1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/gfp.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmstat.h> 23 #include <linux/file.h> 24 #include <linux/writeback.h> 25 #include <linux/blkdev.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page(), 27 buffer_heads_over_limit */ 28 #include <linux/mm_inline.h> 29 #include <linux/backing-dev.h> 30 #include <linux/rmap.h> 31 #include <linux/topology.h> 32 #include <linux/cpu.h> 33 #include <linux/cpuset.h> 34 #include <linux/compaction.h> 35 #include <linux/notifier.h> 36 #include <linux/rwsem.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/freezer.h> 40 #include <linux/memcontrol.h> 41 #include <linux/delayacct.h> 42 #include <linux/sysctl.h> 43 #include <linux/oom.h> 44 #include <linux/prefetch.h> 45 46 #include <asm/tlbflush.h> 47 #include <asm/div64.h> 48 49 #include <linux/swapops.h> 50 51 #include "internal.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/vmscan.h> 55 56 struct scan_control { 57 /* Incremented by the number of inactive pages that were scanned */ 58 unsigned long nr_scanned; 59 60 /* Number of pages freed so far during a call to shrink_zones() */ 61 unsigned long nr_reclaimed; 62 63 /* How many pages shrink_list() should reclaim */ 64 unsigned long nr_to_reclaim; 65 66 unsigned long hibernation_mode; 67 68 /* This context's GFP mask */ 69 gfp_t gfp_mask; 70 71 int may_writepage; 72 73 /* Can mapped pages be reclaimed? */ 74 int may_unmap; 75 76 /* Can pages be swapped as part of reclaim? */ 77 int may_swap; 78 79 int order; 80 81 /* Scan (total_size >> priority) pages at once */ 82 int priority; 83 84 /* 85 * The memory cgroup that hit its limit and as a result is the 86 * primary target of this reclaim invocation. 87 */ 88 struct mem_cgroup *target_mem_cgroup; 89 90 /* 91 * Nodemask of nodes allowed by the caller. If NULL, all nodes 92 * are scanned. 93 */ 94 nodemask_t *nodemask; 95 }; 96 97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 98 99 #ifdef ARCH_HAS_PREFETCH 100 #define prefetch_prev_lru_page(_page, _base, _field) \ 101 do { \ 102 if ((_page)->lru.prev != _base) { \ 103 struct page *prev; \ 104 \ 105 prev = lru_to_page(&(_page->lru)); \ 106 prefetch(&prev->_field); \ 107 } \ 108 } while (0) 109 #else 110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 111 #endif 112 113 #ifdef ARCH_HAS_PREFETCHW 114 #define prefetchw_prev_lru_page(_page, _base, _field) \ 115 do { \ 116 if ((_page)->lru.prev != _base) { \ 117 struct page *prev; \ 118 \ 119 prev = lru_to_page(&(_page->lru)); \ 120 prefetchw(&prev->_field); \ 121 } \ 122 } while (0) 123 #else 124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 125 #endif 126 127 /* 128 * From 0 .. 100. Higher means more swappy. 129 */ 130 int vm_swappiness = 60; 131 long vm_total_pages; /* The total number of pages which the VM controls */ 132 133 static LIST_HEAD(shrinker_list); 134 static DECLARE_RWSEM(shrinker_rwsem); 135 136 #ifdef CONFIG_MEMCG 137 static bool global_reclaim(struct scan_control *sc) 138 { 139 return !sc->target_mem_cgroup; 140 } 141 #else 142 static bool global_reclaim(struct scan_control *sc) 143 { 144 return true; 145 } 146 #endif 147 148 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) 149 { 150 if (!mem_cgroup_disabled()) 151 return mem_cgroup_get_lru_size(lruvec, lru); 152 153 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); 154 } 155 156 /* 157 * Add a shrinker callback to be called from the vm 158 */ 159 void register_shrinker(struct shrinker *shrinker) 160 { 161 atomic_long_set(&shrinker->nr_in_batch, 0); 162 down_write(&shrinker_rwsem); 163 list_add_tail(&shrinker->list, &shrinker_list); 164 up_write(&shrinker_rwsem); 165 } 166 EXPORT_SYMBOL(register_shrinker); 167 168 /* 169 * Remove one 170 */ 171 void unregister_shrinker(struct shrinker *shrinker) 172 { 173 down_write(&shrinker_rwsem); 174 list_del(&shrinker->list); 175 up_write(&shrinker_rwsem); 176 } 177 EXPORT_SYMBOL(unregister_shrinker); 178 179 static inline int do_shrinker_shrink(struct shrinker *shrinker, 180 struct shrink_control *sc, 181 unsigned long nr_to_scan) 182 { 183 sc->nr_to_scan = nr_to_scan; 184 return (*shrinker->shrink)(shrinker, sc); 185 } 186 187 #define SHRINK_BATCH 128 188 /* 189 * Call the shrink functions to age shrinkable caches 190 * 191 * Here we assume it costs one seek to replace a lru page and that it also 192 * takes a seek to recreate a cache object. With this in mind we age equal 193 * percentages of the lru and ageable caches. This should balance the seeks 194 * generated by these structures. 195 * 196 * If the vm encountered mapped pages on the LRU it increase the pressure on 197 * slab to avoid swapping. 198 * 199 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 200 * 201 * `lru_pages' represents the number of on-LRU pages in all the zones which 202 * are eligible for the caller's allocation attempt. It is used for balancing 203 * slab reclaim versus page reclaim. 204 * 205 * Returns the number of slab objects which we shrunk. 206 */ 207 unsigned long shrink_slab(struct shrink_control *shrink, 208 unsigned long nr_pages_scanned, 209 unsigned long lru_pages) 210 { 211 struct shrinker *shrinker; 212 unsigned long ret = 0; 213 214 if (nr_pages_scanned == 0) 215 nr_pages_scanned = SWAP_CLUSTER_MAX; 216 217 if (!down_read_trylock(&shrinker_rwsem)) { 218 /* Assume we'll be able to shrink next time */ 219 ret = 1; 220 goto out; 221 } 222 223 list_for_each_entry(shrinker, &shrinker_list, list) { 224 unsigned long long delta; 225 long total_scan; 226 long max_pass; 227 int shrink_ret = 0; 228 long nr; 229 long new_nr; 230 long batch_size = shrinker->batch ? shrinker->batch 231 : SHRINK_BATCH; 232 233 max_pass = do_shrinker_shrink(shrinker, shrink, 0); 234 if (max_pass <= 0) 235 continue; 236 237 /* 238 * copy the current shrinker scan count into a local variable 239 * and zero it so that other concurrent shrinker invocations 240 * don't also do this scanning work. 241 */ 242 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0); 243 244 total_scan = nr; 245 delta = (4 * nr_pages_scanned) / shrinker->seeks; 246 delta *= max_pass; 247 do_div(delta, lru_pages + 1); 248 total_scan += delta; 249 if (total_scan < 0) { 250 printk(KERN_ERR "shrink_slab: %pF negative objects to " 251 "delete nr=%ld\n", 252 shrinker->shrink, total_scan); 253 total_scan = max_pass; 254 } 255 256 /* 257 * We need to avoid excessive windup on filesystem shrinkers 258 * due to large numbers of GFP_NOFS allocations causing the 259 * shrinkers to return -1 all the time. This results in a large 260 * nr being built up so when a shrink that can do some work 261 * comes along it empties the entire cache due to nr >>> 262 * max_pass. This is bad for sustaining a working set in 263 * memory. 264 * 265 * Hence only allow the shrinker to scan the entire cache when 266 * a large delta change is calculated directly. 267 */ 268 if (delta < max_pass / 4) 269 total_scan = min(total_scan, max_pass / 2); 270 271 /* 272 * Avoid risking looping forever due to too large nr value: 273 * never try to free more than twice the estimate number of 274 * freeable entries. 275 */ 276 if (total_scan > max_pass * 2) 277 total_scan = max_pass * 2; 278 279 trace_mm_shrink_slab_start(shrinker, shrink, nr, 280 nr_pages_scanned, lru_pages, 281 max_pass, delta, total_scan); 282 283 while (total_scan >= batch_size) { 284 int nr_before; 285 286 nr_before = do_shrinker_shrink(shrinker, shrink, 0); 287 shrink_ret = do_shrinker_shrink(shrinker, shrink, 288 batch_size); 289 if (shrink_ret == -1) 290 break; 291 if (shrink_ret < nr_before) 292 ret += nr_before - shrink_ret; 293 count_vm_events(SLABS_SCANNED, batch_size); 294 total_scan -= batch_size; 295 296 cond_resched(); 297 } 298 299 /* 300 * move the unused scan count back into the shrinker in a 301 * manner that handles concurrent updates. If we exhausted the 302 * scan, there is no need to do an update. 303 */ 304 if (total_scan > 0) 305 new_nr = atomic_long_add_return(total_scan, 306 &shrinker->nr_in_batch); 307 else 308 new_nr = atomic_long_read(&shrinker->nr_in_batch); 309 310 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr); 311 } 312 up_read(&shrinker_rwsem); 313 out: 314 cond_resched(); 315 return ret; 316 } 317 318 static inline int is_page_cache_freeable(struct page *page) 319 { 320 /* 321 * A freeable page cache page is referenced only by the caller 322 * that isolated the page, the page cache radix tree and 323 * optional buffer heads at page->private. 324 */ 325 return page_count(page) - page_has_private(page) == 2; 326 } 327 328 static int may_write_to_queue(struct backing_dev_info *bdi, 329 struct scan_control *sc) 330 { 331 if (current->flags & PF_SWAPWRITE) 332 return 1; 333 if (!bdi_write_congested(bdi)) 334 return 1; 335 if (bdi == current->backing_dev_info) 336 return 1; 337 return 0; 338 } 339 340 /* 341 * We detected a synchronous write error writing a page out. Probably 342 * -ENOSPC. We need to propagate that into the address_space for a subsequent 343 * fsync(), msync() or close(). 344 * 345 * The tricky part is that after writepage we cannot touch the mapping: nothing 346 * prevents it from being freed up. But we have a ref on the page and once 347 * that page is locked, the mapping is pinned. 348 * 349 * We're allowed to run sleeping lock_page() here because we know the caller has 350 * __GFP_FS. 351 */ 352 static void handle_write_error(struct address_space *mapping, 353 struct page *page, int error) 354 { 355 lock_page(page); 356 if (page_mapping(page) == mapping) 357 mapping_set_error(mapping, error); 358 unlock_page(page); 359 } 360 361 /* possible outcome of pageout() */ 362 typedef enum { 363 /* failed to write page out, page is locked */ 364 PAGE_KEEP, 365 /* move page to the active list, page is locked */ 366 PAGE_ACTIVATE, 367 /* page has been sent to the disk successfully, page is unlocked */ 368 PAGE_SUCCESS, 369 /* page is clean and locked */ 370 PAGE_CLEAN, 371 } pageout_t; 372 373 /* 374 * pageout is called by shrink_page_list() for each dirty page. 375 * Calls ->writepage(). 376 */ 377 static pageout_t pageout(struct page *page, struct address_space *mapping, 378 struct scan_control *sc) 379 { 380 /* 381 * If the page is dirty, only perform writeback if that write 382 * will be non-blocking. To prevent this allocation from being 383 * stalled by pagecache activity. But note that there may be 384 * stalls if we need to run get_block(). We could test 385 * PagePrivate for that. 386 * 387 * If this process is currently in __generic_file_aio_write() against 388 * this page's queue, we can perform writeback even if that 389 * will block. 390 * 391 * If the page is swapcache, write it back even if that would 392 * block, for some throttling. This happens by accident, because 393 * swap_backing_dev_info is bust: it doesn't reflect the 394 * congestion state of the swapdevs. Easy to fix, if needed. 395 */ 396 if (!is_page_cache_freeable(page)) 397 return PAGE_KEEP; 398 if (!mapping) { 399 /* 400 * Some data journaling orphaned pages can have 401 * page->mapping == NULL while being dirty with clean buffers. 402 */ 403 if (page_has_private(page)) { 404 if (try_to_free_buffers(page)) { 405 ClearPageDirty(page); 406 printk("%s: orphaned page\n", __func__); 407 return PAGE_CLEAN; 408 } 409 } 410 return PAGE_KEEP; 411 } 412 if (mapping->a_ops->writepage == NULL) 413 return PAGE_ACTIVATE; 414 if (!may_write_to_queue(mapping->backing_dev_info, sc)) 415 return PAGE_KEEP; 416 417 if (clear_page_dirty_for_io(page)) { 418 int res; 419 struct writeback_control wbc = { 420 .sync_mode = WB_SYNC_NONE, 421 .nr_to_write = SWAP_CLUSTER_MAX, 422 .range_start = 0, 423 .range_end = LLONG_MAX, 424 .for_reclaim = 1, 425 }; 426 427 SetPageReclaim(page); 428 res = mapping->a_ops->writepage(page, &wbc); 429 if (res < 0) 430 handle_write_error(mapping, page, res); 431 if (res == AOP_WRITEPAGE_ACTIVATE) { 432 ClearPageReclaim(page); 433 return PAGE_ACTIVATE; 434 } 435 436 if (!PageWriteback(page)) { 437 /* synchronous write or broken a_ops? */ 438 ClearPageReclaim(page); 439 } 440 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page)); 441 inc_zone_page_state(page, NR_VMSCAN_WRITE); 442 return PAGE_SUCCESS; 443 } 444 445 return PAGE_CLEAN; 446 } 447 448 /* 449 * Same as remove_mapping, but if the page is removed from the mapping, it 450 * gets returned with a refcount of 0. 451 */ 452 static int __remove_mapping(struct address_space *mapping, struct page *page) 453 { 454 BUG_ON(!PageLocked(page)); 455 BUG_ON(mapping != page_mapping(page)); 456 457 spin_lock_irq(&mapping->tree_lock); 458 /* 459 * The non racy check for a busy page. 460 * 461 * Must be careful with the order of the tests. When someone has 462 * a ref to the page, it may be possible that they dirty it then 463 * drop the reference. So if PageDirty is tested before page_count 464 * here, then the following race may occur: 465 * 466 * get_user_pages(&page); 467 * [user mapping goes away] 468 * write_to(page); 469 * !PageDirty(page) [good] 470 * SetPageDirty(page); 471 * put_page(page); 472 * !page_count(page) [good, discard it] 473 * 474 * [oops, our write_to data is lost] 475 * 476 * Reversing the order of the tests ensures such a situation cannot 477 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 478 * load is not satisfied before that of page->_count. 479 * 480 * Note that if SetPageDirty is always performed via set_page_dirty, 481 * and thus under tree_lock, then this ordering is not required. 482 */ 483 if (!page_freeze_refs(page, 2)) 484 goto cannot_free; 485 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 486 if (unlikely(PageDirty(page))) { 487 page_unfreeze_refs(page, 2); 488 goto cannot_free; 489 } 490 491 if (PageSwapCache(page)) { 492 swp_entry_t swap = { .val = page_private(page) }; 493 __delete_from_swap_cache(page); 494 spin_unlock_irq(&mapping->tree_lock); 495 swapcache_free(swap, page); 496 } else { 497 void (*freepage)(struct page *); 498 499 freepage = mapping->a_ops->freepage; 500 501 __delete_from_page_cache(page); 502 spin_unlock_irq(&mapping->tree_lock); 503 mem_cgroup_uncharge_cache_page(page); 504 505 if (freepage != NULL) 506 freepage(page); 507 } 508 509 return 1; 510 511 cannot_free: 512 spin_unlock_irq(&mapping->tree_lock); 513 return 0; 514 } 515 516 /* 517 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 518 * someone else has a ref on the page, abort and return 0. If it was 519 * successfully detached, return 1. Assumes the caller has a single ref on 520 * this page. 521 */ 522 int remove_mapping(struct address_space *mapping, struct page *page) 523 { 524 if (__remove_mapping(mapping, page)) { 525 /* 526 * Unfreezing the refcount with 1 rather than 2 effectively 527 * drops the pagecache ref for us without requiring another 528 * atomic operation. 529 */ 530 page_unfreeze_refs(page, 1); 531 return 1; 532 } 533 return 0; 534 } 535 536 /** 537 * putback_lru_page - put previously isolated page onto appropriate LRU list 538 * @page: page to be put back to appropriate lru list 539 * 540 * Add previously isolated @page to appropriate LRU list. 541 * Page may still be unevictable for other reasons. 542 * 543 * lru_lock must not be held, interrupts must be enabled. 544 */ 545 void putback_lru_page(struct page *page) 546 { 547 int lru; 548 int active = !!TestClearPageActive(page); 549 int was_unevictable = PageUnevictable(page); 550 551 VM_BUG_ON(PageLRU(page)); 552 553 redo: 554 ClearPageUnevictable(page); 555 556 if (page_evictable(page)) { 557 /* 558 * For evictable pages, we can use the cache. 559 * In event of a race, worst case is we end up with an 560 * unevictable page on [in]active list. 561 * We know how to handle that. 562 */ 563 lru = active + page_lru_base_type(page); 564 lru_cache_add_lru(page, lru); 565 } else { 566 /* 567 * Put unevictable pages directly on zone's unevictable 568 * list. 569 */ 570 lru = LRU_UNEVICTABLE; 571 add_page_to_unevictable_list(page); 572 /* 573 * When racing with an mlock or AS_UNEVICTABLE clearing 574 * (page is unlocked) make sure that if the other thread 575 * does not observe our setting of PG_lru and fails 576 * isolation/check_move_unevictable_pages, 577 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 578 * the page back to the evictable list. 579 * 580 * The other side is TestClearPageMlocked() or shmem_lock(). 581 */ 582 smp_mb(); 583 } 584 585 /* 586 * page's status can change while we move it among lru. If an evictable 587 * page is on unevictable list, it never be freed. To avoid that, 588 * check after we added it to the list, again. 589 */ 590 if (lru == LRU_UNEVICTABLE && page_evictable(page)) { 591 if (!isolate_lru_page(page)) { 592 put_page(page); 593 goto redo; 594 } 595 /* This means someone else dropped this page from LRU 596 * So, it will be freed or putback to LRU again. There is 597 * nothing to do here. 598 */ 599 } 600 601 if (was_unevictable && lru != LRU_UNEVICTABLE) 602 count_vm_event(UNEVICTABLE_PGRESCUED); 603 else if (!was_unevictable && lru == LRU_UNEVICTABLE) 604 count_vm_event(UNEVICTABLE_PGCULLED); 605 606 put_page(page); /* drop ref from isolate */ 607 } 608 609 enum page_references { 610 PAGEREF_RECLAIM, 611 PAGEREF_RECLAIM_CLEAN, 612 PAGEREF_KEEP, 613 PAGEREF_ACTIVATE, 614 }; 615 616 static enum page_references page_check_references(struct page *page, 617 struct scan_control *sc) 618 { 619 int referenced_ptes, referenced_page; 620 unsigned long vm_flags; 621 622 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 623 &vm_flags); 624 referenced_page = TestClearPageReferenced(page); 625 626 /* 627 * Mlock lost the isolation race with us. Let try_to_unmap() 628 * move the page to the unevictable list. 629 */ 630 if (vm_flags & VM_LOCKED) 631 return PAGEREF_RECLAIM; 632 633 if (referenced_ptes) { 634 if (PageSwapBacked(page)) 635 return PAGEREF_ACTIVATE; 636 /* 637 * All mapped pages start out with page table 638 * references from the instantiating fault, so we need 639 * to look twice if a mapped file page is used more 640 * than once. 641 * 642 * Mark it and spare it for another trip around the 643 * inactive list. Another page table reference will 644 * lead to its activation. 645 * 646 * Note: the mark is set for activated pages as well 647 * so that recently deactivated but used pages are 648 * quickly recovered. 649 */ 650 SetPageReferenced(page); 651 652 if (referenced_page || referenced_ptes > 1) 653 return PAGEREF_ACTIVATE; 654 655 /* 656 * Activate file-backed executable pages after first usage. 657 */ 658 if (vm_flags & VM_EXEC) 659 return PAGEREF_ACTIVATE; 660 661 return PAGEREF_KEEP; 662 } 663 664 /* Reclaim if clean, defer dirty pages to writeback */ 665 if (referenced_page && !PageSwapBacked(page)) 666 return PAGEREF_RECLAIM_CLEAN; 667 668 return PAGEREF_RECLAIM; 669 } 670 671 /* 672 * shrink_page_list() returns the number of reclaimed pages 673 */ 674 static unsigned long shrink_page_list(struct list_head *page_list, 675 struct zone *zone, 676 struct scan_control *sc, 677 enum ttu_flags ttu_flags, 678 unsigned long *ret_nr_dirty, 679 unsigned long *ret_nr_writeback, 680 bool force_reclaim) 681 { 682 LIST_HEAD(ret_pages); 683 LIST_HEAD(free_pages); 684 int pgactivate = 0; 685 unsigned long nr_dirty = 0; 686 unsigned long nr_congested = 0; 687 unsigned long nr_reclaimed = 0; 688 unsigned long nr_writeback = 0; 689 690 cond_resched(); 691 692 mem_cgroup_uncharge_start(); 693 while (!list_empty(page_list)) { 694 struct address_space *mapping; 695 struct page *page; 696 int may_enter_fs; 697 enum page_references references = PAGEREF_RECLAIM_CLEAN; 698 699 cond_resched(); 700 701 page = lru_to_page(page_list); 702 list_del(&page->lru); 703 704 if (!trylock_page(page)) 705 goto keep; 706 707 VM_BUG_ON(PageActive(page)); 708 VM_BUG_ON(page_zone(page) != zone); 709 710 sc->nr_scanned++; 711 712 if (unlikely(!page_evictable(page))) 713 goto cull_mlocked; 714 715 if (!sc->may_unmap && page_mapped(page)) 716 goto keep_locked; 717 718 /* Double the slab pressure for mapped and swapcache pages */ 719 if (page_mapped(page) || PageSwapCache(page)) 720 sc->nr_scanned++; 721 722 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 723 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 724 725 if (PageWriteback(page)) { 726 /* 727 * memcg doesn't have any dirty pages throttling so we 728 * could easily OOM just because too many pages are in 729 * writeback and there is nothing else to reclaim. 730 * 731 * Check __GFP_IO, certainly because a loop driver 732 * thread might enter reclaim, and deadlock if it waits 733 * on a page for which it is needed to do the write 734 * (loop masks off __GFP_IO|__GFP_FS for this reason); 735 * but more thought would probably show more reasons. 736 * 737 * Don't require __GFP_FS, since we're not going into 738 * the FS, just waiting on its writeback completion. 739 * Worryingly, ext4 gfs2 and xfs allocate pages with 740 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so 741 * testing may_enter_fs here is liable to OOM on them. 742 */ 743 if (global_reclaim(sc) || 744 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) { 745 /* 746 * This is slightly racy - end_page_writeback() 747 * might have just cleared PageReclaim, then 748 * setting PageReclaim here end up interpreted 749 * as PageReadahead - but that does not matter 750 * enough to care. What we do want is for this 751 * page to have PageReclaim set next time memcg 752 * reclaim reaches the tests above, so it will 753 * then wait_on_page_writeback() to avoid OOM; 754 * and it's also appropriate in global reclaim. 755 */ 756 SetPageReclaim(page); 757 nr_writeback++; 758 goto keep_locked; 759 } 760 wait_on_page_writeback(page); 761 } 762 763 if (!force_reclaim) 764 references = page_check_references(page, sc); 765 766 switch (references) { 767 case PAGEREF_ACTIVATE: 768 goto activate_locked; 769 case PAGEREF_KEEP: 770 goto keep_locked; 771 case PAGEREF_RECLAIM: 772 case PAGEREF_RECLAIM_CLEAN: 773 ; /* try to reclaim the page below */ 774 } 775 776 /* 777 * Anonymous process memory has backing store? 778 * Try to allocate it some swap space here. 779 */ 780 if (PageAnon(page) && !PageSwapCache(page)) { 781 if (!(sc->gfp_mask & __GFP_IO)) 782 goto keep_locked; 783 if (!add_to_swap(page)) 784 goto activate_locked; 785 may_enter_fs = 1; 786 } 787 788 mapping = page_mapping(page); 789 790 /* 791 * The page is mapped into the page tables of one or more 792 * processes. Try to unmap it here. 793 */ 794 if (page_mapped(page) && mapping) { 795 switch (try_to_unmap(page, ttu_flags)) { 796 case SWAP_FAIL: 797 goto activate_locked; 798 case SWAP_AGAIN: 799 goto keep_locked; 800 case SWAP_MLOCK: 801 goto cull_mlocked; 802 case SWAP_SUCCESS: 803 ; /* try to free the page below */ 804 } 805 } 806 807 if (PageDirty(page)) { 808 nr_dirty++; 809 810 /* 811 * Only kswapd can writeback filesystem pages to 812 * avoid risk of stack overflow but do not writeback 813 * unless under significant pressure. 814 */ 815 if (page_is_file_cache(page) && 816 (!current_is_kswapd() || 817 sc->priority >= DEF_PRIORITY - 2)) { 818 /* 819 * Immediately reclaim when written back. 820 * Similar in principal to deactivate_page() 821 * except we already have the page isolated 822 * and know it's dirty 823 */ 824 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); 825 SetPageReclaim(page); 826 827 goto keep_locked; 828 } 829 830 if (references == PAGEREF_RECLAIM_CLEAN) 831 goto keep_locked; 832 if (!may_enter_fs) 833 goto keep_locked; 834 if (!sc->may_writepage) 835 goto keep_locked; 836 837 /* Page is dirty, try to write it out here */ 838 switch (pageout(page, mapping, sc)) { 839 case PAGE_KEEP: 840 nr_congested++; 841 goto keep_locked; 842 case PAGE_ACTIVATE: 843 goto activate_locked; 844 case PAGE_SUCCESS: 845 if (PageWriteback(page)) 846 goto keep; 847 if (PageDirty(page)) 848 goto keep; 849 850 /* 851 * A synchronous write - probably a ramdisk. Go 852 * ahead and try to reclaim the page. 853 */ 854 if (!trylock_page(page)) 855 goto keep; 856 if (PageDirty(page) || PageWriteback(page)) 857 goto keep_locked; 858 mapping = page_mapping(page); 859 case PAGE_CLEAN: 860 ; /* try to free the page below */ 861 } 862 } 863 864 /* 865 * If the page has buffers, try to free the buffer mappings 866 * associated with this page. If we succeed we try to free 867 * the page as well. 868 * 869 * We do this even if the page is PageDirty(). 870 * try_to_release_page() does not perform I/O, but it is 871 * possible for a page to have PageDirty set, but it is actually 872 * clean (all its buffers are clean). This happens if the 873 * buffers were written out directly, with submit_bh(). ext3 874 * will do this, as well as the blockdev mapping. 875 * try_to_release_page() will discover that cleanness and will 876 * drop the buffers and mark the page clean - it can be freed. 877 * 878 * Rarely, pages can have buffers and no ->mapping. These are 879 * the pages which were not successfully invalidated in 880 * truncate_complete_page(). We try to drop those buffers here 881 * and if that worked, and the page is no longer mapped into 882 * process address space (page_count == 1) it can be freed. 883 * Otherwise, leave the page on the LRU so it is swappable. 884 */ 885 if (page_has_private(page)) { 886 if (!try_to_release_page(page, sc->gfp_mask)) 887 goto activate_locked; 888 if (!mapping && page_count(page) == 1) { 889 unlock_page(page); 890 if (put_page_testzero(page)) 891 goto free_it; 892 else { 893 /* 894 * rare race with speculative reference. 895 * the speculative reference will free 896 * this page shortly, so we may 897 * increment nr_reclaimed here (and 898 * leave it off the LRU). 899 */ 900 nr_reclaimed++; 901 continue; 902 } 903 } 904 } 905 906 if (!mapping || !__remove_mapping(mapping, page)) 907 goto keep_locked; 908 909 /* 910 * At this point, we have no other references and there is 911 * no way to pick any more up (removed from LRU, removed 912 * from pagecache). Can use non-atomic bitops now (and 913 * we obviously don't have to worry about waking up a process 914 * waiting on the page lock, because there are no references. 915 */ 916 __clear_page_locked(page); 917 free_it: 918 nr_reclaimed++; 919 920 /* 921 * Is there need to periodically free_page_list? It would 922 * appear not as the counts should be low 923 */ 924 list_add(&page->lru, &free_pages); 925 continue; 926 927 cull_mlocked: 928 if (PageSwapCache(page)) 929 try_to_free_swap(page); 930 unlock_page(page); 931 putback_lru_page(page); 932 continue; 933 934 activate_locked: 935 /* Not a candidate for swapping, so reclaim swap space. */ 936 if (PageSwapCache(page) && vm_swap_full()) 937 try_to_free_swap(page); 938 VM_BUG_ON(PageActive(page)); 939 SetPageActive(page); 940 pgactivate++; 941 keep_locked: 942 unlock_page(page); 943 keep: 944 list_add(&page->lru, &ret_pages); 945 VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); 946 } 947 948 /* 949 * Tag a zone as congested if all the dirty pages encountered were 950 * backed by a congested BDI. In this case, reclaimers should just 951 * back off and wait for congestion to clear because further reclaim 952 * will encounter the same problem 953 */ 954 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc)) 955 zone_set_flag(zone, ZONE_CONGESTED); 956 957 free_hot_cold_page_list(&free_pages, 1); 958 959 list_splice(&ret_pages, page_list); 960 count_vm_events(PGACTIVATE, pgactivate); 961 mem_cgroup_uncharge_end(); 962 *ret_nr_dirty += nr_dirty; 963 *ret_nr_writeback += nr_writeback; 964 return nr_reclaimed; 965 } 966 967 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 968 struct list_head *page_list) 969 { 970 struct scan_control sc = { 971 .gfp_mask = GFP_KERNEL, 972 .priority = DEF_PRIORITY, 973 .may_unmap = 1, 974 }; 975 unsigned long ret, dummy1, dummy2; 976 struct page *page, *next; 977 LIST_HEAD(clean_pages); 978 979 list_for_each_entry_safe(page, next, page_list, lru) { 980 if (page_is_file_cache(page) && !PageDirty(page)) { 981 ClearPageActive(page); 982 list_move(&page->lru, &clean_pages); 983 } 984 } 985 986 ret = shrink_page_list(&clean_pages, zone, &sc, 987 TTU_UNMAP|TTU_IGNORE_ACCESS, 988 &dummy1, &dummy2, true); 989 list_splice(&clean_pages, page_list); 990 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); 991 return ret; 992 } 993 994 /* 995 * Attempt to remove the specified page from its LRU. Only take this page 996 * if it is of the appropriate PageActive status. Pages which are being 997 * freed elsewhere are also ignored. 998 * 999 * page: page to consider 1000 * mode: one of the LRU isolation modes defined above 1001 * 1002 * returns 0 on success, -ve errno on failure. 1003 */ 1004 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1005 { 1006 int ret = -EINVAL; 1007 1008 /* Only take pages on the LRU. */ 1009 if (!PageLRU(page)) 1010 return ret; 1011 1012 /* Compaction should not handle unevictable pages but CMA can do so */ 1013 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1014 return ret; 1015 1016 ret = -EBUSY; 1017 1018 /* 1019 * To minimise LRU disruption, the caller can indicate that it only 1020 * wants to isolate pages it will be able to operate on without 1021 * blocking - clean pages for the most part. 1022 * 1023 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1024 * is used by reclaim when it is cannot write to backing storage 1025 * 1026 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1027 * that it is possible to migrate without blocking 1028 */ 1029 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1030 /* All the caller can do on PageWriteback is block */ 1031 if (PageWriteback(page)) 1032 return ret; 1033 1034 if (PageDirty(page)) { 1035 struct address_space *mapping; 1036 1037 /* ISOLATE_CLEAN means only clean pages */ 1038 if (mode & ISOLATE_CLEAN) 1039 return ret; 1040 1041 /* 1042 * Only pages without mappings or that have a 1043 * ->migratepage callback are possible to migrate 1044 * without blocking 1045 */ 1046 mapping = page_mapping(page); 1047 if (mapping && !mapping->a_ops->migratepage) 1048 return ret; 1049 } 1050 } 1051 1052 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1053 return ret; 1054 1055 if (likely(get_page_unless_zero(page))) { 1056 /* 1057 * Be careful not to clear PageLRU until after we're 1058 * sure the page is not being freed elsewhere -- the 1059 * page release code relies on it. 1060 */ 1061 ClearPageLRU(page); 1062 ret = 0; 1063 } 1064 1065 return ret; 1066 } 1067 1068 /* 1069 * zone->lru_lock is heavily contended. Some of the functions that 1070 * shrink the lists perform better by taking out a batch of pages 1071 * and working on them outside the LRU lock. 1072 * 1073 * For pagecache intensive workloads, this function is the hottest 1074 * spot in the kernel (apart from copy_*_user functions). 1075 * 1076 * Appropriate locks must be held before calling this function. 1077 * 1078 * @nr_to_scan: The number of pages to look through on the list. 1079 * @lruvec: The LRU vector to pull pages from. 1080 * @dst: The temp list to put pages on to. 1081 * @nr_scanned: The number of pages that were scanned. 1082 * @sc: The scan_control struct for this reclaim session 1083 * @mode: One of the LRU isolation modes 1084 * @lru: LRU list id for isolating 1085 * 1086 * returns how many pages were moved onto *@dst. 1087 */ 1088 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1089 struct lruvec *lruvec, struct list_head *dst, 1090 unsigned long *nr_scanned, struct scan_control *sc, 1091 isolate_mode_t mode, enum lru_list lru) 1092 { 1093 struct list_head *src = &lruvec->lists[lru]; 1094 unsigned long nr_taken = 0; 1095 unsigned long scan; 1096 1097 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 1098 struct page *page; 1099 int nr_pages; 1100 1101 page = lru_to_page(src); 1102 prefetchw_prev_lru_page(page, src, flags); 1103 1104 VM_BUG_ON(!PageLRU(page)); 1105 1106 switch (__isolate_lru_page(page, mode)) { 1107 case 0: 1108 nr_pages = hpage_nr_pages(page); 1109 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages); 1110 list_move(&page->lru, dst); 1111 nr_taken += nr_pages; 1112 break; 1113 1114 case -EBUSY: 1115 /* else it is being freed elsewhere */ 1116 list_move(&page->lru, src); 1117 continue; 1118 1119 default: 1120 BUG(); 1121 } 1122 } 1123 1124 *nr_scanned = scan; 1125 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, 1126 nr_taken, mode, is_file_lru(lru)); 1127 return nr_taken; 1128 } 1129 1130 /** 1131 * isolate_lru_page - tries to isolate a page from its LRU list 1132 * @page: page to isolate from its LRU list 1133 * 1134 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1135 * vmstat statistic corresponding to whatever LRU list the page was on. 1136 * 1137 * Returns 0 if the page was removed from an LRU list. 1138 * Returns -EBUSY if the page was not on an LRU list. 1139 * 1140 * The returned page will have PageLRU() cleared. If it was found on 1141 * the active list, it will have PageActive set. If it was found on 1142 * the unevictable list, it will have the PageUnevictable bit set. That flag 1143 * may need to be cleared by the caller before letting the page go. 1144 * 1145 * The vmstat statistic corresponding to the list on which the page was 1146 * found will be decremented. 1147 * 1148 * Restrictions: 1149 * (1) Must be called with an elevated refcount on the page. This is a 1150 * fundamentnal difference from isolate_lru_pages (which is called 1151 * without a stable reference). 1152 * (2) the lru_lock must not be held. 1153 * (3) interrupts must be enabled. 1154 */ 1155 int isolate_lru_page(struct page *page) 1156 { 1157 int ret = -EBUSY; 1158 1159 VM_BUG_ON(!page_count(page)); 1160 1161 if (PageLRU(page)) { 1162 struct zone *zone = page_zone(page); 1163 struct lruvec *lruvec; 1164 1165 spin_lock_irq(&zone->lru_lock); 1166 lruvec = mem_cgroup_page_lruvec(page, zone); 1167 if (PageLRU(page)) { 1168 int lru = page_lru(page); 1169 get_page(page); 1170 ClearPageLRU(page); 1171 del_page_from_lru_list(page, lruvec, lru); 1172 ret = 0; 1173 } 1174 spin_unlock_irq(&zone->lru_lock); 1175 } 1176 return ret; 1177 } 1178 1179 /* 1180 * Are there way too many processes in the direct reclaim path already? 1181 */ 1182 static int too_many_isolated(struct zone *zone, int file, 1183 struct scan_control *sc) 1184 { 1185 unsigned long inactive, isolated; 1186 1187 if (current_is_kswapd()) 1188 return 0; 1189 1190 if (!global_reclaim(sc)) 1191 return 0; 1192 1193 if (file) { 1194 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1195 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1196 } else { 1197 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1198 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1199 } 1200 1201 return isolated > inactive; 1202 } 1203 1204 static noinline_for_stack void 1205 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1206 { 1207 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1208 struct zone *zone = lruvec_zone(lruvec); 1209 LIST_HEAD(pages_to_free); 1210 1211 /* 1212 * Put back any unfreeable pages. 1213 */ 1214 while (!list_empty(page_list)) { 1215 struct page *page = lru_to_page(page_list); 1216 int lru; 1217 1218 VM_BUG_ON(PageLRU(page)); 1219 list_del(&page->lru); 1220 if (unlikely(!page_evictable(page))) { 1221 spin_unlock_irq(&zone->lru_lock); 1222 putback_lru_page(page); 1223 spin_lock_irq(&zone->lru_lock); 1224 continue; 1225 } 1226 1227 lruvec = mem_cgroup_page_lruvec(page, zone); 1228 1229 SetPageLRU(page); 1230 lru = page_lru(page); 1231 add_page_to_lru_list(page, lruvec, lru); 1232 1233 if (is_active_lru(lru)) { 1234 int file = is_file_lru(lru); 1235 int numpages = hpage_nr_pages(page); 1236 reclaim_stat->recent_rotated[file] += numpages; 1237 } 1238 if (put_page_testzero(page)) { 1239 __ClearPageLRU(page); 1240 __ClearPageActive(page); 1241 del_page_from_lru_list(page, lruvec, lru); 1242 1243 if (unlikely(PageCompound(page))) { 1244 spin_unlock_irq(&zone->lru_lock); 1245 (*get_compound_page_dtor(page))(page); 1246 spin_lock_irq(&zone->lru_lock); 1247 } else 1248 list_add(&page->lru, &pages_to_free); 1249 } 1250 } 1251 1252 /* 1253 * To save our caller's stack, now use input list for pages to free. 1254 */ 1255 list_splice(&pages_to_free, page_list); 1256 } 1257 1258 /* 1259 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1260 * of reclaimed pages 1261 */ 1262 static noinline_for_stack unsigned long 1263 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1264 struct scan_control *sc, enum lru_list lru) 1265 { 1266 LIST_HEAD(page_list); 1267 unsigned long nr_scanned; 1268 unsigned long nr_reclaimed = 0; 1269 unsigned long nr_taken; 1270 unsigned long nr_dirty = 0; 1271 unsigned long nr_writeback = 0; 1272 isolate_mode_t isolate_mode = 0; 1273 int file = is_file_lru(lru); 1274 struct zone *zone = lruvec_zone(lruvec); 1275 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1276 1277 while (unlikely(too_many_isolated(zone, file, sc))) { 1278 congestion_wait(BLK_RW_ASYNC, HZ/10); 1279 1280 /* We are about to die and free our memory. Return now. */ 1281 if (fatal_signal_pending(current)) 1282 return SWAP_CLUSTER_MAX; 1283 } 1284 1285 lru_add_drain(); 1286 1287 if (!sc->may_unmap) 1288 isolate_mode |= ISOLATE_UNMAPPED; 1289 if (!sc->may_writepage) 1290 isolate_mode |= ISOLATE_CLEAN; 1291 1292 spin_lock_irq(&zone->lru_lock); 1293 1294 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1295 &nr_scanned, sc, isolate_mode, lru); 1296 1297 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1298 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1299 1300 if (global_reclaim(sc)) { 1301 zone->pages_scanned += nr_scanned; 1302 if (current_is_kswapd()) 1303 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); 1304 else 1305 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); 1306 } 1307 spin_unlock_irq(&zone->lru_lock); 1308 1309 if (nr_taken == 0) 1310 return 0; 1311 1312 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, 1313 &nr_dirty, &nr_writeback, false); 1314 1315 spin_lock_irq(&zone->lru_lock); 1316 1317 reclaim_stat->recent_scanned[file] += nr_taken; 1318 1319 if (global_reclaim(sc)) { 1320 if (current_is_kswapd()) 1321 __count_zone_vm_events(PGSTEAL_KSWAPD, zone, 1322 nr_reclaimed); 1323 else 1324 __count_zone_vm_events(PGSTEAL_DIRECT, zone, 1325 nr_reclaimed); 1326 } 1327 1328 putback_inactive_pages(lruvec, &page_list); 1329 1330 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1331 1332 spin_unlock_irq(&zone->lru_lock); 1333 1334 free_hot_cold_page_list(&page_list, 1); 1335 1336 /* 1337 * If reclaim is isolating dirty pages under writeback, it implies 1338 * that the long-lived page allocation rate is exceeding the page 1339 * laundering rate. Either the global limits are not being effective 1340 * at throttling processes due to the page distribution throughout 1341 * zones or there is heavy usage of a slow backing device. The 1342 * only option is to throttle from reclaim context which is not ideal 1343 * as there is no guarantee the dirtying process is throttled in the 1344 * same way balance_dirty_pages() manages. 1345 * 1346 * This scales the number of dirty pages that must be under writeback 1347 * before throttling depending on priority. It is a simple backoff 1348 * function that has the most effect in the range DEF_PRIORITY to 1349 * DEF_PRIORITY-2 which is the priority reclaim is considered to be 1350 * in trouble and reclaim is considered to be in trouble. 1351 * 1352 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle 1353 * DEF_PRIORITY-1 50% must be PageWriteback 1354 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble 1355 * ... 1356 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any 1357 * isolated page is PageWriteback 1358 */ 1359 if (nr_writeback && nr_writeback >= 1360 (nr_taken >> (DEF_PRIORITY - sc->priority))) 1361 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); 1362 1363 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, 1364 zone_idx(zone), 1365 nr_scanned, nr_reclaimed, 1366 sc->priority, 1367 trace_shrink_flags(file)); 1368 return nr_reclaimed; 1369 } 1370 1371 /* 1372 * This moves pages from the active list to the inactive list. 1373 * 1374 * We move them the other way if the page is referenced by one or more 1375 * processes, from rmap. 1376 * 1377 * If the pages are mostly unmapped, the processing is fast and it is 1378 * appropriate to hold zone->lru_lock across the whole operation. But if 1379 * the pages are mapped, the processing is slow (page_referenced()) so we 1380 * should drop zone->lru_lock around each page. It's impossible to balance 1381 * this, so instead we remove the pages from the LRU while processing them. 1382 * It is safe to rely on PG_active against the non-LRU pages in here because 1383 * nobody will play with that bit on a non-LRU page. 1384 * 1385 * The downside is that we have to touch page->_count against each page. 1386 * But we had to alter page->flags anyway. 1387 */ 1388 1389 static void move_active_pages_to_lru(struct lruvec *lruvec, 1390 struct list_head *list, 1391 struct list_head *pages_to_free, 1392 enum lru_list lru) 1393 { 1394 struct zone *zone = lruvec_zone(lruvec); 1395 unsigned long pgmoved = 0; 1396 struct page *page; 1397 int nr_pages; 1398 1399 while (!list_empty(list)) { 1400 page = lru_to_page(list); 1401 lruvec = mem_cgroup_page_lruvec(page, zone); 1402 1403 VM_BUG_ON(PageLRU(page)); 1404 SetPageLRU(page); 1405 1406 nr_pages = hpage_nr_pages(page); 1407 mem_cgroup_update_lru_size(lruvec, lru, nr_pages); 1408 list_move(&page->lru, &lruvec->lists[lru]); 1409 pgmoved += nr_pages; 1410 1411 if (put_page_testzero(page)) { 1412 __ClearPageLRU(page); 1413 __ClearPageActive(page); 1414 del_page_from_lru_list(page, lruvec, lru); 1415 1416 if (unlikely(PageCompound(page))) { 1417 spin_unlock_irq(&zone->lru_lock); 1418 (*get_compound_page_dtor(page))(page); 1419 spin_lock_irq(&zone->lru_lock); 1420 } else 1421 list_add(&page->lru, pages_to_free); 1422 } 1423 } 1424 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1425 if (!is_active_lru(lru)) 1426 __count_vm_events(PGDEACTIVATE, pgmoved); 1427 } 1428 1429 static void shrink_active_list(unsigned long nr_to_scan, 1430 struct lruvec *lruvec, 1431 struct scan_control *sc, 1432 enum lru_list lru) 1433 { 1434 unsigned long nr_taken; 1435 unsigned long nr_scanned; 1436 unsigned long vm_flags; 1437 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1438 LIST_HEAD(l_active); 1439 LIST_HEAD(l_inactive); 1440 struct page *page; 1441 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1442 unsigned long nr_rotated = 0; 1443 isolate_mode_t isolate_mode = 0; 1444 int file = is_file_lru(lru); 1445 struct zone *zone = lruvec_zone(lruvec); 1446 1447 lru_add_drain(); 1448 1449 if (!sc->may_unmap) 1450 isolate_mode |= ISOLATE_UNMAPPED; 1451 if (!sc->may_writepage) 1452 isolate_mode |= ISOLATE_CLEAN; 1453 1454 spin_lock_irq(&zone->lru_lock); 1455 1456 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1457 &nr_scanned, sc, isolate_mode, lru); 1458 if (global_reclaim(sc)) 1459 zone->pages_scanned += nr_scanned; 1460 1461 reclaim_stat->recent_scanned[file] += nr_taken; 1462 1463 __count_zone_vm_events(PGREFILL, zone, nr_scanned); 1464 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1465 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1466 spin_unlock_irq(&zone->lru_lock); 1467 1468 while (!list_empty(&l_hold)) { 1469 cond_resched(); 1470 page = lru_to_page(&l_hold); 1471 list_del(&page->lru); 1472 1473 if (unlikely(!page_evictable(page))) { 1474 putback_lru_page(page); 1475 continue; 1476 } 1477 1478 if (unlikely(buffer_heads_over_limit)) { 1479 if (page_has_private(page) && trylock_page(page)) { 1480 if (page_has_private(page)) 1481 try_to_release_page(page, 0); 1482 unlock_page(page); 1483 } 1484 } 1485 1486 if (page_referenced(page, 0, sc->target_mem_cgroup, 1487 &vm_flags)) { 1488 nr_rotated += hpage_nr_pages(page); 1489 /* 1490 * Identify referenced, file-backed active pages and 1491 * give them one more trip around the active list. So 1492 * that executable code get better chances to stay in 1493 * memory under moderate memory pressure. Anon pages 1494 * are not likely to be evicted by use-once streaming 1495 * IO, plus JVM can create lots of anon VM_EXEC pages, 1496 * so we ignore them here. 1497 */ 1498 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1499 list_add(&page->lru, &l_active); 1500 continue; 1501 } 1502 } 1503 1504 ClearPageActive(page); /* we are de-activating */ 1505 list_add(&page->lru, &l_inactive); 1506 } 1507 1508 /* 1509 * Move pages back to the lru list. 1510 */ 1511 spin_lock_irq(&zone->lru_lock); 1512 /* 1513 * Count referenced pages from currently used mappings as rotated, 1514 * even though only some of them are actually re-activated. This 1515 * helps balance scan pressure between file and anonymous pages in 1516 * get_scan_ratio. 1517 */ 1518 reclaim_stat->recent_rotated[file] += nr_rotated; 1519 1520 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1521 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1522 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1523 spin_unlock_irq(&zone->lru_lock); 1524 1525 free_hot_cold_page_list(&l_hold, 1); 1526 } 1527 1528 #ifdef CONFIG_SWAP 1529 static int inactive_anon_is_low_global(struct zone *zone) 1530 { 1531 unsigned long active, inactive; 1532 1533 active = zone_page_state(zone, NR_ACTIVE_ANON); 1534 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1535 1536 if (inactive * zone->inactive_ratio < active) 1537 return 1; 1538 1539 return 0; 1540 } 1541 1542 /** 1543 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1544 * @lruvec: LRU vector to check 1545 * 1546 * Returns true if the zone does not have enough inactive anon pages, 1547 * meaning some active anon pages need to be deactivated. 1548 */ 1549 static int inactive_anon_is_low(struct lruvec *lruvec) 1550 { 1551 /* 1552 * If we don't have swap space, anonymous page deactivation 1553 * is pointless. 1554 */ 1555 if (!total_swap_pages) 1556 return 0; 1557 1558 if (!mem_cgroup_disabled()) 1559 return mem_cgroup_inactive_anon_is_low(lruvec); 1560 1561 return inactive_anon_is_low_global(lruvec_zone(lruvec)); 1562 } 1563 #else 1564 static inline int inactive_anon_is_low(struct lruvec *lruvec) 1565 { 1566 return 0; 1567 } 1568 #endif 1569 1570 static int inactive_file_is_low_global(struct zone *zone) 1571 { 1572 unsigned long active, inactive; 1573 1574 active = zone_page_state(zone, NR_ACTIVE_FILE); 1575 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1576 1577 return (active > inactive); 1578 } 1579 1580 /** 1581 * inactive_file_is_low - check if file pages need to be deactivated 1582 * @lruvec: LRU vector to check 1583 * 1584 * When the system is doing streaming IO, memory pressure here 1585 * ensures that active file pages get deactivated, until more 1586 * than half of the file pages are on the inactive list. 1587 * 1588 * Once we get to that situation, protect the system's working 1589 * set from being evicted by disabling active file page aging. 1590 * 1591 * This uses a different ratio than the anonymous pages, because 1592 * the page cache uses a use-once replacement algorithm. 1593 */ 1594 static int inactive_file_is_low(struct lruvec *lruvec) 1595 { 1596 if (!mem_cgroup_disabled()) 1597 return mem_cgroup_inactive_file_is_low(lruvec); 1598 1599 return inactive_file_is_low_global(lruvec_zone(lruvec)); 1600 } 1601 1602 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) 1603 { 1604 if (is_file_lru(lru)) 1605 return inactive_file_is_low(lruvec); 1606 else 1607 return inactive_anon_is_low(lruvec); 1608 } 1609 1610 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1611 struct lruvec *lruvec, struct scan_control *sc) 1612 { 1613 if (is_active_lru(lru)) { 1614 if (inactive_list_is_low(lruvec, lru)) 1615 shrink_active_list(nr_to_scan, lruvec, sc, lru); 1616 return 0; 1617 } 1618 1619 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 1620 } 1621 1622 static int vmscan_swappiness(struct scan_control *sc) 1623 { 1624 if (global_reclaim(sc)) 1625 return vm_swappiness; 1626 return mem_cgroup_swappiness(sc->target_mem_cgroup); 1627 } 1628 1629 /* 1630 * Determine how aggressively the anon and file LRU lists should be 1631 * scanned. The relative value of each set of LRU lists is determined 1632 * by looking at the fraction of the pages scanned we did rotate back 1633 * onto the active list instead of evict. 1634 * 1635 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 1636 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 1637 */ 1638 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 1639 unsigned long *nr) 1640 { 1641 unsigned long anon, file, free; 1642 unsigned long anon_prio, file_prio; 1643 unsigned long ap, fp; 1644 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1645 u64 fraction[2], denominator; 1646 enum lru_list lru; 1647 int noswap = 0; 1648 bool force_scan = false; 1649 struct zone *zone = lruvec_zone(lruvec); 1650 1651 /* 1652 * If the zone or memcg is small, nr[l] can be 0. This 1653 * results in no scanning on this priority and a potential 1654 * priority drop. Global direct reclaim can go to the next 1655 * zone and tends to have no problems. Global kswapd is for 1656 * zone balancing and it needs to scan a minimum amount. When 1657 * reclaiming for a memcg, a priority drop can cause high 1658 * latencies, so it's better to scan a minimum amount there as 1659 * well. 1660 */ 1661 if (current_is_kswapd() && zone->all_unreclaimable) 1662 force_scan = true; 1663 if (!global_reclaim(sc)) 1664 force_scan = true; 1665 1666 /* If we have no swap space, do not bother scanning anon pages. */ 1667 if (!sc->may_swap || (nr_swap_pages <= 0)) { 1668 noswap = 1; 1669 fraction[0] = 0; 1670 fraction[1] = 1; 1671 denominator = 1; 1672 goto out; 1673 } 1674 1675 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) + 1676 get_lru_size(lruvec, LRU_INACTIVE_ANON); 1677 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) + 1678 get_lru_size(lruvec, LRU_INACTIVE_FILE); 1679 1680 if (global_reclaim(sc)) { 1681 free = zone_page_state(zone, NR_FREE_PAGES); 1682 if (unlikely(file + free <= high_wmark_pages(zone))) { 1683 /* 1684 * If we have very few page cache pages, force-scan 1685 * anon pages. 1686 */ 1687 fraction[0] = 1; 1688 fraction[1] = 0; 1689 denominator = 1; 1690 goto out; 1691 } else if (!inactive_file_is_low_global(zone)) { 1692 /* 1693 * There is enough inactive page cache, do not 1694 * reclaim anything from the working set right now. 1695 */ 1696 fraction[0] = 0; 1697 fraction[1] = 1; 1698 denominator = 1; 1699 goto out; 1700 } 1701 } 1702 1703 /* 1704 * With swappiness at 100, anonymous and file have the same priority. 1705 * This scanning priority is essentially the inverse of IO cost. 1706 */ 1707 anon_prio = vmscan_swappiness(sc); 1708 file_prio = 200 - anon_prio; 1709 1710 /* 1711 * OK, so we have swap space and a fair amount of page cache 1712 * pages. We use the recently rotated / recently scanned 1713 * ratios to determine how valuable each cache is. 1714 * 1715 * Because workloads change over time (and to avoid overflow) 1716 * we keep these statistics as a floating average, which ends 1717 * up weighing recent references more than old ones. 1718 * 1719 * anon in [0], file in [1] 1720 */ 1721 spin_lock_irq(&zone->lru_lock); 1722 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 1723 reclaim_stat->recent_scanned[0] /= 2; 1724 reclaim_stat->recent_rotated[0] /= 2; 1725 } 1726 1727 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 1728 reclaim_stat->recent_scanned[1] /= 2; 1729 reclaim_stat->recent_rotated[1] /= 2; 1730 } 1731 1732 /* 1733 * The amount of pressure on anon vs file pages is inversely 1734 * proportional to the fraction of recently scanned pages on 1735 * each list that were recently referenced and in active use. 1736 */ 1737 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 1738 ap /= reclaim_stat->recent_rotated[0] + 1; 1739 1740 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 1741 fp /= reclaim_stat->recent_rotated[1] + 1; 1742 spin_unlock_irq(&zone->lru_lock); 1743 1744 fraction[0] = ap; 1745 fraction[1] = fp; 1746 denominator = ap + fp + 1; 1747 out: 1748 for_each_evictable_lru(lru) { 1749 int file = is_file_lru(lru); 1750 unsigned long scan; 1751 1752 scan = get_lru_size(lruvec, lru); 1753 if (sc->priority || noswap || !vmscan_swappiness(sc)) { 1754 scan >>= sc->priority; 1755 if (!scan && force_scan) 1756 scan = SWAP_CLUSTER_MAX; 1757 scan = div64_u64(scan * fraction[file], denominator); 1758 } 1759 nr[lru] = scan; 1760 } 1761 } 1762 1763 /* Use reclaim/compaction for costly allocs or under memory pressure */ 1764 static bool in_reclaim_compaction(struct scan_control *sc) 1765 { 1766 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 1767 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 1768 sc->priority < DEF_PRIORITY - 2)) 1769 return true; 1770 1771 return false; 1772 } 1773 1774 /* 1775 * Reclaim/compaction is used for high-order allocation requests. It reclaims 1776 * order-0 pages before compacting the zone. should_continue_reclaim() returns 1777 * true if more pages should be reclaimed such that when the page allocator 1778 * calls try_to_compact_zone() that it will have enough free pages to succeed. 1779 * It will give up earlier than that if there is difficulty reclaiming pages. 1780 */ 1781 static inline bool should_continue_reclaim(struct lruvec *lruvec, 1782 unsigned long nr_reclaimed, 1783 unsigned long nr_scanned, 1784 struct scan_control *sc) 1785 { 1786 unsigned long pages_for_compaction; 1787 unsigned long inactive_lru_pages; 1788 1789 /* If not in reclaim/compaction mode, stop */ 1790 if (!in_reclaim_compaction(sc)) 1791 return false; 1792 1793 /* Consider stopping depending on scan and reclaim activity */ 1794 if (sc->gfp_mask & __GFP_REPEAT) { 1795 /* 1796 * For __GFP_REPEAT allocations, stop reclaiming if the 1797 * full LRU list has been scanned and we are still failing 1798 * to reclaim pages. This full LRU scan is potentially 1799 * expensive but a __GFP_REPEAT caller really wants to succeed 1800 */ 1801 if (!nr_reclaimed && !nr_scanned) 1802 return false; 1803 } else { 1804 /* 1805 * For non-__GFP_REPEAT allocations which can presumably 1806 * fail without consequence, stop if we failed to reclaim 1807 * any pages from the last SWAP_CLUSTER_MAX number of 1808 * pages that were scanned. This will return to the 1809 * caller faster at the risk reclaim/compaction and 1810 * the resulting allocation attempt fails 1811 */ 1812 if (!nr_reclaimed) 1813 return false; 1814 } 1815 1816 /* 1817 * If we have not reclaimed enough pages for compaction and the 1818 * inactive lists are large enough, continue reclaiming 1819 */ 1820 pages_for_compaction = (2UL << sc->order); 1821 inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE); 1822 if (nr_swap_pages > 0) 1823 inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON); 1824 if (sc->nr_reclaimed < pages_for_compaction && 1825 inactive_lru_pages > pages_for_compaction) 1826 return true; 1827 1828 /* If compaction would go ahead or the allocation would succeed, stop */ 1829 switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) { 1830 case COMPACT_PARTIAL: 1831 case COMPACT_CONTINUE: 1832 return false; 1833 default: 1834 return true; 1835 } 1836 } 1837 1838 /* 1839 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 1840 */ 1841 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 1842 { 1843 unsigned long nr[NR_LRU_LISTS]; 1844 unsigned long nr_to_scan; 1845 enum lru_list lru; 1846 unsigned long nr_reclaimed, nr_scanned; 1847 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 1848 struct blk_plug plug; 1849 1850 restart: 1851 nr_reclaimed = 0; 1852 nr_scanned = sc->nr_scanned; 1853 get_scan_count(lruvec, sc, nr); 1854 1855 blk_start_plug(&plug); 1856 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 1857 nr[LRU_INACTIVE_FILE]) { 1858 for_each_evictable_lru(lru) { 1859 if (nr[lru]) { 1860 nr_to_scan = min_t(unsigned long, 1861 nr[lru], SWAP_CLUSTER_MAX); 1862 nr[lru] -= nr_to_scan; 1863 1864 nr_reclaimed += shrink_list(lru, nr_to_scan, 1865 lruvec, sc); 1866 } 1867 } 1868 /* 1869 * On large memory systems, scan >> priority can become 1870 * really large. This is fine for the starting priority; 1871 * we want to put equal scanning pressure on each zone. 1872 * However, if the VM has a harder time of freeing pages, 1873 * with multiple processes reclaiming pages, the total 1874 * freeing target can get unreasonably large. 1875 */ 1876 if (nr_reclaimed >= nr_to_reclaim && 1877 sc->priority < DEF_PRIORITY) 1878 break; 1879 } 1880 blk_finish_plug(&plug); 1881 sc->nr_reclaimed += nr_reclaimed; 1882 1883 /* 1884 * Even if we did not try to evict anon pages at all, we want to 1885 * rebalance the anon lru active/inactive ratio. 1886 */ 1887 if (inactive_anon_is_low(lruvec)) 1888 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 1889 sc, LRU_ACTIVE_ANON); 1890 1891 /* reclaim/compaction might need reclaim to continue */ 1892 if (should_continue_reclaim(lruvec, nr_reclaimed, 1893 sc->nr_scanned - nr_scanned, sc)) 1894 goto restart; 1895 1896 throttle_vm_writeout(sc->gfp_mask); 1897 } 1898 1899 static void shrink_zone(struct zone *zone, struct scan_control *sc) 1900 { 1901 struct mem_cgroup *root = sc->target_mem_cgroup; 1902 struct mem_cgroup_reclaim_cookie reclaim = { 1903 .zone = zone, 1904 .priority = sc->priority, 1905 }; 1906 struct mem_cgroup *memcg; 1907 1908 memcg = mem_cgroup_iter(root, NULL, &reclaim); 1909 do { 1910 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 1911 1912 shrink_lruvec(lruvec, sc); 1913 1914 /* 1915 * Limit reclaim has historically picked one memcg and 1916 * scanned it with decreasing priority levels until 1917 * nr_to_reclaim had been reclaimed. This priority 1918 * cycle is thus over after a single memcg. 1919 * 1920 * Direct reclaim and kswapd, on the other hand, have 1921 * to scan all memory cgroups to fulfill the overall 1922 * scan target for the zone. 1923 */ 1924 if (!global_reclaim(sc)) { 1925 mem_cgroup_iter_break(root, memcg); 1926 break; 1927 } 1928 memcg = mem_cgroup_iter(root, memcg, &reclaim); 1929 } while (memcg); 1930 } 1931 1932 /* Returns true if compaction should go ahead for a high-order request */ 1933 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 1934 { 1935 unsigned long balance_gap, watermark; 1936 bool watermark_ok; 1937 1938 /* Do not consider compaction for orders reclaim is meant to satisfy */ 1939 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER) 1940 return false; 1941 1942 /* 1943 * Compaction takes time to run and there are potentially other 1944 * callers using the pages just freed. Continue reclaiming until 1945 * there is a buffer of free pages available to give compaction 1946 * a reasonable chance of completing and allocating the page 1947 */ 1948 balance_gap = min(low_wmark_pages(zone), 1949 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / 1950 KSWAPD_ZONE_BALANCE_GAP_RATIO); 1951 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order); 1952 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0); 1953 1954 /* 1955 * If compaction is deferred, reclaim up to a point where 1956 * compaction will have a chance of success when re-enabled 1957 */ 1958 if (compaction_deferred(zone, sc->order)) 1959 return watermark_ok; 1960 1961 /* If compaction is not ready to start, keep reclaiming */ 1962 if (!compaction_suitable(zone, sc->order)) 1963 return false; 1964 1965 return watermark_ok; 1966 } 1967 1968 /* 1969 * This is the direct reclaim path, for page-allocating processes. We only 1970 * try to reclaim pages from zones which will satisfy the caller's allocation 1971 * request. 1972 * 1973 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 1974 * Because: 1975 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 1976 * allocation or 1977 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 1978 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 1979 * zone defense algorithm. 1980 * 1981 * If a zone is deemed to be full of pinned pages then just give it a light 1982 * scan then give up on it. 1983 * 1984 * This function returns true if a zone is being reclaimed for a costly 1985 * high-order allocation and compaction is ready to begin. This indicates to 1986 * the caller that it should consider retrying the allocation instead of 1987 * further reclaim. 1988 */ 1989 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 1990 { 1991 struct zoneref *z; 1992 struct zone *zone; 1993 unsigned long nr_soft_reclaimed; 1994 unsigned long nr_soft_scanned; 1995 bool aborted_reclaim = false; 1996 1997 /* 1998 * If the number of buffer_heads in the machine exceeds the maximum 1999 * allowed level, force direct reclaim to scan the highmem zone as 2000 * highmem pages could be pinning lowmem pages storing buffer_heads 2001 */ 2002 if (buffer_heads_over_limit) 2003 sc->gfp_mask |= __GFP_HIGHMEM; 2004 2005 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2006 gfp_zone(sc->gfp_mask), sc->nodemask) { 2007 if (!populated_zone(zone)) 2008 continue; 2009 /* 2010 * Take care memory controller reclaiming has small influence 2011 * to global LRU. 2012 */ 2013 if (global_reclaim(sc)) { 2014 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2015 continue; 2016 if (zone->all_unreclaimable && 2017 sc->priority != DEF_PRIORITY) 2018 continue; /* Let kswapd poll it */ 2019 if (IS_ENABLED(CONFIG_COMPACTION)) { 2020 /* 2021 * If we already have plenty of memory free for 2022 * compaction in this zone, don't free any more. 2023 * Even though compaction is invoked for any 2024 * non-zero order, only frequent costly order 2025 * reclamation is disruptive enough to become a 2026 * noticeable problem, like transparent huge 2027 * page allocations. 2028 */ 2029 if (compaction_ready(zone, sc)) { 2030 aborted_reclaim = true; 2031 continue; 2032 } 2033 } 2034 /* 2035 * This steals pages from memory cgroups over softlimit 2036 * and returns the number of reclaimed pages and 2037 * scanned pages. This works for global memory pressure 2038 * and balancing, not for a memcg's limit. 2039 */ 2040 nr_soft_scanned = 0; 2041 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 2042 sc->order, sc->gfp_mask, 2043 &nr_soft_scanned); 2044 sc->nr_reclaimed += nr_soft_reclaimed; 2045 sc->nr_scanned += nr_soft_scanned; 2046 /* need some check for avoid more shrink_zone() */ 2047 } 2048 2049 shrink_zone(zone, sc); 2050 } 2051 2052 return aborted_reclaim; 2053 } 2054 2055 static bool zone_reclaimable(struct zone *zone) 2056 { 2057 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6; 2058 } 2059 2060 /* All zones in zonelist are unreclaimable? */ 2061 static bool all_unreclaimable(struct zonelist *zonelist, 2062 struct scan_control *sc) 2063 { 2064 struct zoneref *z; 2065 struct zone *zone; 2066 2067 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2068 gfp_zone(sc->gfp_mask), sc->nodemask) { 2069 if (!populated_zone(zone)) 2070 continue; 2071 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2072 continue; 2073 if (!zone->all_unreclaimable) 2074 return false; 2075 } 2076 2077 return true; 2078 } 2079 2080 /* 2081 * This is the main entry point to direct page reclaim. 2082 * 2083 * If a full scan of the inactive list fails to free enough memory then we 2084 * are "out of memory" and something needs to be killed. 2085 * 2086 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2087 * high - the zone may be full of dirty or under-writeback pages, which this 2088 * caller can't do much about. We kick the writeback threads and take explicit 2089 * naps in the hope that some of these pages can be written. But if the 2090 * allocating task holds filesystem locks which prevent writeout this might not 2091 * work, and the allocation attempt will fail. 2092 * 2093 * returns: 0, if no pages reclaimed 2094 * else, the number of pages reclaimed 2095 */ 2096 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2097 struct scan_control *sc, 2098 struct shrink_control *shrink) 2099 { 2100 unsigned long total_scanned = 0; 2101 struct reclaim_state *reclaim_state = current->reclaim_state; 2102 struct zoneref *z; 2103 struct zone *zone; 2104 unsigned long writeback_threshold; 2105 bool aborted_reclaim; 2106 2107 delayacct_freepages_start(); 2108 2109 if (global_reclaim(sc)) 2110 count_vm_event(ALLOCSTALL); 2111 2112 do { 2113 sc->nr_scanned = 0; 2114 aborted_reclaim = shrink_zones(zonelist, sc); 2115 2116 /* 2117 * Don't shrink slabs when reclaiming memory from 2118 * over limit cgroups 2119 */ 2120 if (global_reclaim(sc)) { 2121 unsigned long lru_pages = 0; 2122 for_each_zone_zonelist(zone, z, zonelist, 2123 gfp_zone(sc->gfp_mask)) { 2124 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 2125 continue; 2126 2127 lru_pages += zone_reclaimable_pages(zone); 2128 } 2129 2130 shrink_slab(shrink, sc->nr_scanned, lru_pages); 2131 if (reclaim_state) { 2132 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2133 reclaim_state->reclaimed_slab = 0; 2134 } 2135 } 2136 total_scanned += sc->nr_scanned; 2137 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2138 goto out; 2139 2140 /* 2141 * Try to write back as many pages as we just scanned. This 2142 * tends to cause slow streaming writers to write data to the 2143 * disk smoothly, at the dirtying rate, which is nice. But 2144 * that's undesirable in laptop mode, where we *want* lumpy 2145 * writeout. So in laptop mode, write out the whole world. 2146 */ 2147 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2148 if (total_scanned > writeback_threshold) { 2149 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2150 WB_REASON_TRY_TO_FREE_PAGES); 2151 sc->may_writepage = 1; 2152 } 2153 2154 /* Take a nap, wait for some writeback to complete */ 2155 if (!sc->hibernation_mode && sc->nr_scanned && 2156 sc->priority < DEF_PRIORITY - 2) { 2157 struct zone *preferred_zone; 2158 2159 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask), 2160 &cpuset_current_mems_allowed, 2161 &preferred_zone); 2162 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10); 2163 } 2164 } while (--sc->priority >= 0); 2165 2166 out: 2167 delayacct_freepages_end(); 2168 2169 if (sc->nr_reclaimed) 2170 return sc->nr_reclaimed; 2171 2172 /* 2173 * As hibernation is going on, kswapd is freezed so that it can't mark 2174 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable 2175 * check. 2176 */ 2177 if (oom_killer_disabled) 2178 return 0; 2179 2180 /* Aborted reclaim to try compaction? don't OOM, then */ 2181 if (aborted_reclaim) 2182 return 1; 2183 2184 /* top priority shrink_zones still had more to do? don't OOM, then */ 2185 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc)) 2186 return 1; 2187 2188 return 0; 2189 } 2190 2191 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2192 { 2193 struct zone *zone; 2194 unsigned long pfmemalloc_reserve = 0; 2195 unsigned long free_pages = 0; 2196 int i; 2197 bool wmark_ok; 2198 2199 for (i = 0; i <= ZONE_NORMAL; i++) { 2200 zone = &pgdat->node_zones[i]; 2201 pfmemalloc_reserve += min_wmark_pages(zone); 2202 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2203 } 2204 2205 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2206 2207 /* kswapd must be awake if processes are being throttled */ 2208 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2209 pgdat->classzone_idx = min(pgdat->classzone_idx, 2210 (enum zone_type)ZONE_NORMAL); 2211 wake_up_interruptible(&pgdat->kswapd_wait); 2212 } 2213 2214 return wmark_ok; 2215 } 2216 2217 /* 2218 * Throttle direct reclaimers if backing storage is backed by the network 2219 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2220 * depleted. kswapd will continue to make progress and wake the processes 2221 * when the low watermark is reached. 2222 * 2223 * Returns true if a fatal signal was delivered during throttling. If this 2224 * happens, the page allocator should not consider triggering the OOM killer. 2225 */ 2226 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2227 nodemask_t *nodemask) 2228 { 2229 struct zone *zone; 2230 int high_zoneidx = gfp_zone(gfp_mask); 2231 pg_data_t *pgdat; 2232 2233 /* 2234 * Kernel threads should not be throttled as they may be indirectly 2235 * responsible for cleaning pages necessary for reclaim to make forward 2236 * progress. kjournald for example may enter direct reclaim while 2237 * committing a transaction where throttling it could forcing other 2238 * processes to block on log_wait_commit(). 2239 */ 2240 if (current->flags & PF_KTHREAD) 2241 goto out; 2242 2243 /* 2244 * If a fatal signal is pending, this process should not throttle. 2245 * It should return quickly so it can exit and free its memory 2246 */ 2247 if (fatal_signal_pending(current)) 2248 goto out; 2249 2250 /* Check if the pfmemalloc reserves are ok */ 2251 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone); 2252 pgdat = zone->zone_pgdat; 2253 if (pfmemalloc_watermark_ok(pgdat)) 2254 goto out; 2255 2256 /* Account for the throttling */ 2257 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2258 2259 /* 2260 * If the caller cannot enter the filesystem, it's possible that it 2261 * is due to the caller holding an FS lock or performing a journal 2262 * transaction in the case of a filesystem like ext[3|4]. In this case, 2263 * it is not safe to block on pfmemalloc_wait as kswapd could be 2264 * blocked waiting on the same lock. Instead, throttle for up to a 2265 * second before continuing. 2266 */ 2267 if (!(gfp_mask & __GFP_FS)) { 2268 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2269 pfmemalloc_watermark_ok(pgdat), HZ); 2270 2271 goto check_pending; 2272 } 2273 2274 /* Throttle until kswapd wakes the process */ 2275 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2276 pfmemalloc_watermark_ok(pgdat)); 2277 2278 check_pending: 2279 if (fatal_signal_pending(current)) 2280 return true; 2281 2282 out: 2283 return false; 2284 } 2285 2286 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2287 gfp_t gfp_mask, nodemask_t *nodemask) 2288 { 2289 unsigned long nr_reclaimed; 2290 struct scan_control sc = { 2291 .gfp_mask = gfp_mask, 2292 .may_writepage = !laptop_mode, 2293 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2294 .may_unmap = 1, 2295 .may_swap = 1, 2296 .order = order, 2297 .priority = DEF_PRIORITY, 2298 .target_mem_cgroup = NULL, 2299 .nodemask = nodemask, 2300 }; 2301 struct shrink_control shrink = { 2302 .gfp_mask = sc.gfp_mask, 2303 }; 2304 2305 /* 2306 * Do not enter reclaim if fatal signal was delivered while throttled. 2307 * 1 is returned so that the page allocator does not OOM kill at this 2308 * point. 2309 */ 2310 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2311 return 1; 2312 2313 trace_mm_vmscan_direct_reclaim_begin(order, 2314 sc.may_writepage, 2315 gfp_mask); 2316 2317 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 2318 2319 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2320 2321 return nr_reclaimed; 2322 } 2323 2324 #ifdef CONFIG_MEMCG 2325 2326 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, 2327 gfp_t gfp_mask, bool noswap, 2328 struct zone *zone, 2329 unsigned long *nr_scanned) 2330 { 2331 struct scan_control sc = { 2332 .nr_scanned = 0, 2333 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2334 .may_writepage = !laptop_mode, 2335 .may_unmap = 1, 2336 .may_swap = !noswap, 2337 .order = 0, 2338 .priority = 0, 2339 .target_mem_cgroup = memcg, 2340 }; 2341 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2342 2343 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2344 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2345 2346 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 2347 sc.may_writepage, 2348 sc.gfp_mask); 2349 2350 /* 2351 * NOTE: Although we can get the priority field, using it 2352 * here is not a good idea, since it limits the pages we can scan. 2353 * if we don't reclaim here, the shrink_zone from balance_pgdat 2354 * will pick up pages from other mem cgroup's as well. We hack 2355 * the priority and make it zero. 2356 */ 2357 shrink_lruvec(lruvec, &sc); 2358 2359 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2360 2361 *nr_scanned = sc.nr_scanned; 2362 return sc.nr_reclaimed; 2363 } 2364 2365 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 2366 gfp_t gfp_mask, 2367 bool noswap) 2368 { 2369 struct zonelist *zonelist; 2370 unsigned long nr_reclaimed; 2371 int nid; 2372 struct scan_control sc = { 2373 .may_writepage = !laptop_mode, 2374 .may_unmap = 1, 2375 .may_swap = !noswap, 2376 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2377 .order = 0, 2378 .priority = DEF_PRIORITY, 2379 .target_mem_cgroup = memcg, 2380 .nodemask = NULL, /* we don't care the placement */ 2381 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2382 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 2383 }; 2384 struct shrink_control shrink = { 2385 .gfp_mask = sc.gfp_mask, 2386 }; 2387 2388 /* 2389 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 2390 * take care of from where we get pages. So the node where we start the 2391 * scan does not need to be the current node. 2392 */ 2393 nid = mem_cgroup_select_victim_node(memcg); 2394 2395 zonelist = NODE_DATA(nid)->node_zonelists; 2396 2397 trace_mm_vmscan_memcg_reclaim_begin(0, 2398 sc.may_writepage, 2399 sc.gfp_mask); 2400 2401 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 2402 2403 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2404 2405 return nr_reclaimed; 2406 } 2407 #endif 2408 2409 static void age_active_anon(struct zone *zone, struct scan_control *sc) 2410 { 2411 struct mem_cgroup *memcg; 2412 2413 if (!total_swap_pages) 2414 return; 2415 2416 memcg = mem_cgroup_iter(NULL, NULL, NULL); 2417 do { 2418 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2419 2420 if (inactive_anon_is_low(lruvec)) 2421 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2422 sc, LRU_ACTIVE_ANON); 2423 2424 memcg = mem_cgroup_iter(NULL, memcg, NULL); 2425 } while (memcg); 2426 } 2427 2428 static bool zone_balanced(struct zone *zone, int order, 2429 unsigned long balance_gap, int classzone_idx) 2430 { 2431 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) + 2432 balance_gap, classzone_idx, 0)) 2433 return false; 2434 2435 if (IS_ENABLED(CONFIG_COMPACTION) && order && 2436 !compaction_suitable(zone, order)) 2437 return false; 2438 2439 return true; 2440 } 2441 2442 /* 2443 * pgdat_balanced is used when checking if a node is balanced for high-order 2444 * allocations. Only zones that meet watermarks and are in a zone allowed 2445 * by the callers classzone_idx are added to balanced_pages. The total of 2446 * balanced pages must be at least 25% of the zones allowed by classzone_idx 2447 * for the node to be considered balanced. Forcing all zones to be balanced 2448 * for high orders can cause excessive reclaim when there are imbalanced zones. 2449 * The choice of 25% is due to 2450 * o a 16M DMA zone that is balanced will not balance a zone on any 2451 * reasonable sized machine 2452 * o On all other machines, the top zone must be at least a reasonable 2453 * percentage of the middle zones. For example, on 32-bit x86, highmem 2454 * would need to be at least 256M for it to be balance a whole node. 2455 * Similarly, on x86-64 the Normal zone would need to be at least 1G 2456 * to balance a node on its own. These seemed like reasonable ratios. 2457 */ 2458 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages, 2459 int classzone_idx) 2460 { 2461 unsigned long present_pages = 0; 2462 int i; 2463 2464 for (i = 0; i <= classzone_idx; i++) 2465 present_pages += pgdat->node_zones[i].present_pages; 2466 2467 /* A special case here: if zone has no page, we think it's balanced */ 2468 return balanced_pages >= (present_pages >> 2); 2469 } 2470 2471 /* 2472 * Prepare kswapd for sleeping. This verifies that there are no processes 2473 * waiting in throttle_direct_reclaim() and that watermarks have been met. 2474 * 2475 * Returns true if kswapd is ready to sleep 2476 */ 2477 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, 2478 int classzone_idx) 2479 { 2480 int i; 2481 unsigned long balanced = 0; 2482 bool all_zones_ok = true; 2483 2484 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 2485 if (remaining) 2486 return false; 2487 2488 /* 2489 * There is a potential race between when kswapd checks its watermarks 2490 * and a process gets throttled. There is also a potential race if 2491 * processes get throttled, kswapd wakes, a large process exits therby 2492 * balancing the zones that causes kswapd to miss a wakeup. If kswapd 2493 * is going to sleep, no process should be sleeping on pfmemalloc_wait 2494 * so wake them now if necessary. If necessary, processes will wake 2495 * kswapd and get throttled again 2496 */ 2497 if (waitqueue_active(&pgdat->pfmemalloc_wait)) { 2498 wake_up(&pgdat->pfmemalloc_wait); 2499 return false; 2500 } 2501 2502 /* Check the watermark levels */ 2503 for (i = 0; i <= classzone_idx; i++) { 2504 struct zone *zone = pgdat->node_zones + i; 2505 2506 if (!populated_zone(zone)) 2507 continue; 2508 2509 /* 2510 * balance_pgdat() skips over all_unreclaimable after 2511 * DEF_PRIORITY. Effectively, it considers them balanced so 2512 * they must be considered balanced here as well if kswapd 2513 * is to sleep 2514 */ 2515 if (zone->all_unreclaimable) { 2516 balanced += zone->present_pages; 2517 continue; 2518 } 2519 2520 if (!zone_balanced(zone, order, 0, i)) 2521 all_zones_ok = false; 2522 else 2523 balanced += zone->present_pages; 2524 } 2525 2526 /* 2527 * For high-order requests, the balanced zones must contain at least 2528 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones 2529 * must be balanced 2530 */ 2531 if (order) 2532 return pgdat_balanced(pgdat, balanced, classzone_idx); 2533 else 2534 return all_zones_ok; 2535 } 2536 2537 /* 2538 * For kswapd, balance_pgdat() will work across all this node's zones until 2539 * they are all at high_wmark_pages(zone). 2540 * 2541 * Returns the final order kswapd was reclaiming at 2542 * 2543 * There is special handling here for zones which are full of pinned pages. 2544 * This can happen if the pages are all mlocked, or if they are all used by 2545 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 2546 * What we do is to detect the case where all pages in the zone have been 2547 * scanned twice and there has been zero successful reclaim. Mark the zone as 2548 * dead and from now on, only perform a short scan. Basically we're polling 2549 * the zone for when the problem goes away. 2550 * 2551 * kswapd scans the zones in the highmem->normal->dma direction. It skips 2552 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 2553 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 2554 * lower zones regardless of the number of free pages in the lower zones. This 2555 * interoperates with the page allocator fallback scheme to ensure that aging 2556 * of pages is balanced across the zones. 2557 */ 2558 static unsigned long balance_pgdat(pg_data_t *pgdat, int order, 2559 int *classzone_idx) 2560 { 2561 int all_zones_ok; 2562 unsigned long balanced; 2563 int i; 2564 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 2565 unsigned long total_scanned; 2566 struct reclaim_state *reclaim_state = current->reclaim_state; 2567 unsigned long nr_soft_reclaimed; 2568 unsigned long nr_soft_scanned; 2569 struct scan_control sc = { 2570 .gfp_mask = GFP_KERNEL, 2571 .may_unmap = 1, 2572 .may_swap = 1, 2573 /* 2574 * kswapd doesn't want to be bailed out while reclaim. because 2575 * we want to put equal scanning pressure on each zone. 2576 */ 2577 .nr_to_reclaim = ULONG_MAX, 2578 .order = order, 2579 .target_mem_cgroup = NULL, 2580 }; 2581 struct shrink_control shrink = { 2582 .gfp_mask = sc.gfp_mask, 2583 }; 2584 loop_again: 2585 total_scanned = 0; 2586 sc.priority = DEF_PRIORITY; 2587 sc.nr_reclaimed = 0; 2588 sc.may_writepage = !laptop_mode; 2589 count_vm_event(PAGEOUTRUN); 2590 2591 do { 2592 unsigned long lru_pages = 0; 2593 int has_under_min_watermark_zone = 0; 2594 2595 all_zones_ok = 1; 2596 balanced = 0; 2597 2598 /* 2599 * Scan in the highmem->dma direction for the highest 2600 * zone which needs scanning 2601 */ 2602 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 2603 struct zone *zone = pgdat->node_zones + i; 2604 2605 if (!populated_zone(zone)) 2606 continue; 2607 2608 if (zone->all_unreclaimable && 2609 sc.priority != DEF_PRIORITY) 2610 continue; 2611 2612 /* 2613 * Do some background aging of the anon list, to give 2614 * pages a chance to be referenced before reclaiming. 2615 */ 2616 age_active_anon(zone, &sc); 2617 2618 /* 2619 * If the number of buffer_heads in the machine 2620 * exceeds the maximum allowed level and this node 2621 * has a highmem zone, force kswapd to reclaim from 2622 * it to relieve lowmem pressure. 2623 */ 2624 if (buffer_heads_over_limit && is_highmem_idx(i)) { 2625 end_zone = i; 2626 break; 2627 } 2628 2629 if (!zone_balanced(zone, order, 0, 0)) { 2630 end_zone = i; 2631 break; 2632 } else { 2633 /* If balanced, clear the congested flag */ 2634 zone_clear_flag(zone, ZONE_CONGESTED); 2635 } 2636 } 2637 if (i < 0) 2638 goto out; 2639 2640 for (i = 0; i <= end_zone; i++) { 2641 struct zone *zone = pgdat->node_zones + i; 2642 2643 lru_pages += zone_reclaimable_pages(zone); 2644 } 2645 2646 /* 2647 * Now scan the zone in the dma->highmem direction, stopping 2648 * at the last zone which needs scanning. 2649 * 2650 * We do this because the page allocator works in the opposite 2651 * direction. This prevents the page allocator from allocating 2652 * pages behind kswapd's direction of progress, which would 2653 * cause too much scanning of the lower zones. 2654 */ 2655 for (i = 0; i <= end_zone; i++) { 2656 struct zone *zone = pgdat->node_zones + i; 2657 int nr_slab, testorder; 2658 unsigned long balance_gap; 2659 2660 if (!populated_zone(zone)) 2661 continue; 2662 2663 if (zone->all_unreclaimable && 2664 sc.priority != DEF_PRIORITY) 2665 continue; 2666 2667 sc.nr_scanned = 0; 2668 2669 nr_soft_scanned = 0; 2670 /* 2671 * Call soft limit reclaim before calling shrink_zone. 2672 */ 2673 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 2674 order, sc.gfp_mask, 2675 &nr_soft_scanned); 2676 sc.nr_reclaimed += nr_soft_reclaimed; 2677 total_scanned += nr_soft_scanned; 2678 2679 /* 2680 * We put equal pressure on every zone, unless 2681 * one zone has way too many pages free 2682 * already. The "too many pages" is defined 2683 * as the high wmark plus a "gap" where the 2684 * gap is either the low watermark or 1% 2685 * of the zone, whichever is smaller. 2686 */ 2687 balance_gap = min(low_wmark_pages(zone), 2688 (zone->present_pages + 2689 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / 2690 KSWAPD_ZONE_BALANCE_GAP_RATIO); 2691 /* 2692 * Kswapd reclaims only single pages with compaction 2693 * enabled. Trying too hard to reclaim until contiguous 2694 * free pages have become available can hurt performance 2695 * by evicting too much useful data from memory. 2696 * Do not reclaim more than needed for compaction. 2697 */ 2698 testorder = order; 2699 if (IS_ENABLED(CONFIG_COMPACTION) && order && 2700 compaction_suitable(zone, order) != 2701 COMPACT_SKIPPED) 2702 testorder = 0; 2703 2704 if ((buffer_heads_over_limit && is_highmem_idx(i)) || 2705 !zone_balanced(zone, testorder, 2706 balance_gap, end_zone)) { 2707 shrink_zone(zone, &sc); 2708 2709 reclaim_state->reclaimed_slab = 0; 2710 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages); 2711 sc.nr_reclaimed += reclaim_state->reclaimed_slab; 2712 total_scanned += sc.nr_scanned; 2713 2714 if (nr_slab == 0 && !zone_reclaimable(zone)) 2715 zone->all_unreclaimable = 1; 2716 } 2717 2718 /* 2719 * If we've done a decent amount of scanning and 2720 * the reclaim ratio is low, start doing writepage 2721 * even in laptop mode 2722 */ 2723 if (total_scanned > SWAP_CLUSTER_MAX * 2 && 2724 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2) 2725 sc.may_writepage = 1; 2726 2727 if (zone->all_unreclaimable) { 2728 if (end_zone && end_zone == i) 2729 end_zone--; 2730 continue; 2731 } 2732 2733 if (!zone_balanced(zone, testorder, 0, end_zone)) { 2734 all_zones_ok = 0; 2735 /* 2736 * We are still under min water mark. This 2737 * means that we have a GFP_ATOMIC allocation 2738 * failure risk. Hurry up! 2739 */ 2740 if (!zone_watermark_ok_safe(zone, order, 2741 min_wmark_pages(zone), end_zone, 0)) 2742 has_under_min_watermark_zone = 1; 2743 } else { 2744 /* 2745 * If a zone reaches its high watermark, 2746 * consider it to be no longer congested. It's 2747 * possible there are dirty pages backed by 2748 * congested BDIs but as pressure is relieved, 2749 * speculatively avoid congestion waits 2750 */ 2751 zone_clear_flag(zone, ZONE_CONGESTED); 2752 if (i <= *classzone_idx) 2753 balanced += zone->present_pages; 2754 } 2755 2756 } 2757 2758 /* 2759 * If the low watermark is met there is no need for processes 2760 * to be throttled on pfmemalloc_wait as they should not be 2761 * able to safely make forward progress. Wake them 2762 */ 2763 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 2764 pfmemalloc_watermark_ok(pgdat)) 2765 wake_up(&pgdat->pfmemalloc_wait); 2766 2767 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx))) 2768 break; /* kswapd: all done */ 2769 /* 2770 * OK, kswapd is getting into trouble. Take a nap, then take 2771 * another pass across the zones. 2772 */ 2773 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) { 2774 if (has_under_min_watermark_zone) 2775 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT); 2776 else 2777 congestion_wait(BLK_RW_ASYNC, HZ/10); 2778 } 2779 2780 /* 2781 * We do this so kswapd doesn't build up large priorities for 2782 * example when it is freeing in parallel with allocators. It 2783 * matches the direct reclaim path behaviour in terms of impact 2784 * on zone->*_priority. 2785 */ 2786 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX) 2787 break; 2788 } while (--sc.priority >= 0); 2789 out: 2790 2791 /* 2792 * order-0: All zones must meet high watermark for a balanced node 2793 * high-order: Balanced zones must make up at least 25% of the node 2794 * for the node to be balanced 2795 */ 2796 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) { 2797 cond_resched(); 2798 2799 try_to_freeze(); 2800 2801 /* 2802 * Fragmentation may mean that the system cannot be 2803 * rebalanced for high-order allocations in all zones. 2804 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX, 2805 * it means the zones have been fully scanned and are still 2806 * not balanced. For high-order allocations, there is 2807 * little point trying all over again as kswapd may 2808 * infinite loop. 2809 * 2810 * Instead, recheck all watermarks at order-0 as they 2811 * are the most important. If watermarks are ok, kswapd will go 2812 * back to sleep. High-order users can still perform direct 2813 * reclaim if they wish. 2814 */ 2815 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX) 2816 order = sc.order = 0; 2817 2818 goto loop_again; 2819 } 2820 2821 /* 2822 * If kswapd was reclaiming at a higher order, it has the option of 2823 * sleeping without all zones being balanced. Before it does, it must 2824 * ensure that the watermarks for order-0 on *all* zones are met and 2825 * that the congestion flags are cleared. The congestion flag must 2826 * be cleared as kswapd is the only mechanism that clears the flag 2827 * and it is potentially going to sleep here. 2828 */ 2829 if (order) { 2830 int zones_need_compaction = 1; 2831 2832 for (i = 0; i <= end_zone; i++) { 2833 struct zone *zone = pgdat->node_zones + i; 2834 2835 if (!populated_zone(zone)) 2836 continue; 2837 2838 /* Check if the memory needs to be defragmented. */ 2839 if (zone_watermark_ok(zone, order, 2840 low_wmark_pages(zone), *classzone_idx, 0)) 2841 zones_need_compaction = 0; 2842 } 2843 2844 if (zones_need_compaction) 2845 compact_pgdat(pgdat, order); 2846 } 2847 2848 /* 2849 * Return the order we were reclaiming at so prepare_kswapd_sleep() 2850 * makes a decision on the order we were last reclaiming at. However, 2851 * if another caller entered the allocator slow path while kswapd 2852 * was awake, order will remain at the higher level 2853 */ 2854 *classzone_idx = end_zone; 2855 return order; 2856 } 2857 2858 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) 2859 { 2860 long remaining = 0; 2861 DEFINE_WAIT(wait); 2862 2863 if (freezing(current) || kthread_should_stop()) 2864 return; 2865 2866 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 2867 2868 /* Try to sleep for a short interval */ 2869 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 2870 remaining = schedule_timeout(HZ/10); 2871 finish_wait(&pgdat->kswapd_wait, &wait); 2872 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 2873 } 2874 2875 /* 2876 * After a short sleep, check if it was a premature sleep. If not, then 2877 * go fully to sleep until explicitly woken up. 2878 */ 2879 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 2880 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 2881 2882 /* 2883 * vmstat counters are not perfectly accurate and the estimated 2884 * value for counters such as NR_FREE_PAGES can deviate from the 2885 * true value by nr_online_cpus * threshold. To avoid the zone 2886 * watermarks being breached while under pressure, we reduce the 2887 * per-cpu vmstat threshold while kswapd is awake and restore 2888 * them before going back to sleep. 2889 */ 2890 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 2891 2892 /* 2893 * Compaction records what page blocks it recently failed to 2894 * isolate pages from and skips them in the future scanning. 2895 * When kswapd is going to sleep, it is reasonable to assume 2896 * that pages and compaction may succeed so reset the cache. 2897 */ 2898 reset_isolation_suitable(pgdat); 2899 2900 if (!kthread_should_stop()) 2901 schedule(); 2902 2903 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 2904 } else { 2905 if (remaining) 2906 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 2907 else 2908 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 2909 } 2910 finish_wait(&pgdat->kswapd_wait, &wait); 2911 } 2912 2913 /* 2914 * The background pageout daemon, started as a kernel thread 2915 * from the init process. 2916 * 2917 * This basically trickles out pages so that we have _some_ 2918 * free memory available even if there is no other activity 2919 * that frees anything up. This is needed for things like routing 2920 * etc, where we otherwise might have all activity going on in 2921 * asynchronous contexts that cannot page things out. 2922 * 2923 * If there are applications that are active memory-allocators 2924 * (most normal use), this basically shouldn't matter. 2925 */ 2926 static int kswapd(void *p) 2927 { 2928 unsigned long order, new_order; 2929 unsigned balanced_order; 2930 int classzone_idx, new_classzone_idx; 2931 int balanced_classzone_idx; 2932 pg_data_t *pgdat = (pg_data_t*)p; 2933 struct task_struct *tsk = current; 2934 2935 struct reclaim_state reclaim_state = { 2936 .reclaimed_slab = 0, 2937 }; 2938 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2939 2940 lockdep_set_current_reclaim_state(GFP_KERNEL); 2941 2942 if (!cpumask_empty(cpumask)) 2943 set_cpus_allowed_ptr(tsk, cpumask); 2944 current->reclaim_state = &reclaim_state; 2945 2946 /* 2947 * Tell the memory management that we're a "memory allocator", 2948 * and that if we need more memory we should get access to it 2949 * regardless (see "__alloc_pages()"). "kswapd" should 2950 * never get caught in the normal page freeing logic. 2951 * 2952 * (Kswapd normally doesn't need memory anyway, but sometimes 2953 * you need a small amount of memory in order to be able to 2954 * page out something else, and this flag essentially protects 2955 * us from recursively trying to free more memory as we're 2956 * trying to free the first piece of memory in the first place). 2957 */ 2958 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 2959 set_freezable(); 2960 2961 order = new_order = 0; 2962 balanced_order = 0; 2963 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; 2964 balanced_classzone_idx = classzone_idx; 2965 for ( ; ; ) { 2966 bool ret; 2967 2968 /* 2969 * If the last balance_pgdat was unsuccessful it's unlikely a 2970 * new request of a similar or harder type will succeed soon 2971 * so consider going to sleep on the basis we reclaimed at 2972 */ 2973 if (balanced_classzone_idx >= new_classzone_idx && 2974 balanced_order == new_order) { 2975 new_order = pgdat->kswapd_max_order; 2976 new_classzone_idx = pgdat->classzone_idx; 2977 pgdat->kswapd_max_order = 0; 2978 pgdat->classzone_idx = pgdat->nr_zones - 1; 2979 } 2980 2981 if (order < new_order || classzone_idx > new_classzone_idx) { 2982 /* 2983 * Don't sleep if someone wants a larger 'order' 2984 * allocation or has tigher zone constraints 2985 */ 2986 order = new_order; 2987 classzone_idx = new_classzone_idx; 2988 } else { 2989 kswapd_try_to_sleep(pgdat, balanced_order, 2990 balanced_classzone_idx); 2991 order = pgdat->kswapd_max_order; 2992 classzone_idx = pgdat->classzone_idx; 2993 new_order = order; 2994 new_classzone_idx = classzone_idx; 2995 pgdat->kswapd_max_order = 0; 2996 pgdat->classzone_idx = pgdat->nr_zones - 1; 2997 } 2998 2999 ret = try_to_freeze(); 3000 if (kthread_should_stop()) 3001 break; 3002 3003 /* 3004 * We can speed up thawing tasks if we don't call balance_pgdat 3005 * after returning from the refrigerator 3006 */ 3007 if (!ret) { 3008 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); 3009 balanced_classzone_idx = classzone_idx; 3010 balanced_order = balance_pgdat(pgdat, order, 3011 &balanced_classzone_idx); 3012 } 3013 } 3014 3015 current->reclaim_state = NULL; 3016 return 0; 3017 } 3018 3019 /* 3020 * A zone is low on free memory, so wake its kswapd task to service it. 3021 */ 3022 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3023 { 3024 pg_data_t *pgdat; 3025 3026 if (!populated_zone(zone)) 3027 return; 3028 3029 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 3030 return; 3031 pgdat = zone->zone_pgdat; 3032 if (pgdat->kswapd_max_order < order) { 3033 pgdat->kswapd_max_order = order; 3034 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); 3035 } 3036 if (!waitqueue_active(&pgdat->kswapd_wait)) 3037 return; 3038 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0)) 3039 return; 3040 3041 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3042 wake_up_interruptible(&pgdat->kswapd_wait); 3043 } 3044 3045 /* 3046 * The reclaimable count would be mostly accurate. 3047 * The less reclaimable pages may be 3048 * - mlocked pages, which will be moved to unevictable list when encountered 3049 * - mapped pages, which may require several travels to be reclaimed 3050 * - dirty pages, which is not "instantly" reclaimable 3051 */ 3052 unsigned long global_reclaimable_pages(void) 3053 { 3054 int nr; 3055 3056 nr = global_page_state(NR_ACTIVE_FILE) + 3057 global_page_state(NR_INACTIVE_FILE); 3058 3059 if (nr_swap_pages > 0) 3060 nr += global_page_state(NR_ACTIVE_ANON) + 3061 global_page_state(NR_INACTIVE_ANON); 3062 3063 return nr; 3064 } 3065 3066 unsigned long zone_reclaimable_pages(struct zone *zone) 3067 { 3068 int nr; 3069 3070 nr = zone_page_state(zone, NR_ACTIVE_FILE) + 3071 zone_page_state(zone, NR_INACTIVE_FILE); 3072 3073 if (nr_swap_pages > 0) 3074 nr += zone_page_state(zone, NR_ACTIVE_ANON) + 3075 zone_page_state(zone, NR_INACTIVE_ANON); 3076 3077 return nr; 3078 } 3079 3080 #ifdef CONFIG_HIBERNATION 3081 /* 3082 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3083 * freed pages. 3084 * 3085 * Rather than trying to age LRUs the aim is to preserve the overall 3086 * LRU order by reclaiming preferentially 3087 * inactive > active > active referenced > active mapped 3088 */ 3089 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3090 { 3091 struct reclaim_state reclaim_state; 3092 struct scan_control sc = { 3093 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3094 .may_swap = 1, 3095 .may_unmap = 1, 3096 .may_writepage = 1, 3097 .nr_to_reclaim = nr_to_reclaim, 3098 .hibernation_mode = 1, 3099 .order = 0, 3100 .priority = DEF_PRIORITY, 3101 }; 3102 struct shrink_control shrink = { 3103 .gfp_mask = sc.gfp_mask, 3104 }; 3105 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3106 struct task_struct *p = current; 3107 unsigned long nr_reclaimed; 3108 3109 p->flags |= PF_MEMALLOC; 3110 lockdep_set_current_reclaim_state(sc.gfp_mask); 3111 reclaim_state.reclaimed_slab = 0; 3112 p->reclaim_state = &reclaim_state; 3113 3114 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); 3115 3116 p->reclaim_state = NULL; 3117 lockdep_clear_current_reclaim_state(); 3118 p->flags &= ~PF_MEMALLOC; 3119 3120 return nr_reclaimed; 3121 } 3122 #endif /* CONFIG_HIBERNATION */ 3123 3124 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3125 not required for correctness. So if the last cpu in a node goes 3126 away, we get changed to run anywhere: as the first one comes back, 3127 restore their cpu bindings. */ 3128 static int __devinit cpu_callback(struct notifier_block *nfb, 3129 unsigned long action, void *hcpu) 3130 { 3131 int nid; 3132 3133 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 3134 for_each_node_state(nid, N_MEMORY) { 3135 pg_data_t *pgdat = NODE_DATA(nid); 3136 const struct cpumask *mask; 3137 3138 mask = cpumask_of_node(pgdat->node_id); 3139 3140 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3141 /* One of our CPUs online: restore mask */ 3142 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3143 } 3144 } 3145 return NOTIFY_OK; 3146 } 3147 3148 /* 3149 * This kswapd start function will be called by init and node-hot-add. 3150 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3151 */ 3152 int kswapd_run(int nid) 3153 { 3154 pg_data_t *pgdat = NODE_DATA(nid); 3155 int ret = 0; 3156 3157 if (pgdat->kswapd) 3158 return 0; 3159 3160 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3161 if (IS_ERR(pgdat->kswapd)) { 3162 /* failure at boot is fatal */ 3163 BUG_ON(system_state == SYSTEM_BOOTING); 3164 pgdat->kswapd = NULL; 3165 pr_err("Failed to start kswapd on node %d\n", nid); 3166 ret = PTR_ERR(pgdat->kswapd); 3167 } 3168 return ret; 3169 } 3170 3171 /* 3172 * Called by memory hotplug when all memory in a node is offlined. Caller must 3173 * hold lock_memory_hotplug(). 3174 */ 3175 void kswapd_stop(int nid) 3176 { 3177 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3178 3179 if (kswapd) { 3180 kthread_stop(kswapd); 3181 NODE_DATA(nid)->kswapd = NULL; 3182 } 3183 } 3184 3185 static int __init kswapd_init(void) 3186 { 3187 int nid; 3188 3189 swap_setup(); 3190 for_each_node_state(nid, N_MEMORY) 3191 kswapd_run(nid); 3192 hotcpu_notifier(cpu_callback, 0); 3193 return 0; 3194 } 3195 3196 module_init(kswapd_init) 3197 3198 #ifdef CONFIG_NUMA 3199 /* 3200 * Zone reclaim mode 3201 * 3202 * If non-zero call zone_reclaim when the number of free pages falls below 3203 * the watermarks. 3204 */ 3205 int zone_reclaim_mode __read_mostly; 3206 3207 #define RECLAIM_OFF 0 3208 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3209 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3210 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 3211 3212 /* 3213 * Priority for ZONE_RECLAIM. This determines the fraction of pages 3214 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3215 * a zone. 3216 */ 3217 #define ZONE_RECLAIM_PRIORITY 4 3218 3219 /* 3220 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 3221 * occur. 3222 */ 3223 int sysctl_min_unmapped_ratio = 1; 3224 3225 /* 3226 * If the number of slab pages in a zone grows beyond this percentage then 3227 * slab reclaim needs to occur. 3228 */ 3229 int sysctl_min_slab_ratio = 5; 3230 3231 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 3232 { 3233 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 3234 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 3235 zone_page_state(zone, NR_ACTIVE_FILE); 3236 3237 /* 3238 * It's possible for there to be more file mapped pages than 3239 * accounted for by the pages on the file LRU lists because 3240 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3241 */ 3242 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3243 } 3244 3245 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3246 static long zone_pagecache_reclaimable(struct zone *zone) 3247 { 3248 long nr_pagecache_reclaimable; 3249 long delta = 0; 3250 3251 /* 3252 * If RECLAIM_SWAP is set, then all file pages are considered 3253 * potentially reclaimable. Otherwise, we have to worry about 3254 * pages like swapcache and zone_unmapped_file_pages() provides 3255 * a better estimate 3256 */ 3257 if (zone_reclaim_mode & RECLAIM_SWAP) 3258 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 3259 else 3260 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 3261 3262 /* If we can't clean pages, remove dirty pages from consideration */ 3263 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 3264 delta += zone_page_state(zone, NR_FILE_DIRTY); 3265 3266 /* Watch for any possible underflows due to delta */ 3267 if (unlikely(delta > nr_pagecache_reclaimable)) 3268 delta = nr_pagecache_reclaimable; 3269 3270 return nr_pagecache_reclaimable - delta; 3271 } 3272 3273 /* 3274 * Try to free up some pages from this zone through reclaim. 3275 */ 3276 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3277 { 3278 /* Minimum pages needed in order to stay on node */ 3279 const unsigned long nr_pages = 1 << order; 3280 struct task_struct *p = current; 3281 struct reclaim_state reclaim_state; 3282 struct scan_control sc = { 3283 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 3284 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), 3285 .may_swap = 1, 3286 .nr_to_reclaim = max_t(unsigned long, nr_pages, 3287 SWAP_CLUSTER_MAX), 3288 .gfp_mask = gfp_mask, 3289 .order = order, 3290 .priority = ZONE_RECLAIM_PRIORITY, 3291 }; 3292 struct shrink_control shrink = { 3293 .gfp_mask = sc.gfp_mask, 3294 }; 3295 unsigned long nr_slab_pages0, nr_slab_pages1; 3296 3297 cond_resched(); 3298 /* 3299 * We need to be able to allocate from the reserves for RECLAIM_SWAP 3300 * and we also need to be able to write out pages for RECLAIM_WRITE 3301 * and RECLAIM_SWAP. 3302 */ 3303 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3304 lockdep_set_current_reclaim_state(gfp_mask); 3305 reclaim_state.reclaimed_slab = 0; 3306 p->reclaim_state = &reclaim_state; 3307 3308 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 3309 /* 3310 * Free memory by calling shrink zone with increasing 3311 * priorities until we have enough memory freed. 3312 */ 3313 do { 3314 shrink_zone(zone, &sc); 3315 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3316 } 3317 3318 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 3319 if (nr_slab_pages0 > zone->min_slab_pages) { 3320 /* 3321 * shrink_slab() does not currently allow us to determine how 3322 * many pages were freed in this zone. So we take the current 3323 * number of slab pages and shake the slab until it is reduced 3324 * by the same nr_pages that we used for reclaiming unmapped 3325 * pages. 3326 * 3327 * Note that shrink_slab will free memory on all zones and may 3328 * take a long time. 3329 */ 3330 for (;;) { 3331 unsigned long lru_pages = zone_reclaimable_pages(zone); 3332 3333 /* No reclaimable slab or very low memory pressure */ 3334 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages)) 3335 break; 3336 3337 /* Freed enough memory */ 3338 nr_slab_pages1 = zone_page_state(zone, 3339 NR_SLAB_RECLAIMABLE); 3340 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0) 3341 break; 3342 } 3343 3344 /* 3345 * Update nr_reclaimed by the number of slab pages we 3346 * reclaimed from this zone. 3347 */ 3348 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 3349 if (nr_slab_pages1 < nr_slab_pages0) 3350 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1; 3351 } 3352 3353 p->reclaim_state = NULL; 3354 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3355 lockdep_clear_current_reclaim_state(); 3356 return sc.nr_reclaimed >= nr_pages; 3357 } 3358 3359 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3360 { 3361 int node_id; 3362 int ret; 3363 3364 /* 3365 * Zone reclaim reclaims unmapped file backed pages and 3366 * slab pages if we are over the defined limits. 3367 * 3368 * A small portion of unmapped file backed pages is needed for 3369 * file I/O otherwise pages read by file I/O will be immediately 3370 * thrown out if the zone is overallocated. So we do not reclaim 3371 * if less than a specified percentage of the zone is used by 3372 * unmapped file backed pages. 3373 */ 3374 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 3375 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 3376 return ZONE_RECLAIM_FULL; 3377 3378 if (zone->all_unreclaimable) 3379 return ZONE_RECLAIM_FULL; 3380 3381 /* 3382 * Do not scan if the allocation should not be delayed. 3383 */ 3384 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 3385 return ZONE_RECLAIM_NOSCAN; 3386 3387 /* 3388 * Only run zone reclaim on the local zone or on zones that do not 3389 * have associated processors. This will favor the local processor 3390 * over remote processors and spread off node memory allocations 3391 * as wide as possible. 3392 */ 3393 node_id = zone_to_nid(zone); 3394 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 3395 return ZONE_RECLAIM_NOSCAN; 3396 3397 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 3398 return ZONE_RECLAIM_NOSCAN; 3399 3400 ret = __zone_reclaim(zone, gfp_mask, order); 3401 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 3402 3403 if (!ret) 3404 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3405 3406 return ret; 3407 } 3408 #endif 3409 3410 /* 3411 * page_evictable - test whether a page is evictable 3412 * @page: the page to test 3413 * 3414 * Test whether page is evictable--i.e., should be placed on active/inactive 3415 * lists vs unevictable list. 3416 * 3417 * Reasons page might not be evictable: 3418 * (1) page's mapping marked unevictable 3419 * (2) page is part of an mlocked VMA 3420 * 3421 */ 3422 int page_evictable(struct page *page) 3423 { 3424 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3425 } 3426 3427 #ifdef CONFIG_SHMEM 3428 /** 3429 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3430 * @pages: array of pages to check 3431 * @nr_pages: number of pages to check 3432 * 3433 * Checks pages for evictability and moves them to the appropriate lru list. 3434 * 3435 * This function is only used for SysV IPC SHM_UNLOCK. 3436 */ 3437 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3438 { 3439 struct lruvec *lruvec; 3440 struct zone *zone = NULL; 3441 int pgscanned = 0; 3442 int pgrescued = 0; 3443 int i; 3444 3445 for (i = 0; i < nr_pages; i++) { 3446 struct page *page = pages[i]; 3447 struct zone *pagezone; 3448 3449 pgscanned++; 3450 pagezone = page_zone(page); 3451 if (pagezone != zone) { 3452 if (zone) 3453 spin_unlock_irq(&zone->lru_lock); 3454 zone = pagezone; 3455 spin_lock_irq(&zone->lru_lock); 3456 } 3457 lruvec = mem_cgroup_page_lruvec(page, zone); 3458 3459 if (!PageLRU(page) || !PageUnevictable(page)) 3460 continue; 3461 3462 if (page_evictable(page)) { 3463 enum lru_list lru = page_lru_base_type(page); 3464 3465 VM_BUG_ON(PageActive(page)); 3466 ClearPageUnevictable(page); 3467 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3468 add_page_to_lru_list(page, lruvec, lru); 3469 pgrescued++; 3470 } 3471 } 3472 3473 if (zone) { 3474 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3475 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3476 spin_unlock_irq(&zone->lru_lock); 3477 } 3478 } 3479 #endif /* CONFIG_SHMEM */ 3480 3481 static void warn_scan_unevictable_pages(void) 3482 { 3483 printk_once(KERN_WARNING 3484 "%s: The scan_unevictable_pages sysctl/node-interface has been " 3485 "disabled for lack of a legitimate use case. If you have " 3486 "one, please send an email to linux-mm@kvack.org.\n", 3487 current->comm); 3488 } 3489 3490 /* 3491 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of 3492 * all nodes' unevictable lists for evictable pages 3493 */ 3494 unsigned long scan_unevictable_pages; 3495 3496 int scan_unevictable_handler(struct ctl_table *table, int write, 3497 void __user *buffer, 3498 size_t *length, loff_t *ppos) 3499 { 3500 warn_scan_unevictable_pages(); 3501 proc_doulongvec_minmax(table, write, buffer, length, ppos); 3502 scan_unevictable_pages = 0; 3503 return 0; 3504 } 3505 3506 #ifdef CONFIG_NUMA 3507 /* 3508 * per node 'scan_unevictable_pages' attribute. On demand re-scan of 3509 * a specified node's per zone unevictable lists for evictable pages. 3510 */ 3511 3512 static ssize_t read_scan_unevictable_node(struct device *dev, 3513 struct device_attribute *attr, 3514 char *buf) 3515 { 3516 warn_scan_unevictable_pages(); 3517 return sprintf(buf, "0\n"); /* always zero; should fit... */ 3518 } 3519 3520 static ssize_t write_scan_unevictable_node(struct device *dev, 3521 struct device_attribute *attr, 3522 const char *buf, size_t count) 3523 { 3524 warn_scan_unevictable_pages(); 3525 return 1; 3526 } 3527 3528 3529 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, 3530 read_scan_unevictable_node, 3531 write_scan_unevictable_node); 3532 3533 int scan_unevictable_register_node(struct node *node) 3534 { 3535 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages); 3536 } 3537 3538 void scan_unevictable_unregister_node(struct node *node) 3539 { 3540 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages); 3541 } 3542 #endif 3543