xref: /openbmc/linux/mm/vmscan.c (revision 0547dece8dcbb80983b3c37ad20ceca76a1f06a5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55 
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
58 
59 #include "internal.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
63 
64 struct scan_control {
65 	/* How many pages shrink_list() should reclaim */
66 	unsigned long nr_to_reclaim;
67 
68 	/*
69 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
70 	 * are scanned.
71 	 */
72 	nodemask_t	*nodemask;
73 
74 	/*
75 	 * The memory cgroup that hit its limit and as a result is the
76 	 * primary target of this reclaim invocation.
77 	 */
78 	struct mem_cgroup *target_mem_cgroup;
79 
80 	/*
81 	 * Scan pressure balancing between anon and file LRUs
82 	 */
83 	unsigned long	anon_cost;
84 	unsigned long	file_cost;
85 
86 	/* Can active pages be deactivated as part of reclaim? */
87 #define DEACTIVATE_ANON 1
88 #define DEACTIVATE_FILE 2
89 	unsigned int may_deactivate:2;
90 	unsigned int force_deactivate:1;
91 	unsigned int skipped_deactivate:1;
92 
93 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
94 	unsigned int may_writepage:1;
95 
96 	/* Can mapped pages be reclaimed? */
97 	unsigned int may_unmap:1;
98 
99 	/* Can pages be swapped as part of reclaim? */
100 	unsigned int may_swap:1;
101 
102 	/*
103 	 * Cgroups are not reclaimed below their configured memory.low,
104 	 * unless we threaten to OOM. If any cgroups are skipped due to
105 	 * memory.low and nothing was reclaimed, go back for memory.low.
106 	 */
107 	unsigned int memcg_low_reclaim:1;
108 	unsigned int memcg_low_skipped:1;
109 
110 	unsigned int hibernation_mode:1;
111 
112 	/* One of the zones is ready for compaction */
113 	unsigned int compaction_ready:1;
114 
115 	/* There is easily reclaimable cold cache in the current node */
116 	unsigned int cache_trim_mode:1;
117 
118 	/* The file pages on the current node are dangerously low */
119 	unsigned int file_is_tiny:1;
120 
121 	/* Allocation order */
122 	s8 order;
123 
124 	/* Scan (total_size >> priority) pages at once */
125 	s8 priority;
126 
127 	/* The highest zone to isolate pages for reclaim from */
128 	s8 reclaim_idx;
129 
130 	/* This context's GFP mask */
131 	gfp_t gfp_mask;
132 
133 	/* Incremented by the number of inactive pages that were scanned */
134 	unsigned long nr_scanned;
135 
136 	/* Number of pages freed so far during a call to shrink_zones() */
137 	unsigned long nr_reclaimed;
138 
139 	struct {
140 		unsigned int dirty;
141 		unsigned int unqueued_dirty;
142 		unsigned int congested;
143 		unsigned int writeback;
144 		unsigned int immediate;
145 		unsigned int file_taken;
146 		unsigned int taken;
147 	} nr;
148 
149 	/* for recording the reclaimed slab by now */
150 	struct reclaim_state reclaim_state;
151 };
152 
153 #ifdef ARCH_HAS_PREFETCHW
154 #define prefetchw_prev_lru_page(_page, _base, _field)			\
155 	do {								\
156 		if ((_page)->lru.prev != _base) {			\
157 			struct page *prev;				\
158 									\
159 			prev = lru_to_page(&(_page->lru));		\
160 			prefetchw(&prev->_field);			\
161 		}							\
162 	} while (0)
163 #else
164 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
165 #endif
166 
167 /*
168  * From 0 .. 200.  Higher means more swappy.
169  */
170 int vm_swappiness = 60;
171 
172 static void set_task_reclaim_state(struct task_struct *task,
173 				   struct reclaim_state *rs)
174 {
175 	/* Check for an overwrite */
176 	WARN_ON_ONCE(rs && task->reclaim_state);
177 
178 	/* Check for the nulling of an already-nulled member */
179 	WARN_ON_ONCE(!rs && !task->reclaim_state);
180 
181 	task->reclaim_state = rs;
182 }
183 
184 static LIST_HEAD(shrinker_list);
185 static DECLARE_RWSEM(shrinker_rwsem);
186 
187 #ifdef CONFIG_MEMCG
188 /*
189  * We allow subsystems to populate their shrinker-related
190  * LRU lists before register_shrinker_prepared() is called
191  * for the shrinker, since we don't want to impose
192  * restrictions on their internal registration order.
193  * In this case shrink_slab_memcg() may find corresponding
194  * bit is set in the shrinkers map.
195  *
196  * This value is used by the function to detect registering
197  * shrinkers and to skip do_shrink_slab() calls for them.
198  */
199 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
200 
201 static DEFINE_IDR(shrinker_idr);
202 static int shrinker_nr_max;
203 
204 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
205 {
206 	int id, ret = -ENOMEM;
207 
208 	down_write(&shrinker_rwsem);
209 	/* This may call shrinker, so it must use down_read_trylock() */
210 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
211 	if (id < 0)
212 		goto unlock;
213 
214 	if (id >= shrinker_nr_max) {
215 		if (memcg_expand_shrinker_maps(id)) {
216 			idr_remove(&shrinker_idr, id);
217 			goto unlock;
218 		}
219 
220 		shrinker_nr_max = id + 1;
221 	}
222 	shrinker->id = id;
223 	ret = 0;
224 unlock:
225 	up_write(&shrinker_rwsem);
226 	return ret;
227 }
228 
229 static void unregister_memcg_shrinker(struct shrinker *shrinker)
230 {
231 	int id = shrinker->id;
232 
233 	BUG_ON(id < 0);
234 
235 	down_write(&shrinker_rwsem);
236 	idr_remove(&shrinker_idr, id);
237 	up_write(&shrinker_rwsem);
238 }
239 
240 static bool cgroup_reclaim(struct scan_control *sc)
241 {
242 	return sc->target_mem_cgroup;
243 }
244 
245 /**
246  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
247  * @sc: scan_control in question
248  *
249  * The normal page dirty throttling mechanism in balance_dirty_pages() is
250  * completely broken with the legacy memcg and direct stalling in
251  * shrink_page_list() is used for throttling instead, which lacks all the
252  * niceties such as fairness, adaptive pausing, bandwidth proportional
253  * allocation and configurability.
254  *
255  * This function tests whether the vmscan currently in progress can assume
256  * that the normal dirty throttling mechanism is operational.
257  */
258 static bool writeback_throttling_sane(struct scan_control *sc)
259 {
260 	if (!cgroup_reclaim(sc))
261 		return true;
262 #ifdef CONFIG_CGROUP_WRITEBACK
263 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
264 		return true;
265 #endif
266 	return false;
267 }
268 #else
269 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
270 {
271 	return 0;
272 }
273 
274 static void unregister_memcg_shrinker(struct shrinker *shrinker)
275 {
276 }
277 
278 static bool cgroup_reclaim(struct scan_control *sc)
279 {
280 	return false;
281 }
282 
283 static bool writeback_throttling_sane(struct scan_control *sc)
284 {
285 	return true;
286 }
287 #endif
288 
289 /*
290  * This misses isolated pages which are not accounted for to save counters.
291  * As the data only determines if reclaim or compaction continues, it is
292  * not expected that isolated pages will be a dominating factor.
293  */
294 unsigned long zone_reclaimable_pages(struct zone *zone)
295 {
296 	unsigned long nr;
297 
298 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
299 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
300 	if (get_nr_swap_pages() > 0)
301 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
302 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
303 
304 	return nr;
305 }
306 
307 /**
308  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
309  * @lruvec: lru vector
310  * @lru: lru to use
311  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
312  */
313 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
314 {
315 	unsigned long size = 0;
316 	int zid;
317 
318 	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
319 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
320 
321 		if (!managed_zone(zone))
322 			continue;
323 
324 		if (!mem_cgroup_disabled())
325 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
326 		else
327 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
328 	}
329 	return size;
330 }
331 
332 /*
333  * Add a shrinker callback to be called from the vm.
334  */
335 int prealloc_shrinker(struct shrinker *shrinker)
336 {
337 	unsigned int size = sizeof(*shrinker->nr_deferred);
338 
339 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
340 		size *= nr_node_ids;
341 
342 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
343 	if (!shrinker->nr_deferred)
344 		return -ENOMEM;
345 
346 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
347 		if (prealloc_memcg_shrinker(shrinker))
348 			goto free_deferred;
349 	}
350 
351 	return 0;
352 
353 free_deferred:
354 	kfree(shrinker->nr_deferred);
355 	shrinker->nr_deferred = NULL;
356 	return -ENOMEM;
357 }
358 
359 void free_prealloced_shrinker(struct shrinker *shrinker)
360 {
361 	if (!shrinker->nr_deferred)
362 		return;
363 
364 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
365 		unregister_memcg_shrinker(shrinker);
366 
367 	kfree(shrinker->nr_deferred);
368 	shrinker->nr_deferred = NULL;
369 }
370 
371 void register_shrinker_prepared(struct shrinker *shrinker)
372 {
373 	down_write(&shrinker_rwsem);
374 	list_add_tail(&shrinker->list, &shrinker_list);
375 #ifdef CONFIG_MEMCG
376 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
377 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
378 #endif
379 	up_write(&shrinker_rwsem);
380 }
381 
382 int register_shrinker(struct shrinker *shrinker)
383 {
384 	int err = prealloc_shrinker(shrinker);
385 
386 	if (err)
387 		return err;
388 	register_shrinker_prepared(shrinker);
389 	return 0;
390 }
391 EXPORT_SYMBOL(register_shrinker);
392 
393 /*
394  * Remove one
395  */
396 void unregister_shrinker(struct shrinker *shrinker)
397 {
398 	if (!shrinker->nr_deferred)
399 		return;
400 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
401 		unregister_memcg_shrinker(shrinker);
402 	down_write(&shrinker_rwsem);
403 	list_del(&shrinker->list);
404 	up_write(&shrinker_rwsem);
405 	kfree(shrinker->nr_deferred);
406 	shrinker->nr_deferred = NULL;
407 }
408 EXPORT_SYMBOL(unregister_shrinker);
409 
410 #define SHRINK_BATCH 128
411 
412 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
413 				    struct shrinker *shrinker, int priority)
414 {
415 	unsigned long freed = 0;
416 	unsigned long long delta;
417 	long total_scan;
418 	long freeable;
419 	long nr;
420 	long new_nr;
421 	int nid = shrinkctl->nid;
422 	long batch_size = shrinker->batch ? shrinker->batch
423 					  : SHRINK_BATCH;
424 	long scanned = 0, next_deferred;
425 
426 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
427 		nid = 0;
428 
429 	freeable = shrinker->count_objects(shrinker, shrinkctl);
430 	if (freeable == 0 || freeable == SHRINK_EMPTY)
431 		return freeable;
432 
433 	/*
434 	 * copy the current shrinker scan count into a local variable
435 	 * and zero it so that other concurrent shrinker invocations
436 	 * don't also do this scanning work.
437 	 */
438 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
439 
440 	total_scan = nr;
441 	if (shrinker->seeks) {
442 		delta = freeable >> priority;
443 		delta *= 4;
444 		do_div(delta, shrinker->seeks);
445 	} else {
446 		/*
447 		 * These objects don't require any IO to create. Trim
448 		 * them aggressively under memory pressure to keep
449 		 * them from causing refetches in the IO caches.
450 		 */
451 		delta = freeable / 2;
452 	}
453 
454 	total_scan += delta;
455 	if (total_scan < 0) {
456 		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
457 		       shrinker->scan_objects, total_scan);
458 		total_scan = freeable;
459 		next_deferred = nr;
460 	} else
461 		next_deferred = total_scan;
462 
463 	/*
464 	 * We need to avoid excessive windup on filesystem shrinkers
465 	 * due to large numbers of GFP_NOFS allocations causing the
466 	 * shrinkers to return -1 all the time. This results in a large
467 	 * nr being built up so when a shrink that can do some work
468 	 * comes along it empties the entire cache due to nr >>>
469 	 * freeable. This is bad for sustaining a working set in
470 	 * memory.
471 	 *
472 	 * Hence only allow the shrinker to scan the entire cache when
473 	 * a large delta change is calculated directly.
474 	 */
475 	if (delta < freeable / 4)
476 		total_scan = min(total_scan, freeable / 2);
477 
478 	/*
479 	 * Avoid risking looping forever due to too large nr value:
480 	 * never try to free more than twice the estimate number of
481 	 * freeable entries.
482 	 */
483 	if (total_scan > freeable * 2)
484 		total_scan = freeable * 2;
485 
486 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
487 				   freeable, delta, total_scan, priority);
488 
489 	/*
490 	 * Normally, we should not scan less than batch_size objects in one
491 	 * pass to avoid too frequent shrinker calls, but if the slab has less
492 	 * than batch_size objects in total and we are really tight on memory,
493 	 * we will try to reclaim all available objects, otherwise we can end
494 	 * up failing allocations although there are plenty of reclaimable
495 	 * objects spread over several slabs with usage less than the
496 	 * batch_size.
497 	 *
498 	 * We detect the "tight on memory" situations by looking at the total
499 	 * number of objects we want to scan (total_scan). If it is greater
500 	 * than the total number of objects on slab (freeable), we must be
501 	 * scanning at high prio and therefore should try to reclaim as much as
502 	 * possible.
503 	 */
504 	while (total_scan >= batch_size ||
505 	       total_scan >= freeable) {
506 		unsigned long ret;
507 		unsigned long nr_to_scan = min(batch_size, total_scan);
508 
509 		shrinkctl->nr_to_scan = nr_to_scan;
510 		shrinkctl->nr_scanned = nr_to_scan;
511 		ret = shrinker->scan_objects(shrinker, shrinkctl);
512 		if (ret == SHRINK_STOP)
513 			break;
514 		freed += ret;
515 
516 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
517 		total_scan -= shrinkctl->nr_scanned;
518 		scanned += shrinkctl->nr_scanned;
519 
520 		cond_resched();
521 	}
522 
523 	if (next_deferred >= scanned)
524 		next_deferred -= scanned;
525 	else
526 		next_deferred = 0;
527 	/*
528 	 * move the unused scan count back into the shrinker in a
529 	 * manner that handles concurrent updates. If we exhausted the
530 	 * scan, there is no need to do an update.
531 	 */
532 	if (next_deferred > 0)
533 		new_nr = atomic_long_add_return(next_deferred,
534 						&shrinker->nr_deferred[nid]);
535 	else
536 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
537 
538 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
539 	return freed;
540 }
541 
542 #ifdef CONFIG_MEMCG
543 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
544 			struct mem_cgroup *memcg, int priority)
545 {
546 	struct memcg_shrinker_map *map;
547 	unsigned long ret, freed = 0;
548 	int i;
549 
550 	if (!mem_cgroup_online(memcg))
551 		return 0;
552 
553 	if (!down_read_trylock(&shrinker_rwsem))
554 		return 0;
555 
556 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
557 					true);
558 	if (unlikely(!map))
559 		goto unlock;
560 
561 	for_each_set_bit(i, map->map, shrinker_nr_max) {
562 		struct shrink_control sc = {
563 			.gfp_mask = gfp_mask,
564 			.nid = nid,
565 			.memcg = memcg,
566 		};
567 		struct shrinker *shrinker;
568 
569 		shrinker = idr_find(&shrinker_idr, i);
570 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
571 			if (!shrinker)
572 				clear_bit(i, map->map);
573 			continue;
574 		}
575 
576 		/* Call non-slab shrinkers even though kmem is disabled */
577 		if (!memcg_kmem_enabled() &&
578 		    !(shrinker->flags & SHRINKER_NONSLAB))
579 			continue;
580 
581 		ret = do_shrink_slab(&sc, shrinker, priority);
582 		if (ret == SHRINK_EMPTY) {
583 			clear_bit(i, map->map);
584 			/*
585 			 * After the shrinker reported that it had no objects to
586 			 * free, but before we cleared the corresponding bit in
587 			 * the memcg shrinker map, a new object might have been
588 			 * added. To make sure, we have the bit set in this
589 			 * case, we invoke the shrinker one more time and reset
590 			 * the bit if it reports that it is not empty anymore.
591 			 * The memory barrier here pairs with the barrier in
592 			 * memcg_set_shrinker_bit():
593 			 *
594 			 * list_lru_add()     shrink_slab_memcg()
595 			 *   list_add_tail()    clear_bit()
596 			 *   <MB>               <MB>
597 			 *   set_bit()          do_shrink_slab()
598 			 */
599 			smp_mb__after_atomic();
600 			ret = do_shrink_slab(&sc, shrinker, priority);
601 			if (ret == SHRINK_EMPTY)
602 				ret = 0;
603 			else
604 				memcg_set_shrinker_bit(memcg, nid, i);
605 		}
606 		freed += ret;
607 
608 		if (rwsem_is_contended(&shrinker_rwsem)) {
609 			freed = freed ? : 1;
610 			break;
611 		}
612 	}
613 unlock:
614 	up_read(&shrinker_rwsem);
615 	return freed;
616 }
617 #else /* CONFIG_MEMCG */
618 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
619 			struct mem_cgroup *memcg, int priority)
620 {
621 	return 0;
622 }
623 #endif /* CONFIG_MEMCG */
624 
625 /**
626  * shrink_slab - shrink slab caches
627  * @gfp_mask: allocation context
628  * @nid: node whose slab caches to target
629  * @memcg: memory cgroup whose slab caches to target
630  * @priority: the reclaim priority
631  *
632  * Call the shrink functions to age shrinkable caches.
633  *
634  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
635  * unaware shrinkers will receive a node id of 0 instead.
636  *
637  * @memcg specifies the memory cgroup to target. Unaware shrinkers
638  * are called only if it is the root cgroup.
639  *
640  * @priority is sc->priority, we take the number of objects and >> by priority
641  * in order to get the scan target.
642  *
643  * Returns the number of reclaimed slab objects.
644  */
645 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
646 				 struct mem_cgroup *memcg,
647 				 int priority)
648 {
649 	unsigned long ret, freed = 0;
650 	struct shrinker *shrinker;
651 
652 	/*
653 	 * The root memcg might be allocated even though memcg is disabled
654 	 * via "cgroup_disable=memory" boot parameter.  This could make
655 	 * mem_cgroup_is_root() return false, then just run memcg slab
656 	 * shrink, but skip global shrink.  This may result in premature
657 	 * oom.
658 	 */
659 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
660 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
661 
662 	if (!down_read_trylock(&shrinker_rwsem))
663 		goto out;
664 
665 	list_for_each_entry(shrinker, &shrinker_list, list) {
666 		struct shrink_control sc = {
667 			.gfp_mask = gfp_mask,
668 			.nid = nid,
669 			.memcg = memcg,
670 		};
671 
672 		ret = do_shrink_slab(&sc, shrinker, priority);
673 		if (ret == SHRINK_EMPTY)
674 			ret = 0;
675 		freed += ret;
676 		/*
677 		 * Bail out if someone want to register a new shrinker to
678 		 * prevent the registration from being stalled for long periods
679 		 * by parallel ongoing shrinking.
680 		 */
681 		if (rwsem_is_contended(&shrinker_rwsem)) {
682 			freed = freed ? : 1;
683 			break;
684 		}
685 	}
686 
687 	up_read(&shrinker_rwsem);
688 out:
689 	cond_resched();
690 	return freed;
691 }
692 
693 void drop_slab_node(int nid)
694 {
695 	unsigned long freed;
696 
697 	do {
698 		struct mem_cgroup *memcg = NULL;
699 
700 		if (fatal_signal_pending(current))
701 			return;
702 
703 		freed = 0;
704 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
705 		do {
706 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
707 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
708 	} while (freed > 10);
709 }
710 
711 void drop_slab(void)
712 {
713 	int nid;
714 
715 	for_each_online_node(nid)
716 		drop_slab_node(nid);
717 }
718 
719 static inline int is_page_cache_freeable(struct page *page)
720 {
721 	/*
722 	 * A freeable page cache page is referenced only by the caller
723 	 * that isolated the page, the page cache and optional buffer
724 	 * heads at page->private.
725 	 */
726 	int page_cache_pins = thp_nr_pages(page);
727 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
728 }
729 
730 static int may_write_to_inode(struct inode *inode)
731 {
732 	if (current->flags & PF_SWAPWRITE)
733 		return 1;
734 	if (!inode_write_congested(inode))
735 		return 1;
736 	if (inode_to_bdi(inode) == current->backing_dev_info)
737 		return 1;
738 	return 0;
739 }
740 
741 /*
742  * We detected a synchronous write error writing a page out.  Probably
743  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
744  * fsync(), msync() or close().
745  *
746  * The tricky part is that after writepage we cannot touch the mapping: nothing
747  * prevents it from being freed up.  But we have a ref on the page and once
748  * that page is locked, the mapping is pinned.
749  *
750  * We're allowed to run sleeping lock_page() here because we know the caller has
751  * __GFP_FS.
752  */
753 static void handle_write_error(struct address_space *mapping,
754 				struct page *page, int error)
755 {
756 	lock_page(page);
757 	if (page_mapping(page) == mapping)
758 		mapping_set_error(mapping, error);
759 	unlock_page(page);
760 }
761 
762 /* possible outcome of pageout() */
763 typedef enum {
764 	/* failed to write page out, page is locked */
765 	PAGE_KEEP,
766 	/* move page to the active list, page is locked */
767 	PAGE_ACTIVATE,
768 	/* page has been sent to the disk successfully, page is unlocked */
769 	PAGE_SUCCESS,
770 	/* page is clean and locked */
771 	PAGE_CLEAN,
772 } pageout_t;
773 
774 /*
775  * pageout is called by shrink_page_list() for each dirty page.
776  * Calls ->writepage().
777  */
778 static pageout_t pageout(struct page *page, struct address_space *mapping)
779 {
780 	/*
781 	 * If the page is dirty, only perform writeback if that write
782 	 * will be non-blocking.  To prevent this allocation from being
783 	 * stalled by pagecache activity.  But note that there may be
784 	 * stalls if we need to run get_block().  We could test
785 	 * PagePrivate for that.
786 	 *
787 	 * If this process is currently in __generic_file_write_iter() against
788 	 * this page's queue, we can perform writeback even if that
789 	 * will block.
790 	 *
791 	 * If the page is swapcache, write it back even if that would
792 	 * block, for some throttling. This happens by accident, because
793 	 * swap_backing_dev_info is bust: it doesn't reflect the
794 	 * congestion state of the swapdevs.  Easy to fix, if needed.
795 	 */
796 	if (!is_page_cache_freeable(page))
797 		return PAGE_KEEP;
798 	if (!mapping) {
799 		/*
800 		 * Some data journaling orphaned pages can have
801 		 * page->mapping == NULL while being dirty with clean buffers.
802 		 */
803 		if (page_has_private(page)) {
804 			if (try_to_free_buffers(page)) {
805 				ClearPageDirty(page);
806 				pr_info("%s: orphaned page\n", __func__);
807 				return PAGE_CLEAN;
808 			}
809 		}
810 		return PAGE_KEEP;
811 	}
812 	if (mapping->a_ops->writepage == NULL)
813 		return PAGE_ACTIVATE;
814 	if (!may_write_to_inode(mapping->host))
815 		return PAGE_KEEP;
816 
817 	if (clear_page_dirty_for_io(page)) {
818 		int res;
819 		struct writeback_control wbc = {
820 			.sync_mode = WB_SYNC_NONE,
821 			.nr_to_write = SWAP_CLUSTER_MAX,
822 			.range_start = 0,
823 			.range_end = LLONG_MAX,
824 			.for_reclaim = 1,
825 		};
826 
827 		SetPageReclaim(page);
828 		res = mapping->a_ops->writepage(page, &wbc);
829 		if (res < 0)
830 			handle_write_error(mapping, page, res);
831 		if (res == AOP_WRITEPAGE_ACTIVATE) {
832 			ClearPageReclaim(page);
833 			return PAGE_ACTIVATE;
834 		}
835 
836 		if (!PageWriteback(page)) {
837 			/* synchronous write or broken a_ops? */
838 			ClearPageReclaim(page);
839 		}
840 		trace_mm_vmscan_writepage(page);
841 		inc_node_page_state(page, NR_VMSCAN_WRITE);
842 		return PAGE_SUCCESS;
843 	}
844 
845 	return PAGE_CLEAN;
846 }
847 
848 /*
849  * Same as remove_mapping, but if the page is removed from the mapping, it
850  * gets returned with a refcount of 0.
851  */
852 static int __remove_mapping(struct address_space *mapping, struct page *page,
853 			    bool reclaimed, struct mem_cgroup *target_memcg)
854 {
855 	unsigned long flags;
856 	int refcount;
857 	void *shadow = NULL;
858 
859 	BUG_ON(!PageLocked(page));
860 	BUG_ON(mapping != page_mapping(page));
861 
862 	xa_lock_irqsave(&mapping->i_pages, flags);
863 	/*
864 	 * The non racy check for a busy page.
865 	 *
866 	 * Must be careful with the order of the tests. When someone has
867 	 * a ref to the page, it may be possible that they dirty it then
868 	 * drop the reference. So if PageDirty is tested before page_count
869 	 * here, then the following race may occur:
870 	 *
871 	 * get_user_pages(&page);
872 	 * [user mapping goes away]
873 	 * write_to(page);
874 	 *				!PageDirty(page)    [good]
875 	 * SetPageDirty(page);
876 	 * put_page(page);
877 	 *				!page_count(page)   [good, discard it]
878 	 *
879 	 * [oops, our write_to data is lost]
880 	 *
881 	 * Reversing the order of the tests ensures such a situation cannot
882 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
883 	 * load is not satisfied before that of page->_refcount.
884 	 *
885 	 * Note that if SetPageDirty is always performed via set_page_dirty,
886 	 * and thus under the i_pages lock, then this ordering is not required.
887 	 */
888 	refcount = 1 + compound_nr(page);
889 	if (!page_ref_freeze(page, refcount))
890 		goto cannot_free;
891 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
892 	if (unlikely(PageDirty(page))) {
893 		page_ref_unfreeze(page, refcount);
894 		goto cannot_free;
895 	}
896 
897 	if (PageSwapCache(page)) {
898 		swp_entry_t swap = { .val = page_private(page) };
899 		mem_cgroup_swapout(page, swap);
900 		if (reclaimed && !mapping_exiting(mapping))
901 			shadow = workingset_eviction(page, target_memcg);
902 		__delete_from_swap_cache(page, swap, shadow);
903 		xa_unlock_irqrestore(&mapping->i_pages, flags);
904 		put_swap_page(page, swap);
905 	} else {
906 		void (*freepage)(struct page *);
907 
908 		freepage = mapping->a_ops->freepage;
909 		/*
910 		 * Remember a shadow entry for reclaimed file cache in
911 		 * order to detect refaults, thus thrashing, later on.
912 		 *
913 		 * But don't store shadows in an address space that is
914 		 * already exiting.  This is not just an optimization,
915 		 * inode reclaim needs to empty out the radix tree or
916 		 * the nodes are lost.  Don't plant shadows behind its
917 		 * back.
918 		 *
919 		 * We also don't store shadows for DAX mappings because the
920 		 * only page cache pages found in these are zero pages
921 		 * covering holes, and because we don't want to mix DAX
922 		 * exceptional entries and shadow exceptional entries in the
923 		 * same address_space.
924 		 */
925 		if (reclaimed && page_is_file_lru(page) &&
926 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
927 			shadow = workingset_eviction(page, target_memcg);
928 		__delete_from_page_cache(page, shadow);
929 		xa_unlock_irqrestore(&mapping->i_pages, flags);
930 
931 		if (freepage != NULL)
932 			freepage(page);
933 	}
934 
935 	return 1;
936 
937 cannot_free:
938 	xa_unlock_irqrestore(&mapping->i_pages, flags);
939 	return 0;
940 }
941 
942 /*
943  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
944  * someone else has a ref on the page, abort and return 0.  If it was
945  * successfully detached, return 1.  Assumes the caller has a single ref on
946  * this page.
947  */
948 int remove_mapping(struct address_space *mapping, struct page *page)
949 {
950 	if (__remove_mapping(mapping, page, false, NULL)) {
951 		/*
952 		 * Unfreezing the refcount with 1 rather than 2 effectively
953 		 * drops the pagecache ref for us without requiring another
954 		 * atomic operation.
955 		 */
956 		page_ref_unfreeze(page, 1);
957 		return 1;
958 	}
959 	return 0;
960 }
961 
962 /**
963  * putback_lru_page - put previously isolated page onto appropriate LRU list
964  * @page: page to be put back to appropriate lru list
965  *
966  * Add previously isolated @page to appropriate LRU list.
967  * Page may still be unevictable for other reasons.
968  *
969  * lru_lock must not be held, interrupts must be enabled.
970  */
971 void putback_lru_page(struct page *page)
972 {
973 	lru_cache_add(page);
974 	put_page(page);		/* drop ref from isolate */
975 }
976 
977 enum page_references {
978 	PAGEREF_RECLAIM,
979 	PAGEREF_RECLAIM_CLEAN,
980 	PAGEREF_KEEP,
981 	PAGEREF_ACTIVATE,
982 };
983 
984 static enum page_references page_check_references(struct page *page,
985 						  struct scan_control *sc)
986 {
987 	int referenced_ptes, referenced_page;
988 	unsigned long vm_flags;
989 
990 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
991 					  &vm_flags);
992 	referenced_page = TestClearPageReferenced(page);
993 
994 	/*
995 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
996 	 * move the page to the unevictable list.
997 	 */
998 	if (vm_flags & VM_LOCKED)
999 		return PAGEREF_RECLAIM;
1000 
1001 	if (referenced_ptes) {
1002 		/*
1003 		 * All mapped pages start out with page table
1004 		 * references from the instantiating fault, so we need
1005 		 * to look twice if a mapped file page is used more
1006 		 * than once.
1007 		 *
1008 		 * Mark it and spare it for another trip around the
1009 		 * inactive list.  Another page table reference will
1010 		 * lead to its activation.
1011 		 *
1012 		 * Note: the mark is set for activated pages as well
1013 		 * so that recently deactivated but used pages are
1014 		 * quickly recovered.
1015 		 */
1016 		SetPageReferenced(page);
1017 
1018 		if (referenced_page || referenced_ptes > 1)
1019 			return PAGEREF_ACTIVATE;
1020 
1021 		/*
1022 		 * Activate file-backed executable pages after first usage.
1023 		 */
1024 		if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1025 			return PAGEREF_ACTIVATE;
1026 
1027 		return PAGEREF_KEEP;
1028 	}
1029 
1030 	/* Reclaim if clean, defer dirty pages to writeback */
1031 	if (referenced_page && !PageSwapBacked(page))
1032 		return PAGEREF_RECLAIM_CLEAN;
1033 
1034 	return PAGEREF_RECLAIM;
1035 }
1036 
1037 /* Check if a page is dirty or under writeback */
1038 static void page_check_dirty_writeback(struct page *page,
1039 				       bool *dirty, bool *writeback)
1040 {
1041 	struct address_space *mapping;
1042 
1043 	/*
1044 	 * Anonymous pages are not handled by flushers and must be written
1045 	 * from reclaim context. Do not stall reclaim based on them
1046 	 */
1047 	if (!page_is_file_lru(page) ||
1048 	    (PageAnon(page) && !PageSwapBacked(page))) {
1049 		*dirty = false;
1050 		*writeback = false;
1051 		return;
1052 	}
1053 
1054 	/* By default assume that the page flags are accurate */
1055 	*dirty = PageDirty(page);
1056 	*writeback = PageWriteback(page);
1057 
1058 	/* Verify dirty/writeback state if the filesystem supports it */
1059 	if (!page_has_private(page))
1060 		return;
1061 
1062 	mapping = page_mapping(page);
1063 	if (mapping && mapping->a_ops->is_dirty_writeback)
1064 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1065 }
1066 
1067 /*
1068  * shrink_page_list() returns the number of reclaimed pages
1069  */
1070 static unsigned int shrink_page_list(struct list_head *page_list,
1071 				     struct pglist_data *pgdat,
1072 				     struct scan_control *sc,
1073 				     struct reclaim_stat *stat,
1074 				     bool ignore_references)
1075 {
1076 	LIST_HEAD(ret_pages);
1077 	LIST_HEAD(free_pages);
1078 	unsigned int nr_reclaimed = 0;
1079 	unsigned int pgactivate = 0;
1080 
1081 	memset(stat, 0, sizeof(*stat));
1082 	cond_resched();
1083 
1084 	while (!list_empty(page_list)) {
1085 		struct address_space *mapping;
1086 		struct page *page;
1087 		enum page_references references = PAGEREF_RECLAIM;
1088 		bool dirty, writeback, may_enter_fs;
1089 		unsigned int nr_pages;
1090 
1091 		cond_resched();
1092 
1093 		page = lru_to_page(page_list);
1094 		list_del(&page->lru);
1095 
1096 		if (!trylock_page(page))
1097 			goto keep;
1098 
1099 		VM_BUG_ON_PAGE(PageActive(page), page);
1100 
1101 		nr_pages = compound_nr(page);
1102 
1103 		/* Account the number of base pages even though THP */
1104 		sc->nr_scanned += nr_pages;
1105 
1106 		if (unlikely(!page_evictable(page)))
1107 			goto activate_locked;
1108 
1109 		if (!sc->may_unmap && page_mapped(page))
1110 			goto keep_locked;
1111 
1112 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1113 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1114 
1115 		/*
1116 		 * The number of dirty pages determines if a node is marked
1117 		 * reclaim_congested which affects wait_iff_congested. kswapd
1118 		 * will stall and start writing pages if the tail of the LRU
1119 		 * is all dirty unqueued pages.
1120 		 */
1121 		page_check_dirty_writeback(page, &dirty, &writeback);
1122 		if (dirty || writeback)
1123 			stat->nr_dirty++;
1124 
1125 		if (dirty && !writeback)
1126 			stat->nr_unqueued_dirty++;
1127 
1128 		/*
1129 		 * Treat this page as congested if the underlying BDI is or if
1130 		 * pages are cycling through the LRU so quickly that the
1131 		 * pages marked for immediate reclaim are making it to the
1132 		 * end of the LRU a second time.
1133 		 */
1134 		mapping = page_mapping(page);
1135 		if (((dirty || writeback) && mapping &&
1136 		     inode_write_congested(mapping->host)) ||
1137 		    (writeback && PageReclaim(page)))
1138 			stat->nr_congested++;
1139 
1140 		/*
1141 		 * If a page at the tail of the LRU is under writeback, there
1142 		 * are three cases to consider.
1143 		 *
1144 		 * 1) If reclaim is encountering an excessive number of pages
1145 		 *    under writeback and this page is both under writeback and
1146 		 *    PageReclaim then it indicates that pages are being queued
1147 		 *    for IO but are being recycled through the LRU before the
1148 		 *    IO can complete. Waiting on the page itself risks an
1149 		 *    indefinite stall if it is impossible to writeback the
1150 		 *    page due to IO error or disconnected storage so instead
1151 		 *    note that the LRU is being scanned too quickly and the
1152 		 *    caller can stall after page list has been processed.
1153 		 *
1154 		 * 2) Global or new memcg reclaim encounters a page that is
1155 		 *    not marked for immediate reclaim, or the caller does not
1156 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1157 		 *    not to fs). In this case mark the page for immediate
1158 		 *    reclaim and continue scanning.
1159 		 *
1160 		 *    Require may_enter_fs because we would wait on fs, which
1161 		 *    may not have submitted IO yet. And the loop driver might
1162 		 *    enter reclaim, and deadlock if it waits on a page for
1163 		 *    which it is needed to do the write (loop masks off
1164 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1165 		 *    would probably show more reasons.
1166 		 *
1167 		 * 3) Legacy memcg encounters a page that is already marked
1168 		 *    PageReclaim. memcg does not have any dirty pages
1169 		 *    throttling so we could easily OOM just because too many
1170 		 *    pages are in writeback and there is nothing else to
1171 		 *    reclaim. Wait for the writeback to complete.
1172 		 *
1173 		 * In cases 1) and 2) we activate the pages to get them out of
1174 		 * the way while we continue scanning for clean pages on the
1175 		 * inactive list and refilling from the active list. The
1176 		 * observation here is that waiting for disk writes is more
1177 		 * expensive than potentially causing reloads down the line.
1178 		 * Since they're marked for immediate reclaim, they won't put
1179 		 * memory pressure on the cache working set any longer than it
1180 		 * takes to write them to disk.
1181 		 */
1182 		if (PageWriteback(page)) {
1183 			/* Case 1 above */
1184 			if (current_is_kswapd() &&
1185 			    PageReclaim(page) &&
1186 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1187 				stat->nr_immediate++;
1188 				goto activate_locked;
1189 
1190 			/* Case 2 above */
1191 			} else if (writeback_throttling_sane(sc) ||
1192 			    !PageReclaim(page) || !may_enter_fs) {
1193 				/*
1194 				 * This is slightly racy - end_page_writeback()
1195 				 * might have just cleared PageReclaim, then
1196 				 * setting PageReclaim here end up interpreted
1197 				 * as PageReadahead - but that does not matter
1198 				 * enough to care.  What we do want is for this
1199 				 * page to have PageReclaim set next time memcg
1200 				 * reclaim reaches the tests above, so it will
1201 				 * then wait_on_page_writeback() to avoid OOM;
1202 				 * and it's also appropriate in global reclaim.
1203 				 */
1204 				SetPageReclaim(page);
1205 				stat->nr_writeback++;
1206 				goto activate_locked;
1207 
1208 			/* Case 3 above */
1209 			} else {
1210 				unlock_page(page);
1211 				wait_on_page_writeback(page);
1212 				/* then go back and try same page again */
1213 				list_add_tail(&page->lru, page_list);
1214 				continue;
1215 			}
1216 		}
1217 
1218 		if (!ignore_references)
1219 			references = page_check_references(page, sc);
1220 
1221 		switch (references) {
1222 		case PAGEREF_ACTIVATE:
1223 			goto activate_locked;
1224 		case PAGEREF_KEEP:
1225 			stat->nr_ref_keep += nr_pages;
1226 			goto keep_locked;
1227 		case PAGEREF_RECLAIM:
1228 		case PAGEREF_RECLAIM_CLEAN:
1229 			; /* try to reclaim the page below */
1230 		}
1231 
1232 		/*
1233 		 * Anonymous process memory has backing store?
1234 		 * Try to allocate it some swap space here.
1235 		 * Lazyfree page could be freed directly
1236 		 */
1237 		if (PageAnon(page) && PageSwapBacked(page)) {
1238 			if (!PageSwapCache(page)) {
1239 				if (!(sc->gfp_mask & __GFP_IO))
1240 					goto keep_locked;
1241 				if (PageTransHuge(page)) {
1242 					/* cannot split THP, skip it */
1243 					if (!can_split_huge_page(page, NULL))
1244 						goto activate_locked;
1245 					/*
1246 					 * Split pages without a PMD map right
1247 					 * away. Chances are some or all of the
1248 					 * tail pages can be freed without IO.
1249 					 */
1250 					if (!compound_mapcount(page) &&
1251 					    split_huge_page_to_list(page,
1252 								    page_list))
1253 						goto activate_locked;
1254 				}
1255 				if (!add_to_swap(page)) {
1256 					if (!PageTransHuge(page))
1257 						goto activate_locked_split;
1258 					/* Fallback to swap normal pages */
1259 					if (split_huge_page_to_list(page,
1260 								    page_list))
1261 						goto activate_locked;
1262 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1263 					count_vm_event(THP_SWPOUT_FALLBACK);
1264 #endif
1265 					if (!add_to_swap(page))
1266 						goto activate_locked_split;
1267 				}
1268 
1269 				may_enter_fs = true;
1270 
1271 				/* Adding to swap updated mapping */
1272 				mapping = page_mapping(page);
1273 			}
1274 		} else if (unlikely(PageTransHuge(page))) {
1275 			/* Split file THP */
1276 			if (split_huge_page_to_list(page, page_list))
1277 				goto keep_locked;
1278 		}
1279 
1280 		/*
1281 		 * THP may get split above, need minus tail pages and update
1282 		 * nr_pages to avoid accounting tail pages twice.
1283 		 *
1284 		 * The tail pages that are added into swap cache successfully
1285 		 * reach here.
1286 		 */
1287 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1288 			sc->nr_scanned -= (nr_pages - 1);
1289 			nr_pages = 1;
1290 		}
1291 
1292 		/*
1293 		 * The page is mapped into the page tables of one or more
1294 		 * processes. Try to unmap it here.
1295 		 */
1296 		if (page_mapped(page)) {
1297 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1298 			bool was_swapbacked = PageSwapBacked(page);
1299 
1300 			if (unlikely(PageTransHuge(page)))
1301 				flags |= TTU_SPLIT_HUGE_PMD;
1302 
1303 			if (!try_to_unmap(page, flags)) {
1304 				stat->nr_unmap_fail += nr_pages;
1305 				if (!was_swapbacked && PageSwapBacked(page))
1306 					stat->nr_lazyfree_fail += nr_pages;
1307 				goto activate_locked;
1308 			}
1309 		}
1310 
1311 		if (PageDirty(page)) {
1312 			/*
1313 			 * Only kswapd can writeback filesystem pages
1314 			 * to avoid risk of stack overflow. But avoid
1315 			 * injecting inefficient single-page IO into
1316 			 * flusher writeback as much as possible: only
1317 			 * write pages when we've encountered many
1318 			 * dirty pages, and when we've already scanned
1319 			 * the rest of the LRU for clean pages and see
1320 			 * the same dirty pages again (PageReclaim).
1321 			 */
1322 			if (page_is_file_lru(page) &&
1323 			    (!current_is_kswapd() || !PageReclaim(page) ||
1324 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1325 				/*
1326 				 * Immediately reclaim when written back.
1327 				 * Similar in principal to deactivate_page()
1328 				 * except we already have the page isolated
1329 				 * and know it's dirty
1330 				 */
1331 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1332 				SetPageReclaim(page);
1333 
1334 				goto activate_locked;
1335 			}
1336 
1337 			if (references == PAGEREF_RECLAIM_CLEAN)
1338 				goto keep_locked;
1339 			if (!may_enter_fs)
1340 				goto keep_locked;
1341 			if (!sc->may_writepage)
1342 				goto keep_locked;
1343 
1344 			/*
1345 			 * Page is dirty. Flush the TLB if a writable entry
1346 			 * potentially exists to avoid CPU writes after IO
1347 			 * starts and then write it out here.
1348 			 */
1349 			try_to_unmap_flush_dirty();
1350 			switch (pageout(page, mapping)) {
1351 			case PAGE_KEEP:
1352 				goto keep_locked;
1353 			case PAGE_ACTIVATE:
1354 				goto activate_locked;
1355 			case PAGE_SUCCESS:
1356 				stat->nr_pageout += thp_nr_pages(page);
1357 
1358 				if (PageWriteback(page))
1359 					goto keep;
1360 				if (PageDirty(page))
1361 					goto keep;
1362 
1363 				/*
1364 				 * A synchronous write - probably a ramdisk.  Go
1365 				 * ahead and try to reclaim the page.
1366 				 */
1367 				if (!trylock_page(page))
1368 					goto keep;
1369 				if (PageDirty(page) || PageWriteback(page))
1370 					goto keep_locked;
1371 				mapping = page_mapping(page);
1372 				fallthrough;
1373 			case PAGE_CLEAN:
1374 				; /* try to free the page below */
1375 			}
1376 		}
1377 
1378 		/*
1379 		 * If the page has buffers, try to free the buffer mappings
1380 		 * associated with this page. If we succeed we try to free
1381 		 * the page as well.
1382 		 *
1383 		 * We do this even if the page is PageDirty().
1384 		 * try_to_release_page() does not perform I/O, but it is
1385 		 * possible for a page to have PageDirty set, but it is actually
1386 		 * clean (all its buffers are clean).  This happens if the
1387 		 * buffers were written out directly, with submit_bh(). ext3
1388 		 * will do this, as well as the blockdev mapping.
1389 		 * try_to_release_page() will discover that cleanness and will
1390 		 * drop the buffers and mark the page clean - it can be freed.
1391 		 *
1392 		 * Rarely, pages can have buffers and no ->mapping.  These are
1393 		 * the pages which were not successfully invalidated in
1394 		 * truncate_cleanup_page().  We try to drop those buffers here
1395 		 * and if that worked, and the page is no longer mapped into
1396 		 * process address space (page_count == 1) it can be freed.
1397 		 * Otherwise, leave the page on the LRU so it is swappable.
1398 		 */
1399 		if (page_has_private(page)) {
1400 			if (!try_to_release_page(page, sc->gfp_mask))
1401 				goto activate_locked;
1402 			if (!mapping && page_count(page) == 1) {
1403 				unlock_page(page);
1404 				if (put_page_testzero(page))
1405 					goto free_it;
1406 				else {
1407 					/*
1408 					 * rare race with speculative reference.
1409 					 * the speculative reference will free
1410 					 * this page shortly, so we may
1411 					 * increment nr_reclaimed here (and
1412 					 * leave it off the LRU).
1413 					 */
1414 					nr_reclaimed++;
1415 					continue;
1416 				}
1417 			}
1418 		}
1419 
1420 		if (PageAnon(page) && !PageSwapBacked(page)) {
1421 			/* follow __remove_mapping for reference */
1422 			if (!page_ref_freeze(page, 1))
1423 				goto keep_locked;
1424 			if (PageDirty(page)) {
1425 				page_ref_unfreeze(page, 1);
1426 				goto keep_locked;
1427 			}
1428 
1429 			count_vm_event(PGLAZYFREED);
1430 			count_memcg_page_event(page, PGLAZYFREED);
1431 		} else if (!mapping || !__remove_mapping(mapping, page, true,
1432 							 sc->target_mem_cgroup))
1433 			goto keep_locked;
1434 
1435 		unlock_page(page);
1436 free_it:
1437 		/*
1438 		 * THP may get swapped out in a whole, need account
1439 		 * all base pages.
1440 		 */
1441 		nr_reclaimed += nr_pages;
1442 
1443 		/*
1444 		 * Is there need to periodically free_page_list? It would
1445 		 * appear not as the counts should be low
1446 		 */
1447 		if (unlikely(PageTransHuge(page)))
1448 			destroy_compound_page(page);
1449 		else
1450 			list_add(&page->lru, &free_pages);
1451 		continue;
1452 
1453 activate_locked_split:
1454 		/*
1455 		 * The tail pages that are failed to add into swap cache
1456 		 * reach here.  Fixup nr_scanned and nr_pages.
1457 		 */
1458 		if (nr_pages > 1) {
1459 			sc->nr_scanned -= (nr_pages - 1);
1460 			nr_pages = 1;
1461 		}
1462 activate_locked:
1463 		/* Not a candidate for swapping, so reclaim swap space. */
1464 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1465 						PageMlocked(page)))
1466 			try_to_free_swap(page);
1467 		VM_BUG_ON_PAGE(PageActive(page), page);
1468 		if (!PageMlocked(page)) {
1469 			int type = page_is_file_lru(page);
1470 			SetPageActive(page);
1471 			stat->nr_activate[type] += nr_pages;
1472 			count_memcg_page_event(page, PGACTIVATE);
1473 		}
1474 keep_locked:
1475 		unlock_page(page);
1476 keep:
1477 		list_add(&page->lru, &ret_pages);
1478 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1479 	}
1480 
1481 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1482 
1483 	mem_cgroup_uncharge_list(&free_pages);
1484 	try_to_unmap_flush();
1485 	free_unref_page_list(&free_pages);
1486 
1487 	list_splice(&ret_pages, page_list);
1488 	count_vm_events(PGACTIVATE, pgactivate);
1489 
1490 	return nr_reclaimed;
1491 }
1492 
1493 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1494 					    struct list_head *page_list)
1495 {
1496 	struct scan_control sc = {
1497 		.gfp_mask = GFP_KERNEL,
1498 		.priority = DEF_PRIORITY,
1499 		.may_unmap = 1,
1500 	};
1501 	struct reclaim_stat stat;
1502 	unsigned int nr_reclaimed;
1503 	struct page *page, *next;
1504 	LIST_HEAD(clean_pages);
1505 
1506 	list_for_each_entry_safe(page, next, page_list, lru) {
1507 		if (page_is_file_lru(page) && !PageDirty(page) &&
1508 		    !__PageMovable(page) && !PageUnevictable(page)) {
1509 			ClearPageActive(page);
1510 			list_move(&page->lru, &clean_pages);
1511 		}
1512 	}
1513 
1514 	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1515 					&stat, true);
1516 	list_splice(&clean_pages, page_list);
1517 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1518 			    -(long)nr_reclaimed);
1519 	/*
1520 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1521 	 * they will rotate back to anonymous LRU in the end if it failed to
1522 	 * discard so isolated count will be mismatched.
1523 	 * Compensate the isolated count for both LRU lists.
1524 	 */
1525 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1526 			    stat.nr_lazyfree_fail);
1527 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1528 			    -(long)stat.nr_lazyfree_fail);
1529 	return nr_reclaimed;
1530 }
1531 
1532 /*
1533  * Attempt to remove the specified page from its LRU.  Only take this page
1534  * if it is of the appropriate PageActive status.  Pages which are being
1535  * freed elsewhere are also ignored.
1536  *
1537  * page:	page to consider
1538  * mode:	one of the LRU isolation modes defined above
1539  *
1540  * returns 0 on success, -ve errno on failure.
1541  */
1542 int __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
1543 {
1544 	int ret = -EBUSY;
1545 
1546 	/* Only take pages on the LRU. */
1547 	if (!PageLRU(page))
1548 		return ret;
1549 
1550 	/* Compaction should not handle unevictable pages but CMA can do so */
1551 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1552 		return ret;
1553 
1554 	/*
1555 	 * To minimise LRU disruption, the caller can indicate that it only
1556 	 * wants to isolate pages it will be able to operate on without
1557 	 * blocking - clean pages for the most part.
1558 	 *
1559 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1560 	 * that it is possible to migrate without blocking
1561 	 */
1562 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1563 		/* All the caller can do on PageWriteback is block */
1564 		if (PageWriteback(page))
1565 			return ret;
1566 
1567 		if (PageDirty(page)) {
1568 			struct address_space *mapping;
1569 			bool migrate_dirty;
1570 
1571 			/*
1572 			 * Only pages without mappings or that have a
1573 			 * ->migratepage callback are possible to migrate
1574 			 * without blocking. However, we can be racing with
1575 			 * truncation so it's necessary to lock the page
1576 			 * to stabilise the mapping as truncation holds
1577 			 * the page lock until after the page is removed
1578 			 * from the page cache.
1579 			 */
1580 			if (!trylock_page(page))
1581 				return ret;
1582 
1583 			mapping = page_mapping(page);
1584 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1585 			unlock_page(page);
1586 			if (!migrate_dirty)
1587 				return ret;
1588 		}
1589 	}
1590 
1591 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1592 		return ret;
1593 
1594 	return 0;
1595 }
1596 
1597 /*
1598  * Update LRU sizes after isolating pages. The LRU size updates must
1599  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1600  */
1601 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1602 			enum lru_list lru, unsigned long *nr_zone_taken)
1603 {
1604 	int zid;
1605 
1606 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1607 		if (!nr_zone_taken[zid])
1608 			continue;
1609 
1610 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1611 	}
1612 
1613 }
1614 
1615 /**
1616  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1617  *
1618  * lruvec->lru_lock is heavily contended.  Some of the functions that
1619  * shrink the lists perform better by taking out a batch of pages
1620  * and working on them outside the LRU lock.
1621  *
1622  * For pagecache intensive workloads, this function is the hottest
1623  * spot in the kernel (apart from copy_*_user functions).
1624  *
1625  * Lru_lock must be held before calling this function.
1626  *
1627  * @nr_to_scan:	The number of eligible pages to look through on the list.
1628  * @lruvec:	The LRU vector to pull pages from.
1629  * @dst:	The temp list to put pages on to.
1630  * @nr_scanned:	The number of pages that were scanned.
1631  * @sc:		The scan_control struct for this reclaim session
1632  * @lru:	LRU list id for isolating
1633  *
1634  * returns how many pages were moved onto *@dst.
1635  */
1636 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1637 		struct lruvec *lruvec, struct list_head *dst,
1638 		unsigned long *nr_scanned, struct scan_control *sc,
1639 		enum lru_list lru)
1640 {
1641 	struct list_head *src = &lruvec->lists[lru];
1642 	unsigned long nr_taken = 0;
1643 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1644 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1645 	unsigned long skipped = 0;
1646 	unsigned long scan, total_scan, nr_pages;
1647 	LIST_HEAD(pages_skipped);
1648 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1649 
1650 	total_scan = 0;
1651 	scan = 0;
1652 	while (scan < nr_to_scan && !list_empty(src)) {
1653 		struct page *page;
1654 
1655 		page = lru_to_page(src);
1656 		prefetchw_prev_lru_page(page, src, flags);
1657 
1658 		nr_pages = compound_nr(page);
1659 		total_scan += nr_pages;
1660 
1661 		if (page_zonenum(page) > sc->reclaim_idx) {
1662 			list_move(&page->lru, &pages_skipped);
1663 			nr_skipped[page_zonenum(page)] += nr_pages;
1664 			continue;
1665 		}
1666 
1667 		/*
1668 		 * Do not count skipped pages because that makes the function
1669 		 * return with no isolated pages if the LRU mostly contains
1670 		 * ineligible pages.  This causes the VM to not reclaim any
1671 		 * pages, triggering a premature OOM.
1672 		 *
1673 		 * Account all tail pages of THP.  This would not cause
1674 		 * premature OOM since __isolate_lru_page() returns -EBUSY
1675 		 * only when the page is being freed somewhere else.
1676 		 */
1677 		scan += nr_pages;
1678 		switch (__isolate_lru_page_prepare(page, mode)) {
1679 		case 0:
1680 			/*
1681 			 * Be careful not to clear PageLRU until after we're
1682 			 * sure the page is not being freed elsewhere -- the
1683 			 * page release code relies on it.
1684 			 */
1685 			if (unlikely(!get_page_unless_zero(page)))
1686 				goto busy;
1687 
1688 			if (!TestClearPageLRU(page)) {
1689 				/*
1690 				 * This page may in other isolation path,
1691 				 * but we still hold lru_lock.
1692 				 */
1693 				put_page(page);
1694 				goto busy;
1695 			}
1696 
1697 			nr_taken += nr_pages;
1698 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1699 			list_move(&page->lru, dst);
1700 			break;
1701 
1702 		default:
1703 busy:
1704 			/* else it is being freed elsewhere */
1705 			list_move(&page->lru, src);
1706 		}
1707 	}
1708 
1709 	/*
1710 	 * Splice any skipped pages to the start of the LRU list. Note that
1711 	 * this disrupts the LRU order when reclaiming for lower zones but
1712 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1713 	 * scanning would soon rescan the same pages to skip and put the
1714 	 * system at risk of premature OOM.
1715 	 */
1716 	if (!list_empty(&pages_skipped)) {
1717 		int zid;
1718 
1719 		list_splice(&pages_skipped, src);
1720 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1721 			if (!nr_skipped[zid])
1722 				continue;
1723 
1724 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1725 			skipped += nr_skipped[zid];
1726 		}
1727 	}
1728 	*nr_scanned = total_scan;
1729 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1730 				    total_scan, skipped, nr_taken, mode, lru);
1731 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1732 	return nr_taken;
1733 }
1734 
1735 /**
1736  * isolate_lru_page - tries to isolate a page from its LRU list
1737  * @page: page to isolate from its LRU list
1738  *
1739  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1740  * vmstat statistic corresponding to whatever LRU list the page was on.
1741  *
1742  * Returns 0 if the page was removed from an LRU list.
1743  * Returns -EBUSY if the page was not on an LRU list.
1744  *
1745  * The returned page will have PageLRU() cleared.  If it was found on
1746  * the active list, it will have PageActive set.  If it was found on
1747  * the unevictable list, it will have the PageUnevictable bit set. That flag
1748  * may need to be cleared by the caller before letting the page go.
1749  *
1750  * The vmstat statistic corresponding to the list on which the page was
1751  * found will be decremented.
1752  *
1753  * Restrictions:
1754  *
1755  * (1) Must be called with an elevated refcount on the page. This is a
1756  *     fundamental difference from isolate_lru_pages (which is called
1757  *     without a stable reference).
1758  * (2) the lru_lock must not be held.
1759  * (3) interrupts must be enabled.
1760  */
1761 int isolate_lru_page(struct page *page)
1762 {
1763 	int ret = -EBUSY;
1764 
1765 	VM_BUG_ON_PAGE(!page_count(page), page);
1766 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1767 
1768 	if (TestClearPageLRU(page)) {
1769 		struct lruvec *lruvec;
1770 
1771 		get_page(page);
1772 		lruvec = lock_page_lruvec_irq(page);
1773 		del_page_from_lru_list(page, lruvec, page_lru(page));
1774 		unlock_page_lruvec_irq(lruvec);
1775 		ret = 0;
1776 	}
1777 
1778 	return ret;
1779 }
1780 
1781 /*
1782  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1783  * then get rescheduled. When there are massive number of tasks doing page
1784  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1785  * the LRU list will go small and be scanned faster than necessary, leading to
1786  * unnecessary swapping, thrashing and OOM.
1787  */
1788 static int too_many_isolated(struct pglist_data *pgdat, int file,
1789 		struct scan_control *sc)
1790 {
1791 	unsigned long inactive, isolated;
1792 
1793 	if (current_is_kswapd())
1794 		return 0;
1795 
1796 	if (!writeback_throttling_sane(sc))
1797 		return 0;
1798 
1799 	if (file) {
1800 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1801 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1802 	} else {
1803 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1804 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1805 	}
1806 
1807 	/*
1808 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1809 	 * won't get blocked by normal direct-reclaimers, forming a circular
1810 	 * deadlock.
1811 	 */
1812 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1813 		inactive >>= 3;
1814 
1815 	return isolated > inactive;
1816 }
1817 
1818 /*
1819  * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
1820  * On return, @list is reused as a list of pages to be freed by the caller.
1821  *
1822  * Returns the number of pages moved to the given lruvec.
1823  */
1824 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1825 						     struct list_head *list)
1826 {
1827 	int nr_pages, nr_moved = 0;
1828 	LIST_HEAD(pages_to_free);
1829 	struct page *page;
1830 	enum lru_list lru;
1831 
1832 	while (!list_empty(list)) {
1833 		page = lru_to_page(list);
1834 		VM_BUG_ON_PAGE(PageLRU(page), page);
1835 		list_del(&page->lru);
1836 		if (unlikely(!page_evictable(page))) {
1837 			spin_unlock_irq(&lruvec->lru_lock);
1838 			putback_lru_page(page);
1839 			spin_lock_irq(&lruvec->lru_lock);
1840 			continue;
1841 		}
1842 
1843 		/*
1844 		 * The SetPageLRU needs to be kept here for list integrity.
1845 		 * Otherwise:
1846 		 *   #0 move_pages_to_lru             #1 release_pages
1847 		 *   if !put_page_testzero
1848 		 *				      if (put_page_testzero())
1849 		 *				        !PageLRU //skip lru_lock
1850 		 *     SetPageLRU()
1851 		 *     list_add(&page->lru,)
1852 		 *                                        list_add(&page->lru,)
1853 		 */
1854 		SetPageLRU(page);
1855 
1856 		if (unlikely(put_page_testzero(page))) {
1857 			__ClearPageLRU(page);
1858 			__ClearPageActive(page);
1859 
1860 			if (unlikely(PageCompound(page))) {
1861 				spin_unlock_irq(&lruvec->lru_lock);
1862 				destroy_compound_page(page);
1863 				spin_lock_irq(&lruvec->lru_lock);
1864 			} else
1865 				list_add(&page->lru, &pages_to_free);
1866 
1867 			continue;
1868 		}
1869 
1870 		/*
1871 		 * All pages were isolated from the same lruvec (and isolation
1872 		 * inhibits memcg migration).
1873 		 */
1874 		VM_BUG_ON_PAGE(!lruvec_holds_page_lru_lock(page, lruvec), page);
1875 		lru = page_lru(page);
1876 		nr_pages = thp_nr_pages(page);
1877 
1878 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1879 		list_add(&page->lru, &lruvec->lists[lru]);
1880 		nr_moved += nr_pages;
1881 		if (PageActive(page))
1882 			workingset_age_nonresident(lruvec, nr_pages);
1883 	}
1884 
1885 	/*
1886 	 * To save our caller's stack, now use input list for pages to free.
1887 	 */
1888 	list_splice(&pages_to_free, list);
1889 
1890 	return nr_moved;
1891 }
1892 
1893 /*
1894  * If a kernel thread (such as nfsd for loop-back mounts) services
1895  * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
1896  * In that case we should only throttle if the backing device it is
1897  * writing to is congested.  In other cases it is safe to throttle.
1898  */
1899 static int current_may_throttle(void)
1900 {
1901 	return !(current->flags & PF_LOCAL_THROTTLE) ||
1902 		current->backing_dev_info == NULL ||
1903 		bdi_write_congested(current->backing_dev_info);
1904 }
1905 
1906 /*
1907  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1908  * of reclaimed pages
1909  */
1910 static noinline_for_stack unsigned long
1911 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1912 		     struct scan_control *sc, enum lru_list lru)
1913 {
1914 	LIST_HEAD(page_list);
1915 	unsigned long nr_scanned;
1916 	unsigned int nr_reclaimed = 0;
1917 	unsigned long nr_taken;
1918 	struct reclaim_stat stat;
1919 	bool file = is_file_lru(lru);
1920 	enum vm_event_item item;
1921 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1922 	bool stalled = false;
1923 
1924 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1925 		if (stalled)
1926 			return 0;
1927 
1928 		/* wait a bit for the reclaimer. */
1929 		msleep(100);
1930 		stalled = true;
1931 
1932 		/* We are about to die and free our memory. Return now. */
1933 		if (fatal_signal_pending(current))
1934 			return SWAP_CLUSTER_MAX;
1935 	}
1936 
1937 	lru_add_drain();
1938 
1939 	spin_lock_irq(&lruvec->lru_lock);
1940 
1941 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1942 				     &nr_scanned, sc, lru);
1943 
1944 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1945 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1946 	if (!cgroup_reclaim(sc))
1947 		__count_vm_events(item, nr_scanned);
1948 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1949 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
1950 
1951 	spin_unlock_irq(&lruvec->lru_lock);
1952 
1953 	if (nr_taken == 0)
1954 		return 0;
1955 
1956 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
1957 
1958 	spin_lock_irq(&lruvec->lru_lock);
1959 	move_pages_to_lru(lruvec, &page_list);
1960 
1961 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1962 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1963 	if (!cgroup_reclaim(sc))
1964 		__count_vm_events(item, nr_reclaimed);
1965 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1966 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1967 	spin_unlock_irq(&lruvec->lru_lock);
1968 
1969 	lru_note_cost(lruvec, file, stat.nr_pageout);
1970 	mem_cgroup_uncharge_list(&page_list);
1971 	free_unref_page_list(&page_list);
1972 
1973 	/*
1974 	 * If dirty pages are scanned that are not queued for IO, it
1975 	 * implies that flushers are not doing their job. This can
1976 	 * happen when memory pressure pushes dirty pages to the end of
1977 	 * the LRU before the dirty limits are breached and the dirty
1978 	 * data has expired. It can also happen when the proportion of
1979 	 * dirty pages grows not through writes but through memory
1980 	 * pressure reclaiming all the clean cache. And in some cases,
1981 	 * the flushers simply cannot keep up with the allocation
1982 	 * rate. Nudge the flusher threads in case they are asleep.
1983 	 */
1984 	if (stat.nr_unqueued_dirty == nr_taken)
1985 		wakeup_flusher_threads(WB_REASON_VMSCAN);
1986 
1987 	sc->nr.dirty += stat.nr_dirty;
1988 	sc->nr.congested += stat.nr_congested;
1989 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1990 	sc->nr.writeback += stat.nr_writeback;
1991 	sc->nr.immediate += stat.nr_immediate;
1992 	sc->nr.taken += nr_taken;
1993 	if (file)
1994 		sc->nr.file_taken += nr_taken;
1995 
1996 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1997 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1998 	return nr_reclaimed;
1999 }
2000 
2001 /*
2002  * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2003  *
2004  * We move them the other way if the page is referenced by one or more
2005  * processes.
2006  *
2007  * If the pages are mostly unmapped, the processing is fast and it is
2008  * appropriate to hold lru_lock across the whole operation.  But if
2009  * the pages are mapped, the processing is slow (page_referenced()), so
2010  * we should drop lru_lock around each page.  It's impossible to balance
2011  * this, so instead we remove the pages from the LRU while processing them.
2012  * It is safe to rely on PG_active against the non-LRU pages in here because
2013  * nobody will play with that bit on a non-LRU page.
2014  *
2015  * The downside is that we have to touch page->_refcount against each page.
2016  * But we had to alter page->flags anyway.
2017  */
2018 static void shrink_active_list(unsigned long nr_to_scan,
2019 			       struct lruvec *lruvec,
2020 			       struct scan_control *sc,
2021 			       enum lru_list lru)
2022 {
2023 	unsigned long nr_taken;
2024 	unsigned long nr_scanned;
2025 	unsigned long vm_flags;
2026 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2027 	LIST_HEAD(l_active);
2028 	LIST_HEAD(l_inactive);
2029 	struct page *page;
2030 	unsigned nr_deactivate, nr_activate;
2031 	unsigned nr_rotated = 0;
2032 	int file = is_file_lru(lru);
2033 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2034 
2035 	lru_add_drain();
2036 
2037 	spin_lock_irq(&lruvec->lru_lock);
2038 
2039 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2040 				     &nr_scanned, sc, lru);
2041 
2042 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2043 
2044 	if (!cgroup_reclaim(sc))
2045 		__count_vm_events(PGREFILL, nr_scanned);
2046 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2047 
2048 	spin_unlock_irq(&lruvec->lru_lock);
2049 
2050 	while (!list_empty(&l_hold)) {
2051 		cond_resched();
2052 		page = lru_to_page(&l_hold);
2053 		list_del(&page->lru);
2054 
2055 		if (unlikely(!page_evictable(page))) {
2056 			putback_lru_page(page);
2057 			continue;
2058 		}
2059 
2060 		if (unlikely(buffer_heads_over_limit)) {
2061 			if (page_has_private(page) && trylock_page(page)) {
2062 				if (page_has_private(page))
2063 					try_to_release_page(page, 0);
2064 				unlock_page(page);
2065 			}
2066 		}
2067 
2068 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2069 				    &vm_flags)) {
2070 			/*
2071 			 * Identify referenced, file-backed active pages and
2072 			 * give them one more trip around the active list. So
2073 			 * that executable code get better chances to stay in
2074 			 * memory under moderate memory pressure.  Anon pages
2075 			 * are not likely to be evicted by use-once streaming
2076 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2077 			 * so we ignore them here.
2078 			 */
2079 			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2080 				nr_rotated += thp_nr_pages(page);
2081 				list_add(&page->lru, &l_active);
2082 				continue;
2083 			}
2084 		}
2085 
2086 		ClearPageActive(page);	/* we are de-activating */
2087 		SetPageWorkingset(page);
2088 		list_add(&page->lru, &l_inactive);
2089 	}
2090 
2091 	/*
2092 	 * Move pages back to the lru list.
2093 	 */
2094 	spin_lock_irq(&lruvec->lru_lock);
2095 
2096 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2097 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2098 	/* Keep all free pages in l_active list */
2099 	list_splice(&l_inactive, &l_active);
2100 
2101 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2102 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2103 
2104 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2105 	spin_unlock_irq(&lruvec->lru_lock);
2106 
2107 	mem_cgroup_uncharge_list(&l_active);
2108 	free_unref_page_list(&l_active);
2109 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2110 			nr_deactivate, nr_rotated, sc->priority, file);
2111 }
2112 
2113 unsigned long reclaim_pages(struct list_head *page_list)
2114 {
2115 	int nid = NUMA_NO_NODE;
2116 	unsigned int nr_reclaimed = 0;
2117 	LIST_HEAD(node_page_list);
2118 	struct reclaim_stat dummy_stat;
2119 	struct page *page;
2120 	struct scan_control sc = {
2121 		.gfp_mask = GFP_KERNEL,
2122 		.priority = DEF_PRIORITY,
2123 		.may_writepage = 1,
2124 		.may_unmap = 1,
2125 		.may_swap = 1,
2126 	};
2127 
2128 	while (!list_empty(page_list)) {
2129 		page = lru_to_page(page_list);
2130 		if (nid == NUMA_NO_NODE) {
2131 			nid = page_to_nid(page);
2132 			INIT_LIST_HEAD(&node_page_list);
2133 		}
2134 
2135 		if (nid == page_to_nid(page)) {
2136 			ClearPageActive(page);
2137 			list_move(&page->lru, &node_page_list);
2138 			continue;
2139 		}
2140 
2141 		nr_reclaimed += shrink_page_list(&node_page_list,
2142 						NODE_DATA(nid),
2143 						&sc, &dummy_stat, false);
2144 		while (!list_empty(&node_page_list)) {
2145 			page = lru_to_page(&node_page_list);
2146 			list_del(&page->lru);
2147 			putback_lru_page(page);
2148 		}
2149 
2150 		nid = NUMA_NO_NODE;
2151 	}
2152 
2153 	if (!list_empty(&node_page_list)) {
2154 		nr_reclaimed += shrink_page_list(&node_page_list,
2155 						NODE_DATA(nid),
2156 						&sc, &dummy_stat, false);
2157 		while (!list_empty(&node_page_list)) {
2158 			page = lru_to_page(&node_page_list);
2159 			list_del(&page->lru);
2160 			putback_lru_page(page);
2161 		}
2162 	}
2163 
2164 	return nr_reclaimed;
2165 }
2166 
2167 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2168 				 struct lruvec *lruvec, struct scan_control *sc)
2169 {
2170 	if (is_active_lru(lru)) {
2171 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2172 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2173 		else
2174 			sc->skipped_deactivate = 1;
2175 		return 0;
2176 	}
2177 
2178 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2179 }
2180 
2181 /*
2182  * The inactive anon list should be small enough that the VM never has
2183  * to do too much work.
2184  *
2185  * The inactive file list should be small enough to leave most memory
2186  * to the established workingset on the scan-resistant active list,
2187  * but large enough to avoid thrashing the aggregate readahead window.
2188  *
2189  * Both inactive lists should also be large enough that each inactive
2190  * page has a chance to be referenced again before it is reclaimed.
2191  *
2192  * If that fails and refaulting is observed, the inactive list grows.
2193  *
2194  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2195  * on this LRU, maintained by the pageout code. An inactive_ratio
2196  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2197  *
2198  * total     target    max
2199  * memory    ratio     inactive
2200  * -------------------------------------
2201  *   10MB       1         5MB
2202  *  100MB       1        50MB
2203  *    1GB       3       250MB
2204  *   10GB      10       0.9GB
2205  *  100GB      31         3GB
2206  *    1TB     101        10GB
2207  *   10TB     320        32GB
2208  */
2209 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2210 {
2211 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2212 	unsigned long inactive, active;
2213 	unsigned long inactive_ratio;
2214 	unsigned long gb;
2215 
2216 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2217 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2218 
2219 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2220 	if (gb)
2221 		inactive_ratio = int_sqrt(10 * gb);
2222 	else
2223 		inactive_ratio = 1;
2224 
2225 	return inactive * inactive_ratio < active;
2226 }
2227 
2228 enum scan_balance {
2229 	SCAN_EQUAL,
2230 	SCAN_FRACT,
2231 	SCAN_ANON,
2232 	SCAN_FILE,
2233 };
2234 
2235 /*
2236  * Determine how aggressively the anon and file LRU lists should be
2237  * scanned.  The relative value of each set of LRU lists is determined
2238  * by looking at the fraction of the pages scanned we did rotate back
2239  * onto the active list instead of evict.
2240  *
2241  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2242  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2243  */
2244 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2245 			   unsigned long *nr)
2246 {
2247 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2248 	unsigned long anon_cost, file_cost, total_cost;
2249 	int swappiness = mem_cgroup_swappiness(memcg);
2250 	u64 fraction[ANON_AND_FILE];
2251 	u64 denominator = 0;	/* gcc */
2252 	enum scan_balance scan_balance;
2253 	unsigned long ap, fp;
2254 	enum lru_list lru;
2255 
2256 	/* If we have no swap space, do not bother scanning anon pages. */
2257 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2258 		scan_balance = SCAN_FILE;
2259 		goto out;
2260 	}
2261 
2262 	/*
2263 	 * Global reclaim will swap to prevent OOM even with no
2264 	 * swappiness, but memcg users want to use this knob to
2265 	 * disable swapping for individual groups completely when
2266 	 * using the memory controller's swap limit feature would be
2267 	 * too expensive.
2268 	 */
2269 	if (cgroup_reclaim(sc) && !swappiness) {
2270 		scan_balance = SCAN_FILE;
2271 		goto out;
2272 	}
2273 
2274 	/*
2275 	 * Do not apply any pressure balancing cleverness when the
2276 	 * system is close to OOM, scan both anon and file equally
2277 	 * (unless the swappiness setting disagrees with swapping).
2278 	 */
2279 	if (!sc->priority && swappiness) {
2280 		scan_balance = SCAN_EQUAL;
2281 		goto out;
2282 	}
2283 
2284 	/*
2285 	 * If the system is almost out of file pages, force-scan anon.
2286 	 */
2287 	if (sc->file_is_tiny) {
2288 		scan_balance = SCAN_ANON;
2289 		goto out;
2290 	}
2291 
2292 	/*
2293 	 * If there is enough inactive page cache, we do not reclaim
2294 	 * anything from the anonymous working right now.
2295 	 */
2296 	if (sc->cache_trim_mode) {
2297 		scan_balance = SCAN_FILE;
2298 		goto out;
2299 	}
2300 
2301 	scan_balance = SCAN_FRACT;
2302 	/*
2303 	 * Calculate the pressure balance between anon and file pages.
2304 	 *
2305 	 * The amount of pressure we put on each LRU is inversely
2306 	 * proportional to the cost of reclaiming each list, as
2307 	 * determined by the share of pages that are refaulting, times
2308 	 * the relative IO cost of bringing back a swapped out
2309 	 * anonymous page vs reloading a filesystem page (swappiness).
2310 	 *
2311 	 * Although we limit that influence to ensure no list gets
2312 	 * left behind completely: at least a third of the pressure is
2313 	 * applied, before swappiness.
2314 	 *
2315 	 * With swappiness at 100, anon and file have equal IO cost.
2316 	 */
2317 	total_cost = sc->anon_cost + sc->file_cost;
2318 	anon_cost = total_cost + sc->anon_cost;
2319 	file_cost = total_cost + sc->file_cost;
2320 	total_cost = anon_cost + file_cost;
2321 
2322 	ap = swappiness * (total_cost + 1);
2323 	ap /= anon_cost + 1;
2324 
2325 	fp = (200 - swappiness) * (total_cost + 1);
2326 	fp /= file_cost + 1;
2327 
2328 	fraction[0] = ap;
2329 	fraction[1] = fp;
2330 	denominator = ap + fp;
2331 out:
2332 	for_each_evictable_lru(lru) {
2333 		int file = is_file_lru(lru);
2334 		unsigned long lruvec_size;
2335 		unsigned long scan;
2336 		unsigned long protection;
2337 
2338 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2339 		protection = mem_cgroup_protection(sc->target_mem_cgroup,
2340 						   memcg,
2341 						   sc->memcg_low_reclaim);
2342 
2343 		if (protection) {
2344 			/*
2345 			 * Scale a cgroup's reclaim pressure by proportioning
2346 			 * its current usage to its memory.low or memory.min
2347 			 * setting.
2348 			 *
2349 			 * This is important, as otherwise scanning aggression
2350 			 * becomes extremely binary -- from nothing as we
2351 			 * approach the memory protection threshold, to totally
2352 			 * nominal as we exceed it.  This results in requiring
2353 			 * setting extremely liberal protection thresholds. It
2354 			 * also means we simply get no protection at all if we
2355 			 * set it too low, which is not ideal.
2356 			 *
2357 			 * If there is any protection in place, we reduce scan
2358 			 * pressure by how much of the total memory used is
2359 			 * within protection thresholds.
2360 			 *
2361 			 * There is one special case: in the first reclaim pass,
2362 			 * we skip over all groups that are within their low
2363 			 * protection. If that fails to reclaim enough pages to
2364 			 * satisfy the reclaim goal, we come back and override
2365 			 * the best-effort low protection. However, we still
2366 			 * ideally want to honor how well-behaved groups are in
2367 			 * that case instead of simply punishing them all
2368 			 * equally. As such, we reclaim them based on how much
2369 			 * memory they are using, reducing the scan pressure
2370 			 * again by how much of the total memory used is under
2371 			 * hard protection.
2372 			 */
2373 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2374 
2375 			/* Avoid TOCTOU with earlier protection check */
2376 			cgroup_size = max(cgroup_size, protection);
2377 
2378 			scan = lruvec_size - lruvec_size * protection /
2379 				cgroup_size;
2380 
2381 			/*
2382 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2383 			 * reclaim moving forwards, avoiding decrementing
2384 			 * sc->priority further than desirable.
2385 			 */
2386 			scan = max(scan, SWAP_CLUSTER_MAX);
2387 		} else {
2388 			scan = lruvec_size;
2389 		}
2390 
2391 		scan >>= sc->priority;
2392 
2393 		/*
2394 		 * If the cgroup's already been deleted, make sure to
2395 		 * scrape out the remaining cache.
2396 		 */
2397 		if (!scan && !mem_cgroup_online(memcg))
2398 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2399 
2400 		switch (scan_balance) {
2401 		case SCAN_EQUAL:
2402 			/* Scan lists relative to size */
2403 			break;
2404 		case SCAN_FRACT:
2405 			/*
2406 			 * Scan types proportional to swappiness and
2407 			 * their relative recent reclaim efficiency.
2408 			 * Make sure we don't miss the last page on
2409 			 * the offlined memory cgroups because of a
2410 			 * round-off error.
2411 			 */
2412 			scan = mem_cgroup_online(memcg) ?
2413 			       div64_u64(scan * fraction[file], denominator) :
2414 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2415 						  denominator);
2416 			break;
2417 		case SCAN_FILE:
2418 		case SCAN_ANON:
2419 			/* Scan one type exclusively */
2420 			if ((scan_balance == SCAN_FILE) != file)
2421 				scan = 0;
2422 			break;
2423 		default:
2424 			/* Look ma, no brain */
2425 			BUG();
2426 		}
2427 
2428 		nr[lru] = scan;
2429 	}
2430 }
2431 
2432 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2433 {
2434 	unsigned long nr[NR_LRU_LISTS];
2435 	unsigned long targets[NR_LRU_LISTS];
2436 	unsigned long nr_to_scan;
2437 	enum lru_list lru;
2438 	unsigned long nr_reclaimed = 0;
2439 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2440 	struct blk_plug plug;
2441 	bool scan_adjusted;
2442 
2443 	get_scan_count(lruvec, sc, nr);
2444 
2445 	/* Record the original scan target for proportional adjustments later */
2446 	memcpy(targets, nr, sizeof(nr));
2447 
2448 	/*
2449 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2450 	 * event that can occur when there is little memory pressure e.g.
2451 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2452 	 * when the requested number of pages are reclaimed when scanning at
2453 	 * DEF_PRIORITY on the assumption that the fact we are direct
2454 	 * reclaiming implies that kswapd is not keeping up and it is best to
2455 	 * do a batch of work at once. For memcg reclaim one check is made to
2456 	 * abort proportional reclaim if either the file or anon lru has already
2457 	 * dropped to zero at the first pass.
2458 	 */
2459 	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2460 			 sc->priority == DEF_PRIORITY);
2461 
2462 	blk_start_plug(&plug);
2463 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2464 					nr[LRU_INACTIVE_FILE]) {
2465 		unsigned long nr_anon, nr_file, percentage;
2466 		unsigned long nr_scanned;
2467 
2468 		for_each_evictable_lru(lru) {
2469 			if (nr[lru]) {
2470 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2471 				nr[lru] -= nr_to_scan;
2472 
2473 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2474 							    lruvec, sc);
2475 			}
2476 		}
2477 
2478 		cond_resched();
2479 
2480 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2481 			continue;
2482 
2483 		/*
2484 		 * For kswapd and memcg, reclaim at least the number of pages
2485 		 * requested. Ensure that the anon and file LRUs are scanned
2486 		 * proportionally what was requested by get_scan_count(). We
2487 		 * stop reclaiming one LRU and reduce the amount scanning
2488 		 * proportional to the original scan target.
2489 		 */
2490 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2491 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2492 
2493 		/*
2494 		 * It's just vindictive to attack the larger once the smaller
2495 		 * has gone to zero.  And given the way we stop scanning the
2496 		 * smaller below, this makes sure that we only make one nudge
2497 		 * towards proportionality once we've got nr_to_reclaim.
2498 		 */
2499 		if (!nr_file || !nr_anon)
2500 			break;
2501 
2502 		if (nr_file > nr_anon) {
2503 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2504 						targets[LRU_ACTIVE_ANON] + 1;
2505 			lru = LRU_BASE;
2506 			percentage = nr_anon * 100 / scan_target;
2507 		} else {
2508 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2509 						targets[LRU_ACTIVE_FILE] + 1;
2510 			lru = LRU_FILE;
2511 			percentage = nr_file * 100 / scan_target;
2512 		}
2513 
2514 		/* Stop scanning the smaller of the LRU */
2515 		nr[lru] = 0;
2516 		nr[lru + LRU_ACTIVE] = 0;
2517 
2518 		/*
2519 		 * Recalculate the other LRU scan count based on its original
2520 		 * scan target and the percentage scanning already complete
2521 		 */
2522 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2523 		nr_scanned = targets[lru] - nr[lru];
2524 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2525 		nr[lru] -= min(nr[lru], nr_scanned);
2526 
2527 		lru += LRU_ACTIVE;
2528 		nr_scanned = targets[lru] - nr[lru];
2529 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2530 		nr[lru] -= min(nr[lru], nr_scanned);
2531 
2532 		scan_adjusted = true;
2533 	}
2534 	blk_finish_plug(&plug);
2535 	sc->nr_reclaimed += nr_reclaimed;
2536 
2537 	/*
2538 	 * Even if we did not try to evict anon pages at all, we want to
2539 	 * rebalance the anon lru active/inactive ratio.
2540 	 */
2541 	if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2542 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2543 				   sc, LRU_ACTIVE_ANON);
2544 }
2545 
2546 /* Use reclaim/compaction for costly allocs or under memory pressure */
2547 static bool in_reclaim_compaction(struct scan_control *sc)
2548 {
2549 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2550 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2551 			 sc->priority < DEF_PRIORITY - 2))
2552 		return true;
2553 
2554 	return false;
2555 }
2556 
2557 /*
2558  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2559  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2560  * true if more pages should be reclaimed such that when the page allocator
2561  * calls try_to_compact_pages() that it will have enough free pages to succeed.
2562  * It will give up earlier than that if there is difficulty reclaiming pages.
2563  */
2564 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2565 					unsigned long nr_reclaimed,
2566 					struct scan_control *sc)
2567 {
2568 	unsigned long pages_for_compaction;
2569 	unsigned long inactive_lru_pages;
2570 	int z;
2571 
2572 	/* If not in reclaim/compaction mode, stop */
2573 	if (!in_reclaim_compaction(sc))
2574 		return false;
2575 
2576 	/*
2577 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2578 	 * number of pages that were scanned. This will return to the caller
2579 	 * with the risk reclaim/compaction and the resulting allocation attempt
2580 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2581 	 * allocations through requiring that the full LRU list has been scanned
2582 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2583 	 * scan, but that approximation was wrong, and there were corner cases
2584 	 * where always a non-zero amount of pages were scanned.
2585 	 */
2586 	if (!nr_reclaimed)
2587 		return false;
2588 
2589 	/* If compaction would go ahead or the allocation would succeed, stop */
2590 	for (z = 0; z <= sc->reclaim_idx; z++) {
2591 		struct zone *zone = &pgdat->node_zones[z];
2592 		if (!managed_zone(zone))
2593 			continue;
2594 
2595 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2596 		case COMPACT_SUCCESS:
2597 		case COMPACT_CONTINUE:
2598 			return false;
2599 		default:
2600 			/* check next zone */
2601 			;
2602 		}
2603 	}
2604 
2605 	/*
2606 	 * If we have not reclaimed enough pages for compaction and the
2607 	 * inactive lists are large enough, continue reclaiming
2608 	 */
2609 	pages_for_compaction = compact_gap(sc->order);
2610 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2611 	if (get_nr_swap_pages() > 0)
2612 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2613 
2614 	return inactive_lru_pages > pages_for_compaction;
2615 }
2616 
2617 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2618 {
2619 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2620 	struct mem_cgroup *memcg;
2621 
2622 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2623 	do {
2624 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2625 		unsigned long reclaimed;
2626 		unsigned long scanned;
2627 
2628 		/*
2629 		 * This loop can become CPU-bound when target memcgs
2630 		 * aren't eligible for reclaim - either because they
2631 		 * don't have any reclaimable pages, or because their
2632 		 * memory is explicitly protected. Avoid soft lockups.
2633 		 */
2634 		cond_resched();
2635 
2636 		mem_cgroup_calculate_protection(target_memcg, memcg);
2637 
2638 		if (mem_cgroup_below_min(memcg)) {
2639 			/*
2640 			 * Hard protection.
2641 			 * If there is no reclaimable memory, OOM.
2642 			 */
2643 			continue;
2644 		} else if (mem_cgroup_below_low(memcg)) {
2645 			/*
2646 			 * Soft protection.
2647 			 * Respect the protection only as long as
2648 			 * there is an unprotected supply
2649 			 * of reclaimable memory from other cgroups.
2650 			 */
2651 			if (!sc->memcg_low_reclaim) {
2652 				sc->memcg_low_skipped = 1;
2653 				continue;
2654 			}
2655 			memcg_memory_event(memcg, MEMCG_LOW);
2656 		}
2657 
2658 		reclaimed = sc->nr_reclaimed;
2659 		scanned = sc->nr_scanned;
2660 
2661 		shrink_lruvec(lruvec, sc);
2662 
2663 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2664 			    sc->priority);
2665 
2666 		/* Record the group's reclaim efficiency */
2667 		vmpressure(sc->gfp_mask, memcg, false,
2668 			   sc->nr_scanned - scanned,
2669 			   sc->nr_reclaimed - reclaimed);
2670 
2671 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2672 }
2673 
2674 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2675 {
2676 	struct reclaim_state *reclaim_state = current->reclaim_state;
2677 	unsigned long nr_reclaimed, nr_scanned;
2678 	struct lruvec *target_lruvec;
2679 	bool reclaimable = false;
2680 	unsigned long file;
2681 
2682 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2683 
2684 again:
2685 	memset(&sc->nr, 0, sizeof(sc->nr));
2686 
2687 	nr_reclaimed = sc->nr_reclaimed;
2688 	nr_scanned = sc->nr_scanned;
2689 
2690 	/*
2691 	 * Determine the scan balance between anon and file LRUs.
2692 	 */
2693 	spin_lock_irq(&target_lruvec->lru_lock);
2694 	sc->anon_cost = target_lruvec->anon_cost;
2695 	sc->file_cost = target_lruvec->file_cost;
2696 	spin_unlock_irq(&target_lruvec->lru_lock);
2697 
2698 	/*
2699 	 * Target desirable inactive:active list ratios for the anon
2700 	 * and file LRU lists.
2701 	 */
2702 	if (!sc->force_deactivate) {
2703 		unsigned long refaults;
2704 
2705 		refaults = lruvec_page_state(target_lruvec,
2706 				WORKINGSET_ACTIVATE_ANON);
2707 		if (refaults != target_lruvec->refaults[0] ||
2708 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2709 			sc->may_deactivate |= DEACTIVATE_ANON;
2710 		else
2711 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2712 
2713 		/*
2714 		 * When refaults are being observed, it means a new
2715 		 * workingset is being established. Deactivate to get
2716 		 * rid of any stale active pages quickly.
2717 		 */
2718 		refaults = lruvec_page_state(target_lruvec,
2719 				WORKINGSET_ACTIVATE_FILE);
2720 		if (refaults != target_lruvec->refaults[1] ||
2721 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2722 			sc->may_deactivate |= DEACTIVATE_FILE;
2723 		else
2724 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2725 	} else
2726 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2727 
2728 	/*
2729 	 * If we have plenty of inactive file pages that aren't
2730 	 * thrashing, try to reclaim those first before touching
2731 	 * anonymous pages.
2732 	 */
2733 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2734 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2735 		sc->cache_trim_mode = 1;
2736 	else
2737 		sc->cache_trim_mode = 0;
2738 
2739 	/*
2740 	 * Prevent the reclaimer from falling into the cache trap: as
2741 	 * cache pages start out inactive, every cache fault will tip
2742 	 * the scan balance towards the file LRU.  And as the file LRU
2743 	 * shrinks, so does the window for rotation from references.
2744 	 * This means we have a runaway feedback loop where a tiny
2745 	 * thrashing file LRU becomes infinitely more attractive than
2746 	 * anon pages.  Try to detect this based on file LRU size.
2747 	 */
2748 	if (!cgroup_reclaim(sc)) {
2749 		unsigned long total_high_wmark = 0;
2750 		unsigned long free, anon;
2751 		int z;
2752 
2753 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2754 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2755 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2756 
2757 		for (z = 0; z < MAX_NR_ZONES; z++) {
2758 			struct zone *zone = &pgdat->node_zones[z];
2759 			if (!managed_zone(zone))
2760 				continue;
2761 
2762 			total_high_wmark += high_wmark_pages(zone);
2763 		}
2764 
2765 		/*
2766 		 * Consider anon: if that's low too, this isn't a
2767 		 * runaway file reclaim problem, but rather just
2768 		 * extreme pressure. Reclaim as per usual then.
2769 		 */
2770 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2771 
2772 		sc->file_is_tiny =
2773 			file + free <= total_high_wmark &&
2774 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2775 			anon >> sc->priority;
2776 	}
2777 
2778 	shrink_node_memcgs(pgdat, sc);
2779 
2780 	if (reclaim_state) {
2781 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2782 		reclaim_state->reclaimed_slab = 0;
2783 	}
2784 
2785 	/* Record the subtree's reclaim efficiency */
2786 	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2787 		   sc->nr_scanned - nr_scanned,
2788 		   sc->nr_reclaimed - nr_reclaimed);
2789 
2790 	if (sc->nr_reclaimed - nr_reclaimed)
2791 		reclaimable = true;
2792 
2793 	if (current_is_kswapd()) {
2794 		/*
2795 		 * If reclaim is isolating dirty pages under writeback,
2796 		 * it implies that the long-lived page allocation rate
2797 		 * is exceeding the page laundering rate. Either the
2798 		 * global limits are not being effective at throttling
2799 		 * processes due to the page distribution throughout
2800 		 * zones or there is heavy usage of a slow backing
2801 		 * device. The only option is to throttle from reclaim
2802 		 * context which is not ideal as there is no guarantee
2803 		 * the dirtying process is throttled in the same way
2804 		 * balance_dirty_pages() manages.
2805 		 *
2806 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2807 		 * count the number of pages under pages flagged for
2808 		 * immediate reclaim and stall if any are encountered
2809 		 * in the nr_immediate check below.
2810 		 */
2811 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2812 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2813 
2814 		/* Allow kswapd to start writing pages during reclaim.*/
2815 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2816 			set_bit(PGDAT_DIRTY, &pgdat->flags);
2817 
2818 		/*
2819 		 * If kswapd scans pages marked for immediate
2820 		 * reclaim and under writeback (nr_immediate), it
2821 		 * implies that pages are cycling through the LRU
2822 		 * faster than they are written so also forcibly stall.
2823 		 */
2824 		if (sc->nr.immediate)
2825 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2826 	}
2827 
2828 	/*
2829 	 * Tag a node/memcg as congested if all the dirty pages
2830 	 * scanned were backed by a congested BDI and
2831 	 * wait_iff_congested will stall.
2832 	 *
2833 	 * Legacy memcg will stall in page writeback so avoid forcibly
2834 	 * stalling in wait_iff_congested().
2835 	 */
2836 	if ((current_is_kswapd() ||
2837 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2838 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2839 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2840 
2841 	/*
2842 	 * Stall direct reclaim for IO completions if underlying BDIs
2843 	 * and node is congested. Allow kswapd to continue until it
2844 	 * starts encountering unqueued dirty pages or cycling through
2845 	 * the LRU too quickly.
2846 	 */
2847 	if (!current_is_kswapd() && current_may_throttle() &&
2848 	    !sc->hibernation_mode &&
2849 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2850 		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2851 
2852 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2853 				    sc))
2854 		goto again;
2855 
2856 	/*
2857 	 * Kswapd gives up on balancing particular nodes after too
2858 	 * many failures to reclaim anything from them and goes to
2859 	 * sleep. On reclaim progress, reset the failure counter. A
2860 	 * successful direct reclaim run will revive a dormant kswapd.
2861 	 */
2862 	if (reclaimable)
2863 		pgdat->kswapd_failures = 0;
2864 }
2865 
2866 /*
2867  * Returns true if compaction should go ahead for a costly-order request, or
2868  * the allocation would already succeed without compaction. Return false if we
2869  * should reclaim first.
2870  */
2871 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2872 {
2873 	unsigned long watermark;
2874 	enum compact_result suitable;
2875 
2876 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2877 	if (suitable == COMPACT_SUCCESS)
2878 		/* Allocation should succeed already. Don't reclaim. */
2879 		return true;
2880 	if (suitable == COMPACT_SKIPPED)
2881 		/* Compaction cannot yet proceed. Do reclaim. */
2882 		return false;
2883 
2884 	/*
2885 	 * Compaction is already possible, but it takes time to run and there
2886 	 * are potentially other callers using the pages just freed. So proceed
2887 	 * with reclaim to make a buffer of free pages available to give
2888 	 * compaction a reasonable chance of completing and allocating the page.
2889 	 * Note that we won't actually reclaim the whole buffer in one attempt
2890 	 * as the target watermark in should_continue_reclaim() is lower. But if
2891 	 * we are already above the high+gap watermark, don't reclaim at all.
2892 	 */
2893 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2894 
2895 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2896 }
2897 
2898 /*
2899  * This is the direct reclaim path, for page-allocating processes.  We only
2900  * try to reclaim pages from zones which will satisfy the caller's allocation
2901  * request.
2902  *
2903  * If a zone is deemed to be full of pinned pages then just give it a light
2904  * scan then give up on it.
2905  */
2906 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2907 {
2908 	struct zoneref *z;
2909 	struct zone *zone;
2910 	unsigned long nr_soft_reclaimed;
2911 	unsigned long nr_soft_scanned;
2912 	gfp_t orig_mask;
2913 	pg_data_t *last_pgdat = NULL;
2914 
2915 	/*
2916 	 * If the number of buffer_heads in the machine exceeds the maximum
2917 	 * allowed level, force direct reclaim to scan the highmem zone as
2918 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2919 	 */
2920 	orig_mask = sc->gfp_mask;
2921 	if (buffer_heads_over_limit) {
2922 		sc->gfp_mask |= __GFP_HIGHMEM;
2923 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2924 	}
2925 
2926 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2927 					sc->reclaim_idx, sc->nodemask) {
2928 		/*
2929 		 * Take care memory controller reclaiming has small influence
2930 		 * to global LRU.
2931 		 */
2932 		if (!cgroup_reclaim(sc)) {
2933 			if (!cpuset_zone_allowed(zone,
2934 						 GFP_KERNEL | __GFP_HARDWALL))
2935 				continue;
2936 
2937 			/*
2938 			 * If we already have plenty of memory free for
2939 			 * compaction in this zone, don't free any more.
2940 			 * Even though compaction is invoked for any
2941 			 * non-zero order, only frequent costly order
2942 			 * reclamation is disruptive enough to become a
2943 			 * noticeable problem, like transparent huge
2944 			 * page allocations.
2945 			 */
2946 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2947 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2948 			    compaction_ready(zone, sc)) {
2949 				sc->compaction_ready = true;
2950 				continue;
2951 			}
2952 
2953 			/*
2954 			 * Shrink each node in the zonelist once. If the
2955 			 * zonelist is ordered by zone (not the default) then a
2956 			 * node may be shrunk multiple times but in that case
2957 			 * the user prefers lower zones being preserved.
2958 			 */
2959 			if (zone->zone_pgdat == last_pgdat)
2960 				continue;
2961 
2962 			/*
2963 			 * This steals pages from memory cgroups over softlimit
2964 			 * and returns the number of reclaimed pages and
2965 			 * scanned pages. This works for global memory pressure
2966 			 * and balancing, not for a memcg's limit.
2967 			 */
2968 			nr_soft_scanned = 0;
2969 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2970 						sc->order, sc->gfp_mask,
2971 						&nr_soft_scanned);
2972 			sc->nr_reclaimed += nr_soft_reclaimed;
2973 			sc->nr_scanned += nr_soft_scanned;
2974 			/* need some check for avoid more shrink_zone() */
2975 		}
2976 
2977 		/* See comment about same check for global reclaim above */
2978 		if (zone->zone_pgdat == last_pgdat)
2979 			continue;
2980 		last_pgdat = zone->zone_pgdat;
2981 		shrink_node(zone->zone_pgdat, sc);
2982 	}
2983 
2984 	/*
2985 	 * Restore to original mask to avoid the impact on the caller if we
2986 	 * promoted it to __GFP_HIGHMEM.
2987 	 */
2988 	sc->gfp_mask = orig_mask;
2989 }
2990 
2991 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2992 {
2993 	struct lruvec *target_lruvec;
2994 	unsigned long refaults;
2995 
2996 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
2997 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
2998 	target_lruvec->refaults[0] = refaults;
2999 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3000 	target_lruvec->refaults[1] = refaults;
3001 }
3002 
3003 /*
3004  * This is the main entry point to direct page reclaim.
3005  *
3006  * If a full scan of the inactive list fails to free enough memory then we
3007  * are "out of memory" and something needs to be killed.
3008  *
3009  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3010  * high - the zone may be full of dirty or under-writeback pages, which this
3011  * caller can't do much about.  We kick the writeback threads and take explicit
3012  * naps in the hope that some of these pages can be written.  But if the
3013  * allocating task holds filesystem locks which prevent writeout this might not
3014  * work, and the allocation attempt will fail.
3015  *
3016  * returns:	0, if no pages reclaimed
3017  * 		else, the number of pages reclaimed
3018  */
3019 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3020 					  struct scan_control *sc)
3021 {
3022 	int initial_priority = sc->priority;
3023 	pg_data_t *last_pgdat;
3024 	struct zoneref *z;
3025 	struct zone *zone;
3026 retry:
3027 	delayacct_freepages_start();
3028 
3029 	if (!cgroup_reclaim(sc))
3030 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3031 
3032 	do {
3033 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3034 				sc->priority);
3035 		sc->nr_scanned = 0;
3036 		shrink_zones(zonelist, sc);
3037 
3038 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3039 			break;
3040 
3041 		if (sc->compaction_ready)
3042 			break;
3043 
3044 		/*
3045 		 * If we're getting trouble reclaiming, start doing
3046 		 * writepage even in laptop mode.
3047 		 */
3048 		if (sc->priority < DEF_PRIORITY - 2)
3049 			sc->may_writepage = 1;
3050 	} while (--sc->priority >= 0);
3051 
3052 	last_pgdat = NULL;
3053 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3054 					sc->nodemask) {
3055 		if (zone->zone_pgdat == last_pgdat)
3056 			continue;
3057 		last_pgdat = zone->zone_pgdat;
3058 
3059 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3060 
3061 		if (cgroup_reclaim(sc)) {
3062 			struct lruvec *lruvec;
3063 
3064 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3065 						   zone->zone_pgdat);
3066 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3067 		}
3068 	}
3069 
3070 	delayacct_freepages_end();
3071 
3072 	if (sc->nr_reclaimed)
3073 		return sc->nr_reclaimed;
3074 
3075 	/* Aborted reclaim to try compaction? don't OOM, then */
3076 	if (sc->compaction_ready)
3077 		return 1;
3078 
3079 	/*
3080 	 * We make inactive:active ratio decisions based on the node's
3081 	 * composition of memory, but a restrictive reclaim_idx or a
3082 	 * memory.low cgroup setting can exempt large amounts of
3083 	 * memory from reclaim. Neither of which are very common, so
3084 	 * instead of doing costly eligibility calculations of the
3085 	 * entire cgroup subtree up front, we assume the estimates are
3086 	 * good, and retry with forcible deactivation if that fails.
3087 	 */
3088 	if (sc->skipped_deactivate) {
3089 		sc->priority = initial_priority;
3090 		sc->force_deactivate = 1;
3091 		sc->skipped_deactivate = 0;
3092 		goto retry;
3093 	}
3094 
3095 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3096 	if (sc->memcg_low_skipped) {
3097 		sc->priority = initial_priority;
3098 		sc->force_deactivate = 0;
3099 		sc->memcg_low_reclaim = 1;
3100 		sc->memcg_low_skipped = 0;
3101 		goto retry;
3102 	}
3103 
3104 	return 0;
3105 }
3106 
3107 static bool allow_direct_reclaim(pg_data_t *pgdat)
3108 {
3109 	struct zone *zone;
3110 	unsigned long pfmemalloc_reserve = 0;
3111 	unsigned long free_pages = 0;
3112 	int i;
3113 	bool wmark_ok;
3114 
3115 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3116 		return true;
3117 
3118 	for (i = 0; i <= ZONE_NORMAL; i++) {
3119 		zone = &pgdat->node_zones[i];
3120 		if (!managed_zone(zone))
3121 			continue;
3122 
3123 		if (!zone_reclaimable_pages(zone))
3124 			continue;
3125 
3126 		pfmemalloc_reserve += min_wmark_pages(zone);
3127 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3128 	}
3129 
3130 	/* If there are no reserves (unexpected config) then do not throttle */
3131 	if (!pfmemalloc_reserve)
3132 		return true;
3133 
3134 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3135 
3136 	/* kswapd must be awake if processes are being throttled */
3137 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3138 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3139 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3140 
3141 		wake_up_interruptible(&pgdat->kswapd_wait);
3142 	}
3143 
3144 	return wmark_ok;
3145 }
3146 
3147 /*
3148  * Throttle direct reclaimers if backing storage is backed by the network
3149  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3150  * depleted. kswapd will continue to make progress and wake the processes
3151  * when the low watermark is reached.
3152  *
3153  * Returns true if a fatal signal was delivered during throttling. If this
3154  * happens, the page allocator should not consider triggering the OOM killer.
3155  */
3156 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3157 					nodemask_t *nodemask)
3158 {
3159 	struct zoneref *z;
3160 	struct zone *zone;
3161 	pg_data_t *pgdat = NULL;
3162 
3163 	/*
3164 	 * Kernel threads should not be throttled as they may be indirectly
3165 	 * responsible for cleaning pages necessary for reclaim to make forward
3166 	 * progress. kjournald for example may enter direct reclaim while
3167 	 * committing a transaction where throttling it could forcing other
3168 	 * processes to block on log_wait_commit().
3169 	 */
3170 	if (current->flags & PF_KTHREAD)
3171 		goto out;
3172 
3173 	/*
3174 	 * If a fatal signal is pending, this process should not throttle.
3175 	 * It should return quickly so it can exit and free its memory
3176 	 */
3177 	if (fatal_signal_pending(current))
3178 		goto out;
3179 
3180 	/*
3181 	 * Check if the pfmemalloc reserves are ok by finding the first node
3182 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3183 	 * GFP_KERNEL will be required for allocating network buffers when
3184 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3185 	 *
3186 	 * Throttling is based on the first usable node and throttled processes
3187 	 * wait on a queue until kswapd makes progress and wakes them. There
3188 	 * is an affinity then between processes waking up and where reclaim
3189 	 * progress has been made assuming the process wakes on the same node.
3190 	 * More importantly, processes running on remote nodes will not compete
3191 	 * for remote pfmemalloc reserves and processes on different nodes
3192 	 * should make reasonable progress.
3193 	 */
3194 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3195 					gfp_zone(gfp_mask), nodemask) {
3196 		if (zone_idx(zone) > ZONE_NORMAL)
3197 			continue;
3198 
3199 		/* Throttle based on the first usable node */
3200 		pgdat = zone->zone_pgdat;
3201 		if (allow_direct_reclaim(pgdat))
3202 			goto out;
3203 		break;
3204 	}
3205 
3206 	/* If no zone was usable by the allocation flags then do not throttle */
3207 	if (!pgdat)
3208 		goto out;
3209 
3210 	/* Account for the throttling */
3211 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3212 
3213 	/*
3214 	 * If the caller cannot enter the filesystem, it's possible that it
3215 	 * is due to the caller holding an FS lock or performing a journal
3216 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3217 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3218 	 * blocked waiting on the same lock. Instead, throttle for up to a
3219 	 * second before continuing.
3220 	 */
3221 	if (!(gfp_mask & __GFP_FS)) {
3222 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3223 			allow_direct_reclaim(pgdat), HZ);
3224 
3225 		goto check_pending;
3226 	}
3227 
3228 	/* Throttle until kswapd wakes the process */
3229 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3230 		allow_direct_reclaim(pgdat));
3231 
3232 check_pending:
3233 	if (fatal_signal_pending(current))
3234 		return true;
3235 
3236 out:
3237 	return false;
3238 }
3239 
3240 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3241 				gfp_t gfp_mask, nodemask_t *nodemask)
3242 {
3243 	unsigned long nr_reclaimed;
3244 	struct scan_control sc = {
3245 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3246 		.gfp_mask = current_gfp_context(gfp_mask),
3247 		.reclaim_idx = gfp_zone(gfp_mask),
3248 		.order = order,
3249 		.nodemask = nodemask,
3250 		.priority = DEF_PRIORITY,
3251 		.may_writepage = !laptop_mode,
3252 		.may_unmap = 1,
3253 		.may_swap = 1,
3254 	};
3255 
3256 	/*
3257 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3258 	 * Confirm they are large enough for max values.
3259 	 */
3260 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3261 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3262 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3263 
3264 	/*
3265 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3266 	 * 1 is returned so that the page allocator does not OOM kill at this
3267 	 * point.
3268 	 */
3269 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3270 		return 1;
3271 
3272 	set_task_reclaim_state(current, &sc.reclaim_state);
3273 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3274 
3275 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3276 
3277 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3278 	set_task_reclaim_state(current, NULL);
3279 
3280 	return nr_reclaimed;
3281 }
3282 
3283 #ifdef CONFIG_MEMCG
3284 
3285 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3286 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3287 						gfp_t gfp_mask, bool noswap,
3288 						pg_data_t *pgdat,
3289 						unsigned long *nr_scanned)
3290 {
3291 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3292 	struct scan_control sc = {
3293 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3294 		.target_mem_cgroup = memcg,
3295 		.may_writepage = !laptop_mode,
3296 		.may_unmap = 1,
3297 		.reclaim_idx = MAX_NR_ZONES - 1,
3298 		.may_swap = !noswap,
3299 	};
3300 
3301 	WARN_ON_ONCE(!current->reclaim_state);
3302 
3303 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3304 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3305 
3306 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3307 						      sc.gfp_mask);
3308 
3309 	/*
3310 	 * NOTE: Although we can get the priority field, using it
3311 	 * here is not a good idea, since it limits the pages we can scan.
3312 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3313 	 * will pick up pages from other mem cgroup's as well. We hack
3314 	 * the priority and make it zero.
3315 	 */
3316 	shrink_lruvec(lruvec, &sc);
3317 
3318 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3319 
3320 	*nr_scanned = sc.nr_scanned;
3321 
3322 	return sc.nr_reclaimed;
3323 }
3324 
3325 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3326 					   unsigned long nr_pages,
3327 					   gfp_t gfp_mask,
3328 					   bool may_swap)
3329 {
3330 	unsigned long nr_reclaimed;
3331 	unsigned int noreclaim_flag;
3332 	struct scan_control sc = {
3333 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3334 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3335 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3336 		.reclaim_idx = MAX_NR_ZONES - 1,
3337 		.target_mem_cgroup = memcg,
3338 		.priority = DEF_PRIORITY,
3339 		.may_writepage = !laptop_mode,
3340 		.may_unmap = 1,
3341 		.may_swap = may_swap,
3342 	};
3343 	/*
3344 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3345 	 * equal pressure on all the nodes. This is based on the assumption that
3346 	 * the reclaim does not bail out early.
3347 	 */
3348 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3349 
3350 	set_task_reclaim_state(current, &sc.reclaim_state);
3351 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3352 	noreclaim_flag = memalloc_noreclaim_save();
3353 
3354 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3355 
3356 	memalloc_noreclaim_restore(noreclaim_flag);
3357 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3358 	set_task_reclaim_state(current, NULL);
3359 
3360 	return nr_reclaimed;
3361 }
3362 #endif
3363 
3364 static void age_active_anon(struct pglist_data *pgdat,
3365 				struct scan_control *sc)
3366 {
3367 	struct mem_cgroup *memcg;
3368 	struct lruvec *lruvec;
3369 
3370 	if (!total_swap_pages)
3371 		return;
3372 
3373 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3374 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3375 		return;
3376 
3377 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3378 	do {
3379 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3380 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3381 				   sc, LRU_ACTIVE_ANON);
3382 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3383 	} while (memcg);
3384 }
3385 
3386 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3387 {
3388 	int i;
3389 	struct zone *zone;
3390 
3391 	/*
3392 	 * Check for watermark boosts top-down as the higher zones
3393 	 * are more likely to be boosted. Both watermarks and boosts
3394 	 * should not be checked at the same time as reclaim would
3395 	 * start prematurely when there is no boosting and a lower
3396 	 * zone is balanced.
3397 	 */
3398 	for (i = highest_zoneidx; i >= 0; i--) {
3399 		zone = pgdat->node_zones + i;
3400 		if (!managed_zone(zone))
3401 			continue;
3402 
3403 		if (zone->watermark_boost)
3404 			return true;
3405 	}
3406 
3407 	return false;
3408 }
3409 
3410 /*
3411  * Returns true if there is an eligible zone balanced for the request order
3412  * and highest_zoneidx
3413  */
3414 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3415 {
3416 	int i;
3417 	unsigned long mark = -1;
3418 	struct zone *zone;
3419 
3420 	/*
3421 	 * Check watermarks bottom-up as lower zones are more likely to
3422 	 * meet watermarks.
3423 	 */
3424 	for (i = 0; i <= highest_zoneidx; i++) {
3425 		zone = pgdat->node_zones + i;
3426 
3427 		if (!managed_zone(zone))
3428 			continue;
3429 
3430 		mark = high_wmark_pages(zone);
3431 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3432 			return true;
3433 	}
3434 
3435 	/*
3436 	 * If a node has no populated zone within highest_zoneidx, it does not
3437 	 * need balancing by definition. This can happen if a zone-restricted
3438 	 * allocation tries to wake a remote kswapd.
3439 	 */
3440 	if (mark == -1)
3441 		return true;
3442 
3443 	return false;
3444 }
3445 
3446 /* Clear pgdat state for congested, dirty or under writeback. */
3447 static void clear_pgdat_congested(pg_data_t *pgdat)
3448 {
3449 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3450 
3451 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3452 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3453 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3454 }
3455 
3456 /*
3457  * Prepare kswapd for sleeping. This verifies that there are no processes
3458  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3459  *
3460  * Returns true if kswapd is ready to sleep
3461  */
3462 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3463 				int highest_zoneidx)
3464 {
3465 	/*
3466 	 * The throttled processes are normally woken up in balance_pgdat() as
3467 	 * soon as allow_direct_reclaim() is true. But there is a potential
3468 	 * race between when kswapd checks the watermarks and a process gets
3469 	 * throttled. There is also a potential race if processes get
3470 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3471 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3472 	 * the wake up checks. If kswapd is going to sleep, no process should
3473 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3474 	 * the wake up is premature, processes will wake kswapd and get
3475 	 * throttled again. The difference from wake ups in balance_pgdat() is
3476 	 * that here we are under prepare_to_wait().
3477 	 */
3478 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3479 		wake_up_all(&pgdat->pfmemalloc_wait);
3480 
3481 	/* Hopeless node, leave it to direct reclaim */
3482 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3483 		return true;
3484 
3485 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3486 		clear_pgdat_congested(pgdat);
3487 		return true;
3488 	}
3489 
3490 	return false;
3491 }
3492 
3493 /*
3494  * kswapd shrinks a node of pages that are at or below the highest usable
3495  * zone that is currently unbalanced.
3496  *
3497  * Returns true if kswapd scanned at least the requested number of pages to
3498  * reclaim or if the lack of progress was due to pages under writeback.
3499  * This is used to determine if the scanning priority needs to be raised.
3500  */
3501 static bool kswapd_shrink_node(pg_data_t *pgdat,
3502 			       struct scan_control *sc)
3503 {
3504 	struct zone *zone;
3505 	int z;
3506 
3507 	/* Reclaim a number of pages proportional to the number of zones */
3508 	sc->nr_to_reclaim = 0;
3509 	for (z = 0; z <= sc->reclaim_idx; z++) {
3510 		zone = pgdat->node_zones + z;
3511 		if (!managed_zone(zone))
3512 			continue;
3513 
3514 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3515 	}
3516 
3517 	/*
3518 	 * Historically care was taken to put equal pressure on all zones but
3519 	 * now pressure is applied based on node LRU order.
3520 	 */
3521 	shrink_node(pgdat, sc);
3522 
3523 	/*
3524 	 * Fragmentation may mean that the system cannot be rebalanced for
3525 	 * high-order allocations. If twice the allocation size has been
3526 	 * reclaimed then recheck watermarks only at order-0 to prevent
3527 	 * excessive reclaim. Assume that a process requested a high-order
3528 	 * can direct reclaim/compact.
3529 	 */
3530 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3531 		sc->order = 0;
3532 
3533 	return sc->nr_scanned >= sc->nr_to_reclaim;
3534 }
3535 
3536 /*
3537  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3538  * that are eligible for use by the caller until at least one zone is
3539  * balanced.
3540  *
3541  * Returns the order kswapd finished reclaiming at.
3542  *
3543  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3544  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3545  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3546  * or lower is eligible for reclaim until at least one usable zone is
3547  * balanced.
3548  */
3549 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3550 {
3551 	int i;
3552 	unsigned long nr_soft_reclaimed;
3553 	unsigned long nr_soft_scanned;
3554 	unsigned long pflags;
3555 	unsigned long nr_boost_reclaim;
3556 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3557 	bool boosted;
3558 	struct zone *zone;
3559 	struct scan_control sc = {
3560 		.gfp_mask = GFP_KERNEL,
3561 		.order = order,
3562 		.may_unmap = 1,
3563 	};
3564 
3565 	set_task_reclaim_state(current, &sc.reclaim_state);
3566 	psi_memstall_enter(&pflags);
3567 	__fs_reclaim_acquire();
3568 
3569 	count_vm_event(PAGEOUTRUN);
3570 
3571 	/*
3572 	 * Account for the reclaim boost. Note that the zone boost is left in
3573 	 * place so that parallel allocations that are near the watermark will
3574 	 * stall or direct reclaim until kswapd is finished.
3575 	 */
3576 	nr_boost_reclaim = 0;
3577 	for (i = 0; i <= highest_zoneidx; i++) {
3578 		zone = pgdat->node_zones + i;
3579 		if (!managed_zone(zone))
3580 			continue;
3581 
3582 		nr_boost_reclaim += zone->watermark_boost;
3583 		zone_boosts[i] = zone->watermark_boost;
3584 	}
3585 	boosted = nr_boost_reclaim;
3586 
3587 restart:
3588 	sc.priority = DEF_PRIORITY;
3589 	do {
3590 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3591 		bool raise_priority = true;
3592 		bool balanced;
3593 		bool ret;
3594 
3595 		sc.reclaim_idx = highest_zoneidx;
3596 
3597 		/*
3598 		 * If the number of buffer_heads exceeds the maximum allowed
3599 		 * then consider reclaiming from all zones. This has a dual
3600 		 * purpose -- on 64-bit systems it is expected that
3601 		 * buffer_heads are stripped during active rotation. On 32-bit
3602 		 * systems, highmem pages can pin lowmem memory and shrinking
3603 		 * buffers can relieve lowmem pressure. Reclaim may still not
3604 		 * go ahead if all eligible zones for the original allocation
3605 		 * request are balanced to avoid excessive reclaim from kswapd.
3606 		 */
3607 		if (buffer_heads_over_limit) {
3608 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3609 				zone = pgdat->node_zones + i;
3610 				if (!managed_zone(zone))
3611 					continue;
3612 
3613 				sc.reclaim_idx = i;
3614 				break;
3615 			}
3616 		}
3617 
3618 		/*
3619 		 * If the pgdat is imbalanced then ignore boosting and preserve
3620 		 * the watermarks for a later time and restart. Note that the
3621 		 * zone watermarks will be still reset at the end of balancing
3622 		 * on the grounds that the normal reclaim should be enough to
3623 		 * re-evaluate if boosting is required when kswapd next wakes.
3624 		 */
3625 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3626 		if (!balanced && nr_boost_reclaim) {
3627 			nr_boost_reclaim = 0;
3628 			goto restart;
3629 		}
3630 
3631 		/*
3632 		 * If boosting is not active then only reclaim if there are no
3633 		 * eligible zones. Note that sc.reclaim_idx is not used as
3634 		 * buffer_heads_over_limit may have adjusted it.
3635 		 */
3636 		if (!nr_boost_reclaim && balanced)
3637 			goto out;
3638 
3639 		/* Limit the priority of boosting to avoid reclaim writeback */
3640 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3641 			raise_priority = false;
3642 
3643 		/*
3644 		 * Do not writeback or swap pages for boosted reclaim. The
3645 		 * intent is to relieve pressure not issue sub-optimal IO
3646 		 * from reclaim context. If no pages are reclaimed, the
3647 		 * reclaim will be aborted.
3648 		 */
3649 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3650 		sc.may_swap = !nr_boost_reclaim;
3651 
3652 		/*
3653 		 * Do some background aging of the anon list, to give
3654 		 * pages a chance to be referenced before reclaiming. All
3655 		 * pages are rotated regardless of classzone as this is
3656 		 * about consistent aging.
3657 		 */
3658 		age_active_anon(pgdat, &sc);
3659 
3660 		/*
3661 		 * If we're getting trouble reclaiming, start doing writepage
3662 		 * even in laptop mode.
3663 		 */
3664 		if (sc.priority < DEF_PRIORITY - 2)
3665 			sc.may_writepage = 1;
3666 
3667 		/* Call soft limit reclaim before calling shrink_node. */
3668 		sc.nr_scanned = 0;
3669 		nr_soft_scanned = 0;
3670 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3671 						sc.gfp_mask, &nr_soft_scanned);
3672 		sc.nr_reclaimed += nr_soft_reclaimed;
3673 
3674 		/*
3675 		 * There should be no need to raise the scanning priority if
3676 		 * enough pages are already being scanned that that high
3677 		 * watermark would be met at 100% efficiency.
3678 		 */
3679 		if (kswapd_shrink_node(pgdat, &sc))
3680 			raise_priority = false;
3681 
3682 		/*
3683 		 * If the low watermark is met there is no need for processes
3684 		 * to be throttled on pfmemalloc_wait as they should not be
3685 		 * able to safely make forward progress. Wake them
3686 		 */
3687 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3688 				allow_direct_reclaim(pgdat))
3689 			wake_up_all(&pgdat->pfmemalloc_wait);
3690 
3691 		/* Check if kswapd should be suspending */
3692 		__fs_reclaim_release();
3693 		ret = try_to_freeze();
3694 		__fs_reclaim_acquire();
3695 		if (ret || kthread_should_stop())
3696 			break;
3697 
3698 		/*
3699 		 * Raise priority if scanning rate is too low or there was no
3700 		 * progress in reclaiming pages
3701 		 */
3702 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3703 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3704 
3705 		/*
3706 		 * If reclaim made no progress for a boost, stop reclaim as
3707 		 * IO cannot be queued and it could be an infinite loop in
3708 		 * extreme circumstances.
3709 		 */
3710 		if (nr_boost_reclaim && !nr_reclaimed)
3711 			break;
3712 
3713 		if (raise_priority || !nr_reclaimed)
3714 			sc.priority--;
3715 	} while (sc.priority >= 1);
3716 
3717 	if (!sc.nr_reclaimed)
3718 		pgdat->kswapd_failures++;
3719 
3720 out:
3721 	/* If reclaim was boosted, account for the reclaim done in this pass */
3722 	if (boosted) {
3723 		unsigned long flags;
3724 
3725 		for (i = 0; i <= highest_zoneidx; i++) {
3726 			if (!zone_boosts[i])
3727 				continue;
3728 
3729 			/* Increments are under the zone lock */
3730 			zone = pgdat->node_zones + i;
3731 			spin_lock_irqsave(&zone->lock, flags);
3732 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3733 			spin_unlock_irqrestore(&zone->lock, flags);
3734 		}
3735 
3736 		/*
3737 		 * As there is now likely space, wakeup kcompact to defragment
3738 		 * pageblocks.
3739 		 */
3740 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3741 	}
3742 
3743 	snapshot_refaults(NULL, pgdat);
3744 	__fs_reclaim_release();
3745 	psi_memstall_leave(&pflags);
3746 	set_task_reclaim_state(current, NULL);
3747 
3748 	/*
3749 	 * Return the order kswapd stopped reclaiming at as
3750 	 * prepare_kswapd_sleep() takes it into account. If another caller
3751 	 * entered the allocator slow path while kswapd was awake, order will
3752 	 * remain at the higher level.
3753 	 */
3754 	return sc.order;
3755 }
3756 
3757 /*
3758  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3759  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3760  * not a valid index then either kswapd runs for first time or kswapd couldn't
3761  * sleep after previous reclaim attempt (node is still unbalanced). In that
3762  * case return the zone index of the previous kswapd reclaim cycle.
3763  */
3764 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3765 					   enum zone_type prev_highest_zoneidx)
3766 {
3767 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3768 
3769 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
3770 }
3771 
3772 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3773 				unsigned int highest_zoneidx)
3774 {
3775 	long remaining = 0;
3776 	DEFINE_WAIT(wait);
3777 
3778 	if (freezing(current) || kthread_should_stop())
3779 		return;
3780 
3781 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3782 
3783 	/*
3784 	 * Try to sleep for a short interval. Note that kcompactd will only be
3785 	 * woken if it is possible to sleep for a short interval. This is
3786 	 * deliberate on the assumption that if reclaim cannot keep an
3787 	 * eligible zone balanced that it's also unlikely that compaction will
3788 	 * succeed.
3789 	 */
3790 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3791 		/*
3792 		 * Compaction records what page blocks it recently failed to
3793 		 * isolate pages from and skips them in the future scanning.
3794 		 * When kswapd is going to sleep, it is reasonable to assume
3795 		 * that pages and compaction may succeed so reset the cache.
3796 		 */
3797 		reset_isolation_suitable(pgdat);
3798 
3799 		/*
3800 		 * We have freed the memory, now we should compact it to make
3801 		 * allocation of the requested order possible.
3802 		 */
3803 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
3804 
3805 		remaining = schedule_timeout(HZ/10);
3806 
3807 		/*
3808 		 * If woken prematurely then reset kswapd_highest_zoneidx and
3809 		 * order. The values will either be from a wakeup request or
3810 		 * the previous request that slept prematurely.
3811 		 */
3812 		if (remaining) {
3813 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3814 					kswapd_highest_zoneidx(pgdat,
3815 							highest_zoneidx));
3816 
3817 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3818 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3819 		}
3820 
3821 		finish_wait(&pgdat->kswapd_wait, &wait);
3822 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3823 	}
3824 
3825 	/*
3826 	 * After a short sleep, check if it was a premature sleep. If not, then
3827 	 * go fully to sleep until explicitly woken up.
3828 	 */
3829 	if (!remaining &&
3830 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3831 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3832 
3833 		/*
3834 		 * vmstat counters are not perfectly accurate and the estimated
3835 		 * value for counters such as NR_FREE_PAGES can deviate from the
3836 		 * true value by nr_online_cpus * threshold. To avoid the zone
3837 		 * watermarks being breached while under pressure, we reduce the
3838 		 * per-cpu vmstat threshold while kswapd is awake and restore
3839 		 * them before going back to sleep.
3840 		 */
3841 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3842 
3843 		if (!kthread_should_stop())
3844 			schedule();
3845 
3846 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3847 	} else {
3848 		if (remaining)
3849 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3850 		else
3851 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3852 	}
3853 	finish_wait(&pgdat->kswapd_wait, &wait);
3854 }
3855 
3856 /*
3857  * The background pageout daemon, started as a kernel thread
3858  * from the init process.
3859  *
3860  * This basically trickles out pages so that we have _some_
3861  * free memory available even if there is no other activity
3862  * that frees anything up. This is needed for things like routing
3863  * etc, where we otherwise might have all activity going on in
3864  * asynchronous contexts that cannot page things out.
3865  *
3866  * If there are applications that are active memory-allocators
3867  * (most normal use), this basically shouldn't matter.
3868  */
3869 static int kswapd(void *p)
3870 {
3871 	unsigned int alloc_order, reclaim_order;
3872 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
3873 	pg_data_t *pgdat = (pg_data_t*)p;
3874 	struct task_struct *tsk = current;
3875 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3876 
3877 	if (!cpumask_empty(cpumask))
3878 		set_cpus_allowed_ptr(tsk, cpumask);
3879 
3880 	/*
3881 	 * Tell the memory management that we're a "memory allocator",
3882 	 * and that if we need more memory we should get access to it
3883 	 * regardless (see "__alloc_pages()"). "kswapd" should
3884 	 * never get caught in the normal page freeing logic.
3885 	 *
3886 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3887 	 * you need a small amount of memory in order to be able to
3888 	 * page out something else, and this flag essentially protects
3889 	 * us from recursively trying to free more memory as we're
3890 	 * trying to free the first piece of memory in the first place).
3891 	 */
3892 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3893 	set_freezable();
3894 
3895 	WRITE_ONCE(pgdat->kswapd_order, 0);
3896 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3897 	for ( ; ; ) {
3898 		bool ret;
3899 
3900 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3901 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3902 							highest_zoneidx);
3903 
3904 kswapd_try_sleep:
3905 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3906 					highest_zoneidx);
3907 
3908 		/* Read the new order and highest_zoneidx */
3909 		alloc_order = READ_ONCE(pgdat->kswapd_order);
3910 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3911 							highest_zoneidx);
3912 		WRITE_ONCE(pgdat->kswapd_order, 0);
3913 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3914 
3915 		ret = try_to_freeze();
3916 		if (kthread_should_stop())
3917 			break;
3918 
3919 		/*
3920 		 * We can speed up thawing tasks if we don't call balance_pgdat
3921 		 * after returning from the refrigerator
3922 		 */
3923 		if (ret)
3924 			continue;
3925 
3926 		/*
3927 		 * Reclaim begins at the requested order but if a high-order
3928 		 * reclaim fails then kswapd falls back to reclaiming for
3929 		 * order-0. If that happens, kswapd will consider sleeping
3930 		 * for the order it finished reclaiming at (reclaim_order)
3931 		 * but kcompactd is woken to compact for the original
3932 		 * request (alloc_order).
3933 		 */
3934 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
3935 						alloc_order);
3936 		reclaim_order = balance_pgdat(pgdat, alloc_order,
3937 						highest_zoneidx);
3938 		if (reclaim_order < alloc_order)
3939 			goto kswapd_try_sleep;
3940 	}
3941 
3942 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3943 
3944 	return 0;
3945 }
3946 
3947 /*
3948  * A zone is low on free memory or too fragmented for high-order memory.  If
3949  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3950  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3951  * has failed or is not needed, still wake up kcompactd if only compaction is
3952  * needed.
3953  */
3954 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3955 		   enum zone_type highest_zoneidx)
3956 {
3957 	pg_data_t *pgdat;
3958 	enum zone_type curr_idx;
3959 
3960 	if (!managed_zone(zone))
3961 		return;
3962 
3963 	if (!cpuset_zone_allowed(zone, gfp_flags))
3964 		return;
3965 
3966 	pgdat = zone->zone_pgdat;
3967 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3968 
3969 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
3970 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
3971 
3972 	if (READ_ONCE(pgdat->kswapd_order) < order)
3973 		WRITE_ONCE(pgdat->kswapd_order, order);
3974 
3975 	if (!waitqueue_active(&pgdat->kswapd_wait))
3976 		return;
3977 
3978 	/* Hopeless node, leave it to direct reclaim if possible */
3979 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3980 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
3981 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
3982 		/*
3983 		 * There may be plenty of free memory available, but it's too
3984 		 * fragmented for high-order allocations.  Wake up kcompactd
3985 		 * and rely on compaction_suitable() to determine if it's
3986 		 * needed.  If it fails, it will defer subsequent attempts to
3987 		 * ratelimit its work.
3988 		 */
3989 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3990 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
3991 		return;
3992 	}
3993 
3994 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
3995 				      gfp_flags);
3996 	wake_up_interruptible(&pgdat->kswapd_wait);
3997 }
3998 
3999 #ifdef CONFIG_HIBERNATION
4000 /*
4001  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4002  * freed pages.
4003  *
4004  * Rather than trying to age LRUs the aim is to preserve the overall
4005  * LRU order by reclaiming preferentially
4006  * inactive > active > active referenced > active mapped
4007  */
4008 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4009 {
4010 	struct scan_control sc = {
4011 		.nr_to_reclaim = nr_to_reclaim,
4012 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4013 		.reclaim_idx = MAX_NR_ZONES - 1,
4014 		.priority = DEF_PRIORITY,
4015 		.may_writepage = 1,
4016 		.may_unmap = 1,
4017 		.may_swap = 1,
4018 		.hibernation_mode = 1,
4019 	};
4020 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4021 	unsigned long nr_reclaimed;
4022 	unsigned int noreclaim_flag;
4023 
4024 	fs_reclaim_acquire(sc.gfp_mask);
4025 	noreclaim_flag = memalloc_noreclaim_save();
4026 	set_task_reclaim_state(current, &sc.reclaim_state);
4027 
4028 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4029 
4030 	set_task_reclaim_state(current, NULL);
4031 	memalloc_noreclaim_restore(noreclaim_flag);
4032 	fs_reclaim_release(sc.gfp_mask);
4033 
4034 	return nr_reclaimed;
4035 }
4036 #endif /* CONFIG_HIBERNATION */
4037 
4038 /*
4039  * This kswapd start function will be called by init and node-hot-add.
4040  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4041  */
4042 int kswapd_run(int nid)
4043 {
4044 	pg_data_t *pgdat = NODE_DATA(nid);
4045 	int ret = 0;
4046 
4047 	if (pgdat->kswapd)
4048 		return 0;
4049 
4050 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4051 	if (IS_ERR(pgdat->kswapd)) {
4052 		/* failure at boot is fatal */
4053 		BUG_ON(system_state < SYSTEM_RUNNING);
4054 		pr_err("Failed to start kswapd on node %d\n", nid);
4055 		ret = PTR_ERR(pgdat->kswapd);
4056 		pgdat->kswapd = NULL;
4057 	}
4058 	return ret;
4059 }
4060 
4061 /*
4062  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4063  * hold mem_hotplug_begin/end().
4064  */
4065 void kswapd_stop(int nid)
4066 {
4067 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4068 
4069 	if (kswapd) {
4070 		kthread_stop(kswapd);
4071 		NODE_DATA(nid)->kswapd = NULL;
4072 	}
4073 }
4074 
4075 static int __init kswapd_init(void)
4076 {
4077 	int nid;
4078 
4079 	swap_setup();
4080 	for_each_node_state(nid, N_MEMORY)
4081  		kswapd_run(nid);
4082 	return 0;
4083 }
4084 
4085 module_init(kswapd_init)
4086 
4087 #ifdef CONFIG_NUMA
4088 /*
4089  * Node reclaim mode
4090  *
4091  * If non-zero call node_reclaim when the number of free pages falls below
4092  * the watermarks.
4093  */
4094 int node_reclaim_mode __read_mostly;
4095 
4096 #define RECLAIM_WRITE (1<<0)	/* Writeout pages during reclaim */
4097 #define RECLAIM_UNMAP (1<<1)	/* Unmap pages during reclaim */
4098 
4099 /*
4100  * Priority for NODE_RECLAIM. This determines the fraction of pages
4101  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4102  * a zone.
4103  */
4104 #define NODE_RECLAIM_PRIORITY 4
4105 
4106 /*
4107  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4108  * occur.
4109  */
4110 int sysctl_min_unmapped_ratio = 1;
4111 
4112 /*
4113  * If the number of slab pages in a zone grows beyond this percentage then
4114  * slab reclaim needs to occur.
4115  */
4116 int sysctl_min_slab_ratio = 5;
4117 
4118 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4119 {
4120 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4121 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4122 		node_page_state(pgdat, NR_ACTIVE_FILE);
4123 
4124 	/*
4125 	 * It's possible for there to be more file mapped pages than
4126 	 * accounted for by the pages on the file LRU lists because
4127 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4128 	 */
4129 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4130 }
4131 
4132 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4133 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4134 {
4135 	unsigned long nr_pagecache_reclaimable;
4136 	unsigned long delta = 0;
4137 
4138 	/*
4139 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4140 	 * potentially reclaimable. Otherwise, we have to worry about
4141 	 * pages like swapcache and node_unmapped_file_pages() provides
4142 	 * a better estimate
4143 	 */
4144 	if (node_reclaim_mode & RECLAIM_UNMAP)
4145 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4146 	else
4147 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4148 
4149 	/* If we can't clean pages, remove dirty pages from consideration */
4150 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4151 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4152 
4153 	/* Watch for any possible underflows due to delta */
4154 	if (unlikely(delta > nr_pagecache_reclaimable))
4155 		delta = nr_pagecache_reclaimable;
4156 
4157 	return nr_pagecache_reclaimable - delta;
4158 }
4159 
4160 /*
4161  * Try to free up some pages from this node through reclaim.
4162  */
4163 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4164 {
4165 	/* Minimum pages needed in order to stay on node */
4166 	const unsigned long nr_pages = 1 << order;
4167 	struct task_struct *p = current;
4168 	unsigned int noreclaim_flag;
4169 	struct scan_control sc = {
4170 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4171 		.gfp_mask = current_gfp_context(gfp_mask),
4172 		.order = order,
4173 		.priority = NODE_RECLAIM_PRIORITY,
4174 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4175 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4176 		.may_swap = 1,
4177 		.reclaim_idx = gfp_zone(gfp_mask),
4178 	};
4179 
4180 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4181 					   sc.gfp_mask);
4182 
4183 	cond_resched();
4184 	fs_reclaim_acquire(sc.gfp_mask);
4185 	/*
4186 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4187 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4188 	 * and RECLAIM_UNMAP.
4189 	 */
4190 	noreclaim_flag = memalloc_noreclaim_save();
4191 	p->flags |= PF_SWAPWRITE;
4192 	set_task_reclaim_state(p, &sc.reclaim_state);
4193 
4194 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4195 		/*
4196 		 * Free memory by calling shrink node with increasing
4197 		 * priorities until we have enough memory freed.
4198 		 */
4199 		do {
4200 			shrink_node(pgdat, &sc);
4201 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4202 	}
4203 
4204 	set_task_reclaim_state(p, NULL);
4205 	current->flags &= ~PF_SWAPWRITE;
4206 	memalloc_noreclaim_restore(noreclaim_flag);
4207 	fs_reclaim_release(sc.gfp_mask);
4208 
4209 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4210 
4211 	return sc.nr_reclaimed >= nr_pages;
4212 }
4213 
4214 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4215 {
4216 	int ret;
4217 
4218 	/*
4219 	 * Node reclaim reclaims unmapped file backed pages and
4220 	 * slab pages if we are over the defined limits.
4221 	 *
4222 	 * A small portion of unmapped file backed pages is needed for
4223 	 * file I/O otherwise pages read by file I/O will be immediately
4224 	 * thrown out if the node is overallocated. So we do not reclaim
4225 	 * if less than a specified percentage of the node is used by
4226 	 * unmapped file backed pages.
4227 	 */
4228 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4229 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4230 	    pgdat->min_slab_pages)
4231 		return NODE_RECLAIM_FULL;
4232 
4233 	/*
4234 	 * Do not scan if the allocation should not be delayed.
4235 	 */
4236 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4237 		return NODE_RECLAIM_NOSCAN;
4238 
4239 	/*
4240 	 * Only run node reclaim on the local node or on nodes that do not
4241 	 * have associated processors. This will favor the local processor
4242 	 * over remote processors and spread off node memory allocations
4243 	 * as wide as possible.
4244 	 */
4245 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4246 		return NODE_RECLAIM_NOSCAN;
4247 
4248 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4249 		return NODE_RECLAIM_NOSCAN;
4250 
4251 	ret = __node_reclaim(pgdat, gfp_mask, order);
4252 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4253 
4254 	if (!ret)
4255 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4256 
4257 	return ret;
4258 }
4259 #endif
4260 
4261 /**
4262  * check_move_unevictable_pages - check pages for evictability and move to
4263  * appropriate zone lru list
4264  * @pvec: pagevec with lru pages to check
4265  *
4266  * Checks pages for evictability, if an evictable page is in the unevictable
4267  * lru list, moves it to the appropriate evictable lru list. This function
4268  * should be only used for lru pages.
4269  */
4270 void check_move_unevictable_pages(struct pagevec *pvec)
4271 {
4272 	struct lruvec *lruvec = NULL;
4273 	int pgscanned = 0;
4274 	int pgrescued = 0;
4275 	int i;
4276 
4277 	for (i = 0; i < pvec->nr; i++) {
4278 		struct page *page = pvec->pages[i];
4279 		int nr_pages;
4280 
4281 		if (PageTransTail(page))
4282 			continue;
4283 
4284 		nr_pages = thp_nr_pages(page);
4285 		pgscanned += nr_pages;
4286 
4287 		/* block memcg migration during page moving between lru */
4288 		if (!TestClearPageLRU(page))
4289 			continue;
4290 
4291 		lruvec = relock_page_lruvec_irq(page, lruvec);
4292 		if (page_evictable(page) && PageUnevictable(page)) {
4293 			enum lru_list lru = page_lru_base_type(page);
4294 
4295 			VM_BUG_ON_PAGE(PageActive(page), page);
4296 			ClearPageUnevictable(page);
4297 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4298 			add_page_to_lru_list(page, lruvec, lru);
4299 			pgrescued += nr_pages;
4300 		}
4301 		SetPageLRU(page);
4302 	}
4303 
4304 	if (lruvec) {
4305 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4306 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4307 		unlock_page_lruvec_irq(lruvec);
4308 	} else if (pgscanned) {
4309 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4310 	}
4311 }
4312 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4313