xref: /openbmc/linux/mm/vmscan.c (revision 4f98a2fee8acdb4ac84545df98cccecfd130f8db)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 
43 #include <asm/tlbflush.h>
44 #include <asm/div64.h>
45 
46 #include <linux/swapops.h>
47 
48 #include "internal.h"
49 
50 struct scan_control {
51 	/* Incremented by the number of inactive pages that were scanned */
52 	unsigned long nr_scanned;
53 
54 	/* This context's GFP mask */
55 	gfp_t gfp_mask;
56 
57 	int may_writepage;
58 
59 	/* Can pages be swapped as part of reclaim? */
60 	int may_swap;
61 
62 	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
63 	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
64 	 * In this context, it doesn't matter that we scan the
65 	 * whole list at once. */
66 	int swap_cluster_max;
67 
68 	int swappiness;
69 
70 	int all_unreclaimable;
71 
72 	int order;
73 
74 	/* Which cgroup do we reclaim from */
75 	struct mem_cgroup *mem_cgroup;
76 
77 	/* Pluggable isolate pages callback */
78 	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
79 			unsigned long *scanned, int order, int mode,
80 			struct zone *z, struct mem_cgroup *mem_cont,
81 			int active, int file);
82 };
83 
84 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
85 
86 #ifdef ARCH_HAS_PREFETCH
87 #define prefetch_prev_lru_page(_page, _base, _field)			\
88 	do {								\
89 		if ((_page)->lru.prev != _base) {			\
90 			struct page *prev;				\
91 									\
92 			prev = lru_to_page(&(_page->lru));		\
93 			prefetch(&prev->_field);			\
94 		}							\
95 	} while (0)
96 #else
97 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
98 #endif
99 
100 #ifdef ARCH_HAS_PREFETCHW
101 #define prefetchw_prev_lru_page(_page, _base, _field)			\
102 	do {								\
103 		if ((_page)->lru.prev != _base) {			\
104 			struct page *prev;				\
105 									\
106 			prev = lru_to_page(&(_page->lru));		\
107 			prefetchw(&prev->_field);			\
108 		}							\
109 	} while (0)
110 #else
111 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113 
114 /*
115  * From 0 .. 100.  Higher means more swappy.
116  */
117 int vm_swappiness = 60;
118 long vm_total_pages;	/* The total number of pages which the VM controls */
119 
120 static LIST_HEAD(shrinker_list);
121 static DECLARE_RWSEM(shrinker_rwsem);
122 
123 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
124 #define scan_global_lru(sc)	(!(sc)->mem_cgroup)
125 #else
126 #define scan_global_lru(sc)	(1)
127 #endif
128 
129 /*
130  * Add a shrinker callback to be called from the vm
131  */
132 void register_shrinker(struct shrinker *shrinker)
133 {
134 	shrinker->nr = 0;
135 	down_write(&shrinker_rwsem);
136 	list_add_tail(&shrinker->list, &shrinker_list);
137 	up_write(&shrinker_rwsem);
138 }
139 EXPORT_SYMBOL(register_shrinker);
140 
141 /*
142  * Remove one
143  */
144 void unregister_shrinker(struct shrinker *shrinker)
145 {
146 	down_write(&shrinker_rwsem);
147 	list_del(&shrinker->list);
148 	up_write(&shrinker_rwsem);
149 }
150 EXPORT_SYMBOL(unregister_shrinker);
151 
152 #define SHRINK_BATCH 128
153 /*
154  * Call the shrink functions to age shrinkable caches
155  *
156  * Here we assume it costs one seek to replace a lru page and that it also
157  * takes a seek to recreate a cache object.  With this in mind we age equal
158  * percentages of the lru and ageable caches.  This should balance the seeks
159  * generated by these structures.
160  *
161  * If the vm encountered mapped pages on the LRU it increase the pressure on
162  * slab to avoid swapping.
163  *
164  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
165  *
166  * `lru_pages' represents the number of on-LRU pages in all the zones which
167  * are eligible for the caller's allocation attempt.  It is used for balancing
168  * slab reclaim versus page reclaim.
169  *
170  * Returns the number of slab objects which we shrunk.
171  */
172 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
173 			unsigned long lru_pages)
174 {
175 	struct shrinker *shrinker;
176 	unsigned long ret = 0;
177 
178 	if (scanned == 0)
179 		scanned = SWAP_CLUSTER_MAX;
180 
181 	if (!down_read_trylock(&shrinker_rwsem))
182 		return 1;	/* Assume we'll be able to shrink next time */
183 
184 	list_for_each_entry(shrinker, &shrinker_list, list) {
185 		unsigned long long delta;
186 		unsigned long total_scan;
187 		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
188 
189 		delta = (4 * scanned) / shrinker->seeks;
190 		delta *= max_pass;
191 		do_div(delta, lru_pages + 1);
192 		shrinker->nr += delta;
193 		if (shrinker->nr < 0) {
194 			printk(KERN_ERR "%s: nr=%ld\n",
195 					__func__, shrinker->nr);
196 			shrinker->nr = max_pass;
197 		}
198 
199 		/*
200 		 * Avoid risking looping forever due to too large nr value:
201 		 * never try to free more than twice the estimate number of
202 		 * freeable entries.
203 		 */
204 		if (shrinker->nr > max_pass * 2)
205 			shrinker->nr = max_pass * 2;
206 
207 		total_scan = shrinker->nr;
208 		shrinker->nr = 0;
209 
210 		while (total_scan >= SHRINK_BATCH) {
211 			long this_scan = SHRINK_BATCH;
212 			int shrink_ret;
213 			int nr_before;
214 
215 			nr_before = (*shrinker->shrink)(0, gfp_mask);
216 			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
217 			if (shrink_ret == -1)
218 				break;
219 			if (shrink_ret < nr_before)
220 				ret += nr_before - shrink_ret;
221 			count_vm_events(SLABS_SCANNED, this_scan);
222 			total_scan -= this_scan;
223 
224 			cond_resched();
225 		}
226 
227 		shrinker->nr += total_scan;
228 	}
229 	up_read(&shrinker_rwsem);
230 	return ret;
231 }
232 
233 /* Called without lock on whether page is mapped, so answer is unstable */
234 static inline int page_mapping_inuse(struct page *page)
235 {
236 	struct address_space *mapping;
237 
238 	/* Page is in somebody's page tables. */
239 	if (page_mapped(page))
240 		return 1;
241 
242 	/* Be more reluctant to reclaim swapcache than pagecache */
243 	if (PageSwapCache(page))
244 		return 1;
245 
246 	mapping = page_mapping(page);
247 	if (!mapping)
248 		return 0;
249 
250 	/* File is mmap'd by somebody? */
251 	return mapping_mapped(mapping);
252 }
253 
254 static inline int is_page_cache_freeable(struct page *page)
255 {
256 	return page_count(page) - !!PagePrivate(page) == 2;
257 }
258 
259 static int may_write_to_queue(struct backing_dev_info *bdi)
260 {
261 	if (current->flags & PF_SWAPWRITE)
262 		return 1;
263 	if (!bdi_write_congested(bdi))
264 		return 1;
265 	if (bdi == current->backing_dev_info)
266 		return 1;
267 	return 0;
268 }
269 
270 /*
271  * We detected a synchronous write error writing a page out.  Probably
272  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
273  * fsync(), msync() or close().
274  *
275  * The tricky part is that after writepage we cannot touch the mapping: nothing
276  * prevents it from being freed up.  But we have a ref on the page and once
277  * that page is locked, the mapping is pinned.
278  *
279  * We're allowed to run sleeping lock_page() here because we know the caller has
280  * __GFP_FS.
281  */
282 static void handle_write_error(struct address_space *mapping,
283 				struct page *page, int error)
284 {
285 	lock_page(page);
286 	if (page_mapping(page) == mapping)
287 		mapping_set_error(mapping, error);
288 	unlock_page(page);
289 }
290 
291 /* Request for sync pageout. */
292 enum pageout_io {
293 	PAGEOUT_IO_ASYNC,
294 	PAGEOUT_IO_SYNC,
295 };
296 
297 /* possible outcome of pageout() */
298 typedef enum {
299 	/* failed to write page out, page is locked */
300 	PAGE_KEEP,
301 	/* move page to the active list, page is locked */
302 	PAGE_ACTIVATE,
303 	/* page has been sent to the disk successfully, page is unlocked */
304 	PAGE_SUCCESS,
305 	/* page is clean and locked */
306 	PAGE_CLEAN,
307 } pageout_t;
308 
309 /*
310  * pageout is called by shrink_page_list() for each dirty page.
311  * Calls ->writepage().
312  */
313 static pageout_t pageout(struct page *page, struct address_space *mapping,
314 						enum pageout_io sync_writeback)
315 {
316 	/*
317 	 * If the page is dirty, only perform writeback if that write
318 	 * will be non-blocking.  To prevent this allocation from being
319 	 * stalled by pagecache activity.  But note that there may be
320 	 * stalls if we need to run get_block().  We could test
321 	 * PagePrivate for that.
322 	 *
323 	 * If this process is currently in generic_file_write() against
324 	 * this page's queue, we can perform writeback even if that
325 	 * will block.
326 	 *
327 	 * If the page is swapcache, write it back even if that would
328 	 * block, for some throttling. This happens by accident, because
329 	 * swap_backing_dev_info is bust: it doesn't reflect the
330 	 * congestion state of the swapdevs.  Easy to fix, if needed.
331 	 * See swapfile.c:page_queue_congested().
332 	 */
333 	if (!is_page_cache_freeable(page))
334 		return PAGE_KEEP;
335 	if (!mapping) {
336 		/*
337 		 * Some data journaling orphaned pages can have
338 		 * page->mapping == NULL while being dirty with clean buffers.
339 		 */
340 		if (PagePrivate(page)) {
341 			if (try_to_free_buffers(page)) {
342 				ClearPageDirty(page);
343 				printk("%s: orphaned page\n", __func__);
344 				return PAGE_CLEAN;
345 			}
346 		}
347 		return PAGE_KEEP;
348 	}
349 	if (mapping->a_ops->writepage == NULL)
350 		return PAGE_ACTIVATE;
351 	if (!may_write_to_queue(mapping->backing_dev_info))
352 		return PAGE_KEEP;
353 
354 	if (clear_page_dirty_for_io(page)) {
355 		int res;
356 		struct writeback_control wbc = {
357 			.sync_mode = WB_SYNC_NONE,
358 			.nr_to_write = SWAP_CLUSTER_MAX,
359 			.range_start = 0,
360 			.range_end = LLONG_MAX,
361 			.nonblocking = 1,
362 			.for_reclaim = 1,
363 		};
364 
365 		SetPageReclaim(page);
366 		res = mapping->a_ops->writepage(page, &wbc);
367 		if (res < 0)
368 			handle_write_error(mapping, page, res);
369 		if (res == AOP_WRITEPAGE_ACTIVATE) {
370 			ClearPageReclaim(page);
371 			return PAGE_ACTIVATE;
372 		}
373 
374 		/*
375 		 * Wait on writeback if requested to. This happens when
376 		 * direct reclaiming a large contiguous area and the
377 		 * first attempt to free a range of pages fails.
378 		 */
379 		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
380 			wait_on_page_writeback(page);
381 
382 		if (!PageWriteback(page)) {
383 			/* synchronous write or broken a_ops? */
384 			ClearPageReclaim(page);
385 		}
386 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
387 		return PAGE_SUCCESS;
388 	}
389 
390 	return PAGE_CLEAN;
391 }
392 
393 /*
394  * Same as remove_mapping, but if the page is removed from the mapping, it
395  * gets returned with a refcount of 0.
396  */
397 static int __remove_mapping(struct address_space *mapping, struct page *page)
398 {
399 	BUG_ON(!PageLocked(page));
400 	BUG_ON(mapping != page_mapping(page));
401 
402 	spin_lock_irq(&mapping->tree_lock);
403 	/*
404 	 * The non racy check for a busy page.
405 	 *
406 	 * Must be careful with the order of the tests. When someone has
407 	 * a ref to the page, it may be possible that they dirty it then
408 	 * drop the reference. So if PageDirty is tested before page_count
409 	 * here, then the following race may occur:
410 	 *
411 	 * get_user_pages(&page);
412 	 * [user mapping goes away]
413 	 * write_to(page);
414 	 *				!PageDirty(page)    [good]
415 	 * SetPageDirty(page);
416 	 * put_page(page);
417 	 *				!page_count(page)   [good, discard it]
418 	 *
419 	 * [oops, our write_to data is lost]
420 	 *
421 	 * Reversing the order of the tests ensures such a situation cannot
422 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
423 	 * load is not satisfied before that of page->_count.
424 	 *
425 	 * Note that if SetPageDirty is always performed via set_page_dirty,
426 	 * and thus under tree_lock, then this ordering is not required.
427 	 */
428 	if (!page_freeze_refs(page, 2))
429 		goto cannot_free;
430 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
431 	if (unlikely(PageDirty(page))) {
432 		page_unfreeze_refs(page, 2);
433 		goto cannot_free;
434 	}
435 
436 	if (PageSwapCache(page)) {
437 		swp_entry_t swap = { .val = page_private(page) };
438 		__delete_from_swap_cache(page);
439 		spin_unlock_irq(&mapping->tree_lock);
440 		swap_free(swap);
441 	} else {
442 		__remove_from_page_cache(page);
443 		spin_unlock_irq(&mapping->tree_lock);
444 	}
445 
446 	return 1;
447 
448 cannot_free:
449 	spin_unlock_irq(&mapping->tree_lock);
450 	return 0;
451 }
452 
453 /*
454  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
455  * someone else has a ref on the page, abort and return 0.  If it was
456  * successfully detached, return 1.  Assumes the caller has a single ref on
457  * this page.
458  */
459 int remove_mapping(struct address_space *mapping, struct page *page)
460 {
461 	if (__remove_mapping(mapping, page)) {
462 		/*
463 		 * Unfreezing the refcount with 1 rather than 2 effectively
464 		 * drops the pagecache ref for us without requiring another
465 		 * atomic operation.
466 		 */
467 		page_unfreeze_refs(page, 1);
468 		return 1;
469 	}
470 	return 0;
471 }
472 
473 /*
474  * shrink_page_list() returns the number of reclaimed pages
475  */
476 static unsigned long shrink_page_list(struct list_head *page_list,
477 					struct scan_control *sc,
478 					enum pageout_io sync_writeback)
479 {
480 	LIST_HEAD(ret_pages);
481 	struct pagevec freed_pvec;
482 	int pgactivate = 0;
483 	unsigned long nr_reclaimed = 0;
484 
485 	cond_resched();
486 
487 	pagevec_init(&freed_pvec, 1);
488 	while (!list_empty(page_list)) {
489 		struct address_space *mapping;
490 		struct page *page;
491 		int may_enter_fs;
492 		int referenced;
493 
494 		cond_resched();
495 
496 		page = lru_to_page(page_list);
497 		list_del(&page->lru);
498 
499 		if (!trylock_page(page))
500 			goto keep;
501 
502 		VM_BUG_ON(PageActive(page));
503 
504 		sc->nr_scanned++;
505 
506 		if (!sc->may_swap && page_mapped(page))
507 			goto keep_locked;
508 
509 		/* Double the slab pressure for mapped and swapcache pages */
510 		if (page_mapped(page) || PageSwapCache(page))
511 			sc->nr_scanned++;
512 
513 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
514 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
515 
516 		if (PageWriteback(page)) {
517 			/*
518 			 * Synchronous reclaim is performed in two passes,
519 			 * first an asynchronous pass over the list to
520 			 * start parallel writeback, and a second synchronous
521 			 * pass to wait for the IO to complete.  Wait here
522 			 * for any page for which writeback has already
523 			 * started.
524 			 */
525 			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
526 				wait_on_page_writeback(page);
527 			else
528 				goto keep_locked;
529 		}
530 
531 		referenced = page_referenced(page, 1, sc->mem_cgroup);
532 		/* In active use or really unfreeable?  Activate it. */
533 		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
534 					referenced && page_mapping_inuse(page))
535 			goto activate_locked;
536 
537 #ifdef CONFIG_SWAP
538 		/*
539 		 * Anonymous process memory has backing store?
540 		 * Try to allocate it some swap space here.
541 		 */
542 		if (PageAnon(page) && !PageSwapCache(page))
543 			if (!add_to_swap(page, GFP_ATOMIC))
544 				goto activate_locked;
545 #endif /* CONFIG_SWAP */
546 
547 		mapping = page_mapping(page);
548 
549 		/*
550 		 * The page is mapped into the page tables of one or more
551 		 * processes. Try to unmap it here.
552 		 */
553 		if (page_mapped(page) && mapping) {
554 			switch (try_to_unmap(page, 0)) {
555 			case SWAP_FAIL:
556 				goto activate_locked;
557 			case SWAP_AGAIN:
558 				goto keep_locked;
559 			case SWAP_SUCCESS:
560 				; /* try to free the page below */
561 			}
562 		}
563 
564 		if (PageDirty(page)) {
565 			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
566 				goto keep_locked;
567 			if (!may_enter_fs)
568 				goto keep_locked;
569 			if (!sc->may_writepage)
570 				goto keep_locked;
571 
572 			/* Page is dirty, try to write it out here */
573 			switch (pageout(page, mapping, sync_writeback)) {
574 			case PAGE_KEEP:
575 				goto keep_locked;
576 			case PAGE_ACTIVATE:
577 				goto activate_locked;
578 			case PAGE_SUCCESS:
579 				if (PageWriteback(page) || PageDirty(page))
580 					goto keep;
581 				/*
582 				 * A synchronous write - probably a ramdisk.  Go
583 				 * ahead and try to reclaim the page.
584 				 */
585 				if (!trylock_page(page))
586 					goto keep;
587 				if (PageDirty(page) || PageWriteback(page))
588 					goto keep_locked;
589 				mapping = page_mapping(page);
590 			case PAGE_CLEAN:
591 				; /* try to free the page below */
592 			}
593 		}
594 
595 		/*
596 		 * If the page has buffers, try to free the buffer mappings
597 		 * associated with this page. If we succeed we try to free
598 		 * the page as well.
599 		 *
600 		 * We do this even if the page is PageDirty().
601 		 * try_to_release_page() does not perform I/O, but it is
602 		 * possible for a page to have PageDirty set, but it is actually
603 		 * clean (all its buffers are clean).  This happens if the
604 		 * buffers were written out directly, with submit_bh(). ext3
605 		 * will do this, as well as the blockdev mapping.
606 		 * try_to_release_page() will discover that cleanness and will
607 		 * drop the buffers and mark the page clean - it can be freed.
608 		 *
609 		 * Rarely, pages can have buffers and no ->mapping.  These are
610 		 * the pages which were not successfully invalidated in
611 		 * truncate_complete_page().  We try to drop those buffers here
612 		 * and if that worked, and the page is no longer mapped into
613 		 * process address space (page_count == 1) it can be freed.
614 		 * Otherwise, leave the page on the LRU so it is swappable.
615 		 */
616 		if (PagePrivate(page)) {
617 			if (!try_to_release_page(page, sc->gfp_mask))
618 				goto activate_locked;
619 			if (!mapping && page_count(page) == 1) {
620 				unlock_page(page);
621 				if (put_page_testzero(page))
622 					goto free_it;
623 				else {
624 					/*
625 					 * rare race with speculative reference.
626 					 * the speculative reference will free
627 					 * this page shortly, so we may
628 					 * increment nr_reclaimed here (and
629 					 * leave it off the LRU).
630 					 */
631 					nr_reclaimed++;
632 					continue;
633 				}
634 			}
635 		}
636 
637 		if (!mapping || !__remove_mapping(mapping, page))
638 			goto keep_locked;
639 
640 		unlock_page(page);
641 free_it:
642 		nr_reclaimed++;
643 		if (!pagevec_add(&freed_pvec, page)) {
644 			__pagevec_free(&freed_pvec);
645 			pagevec_reinit(&freed_pvec);
646 		}
647 		continue;
648 
649 activate_locked:
650 		/* Not a candidate for swapping, so reclaim swap space. */
651 		if (PageSwapCache(page) && vm_swap_full())
652 			remove_exclusive_swap_page_ref(page);
653 		SetPageActive(page);
654 		pgactivate++;
655 keep_locked:
656 		unlock_page(page);
657 keep:
658 		list_add(&page->lru, &ret_pages);
659 		VM_BUG_ON(PageLRU(page));
660 	}
661 	list_splice(&ret_pages, page_list);
662 	if (pagevec_count(&freed_pvec))
663 		__pagevec_free(&freed_pvec);
664 	count_vm_events(PGACTIVATE, pgactivate);
665 	return nr_reclaimed;
666 }
667 
668 /* LRU Isolation modes. */
669 #define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
670 #define ISOLATE_ACTIVE 1	/* Isolate active pages. */
671 #define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */
672 
673 /*
674  * Attempt to remove the specified page from its LRU.  Only take this page
675  * if it is of the appropriate PageActive status.  Pages which are being
676  * freed elsewhere are also ignored.
677  *
678  * page:	page to consider
679  * mode:	one of the LRU isolation modes defined above
680  *
681  * returns 0 on success, -ve errno on failure.
682  */
683 int __isolate_lru_page(struct page *page, int mode, int file)
684 {
685 	int ret = -EINVAL;
686 
687 	/* Only take pages on the LRU. */
688 	if (!PageLRU(page))
689 		return ret;
690 
691 	/*
692 	 * When checking the active state, we need to be sure we are
693 	 * dealing with comparible boolean values.  Take the logical not
694 	 * of each.
695 	 */
696 	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
697 		return ret;
698 
699 	if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
700 		return ret;
701 
702 	ret = -EBUSY;
703 	if (likely(get_page_unless_zero(page))) {
704 		/*
705 		 * Be careful not to clear PageLRU until after we're
706 		 * sure the page is not being freed elsewhere -- the
707 		 * page release code relies on it.
708 		 */
709 		ClearPageLRU(page);
710 		ret = 0;
711 	}
712 
713 	return ret;
714 }
715 
716 /*
717  * zone->lru_lock is heavily contended.  Some of the functions that
718  * shrink the lists perform better by taking out a batch of pages
719  * and working on them outside the LRU lock.
720  *
721  * For pagecache intensive workloads, this function is the hottest
722  * spot in the kernel (apart from copy_*_user functions).
723  *
724  * Appropriate locks must be held before calling this function.
725  *
726  * @nr_to_scan:	The number of pages to look through on the list.
727  * @src:	The LRU list to pull pages off.
728  * @dst:	The temp list to put pages on to.
729  * @scanned:	The number of pages that were scanned.
730  * @order:	The caller's attempted allocation order
731  * @mode:	One of the LRU isolation modes
732  * @file:	True [1] if isolating file [!anon] pages
733  *
734  * returns how many pages were moved onto *@dst.
735  */
736 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
737 		struct list_head *src, struct list_head *dst,
738 		unsigned long *scanned, int order, int mode, int file)
739 {
740 	unsigned long nr_taken = 0;
741 	unsigned long scan;
742 
743 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
744 		struct page *page;
745 		unsigned long pfn;
746 		unsigned long end_pfn;
747 		unsigned long page_pfn;
748 		int zone_id;
749 
750 		page = lru_to_page(src);
751 		prefetchw_prev_lru_page(page, src, flags);
752 
753 		VM_BUG_ON(!PageLRU(page));
754 
755 		switch (__isolate_lru_page(page, mode, file)) {
756 		case 0:
757 			list_move(&page->lru, dst);
758 			nr_taken++;
759 			break;
760 
761 		case -EBUSY:
762 			/* else it is being freed elsewhere */
763 			list_move(&page->lru, src);
764 			continue;
765 
766 		default:
767 			BUG();
768 		}
769 
770 		if (!order)
771 			continue;
772 
773 		/*
774 		 * Attempt to take all pages in the order aligned region
775 		 * surrounding the tag page.  Only take those pages of
776 		 * the same active state as that tag page.  We may safely
777 		 * round the target page pfn down to the requested order
778 		 * as the mem_map is guarenteed valid out to MAX_ORDER,
779 		 * where that page is in a different zone we will detect
780 		 * it from its zone id and abort this block scan.
781 		 */
782 		zone_id = page_zone_id(page);
783 		page_pfn = page_to_pfn(page);
784 		pfn = page_pfn & ~((1 << order) - 1);
785 		end_pfn = pfn + (1 << order);
786 		for (; pfn < end_pfn; pfn++) {
787 			struct page *cursor_page;
788 
789 			/* The target page is in the block, ignore it. */
790 			if (unlikely(pfn == page_pfn))
791 				continue;
792 
793 			/* Avoid holes within the zone. */
794 			if (unlikely(!pfn_valid_within(pfn)))
795 				break;
796 
797 			cursor_page = pfn_to_page(pfn);
798 
799 			/* Check that we have not crossed a zone boundary. */
800 			if (unlikely(page_zone_id(cursor_page) != zone_id))
801 				continue;
802 			switch (__isolate_lru_page(cursor_page, mode, file)) {
803 			case 0:
804 				list_move(&cursor_page->lru, dst);
805 				nr_taken++;
806 				scan++;
807 				break;
808 
809 			case -EBUSY:
810 				/* else it is being freed elsewhere */
811 				list_move(&cursor_page->lru, src);
812 			default:
813 				break;
814 			}
815 		}
816 	}
817 
818 	*scanned = scan;
819 	return nr_taken;
820 }
821 
822 static unsigned long isolate_pages_global(unsigned long nr,
823 					struct list_head *dst,
824 					unsigned long *scanned, int order,
825 					int mode, struct zone *z,
826 					struct mem_cgroup *mem_cont,
827 					int active, int file)
828 {
829 	int lru = LRU_BASE;
830 	if (active)
831 		lru += LRU_ACTIVE;
832 	if (file)
833 		lru += LRU_FILE;
834 	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
835 								mode, !!file);
836 }
837 
838 /*
839  * clear_active_flags() is a helper for shrink_active_list(), clearing
840  * any active bits from the pages in the list.
841  */
842 static unsigned long clear_active_flags(struct list_head *page_list,
843 					unsigned int *count)
844 {
845 	int nr_active = 0;
846 	int lru;
847 	struct page *page;
848 
849 	list_for_each_entry(page, page_list, lru) {
850 		lru = page_is_file_cache(page);
851 		if (PageActive(page)) {
852 			lru += LRU_ACTIVE;
853 			ClearPageActive(page);
854 			nr_active++;
855 		}
856 		count[lru]++;
857 	}
858 
859 	return nr_active;
860 }
861 
862 /**
863  * isolate_lru_page - tries to isolate a page from its LRU list
864  * @page: page to isolate from its LRU list
865  *
866  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
867  * vmstat statistic corresponding to whatever LRU list the page was on.
868  *
869  * Returns 0 if the page was removed from an LRU list.
870  * Returns -EBUSY if the page was not on an LRU list.
871  *
872  * The returned page will have PageLRU() cleared.  If it was found on
873  * the active list, it will have PageActive set.  That flag may need
874  * to be cleared by the caller before letting the page go.
875  *
876  * The vmstat statistic corresponding to the list on which the page was
877  * found will be decremented.
878  *
879  * Restrictions:
880  * (1) Must be called with an elevated refcount on the page. This is a
881  *     fundamentnal difference from isolate_lru_pages (which is called
882  *     without a stable reference).
883  * (2) the lru_lock must not be held.
884  * (3) interrupts must be enabled.
885  */
886 int isolate_lru_page(struct page *page)
887 {
888 	int ret = -EBUSY;
889 
890 	if (PageLRU(page)) {
891 		struct zone *zone = page_zone(page);
892 
893 		spin_lock_irq(&zone->lru_lock);
894 		if (PageLRU(page) && get_page_unless_zero(page)) {
895 			int lru = LRU_BASE;
896 			ret = 0;
897 			ClearPageLRU(page);
898 
899 			lru += page_is_file_cache(page) + !!PageActive(page);
900 			del_page_from_lru_list(zone, page, lru);
901 		}
902 		spin_unlock_irq(&zone->lru_lock);
903 	}
904 	return ret;
905 }
906 
907 /*
908  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
909  * of reclaimed pages
910  */
911 static unsigned long shrink_inactive_list(unsigned long max_scan,
912 			struct zone *zone, struct scan_control *sc, int file)
913 {
914 	LIST_HEAD(page_list);
915 	struct pagevec pvec;
916 	unsigned long nr_scanned = 0;
917 	unsigned long nr_reclaimed = 0;
918 
919 	pagevec_init(&pvec, 1);
920 
921 	lru_add_drain();
922 	spin_lock_irq(&zone->lru_lock);
923 	do {
924 		struct page *page;
925 		unsigned long nr_taken;
926 		unsigned long nr_scan;
927 		unsigned long nr_freed;
928 		unsigned long nr_active;
929 		unsigned int count[NR_LRU_LISTS] = { 0, };
930 		int mode = (sc->order > PAGE_ALLOC_COSTLY_ORDER) ?
931 					ISOLATE_BOTH : ISOLATE_INACTIVE;
932 
933 		nr_taken = sc->isolate_pages(sc->swap_cluster_max,
934 			     &page_list, &nr_scan, sc->order, mode,
935 				zone, sc->mem_cgroup, 0, file);
936 		nr_active = clear_active_flags(&page_list, count);
937 		__count_vm_events(PGDEACTIVATE, nr_active);
938 
939 		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
940 						-count[LRU_ACTIVE_FILE]);
941 		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
942 						-count[LRU_INACTIVE_FILE]);
943 		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
944 						-count[LRU_ACTIVE_ANON]);
945 		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
946 						-count[LRU_INACTIVE_ANON]);
947 
948 		if (scan_global_lru(sc)) {
949 			zone->pages_scanned += nr_scan;
950 			zone->recent_scanned[0] += count[LRU_INACTIVE_ANON];
951 			zone->recent_scanned[0] += count[LRU_ACTIVE_ANON];
952 			zone->recent_scanned[1] += count[LRU_INACTIVE_FILE];
953 			zone->recent_scanned[1] += count[LRU_ACTIVE_FILE];
954 		}
955 		spin_unlock_irq(&zone->lru_lock);
956 
957 		nr_scanned += nr_scan;
958 		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
959 
960 		/*
961 		 * If we are direct reclaiming for contiguous pages and we do
962 		 * not reclaim everything in the list, try again and wait
963 		 * for IO to complete. This will stall high-order allocations
964 		 * but that should be acceptable to the caller
965 		 */
966 		if (nr_freed < nr_taken && !current_is_kswapd() &&
967 					sc->order > PAGE_ALLOC_COSTLY_ORDER) {
968 			congestion_wait(WRITE, HZ/10);
969 
970 			/*
971 			 * The attempt at page out may have made some
972 			 * of the pages active, mark them inactive again.
973 			 */
974 			nr_active = clear_active_flags(&page_list, count);
975 			count_vm_events(PGDEACTIVATE, nr_active);
976 
977 			nr_freed += shrink_page_list(&page_list, sc,
978 							PAGEOUT_IO_SYNC);
979 		}
980 
981 		nr_reclaimed += nr_freed;
982 		local_irq_disable();
983 		if (current_is_kswapd()) {
984 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
985 			__count_vm_events(KSWAPD_STEAL, nr_freed);
986 		} else if (scan_global_lru(sc))
987 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
988 
989 		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
990 
991 		if (nr_taken == 0)
992 			goto done;
993 
994 		spin_lock(&zone->lru_lock);
995 		/*
996 		 * Put back any unfreeable pages.
997 		 */
998 		while (!list_empty(&page_list)) {
999 			page = lru_to_page(&page_list);
1000 			VM_BUG_ON(PageLRU(page));
1001 			SetPageLRU(page);
1002 			list_del(&page->lru);
1003 			add_page_to_lru_list(zone, page, page_lru(page));
1004 			if (PageActive(page) && scan_global_lru(sc)) {
1005 				int file = !!page_is_file_cache(page);
1006 				zone->recent_rotated[file]++;
1007 			}
1008 			if (!pagevec_add(&pvec, page)) {
1009 				spin_unlock_irq(&zone->lru_lock);
1010 				__pagevec_release(&pvec);
1011 				spin_lock_irq(&zone->lru_lock);
1012 			}
1013 		}
1014   	} while (nr_scanned < max_scan);
1015 	spin_unlock(&zone->lru_lock);
1016 done:
1017 	local_irq_enable();
1018 	pagevec_release(&pvec);
1019 	return nr_reclaimed;
1020 }
1021 
1022 /*
1023  * We are about to scan this zone at a certain priority level.  If that priority
1024  * level is smaller (ie: more urgent) than the previous priority, then note
1025  * that priority level within the zone.  This is done so that when the next
1026  * process comes in to scan this zone, it will immediately start out at this
1027  * priority level rather than having to build up its own scanning priority.
1028  * Here, this priority affects only the reclaim-mapped threshold.
1029  */
1030 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1031 {
1032 	if (priority < zone->prev_priority)
1033 		zone->prev_priority = priority;
1034 }
1035 
1036 static inline int zone_is_near_oom(struct zone *zone)
1037 {
1038 	return zone->pages_scanned >= (zone_lru_pages(zone) * 3);
1039 }
1040 
1041 /*
1042  * This moves pages from the active list to the inactive list.
1043  *
1044  * We move them the other way if the page is referenced by one or more
1045  * processes, from rmap.
1046  *
1047  * If the pages are mostly unmapped, the processing is fast and it is
1048  * appropriate to hold zone->lru_lock across the whole operation.  But if
1049  * the pages are mapped, the processing is slow (page_referenced()) so we
1050  * should drop zone->lru_lock around each page.  It's impossible to balance
1051  * this, so instead we remove the pages from the LRU while processing them.
1052  * It is safe to rely on PG_active against the non-LRU pages in here because
1053  * nobody will play with that bit on a non-LRU page.
1054  *
1055  * The downside is that we have to touch page->_count against each page.
1056  * But we had to alter page->flags anyway.
1057  */
1058 
1059 
1060 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1061 			struct scan_control *sc, int priority, int file)
1062 {
1063 	unsigned long pgmoved;
1064 	int pgdeactivate = 0;
1065 	unsigned long pgscanned;
1066 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1067 	LIST_HEAD(l_active);
1068 	LIST_HEAD(l_inactive);
1069 	struct page *page;
1070 	struct pagevec pvec;
1071 	enum lru_list lru;
1072 
1073 	lru_add_drain();
1074 	spin_lock_irq(&zone->lru_lock);
1075 	pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1076 					ISOLATE_ACTIVE, zone,
1077 					sc->mem_cgroup, 1, file);
1078 	/*
1079 	 * zone->pages_scanned is used for detect zone's oom
1080 	 * mem_cgroup remembers nr_scan by itself.
1081 	 */
1082 	if (scan_global_lru(sc)) {
1083 		zone->pages_scanned += pgscanned;
1084 		zone->recent_scanned[!!file] += pgmoved;
1085 	}
1086 
1087 	if (file)
1088 		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1089 	else
1090 		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1091 	spin_unlock_irq(&zone->lru_lock);
1092 
1093 	while (!list_empty(&l_hold)) {
1094 		cond_resched();
1095 		page = lru_to_page(&l_hold);
1096 		list_del(&page->lru);
1097 		list_add(&page->lru, &l_inactive);
1098 	}
1099 
1100 	/*
1101 	 * Now put the pages back on the appropriate [file or anon] inactive
1102 	 * and active lists.
1103 	 */
1104 	pagevec_init(&pvec, 1);
1105 	pgmoved = 0;
1106 	lru = LRU_BASE + file * LRU_FILE;
1107 	spin_lock_irq(&zone->lru_lock);
1108 	while (!list_empty(&l_inactive)) {
1109 		page = lru_to_page(&l_inactive);
1110 		prefetchw_prev_lru_page(page, &l_inactive, flags);
1111 		VM_BUG_ON(PageLRU(page));
1112 		SetPageLRU(page);
1113 		VM_BUG_ON(!PageActive(page));
1114 		ClearPageActive(page);
1115 
1116 		list_move(&page->lru, &zone->lru[lru].list);
1117 		mem_cgroup_move_lists(page, false);
1118 		pgmoved++;
1119 		if (!pagevec_add(&pvec, page)) {
1120 			__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1121 			spin_unlock_irq(&zone->lru_lock);
1122 			pgdeactivate += pgmoved;
1123 			pgmoved = 0;
1124 			if (buffer_heads_over_limit)
1125 				pagevec_strip(&pvec);
1126 			__pagevec_release(&pvec);
1127 			spin_lock_irq(&zone->lru_lock);
1128 		}
1129 	}
1130 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1131 	pgdeactivate += pgmoved;
1132 	if (buffer_heads_over_limit) {
1133 		spin_unlock_irq(&zone->lru_lock);
1134 		pagevec_strip(&pvec);
1135 		spin_lock_irq(&zone->lru_lock);
1136 	}
1137 
1138 	pgmoved = 0;
1139 	lru = LRU_ACTIVE + file * LRU_FILE;
1140 	while (!list_empty(&l_active)) {
1141 		page = lru_to_page(&l_active);
1142 		prefetchw_prev_lru_page(page, &l_active, flags);
1143 		VM_BUG_ON(PageLRU(page));
1144 		SetPageLRU(page);
1145 		VM_BUG_ON(!PageActive(page));
1146 
1147 		list_move(&page->lru, &zone->lru[lru].list);
1148 		mem_cgroup_move_lists(page, true);
1149 		pgmoved++;
1150 		if (!pagevec_add(&pvec, page)) {
1151 			__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1152 			pgmoved = 0;
1153 			spin_unlock_irq(&zone->lru_lock);
1154 			if (vm_swap_full())
1155 				pagevec_swap_free(&pvec);
1156 			__pagevec_release(&pvec);
1157 			spin_lock_irq(&zone->lru_lock);
1158 		}
1159 	}
1160 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1161 	zone->recent_rotated[!!file] += pgmoved;
1162 
1163 	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1164 	__count_vm_events(PGDEACTIVATE, pgdeactivate);
1165 	spin_unlock_irq(&zone->lru_lock);
1166 	if (vm_swap_full())
1167 		pagevec_swap_free(&pvec);
1168 
1169 	pagevec_release(&pvec);
1170 }
1171 
1172 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1173 	struct zone *zone, struct scan_control *sc, int priority)
1174 {
1175 	int file = is_file_lru(lru);
1176 
1177 	if (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE) {
1178 		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1179 		return 0;
1180 	}
1181 	return shrink_inactive_list(nr_to_scan, zone, sc, file);
1182 }
1183 
1184 /*
1185  * Determine how aggressively the anon and file LRU lists should be
1186  * scanned.  The relative value of each set of LRU lists is determined
1187  * by looking at the fraction of the pages scanned we did rotate back
1188  * onto the active list instead of evict.
1189  *
1190  * percent[0] specifies how much pressure to put on ram/swap backed
1191  * memory, while percent[1] determines pressure on the file LRUs.
1192  */
1193 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1194 					unsigned long *percent)
1195 {
1196 	unsigned long anon, file, free;
1197 	unsigned long anon_prio, file_prio;
1198 	unsigned long ap, fp;
1199 
1200 	anon  = zone_page_state(zone, NR_ACTIVE_ANON) +
1201 		zone_page_state(zone, NR_INACTIVE_ANON);
1202 	file  = zone_page_state(zone, NR_ACTIVE_FILE) +
1203 		zone_page_state(zone, NR_INACTIVE_FILE);
1204 	free  = zone_page_state(zone, NR_FREE_PAGES);
1205 
1206 	/* If we have no swap space, do not bother scanning anon pages. */
1207 	if (nr_swap_pages <= 0) {
1208 		percent[0] = 0;
1209 		percent[1] = 100;
1210 		return;
1211 	}
1212 
1213 	/* If we have very few page cache pages, force-scan anon pages. */
1214 	if (unlikely(file + free <= zone->pages_high)) {
1215 		percent[0] = 100;
1216 		percent[1] = 0;
1217 		return;
1218 	}
1219 
1220 	/*
1221 	 * OK, so we have swap space and a fair amount of page cache
1222 	 * pages.  We use the recently rotated / recently scanned
1223 	 * ratios to determine how valuable each cache is.
1224 	 *
1225 	 * Because workloads change over time (and to avoid overflow)
1226 	 * we keep these statistics as a floating average, which ends
1227 	 * up weighing recent references more than old ones.
1228 	 *
1229 	 * anon in [0], file in [1]
1230 	 */
1231 	if (unlikely(zone->recent_scanned[0] > anon / 4)) {
1232 		spin_lock_irq(&zone->lru_lock);
1233 		zone->recent_scanned[0] /= 2;
1234 		zone->recent_rotated[0] /= 2;
1235 		spin_unlock_irq(&zone->lru_lock);
1236 	}
1237 
1238 	if (unlikely(zone->recent_scanned[1] > file / 4)) {
1239 		spin_lock_irq(&zone->lru_lock);
1240 		zone->recent_scanned[1] /= 2;
1241 		zone->recent_rotated[1] /= 2;
1242 		spin_unlock_irq(&zone->lru_lock);
1243 	}
1244 
1245 	/*
1246 	 * With swappiness at 100, anonymous and file have the same priority.
1247 	 * This scanning priority is essentially the inverse of IO cost.
1248 	 */
1249 	anon_prio = sc->swappiness;
1250 	file_prio = 200 - sc->swappiness;
1251 
1252 	/*
1253 	 *                  anon       recent_rotated[0]
1254 	 * %anon = 100 * ----------- / ----------------- * IO cost
1255 	 *               anon + file      rotate_sum
1256 	 */
1257 	ap = (anon_prio + 1) * (zone->recent_scanned[0] + 1);
1258 	ap /= zone->recent_rotated[0] + 1;
1259 
1260 	fp = (file_prio + 1) * (zone->recent_scanned[1] + 1);
1261 	fp /= zone->recent_rotated[1] + 1;
1262 
1263 	/* Normalize to percentages */
1264 	percent[0] = 100 * ap / (ap + fp + 1);
1265 	percent[1] = 100 - percent[0];
1266 }
1267 
1268 
1269 /*
1270  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1271  */
1272 static unsigned long shrink_zone(int priority, struct zone *zone,
1273 				struct scan_control *sc)
1274 {
1275 	unsigned long nr[NR_LRU_LISTS];
1276 	unsigned long nr_to_scan;
1277 	unsigned long nr_reclaimed = 0;
1278 	unsigned long percent[2];	/* anon @ 0; file @ 1 */
1279 	enum lru_list l;
1280 
1281 	get_scan_ratio(zone, sc, percent);
1282 
1283 	for_each_lru(l) {
1284 		if (scan_global_lru(sc)) {
1285 			int file = is_file_lru(l);
1286 			int scan;
1287 			/*
1288 			 * Add one to nr_to_scan just to make sure that the
1289 			 * kernel will slowly sift through each list.
1290 			 */
1291 			scan = zone_page_state(zone, NR_LRU_BASE + l);
1292 			if (priority) {
1293 				scan >>= priority;
1294 				scan = (scan * percent[file]) / 100;
1295 			}
1296 			zone->lru[l].nr_scan += scan + 1;
1297 			nr[l] = zone->lru[l].nr_scan;
1298 			if (nr[l] >= sc->swap_cluster_max)
1299 				zone->lru[l].nr_scan = 0;
1300 			else
1301 				nr[l] = 0;
1302 		} else {
1303 			/*
1304 			 * This reclaim occurs not because zone memory shortage
1305 			 * but because memory controller hits its limit.
1306 			 * Don't modify zone reclaim related data.
1307 			 */
1308 			nr[l] = mem_cgroup_calc_reclaim(sc->mem_cgroup, zone,
1309 								priority, l);
1310 		}
1311 	}
1312 
1313 	while (nr[LRU_ACTIVE_ANON] || nr[LRU_INACTIVE_ANON] ||
1314 			nr[LRU_ACTIVE_FILE] || nr[LRU_INACTIVE_FILE]) {
1315 		for_each_lru(l) {
1316 			if (nr[l]) {
1317 				nr_to_scan = min(nr[l],
1318 					(unsigned long)sc->swap_cluster_max);
1319 				nr[l] -= nr_to_scan;
1320 
1321 				nr_reclaimed += shrink_list(l, nr_to_scan,
1322 							zone, sc, priority);
1323 			}
1324 		}
1325 	}
1326 
1327 	throttle_vm_writeout(sc->gfp_mask);
1328 	return nr_reclaimed;
1329 }
1330 
1331 /*
1332  * This is the direct reclaim path, for page-allocating processes.  We only
1333  * try to reclaim pages from zones which will satisfy the caller's allocation
1334  * request.
1335  *
1336  * We reclaim from a zone even if that zone is over pages_high.  Because:
1337  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1338  *    allocation or
1339  * b) The zones may be over pages_high but they must go *over* pages_high to
1340  *    satisfy the `incremental min' zone defense algorithm.
1341  *
1342  * Returns the number of reclaimed pages.
1343  *
1344  * If a zone is deemed to be full of pinned pages then just give it a light
1345  * scan then give up on it.
1346  */
1347 static unsigned long shrink_zones(int priority, struct zonelist *zonelist,
1348 					struct scan_control *sc)
1349 {
1350 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1351 	unsigned long nr_reclaimed = 0;
1352 	struct zoneref *z;
1353 	struct zone *zone;
1354 
1355 	sc->all_unreclaimable = 1;
1356 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1357 		if (!populated_zone(zone))
1358 			continue;
1359 		/*
1360 		 * Take care memory controller reclaiming has small influence
1361 		 * to global LRU.
1362 		 */
1363 		if (scan_global_lru(sc)) {
1364 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1365 				continue;
1366 			note_zone_scanning_priority(zone, priority);
1367 
1368 			if (zone_is_all_unreclaimable(zone) &&
1369 						priority != DEF_PRIORITY)
1370 				continue;	/* Let kswapd poll it */
1371 			sc->all_unreclaimable = 0;
1372 		} else {
1373 			/*
1374 			 * Ignore cpuset limitation here. We just want to reduce
1375 			 * # of used pages by us regardless of memory shortage.
1376 			 */
1377 			sc->all_unreclaimable = 0;
1378 			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1379 							priority);
1380 		}
1381 
1382 		nr_reclaimed += shrink_zone(priority, zone, sc);
1383 	}
1384 
1385 	return nr_reclaimed;
1386 }
1387 
1388 /*
1389  * This is the main entry point to direct page reclaim.
1390  *
1391  * If a full scan of the inactive list fails to free enough memory then we
1392  * are "out of memory" and something needs to be killed.
1393  *
1394  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1395  * high - the zone may be full of dirty or under-writeback pages, which this
1396  * caller can't do much about.  We kick pdflush and take explicit naps in the
1397  * hope that some of these pages can be written.  But if the allocating task
1398  * holds filesystem locks which prevent writeout this might not work, and the
1399  * allocation attempt will fail.
1400  *
1401  * returns:	0, if no pages reclaimed
1402  * 		else, the number of pages reclaimed
1403  */
1404 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1405 					struct scan_control *sc)
1406 {
1407 	int priority;
1408 	unsigned long ret = 0;
1409 	unsigned long total_scanned = 0;
1410 	unsigned long nr_reclaimed = 0;
1411 	struct reclaim_state *reclaim_state = current->reclaim_state;
1412 	unsigned long lru_pages = 0;
1413 	struct zoneref *z;
1414 	struct zone *zone;
1415 	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1416 
1417 	delayacct_freepages_start();
1418 
1419 	if (scan_global_lru(sc))
1420 		count_vm_event(ALLOCSTALL);
1421 	/*
1422 	 * mem_cgroup will not do shrink_slab.
1423 	 */
1424 	if (scan_global_lru(sc)) {
1425 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1426 
1427 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1428 				continue;
1429 
1430 			lru_pages += zone_lru_pages(zone);
1431 		}
1432 	}
1433 
1434 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1435 		sc->nr_scanned = 0;
1436 		if (!priority)
1437 			disable_swap_token();
1438 		nr_reclaimed += shrink_zones(priority, zonelist, sc);
1439 		/*
1440 		 * Don't shrink slabs when reclaiming memory from
1441 		 * over limit cgroups
1442 		 */
1443 		if (scan_global_lru(sc)) {
1444 			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1445 			if (reclaim_state) {
1446 				nr_reclaimed += reclaim_state->reclaimed_slab;
1447 				reclaim_state->reclaimed_slab = 0;
1448 			}
1449 		}
1450 		total_scanned += sc->nr_scanned;
1451 		if (nr_reclaimed >= sc->swap_cluster_max) {
1452 			ret = nr_reclaimed;
1453 			goto out;
1454 		}
1455 
1456 		/*
1457 		 * Try to write back as many pages as we just scanned.  This
1458 		 * tends to cause slow streaming writers to write data to the
1459 		 * disk smoothly, at the dirtying rate, which is nice.   But
1460 		 * that's undesirable in laptop mode, where we *want* lumpy
1461 		 * writeout.  So in laptop mode, write out the whole world.
1462 		 */
1463 		if (total_scanned > sc->swap_cluster_max +
1464 					sc->swap_cluster_max / 2) {
1465 			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1466 			sc->may_writepage = 1;
1467 		}
1468 
1469 		/* Take a nap, wait for some writeback to complete */
1470 		if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1471 			congestion_wait(WRITE, HZ/10);
1472 	}
1473 	/* top priority shrink_zones still had more to do? don't OOM, then */
1474 	if (!sc->all_unreclaimable && scan_global_lru(sc))
1475 		ret = nr_reclaimed;
1476 out:
1477 	/*
1478 	 * Now that we've scanned all the zones at this priority level, note
1479 	 * that level within the zone so that the next thread which performs
1480 	 * scanning of this zone will immediately start out at this priority
1481 	 * level.  This affects only the decision whether or not to bring
1482 	 * mapped pages onto the inactive list.
1483 	 */
1484 	if (priority < 0)
1485 		priority = 0;
1486 
1487 	if (scan_global_lru(sc)) {
1488 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1489 
1490 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1491 				continue;
1492 
1493 			zone->prev_priority = priority;
1494 		}
1495 	} else
1496 		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1497 
1498 	delayacct_freepages_end();
1499 
1500 	return ret;
1501 }
1502 
1503 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1504 								gfp_t gfp_mask)
1505 {
1506 	struct scan_control sc = {
1507 		.gfp_mask = gfp_mask,
1508 		.may_writepage = !laptop_mode,
1509 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1510 		.may_swap = 1,
1511 		.swappiness = vm_swappiness,
1512 		.order = order,
1513 		.mem_cgroup = NULL,
1514 		.isolate_pages = isolate_pages_global,
1515 	};
1516 
1517 	return do_try_to_free_pages(zonelist, &sc);
1518 }
1519 
1520 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1521 
1522 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1523 						gfp_t gfp_mask)
1524 {
1525 	struct scan_control sc = {
1526 		.may_writepage = !laptop_mode,
1527 		.may_swap = 1,
1528 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1529 		.swappiness = vm_swappiness,
1530 		.order = 0,
1531 		.mem_cgroup = mem_cont,
1532 		.isolate_pages = mem_cgroup_isolate_pages,
1533 	};
1534 	struct zonelist *zonelist;
1535 
1536 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1537 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1538 	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1539 	return do_try_to_free_pages(zonelist, &sc);
1540 }
1541 #endif
1542 
1543 /*
1544  * For kswapd, balance_pgdat() will work across all this node's zones until
1545  * they are all at pages_high.
1546  *
1547  * Returns the number of pages which were actually freed.
1548  *
1549  * There is special handling here for zones which are full of pinned pages.
1550  * This can happen if the pages are all mlocked, or if they are all used by
1551  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1552  * What we do is to detect the case where all pages in the zone have been
1553  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1554  * dead and from now on, only perform a short scan.  Basically we're polling
1555  * the zone for when the problem goes away.
1556  *
1557  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1558  * zones which have free_pages > pages_high, but once a zone is found to have
1559  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1560  * of the number of free pages in the lower zones.  This interoperates with
1561  * the page allocator fallback scheme to ensure that aging of pages is balanced
1562  * across the zones.
1563  */
1564 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1565 {
1566 	int all_zones_ok;
1567 	int priority;
1568 	int i;
1569 	unsigned long total_scanned;
1570 	unsigned long nr_reclaimed;
1571 	struct reclaim_state *reclaim_state = current->reclaim_state;
1572 	struct scan_control sc = {
1573 		.gfp_mask = GFP_KERNEL,
1574 		.may_swap = 1,
1575 		.swap_cluster_max = SWAP_CLUSTER_MAX,
1576 		.swappiness = vm_swappiness,
1577 		.order = order,
1578 		.mem_cgroup = NULL,
1579 		.isolate_pages = isolate_pages_global,
1580 	};
1581 	/*
1582 	 * temp_priority is used to remember the scanning priority at which
1583 	 * this zone was successfully refilled to free_pages == pages_high.
1584 	 */
1585 	int temp_priority[MAX_NR_ZONES];
1586 
1587 loop_again:
1588 	total_scanned = 0;
1589 	nr_reclaimed = 0;
1590 	sc.may_writepage = !laptop_mode;
1591 	count_vm_event(PAGEOUTRUN);
1592 
1593 	for (i = 0; i < pgdat->nr_zones; i++)
1594 		temp_priority[i] = DEF_PRIORITY;
1595 
1596 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1597 		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
1598 		unsigned long lru_pages = 0;
1599 
1600 		/* The swap token gets in the way of swapout... */
1601 		if (!priority)
1602 			disable_swap_token();
1603 
1604 		all_zones_ok = 1;
1605 
1606 		/*
1607 		 * Scan in the highmem->dma direction for the highest
1608 		 * zone which needs scanning
1609 		 */
1610 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1611 			struct zone *zone = pgdat->node_zones + i;
1612 
1613 			if (!populated_zone(zone))
1614 				continue;
1615 
1616 			if (zone_is_all_unreclaimable(zone) &&
1617 			    priority != DEF_PRIORITY)
1618 				continue;
1619 
1620 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1621 					       0, 0)) {
1622 				end_zone = i;
1623 				break;
1624 			}
1625 		}
1626 		if (i < 0)
1627 			goto out;
1628 
1629 		for (i = 0; i <= end_zone; i++) {
1630 			struct zone *zone = pgdat->node_zones + i;
1631 
1632 			lru_pages += zone_lru_pages(zone);
1633 		}
1634 
1635 		/*
1636 		 * Now scan the zone in the dma->highmem direction, stopping
1637 		 * at the last zone which needs scanning.
1638 		 *
1639 		 * We do this because the page allocator works in the opposite
1640 		 * direction.  This prevents the page allocator from allocating
1641 		 * pages behind kswapd's direction of progress, which would
1642 		 * cause too much scanning of the lower zones.
1643 		 */
1644 		for (i = 0; i <= end_zone; i++) {
1645 			struct zone *zone = pgdat->node_zones + i;
1646 			int nr_slab;
1647 
1648 			if (!populated_zone(zone))
1649 				continue;
1650 
1651 			if (zone_is_all_unreclaimable(zone) &&
1652 					priority != DEF_PRIORITY)
1653 				continue;
1654 
1655 			if (!zone_watermark_ok(zone, order, zone->pages_high,
1656 					       end_zone, 0))
1657 				all_zones_ok = 0;
1658 			temp_priority[i] = priority;
1659 			sc.nr_scanned = 0;
1660 			note_zone_scanning_priority(zone, priority);
1661 			/*
1662 			 * We put equal pressure on every zone, unless one
1663 			 * zone has way too many pages free already.
1664 			 */
1665 			if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1666 						end_zone, 0))
1667 				nr_reclaimed += shrink_zone(priority, zone, &sc);
1668 			reclaim_state->reclaimed_slab = 0;
1669 			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1670 						lru_pages);
1671 			nr_reclaimed += reclaim_state->reclaimed_slab;
1672 			total_scanned += sc.nr_scanned;
1673 			if (zone_is_all_unreclaimable(zone))
1674 				continue;
1675 			if (nr_slab == 0 && zone->pages_scanned >=
1676 						(zone_lru_pages(zone) * 6))
1677 					zone_set_flag(zone,
1678 						      ZONE_ALL_UNRECLAIMABLE);
1679 			/*
1680 			 * If we've done a decent amount of scanning and
1681 			 * the reclaim ratio is low, start doing writepage
1682 			 * even in laptop mode
1683 			 */
1684 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1685 			    total_scanned > nr_reclaimed + nr_reclaimed / 2)
1686 				sc.may_writepage = 1;
1687 		}
1688 		if (all_zones_ok)
1689 			break;		/* kswapd: all done */
1690 		/*
1691 		 * OK, kswapd is getting into trouble.  Take a nap, then take
1692 		 * another pass across the zones.
1693 		 */
1694 		if (total_scanned && priority < DEF_PRIORITY - 2)
1695 			congestion_wait(WRITE, HZ/10);
1696 
1697 		/*
1698 		 * We do this so kswapd doesn't build up large priorities for
1699 		 * example when it is freeing in parallel with allocators. It
1700 		 * matches the direct reclaim path behaviour in terms of impact
1701 		 * on zone->*_priority.
1702 		 */
1703 		if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1704 			break;
1705 	}
1706 out:
1707 	/*
1708 	 * Note within each zone the priority level at which this zone was
1709 	 * brought into a happy state.  So that the next thread which scans this
1710 	 * zone will start out at that priority level.
1711 	 */
1712 	for (i = 0; i < pgdat->nr_zones; i++) {
1713 		struct zone *zone = pgdat->node_zones + i;
1714 
1715 		zone->prev_priority = temp_priority[i];
1716 	}
1717 	if (!all_zones_ok) {
1718 		cond_resched();
1719 
1720 		try_to_freeze();
1721 
1722 		goto loop_again;
1723 	}
1724 
1725 	return nr_reclaimed;
1726 }
1727 
1728 /*
1729  * The background pageout daemon, started as a kernel thread
1730  * from the init process.
1731  *
1732  * This basically trickles out pages so that we have _some_
1733  * free memory available even if there is no other activity
1734  * that frees anything up. This is needed for things like routing
1735  * etc, where we otherwise might have all activity going on in
1736  * asynchronous contexts that cannot page things out.
1737  *
1738  * If there are applications that are active memory-allocators
1739  * (most normal use), this basically shouldn't matter.
1740  */
1741 static int kswapd(void *p)
1742 {
1743 	unsigned long order;
1744 	pg_data_t *pgdat = (pg_data_t*)p;
1745 	struct task_struct *tsk = current;
1746 	DEFINE_WAIT(wait);
1747 	struct reclaim_state reclaim_state = {
1748 		.reclaimed_slab = 0,
1749 	};
1750 	node_to_cpumask_ptr(cpumask, pgdat->node_id);
1751 
1752 	if (!cpus_empty(*cpumask))
1753 		set_cpus_allowed_ptr(tsk, cpumask);
1754 	current->reclaim_state = &reclaim_state;
1755 
1756 	/*
1757 	 * Tell the memory management that we're a "memory allocator",
1758 	 * and that if we need more memory we should get access to it
1759 	 * regardless (see "__alloc_pages()"). "kswapd" should
1760 	 * never get caught in the normal page freeing logic.
1761 	 *
1762 	 * (Kswapd normally doesn't need memory anyway, but sometimes
1763 	 * you need a small amount of memory in order to be able to
1764 	 * page out something else, and this flag essentially protects
1765 	 * us from recursively trying to free more memory as we're
1766 	 * trying to free the first piece of memory in the first place).
1767 	 */
1768 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1769 	set_freezable();
1770 
1771 	order = 0;
1772 	for ( ; ; ) {
1773 		unsigned long new_order;
1774 
1775 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1776 		new_order = pgdat->kswapd_max_order;
1777 		pgdat->kswapd_max_order = 0;
1778 		if (order < new_order) {
1779 			/*
1780 			 * Don't sleep if someone wants a larger 'order'
1781 			 * allocation
1782 			 */
1783 			order = new_order;
1784 		} else {
1785 			if (!freezing(current))
1786 				schedule();
1787 
1788 			order = pgdat->kswapd_max_order;
1789 		}
1790 		finish_wait(&pgdat->kswapd_wait, &wait);
1791 
1792 		if (!try_to_freeze()) {
1793 			/* We can speed up thawing tasks if we don't call
1794 			 * balance_pgdat after returning from the refrigerator
1795 			 */
1796 			balance_pgdat(pgdat, order);
1797 		}
1798 	}
1799 	return 0;
1800 }
1801 
1802 /*
1803  * A zone is low on free memory, so wake its kswapd task to service it.
1804  */
1805 void wakeup_kswapd(struct zone *zone, int order)
1806 {
1807 	pg_data_t *pgdat;
1808 
1809 	if (!populated_zone(zone))
1810 		return;
1811 
1812 	pgdat = zone->zone_pgdat;
1813 	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1814 		return;
1815 	if (pgdat->kswapd_max_order < order)
1816 		pgdat->kswapd_max_order = order;
1817 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1818 		return;
1819 	if (!waitqueue_active(&pgdat->kswapd_wait))
1820 		return;
1821 	wake_up_interruptible(&pgdat->kswapd_wait);
1822 }
1823 
1824 unsigned long global_lru_pages(void)
1825 {
1826 	return global_page_state(NR_ACTIVE_ANON)
1827 		+ global_page_state(NR_ACTIVE_FILE)
1828 		+ global_page_state(NR_INACTIVE_ANON)
1829 		+ global_page_state(NR_INACTIVE_FILE);
1830 }
1831 
1832 #ifdef CONFIG_PM
1833 /*
1834  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
1835  * from LRU lists system-wide, for given pass and priority, and returns the
1836  * number of reclaimed pages
1837  *
1838  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1839  */
1840 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1841 				      int pass, struct scan_control *sc)
1842 {
1843 	struct zone *zone;
1844 	unsigned long nr_to_scan, ret = 0;
1845 	enum lru_list l;
1846 
1847 	for_each_zone(zone) {
1848 
1849 		if (!populated_zone(zone))
1850 			continue;
1851 
1852 		if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
1853 			continue;
1854 
1855 		for_each_lru(l) {
1856 			/* For pass = 0 we don't shrink the active list */
1857 			if (pass == 0 &&
1858 				(l == LRU_ACTIVE || l == LRU_ACTIVE_FILE))
1859 				continue;
1860 
1861 			zone->lru[l].nr_scan +=
1862 				(zone_page_state(zone, NR_LRU_BASE + l)
1863 								>> prio) + 1;
1864 			if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
1865 				zone->lru[l].nr_scan = 0;
1866 				nr_to_scan = min(nr_pages,
1867 					zone_page_state(zone,
1868 							NR_LRU_BASE + l));
1869 				ret += shrink_list(l, nr_to_scan, zone,
1870 								sc, prio);
1871 				if (ret >= nr_pages)
1872 					return ret;
1873 			}
1874 		}
1875 	}
1876 
1877 	return ret;
1878 }
1879 
1880 /*
1881  * Try to free `nr_pages' of memory, system-wide, and return the number of
1882  * freed pages.
1883  *
1884  * Rather than trying to age LRUs the aim is to preserve the overall
1885  * LRU order by reclaiming preferentially
1886  * inactive > active > active referenced > active mapped
1887  */
1888 unsigned long shrink_all_memory(unsigned long nr_pages)
1889 {
1890 	unsigned long lru_pages, nr_slab;
1891 	unsigned long ret = 0;
1892 	int pass;
1893 	struct reclaim_state reclaim_state;
1894 	struct scan_control sc = {
1895 		.gfp_mask = GFP_KERNEL,
1896 		.may_swap = 0,
1897 		.swap_cluster_max = nr_pages,
1898 		.may_writepage = 1,
1899 		.swappiness = vm_swappiness,
1900 		.isolate_pages = isolate_pages_global,
1901 	};
1902 
1903 	current->reclaim_state = &reclaim_state;
1904 
1905 	lru_pages = global_lru_pages();
1906 	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
1907 	/* If slab caches are huge, it's better to hit them first */
1908 	while (nr_slab >= lru_pages) {
1909 		reclaim_state.reclaimed_slab = 0;
1910 		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1911 		if (!reclaim_state.reclaimed_slab)
1912 			break;
1913 
1914 		ret += reclaim_state.reclaimed_slab;
1915 		if (ret >= nr_pages)
1916 			goto out;
1917 
1918 		nr_slab -= reclaim_state.reclaimed_slab;
1919 	}
1920 
1921 	/*
1922 	 * We try to shrink LRUs in 5 passes:
1923 	 * 0 = Reclaim from inactive_list only
1924 	 * 1 = Reclaim from active list but don't reclaim mapped
1925 	 * 2 = 2nd pass of type 1
1926 	 * 3 = Reclaim mapped (normal reclaim)
1927 	 * 4 = 2nd pass of type 3
1928 	 */
1929 	for (pass = 0; pass < 5; pass++) {
1930 		int prio;
1931 
1932 		/* Force reclaiming mapped pages in the passes #3 and #4 */
1933 		if (pass > 2) {
1934 			sc.may_swap = 1;
1935 			sc.swappiness = 100;
1936 		}
1937 
1938 		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1939 			unsigned long nr_to_scan = nr_pages - ret;
1940 
1941 			sc.nr_scanned = 0;
1942 			ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1943 			if (ret >= nr_pages)
1944 				goto out;
1945 
1946 			reclaim_state.reclaimed_slab = 0;
1947 			shrink_slab(sc.nr_scanned, sc.gfp_mask,
1948 					global_lru_pages());
1949 			ret += reclaim_state.reclaimed_slab;
1950 			if (ret >= nr_pages)
1951 				goto out;
1952 
1953 			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1954 				congestion_wait(WRITE, HZ / 10);
1955 		}
1956 	}
1957 
1958 	/*
1959 	 * If ret = 0, we could not shrink LRUs, but there may be something
1960 	 * in slab caches
1961 	 */
1962 	if (!ret) {
1963 		do {
1964 			reclaim_state.reclaimed_slab = 0;
1965 			shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
1966 			ret += reclaim_state.reclaimed_slab;
1967 		} while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1968 	}
1969 
1970 out:
1971 	current->reclaim_state = NULL;
1972 
1973 	return ret;
1974 }
1975 #endif
1976 
1977 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1978    not required for correctness.  So if the last cpu in a node goes
1979    away, we get changed to run anywhere: as the first one comes back,
1980    restore their cpu bindings. */
1981 static int __devinit cpu_callback(struct notifier_block *nfb,
1982 				  unsigned long action, void *hcpu)
1983 {
1984 	int nid;
1985 
1986 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
1987 		for_each_node_state(nid, N_HIGH_MEMORY) {
1988 			pg_data_t *pgdat = NODE_DATA(nid);
1989 			node_to_cpumask_ptr(mask, pgdat->node_id);
1990 
1991 			if (any_online_cpu(*mask) < nr_cpu_ids)
1992 				/* One of our CPUs online: restore mask */
1993 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
1994 		}
1995 	}
1996 	return NOTIFY_OK;
1997 }
1998 
1999 /*
2000  * This kswapd start function will be called by init and node-hot-add.
2001  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2002  */
2003 int kswapd_run(int nid)
2004 {
2005 	pg_data_t *pgdat = NODE_DATA(nid);
2006 	int ret = 0;
2007 
2008 	if (pgdat->kswapd)
2009 		return 0;
2010 
2011 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2012 	if (IS_ERR(pgdat->kswapd)) {
2013 		/* failure at boot is fatal */
2014 		BUG_ON(system_state == SYSTEM_BOOTING);
2015 		printk("Failed to start kswapd on node %d\n",nid);
2016 		ret = -1;
2017 	}
2018 	return ret;
2019 }
2020 
2021 static int __init kswapd_init(void)
2022 {
2023 	int nid;
2024 
2025 	swap_setup();
2026 	for_each_node_state(nid, N_HIGH_MEMORY)
2027  		kswapd_run(nid);
2028 	hotcpu_notifier(cpu_callback, 0);
2029 	return 0;
2030 }
2031 
2032 module_init(kswapd_init)
2033 
2034 #ifdef CONFIG_NUMA
2035 /*
2036  * Zone reclaim mode
2037  *
2038  * If non-zero call zone_reclaim when the number of free pages falls below
2039  * the watermarks.
2040  */
2041 int zone_reclaim_mode __read_mostly;
2042 
2043 #define RECLAIM_OFF 0
2044 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2045 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
2046 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
2047 
2048 /*
2049  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2050  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2051  * a zone.
2052  */
2053 #define ZONE_RECLAIM_PRIORITY 4
2054 
2055 /*
2056  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2057  * occur.
2058  */
2059 int sysctl_min_unmapped_ratio = 1;
2060 
2061 /*
2062  * If the number of slab pages in a zone grows beyond this percentage then
2063  * slab reclaim needs to occur.
2064  */
2065 int sysctl_min_slab_ratio = 5;
2066 
2067 /*
2068  * Try to free up some pages from this zone through reclaim.
2069  */
2070 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2071 {
2072 	/* Minimum pages needed in order to stay on node */
2073 	const unsigned long nr_pages = 1 << order;
2074 	struct task_struct *p = current;
2075 	struct reclaim_state reclaim_state;
2076 	int priority;
2077 	unsigned long nr_reclaimed = 0;
2078 	struct scan_control sc = {
2079 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2080 		.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2081 		.swap_cluster_max = max_t(unsigned long, nr_pages,
2082 					SWAP_CLUSTER_MAX),
2083 		.gfp_mask = gfp_mask,
2084 		.swappiness = vm_swappiness,
2085 		.isolate_pages = isolate_pages_global,
2086 	};
2087 	unsigned long slab_reclaimable;
2088 
2089 	disable_swap_token();
2090 	cond_resched();
2091 	/*
2092 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2093 	 * and we also need to be able to write out pages for RECLAIM_WRITE
2094 	 * and RECLAIM_SWAP.
2095 	 */
2096 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2097 	reclaim_state.reclaimed_slab = 0;
2098 	p->reclaim_state = &reclaim_state;
2099 
2100 	if (zone_page_state(zone, NR_FILE_PAGES) -
2101 		zone_page_state(zone, NR_FILE_MAPPED) >
2102 		zone->min_unmapped_pages) {
2103 		/*
2104 		 * Free memory by calling shrink zone with increasing
2105 		 * priorities until we have enough memory freed.
2106 		 */
2107 		priority = ZONE_RECLAIM_PRIORITY;
2108 		do {
2109 			note_zone_scanning_priority(zone, priority);
2110 			nr_reclaimed += shrink_zone(priority, zone, &sc);
2111 			priority--;
2112 		} while (priority >= 0 && nr_reclaimed < nr_pages);
2113 	}
2114 
2115 	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2116 	if (slab_reclaimable > zone->min_slab_pages) {
2117 		/*
2118 		 * shrink_slab() does not currently allow us to determine how
2119 		 * many pages were freed in this zone. So we take the current
2120 		 * number of slab pages and shake the slab until it is reduced
2121 		 * by the same nr_pages that we used for reclaiming unmapped
2122 		 * pages.
2123 		 *
2124 		 * Note that shrink_slab will free memory on all zones and may
2125 		 * take a long time.
2126 		 */
2127 		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2128 			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2129 				slab_reclaimable - nr_pages)
2130 			;
2131 
2132 		/*
2133 		 * Update nr_reclaimed by the number of slab pages we
2134 		 * reclaimed from this zone.
2135 		 */
2136 		nr_reclaimed += slab_reclaimable -
2137 			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2138 	}
2139 
2140 	p->reclaim_state = NULL;
2141 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2142 	return nr_reclaimed >= nr_pages;
2143 }
2144 
2145 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2146 {
2147 	int node_id;
2148 	int ret;
2149 
2150 	/*
2151 	 * Zone reclaim reclaims unmapped file backed pages and
2152 	 * slab pages if we are over the defined limits.
2153 	 *
2154 	 * A small portion of unmapped file backed pages is needed for
2155 	 * file I/O otherwise pages read by file I/O will be immediately
2156 	 * thrown out if the zone is overallocated. So we do not reclaim
2157 	 * if less than a specified percentage of the zone is used by
2158 	 * unmapped file backed pages.
2159 	 */
2160 	if (zone_page_state(zone, NR_FILE_PAGES) -
2161 	    zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2162 	    && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2163 			<= zone->min_slab_pages)
2164 		return 0;
2165 
2166 	if (zone_is_all_unreclaimable(zone))
2167 		return 0;
2168 
2169 	/*
2170 	 * Do not scan if the allocation should not be delayed.
2171 	 */
2172 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2173 			return 0;
2174 
2175 	/*
2176 	 * Only run zone reclaim on the local zone or on zones that do not
2177 	 * have associated processors. This will favor the local processor
2178 	 * over remote processors and spread off node memory allocations
2179 	 * as wide as possible.
2180 	 */
2181 	node_id = zone_to_nid(zone);
2182 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2183 		return 0;
2184 
2185 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2186 		return 0;
2187 	ret = __zone_reclaim(zone, gfp_mask, order);
2188 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2189 
2190 	return ret;
2191 }
2192 #endif
2193