forward progress. Wake them 3242 */ 3243 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3244 pfmemalloc_watermark_ok(pgdat)) 3245 wake_up_all(&pgdat->pfmemalloc_wait); 3246 3247 /* 3248 * Fragmentation may mean that the system cannot be rebalanced 3249 * for high-order allocations in all zones. If twice the 3250 * allocation size has been reclaimed and the zones are still 3251 * not balanced then recheck the watermarks at order-0 to 3252 * prevent kswapd reclaiming excessively. Assume that a 3253 * process requested a high-order can direct reclaim/compact. 3254 */ 3255 if (order && sc.nr_reclaimed >= 2UL << order) 3256 order = sc.order = 0; 3257 3258 /* Check if kswapd should be suspending */ 3259 if (try_to_freeze() || kthread_should_stop()) 3260 break; 3261 3262 /* 3263 * Compact if necessary and kswapd is reclaiming at least the 3264 * high watermark number of pages as requsted 3265 */ 3266 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted) 3267 compact_pgdat(pgdat, order); 3268 3269 /* 3270 * Raise priority if scanning rate is too low or there was no 3271 * progress in reclaiming pages 3272 */ 3273 if (raise_priority || !sc.nr_reclaimed) 3274 sc.priority--; 3275 } while (sc.priority >= 1 && 3276 !pgdat_balanced(pgdat, order, *classzone_idx)); 3277 3278 out: 3279 /* 3280 * Return the order we were reclaiming at so prepare_kswapd_sleep() 3281 * makes a decision on the order we were last reclaiming at. However, 3282 * if another caller entered the allocator slow path while kswapd 3283 * was awake, order will remain at the higher level 3284 */ 3285 *classzone_idx = end_zone; 3286 return order; 3287 } 3288 3289 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3290 { 3291 long remaining = 0; 3292 DEFINE_WAIT(wait); 3293 3294 if (freezing(current) || kthread_should_stop()) 3295 return; 3296 3297 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3298 3299 /* Try to sleep for a short interval */ 3300 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3301 remaining = schedule_timeout(HZ/10); 3302 finish_wait(&pgdat->kswapd_wait, &wait); 3303 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3304 } 3305 3306 /* 3307 * After a short sleep, check if it was a premature sleep. If not, then 3308 * go fully to sleep until explicitly woken up. 3309 */ 3310 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3311 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3312 3313 /* 3314 * vmstat counters are not perfectly accurate and the estimated 3315 * value for counters such as NR_FREE_PAGES can deviate from the 3316 * true value by nr_online_cpus * threshold. To avoid the zone 3317 * watermarks being breached while under pressure, we reduce the 3318 * per-cpu vmstat threshold while kswapd is awake and restore 3319 * them before going back to sleep. 3320 */ 3321 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3322 3323 /* 3324 * Compaction records what page blocks it recently failed to 3325 * isolate pages from and skips them in the future scanning. 3326 * When kswapd is going to sleep, it is reasonable to assume 3327 * that pages and compaction may succeed so reset the cache. 3328 */ 3329 reset_isolation_suitable(pgdat); 3330 3331 if (!kthread_should_stop()) 3332 schedule(); 3333 3334 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3335 } else { 3336 if (remaining) 3337 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3338 else 3339 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3340 } 3341 finish_wait(&pgdat->kswapd_wait, &wait); 3342 } 3343 3344 /* 3345 * The background pageout daemon, started as a kernel thread 3346 * from the init process. 3347 * 3348 * This basically trickles out pages so that we have _some_ 3349 * free memory available even if there is no other activity 3350 * that frees anything up. This is needed for things like routing 3351 * etc, where we otherwise might have all activity going on in 3352 * asynchronous contexts that cannot page things out. 3353 * 3354 * If there are applications that are active memory-allocators 3355 * (most normal use), this basically shouldn't matter. 3356 */ 3357 static int kswapd(void *p) 3358 { 3359 unsigned long order, new_order; 3360 unsigned balanced_order; 3361 int classzone_idx, new_classzone_idx; 3362 int balanced_classzone_idx; 3363 pg_data_t *pgdat = (pg_data_t*)p; 3364 struct task_struct *tsk = current; 3365 3366 struct reclaim_state reclaim_state = { 3367 .reclaimed_slab = 0, 3368 }; 3369 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3370 3371 lockdep_set_current_reclaim_state(GFP_KERNEL); 3372 3373 if (!cpumask_empty(cpumask)) 3374 set_cpus_allowed_ptr(tsk, cpumask); 3375 current->reclaim_state = &reclaim_state; 3376 3377 /* 3378 * Tell the memory management that we're a "memory allocator", 3379 * and that if we need more memory we should get access to it 3380 * regardless (see "__alloc_pages()"). "kswapd" should 3381 * never get caught in the normal page freeing logic. 3382 * 3383 * (Kswapd normally doesn't need memory anyway, but sometimes 3384 * you need a small amount of memory in order to be able to 3385 * page out something else, and this flag essentially protects 3386 * us from recursively trying to free more memory as we're 3387 * trying to free the first piece of memory in the first place). 3388 */ 3389 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3390 set_freezable(); 3391 3392 order = new_order = 0; 3393 balanced_order = 0; 3394 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; 3395 balanced_classzone_idx = classzone_idx; 3396 for ( ; ; ) { 3397 bool ret; 3398 3399 /* 3400 * If the last balance_pgdat was unsuccessful it's unlikely a 3401 * new request of a similar or harder type will succeed soon 3402 * so consider going to sleep on the basis we reclaimed at 3403 */ 3404 if (balanced_classzone_idx >= new_classzone_idx && 3405 balanced_order == new_order) { 3406 new_order = pgdat->kswapd_max_order; 3407 new_classzone_idx = pgdat->classzone_idx; 3408 pgdat->kswapd_max_order = 0; 3409 pgdat->classzone_idx = pgdat->nr_zones - 1; 3410 } 3411 3412 if (order < new_order || classzone_idx > new_classzone_idx) { 3413 /* 3414 * Don't sleep if someone wants a larger 'order' 3415 * allocation or has tigher zone constraints 3416 */ 3417 order = new_order; 3418 classzone_idx = new_classzone_idx; 3419 } else { 3420 kswapd_try_to_sleep(pgdat, balanced_order, 3421 balanced_classzone_idx); 3422 order = pgdat->kswapd_max_order; 3423 classzone_idx = pgdat->classzone_idx; 3424 new_order = order; 3425 new_classzone_idx = classzone_idx; 3426 pgdat->kswapd_max_order = 0; 3427 pgdat->classzone_idx = pgdat->nr_zones - 1; 3428 } 3429 3430 ret = try_to_freeze(); 3431 if (kthread_should_stop()) 3432 break; 3433 3434 /* 3435 * We can speed up thawing tasks if we don't call balance_pgdat 3436 * after returning from the refrigerator 3437 */ 3438 if (!ret) { 3439 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); 3440 balanced_classzone_idx = classzone_idx; 3441 balanced_order = balance_pgdat(pgdat, order, 3442 &balanced_classzone_idx); 3443 } 3444 } 3445 3446 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3447 current->reclaim_state = NULL; 3448 lockdep_clear_current_reclaim_state(); 3449 3450 return 0; 3451 } 3452 3453 /* 3454 * A zone is low on free memory, so wake its kswapd task to service it. 3455 */ 3456 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3457 { 3458 pg_data_t *pgdat; 3459 3460 if (!populated_zone(zone)) 3461 return; 3462 3463 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) 3464 return; 3465 pgdat = zone->zone_pgdat; 3466 if (pgdat->kswapd_max_order < order) { 3467 pgdat->kswapd_max_order = order; 3468 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); 3469 } 3470 if (!waitqueue_active(&pgdat->kswapd_wait)) 3471 return; 3472 if (zone_balanced(zone, order, 0, 0)) 3473 return; 3474 3475 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3476 wake_up_interruptible(&pgdat->kswapd_wait); 3477 } 3478 3479 #ifdef CONFIG_HIBERNATION 3480 /* 3481 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3482 * freed pages. 3483 * 3484 * Rather than trying to age LRUs the aim is to preserve the overall 3485 * LRU order by reclaiming preferentially 3486 * inactive > active > active referenced > active mapped 3487 */ 3488 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3489 { 3490 struct reclaim_state reclaim_state; 3491 struct scan_control sc = { 3492 .nr_to_reclaim = nr_to_reclaim, 3493 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3494 .priority = DEF_PRIORITY, 3495 .may_writepage = 1, 3496 .may_unmap = 1, 3497 .may_swap = 1, 3498 .hibernation_mode = 1, 3499 }; 3500 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3501 struct task_struct *p = current; 3502 unsigned long nr_reclaimed; 3503 3504 p->flags |= PF_MEMALLOC; 3505 lockdep_set_current_reclaim_state(sc.gfp_mask); 3506 reclaim_state.reclaimed_slab = 0; 3507 p->reclaim_state = &reclaim_state; 3508 3509 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3510 3511 p->reclaim_state = NULL; 3512 lockdep_clear_current_reclaim_state(); 3513 p->flags &= ~PF_MEMALLOC; 3514 3515 return nr_reclaimed; 3516 } 3517 #endif /* CONFIG_HIBERNATION */ 3518 3519 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3520 not required for correctness. So if the last cpu in a node goes 3521 away, we get changed to run anywhere: as the first one comes back, 3522 restore their cpu bindings. */ 3523 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 3524 void *hcpu) 3525 { 3526 int nid; 3527 3528 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 3529 for_each_node_state(nid, N_MEMORY) { 3530 pg_data_t *pgdat = NODE_DATA(nid); 3531 const struct cpumask *mask; 3532 3533 mask = cpumask_of_node(pgdat->node_id); 3534 3535 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3536 /* One of our CPUs online: restore mask */ 3537 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3538 } 3539 } 3540 return NOTIFY_OK; 3541 } 3542 3543 /* 3544 * This kswapd start function will be called by init and node-hot-add. 3545 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3546 */ 3547 int kswapd_run(int nid) 3548 { 3549 pg_data_t *pgdat = NODE_DATA(nid); 3550 int ret = 0; 3551 3552 if (pgdat->kswapd) 3553 return 0; 3554 3555 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3556 if (IS_ERR(pgdat->kswapd)) { 3557 /* failure at boot is fatal */ 3558 BUG_ON(system_state == SYSTEM_BOOTING); 3559 pr_err("Failed to start kswapd on node %d\n", nid); 3560 ret = PTR_ERR(pgdat->kswapd); 3561 pgdat->kswapd = NULL; 3562 } 3563 return ret; 3564 } 3565 3566 /* 3567 * Called by memory hotplug when all memory in a node is offlined. Caller must 3568 * hold mem_hotplug_begin/end(). 3569 */ 3570 void kswapd_stop(int nid) 3571 { 3572 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3573 3574 if (kswapd) { 3575 kthread_stop(kswapd); 3576 NODE_DATA(nid)->kswapd = NULL; 3577 } 3578 } 3579 3580 static int __init kswapd_init(void) 3581 { 3582 int nid; 3583 3584 swap_setup(); 3585 for_each_node_state(nid, N_MEMORY) 3586 kswapd_run(nid); 3587 hotcpu_notifier(cpu_callback, 0); 3588 return 0; 3589 } 3590 3591 module_init(kswapd_init) 3592 3593 #ifdef CONFIG_NUMA 3594 /* 3595 * Zone reclaim mode 3596 * 3597 * If non-zero call zone_reclaim when the number of free pages falls below 3598 * the watermarks. 3599 */ 3600 int zone_reclaim_mode __read_mostly; 3601 3602 #define RECLAIM_OFF 0 3603 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3604 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3605 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 3606 3607 /* 3608 * Priority for ZONE_RECLAIM. This determines the fraction of pages 3609 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3610 * a zone. 3611 */ 3612 #define ZONE_RECLAIM_PRIORITY 4 3613 3614 /* 3615 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 3616 * occur. 3617 */ 3618 int sysctl_min_unmapped_ratio = 1; 3619 3620 /* 3621 * If the number of slab pages in a zone grows beyond this percentage then 3622 * slab reclaim needs to occur. 3623 */ 3624 int sysctl_min_slab_ratio = 5; 3625 3626 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 3627 { 3628 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 3629 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 3630 zone_page_state(zone, NR_ACTIVE_FILE); 3631 3632 /* 3633 * It's possible for there to be more file mapped pages than 3634 * accounted for by the pages on the file LRU lists because 3635 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3636 */ 3637 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3638 } 3639 3640 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3641 static long zone_pagecache_reclaimable(struct zone *zone) 3642 { 3643 long nr_pagecache_reclaimable; 3644 long delta = 0; 3645 3646 /* 3647 * If RECLAIM_SWAP is set, then all file pages are considered 3648 * potentially reclaimable. Otherwise, we have to worry about 3649 * pages like swapcache and zone_unmapped_file_pages() provides 3650 * a better estimate 3651 */ 3652 if (zone_reclaim_mode & RECLAIM_SWAP) 3653 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 3654 else 3655 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 3656 3657 /* If we can't clean pages, remove dirty pages from consideration */ 3658 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 3659 delta += zone_page_state(zone, NR_FILE_DIRTY); 3660 3661 /* Watch for any possible underflows due to delta */ 3662 if (unlikely(delta > nr_pagecache_reclaimable)) 3663 delta = nr_pagecache_reclaimable; 3664 3665 return nr_pagecache_reclaimable - delta; 3666 } 3667 3668 /* 3669 * Try to free up some pages from this zone through reclaim. 3670 */ 3671 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3672 { 3673 /* Minimum pages needed in order to stay on node */ 3674 const unsigned long nr_pages = 1 << order; 3675 struct task_struct *p = current; 3676 struct reclaim_state reclaim_state; 3677 struct scan_control sc = { 3678 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3679 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3680 .order = order, 3681 .priority = ZONE_RECLAIM_PRIORITY, 3682 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 3683 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), 3684 .may_swap = 1, 3685 }; 3686 3687 cond_resched(); 3688 /* 3689 * We need to be able to allocate from the reserves for RECLAIM_SWAP 3690 * and we also need to be able to write out pages for RECLAIM_WRITE 3691 * and RECLAIM_SWAP. 3692 */ 3693 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3694 lockdep_set_current_reclaim_state(gfp_mask); 3695 reclaim_state.reclaimed_slab = 0; 3696 p->reclaim_state = &reclaim_state; 3697 3698 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 3699 /* 3700 * Free memory by calling shrink zone with increasing 3701 * priorities until we have enough memory freed. 3702 */ 3703 do { 3704 shrink_zone(zone, &sc, true); 3705 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3706 } 3707 3708 p->reclaim_state = NULL; 3709 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3710 lockdep_clear_current_reclaim_state(); 3711 return sc.nr_reclaimed >= nr_pages; 3712 } 3713 3714 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3715 { 3716 int node_id; 3717 int ret; 3718 3719 /* 3720 * Zone reclaim reclaims unmapped file backed pages and 3721 * slab pages if we are over the defined limits. 3722 * 3723 * A small portion of unmapped file backed pages is needed for 3724 * file I/O otherwise pages read by file I/O will be immediately 3725 * thrown out if the zone is overallocated. So we do not reclaim 3726 * if less than a specified percentage of the zone is used by 3727 * unmapped file backed pages. 3728 */ 3729 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 3730 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 3731 return ZONE_RECLAIM_FULL; 3732 3733 if (!zone_reclaimable(zone)) 3734 return ZONE_RECLAIM_FULL; 3735 3736 /* 3737 * Do not scan if the allocation should not be delayed. 3738 */ 3739 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 3740 return ZONE_RECLAIM_NOSCAN; 3741 3742 /* 3743 * Only run zone reclaim on the local zone or on zones that do not 3744 * have associated processors. This will favor the local processor 3745 * over remote processors and spread off node memory allocations 3746 * as wide as possible. 3747 */ 3748 node_id = zone_to_nid(zone); 3749 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 3750 return ZONE_RECLAIM_NOSCAN; 3751 3752 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags)) 3753 return ZONE_RECLAIM_NOSCAN; 3754 3755 ret = __zone_reclaim(zone, gfp_mask, order); 3756 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 3757 3758 if (!ret) 3759 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3760 3761 return ret; 3762 } 3763 #endif 3764 3765 /* 3766 * page_evictable - test whether a page is evictable 3767 * @page: the page to test 3768 * 3769 * Test whether page is evictable--i.e., should be placed on active/inactive 3770 * lists vs unevictable list. 3771 * 3772 * Reasons page might not be evictable: 3773 * (1) page's mapping marked unevictable 3774 * (2) page is part of an mlocked VMA 3775 * 3776 */ 3777 int page_evictable(struct page *page) 3778 { 3779 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3780 } 3781 3782 #ifdef CONFIG_SHMEM 3783 /** 3784 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3785 * @pages: array of pages to check 3786 * @nr_pages: number of pages to check 3787 * 3788 * Checks pages for evictability and moves them to the appropriate lru list. 3789 * 3790 * This function is only used for SysV IPC SHM_UNLOCK. 3791 */ 3792 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3793 { 3794 struct lruvec *lruvec; 3795 struct zone *zone = NULL; 3796 int pgscanned = 0; 3797 int pgrescued = 0; 3798 int i; 3799 3800 for (i = 0; i < nr_pages; i++) { 3801 struct page *page = pages[i]; 3802 struct zone *pagezone; 3803 3804 pgscanned++; 3805 pagezone = page_zone(page); 3806 if (pagezone != zone) { 3807 if (zone) 3808 spin_unlock_irq(&zone->lru_lock); 3809 zone = pagezone; 3810 spin_lock_irq(&zone->lru_lock); 3811 } 3812 lruvec = mem_cgroup_page_lruvec(page, zone); 3813 3814 if (!PageLRU(page) || !PageUnevictable(page)) 3815 continue; 3816 3817 if (page_evictable(page)) { 3818 enum lru_list lru = page_lru_base_type(page); 3819 3820 VM_BUG_ON_PAGE(PageActive(page), page); 3821 ClearPageUnevictable(page); 3822 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3823 add_page_to_lru_list(page, lruvec, lru); 3824 pgrescued++; 3825 } 3826 } 3827 3828 if (zone) { 3829 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3830 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3831 spin_unlock_irq(&zone->lru_lock); 3832 } 3833 } 3834 #endif /* CONFIG_SHMEM */ 3835