1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmstat.h> 23 #include <linux/file.h> 24 #include <linux/writeback.h> 25 #include <linux/blkdev.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page(), 27 buffer_heads_over_limit */ 28 #include <linux/mm_inline.h> 29 #include <linux/pagevec.h> 30 #include <linux/backing-dev.h> 31 #include <linux/rmap.h> 32 #include <linux/topology.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/notifier.h> 36 #include <linux/rwsem.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/freezer.h> 40 #include <linux/memcontrol.h> 41 #include <linux/delayacct.h> 42 43 #include <asm/tlbflush.h> 44 #include <asm/div64.h> 45 46 #include <linux/swapops.h> 47 48 #include "internal.h" 49 50 struct scan_control { 51 /* Incremented by the number of inactive pages that were scanned */ 52 unsigned long nr_scanned; 53 54 /* This context's GFP mask */ 55 gfp_t gfp_mask; 56 57 int may_writepage; 58 59 /* Can pages be swapped as part of reclaim? */ 60 int may_swap; 61 62 /* This context's SWAP_CLUSTER_MAX. If freeing memory for 63 * suspend, we effectively ignore SWAP_CLUSTER_MAX. 64 * In this context, it doesn't matter that we scan the 65 * whole list at once. */ 66 int swap_cluster_max; 67 68 int swappiness; 69 70 int all_unreclaimable; 71 72 int order; 73 74 /* Which cgroup do we reclaim from */ 75 struct mem_cgroup *mem_cgroup; 76 77 /* Pluggable isolate pages callback */ 78 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst, 79 unsigned long *scanned, int order, int mode, 80 struct zone *z, struct mem_cgroup *mem_cont, 81 int active, int file); 82 }; 83 84 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 85 86 #ifdef ARCH_HAS_PREFETCH 87 #define prefetch_prev_lru_page(_page, _base, _field) \ 88 do { \ 89 if ((_page)->lru.prev != _base) { \ 90 struct page *prev; \ 91 \ 92 prev = lru_to_page(&(_page->lru)); \ 93 prefetch(&prev->_field); \ 94 } \ 95 } while (0) 96 #else 97 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 98 #endif 99 100 #ifdef ARCH_HAS_PREFETCHW 101 #define prefetchw_prev_lru_page(_page, _base, _field) \ 102 do { \ 103 if ((_page)->lru.prev != _base) { \ 104 struct page *prev; \ 105 \ 106 prev = lru_to_page(&(_page->lru)); \ 107 prefetchw(&prev->_field); \ 108 } \ 109 } while (0) 110 #else 111 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 112 #endif 113 114 /* 115 * From 0 .. 100. Higher means more swappy. 116 */ 117 int vm_swappiness = 60; 118 long vm_total_pages; /* The total number of pages which the VM controls */ 119 120 static LIST_HEAD(shrinker_list); 121 static DECLARE_RWSEM(shrinker_rwsem); 122 123 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 124 #define scan_global_lru(sc) (!(sc)->mem_cgroup) 125 #else 126 #define scan_global_lru(sc) (1) 127 #endif 128 129 /* 130 * Add a shrinker callback to be called from the vm 131 */ 132 void register_shrinker(struct shrinker *shrinker) 133 { 134 shrinker->nr = 0; 135 down_write(&shrinker_rwsem); 136 list_add_tail(&shrinker->list, &shrinker_list); 137 up_write(&shrinker_rwsem); 138 } 139 EXPORT_SYMBOL(register_shrinker); 140 141 /* 142 * Remove one 143 */ 144 void unregister_shrinker(struct shrinker *shrinker) 145 { 146 down_write(&shrinker_rwsem); 147 list_del(&shrinker->list); 148 up_write(&shrinker_rwsem); 149 } 150 EXPORT_SYMBOL(unregister_shrinker); 151 152 #define SHRINK_BATCH 128 153 /* 154 * Call the shrink functions to age shrinkable caches 155 * 156 * Here we assume it costs one seek to replace a lru page and that it also 157 * takes a seek to recreate a cache object. With this in mind we age equal 158 * percentages of the lru and ageable caches. This should balance the seeks 159 * generated by these structures. 160 * 161 * If the vm encountered mapped pages on the LRU it increase the pressure on 162 * slab to avoid swapping. 163 * 164 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 165 * 166 * `lru_pages' represents the number of on-LRU pages in all the zones which 167 * are eligible for the caller's allocation attempt. It is used for balancing 168 * slab reclaim versus page reclaim. 169 * 170 * Returns the number of slab objects which we shrunk. 171 */ 172 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 173 unsigned long lru_pages) 174 { 175 struct shrinker *shrinker; 176 unsigned long ret = 0; 177 178 if (scanned == 0) 179 scanned = SWAP_CLUSTER_MAX; 180 181 if (!down_read_trylock(&shrinker_rwsem)) 182 return 1; /* Assume we'll be able to shrink next time */ 183 184 list_for_each_entry(shrinker, &shrinker_list, list) { 185 unsigned long long delta; 186 unsigned long total_scan; 187 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask); 188 189 delta = (4 * scanned) / shrinker->seeks; 190 delta *= max_pass; 191 do_div(delta, lru_pages + 1); 192 shrinker->nr += delta; 193 if (shrinker->nr < 0) { 194 printk(KERN_ERR "%s: nr=%ld\n", 195 __func__, shrinker->nr); 196 shrinker->nr = max_pass; 197 } 198 199 /* 200 * Avoid risking looping forever due to too large nr value: 201 * never try to free more than twice the estimate number of 202 * freeable entries. 203 */ 204 if (shrinker->nr > max_pass * 2) 205 shrinker->nr = max_pass * 2; 206 207 total_scan = shrinker->nr; 208 shrinker->nr = 0; 209 210 while (total_scan >= SHRINK_BATCH) { 211 long this_scan = SHRINK_BATCH; 212 int shrink_ret; 213 int nr_before; 214 215 nr_before = (*shrinker->shrink)(0, gfp_mask); 216 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask); 217 if (shrink_ret == -1) 218 break; 219 if (shrink_ret < nr_before) 220 ret += nr_before - shrink_ret; 221 count_vm_events(SLABS_SCANNED, this_scan); 222 total_scan -= this_scan; 223 224 cond_resched(); 225 } 226 227 shrinker->nr += total_scan; 228 } 229 up_read(&shrinker_rwsem); 230 return ret; 231 } 232 233 /* Called without lock on whether page is mapped, so answer is unstable */ 234 static inline int page_mapping_inuse(struct page *page) 235 { 236 struct address_space *mapping; 237 238 /* Page is in somebody's page tables. */ 239 if (page_mapped(page)) 240 return 1; 241 242 /* Be more reluctant to reclaim swapcache than pagecache */ 243 if (PageSwapCache(page)) 244 return 1; 245 246 mapping = page_mapping(page); 247 if (!mapping) 248 return 0; 249 250 /* File is mmap'd by somebody? */ 251 return mapping_mapped(mapping); 252 } 253 254 static inline int is_page_cache_freeable(struct page *page) 255 { 256 return page_count(page) - !!PagePrivate(page) == 2; 257 } 258 259 static int may_write_to_queue(struct backing_dev_info *bdi) 260 { 261 if (current->flags & PF_SWAPWRITE) 262 return 1; 263 if (!bdi_write_congested(bdi)) 264 return 1; 265 if (bdi == current->backing_dev_info) 266 return 1; 267 return 0; 268 } 269 270 /* 271 * We detected a synchronous write error writing a page out. Probably 272 * -ENOSPC. We need to propagate that into the address_space for a subsequent 273 * fsync(), msync() or close(). 274 * 275 * The tricky part is that after writepage we cannot touch the mapping: nothing 276 * prevents it from being freed up. But we have a ref on the page and once 277 * that page is locked, the mapping is pinned. 278 * 279 * We're allowed to run sleeping lock_page() here because we know the caller has 280 * __GFP_FS. 281 */ 282 static void handle_write_error(struct address_space *mapping, 283 struct page *page, int error) 284 { 285 lock_page(page); 286 if (page_mapping(page) == mapping) 287 mapping_set_error(mapping, error); 288 unlock_page(page); 289 } 290 291 /* Request for sync pageout. */ 292 enum pageout_io { 293 PAGEOUT_IO_ASYNC, 294 PAGEOUT_IO_SYNC, 295 }; 296 297 /* possible outcome of pageout() */ 298 typedef enum { 299 /* failed to write page out, page is locked */ 300 PAGE_KEEP, 301 /* move page to the active list, page is locked */ 302 PAGE_ACTIVATE, 303 /* page has been sent to the disk successfully, page is unlocked */ 304 PAGE_SUCCESS, 305 /* page is clean and locked */ 306 PAGE_CLEAN, 307 } pageout_t; 308 309 /* 310 * pageout is called by shrink_page_list() for each dirty page. 311 * Calls ->writepage(). 312 */ 313 static pageout_t pageout(struct page *page, struct address_space *mapping, 314 enum pageout_io sync_writeback) 315 { 316 /* 317 * If the page is dirty, only perform writeback if that write 318 * will be non-blocking. To prevent this allocation from being 319 * stalled by pagecache activity. But note that there may be 320 * stalls if we need to run get_block(). We could test 321 * PagePrivate for that. 322 * 323 * If this process is currently in generic_file_write() against 324 * this page's queue, we can perform writeback even if that 325 * will block. 326 * 327 * If the page is swapcache, write it back even if that would 328 * block, for some throttling. This happens by accident, because 329 * swap_backing_dev_info is bust: it doesn't reflect the 330 * congestion state of the swapdevs. Easy to fix, if needed. 331 * See swapfile.c:page_queue_congested(). 332 */ 333 if (!is_page_cache_freeable(page)) 334 return PAGE_KEEP; 335 if (!mapping) { 336 /* 337 * Some data journaling orphaned pages can have 338 * page->mapping == NULL while being dirty with clean buffers. 339 */ 340 if (PagePrivate(page)) { 341 if (try_to_free_buffers(page)) { 342 ClearPageDirty(page); 343 printk("%s: orphaned page\n", __func__); 344 return PAGE_CLEAN; 345 } 346 } 347 return PAGE_KEEP; 348 } 349 if (mapping->a_ops->writepage == NULL) 350 return PAGE_ACTIVATE; 351 if (!may_write_to_queue(mapping->backing_dev_info)) 352 return PAGE_KEEP; 353 354 if (clear_page_dirty_for_io(page)) { 355 int res; 356 struct writeback_control wbc = { 357 .sync_mode = WB_SYNC_NONE, 358 .nr_to_write = SWAP_CLUSTER_MAX, 359 .range_start = 0, 360 .range_end = LLONG_MAX, 361 .nonblocking = 1, 362 .for_reclaim = 1, 363 }; 364 365 SetPageReclaim(page); 366 res = mapping->a_ops->writepage(page, &wbc); 367 if (res < 0) 368 handle_write_error(mapping, page, res); 369 if (res == AOP_WRITEPAGE_ACTIVATE) { 370 ClearPageReclaim(page); 371 return PAGE_ACTIVATE; 372 } 373 374 /* 375 * Wait on writeback if requested to. This happens when 376 * direct reclaiming a large contiguous area and the 377 * first attempt to free a range of pages fails. 378 */ 379 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC) 380 wait_on_page_writeback(page); 381 382 if (!PageWriteback(page)) { 383 /* synchronous write or broken a_ops? */ 384 ClearPageReclaim(page); 385 } 386 inc_zone_page_state(page, NR_VMSCAN_WRITE); 387 return PAGE_SUCCESS; 388 } 389 390 return PAGE_CLEAN; 391 } 392 393 /* 394 * Same as remove_mapping, but if the page is removed from the mapping, it 395 * gets returned with a refcount of 0. 396 */ 397 static int __remove_mapping(struct address_space *mapping, struct page *page) 398 { 399 BUG_ON(!PageLocked(page)); 400 BUG_ON(mapping != page_mapping(page)); 401 402 spin_lock_irq(&mapping->tree_lock); 403 /* 404 * The non racy check for a busy page. 405 * 406 * Must be careful with the order of the tests. When someone has 407 * a ref to the page, it may be possible that they dirty it then 408 * drop the reference. So if PageDirty is tested before page_count 409 * here, then the following race may occur: 410 * 411 * get_user_pages(&page); 412 * [user mapping goes away] 413 * write_to(page); 414 * !PageDirty(page) [good] 415 * SetPageDirty(page); 416 * put_page(page); 417 * !page_count(page) [good, discard it] 418 * 419 * [oops, our write_to data is lost] 420 * 421 * Reversing the order of the tests ensures such a situation cannot 422 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 423 * load is not satisfied before that of page->_count. 424 * 425 * Note that if SetPageDirty is always performed via set_page_dirty, 426 * and thus under tree_lock, then this ordering is not required. 427 */ 428 if (!page_freeze_refs(page, 2)) 429 goto cannot_free; 430 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 431 if (unlikely(PageDirty(page))) { 432 page_unfreeze_refs(page, 2); 433 goto cannot_free; 434 } 435 436 if (PageSwapCache(page)) { 437 swp_entry_t swap = { .val = page_private(page) }; 438 __delete_from_swap_cache(page); 439 spin_unlock_irq(&mapping->tree_lock); 440 swap_free(swap); 441 } else { 442 __remove_from_page_cache(page); 443 spin_unlock_irq(&mapping->tree_lock); 444 } 445 446 return 1; 447 448 cannot_free: 449 spin_unlock_irq(&mapping->tree_lock); 450 return 0; 451 } 452 453 /* 454 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 455 * someone else has a ref on the page, abort and return 0. If it was 456 * successfully detached, return 1. Assumes the caller has a single ref on 457 * this page. 458 */ 459 int remove_mapping(struct address_space *mapping, struct page *page) 460 { 461 if (__remove_mapping(mapping, page)) { 462 /* 463 * Unfreezing the refcount with 1 rather than 2 effectively 464 * drops the pagecache ref for us without requiring another 465 * atomic operation. 466 */ 467 page_unfreeze_refs(page, 1); 468 return 1; 469 } 470 return 0; 471 } 472 473 /* 474 * shrink_page_list() returns the number of reclaimed pages 475 */ 476 static unsigned long shrink_page_list(struct list_head *page_list, 477 struct scan_control *sc, 478 enum pageout_io sync_writeback) 479 { 480 LIST_HEAD(ret_pages); 481 struct pagevec freed_pvec; 482 int pgactivate = 0; 483 unsigned long nr_reclaimed = 0; 484 485 cond_resched(); 486 487 pagevec_init(&freed_pvec, 1); 488 while (!list_empty(page_list)) { 489 struct address_space *mapping; 490 struct page *page; 491 int may_enter_fs; 492 int referenced; 493 494 cond_resched(); 495 496 page = lru_to_page(page_list); 497 list_del(&page->lru); 498 499 if (!trylock_page(page)) 500 goto keep; 501 502 VM_BUG_ON(PageActive(page)); 503 504 sc->nr_scanned++; 505 506 if (!sc->may_swap && page_mapped(page)) 507 goto keep_locked; 508 509 /* Double the slab pressure for mapped and swapcache pages */ 510 if (page_mapped(page) || PageSwapCache(page)) 511 sc->nr_scanned++; 512 513 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 514 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 515 516 if (PageWriteback(page)) { 517 /* 518 * Synchronous reclaim is performed in two passes, 519 * first an asynchronous pass over the list to 520 * start parallel writeback, and a second synchronous 521 * pass to wait for the IO to complete. Wait here 522 * for any page for which writeback has already 523 * started. 524 */ 525 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs) 526 wait_on_page_writeback(page); 527 else 528 goto keep_locked; 529 } 530 531 referenced = page_referenced(page, 1, sc->mem_cgroup); 532 /* In active use or really unfreeable? Activate it. */ 533 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && 534 referenced && page_mapping_inuse(page)) 535 goto activate_locked; 536 537 #ifdef CONFIG_SWAP 538 /* 539 * Anonymous process memory has backing store? 540 * Try to allocate it some swap space here. 541 */ 542 if (PageAnon(page) && !PageSwapCache(page)) 543 if (!add_to_swap(page, GFP_ATOMIC)) 544 goto activate_locked; 545 #endif /* CONFIG_SWAP */ 546 547 mapping = page_mapping(page); 548 549 /* 550 * The page is mapped into the page tables of one or more 551 * processes. Try to unmap it here. 552 */ 553 if (page_mapped(page) && mapping) { 554 switch (try_to_unmap(page, 0)) { 555 case SWAP_FAIL: 556 goto activate_locked; 557 case SWAP_AGAIN: 558 goto keep_locked; 559 case SWAP_SUCCESS: 560 ; /* try to free the page below */ 561 } 562 } 563 564 if (PageDirty(page)) { 565 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced) 566 goto keep_locked; 567 if (!may_enter_fs) 568 goto keep_locked; 569 if (!sc->may_writepage) 570 goto keep_locked; 571 572 /* Page is dirty, try to write it out here */ 573 switch (pageout(page, mapping, sync_writeback)) { 574 case PAGE_KEEP: 575 goto keep_locked; 576 case PAGE_ACTIVATE: 577 goto activate_locked; 578 case PAGE_SUCCESS: 579 if (PageWriteback(page) || PageDirty(page)) 580 goto keep; 581 /* 582 * A synchronous write - probably a ramdisk. Go 583 * ahead and try to reclaim the page. 584 */ 585 if (!trylock_page(page)) 586 goto keep; 587 if (PageDirty(page) || PageWriteback(page)) 588 goto keep_locked; 589 mapping = page_mapping(page); 590 case PAGE_CLEAN: 591 ; /* try to free the page below */ 592 } 593 } 594 595 /* 596 * If the page has buffers, try to free the buffer mappings 597 * associated with this page. If we succeed we try to free 598 * the page as well. 599 * 600 * We do this even if the page is PageDirty(). 601 * try_to_release_page() does not perform I/O, but it is 602 * possible for a page to have PageDirty set, but it is actually 603 * clean (all its buffers are clean). This happens if the 604 * buffers were written out directly, with submit_bh(). ext3 605 * will do this, as well as the blockdev mapping. 606 * try_to_release_page() will discover that cleanness and will 607 * drop the buffers and mark the page clean - it can be freed. 608 * 609 * Rarely, pages can have buffers and no ->mapping. These are 610 * the pages which were not successfully invalidated in 611 * truncate_complete_page(). We try to drop those buffers here 612 * and if that worked, and the page is no longer mapped into 613 * process address space (page_count == 1) it can be freed. 614 * Otherwise, leave the page on the LRU so it is swappable. 615 */ 616 if (PagePrivate(page)) { 617 if (!try_to_release_page(page, sc->gfp_mask)) 618 goto activate_locked; 619 if (!mapping && page_count(page) == 1) { 620 unlock_page(page); 621 if (put_page_testzero(page)) 622 goto free_it; 623 else { 624 /* 625 * rare race with speculative reference. 626 * the speculative reference will free 627 * this page shortly, so we may 628 * increment nr_reclaimed here (and 629 * leave it off the LRU). 630 */ 631 nr_reclaimed++; 632 continue; 633 } 634 } 635 } 636 637 if (!mapping || !__remove_mapping(mapping, page)) 638 goto keep_locked; 639 640 unlock_page(page); 641 free_it: 642 nr_reclaimed++; 643 if (!pagevec_add(&freed_pvec, page)) { 644 __pagevec_free(&freed_pvec); 645 pagevec_reinit(&freed_pvec); 646 } 647 continue; 648 649 activate_locked: 650 /* Not a candidate for swapping, so reclaim swap space. */ 651 if (PageSwapCache(page) && vm_swap_full()) 652 remove_exclusive_swap_page_ref(page); 653 SetPageActive(page); 654 pgactivate++; 655 keep_locked: 656 unlock_page(page); 657 keep: 658 list_add(&page->lru, &ret_pages); 659 VM_BUG_ON(PageLRU(page)); 660 } 661 list_splice(&ret_pages, page_list); 662 if (pagevec_count(&freed_pvec)) 663 __pagevec_free(&freed_pvec); 664 count_vm_events(PGACTIVATE, pgactivate); 665 return nr_reclaimed; 666 } 667 668 /* LRU Isolation modes. */ 669 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */ 670 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */ 671 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */ 672 673 /* 674 * Attempt to remove the specified page from its LRU. Only take this page 675 * if it is of the appropriate PageActive status. Pages which are being 676 * freed elsewhere are also ignored. 677 * 678 * page: page to consider 679 * mode: one of the LRU isolation modes defined above 680 * 681 * returns 0 on success, -ve errno on failure. 682 */ 683 int __isolate_lru_page(struct page *page, int mode, int file) 684 { 685 int ret = -EINVAL; 686 687 /* Only take pages on the LRU. */ 688 if (!PageLRU(page)) 689 return ret; 690 691 /* 692 * When checking the active state, we need to be sure we are 693 * dealing with comparible boolean values. Take the logical not 694 * of each. 695 */ 696 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode)) 697 return ret; 698 699 if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file)) 700 return ret; 701 702 ret = -EBUSY; 703 if (likely(get_page_unless_zero(page))) { 704 /* 705 * Be careful not to clear PageLRU until after we're 706 * sure the page is not being freed elsewhere -- the 707 * page release code relies on it. 708 */ 709 ClearPageLRU(page); 710 ret = 0; 711 } 712 713 return ret; 714 } 715 716 /* 717 * zone->lru_lock is heavily contended. Some of the functions that 718 * shrink the lists perform better by taking out a batch of pages 719 * and working on them outside the LRU lock. 720 * 721 * For pagecache intensive workloads, this function is the hottest 722 * spot in the kernel (apart from copy_*_user functions). 723 * 724 * Appropriate locks must be held before calling this function. 725 * 726 * @nr_to_scan: The number of pages to look through on the list. 727 * @src: The LRU list to pull pages off. 728 * @dst: The temp list to put pages on to. 729 * @scanned: The number of pages that were scanned. 730 * @order: The caller's attempted allocation order 731 * @mode: One of the LRU isolation modes 732 * @file: True [1] if isolating file [!anon] pages 733 * 734 * returns how many pages were moved onto *@dst. 735 */ 736 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 737 struct list_head *src, struct list_head *dst, 738 unsigned long *scanned, int order, int mode, int file) 739 { 740 unsigned long nr_taken = 0; 741 unsigned long scan; 742 743 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 744 struct page *page; 745 unsigned long pfn; 746 unsigned long end_pfn; 747 unsigned long page_pfn; 748 int zone_id; 749 750 page = lru_to_page(src); 751 prefetchw_prev_lru_page(page, src, flags); 752 753 VM_BUG_ON(!PageLRU(page)); 754 755 switch (__isolate_lru_page(page, mode, file)) { 756 case 0: 757 list_move(&page->lru, dst); 758 nr_taken++; 759 break; 760 761 case -EBUSY: 762 /* else it is being freed elsewhere */ 763 list_move(&page->lru, src); 764 continue; 765 766 default: 767 BUG(); 768 } 769 770 if (!order) 771 continue; 772 773 /* 774 * Attempt to take all pages in the order aligned region 775 * surrounding the tag page. Only take those pages of 776 * the same active state as that tag page. We may safely 777 * round the target page pfn down to the requested order 778 * as the mem_map is guarenteed valid out to MAX_ORDER, 779 * where that page is in a different zone we will detect 780 * it from its zone id and abort this block scan. 781 */ 782 zone_id = page_zone_id(page); 783 page_pfn = page_to_pfn(page); 784 pfn = page_pfn & ~((1 << order) - 1); 785 end_pfn = pfn + (1 << order); 786 for (; pfn < end_pfn; pfn++) { 787 struct page *cursor_page; 788 789 /* The target page is in the block, ignore it. */ 790 if (unlikely(pfn == page_pfn)) 791 continue; 792 793 /* Avoid holes within the zone. */ 794 if (unlikely(!pfn_valid_within(pfn))) 795 break; 796 797 cursor_page = pfn_to_page(pfn); 798 799 /* Check that we have not crossed a zone boundary. */ 800 if (unlikely(page_zone_id(cursor_page) != zone_id)) 801 continue; 802 switch (__isolate_lru_page(cursor_page, mode, file)) { 803 case 0: 804 list_move(&cursor_page->lru, dst); 805 nr_taken++; 806 scan++; 807 break; 808 809 case -EBUSY: 810 /* else it is being freed elsewhere */ 811 list_move(&cursor_page->lru, src); 812 default: 813 break; 814 } 815 } 816 } 817 818 *scanned = scan; 819 return nr_taken; 820 } 821 822 static unsigned long isolate_pages_global(unsigned long nr, 823 struct list_head *dst, 824 unsigned long *scanned, int order, 825 int mode, struct zone *z, 826 struct mem_cgroup *mem_cont, 827 int active, int file) 828 { 829 int lru = LRU_BASE; 830 if (active) 831 lru += LRU_ACTIVE; 832 if (file) 833 lru += LRU_FILE; 834 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order, 835 mode, !!file); 836 } 837 838 /* 839 * clear_active_flags() is a helper for shrink_active_list(), clearing 840 * any active bits from the pages in the list. 841 */ 842 static unsigned long clear_active_flags(struct list_head *page_list, 843 unsigned int *count) 844 { 845 int nr_active = 0; 846 int lru; 847 struct page *page; 848 849 list_for_each_entry(page, page_list, lru) { 850 lru = page_is_file_cache(page); 851 if (PageActive(page)) { 852 lru += LRU_ACTIVE; 853 ClearPageActive(page); 854 nr_active++; 855 } 856 count[lru]++; 857 } 858 859 return nr_active; 860 } 861 862 /** 863 * isolate_lru_page - tries to isolate a page from its LRU list 864 * @page: page to isolate from its LRU list 865 * 866 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 867 * vmstat statistic corresponding to whatever LRU list the page was on. 868 * 869 * Returns 0 if the page was removed from an LRU list. 870 * Returns -EBUSY if the page was not on an LRU list. 871 * 872 * The returned page will have PageLRU() cleared. If it was found on 873 * the active list, it will have PageActive set. That flag may need 874 * to be cleared by the caller before letting the page go. 875 * 876 * The vmstat statistic corresponding to the list on which the page was 877 * found will be decremented. 878 * 879 * Restrictions: 880 * (1) Must be called with an elevated refcount on the page. This is a 881 * fundamentnal difference from isolate_lru_pages (which is called 882 * without a stable reference). 883 * (2) the lru_lock must not be held. 884 * (3) interrupts must be enabled. 885 */ 886 int isolate_lru_page(struct page *page) 887 { 888 int ret = -EBUSY; 889 890 if (PageLRU(page)) { 891 struct zone *zone = page_zone(page); 892 893 spin_lock_irq(&zone->lru_lock); 894 if (PageLRU(page) && get_page_unless_zero(page)) { 895 int lru = LRU_BASE; 896 ret = 0; 897 ClearPageLRU(page); 898 899 lru += page_is_file_cache(page) + !!PageActive(page); 900 del_page_from_lru_list(zone, page, lru); 901 } 902 spin_unlock_irq(&zone->lru_lock); 903 } 904 return ret; 905 } 906 907 /* 908 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 909 * of reclaimed pages 910 */ 911 static unsigned long shrink_inactive_list(unsigned long max_scan, 912 struct zone *zone, struct scan_control *sc, int file) 913 { 914 LIST_HEAD(page_list); 915 struct pagevec pvec; 916 unsigned long nr_scanned = 0; 917 unsigned long nr_reclaimed = 0; 918 919 pagevec_init(&pvec, 1); 920 921 lru_add_drain(); 922 spin_lock_irq(&zone->lru_lock); 923 do { 924 struct page *page; 925 unsigned long nr_taken; 926 unsigned long nr_scan; 927 unsigned long nr_freed; 928 unsigned long nr_active; 929 unsigned int count[NR_LRU_LISTS] = { 0, }; 930 int mode = (sc->order > PAGE_ALLOC_COSTLY_ORDER) ? 931 ISOLATE_BOTH : ISOLATE_INACTIVE; 932 933 nr_taken = sc->isolate_pages(sc->swap_cluster_max, 934 &page_list, &nr_scan, sc->order, mode, 935 zone, sc->mem_cgroup, 0, file); 936 nr_active = clear_active_flags(&page_list, count); 937 __count_vm_events(PGDEACTIVATE, nr_active); 938 939 __mod_zone_page_state(zone, NR_ACTIVE_FILE, 940 -count[LRU_ACTIVE_FILE]); 941 __mod_zone_page_state(zone, NR_INACTIVE_FILE, 942 -count[LRU_INACTIVE_FILE]); 943 __mod_zone_page_state(zone, NR_ACTIVE_ANON, 944 -count[LRU_ACTIVE_ANON]); 945 __mod_zone_page_state(zone, NR_INACTIVE_ANON, 946 -count[LRU_INACTIVE_ANON]); 947 948 if (scan_global_lru(sc)) { 949 zone->pages_scanned += nr_scan; 950 zone->recent_scanned[0] += count[LRU_INACTIVE_ANON]; 951 zone->recent_scanned[0] += count[LRU_ACTIVE_ANON]; 952 zone->recent_scanned[1] += count[LRU_INACTIVE_FILE]; 953 zone->recent_scanned[1] += count[LRU_ACTIVE_FILE]; 954 } 955 spin_unlock_irq(&zone->lru_lock); 956 957 nr_scanned += nr_scan; 958 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC); 959 960 /* 961 * If we are direct reclaiming for contiguous pages and we do 962 * not reclaim everything in the list, try again and wait 963 * for IO to complete. This will stall high-order allocations 964 * but that should be acceptable to the caller 965 */ 966 if (nr_freed < nr_taken && !current_is_kswapd() && 967 sc->order > PAGE_ALLOC_COSTLY_ORDER) { 968 congestion_wait(WRITE, HZ/10); 969 970 /* 971 * The attempt at page out may have made some 972 * of the pages active, mark them inactive again. 973 */ 974 nr_active = clear_active_flags(&page_list, count); 975 count_vm_events(PGDEACTIVATE, nr_active); 976 977 nr_freed += shrink_page_list(&page_list, sc, 978 PAGEOUT_IO_SYNC); 979 } 980 981 nr_reclaimed += nr_freed; 982 local_irq_disable(); 983 if (current_is_kswapd()) { 984 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan); 985 __count_vm_events(KSWAPD_STEAL, nr_freed); 986 } else if (scan_global_lru(sc)) 987 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan); 988 989 __count_zone_vm_events(PGSTEAL, zone, nr_freed); 990 991 if (nr_taken == 0) 992 goto done; 993 994 spin_lock(&zone->lru_lock); 995 /* 996 * Put back any unfreeable pages. 997 */ 998 while (!list_empty(&page_list)) { 999 page = lru_to_page(&page_list); 1000 VM_BUG_ON(PageLRU(page)); 1001 SetPageLRU(page); 1002 list_del(&page->lru); 1003 add_page_to_lru_list(zone, page, page_lru(page)); 1004 if (PageActive(page) && scan_global_lru(sc)) { 1005 int file = !!page_is_file_cache(page); 1006 zone->recent_rotated[file]++; 1007 } 1008 if (!pagevec_add(&pvec, page)) { 1009 spin_unlock_irq(&zone->lru_lock); 1010 __pagevec_release(&pvec); 1011 spin_lock_irq(&zone->lru_lock); 1012 } 1013 } 1014 } while (nr_scanned < max_scan); 1015 spin_unlock(&zone->lru_lock); 1016 done: 1017 local_irq_enable(); 1018 pagevec_release(&pvec); 1019 return nr_reclaimed; 1020 } 1021 1022 /* 1023 * We are about to scan this zone at a certain priority level. If that priority 1024 * level is smaller (ie: more urgent) than the previous priority, then note 1025 * that priority level within the zone. This is done so that when the next 1026 * process comes in to scan this zone, it will immediately start out at this 1027 * priority level rather than having to build up its own scanning priority. 1028 * Here, this priority affects only the reclaim-mapped threshold. 1029 */ 1030 static inline void note_zone_scanning_priority(struct zone *zone, int priority) 1031 { 1032 if (priority < zone->prev_priority) 1033 zone->prev_priority = priority; 1034 } 1035 1036 static inline int zone_is_near_oom(struct zone *zone) 1037 { 1038 return zone->pages_scanned >= (zone_lru_pages(zone) * 3); 1039 } 1040 1041 /* 1042 * This moves pages from the active list to the inactive list. 1043 * 1044 * We move them the other way if the page is referenced by one or more 1045 * processes, from rmap. 1046 * 1047 * If the pages are mostly unmapped, the processing is fast and it is 1048 * appropriate to hold zone->lru_lock across the whole operation. But if 1049 * the pages are mapped, the processing is slow (page_referenced()) so we 1050 * should drop zone->lru_lock around each page. It's impossible to balance 1051 * this, so instead we remove the pages from the LRU while processing them. 1052 * It is safe to rely on PG_active against the non-LRU pages in here because 1053 * nobody will play with that bit on a non-LRU page. 1054 * 1055 * The downside is that we have to touch page->_count against each page. 1056 * But we had to alter page->flags anyway. 1057 */ 1058 1059 1060 static void shrink_active_list(unsigned long nr_pages, struct zone *zone, 1061 struct scan_control *sc, int priority, int file) 1062 { 1063 unsigned long pgmoved; 1064 int pgdeactivate = 0; 1065 unsigned long pgscanned; 1066 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1067 LIST_HEAD(l_active); 1068 LIST_HEAD(l_inactive); 1069 struct page *page; 1070 struct pagevec pvec; 1071 enum lru_list lru; 1072 1073 lru_add_drain(); 1074 spin_lock_irq(&zone->lru_lock); 1075 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order, 1076 ISOLATE_ACTIVE, zone, 1077 sc->mem_cgroup, 1, file); 1078 /* 1079 * zone->pages_scanned is used for detect zone's oom 1080 * mem_cgroup remembers nr_scan by itself. 1081 */ 1082 if (scan_global_lru(sc)) { 1083 zone->pages_scanned += pgscanned; 1084 zone->recent_scanned[!!file] += pgmoved; 1085 } 1086 1087 if (file) 1088 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved); 1089 else 1090 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved); 1091 spin_unlock_irq(&zone->lru_lock); 1092 1093 while (!list_empty(&l_hold)) { 1094 cond_resched(); 1095 page = lru_to_page(&l_hold); 1096 list_del(&page->lru); 1097 list_add(&page->lru, &l_inactive); 1098 } 1099 1100 /* 1101 * Now put the pages back on the appropriate [file or anon] inactive 1102 * and active lists. 1103 */ 1104 pagevec_init(&pvec, 1); 1105 pgmoved = 0; 1106 lru = LRU_BASE + file * LRU_FILE; 1107 spin_lock_irq(&zone->lru_lock); 1108 while (!list_empty(&l_inactive)) { 1109 page = lru_to_page(&l_inactive); 1110 prefetchw_prev_lru_page(page, &l_inactive, flags); 1111 VM_BUG_ON(PageLRU(page)); 1112 SetPageLRU(page); 1113 VM_BUG_ON(!PageActive(page)); 1114 ClearPageActive(page); 1115 1116 list_move(&page->lru, &zone->lru[lru].list); 1117 mem_cgroup_move_lists(page, false); 1118 pgmoved++; 1119 if (!pagevec_add(&pvec, page)) { 1120 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1121 spin_unlock_irq(&zone->lru_lock); 1122 pgdeactivate += pgmoved; 1123 pgmoved = 0; 1124 if (buffer_heads_over_limit) 1125 pagevec_strip(&pvec); 1126 __pagevec_release(&pvec); 1127 spin_lock_irq(&zone->lru_lock); 1128 } 1129 } 1130 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1131 pgdeactivate += pgmoved; 1132 if (buffer_heads_over_limit) { 1133 spin_unlock_irq(&zone->lru_lock); 1134 pagevec_strip(&pvec); 1135 spin_lock_irq(&zone->lru_lock); 1136 } 1137 1138 pgmoved = 0; 1139 lru = LRU_ACTIVE + file * LRU_FILE; 1140 while (!list_empty(&l_active)) { 1141 page = lru_to_page(&l_active); 1142 prefetchw_prev_lru_page(page, &l_active, flags); 1143 VM_BUG_ON(PageLRU(page)); 1144 SetPageLRU(page); 1145 VM_BUG_ON(!PageActive(page)); 1146 1147 list_move(&page->lru, &zone->lru[lru].list); 1148 mem_cgroup_move_lists(page, true); 1149 pgmoved++; 1150 if (!pagevec_add(&pvec, page)) { 1151 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1152 pgmoved = 0; 1153 spin_unlock_irq(&zone->lru_lock); 1154 if (vm_swap_full()) 1155 pagevec_swap_free(&pvec); 1156 __pagevec_release(&pvec); 1157 spin_lock_irq(&zone->lru_lock); 1158 } 1159 } 1160 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1161 zone->recent_rotated[!!file] += pgmoved; 1162 1163 __count_zone_vm_events(PGREFILL, zone, pgscanned); 1164 __count_vm_events(PGDEACTIVATE, pgdeactivate); 1165 spin_unlock_irq(&zone->lru_lock); 1166 if (vm_swap_full()) 1167 pagevec_swap_free(&pvec); 1168 1169 pagevec_release(&pvec); 1170 } 1171 1172 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1173 struct zone *zone, struct scan_control *sc, int priority) 1174 { 1175 int file = is_file_lru(lru); 1176 1177 if (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE) { 1178 shrink_active_list(nr_to_scan, zone, sc, priority, file); 1179 return 0; 1180 } 1181 return shrink_inactive_list(nr_to_scan, zone, sc, file); 1182 } 1183 1184 /* 1185 * Determine how aggressively the anon and file LRU lists should be 1186 * scanned. The relative value of each set of LRU lists is determined 1187 * by looking at the fraction of the pages scanned we did rotate back 1188 * onto the active list instead of evict. 1189 * 1190 * percent[0] specifies how much pressure to put on ram/swap backed 1191 * memory, while percent[1] determines pressure on the file LRUs. 1192 */ 1193 static void get_scan_ratio(struct zone *zone, struct scan_control *sc, 1194 unsigned long *percent) 1195 { 1196 unsigned long anon, file, free; 1197 unsigned long anon_prio, file_prio; 1198 unsigned long ap, fp; 1199 1200 anon = zone_page_state(zone, NR_ACTIVE_ANON) + 1201 zone_page_state(zone, NR_INACTIVE_ANON); 1202 file = zone_page_state(zone, NR_ACTIVE_FILE) + 1203 zone_page_state(zone, NR_INACTIVE_FILE); 1204 free = zone_page_state(zone, NR_FREE_PAGES); 1205 1206 /* If we have no swap space, do not bother scanning anon pages. */ 1207 if (nr_swap_pages <= 0) { 1208 percent[0] = 0; 1209 percent[1] = 100; 1210 return; 1211 } 1212 1213 /* If we have very few page cache pages, force-scan anon pages. */ 1214 if (unlikely(file + free <= zone->pages_high)) { 1215 percent[0] = 100; 1216 percent[1] = 0; 1217 return; 1218 } 1219 1220 /* 1221 * OK, so we have swap space and a fair amount of page cache 1222 * pages. We use the recently rotated / recently scanned 1223 * ratios to determine how valuable each cache is. 1224 * 1225 * Because workloads change over time (and to avoid overflow) 1226 * we keep these statistics as a floating average, which ends 1227 * up weighing recent references more than old ones. 1228 * 1229 * anon in [0], file in [1] 1230 */ 1231 if (unlikely(zone->recent_scanned[0] > anon / 4)) { 1232 spin_lock_irq(&zone->lru_lock); 1233 zone->recent_scanned[0] /= 2; 1234 zone->recent_rotated[0] /= 2; 1235 spin_unlock_irq(&zone->lru_lock); 1236 } 1237 1238 if (unlikely(zone->recent_scanned[1] > file / 4)) { 1239 spin_lock_irq(&zone->lru_lock); 1240 zone->recent_scanned[1] /= 2; 1241 zone->recent_rotated[1] /= 2; 1242 spin_unlock_irq(&zone->lru_lock); 1243 } 1244 1245 /* 1246 * With swappiness at 100, anonymous and file have the same priority. 1247 * This scanning priority is essentially the inverse of IO cost. 1248 */ 1249 anon_prio = sc->swappiness; 1250 file_prio = 200 - sc->swappiness; 1251 1252 /* 1253 * anon recent_rotated[0] 1254 * %anon = 100 * ----------- / ----------------- * IO cost 1255 * anon + file rotate_sum 1256 */ 1257 ap = (anon_prio + 1) * (zone->recent_scanned[0] + 1); 1258 ap /= zone->recent_rotated[0] + 1; 1259 1260 fp = (file_prio + 1) * (zone->recent_scanned[1] + 1); 1261 fp /= zone->recent_rotated[1] + 1; 1262 1263 /* Normalize to percentages */ 1264 percent[0] = 100 * ap / (ap + fp + 1); 1265 percent[1] = 100 - percent[0]; 1266 } 1267 1268 1269 /* 1270 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 1271 */ 1272 static unsigned long shrink_zone(int priority, struct zone *zone, 1273 struct scan_control *sc) 1274 { 1275 unsigned long nr[NR_LRU_LISTS]; 1276 unsigned long nr_to_scan; 1277 unsigned long nr_reclaimed = 0; 1278 unsigned long percent[2]; /* anon @ 0; file @ 1 */ 1279 enum lru_list l; 1280 1281 get_scan_ratio(zone, sc, percent); 1282 1283 for_each_lru(l) { 1284 if (scan_global_lru(sc)) { 1285 int file = is_file_lru(l); 1286 int scan; 1287 /* 1288 * Add one to nr_to_scan just to make sure that the 1289 * kernel will slowly sift through each list. 1290 */ 1291 scan = zone_page_state(zone, NR_LRU_BASE + l); 1292 if (priority) { 1293 scan >>= priority; 1294 scan = (scan * percent[file]) / 100; 1295 } 1296 zone->lru[l].nr_scan += scan + 1; 1297 nr[l] = zone->lru[l].nr_scan; 1298 if (nr[l] >= sc->swap_cluster_max) 1299 zone->lru[l].nr_scan = 0; 1300 else 1301 nr[l] = 0; 1302 } else { 1303 /* 1304 * This reclaim occurs not because zone memory shortage 1305 * but because memory controller hits its limit. 1306 * Don't modify zone reclaim related data. 1307 */ 1308 nr[l] = mem_cgroup_calc_reclaim(sc->mem_cgroup, zone, 1309 priority, l); 1310 } 1311 } 1312 1313 while (nr[LRU_ACTIVE_ANON] || nr[LRU_INACTIVE_ANON] || 1314 nr[LRU_ACTIVE_FILE] || nr[LRU_INACTIVE_FILE]) { 1315 for_each_lru(l) { 1316 if (nr[l]) { 1317 nr_to_scan = min(nr[l], 1318 (unsigned long)sc->swap_cluster_max); 1319 nr[l] -= nr_to_scan; 1320 1321 nr_reclaimed += shrink_list(l, nr_to_scan, 1322 zone, sc, priority); 1323 } 1324 } 1325 } 1326 1327 throttle_vm_writeout(sc->gfp_mask); 1328 return nr_reclaimed; 1329 } 1330 1331 /* 1332 * This is the direct reclaim path, for page-allocating processes. We only 1333 * try to reclaim pages from zones which will satisfy the caller's allocation 1334 * request. 1335 * 1336 * We reclaim from a zone even if that zone is over pages_high. Because: 1337 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 1338 * allocation or 1339 * b) The zones may be over pages_high but they must go *over* pages_high to 1340 * satisfy the `incremental min' zone defense algorithm. 1341 * 1342 * Returns the number of reclaimed pages. 1343 * 1344 * If a zone is deemed to be full of pinned pages then just give it a light 1345 * scan then give up on it. 1346 */ 1347 static unsigned long shrink_zones(int priority, struct zonelist *zonelist, 1348 struct scan_control *sc) 1349 { 1350 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); 1351 unsigned long nr_reclaimed = 0; 1352 struct zoneref *z; 1353 struct zone *zone; 1354 1355 sc->all_unreclaimable = 1; 1356 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1357 if (!populated_zone(zone)) 1358 continue; 1359 /* 1360 * Take care memory controller reclaiming has small influence 1361 * to global LRU. 1362 */ 1363 if (scan_global_lru(sc)) { 1364 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1365 continue; 1366 note_zone_scanning_priority(zone, priority); 1367 1368 if (zone_is_all_unreclaimable(zone) && 1369 priority != DEF_PRIORITY) 1370 continue; /* Let kswapd poll it */ 1371 sc->all_unreclaimable = 0; 1372 } else { 1373 /* 1374 * Ignore cpuset limitation here. We just want to reduce 1375 * # of used pages by us regardless of memory shortage. 1376 */ 1377 sc->all_unreclaimable = 0; 1378 mem_cgroup_note_reclaim_priority(sc->mem_cgroup, 1379 priority); 1380 } 1381 1382 nr_reclaimed += shrink_zone(priority, zone, sc); 1383 } 1384 1385 return nr_reclaimed; 1386 } 1387 1388 /* 1389 * This is the main entry point to direct page reclaim. 1390 * 1391 * If a full scan of the inactive list fails to free enough memory then we 1392 * are "out of memory" and something needs to be killed. 1393 * 1394 * If the caller is !__GFP_FS then the probability of a failure is reasonably 1395 * high - the zone may be full of dirty or under-writeback pages, which this 1396 * caller can't do much about. We kick pdflush and take explicit naps in the 1397 * hope that some of these pages can be written. But if the allocating task 1398 * holds filesystem locks which prevent writeout this might not work, and the 1399 * allocation attempt will fail. 1400 * 1401 * returns: 0, if no pages reclaimed 1402 * else, the number of pages reclaimed 1403 */ 1404 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 1405 struct scan_control *sc) 1406 { 1407 int priority; 1408 unsigned long ret = 0; 1409 unsigned long total_scanned = 0; 1410 unsigned long nr_reclaimed = 0; 1411 struct reclaim_state *reclaim_state = current->reclaim_state; 1412 unsigned long lru_pages = 0; 1413 struct zoneref *z; 1414 struct zone *zone; 1415 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); 1416 1417 delayacct_freepages_start(); 1418 1419 if (scan_global_lru(sc)) 1420 count_vm_event(ALLOCSTALL); 1421 /* 1422 * mem_cgroup will not do shrink_slab. 1423 */ 1424 if (scan_global_lru(sc)) { 1425 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1426 1427 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1428 continue; 1429 1430 lru_pages += zone_lru_pages(zone); 1431 } 1432 } 1433 1434 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1435 sc->nr_scanned = 0; 1436 if (!priority) 1437 disable_swap_token(); 1438 nr_reclaimed += shrink_zones(priority, zonelist, sc); 1439 /* 1440 * Don't shrink slabs when reclaiming memory from 1441 * over limit cgroups 1442 */ 1443 if (scan_global_lru(sc)) { 1444 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages); 1445 if (reclaim_state) { 1446 nr_reclaimed += reclaim_state->reclaimed_slab; 1447 reclaim_state->reclaimed_slab = 0; 1448 } 1449 } 1450 total_scanned += sc->nr_scanned; 1451 if (nr_reclaimed >= sc->swap_cluster_max) { 1452 ret = nr_reclaimed; 1453 goto out; 1454 } 1455 1456 /* 1457 * Try to write back as many pages as we just scanned. This 1458 * tends to cause slow streaming writers to write data to the 1459 * disk smoothly, at the dirtying rate, which is nice. But 1460 * that's undesirable in laptop mode, where we *want* lumpy 1461 * writeout. So in laptop mode, write out the whole world. 1462 */ 1463 if (total_scanned > sc->swap_cluster_max + 1464 sc->swap_cluster_max / 2) { 1465 wakeup_pdflush(laptop_mode ? 0 : total_scanned); 1466 sc->may_writepage = 1; 1467 } 1468 1469 /* Take a nap, wait for some writeback to complete */ 1470 if (sc->nr_scanned && priority < DEF_PRIORITY - 2) 1471 congestion_wait(WRITE, HZ/10); 1472 } 1473 /* top priority shrink_zones still had more to do? don't OOM, then */ 1474 if (!sc->all_unreclaimable && scan_global_lru(sc)) 1475 ret = nr_reclaimed; 1476 out: 1477 /* 1478 * Now that we've scanned all the zones at this priority level, note 1479 * that level within the zone so that the next thread which performs 1480 * scanning of this zone will immediately start out at this priority 1481 * level. This affects only the decision whether or not to bring 1482 * mapped pages onto the inactive list. 1483 */ 1484 if (priority < 0) 1485 priority = 0; 1486 1487 if (scan_global_lru(sc)) { 1488 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1489 1490 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1491 continue; 1492 1493 zone->prev_priority = priority; 1494 } 1495 } else 1496 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority); 1497 1498 delayacct_freepages_end(); 1499 1500 return ret; 1501 } 1502 1503 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 1504 gfp_t gfp_mask) 1505 { 1506 struct scan_control sc = { 1507 .gfp_mask = gfp_mask, 1508 .may_writepage = !laptop_mode, 1509 .swap_cluster_max = SWAP_CLUSTER_MAX, 1510 .may_swap = 1, 1511 .swappiness = vm_swappiness, 1512 .order = order, 1513 .mem_cgroup = NULL, 1514 .isolate_pages = isolate_pages_global, 1515 }; 1516 1517 return do_try_to_free_pages(zonelist, &sc); 1518 } 1519 1520 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 1521 1522 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont, 1523 gfp_t gfp_mask) 1524 { 1525 struct scan_control sc = { 1526 .may_writepage = !laptop_mode, 1527 .may_swap = 1, 1528 .swap_cluster_max = SWAP_CLUSTER_MAX, 1529 .swappiness = vm_swappiness, 1530 .order = 0, 1531 .mem_cgroup = mem_cont, 1532 .isolate_pages = mem_cgroup_isolate_pages, 1533 }; 1534 struct zonelist *zonelist; 1535 1536 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 1537 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 1538 zonelist = NODE_DATA(numa_node_id())->node_zonelists; 1539 return do_try_to_free_pages(zonelist, &sc); 1540 } 1541 #endif 1542 1543 /* 1544 * For kswapd, balance_pgdat() will work across all this node's zones until 1545 * they are all at pages_high. 1546 * 1547 * Returns the number of pages which were actually freed. 1548 * 1549 * There is special handling here for zones which are full of pinned pages. 1550 * This can happen if the pages are all mlocked, or if they are all used by 1551 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 1552 * What we do is to detect the case where all pages in the zone have been 1553 * scanned twice and there has been zero successful reclaim. Mark the zone as 1554 * dead and from now on, only perform a short scan. Basically we're polling 1555 * the zone for when the problem goes away. 1556 * 1557 * kswapd scans the zones in the highmem->normal->dma direction. It skips 1558 * zones which have free_pages > pages_high, but once a zone is found to have 1559 * free_pages <= pages_high, we scan that zone and the lower zones regardless 1560 * of the number of free pages in the lower zones. This interoperates with 1561 * the page allocator fallback scheme to ensure that aging of pages is balanced 1562 * across the zones. 1563 */ 1564 static unsigned long balance_pgdat(pg_data_t *pgdat, int order) 1565 { 1566 int all_zones_ok; 1567 int priority; 1568 int i; 1569 unsigned long total_scanned; 1570 unsigned long nr_reclaimed; 1571 struct reclaim_state *reclaim_state = current->reclaim_state; 1572 struct scan_control sc = { 1573 .gfp_mask = GFP_KERNEL, 1574 .may_swap = 1, 1575 .swap_cluster_max = SWAP_CLUSTER_MAX, 1576 .swappiness = vm_swappiness, 1577 .order = order, 1578 .mem_cgroup = NULL, 1579 .isolate_pages = isolate_pages_global, 1580 }; 1581 /* 1582 * temp_priority is used to remember the scanning priority at which 1583 * this zone was successfully refilled to free_pages == pages_high. 1584 */ 1585 int temp_priority[MAX_NR_ZONES]; 1586 1587 loop_again: 1588 total_scanned = 0; 1589 nr_reclaimed = 0; 1590 sc.may_writepage = !laptop_mode; 1591 count_vm_event(PAGEOUTRUN); 1592 1593 for (i = 0; i < pgdat->nr_zones; i++) 1594 temp_priority[i] = DEF_PRIORITY; 1595 1596 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1597 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 1598 unsigned long lru_pages = 0; 1599 1600 /* The swap token gets in the way of swapout... */ 1601 if (!priority) 1602 disable_swap_token(); 1603 1604 all_zones_ok = 1; 1605 1606 /* 1607 * Scan in the highmem->dma direction for the highest 1608 * zone which needs scanning 1609 */ 1610 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 1611 struct zone *zone = pgdat->node_zones + i; 1612 1613 if (!populated_zone(zone)) 1614 continue; 1615 1616 if (zone_is_all_unreclaimable(zone) && 1617 priority != DEF_PRIORITY) 1618 continue; 1619 1620 if (!zone_watermark_ok(zone, order, zone->pages_high, 1621 0, 0)) { 1622 end_zone = i; 1623 break; 1624 } 1625 } 1626 if (i < 0) 1627 goto out; 1628 1629 for (i = 0; i <= end_zone; i++) { 1630 struct zone *zone = pgdat->node_zones + i; 1631 1632 lru_pages += zone_lru_pages(zone); 1633 } 1634 1635 /* 1636 * Now scan the zone in the dma->highmem direction, stopping 1637 * at the last zone which needs scanning. 1638 * 1639 * We do this because the page allocator works in the opposite 1640 * direction. This prevents the page allocator from allocating 1641 * pages behind kswapd's direction of progress, which would 1642 * cause too much scanning of the lower zones. 1643 */ 1644 for (i = 0; i <= end_zone; i++) { 1645 struct zone *zone = pgdat->node_zones + i; 1646 int nr_slab; 1647 1648 if (!populated_zone(zone)) 1649 continue; 1650 1651 if (zone_is_all_unreclaimable(zone) && 1652 priority != DEF_PRIORITY) 1653 continue; 1654 1655 if (!zone_watermark_ok(zone, order, zone->pages_high, 1656 end_zone, 0)) 1657 all_zones_ok = 0; 1658 temp_priority[i] = priority; 1659 sc.nr_scanned = 0; 1660 note_zone_scanning_priority(zone, priority); 1661 /* 1662 * We put equal pressure on every zone, unless one 1663 * zone has way too many pages free already. 1664 */ 1665 if (!zone_watermark_ok(zone, order, 8*zone->pages_high, 1666 end_zone, 0)) 1667 nr_reclaimed += shrink_zone(priority, zone, &sc); 1668 reclaim_state->reclaimed_slab = 0; 1669 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, 1670 lru_pages); 1671 nr_reclaimed += reclaim_state->reclaimed_slab; 1672 total_scanned += sc.nr_scanned; 1673 if (zone_is_all_unreclaimable(zone)) 1674 continue; 1675 if (nr_slab == 0 && zone->pages_scanned >= 1676 (zone_lru_pages(zone) * 6)) 1677 zone_set_flag(zone, 1678 ZONE_ALL_UNRECLAIMABLE); 1679 /* 1680 * If we've done a decent amount of scanning and 1681 * the reclaim ratio is low, start doing writepage 1682 * even in laptop mode 1683 */ 1684 if (total_scanned > SWAP_CLUSTER_MAX * 2 && 1685 total_scanned > nr_reclaimed + nr_reclaimed / 2) 1686 sc.may_writepage = 1; 1687 } 1688 if (all_zones_ok) 1689 break; /* kswapd: all done */ 1690 /* 1691 * OK, kswapd is getting into trouble. Take a nap, then take 1692 * another pass across the zones. 1693 */ 1694 if (total_scanned && priority < DEF_PRIORITY - 2) 1695 congestion_wait(WRITE, HZ/10); 1696 1697 /* 1698 * We do this so kswapd doesn't build up large priorities for 1699 * example when it is freeing in parallel with allocators. It 1700 * matches the direct reclaim path behaviour in terms of impact 1701 * on zone->*_priority. 1702 */ 1703 if (nr_reclaimed >= SWAP_CLUSTER_MAX) 1704 break; 1705 } 1706 out: 1707 /* 1708 * Note within each zone the priority level at which this zone was 1709 * brought into a happy state. So that the next thread which scans this 1710 * zone will start out at that priority level. 1711 */ 1712 for (i = 0; i < pgdat->nr_zones; i++) { 1713 struct zone *zone = pgdat->node_zones + i; 1714 1715 zone->prev_priority = temp_priority[i]; 1716 } 1717 if (!all_zones_ok) { 1718 cond_resched(); 1719 1720 try_to_freeze(); 1721 1722 goto loop_again; 1723 } 1724 1725 return nr_reclaimed; 1726 } 1727 1728 /* 1729 * The background pageout daemon, started as a kernel thread 1730 * from the init process. 1731 * 1732 * This basically trickles out pages so that we have _some_ 1733 * free memory available even if there is no other activity 1734 * that frees anything up. This is needed for things like routing 1735 * etc, where we otherwise might have all activity going on in 1736 * asynchronous contexts that cannot page things out. 1737 * 1738 * If there are applications that are active memory-allocators 1739 * (most normal use), this basically shouldn't matter. 1740 */ 1741 static int kswapd(void *p) 1742 { 1743 unsigned long order; 1744 pg_data_t *pgdat = (pg_data_t*)p; 1745 struct task_struct *tsk = current; 1746 DEFINE_WAIT(wait); 1747 struct reclaim_state reclaim_state = { 1748 .reclaimed_slab = 0, 1749 }; 1750 node_to_cpumask_ptr(cpumask, pgdat->node_id); 1751 1752 if (!cpus_empty(*cpumask)) 1753 set_cpus_allowed_ptr(tsk, cpumask); 1754 current->reclaim_state = &reclaim_state; 1755 1756 /* 1757 * Tell the memory management that we're a "memory allocator", 1758 * and that if we need more memory we should get access to it 1759 * regardless (see "__alloc_pages()"). "kswapd" should 1760 * never get caught in the normal page freeing logic. 1761 * 1762 * (Kswapd normally doesn't need memory anyway, but sometimes 1763 * you need a small amount of memory in order to be able to 1764 * page out something else, and this flag essentially protects 1765 * us from recursively trying to free more memory as we're 1766 * trying to free the first piece of memory in the first place). 1767 */ 1768 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 1769 set_freezable(); 1770 1771 order = 0; 1772 for ( ; ; ) { 1773 unsigned long new_order; 1774 1775 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 1776 new_order = pgdat->kswapd_max_order; 1777 pgdat->kswapd_max_order = 0; 1778 if (order < new_order) { 1779 /* 1780 * Don't sleep if someone wants a larger 'order' 1781 * allocation 1782 */ 1783 order = new_order; 1784 } else { 1785 if (!freezing(current)) 1786 schedule(); 1787 1788 order = pgdat->kswapd_max_order; 1789 } 1790 finish_wait(&pgdat->kswapd_wait, &wait); 1791 1792 if (!try_to_freeze()) { 1793 /* We can speed up thawing tasks if we don't call 1794 * balance_pgdat after returning from the refrigerator 1795 */ 1796 balance_pgdat(pgdat, order); 1797 } 1798 } 1799 return 0; 1800 } 1801 1802 /* 1803 * A zone is low on free memory, so wake its kswapd task to service it. 1804 */ 1805 void wakeup_kswapd(struct zone *zone, int order) 1806 { 1807 pg_data_t *pgdat; 1808 1809 if (!populated_zone(zone)) 1810 return; 1811 1812 pgdat = zone->zone_pgdat; 1813 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0)) 1814 return; 1815 if (pgdat->kswapd_max_order < order) 1816 pgdat->kswapd_max_order = order; 1817 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1818 return; 1819 if (!waitqueue_active(&pgdat->kswapd_wait)) 1820 return; 1821 wake_up_interruptible(&pgdat->kswapd_wait); 1822 } 1823 1824 unsigned long global_lru_pages(void) 1825 { 1826 return global_page_state(NR_ACTIVE_ANON) 1827 + global_page_state(NR_ACTIVE_FILE) 1828 + global_page_state(NR_INACTIVE_ANON) 1829 + global_page_state(NR_INACTIVE_FILE); 1830 } 1831 1832 #ifdef CONFIG_PM 1833 /* 1834 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages 1835 * from LRU lists system-wide, for given pass and priority, and returns the 1836 * number of reclaimed pages 1837 * 1838 * For pass > 3 we also try to shrink the LRU lists that contain a few pages 1839 */ 1840 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio, 1841 int pass, struct scan_control *sc) 1842 { 1843 struct zone *zone; 1844 unsigned long nr_to_scan, ret = 0; 1845 enum lru_list l; 1846 1847 for_each_zone(zone) { 1848 1849 if (!populated_zone(zone)) 1850 continue; 1851 1852 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY) 1853 continue; 1854 1855 for_each_lru(l) { 1856 /* For pass = 0 we don't shrink the active list */ 1857 if (pass == 0 && 1858 (l == LRU_ACTIVE || l == LRU_ACTIVE_FILE)) 1859 continue; 1860 1861 zone->lru[l].nr_scan += 1862 (zone_page_state(zone, NR_LRU_BASE + l) 1863 >> prio) + 1; 1864 if (zone->lru[l].nr_scan >= nr_pages || pass > 3) { 1865 zone->lru[l].nr_scan = 0; 1866 nr_to_scan = min(nr_pages, 1867 zone_page_state(zone, 1868 NR_LRU_BASE + l)); 1869 ret += shrink_list(l, nr_to_scan, zone, 1870 sc, prio); 1871 if (ret >= nr_pages) 1872 return ret; 1873 } 1874 } 1875 } 1876 1877 return ret; 1878 } 1879 1880 /* 1881 * Try to free `nr_pages' of memory, system-wide, and return the number of 1882 * freed pages. 1883 * 1884 * Rather than trying to age LRUs the aim is to preserve the overall 1885 * LRU order by reclaiming preferentially 1886 * inactive > active > active referenced > active mapped 1887 */ 1888 unsigned long shrink_all_memory(unsigned long nr_pages) 1889 { 1890 unsigned long lru_pages, nr_slab; 1891 unsigned long ret = 0; 1892 int pass; 1893 struct reclaim_state reclaim_state; 1894 struct scan_control sc = { 1895 .gfp_mask = GFP_KERNEL, 1896 .may_swap = 0, 1897 .swap_cluster_max = nr_pages, 1898 .may_writepage = 1, 1899 .swappiness = vm_swappiness, 1900 .isolate_pages = isolate_pages_global, 1901 }; 1902 1903 current->reclaim_state = &reclaim_state; 1904 1905 lru_pages = global_lru_pages(); 1906 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE); 1907 /* If slab caches are huge, it's better to hit them first */ 1908 while (nr_slab >= lru_pages) { 1909 reclaim_state.reclaimed_slab = 0; 1910 shrink_slab(nr_pages, sc.gfp_mask, lru_pages); 1911 if (!reclaim_state.reclaimed_slab) 1912 break; 1913 1914 ret += reclaim_state.reclaimed_slab; 1915 if (ret >= nr_pages) 1916 goto out; 1917 1918 nr_slab -= reclaim_state.reclaimed_slab; 1919 } 1920 1921 /* 1922 * We try to shrink LRUs in 5 passes: 1923 * 0 = Reclaim from inactive_list only 1924 * 1 = Reclaim from active list but don't reclaim mapped 1925 * 2 = 2nd pass of type 1 1926 * 3 = Reclaim mapped (normal reclaim) 1927 * 4 = 2nd pass of type 3 1928 */ 1929 for (pass = 0; pass < 5; pass++) { 1930 int prio; 1931 1932 /* Force reclaiming mapped pages in the passes #3 and #4 */ 1933 if (pass > 2) { 1934 sc.may_swap = 1; 1935 sc.swappiness = 100; 1936 } 1937 1938 for (prio = DEF_PRIORITY; prio >= 0; prio--) { 1939 unsigned long nr_to_scan = nr_pages - ret; 1940 1941 sc.nr_scanned = 0; 1942 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc); 1943 if (ret >= nr_pages) 1944 goto out; 1945 1946 reclaim_state.reclaimed_slab = 0; 1947 shrink_slab(sc.nr_scanned, sc.gfp_mask, 1948 global_lru_pages()); 1949 ret += reclaim_state.reclaimed_slab; 1950 if (ret >= nr_pages) 1951 goto out; 1952 1953 if (sc.nr_scanned && prio < DEF_PRIORITY - 2) 1954 congestion_wait(WRITE, HZ / 10); 1955 } 1956 } 1957 1958 /* 1959 * If ret = 0, we could not shrink LRUs, but there may be something 1960 * in slab caches 1961 */ 1962 if (!ret) { 1963 do { 1964 reclaim_state.reclaimed_slab = 0; 1965 shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages()); 1966 ret += reclaim_state.reclaimed_slab; 1967 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0); 1968 } 1969 1970 out: 1971 current->reclaim_state = NULL; 1972 1973 return ret; 1974 } 1975 #endif 1976 1977 /* It's optimal to keep kswapds on the same CPUs as their memory, but 1978 not required for correctness. So if the last cpu in a node goes 1979 away, we get changed to run anywhere: as the first one comes back, 1980 restore their cpu bindings. */ 1981 static int __devinit cpu_callback(struct notifier_block *nfb, 1982 unsigned long action, void *hcpu) 1983 { 1984 int nid; 1985 1986 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 1987 for_each_node_state(nid, N_HIGH_MEMORY) { 1988 pg_data_t *pgdat = NODE_DATA(nid); 1989 node_to_cpumask_ptr(mask, pgdat->node_id); 1990 1991 if (any_online_cpu(*mask) < nr_cpu_ids) 1992 /* One of our CPUs online: restore mask */ 1993 set_cpus_allowed_ptr(pgdat->kswapd, mask); 1994 } 1995 } 1996 return NOTIFY_OK; 1997 } 1998 1999 /* 2000 * This kswapd start function will be called by init and node-hot-add. 2001 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 2002 */ 2003 int kswapd_run(int nid) 2004 { 2005 pg_data_t *pgdat = NODE_DATA(nid); 2006 int ret = 0; 2007 2008 if (pgdat->kswapd) 2009 return 0; 2010 2011 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 2012 if (IS_ERR(pgdat->kswapd)) { 2013 /* failure at boot is fatal */ 2014 BUG_ON(system_state == SYSTEM_BOOTING); 2015 printk("Failed to start kswapd on node %d\n",nid); 2016 ret = -1; 2017 } 2018 return ret; 2019 } 2020 2021 static int __init kswapd_init(void) 2022 { 2023 int nid; 2024 2025 swap_setup(); 2026 for_each_node_state(nid, N_HIGH_MEMORY) 2027 kswapd_run(nid); 2028 hotcpu_notifier(cpu_callback, 0); 2029 return 0; 2030 } 2031 2032 module_init(kswapd_init) 2033 2034 #ifdef CONFIG_NUMA 2035 /* 2036 * Zone reclaim mode 2037 * 2038 * If non-zero call zone_reclaim when the number of free pages falls below 2039 * the watermarks. 2040 */ 2041 int zone_reclaim_mode __read_mostly; 2042 2043 #define RECLAIM_OFF 0 2044 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 2045 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 2046 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 2047 2048 /* 2049 * Priority for ZONE_RECLAIM. This determines the fraction of pages 2050 * of a node considered for each zone_reclaim. 4 scans 1/16th of 2051 * a zone. 2052 */ 2053 #define ZONE_RECLAIM_PRIORITY 4 2054 2055 /* 2056 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 2057 * occur. 2058 */ 2059 int sysctl_min_unmapped_ratio = 1; 2060 2061 /* 2062 * If the number of slab pages in a zone grows beyond this percentage then 2063 * slab reclaim needs to occur. 2064 */ 2065 int sysctl_min_slab_ratio = 5; 2066 2067 /* 2068 * Try to free up some pages from this zone through reclaim. 2069 */ 2070 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2071 { 2072 /* Minimum pages needed in order to stay on node */ 2073 const unsigned long nr_pages = 1 << order; 2074 struct task_struct *p = current; 2075 struct reclaim_state reclaim_state; 2076 int priority; 2077 unsigned long nr_reclaimed = 0; 2078 struct scan_control sc = { 2079 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 2080 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP), 2081 .swap_cluster_max = max_t(unsigned long, nr_pages, 2082 SWAP_CLUSTER_MAX), 2083 .gfp_mask = gfp_mask, 2084 .swappiness = vm_swappiness, 2085 .isolate_pages = isolate_pages_global, 2086 }; 2087 unsigned long slab_reclaimable; 2088 2089 disable_swap_token(); 2090 cond_resched(); 2091 /* 2092 * We need to be able to allocate from the reserves for RECLAIM_SWAP 2093 * and we also need to be able to write out pages for RECLAIM_WRITE 2094 * and RECLAIM_SWAP. 2095 */ 2096 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 2097 reclaim_state.reclaimed_slab = 0; 2098 p->reclaim_state = &reclaim_state; 2099 2100 if (zone_page_state(zone, NR_FILE_PAGES) - 2101 zone_page_state(zone, NR_FILE_MAPPED) > 2102 zone->min_unmapped_pages) { 2103 /* 2104 * Free memory by calling shrink zone with increasing 2105 * priorities until we have enough memory freed. 2106 */ 2107 priority = ZONE_RECLAIM_PRIORITY; 2108 do { 2109 note_zone_scanning_priority(zone, priority); 2110 nr_reclaimed += shrink_zone(priority, zone, &sc); 2111 priority--; 2112 } while (priority >= 0 && nr_reclaimed < nr_pages); 2113 } 2114 2115 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2116 if (slab_reclaimable > zone->min_slab_pages) { 2117 /* 2118 * shrink_slab() does not currently allow us to determine how 2119 * many pages were freed in this zone. So we take the current 2120 * number of slab pages and shake the slab until it is reduced 2121 * by the same nr_pages that we used for reclaiming unmapped 2122 * pages. 2123 * 2124 * Note that shrink_slab will free memory on all zones and may 2125 * take a long time. 2126 */ 2127 while (shrink_slab(sc.nr_scanned, gfp_mask, order) && 2128 zone_page_state(zone, NR_SLAB_RECLAIMABLE) > 2129 slab_reclaimable - nr_pages) 2130 ; 2131 2132 /* 2133 * Update nr_reclaimed by the number of slab pages we 2134 * reclaimed from this zone. 2135 */ 2136 nr_reclaimed += slab_reclaimable - 2137 zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2138 } 2139 2140 p->reclaim_state = NULL; 2141 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 2142 return nr_reclaimed >= nr_pages; 2143 } 2144 2145 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2146 { 2147 int node_id; 2148 int ret; 2149 2150 /* 2151 * Zone reclaim reclaims unmapped file backed pages and 2152 * slab pages if we are over the defined limits. 2153 * 2154 * A small portion of unmapped file backed pages is needed for 2155 * file I/O otherwise pages read by file I/O will be immediately 2156 * thrown out if the zone is overallocated. So we do not reclaim 2157 * if less than a specified percentage of the zone is used by 2158 * unmapped file backed pages. 2159 */ 2160 if (zone_page_state(zone, NR_FILE_PAGES) - 2161 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages 2162 && zone_page_state(zone, NR_SLAB_RECLAIMABLE) 2163 <= zone->min_slab_pages) 2164 return 0; 2165 2166 if (zone_is_all_unreclaimable(zone)) 2167 return 0; 2168 2169 /* 2170 * Do not scan if the allocation should not be delayed. 2171 */ 2172 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 2173 return 0; 2174 2175 /* 2176 * Only run zone reclaim on the local zone or on zones that do not 2177 * have associated processors. This will favor the local processor 2178 * over remote processors and spread off node memory allocations 2179 * as wide as possible. 2180 */ 2181 node_id = zone_to_nid(zone); 2182 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 2183 return 0; 2184 2185 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 2186 return 0; 2187 ret = __zone_reclaim(zone, gfp_mask, order); 2188 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 2189 2190 return ret; 2191 } 2192 #endif 2193