xref: /openbmc/linux/mm/vmalloc.c (revision b7d90e7a5ea8d64e668d5685925900d33d3884d5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/llist.h>
35 #include <linux/bitops.h>
36 #include <linux/rbtree_augmented.h>
37 #include <linux/overflow.h>
38 #include <linux/pgtable.h>
39 #include <linux/uaccess.h>
40 #include <linux/hugetlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/shmparam.h>
43 
44 #include "internal.h"
45 #include "pgalloc-track.h"
46 
47 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
48 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
49 
50 static int __init set_nohugeiomap(char *str)
51 {
52 	ioremap_max_page_shift = PAGE_SHIFT;
53 	return 0;
54 }
55 early_param("nohugeiomap", set_nohugeiomap);
56 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
57 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
58 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
59 
60 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
61 static bool __ro_after_init vmap_allow_huge = true;
62 
63 static int __init set_nohugevmalloc(char *str)
64 {
65 	vmap_allow_huge = false;
66 	return 0;
67 }
68 early_param("nohugevmalloc", set_nohugevmalloc);
69 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
70 static const bool vmap_allow_huge = false;
71 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
72 
73 bool is_vmalloc_addr(const void *x)
74 {
75 	unsigned long addr = (unsigned long)x;
76 
77 	return addr >= VMALLOC_START && addr < VMALLOC_END;
78 }
79 EXPORT_SYMBOL(is_vmalloc_addr);
80 
81 struct vfree_deferred {
82 	struct llist_head list;
83 	struct work_struct wq;
84 };
85 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
86 
87 static void __vunmap(const void *, int);
88 
89 static void free_work(struct work_struct *w)
90 {
91 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
92 	struct llist_node *t, *llnode;
93 
94 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
95 		__vunmap((void *)llnode, 1);
96 }
97 
98 /*** Page table manipulation functions ***/
99 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
100 			phys_addr_t phys_addr, pgprot_t prot,
101 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
102 {
103 	pte_t *pte;
104 	u64 pfn;
105 	unsigned long size = PAGE_SIZE;
106 
107 	pfn = phys_addr >> PAGE_SHIFT;
108 	pte = pte_alloc_kernel_track(pmd, addr, mask);
109 	if (!pte)
110 		return -ENOMEM;
111 	do {
112 		BUG_ON(!pte_none(*pte));
113 
114 #ifdef CONFIG_HUGETLB_PAGE
115 		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
116 		if (size != PAGE_SIZE) {
117 			pte_t entry = pfn_pte(pfn, prot);
118 
119 			entry = pte_mkhuge(entry);
120 			entry = arch_make_huge_pte(entry, ilog2(size), 0);
121 			set_huge_pte_at(&init_mm, addr, pte, entry);
122 			pfn += PFN_DOWN(size);
123 			continue;
124 		}
125 #endif
126 		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
127 		pfn++;
128 	} while (pte += PFN_DOWN(size), addr += size, addr != end);
129 	*mask |= PGTBL_PTE_MODIFIED;
130 	return 0;
131 }
132 
133 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
134 			phys_addr_t phys_addr, pgprot_t prot,
135 			unsigned int max_page_shift)
136 {
137 	if (max_page_shift < PMD_SHIFT)
138 		return 0;
139 
140 	if (!arch_vmap_pmd_supported(prot))
141 		return 0;
142 
143 	if ((end - addr) != PMD_SIZE)
144 		return 0;
145 
146 	if (!IS_ALIGNED(addr, PMD_SIZE))
147 		return 0;
148 
149 	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
150 		return 0;
151 
152 	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
153 		return 0;
154 
155 	return pmd_set_huge(pmd, phys_addr, prot);
156 }
157 
158 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
159 			phys_addr_t phys_addr, pgprot_t prot,
160 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
161 {
162 	pmd_t *pmd;
163 	unsigned long next;
164 
165 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
166 	if (!pmd)
167 		return -ENOMEM;
168 	do {
169 		next = pmd_addr_end(addr, end);
170 
171 		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
172 					max_page_shift)) {
173 			*mask |= PGTBL_PMD_MODIFIED;
174 			continue;
175 		}
176 
177 		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
178 			return -ENOMEM;
179 	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
180 	return 0;
181 }
182 
183 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
184 			phys_addr_t phys_addr, pgprot_t prot,
185 			unsigned int max_page_shift)
186 {
187 	if (max_page_shift < PUD_SHIFT)
188 		return 0;
189 
190 	if (!arch_vmap_pud_supported(prot))
191 		return 0;
192 
193 	if ((end - addr) != PUD_SIZE)
194 		return 0;
195 
196 	if (!IS_ALIGNED(addr, PUD_SIZE))
197 		return 0;
198 
199 	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
200 		return 0;
201 
202 	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
203 		return 0;
204 
205 	return pud_set_huge(pud, phys_addr, prot);
206 }
207 
208 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
209 			phys_addr_t phys_addr, pgprot_t prot,
210 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
211 {
212 	pud_t *pud;
213 	unsigned long next;
214 
215 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
216 	if (!pud)
217 		return -ENOMEM;
218 	do {
219 		next = pud_addr_end(addr, end);
220 
221 		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
222 					max_page_shift)) {
223 			*mask |= PGTBL_PUD_MODIFIED;
224 			continue;
225 		}
226 
227 		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
228 					max_page_shift, mask))
229 			return -ENOMEM;
230 	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
231 	return 0;
232 }
233 
234 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
235 			phys_addr_t phys_addr, pgprot_t prot,
236 			unsigned int max_page_shift)
237 {
238 	if (max_page_shift < P4D_SHIFT)
239 		return 0;
240 
241 	if (!arch_vmap_p4d_supported(prot))
242 		return 0;
243 
244 	if ((end - addr) != P4D_SIZE)
245 		return 0;
246 
247 	if (!IS_ALIGNED(addr, P4D_SIZE))
248 		return 0;
249 
250 	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
251 		return 0;
252 
253 	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
254 		return 0;
255 
256 	return p4d_set_huge(p4d, phys_addr, prot);
257 }
258 
259 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
260 			phys_addr_t phys_addr, pgprot_t prot,
261 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
262 {
263 	p4d_t *p4d;
264 	unsigned long next;
265 
266 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
267 	if (!p4d)
268 		return -ENOMEM;
269 	do {
270 		next = p4d_addr_end(addr, end);
271 
272 		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
273 					max_page_shift)) {
274 			*mask |= PGTBL_P4D_MODIFIED;
275 			continue;
276 		}
277 
278 		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
279 					max_page_shift, mask))
280 			return -ENOMEM;
281 	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
282 	return 0;
283 }
284 
285 static int vmap_range_noflush(unsigned long addr, unsigned long end,
286 			phys_addr_t phys_addr, pgprot_t prot,
287 			unsigned int max_page_shift)
288 {
289 	pgd_t *pgd;
290 	unsigned long start;
291 	unsigned long next;
292 	int err;
293 	pgtbl_mod_mask mask = 0;
294 
295 	might_sleep();
296 	BUG_ON(addr >= end);
297 
298 	start = addr;
299 	pgd = pgd_offset_k(addr);
300 	do {
301 		next = pgd_addr_end(addr, end);
302 		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
303 					max_page_shift, &mask);
304 		if (err)
305 			break;
306 	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
307 
308 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
309 		arch_sync_kernel_mappings(start, end);
310 
311 	return err;
312 }
313 
314 int ioremap_page_range(unsigned long addr, unsigned long end,
315 		phys_addr_t phys_addr, pgprot_t prot)
316 {
317 	int err;
318 
319 	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
320 				 ioremap_max_page_shift);
321 	flush_cache_vmap(addr, end);
322 	return err;
323 }
324 
325 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
326 			     pgtbl_mod_mask *mask)
327 {
328 	pte_t *pte;
329 
330 	pte = pte_offset_kernel(pmd, addr);
331 	do {
332 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
333 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
334 	} while (pte++, addr += PAGE_SIZE, addr != end);
335 	*mask |= PGTBL_PTE_MODIFIED;
336 }
337 
338 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
339 			     pgtbl_mod_mask *mask)
340 {
341 	pmd_t *pmd;
342 	unsigned long next;
343 	int cleared;
344 
345 	pmd = pmd_offset(pud, addr);
346 	do {
347 		next = pmd_addr_end(addr, end);
348 
349 		cleared = pmd_clear_huge(pmd);
350 		if (cleared || pmd_bad(*pmd))
351 			*mask |= PGTBL_PMD_MODIFIED;
352 
353 		if (cleared)
354 			continue;
355 		if (pmd_none_or_clear_bad(pmd))
356 			continue;
357 		vunmap_pte_range(pmd, addr, next, mask);
358 
359 		cond_resched();
360 	} while (pmd++, addr = next, addr != end);
361 }
362 
363 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
364 			     pgtbl_mod_mask *mask)
365 {
366 	pud_t *pud;
367 	unsigned long next;
368 	int cleared;
369 
370 	pud = pud_offset(p4d, addr);
371 	do {
372 		next = pud_addr_end(addr, end);
373 
374 		cleared = pud_clear_huge(pud);
375 		if (cleared || pud_bad(*pud))
376 			*mask |= PGTBL_PUD_MODIFIED;
377 
378 		if (cleared)
379 			continue;
380 		if (pud_none_or_clear_bad(pud))
381 			continue;
382 		vunmap_pmd_range(pud, addr, next, mask);
383 	} while (pud++, addr = next, addr != end);
384 }
385 
386 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
387 			     pgtbl_mod_mask *mask)
388 {
389 	p4d_t *p4d;
390 	unsigned long next;
391 	int cleared;
392 
393 	p4d = p4d_offset(pgd, addr);
394 	do {
395 		next = p4d_addr_end(addr, end);
396 
397 		cleared = p4d_clear_huge(p4d);
398 		if (cleared || p4d_bad(*p4d))
399 			*mask |= PGTBL_P4D_MODIFIED;
400 
401 		if (cleared)
402 			continue;
403 		if (p4d_none_or_clear_bad(p4d))
404 			continue;
405 		vunmap_pud_range(p4d, addr, next, mask);
406 	} while (p4d++, addr = next, addr != end);
407 }
408 
409 /*
410  * vunmap_range_noflush is similar to vunmap_range, but does not
411  * flush caches or TLBs.
412  *
413  * The caller is responsible for calling flush_cache_vmap() before calling
414  * this function, and flush_tlb_kernel_range after it has returned
415  * successfully (and before the addresses are expected to cause a page fault
416  * or be re-mapped for something else, if TLB flushes are being delayed or
417  * coalesced).
418  *
419  * This is an internal function only. Do not use outside mm/.
420  */
421 void vunmap_range_noflush(unsigned long start, unsigned long end)
422 {
423 	unsigned long next;
424 	pgd_t *pgd;
425 	unsigned long addr = start;
426 	pgtbl_mod_mask mask = 0;
427 
428 	BUG_ON(addr >= end);
429 	pgd = pgd_offset_k(addr);
430 	do {
431 		next = pgd_addr_end(addr, end);
432 		if (pgd_bad(*pgd))
433 			mask |= PGTBL_PGD_MODIFIED;
434 		if (pgd_none_or_clear_bad(pgd))
435 			continue;
436 		vunmap_p4d_range(pgd, addr, next, &mask);
437 	} while (pgd++, addr = next, addr != end);
438 
439 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
440 		arch_sync_kernel_mappings(start, end);
441 }
442 
443 /**
444  * vunmap_range - unmap kernel virtual addresses
445  * @addr: start of the VM area to unmap
446  * @end: end of the VM area to unmap (non-inclusive)
447  *
448  * Clears any present PTEs in the virtual address range, flushes TLBs and
449  * caches. Any subsequent access to the address before it has been re-mapped
450  * is a kernel bug.
451  */
452 void vunmap_range(unsigned long addr, unsigned long end)
453 {
454 	flush_cache_vunmap(addr, end);
455 	vunmap_range_noflush(addr, end);
456 	flush_tlb_kernel_range(addr, end);
457 }
458 
459 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
460 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
461 		pgtbl_mod_mask *mask)
462 {
463 	pte_t *pte;
464 
465 	/*
466 	 * nr is a running index into the array which helps higher level
467 	 * callers keep track of where we're up to.
468 	 */
469 
470 	pte = pte_alloc_kernel_track(pmd, addr, mask);
471 	if (!pte)
472 		return -ENOMEM;
473 	do {
474 		struct page *page = pages[*nr];
475 
476 		if (WARN_ON(!pte_none(*pte)))
477 			return -EBUSY;
478 		if (WARN_ON(!page))
479 			return -ENOMEM;
480 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
481 		(*nr)++;
482 	} while (pte++, addr += PAGE_SIZE, addr != end);
483 	*mask |= PGTBL_PTE_MODIFIED;
484 	return 0;
485 }
486 
487 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
488 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
489 		pgtbl_mod_mask *mask)
490 {
491 	pmd_t *pmd;
492 	unsigned long next;
493 
494 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
495 	if (!pmd)
496 		return -ENOMEM;
497 	do {
498 		next = pmd_addr_end(addr, end);
499 		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
500 			return -ENOMEM;
501 	} while (pmd++, addr = next, addr != end);
502 	return 0;
503 }
504 
505 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
506 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
507 		pgtbl_mod_mask *mask)
508 {
509 	pud_t *pud;
510 	unsigned long next;
511 
512 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
513 	if (!pud)
514 		return -ENOMEM;
515 	do {
516 		next = pud_addr_end(addr, end);
517 		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
518 			return -ENOMEM;
519 	} while (pud++, addr = next, addr != end);
520 	return 0;
521 }
522 
523 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
524 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
525 		pgtbl_mod_mask *mask)
526 {
527 	p4d_t *p4d;
528 	unsigned long next;
529 
530 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
531 	if (!p4d)
532 		return -ENOMEM;
533 	do {
534 		next = p4d_addr_end(addr, end);
535 		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
536 			return -ENOMEM;
537 	} while (p4d++, addr = next, addr != end);
538 	return 0;
539 }
540 
541 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
542 		pgprot_t prot, struct page **pages)
543 {
544 	unsigned long start = addr;
545 	pgd_t *pgd;
546 	unsigned long next;
547 	int err = 0;
548 	int nr = 0;
549 	pgtbl_mod_mask mask = 0;
550 
551 	BUG_ON(addr >= end);
552 	pgd = pgd_offset_k(addr);
553 	do {
554 		next = pgd_addr_end(addr, end);
555 		if (pgd_bad(*pgd))
556 			mask |= PGTBL_PGD_MODIFIED;
557 		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
558 		if (err)
559 			return err;
560 	} while (pgd++, addr = next, addr != end);
561 
562 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
563 		arch_sync_kernel_mappings(start, end);
564 
565 	return 0;
566 }
567 
568 /*
569  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
570  * flush caches.
571  *
572  * The caller is responsible for calling flush_cache_vmap() after this
573  * function returns successfully and before the addresses are accessed.
574  *
575  * This is an internal function only. Do not use outside mm/.
576  */
577 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
578 		pgprot_t prot, struct page **pages, unsigned int page_shift)
579 {
580 	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
581 
582 	WARN_ON(page_shift < PAGE_SHIFT);
583 
584 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
585 			page_shift == PAGE_SHIFT)
586 		return vmap_small_pages_range_noflush(addr, end, prot, pages);
587 
588 	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
589 		int err;
590 
591 		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
592 					__pa(page_address(pages[i])), prot,
593 					page_shift);
594 		if (err)
595 			return err;
596 
597 		addr += 1UL << page_shift;
598 	}
599 
600 	return 0;
601 }
602 
603 /**
604  * vmap_pages_range - map pages to a kernel virtual address
605  * @addr: start of the VM area to map
606  * @end: end of the VM area to map (non-inclusive)
607  * @prot: page protection flags to use
608  * @pages: pages to map (always PAGE_SIZE pages)
609  * @page_shift: maximum shift that the pages may be mapped with, @pages must
610  * be aligned and contiguous up to at least this shift.
611  *
612  * RETURNS:
613  * 0 on success, -errno on failure.
614  */
615 static int vmap_pages_range(unsigned long addr, unsigned long end,
616 		pgprot_t prot, struct page **pages, unsigned int page_shift)
617 {
618 	int err;
619 
620 	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
621 	flush_cache_vmap(addr, end);
622 	return err;
623 }
624 
625 int is_vmalloc_or_module_addr(const void *x)
626 {
627 	/*
628 	 * ARM, x86-64 and sparc64 put modules in a special place,
629 	 * and fall back on vmalloc() if that fails. Others
630 	 * just put it in the vmalloc space.
631 	 */
632 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
633 	unsigned long addr = (unsigned long)x;
634 	if (addr >= MODULES_VADDR && addr < MODULES_END)
635 		return 1;
636 #endif
637 	return is_vmalloc_addr(x);
638 }
639 
640 /*
641  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
642  * return the tail page that corresponds to the base page address, which
643  * matches small vmap mappings.
644  */
645 struct page *vmalloc_to_page(const void *vmalloc_addr)
646 {
647 	unsigned long addr = (unsigned long) vmalloc_addr;
648 	struct page *page = NULL;
649 	pgd_t *pgd = pgd_offset_k(addr);
650 	p4d_t *p4d;
651 	pud_t *pud;
652 	pmd_t *pmd;
653 	pte_t *ptep, pte;
654 
655 	/*
656 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
657 	 * architectures that do not vmalloc module space
658 	 */
659 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
660 
661 	if (pgd_none(*pgd))
662 		return NULL;
663 	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
664 		return NULL; /* XXX: no allowance for huge pgd */
665 	if (WARN_ON_ONCE(pgd_bad(*pgd)))
666 		return NULL;
667 
668 	p4d = p4d_offset(pgd, addr);
669 	if (p4d_none(*p4d))
670 		return NULL;
671 	if (p4d_leaf(*p4d))
672 		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
673 	if (WARN_ON_ONCE(p4d_bad(*p4d)))
674 		return NULL;
675 
676 	pud = pud_offset(p4d, addr);
677 	if (pud_none(*pud))
678 		return NULL;
679 	if (pud_leaf(*pud))
680 		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
681 	if (WARN_ON_ONCE(pud_bad(*pud)))
682 		return NULL;
683 
684 	pmd = pmd_offset(pud, addr);
685 	if (pmd_none(*pmd))
686 		return NULL;
687 	if (pmd_leaf(*pmd))
688 		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
689 	if (WARN_ON_ONCE(pmd_bad(*pmd)))
690 		return NULL;
691 
692 	ptep = pte_offset_map(pmd, addr);
693 	pte = *ptep;
694 	if (pte_present(pte))
695 		page = pte_page(pte);
696 	pte_unmap(ptep);
697 
698 	return page;
699 }
700 EXPORT_SYMBOL(vmalloc_to_page);
701 
702 /*
703  * Map a vmalloc()-space virtual address to the physical page frame number.
704  */
705 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
706 {
707 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
708 }
709 EXPORT_SYMBOL(vmalloc_to_pfn);
710 
711 
712 /*** Global kva allocator ***/
713 
714 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
715 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
716 
717 
718 static DEFINE_SPINLOCK(vmap_area_lock);
719 static DEFINE_SPINLOCK(free_vmap_area_lock);
720 /* Export for kexec only */
721 LIST_HEAD(vmap_area_list);
722 static struct rb_root vmap_area_root = RB_ROOT;
723 static bool vmap_initialized __read_mostly;
724 
725 static struct rb_root purge_vmap_area_root = RB_ROOT;
726 static LIST_HEAD(purge_vmap_area_list);
727 static DEFINE_SPINLOCK(purge_vmap_area_lock);
728 
729 /*
730  * This kmem_cache is used for vmap_area objects. Instead of
731  * allocating from slab we reuse an object from this cache to
732  * make things faster. Especially in "no edge" splitting of
733  * free block.
734  */
735 static struct kmem_cache *vmap_area_cachep;
736 
737 /*
738  * This linked list is used in pair with free_vmap_area_root.
739  * It gives O(1) access to prev/next to perform fast coalescing.
740  */
741 static LIST_HEAD(free_vmap_area_list);
742 
743 /*
744  * This augment red-black tree represents the free vmap space.
745  * All vmap_area objects in this tree are sorted by va->va_start
746  * address. It is used for allocation and merging when a vmap
747  * object is released.
748  *
749  * Each vmap_area node contains a maximum available free block
750  * of its sub-tree, right or left. Therefore it is possible to
751  * find a lowest match of free area.
752  */
753 static struct rb_root free_vmap_area_root = RB_ROOT;
754 
755 /*
756  * Preload a CPU with one object for "no edge" split case. The
757  * aim is to get rid of allocations from the atomic context, thus
758  * to use more permissive allocation masks.
759  */
760 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
761 
762 static __always_inline unsigned long
763 va_size(struct vmap_area *va)
764 {
765 	return (va->va_end - va->va_start);
766 }
767 
768 static __always_inline unsigned long
769 get_subtree_max_size(struct rb_node *node)
770 {
771 	struct vmap_area *va;
772 
773 	va = rb_entry_safe(node, struct vmap_area, rb_node);
774 	return va ? va->subtree_max_size : 0;
775 }
776 
777 /*
778  * Gets called when remove the node and rotate.
779  */
780 static __always_inline unsigned long
781 compute_subtree_max_size(struct vmap_area *va)
782 {
783 	return max3(va_size(va),
784 		get_subtree_max_size(va->rb_node.rb_left),
785 		get_subtree_max_size(va->rb_node.rb_right));
786 }
787 
788 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
789 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
790 
791 static void purge_vmap_area_lazy(void);
792 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
793 static unsigned long lazy_max_pages(void);
794 
795 static atomic_long_t nr_vmalloc_pages;
796 
797 unsigned long vmalloc_nr_pages(void)
798 {
799 	return atomic_long_read(&nr_vmalloc_pages);
800 }
801 
802 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
803 {
804 	struct vmap_area *va = NULL;
805 	struct rb_node *n = vmap_area_root.rb_node;
806 
807 	while (n) {
808 		struct vmap_area *tmp;
809 
810 		tmp = rb_entry(n, struct vmap_area, rb_node);
811 		if (tmp->va_end > addr) {
812 			va = tmp;
813 			if (tmp->va_start <= addr)
814 				break;
815 
816 			n = n->rb_left;
817 		} else
818 			n = n->rb_right;
819 	}
820 
821 	return va;
822 }
823 
824 static struct vmap_area *__find_vmap_area(unsigned long addr)
825 {
826 	struct rb_node *n = vmap_area_root.rb_node;
827 
828 	while (n) {
829 		struct vmap_area *va;
830 
831 		va = rb_entry(n, struct vmap_area, rb_node);
832 		if (addr < va->va_start)
833 			n = n->rb_left;
834 		else if (addr >= va->va_end)
835 			n = n->rb_right;
836 		else
837 			return va;
838 	}
839 
840 	return NULL;
841 }
842 
843 /*
844  * This function returns back addresses of parent node
845  * and its left or right link for further processing.
846  *
847  * Otherwise NULL is returned. In that case all further
848  * steps regarding inserting of conflicting overlap range
849  * have to be declined and actually considered as a bug.
850  */
851 static __always_inline struct rb_node **
852 find_va_links(struct vmap_area *va,
853 	struct rb_root *root, struct rb_node *from,
854 	struct rb_node **parent)
855 {
856 	struct vmap_area *tmp_va;
857 	struct rb_node **link;
858 
859 	if (root) {
860 		link = &root->rb_node;
861 		if (unlikely(!*link)) {
862 			*parent = NULL;
863 			return link;
864 		}
865 	} else {
866 		link = &from;
867 	}
868 
869 	/*
870 	 * Go to the bottom of the tree. When we hit the last point
871 	 * we end up with parent rb_node and correct direction, i name
872 	 * it link, where the new va->rb_node will be attached to.
873 	 */
874 	do {
875 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
876 
877 		/*
878 		 * During the traversal we also do some sanity check.
879 		 * Trigger the BUG() if there are sides(left/right)
880 		 * or full overlaps.
881 		 */
882 		if (va->va_start < tmp_va->va_end &&
883 				va->va_end <= tmp_va->va_start)
884 			link = &(*link)->rb_left;
885 		else if (va->va_end > tmp_va->va_start &&
886 				va->va_start >= tmp_va->va_end)
887 			link = &(*link)->rb_right;
888 		else {
889 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
890 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
891 
892 			return NULL;
893 		}
894 	} while (*link);
895 
896 	*parent = &tmp_va->rb_node;
897 	return link;
898 }
899 
900 static __always_inline struct list_head *
901 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
902 {
903 	struct list_head *list;
904 
905 	if (unlikely(!parent))
906 		/*
907 		 * The red-black tree where we try to find VA neighbors
908 		 * before merging or inserting is empty, i.e. it means
909 		 * there is no free vmap space. Normally it does not
910 		 * happen but we handle this case anyway.
911 		 */
912 		return NULL;
913 
914 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
915 	return (&parent->rb_right == link ? list->next : list);
916 }
917 
918 static __always_inline void
919 link_va(struct vmap_area *va, struct rb_root *root,
920 	struct rb_node *parent, struct rb_node **link, struct list_head *head)
921 {
922 	/*
923 	 * VA is still not in the list, but we can
924 	 * identify its future previous list_head node.
925 	 */
926 	if (likely(parent)) {
927 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
928 		if (&parent->rb_right != link)
929 			head = head->prev;
930 	}
931 
932 	/* Insert to the rb-tree */
933 	rb_link_node(&va->rb_node, parent, link);
934 	if (root == &free_vmap_area_root) {
935 		/*
936 		 * Some explanation here. Just perform simple insertion
937 		 * to the tree. We do not set va->subtree_max_size to
938 		 * its current size before calling rb_insert_augmented().
939 		 * It is because of we populate the tree from the bottom
940 		 * to parent levels when the node _is_ in the tree.
941 		 *
942 		 * Therefore we set subtree_max_size to zero after insertion,
943 		 * to let __augment_tree_propagate_from() puts everything to
944 		 * the correct order later on.
945 		 */
946 		rb_insert_augmented(&va->rb_node,
947 			root, &free_vmap_area_rb_augment_cb);
948 		va->subtree_max_size = 0;
949 	} else {
950 		rb_insert_color(&va->rb_node, root);
951 	}
952 
953 	/* Address-sort this list */
954 	list_add(&va->list, head);
955 }
956 
957 static __always_inline void
958 unlink_va(struct vmap_area *va, struct rb_root *root)
959 {
960 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
961 		return;
962 
963 	if (root == &free_vmap_area_root)
964 		rb_erase_augmented(&va->rb_node,
965 			root, &free_vmap_area_rb_augment_cb);
966 	else
967 		rb_erase(&va->rb_node, root);
968 
969 	list_del(&va->list);
970 	RB_CLEAR_NODE(&va->rb_node);
971 }
972 
973 #if DEBUG_AUGMENT_PROPAGATE_CHECK
974 static void
975 augment_tree_propagate_check(void)
976 {
977 	struct vmap_area *va;
978 	unsigned long computed_size;
979 
980 	list_for_each_entry(va, &free_vmap_area_list, list) {
981 		computed_size = compute_subtree_max_size(va);
982 		if (computed_size != va->subtree_max_size)
983 			pr_emerg("tree is corrupted: %lu, %lu\n",
984 				va_size(va), va->subtree_max_size);
985 	}
986 }
987 #endif
988 
989 /*
990  * This function populates subtree_max_size from bottom to upper
991  * levels starting from VA point. The propagation must be done
992  * when VA size is modified by changing its va_start/va_end. Or
993  * in case of newly inserting of VA to the tree.
994  *
995  * It means that __augment_tree_propagate_from() must be called:
996  * - After VA has been inserted to the tree(free path);
997  * - After VA has been shrunk(allocation path);
998  * - After VA has been increased(merging path).
999  *
1000  * Please note that, it does not mean that upper parent nodes
1001  * and their subtree_max_size are recalculated all the time up
1002  * to the root node.
1003  *
1004  *       4--8
1005  *        /\
1006  *       /  \
1007  *      /    \
1008  *    2--2  8--8
1009  *
1010  * For example if we modify the node 4, shrinking it to 2, then
1011  * no any modification is required. If we shrink the node 2 to 1
1012  * its subtree_max_size is updated only, and set to 1. If we shrink
1013  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1014  * node becomes 4--6.
1015  */
1016 static __always_inline void
1017 augment_tree_propagate_from(struct vmap_area *va)
1018 {
1019 	/*
1020 	 * Populate the tree from bottom towards the root until
1021 	 * the calculated maximum available size of checked node
1022 	 * is equal to its current one.
1023 	 */
1024 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1025 
1026 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1027 	augment_tree_propagate_check();
1028 #endif
1029 }
1030 
1031 static void
1032 insert_vmap_area(struct vmap_area *va,
1033 	struct rb_root *root, struct list_head *head)
1034 {
1035 	struct rb_node **link;
1036 	struct rb_node *parent;
1037 
1038 	link = find_va_links(va, root, NULL, &parent);
1039 	if (link)
1040 		link_va(va, root, parent, link, head);
1041 }
1042 
1043 static void
1044 insert_vmap_area_augment(struct vmap_area *va,
1045 	struct rb_node *from, struct rb_root *root,
1046 	struct list_head *head)
1047 {
1048 	struct rb_node **link;
1049 	struct rb_node *parent;
1050 
1051 	if (from)
1052 		link = find_va_links(va, NULL, from, &parent);
1053 	else
1054 		link = find_va_links(va, root, NULL, &parent);
1055 
1056 	if (link) {
1057 		link_va(va, root, parent, link, head);
1058 		augment_tree_propagate_from(va);
1059 	}
1060 }
1061 
1062 /*
1063  * Merge de-allocated chunk of VA memory with previous
1064  * and next free blocks. If coalesce is not done a new
1065  * free area is inserted. If VA has been merged, it is
1066  * freed.
1067  *
1068  * Please note, it can return NULL in case of overlap
1069  * ranges, followed by WARN() report. Despite it is a
1070  * buggy behaviour, a system can be alive and keep
1071  * ongoing.
1072  */
1073 static __always_inline struct vmap_area *
1074 merge_or_add_vmap_area(struct vmap_area *va,
1075 	struct rb_root *root, struct list_head *head)
1076 {
1077 	struct vmap_area *sibling;
1078 	struct list_head *next;
1079 	struct rb_node **link;
1080 	struct rb_node *parent;
1081 	bool merged = false;
1082 
1083 	/*
1084 	 * Find a place in the tree where VA potentially will be
1085 	 * inserted, unless it is merged with its sibling/siblings.
1086 	 */
1087 	link = find_va_links(va, root, NULL, &parent);
1088 	if (!link)
1089 		return NULL;
1090 
1091 	/*
1092 	 * Get next node of VA to check if merging can be done.
1093 	 */
1094 	next = get_va_next_sibling(parent, link);
1095 	if (unlikely(next == NULL))
1096 		goto insert;
1097 
1098 	/*
1099 	 * start            end
1100 	 * |                |
1101 	 * |<------VA------>|<-----Next----->|
1102 	 *                  |                |
1103 	 *                  start            end
1104 	 */
1105 	if (next != head) {
1106 		sibling = list_entry(next, struct vmap_area, list);
1107 		if (sibling->va_start == va->va_end) {
1108 			sibling->va_start = va->va_start;
1109 
1110 			/* Free vmap_area object. */
1111 			kmem_cache_free(vmap_area_cachep, va);
1112 
1113 			/* Point to the new merged area. */
1114 			va = sibling;
1115 			merged = true;
1116 		}
1117 	}
1118 
1119 	/*
1120 	 * start            end
1121 	 * |                |
1122 	 * |<-----Prev----->|<------VA------>|
1123 	 *                  |                |
1124 	 *                  start            end
1125 	 */
1126 	if (next->prev != head) {
1127 		sibling = list_entry(next->prev, struct vmap_area, list);
1128 		if (sibling->va_end == va->va_start) {
1129 			/*
1130 			 * If both neighbors are coalesced, it is important
1131 			 * to unlink the "next" node first, followed by merging
1132 			 * with "previous" one. Otherwise the tree might not be
1133 			 * fully populated if a sibling's augmented value is
1134 			 * "normalized" because of rotation operations.
1135 			 */
1136 			if (merged)
1137 				unlink_va(va, root);
1138 
1139 			sibling->va_end = va->va_end;
1140 
1141 			/* Free vmap_area object. */
1142 			kmem_cache_free(vmap_area_cachep, va);
1143 
1144 			/* Point to the new merged area. */
1145 			va = sibling;
1146 			merged = true;
1147 		}
1148 	}
1149 
1150 insert:
1151 	if (!merged)
1152 		link_va(va, root, parent, link, head);
1153 
1154 	return va;
1155 }
1156 
1157 static __always_inline struct vmap_area *
1158 merge_or_add_vmap_area_augment(struct vmap_area *va,
1159 	struct rb_root *root, struct list_head *head)
1160 {
1161 	va = merge_or_add_vmap_area(va, root, head);
1162 	if (va)
1163 		augment_tree_propagate_from(va);
1164 
1165 	return va;
1166 }
1167 
1168 static __always_inline bool
1169 is_within_this_va(struct vmap_area *va, unsigned long size,
1170 	unsigned long align, unsigned long vstart)
1171 {
1172 	unsigned long nva_start_addr;
1173 
1174 	if (va->va_start > vstart)
1175 		nva_start_addr = ALIGN(va->va_start, align);
1176 	else
1177 		nva_start_addr = ALIGN(vstart, align);
1178 
1179 	/* Can be overflowed due to big size or alignment. */
1180 	if (nva_start_addr + size < nva_start_addr ||
1181 			nva_start_addr < vstart)
1182 		return false;
1183 
1184 	return (nva_start_addr + size <= va->va_end);
1185 }
1186 
1187 /*
1188  * Find the first free block(lowest start address) in the tree,
1189  * that will accomplish the request corresponding to passing
1190  * parameters.
1191  */
1192 static __always_inline struct vmap_area *
1193 find_vmap_lowest_match(unsigned long size,
1194 	unsigned long align, unsigned long vstart)
1195 {
1196 	struct vmap_area *va;
1197 	struct rb_node *node;
1198 
1199 	/* Start from the root. */
1200 	node = free_vmap_area_root.rb_node;
1201 
1202 	while (node) {
1203 		va = rb_entry(node, struct vmap_area, rb_node);
1204 
1205 		if (get_subtree_max_size(node->rb_left) >= size &&
1206 				vstart < va->va_start) {
1207 			node = node->rb_left;
1208 		} else {
1209 			if (is_within_this_va(va, size, align, vstart))
1210 				return va;
1211 
1212 			/*
1213 			 * Does not make sense to go deeper towards the right
1214 			 * sub-tree if it does not have a free block that is
1215 			 * equal or bigger to the requested search size.
1216 			 */
1217 			if (get_subtree_max_size(node->rb_right) >= size) {
1218 				node = node->rb_right;
1219 				continue;
1220 			}
1221 
1222 			/*
1223 			 * OK. We roll back and find the first right sub-tree,
1224 			 * that will satisfy the search criteria. It can happen
1225 			 * due to "vstart" restriction or an alignment overhead
1226 			 * that is bigger then PAGE_SIZE.
1227 			 */
1228 			while ((node = rb_parent(node))) {
1229 				va = rb_entry(node, struct vmap_area, rb_node);
1230 				if (is_within_this_va(va, size, align, vstart))
1231 					return va;
1232 
1233 				if (get_subtree_max_size(node->rb_right) >= size &&
1234 						vstart <= va->va_start) {
1235 					/*
1236 					 * Shift the vstart forward. Please note, we update it with
1237 					 * parent's start address adding "1" because we do not want
1238 					 * to enter same sub-tree after it has already been checked
1239 					 * and no suitable free block found there.
1240 					 */
1241 					vstart = va->va_start + 1;
1242 					node = node->rb_right;
1243 					break;
1244 				}
1245 			}
1246 		}
1247 	}
1248 
1249 	return NULL;
1250 }
1251 
1252 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1253 #include <linux/random.h>
1254 
1255 static struct vmap_area *
1256 find_vmap_lowest_linear_match(unsigned long size,
1257 	unsigned long align, unsigned long vstart)
1258 {
1259 	struct vmap_area *va;
1260 
1261 	list_for_each_entry(va, &free_vmap_area_list, list) {
1262 		if (!is_within_this_va(va, size, align, vstart))
1263 			continue;
1264 
1265 		return va;
1266 	}
1267 
1268 	return NULL;
1269 }
1270 
1271 static void
1272 find_vmap_lowest_match_check(unsigned long size, unsigned long align)
1273 {
1274 	struct vmap_area *va_1, *va_2;
1275 	unsigned long vstart;
1276 	unsigned int rnd;
1277 
1278 	get_random_bytes(&rnd, sizeof(rnd));
1279 	vstart = VMALLOC_START + rnd;
1280 
1281 	va_1 = find_vmap_lowest_match(size, align, vstart);
1282 	va_2 = find_vmap_lowest_linear_match(size, align, vstart);
1283 
1284 	if (va_1 != va_2)
1285 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1286 			va_1, va_2, vstart);
1287 }
1288 #endif
1289 
1290 enum fit_type {
1291 	NOTHING_FIT = 0,
1292 	FL_FIT_TYPE = 1,	/* full fit */
1293 	LE_FIT_TYPE = 2,	/* left edge fit */
1294 	RE_FIT_TYPE = 3,	/* right edge fit */
1295 	NE_FIT_TYPE = 4		/* no edge fit */
1296 };
1297 
1298 static __always_inline enum fit_type
1299 classify_va_fit_type(struct vmap_area *va,
1300 	unsigned long nva_start_addr, unsigned long size)
1301 {
1302 	enum fit_type type;
1303 
1304 	/* Check if it is within VA. */
1305 	if (nva_start_addr < va->va_start ||
1306 			nva_start_addr + size > va->va_end)
1307 		return NOTHING_FIT;
1308 
1309 	/* Now classify. */
1310 	if (va->va_start == nva_start_addr) {
1311 		if (va->va_end == nva_start_addr + size)
1312 			type = FL_FIT_TYPE;
1313 		else
1314 			type = LE_FIT_TYPE;
1315 	} else if (va->va_end == nva_start_addr + size) {
1316 		type = RE_FIT_TYPE;
1317 	} else {
1318 		type = NE_FIT_TYPE;
1319 	}
1320 
1321 	return type;
1322 }
1323 
1324 static __always_inline int
1325 adjust_va_to_fit_type(struct vmap_area *va,
1326 	unsigned long nva_start_addr, unsigned long size,
1327 	enum fit_type type)
1328 {
1329 	struct vmap_area *lva = NULL;
1330 
1331 	if (type == FL_FIT_TYPE) {
1332 		/*
1333 		 * No need to split VA, it fully fits.
1334 		 *
1335 		 * |               |
1336 		 * V      NVA      V
1337 		 * |---------------|
1338 		 */
1339 		unlink_va(va, &free_vmap_area_root);
1340 		kmem_cache_free(vmap_area_cachep, va);
1341 	} else if (type == LE_FIT_TYPE) {
1342 		/*
1343 		 * Split left edge of fit VA.
1344 		 *
1345 		 * |       |
1346 		 * V  NVA  V   R
1347 		 * |-------|-------|
1348 		 */
1349 		va->va_start += size;
1350 	} else if (type == RE_FIT_TYPE) {
1351 		/*
1352 		 * Split right edge of fit VA.
1353 		 *
1354 		 *         |       |
1355 		 *     L   V  NVA  V
1356 		 * |-------|-------|
1357 		 */
1358 		va->va_end = nva_start_addr;
1359 	} else if (type == NE_FIT_TYPE) {
1360 		/*
1361 		 * Split no edge of fit VA.
1362 		 *
1363 		 *     |       |
1364 		 *   L V  NVA  V R
1365 		 * |---|-------|---|
1366 		 */
1367 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1368 		if (unlikely(!lva)) {
1369 			/*
1370 			 * For percpu allocator we do not do any pre-allocation
1371 			 * and leave it as it is. The reason is it most likely
1372 			 * never ends up with NE_FIT_TYPE splitting. In case of
1373 			 * percpu allocations offsets and sizes are aligned to
1374 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1375 			 * are its main fitting cases.
1376 			 *
1377 			 * There are a few exceptions though, as an example it is
1378 			 * a first allocation (early boot up) when we have "one"
1379 			 * big free space that has to be split.
1380 			 *
1381 			 * Also we can hit this path in case of regular "vmap"
1382 			 * allocations, if "this" current CPU was not preloaded.
1383 			 * See the comment in alloc_vmap_area() why. If so, then
1384 			 * GFP_NOWAIT is used instead to get an extra object for
1385 			 * split purpose. That is rare and most time does not
1386 			 * occur.
1387 			 *
1388 			 * What happens if an allocation gets failed. Basically,
1389 			 * an "overflow" path is triggered to purge lazily freed
1390 			 * areas to free some memory, then, the "retry" path is
1391 			 * triggered to repeat one more time. See more details
1392 			 * in alloc_vmap_area() function.
1393 			 */
1394 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1395 			if (!lva)
1396 				return -1;
1397 		}
1398 
1399 		/*
1400 		 * Build the remainder.
1401 		 */
1402 		lva->va_start = va->va_start;
1403 		lva->va_end = nva_start_addr;
1404 
1405 		/*
1406 		 * Shrink this VA to remaining size.
1407 		 */
1408 		va->va_start = nva_start_addr + size;
1409 	} else {
1410 		return -1;
1411 	}
1412 
1413 	if (type != FL_FIT_TYPE) {
1414 		augment_tree_propagate_from(va);
1415 
1416 		if (lva)	/* type == NE_FIT_TYPE */
1417 			insert_vmap_area_augment(lva, &va->rb_node,
1418 				&free_vmap_area_root, &free_vmap_area_list);
1419 	}
1420 
1421 	return 0;
1422 }
1423 
1424 /*
1425  * Returns a start address of the newly allocated area, if success.
1426  * Otherwise a vend is returned that indicates failure.
1427  */
1428 static __always_inline unsigned long
1429 __alloc_vmap_area(unsigned long size, unsigned long align,
1430 	unsigned long vstart, unsigned long vend)
1431 {
1432 	unsigned long nva_start_addr;
1433 	struct vmap_area *va;
1434 	enum fit_type type;
1435 	int ret;
1436 
1437 	va = find_vmap_lowest_match(size, align, vstart);
1438 	if (unlikely(!va))
1439 		return vend;
1440 
1441 	if (va->va_start > vstart)
1442 		nva_start_addr = ALIGN(va->va_start, align);
1443 	else
1444 		nva_start_addr = ALIGN(vstart, align);
1445 
1446 	/* Check the "vend" restriction. */
1447 	if (nva_start_addr + size > vend)
1448 		return vend;
1449 
1450 	/* Classify what we have found. */
1451 	type = classify_va_fit_type(va, nva_start_addr, size);
1452 	if (WARN_ON_ONCE(type == NOTHING_FIT))
1453 		return vend;
1454 
1455 	/* Update the free vmap_area. */
1456 	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1457 	if (ret)
1458 		return vend;
1459 
1460 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1461 	find_vmap_lowest_match_check(size, align);
1462 #endif
1463 
1464 	return nva_start_addr;
1465 }
1466 
1467 /*
1468  * Free a region of KVA allocated by alloc_vmap_area
1469  */
1470 static void free_vmap_area(struct vmap_area *va)
1471 {
1472 	/*
1473 	 * Remove from the busy tree/list.
1474 	 */
1475 	spin_lock(&vmap_area_lock);
1476 	unlink_va(va, &vmap_area_root);
1477 	spin_unlock(&vmap_area_lock);
1478 
1479 	/*
1480 	 * Insert/Merge it back to the free tree/list.
1481 	 */
1482 	spin_lock(&free_vmap_area_lock);
1483 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1484 	spin_unlock(&free_vmap_area_lock);
1485 }
1486 
1487 static inline void
1488 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1489 {
1490 	struct vmap_area *va = NULL;
1491 
1492 	/*
1493 	 * Preload this CPU with one extra vmap_area object. It is used
1494 	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1495 	 * a CPU that does an allocation is preloaded.
1496 	 *
1497 	 * We do it in non-atomic context, thus it allows us to use more
1498 	 * permissive allocation masks to be more stable under low memory
1499 	 * condition and high memory pressure.
1500 	 */
1501 	if (!this_cpu_read(ne_fit_preload_node))
1502 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1503 
1504 	spin_lock(lock);
1505 
1506 	if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1507 		kmem_cache_free(vmap_area_cachep, va);
1508 }
1509 
1510 /*
1511  * Allocate a region of KVA of the specified size and alignment, within the
1512  * vstart and vend.
1513  */
1514 static struct vmap_area *alloc_vmap_area(unsigned long size,
1515 				unsigned long align,
1516 				unsigned long vstart, unsigned long vend,
1517 				int node, gfp_t gfp_mask)
1518 {
1519 	struct vmap_area *va;
1520 	unsigned long freed;
1521 	unsigned long addr;
1522 	int purged = 0;
1523 	int ret;
1524 
1525 	BUG_ON(!size);
1526 	BUG_ON(offset_in_page(size));
1527 	BUG_ON(!is_power_of_2(align));
1528 
1529 	if (unlikely(!vmap_initialized))
1530 		return ERR_PTR(-EBUSY);
1531 
1532 	might_sleep();
1533 	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1534 
1535 	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1536 	if (unlikely(!va))
1537 		return ERR_PTR(-ENOMEM);
1538 
1539 	/*
1540 	 * Only scan the relevant parts containing pointers to other objects
1541 	 * to avoid false negatives.
1542 	 */
1543 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1544 
1545 retry:
1546 	preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1547 	addr = __alloc_vmap_area(size, align, vstart, vend);
1548 	spin_unlock(&free_vmap_area_lock);
1549 
1550 	/*
1551 	 * If an allocation fails, the "vend" address is
1552 	 * returned. Therefore trigger the overflow path.
1553 	 */
1554 	if (unlikely(addr == vend))
1555 		goto overflow;
1556 
1557 	va->va_start = addr;
1558 	va->va_end = addr + size;
1559 	va->vm = NULL;
1560 
1561 	spin_lock(&vmap_area_lock);
1562 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1563 	spin_unlock(&vmap_area_lock);
1564 
1565 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1566 	BUG_ON(va->va_start < vstart);
1567 	BUG_ON(va->va_end > vend);
1568 
1569 	ret = kasan_populate_vmalloc(addr, size);
1570 	if (ret) {
1571 		free_vmap_area(va);
1572 		return ERR_PTR(ret);
1573 	}
1574 
1575 	return va;
1576 
1577 overflow:
1578 	if (!purged) {
1579 		purge_vmap_area_lazy();
1580 		purged = 1;
1581 		goto retry;
1582 	}
1583 
1584 	freed = 0;
1585 	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1586 
1587 	if (freed > 0) {
1588 		purged = 0;
1589 		goto retry;
1590 	}
1591 
1592 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1593 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1594 			size);
1595 
1596 	kmem_cache_free(vmap_area_cachep, va);
1597 	return ERR_PTR(-EBUSY);
1598 }
1599 
1600 int register_vmap_purge_notifier(struct notifier_block *nb)
1601 {
1602 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1603 }
1604 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1605 
1606 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1607 {
1608 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1609 }
1610 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1611 
1612 /*
1613  * lazy_max_pages is the maximum amount of virtual address space we gather up
1614  * before attempting to purge with a TLB flush.
1615  *
1616  * There is a tradeoff here: a larger number will cover more kernel page tables
1617  * and take slightly longer to purge, but it will linearly reduce the number of
1618  * global TLB flushes that must be performed. It would seem natural to scale
1619  * this number up linearly with the number of CPUs (because vmapping activity
1620  * could also scale linearly with the number of CPUs), however it is likely
1621  * that in practice, workloads might be constrained in other ways that mean
1622  * vmap activity will not scale linearly with CPUs. Also, I want to be
1623  * conservative and not introduce a big latency on huge systems, so go with
1624  * a less aggressive log scale. It will still be an improvement over the old
1625  * code, and it will be simple to change the scale factor if we find that it
1626  * becomes a problem on bigger systems.
1627  */
1628 static unsigned long lazy_max_pages(void)
1629 {
1630 	unsigned int log;
1631 
1632 	log = fls(num_online_cpus());
1633 
1634 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1635 }
1636 
1637 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1638 
1639 /*
1640  * Serialize vmap purging.  There is no actual critical section protected
1641  * by this look, but we want to avoid concurrent calls for performance
1642  * reasons and to make the pcpu_get_vm_areas more deterministic.
1643  */
1644 static DEFINE_MUTEX(vmap_purge_lock);
1645 
1646 /* for per-CPU blocks */
1647 static void purge_fragmented_blocks_allcpus(void);
1648 
1649 #ifdef CONFIG_X86_64
1650 /*
1651  * called before a call to iounmap() if the caller wants vm_area_struct's
1652  * immediately freed.
1653  */
1654 void set_iounmap_nonlazy(void)
1655 {
1656 	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1657 }
1658 #endif /* CONFIG_X86_64 */
1659 
1660 /*
1661  * Purges all lazily-freed vmap areas.
1662  */
1663 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1664 {
1665 	unsigned long resched_threshold;
1666 	struct list_head local_pure_list;
1667 	struct vmap_area *va, *n_va;
1668 
1669 	lockdep_assert_held(&vmap_purge_lock);
1670 
1671 	spin_lock(&purge_vmap_area_lock);
1672 	purge_vmap_area_root = RB_ROOT;
1673 	list_replace_init(&purge_vmap_area_list, &local_pure_list);
1674 	spin_unlock(&purge_vmap_area_lock);
1675 
1676 	if (unlikely(list_empty(&local_pure_list)))
1677 		return false;
1678 
1679 	start = min(start,
1680 		list_first_entry(&local_pure_list,
1681 			struct vmap_area, list)->va_start);
1682 
1683 	end = max(end,
1684 		list_last_entry(&local_pure_list,
1685 			struct vmap_area, list)->va_end);
1686 
1687 	flush_tlb_kernel_range(start, end);
1688 	resched_threshold = lazy_max_pages() << 1;
1689 
1690 	spin_lock(&free_vmap_area_lock);
1691 	list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
1692 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1693 		unsigned long orig_start = va->va_start;
1694 		unsigned long orig_end = va->va_end;
1695 
1696 		/*
1697 		 * Finally insert or merge lazily-freed area. It is
1698 		 * detached and there is no need to "unlink" it from
1699 		 * anything.
1700 		 */
1701 		va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1702 				&free_vmap_area_list);
1703 
1704 		if (!va)
1705 			continue;
1706 
1707 		if (is_vmalloc_or_module_addr((void *)orig_start))
1708 			kasan_release_vmalloc(orig_start, orig_end,
1709 					      va->va_start, va->va_end);
1710 
1711 		atomic_long_sub(nr, &vmap_lazy_nr);
1712 
1713 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1714 			cond_resched_lock(&free_vmap_area_lock);
1715 	}
1716 	spin_unlock(&free_vmap_area_lock);
1717 	return true;
1718 }
1719 
1720 /*
1721  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1722  * is already purging.
1723  */
1724 static void try_purge_vmap_area_lazy(void)
1725 {
1726 	if (mutex_trylock(&vmap_purge_lock)) {
1727 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1728 		mutex_unlock(&vmap_purge_lock);
1729 	}
1730 }
1731 
1732 /*
1733  * Kick off a purge of the outstanding lazy areas.
1734  */
1735 static void purge_vmap_area_lazy(void)
1736 {
1737 	mutex_lock(&vmap_purge_lock);
1738 	purge_fragmented_blocks_allcpus();
1739 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1740 	mutex_unlock(&vmap_purge_lock);
1741 }
1742 
1743 /*
1744  * Free a vmap area, caller ensuring that the area has been unmapped
1745  * and flush_cache_vunmap had been called for the correct range
1746  * previously.
1747  */
1748 static void free_vmap_area_noflush(struct vmap_area *va)
1749 {
1750 	unsigned long nr_lazy;
1751 
1752 	spin_lock(&vmap_area_lock);
1753 	unlink_va(va, &vmap_area_root);
1754 	spin_unlock(&vmap_area_lock);
1755 
1756 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1757 				PAGE_SHIFT, &vmap_lazy_nr);
1758 
1759 	/*
1760 	 * Merge or place it to the purge tree/list.
1761 	 */
1762 	spin_lock(&purge_vmap_area_lock);
1763 	merge_or_add_vmap_area(va,
1764 		&purge_vmap_area_root, &purge_vmap_area_list);
1765 	spin_unlock(&purge_vmap_area_lock);
1766 
1767 	/* After this point, we may free va at any time */
1768 	if (unlikely(nr_lazy > lazy_max_pages()))
1769 		try_purge_vmap_area_lazy();
1770 }
1771 
1772 /*
1773  * Free and unmap a vmap area
1774  */
1775 static void free_unmap_vmap_area(struct vmap_area *va)
1776 {
1777 	flush_cache_vunmap(va->va_start, va->va_end);
1778 	vunmap_range_noflush(va->va_start, va->va_end);
1779 	if (debug_pagealloc_enabled_static())
1780 		flush_tlb_kernel_range(va->va_start, va->va_end);
1781 
1782 	free_vmap_area_noflush(va);
1783 }
1784 
1785 static struct vmap_area *find_vmap_area(unsigned long addr)
1786 {
1787 	struct vmap_area *va;
1788 
1789 	spin_lock(&vmap_area_lock);
1790 	va = __find_vmap_area(addr);
1791 	spin_unlock(&vmap_area_lock);
1792 
1793 	return va;
1794 }
1795 
1796 /*** Per cpu kva allocator ***/
1797 
1798 /*
1799  * vmap space is limited especially on 32 bit architectures. Ensure there is
1800  * room for at least 16 percpu vmap blocks per CPU.
1801  */
1802 /*
1803  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1804  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1805  * instead (we just need a rough idea)
1806  */
1807 #if BITS_PER_LONG == 32
1808 #define VMALLOC_SPACE		(128UL*1024*1024)
1809 #else
1810 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1811 #endif
1812 
1813 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1814 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1815 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1816 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1817 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1818 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1819 #define VMAP_BBMAP_BITS		\
1820 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1821 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1822 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1823 
1824 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1825 
1826 struct vmap_block_queue {
1827 	spinlock_t lock;
1828 	struct list_head free;
1829 };
1830 
1831 struct vmap_block {
1832 	spinlock_t lock;
1833 	struct vmap_area *va;
1834 	unsigned long free, dirty;
1835 	unsigned long dirty_min, dirty_max; /*< dirty range */
1836 	struct list_head free_list;
1837 	struct rcu_head rcu_head;
1838 	struct list_head purge;
1839 };
1840 
1841 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1842 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1843 
1844 /*
1845  * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1846  * in the free path. Could get rid of this if we change the API to return a
1847  * "cookie" from alloc, to be passed to free. But no big deal yet.
1848  */
1849 static DEFINE_XARRAY(vmap_blocks);
1850 
1851 /*
1852  * We should probably have a fallback mechanism to allocate virtual memory
1853  * out of partially filled vmap blocks. However vmap block sizing should be
1854  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1855  * big problem.
1856  */
1857 
1858 static unsigned long addr_to_vb_idx(unsigned long addr)
1859 {
1860 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1861 	addr /= VMAP_BLOCK_SIZE;
1862 	return addr;
1863 }
1864 
1865 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1866 {
1867 	unsigned long addr;
1868 
1869 	addr = va_start + (pages_off << PAGE_SHIFT);
1870 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1871 	return (void *)addr;
1872 }
1873 
1874 /**
1875  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1876  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1877  * @order:    how many 2^order pages should be occupied in newly allocated block
1878  * @gfp_mask: flags for the page level allocator
1879  *
1880  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1881  */
1882 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1883 {
1884 	struct vmap_block_queue *vbq;
1885 	struct vmap_block *vb;
1886 	struct vmap_area *va;
1887 	unsigned long vb_idx;
1888 	int node, err;
1889 	void *vaddr;
1890 
1891 	node = numa_node_id();
1892 
1893 	vb = kmalloc_node(sizeof(struct vmap_block),
1894 			gfp_mask & GFP_RECLAIM_MASK, node);
1895 	if (unlikely(!vb))
1896 		return ERR_PTR(-ENOMEM);
1897 
1898 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1899 					VMALLOC_START, VMALLOC_END,
1900 					node, gfp_mask);
1901 	if (IS_ERR(va)) {
1902 		kfree(vb);
1903 		return ERR_CAST(va);
1904 	}
1905 
1906 	vaddr = vmap_block_vaddr(va->va_start, 0);
1907 	spin_lock_init(&vb->lock);
1908 	vb->va = va;
1909 	/* At least something should be left free */
1910 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1911 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1912 	vb->dirty = 0;
1913 	vb->dirty_min = VMAP_BBMAP_BITS;
1914 	vb->dirty_max = 0;
1915 	INIT_LIST_HEAD(&vb->free_list);
1916 
1917 	vb_idx = addr_to_vb_idx(va->va_start);
1918 	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1919 	if (err) {
1920 		kfree(vb);
1921 		free_vmap_area(va);
1922 		return ERR_PTR(err);
1923 	}
1924 
1925 	vbq = &get_cpu_var(vmap_block_queue);
1926 	spin_lock(&vbq->lock);
1927 	list_add_tail_rcu(&vb->free_list, &vbq->free);
1928 	spin_unlock(&vbq->lock);
1929 	put_cpu_var(vmap_block_queue);
1930 
1931 	return vaddr;
1932 }
1933 
1934 static void free_vmap_block(struct vmap_block *vb)
1935 {
1936 	struct vmap_block *tmp;
1937 
1938 	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
1939 	BUG_ON(tmp != vb);
1940 
1941 	free_vmap_area_noflush(vb->va);
1942 	kfree_rcu(vb, rcu_head);
1943 }
1944 
1945 static void purge_fragmented_blocks(int cpu)
1946 {
1947 	LIST_HEAD(purge);
1948 	struct vmap_block *vb;
1949 	struct vmap_block *n_vb;
1950 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1951 
1952 	rcu_read_lock();
1953 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1954 
1955 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1956 			continue;
1957 
1958 		spin_lock(&vb->lock);
1959 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1960 			vb->free = 0; /* prevent further allocs after releasing lock */
1961 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1962 			vb->dirty_min = 0;
1963 			vb->dirty_max = VMAP_BBMAP_BITS;
1964 			spin_lock(&vbq->lock);
1965 			list_del_rcu(&vb->free_list);
1966 			spin_unlock(&vbq->lock);
1967 			spin_unlock(&vb->lock);
1968 			list_add_tail(&vb->purge, &purge);
1969 		} else
1970 			spin_unlock(&vb->lock);
1971 	}
1972 	rcu_read_unlock();
1973 
1974 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1975 		list_del(&vb->purge);
1976 		free_vmap_block(vb);
1977 	}
1978 }
1979 
1980 static void purge_fragmented_blocks_allcpus(void)
1981 {
1982 	int cpu;
1983 
1984 	for_each_possible_cpu(cpu)
1985 		purge_fragmented_blocks(cpu);
1986 }
1987 
1988 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1989 {
1990 	struct vmap_block_queue *vbq;
1991 	struct vmap_block *vb;
1992 	void *vaddr = NULL;
1993 	unsigned int order;
1994 
1995 	BUG_ON(offset_in_page(size));
1996 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1997 	if (WARN_ON(size == 0)) {
1998 		/*
1999 		 * Allocating 0 bytes isn't what caller wants since
2000 		 * get_order(0) returns funny result. Just warn and terminate
2001 		 * early.
2002 		 */
2003 		return NULL;
2004 	}
2005 	order = get_order(size);
2006 
2007 	rcu_read_lock();
2008 	vbq = &get_cpu_var(vmap_block_queue);
2009 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2010 		unsigned long pages_off;
2011 
2012 		spin_lock(&vb->lock);
2013 		if (vb->free < (1UL << order)) {
2014 			spin_unlock(&vb->lock);
2015 			continue;
2016 		}
2017 
2018 		pages_off = VMAP_BBMAP_BITS - vb->free;
2019 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2020 		vb->free -= 1UL << order;
2021 		if (vb->free == 0) {
2022 			spin_lock(&vbq->lock);
2023 			list_del_rcu(&vb->free_list);
2024 			spin_unlock(&vbq->lock);
2025 		}
2026 
2027 		spin_unlock(&vb->lock);
2028 		break;
2029 	}
2030 
2031 	put_cpu_var(vmap_block_queue);
2032 	rcu_read_unlock();
2033 
2034 	/* Allocate new block if nothing was found */
2035 	if (!vaddr)
2036 		vaddr = new_vmap_block(order, gfp_mask);
2037 
2038 	return vaddr;
2039 }
2040 
2041 static void vb_free(unsigned long addr, unsigned long size)
2042 {
2043 	unsigned long offset;
2044 	unsigned int order;
2045 	struct vmap_block *vb;
2046 
2047 	BUG_ON(offset_in_page(size));
2048 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2049 
2050 	flush_cache_vunmap(addr, addr + size);
2051 
2052 	order = get_order(size);
2053 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2054 	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
2055 
2056 	vunmap_range_noflush(addr, addr + size);
2057 
2058 	if (debug_pagealloc_enabled_static())
2059 		flush_tlb_kernel_range(addr, addr + size);
2060 
2061 	spin_lock(&vb->lock);
2062 
2063 	/* Expand dirty range */
2064 	vb->dirty_min = min(vb->dirty_min, offset);
2065 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2066 
2067 	vb->dirty += 1UL << order;
2068 	if (vb->dirty == VMAP_BBMAP_BITS) {
2069 		BUG_ON(vb->free);
2070 		spin_unlock(&vb->lock);
2071 		free_vmap_block(vb);
2072 	} else
2073 		spin_unlock(&vb->lock);
2074 }
2075 
2076 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2077 {
2078 	int cpu;
2079 
2080 	if (unlikely(!vmap_initialized))
2081 		return;
2082 
2083 	might_sleep();
2084 
2085 	for_each_possible_cpu(cpu) {
2086 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2087 		struct vmap_block *vb;
2088 
2089 		rcu_read_lock();
2090 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2091 			spin_lock(&vb->lock);
2092 			if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
2093 				unsigned long va_start = vb->va->va_start;
2094 				unsigned long s, e;
2095 
2096 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2097 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2098 
2099 				start = min(s, start);
2100 				end   = max(e, end);
2101 
2102 				flush = 1;
2103 			}
2104 			spin_unlock(&vb->lock);
2105 		}
2106 		rcu_read_unlock();
2107 	}
2108 
2109 	mutex_lock(&vmap_purge_lock);
2110 	purge_fragmented_blocks_allcpus();
2111 	if (!__purge_vmap_area_lazy(start, end) && flush)
2112 		flush_tlb_kernel_range(start, end);
2113 	mutex_unlock(&vmap_purge_lock);
2114 }
2115 
2116 /**
2117  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2118  *
2119  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2120  * to amortize TLB flushing overheads. What this means is that any page you
2121  * have now, may, in a former life, have been mapped into kernel virtual
2122  * address by the vmap layer and so there might be some CPUs with TLB entries
2123  * still referencing that page (additional to the regular 1:1 kernel mapping).
2124  *
2125  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2126  * be sure that none of the pages we have control over will have any aliases
2127  * from the vmap layer.
2128  */
2129 void vm_unmap_aliases(void)
2130 {
2131 	unsigned long start = ULONG_MAX, end = 0;
2132 	int flush = 0;
2133 
2134 	_vm_unmap_aliases(start, end, flush);
2135 }
2136 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2137 
2138 /**
2139  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2140  * @mem: the pointer returned by vm_map_ram
2141  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2142  */
2143 void vm_unmap_ram(const void *mem, unsigned int count)
2144 {
2145 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2146 	unsigned long addr = (unsigned long)mem;
2147 	struct vmap_area *va;
2148 
2149 	might_sleep();
2150 	BUG_ON(!addr);
2151 	BUG_ON(addr < VMALLOC_START);
2152 	BUG_ON(addr > VMALLOC_END);
2153 	BUG_ON(!PAGE_ALIGNED(addr));
2154 
2155 	kasan_poison_vmalloc(mem, size);
2156 
2157 	if (likely(count <= VMAP_MAX_ALLOC)) {
2158 		debug_check_no_locks_freed(mem, size);
2159 		vb_free(addr, size);
2160 		return;
2161 	}
2162 
2163 	va = find_vmap_area(addr);
2164 	BUG_ON(!va);
2165 	debug_check_no_locks_freed((void *)va->va_start,
2166 				    (va->va_end - va->va_start));
2167 	free_unmap_vmap_area(va);
2168 }
2169 EXPORT_SYMBOL(vm_unmap_ram);
2170 
2171 /**
2172  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2173  * @pages: an array of pointers to the pages to be mapped
2174  * @count: number of pages
2175  * @node: prefer to allocate data structures on this node
2176  *
2177  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2178  * faster than vmap so it's good.  But if you mix long-life and short-life
2179  * objects with vm_map_ram(), it could consume lots of address space through
2180  * fragmentation (especially on a 32bit machine).  You could see failures in
2181  * the end.  Please use this function for short-lived objects.
2182  *
2183  * Returns: a pointer to the address that has been mapped, or %NULL on failure
2184  */
2185 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2186 {
2187 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2188 	unsigned long addr;
2189 	void *mem;
2190 
2191 	if (likely(count <= VMAP_MAX_ALLOC)) {
2192 		mem = vb_alloc(size, GFP_KERNEL);
2193 		if (IS_ERR(mem))
2194 			return NULL;
2195 		addr = (unsigned long)mem;
2196 	} else {
2197 		struct vmap_area *va;
2198 		va = alloc_vmap_area(size, PAGE_SIZE,
2199 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2200 		if (IS_ERR(va))
2201 			return NULL;
2202 
2203 		addr = va->va_start;
2204 		mem = (void *)addr;
2205 	}
2206 
2207 	kasan_unpoison_vmalloc(mem, size);
2208 
2209 	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2210 				pages, PAGE_SHIFT) < 0) {
2211 		vm_unmap_ram(mem, count);
2212 		return NULL;
2213 	}
2214 
2215 	return mem;
2216 }
2217 EXPORT_SYMBOL(vm_map_ram);
2218 
2219 static struct vm_struct *vmlist __initdata;
2220 
2221 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2222 {
2223 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2224 	return vm->page_order;
2225 #else
2226 	return 0;
2227 #endif
2228 }
2229 
2230 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2231 {
2232 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2233 	vm->page_order = order;
2234 #else
2235 	BUG_ON(order != 0);
2236 #endif
2237 }
2238 
2239 /**
2240  * vm_area_add_early - add vmap area early during boot
2241  * @vm: vm_struct to add
2242  *
2243  * This function is used to add fixed kernel vm area to vmlist before
2244  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
2245  * should contain proper values and the other fields should be zero.
2246  *
2247  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2248  */
2249 void __init vm_area_add_early(struct vm_struct *vm)
2250 {
2251 	struct vm_struct *tmp, **p;
2252 
2253 	BUG_ON(vmap_initialized);
2254 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2255 		if (tmp->addr >= vm->addr) {
2256 			BUG_ON(tmp->addr < vm->addr + vm->size);
2257 			break;
2258 		} else
2259 			BUG_ON(tmp->addr + tmp->size > vm->addr);
2260 	}
2261 	vm->next = *p;
2262 	*p = vm;
2263 }
2264 
2265 /**
2266  * vm_area_register_early - register vmap area early during boot
2267  * @vm: vm_struct to register
2268  * @align: requested alignment
2269  *
2270  * This function is used to register kernel vm area before
2271  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
2272  * proper values on entry and other fields should be zero.  On return,
2273  * vm->addr contains the allocated address.
2274  *
2275  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2276  */
2277 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2278 {
2279 	unsigned long addr = ALIGN(VMALLOC_START, align);
2280 	struct vm_struct *cur, **p;
2281 
2282 	BUG_ON(vmap_initialized);
2283 
2284 	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2285 		if ((unsigned long)cur->addr - addr >= vm->size)
2286 			break;
2287 		addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2288 	}
2289 
2290 	BUG_ON(addr > VMALLOC_END - vm->size);
2291 	vm->addr = (void *)addr;
2292 	vm->next = *p;
2293 	*p = vm;
2294 	kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2295 }
2296 
2297 static void vmap_init_free_space(void)
2298 {
2299 	unsigned long vmap_start = 1;
2300 	const unsigned long vmap_end = ULONG_MAX;
2301 	struct vmap_area *busy, *free;
2302 
2303 	/*
2304 	 *     B     F     B     B     B     F
2305 	 * -|-----|.....|-----|-----|-----|.....|-
2306 	 *  |           The KVA space           |
2307 	 *  |<--------------------------------->|
2308 	 */
2309 	list_for_each_entry(busy, &vmap_area_list, list) {
2310 		if (busy->va_start - vmap_start > 0) {
2311 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2312 			if (!WARN_ON_ONCE(!free)) {
2313 				free->va_start = vmap_start;
2314 				free->va_end = busy->va_start;
2315 
2316 				insert_vmap_area_augment(free, NULL,
2317 					&free_vmap_area_root,
2318 						&free_vmap_area_list);
2319 			}
2320 		}
2321 
2322 		vmap_start = busy->va_end;
2323 	}
2324 
2325 	if (vmap_end - vmap_start > 0) {
2326 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2327 		if (!WARN_ON_ONCE(!free)) {
2328 			free->va_start = vmap_start;
2329 			free->va_end = vmap_end;
2330 
2331 			insert_vmap_area_augment(free, NULL,
2332 				&free_vmap_area_root,
2333 					&free_vmap_area_list);
2334 		}
2335 	}
2336 }
2337 
2338 void __init vmalloc_init(void)
2339 {
2340 	struct vmap_area *va;
2341 	struct vm_struct *tmp;
2342 	int i;
2343 
2344 	/*
2345 	 * Create the cache for vmap_area objects.
2346 	 */
2347 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2348 
2349 	for_each_possible_cpu(i) {
2350 		struct vmap_block_queue *vbq;
2351 		struct vfree_deferred *p;
2352 
2353 		vbq = &per_cpu(vmap_block_queue, i);
2354 		spin_lock_init(&vbq->lock);
2355 		INIT_LIST_HEAD(&vbq->free);
2356 		p = &per_cpu(vfree_deferred, i);
2357 		init_llist_head(&p->list);
2358 		INIT_WORK(&p->wq, free_work);
2359 	}
2360 
2361 	/* Import existing vmlist entries. */
2362 	for (tmp = vmlist; tmp; tmp = tmp->next) {
2363 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2364 		if (WARN_ON_ONCE(!va))
2365 			continue;
2366 
2367 		va->va_start = (unsigned long)tmp->addr;
2368 		va->va_end = va->va_start + tmp->size;
2369 		va->vm = tmp;
2370 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2371 	}
2372 
2373 	/*
2374 	 * Now we can initialize a free vmap space.
2375 	 */
2376 	vmap_init_free_space();
2377 	vmap_initialized = true;
2378 }
2379 
2380 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2381 	struct vmap_area *va, unsigned long flags, const void *caller)
2382 {
2383 	vm->flags = flags;
2384 	vm->addr = (void *)va->va_start;
2385 	vm->size = va->va_end - va->va_start;
2386 	vm->caller = caller;
2387 	va->vm = vm;
2388 }
2389 
2390 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2391 			      unsigned long flags, const void *caller)
2392 {
2393 	spin_lock(&vmap_area_lock);
2394 	setup_vmalloc_vm_locked(vm, va, flags, caller);
2395 	spin_unlock(&vmap_area_lock);
2396 }
2397 
2398 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2399 {
2400 	/*
2401 	 * Before removing VM_UNINITIALIZED,
2402 	 * we should make sure that vm has proper values.
2403 	 * Pair with smp_rmb() in show_numa_info().
2404 	 */
2405 	smp_wmb();
2406 	vm->flags &= ~VM_UNINITIALIZED;
2407 }
2408 
2409 static struct vm_struct *__get_vm_area_node(unsigned long size,
2410 		unsigned long align, unsigned long shift, unsigned long flags,
2411 		unsigned long start, unsigned long end, int node,
2412 		gfp_t gfp_mask, const void *caller)
2413 {
2414 	struct vmap_area *va;
2415 	struct vm_struct *area;
2416 	unsigned long requested_size = size;
2417 
2418 	BUG_ON(in_interrupt());
2419 	size = ALIGN(size, 1ul << shift);
2420 	if (unlikely(!size))
2421 		return NULL;
2422 
2423 	if (flags & VM_IOREMAP)
2424 		align = 1ul << clamp_t(int, get_count_order_long(size),
2425 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2426 
2427 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2428 	if (unlikely(!area))
2429 		return NULL;
2430 
2431 	if (!(flags & VM_NO_GUARD))
2432 		size += PAGE_SIZE;
2433 
2434 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2435 	if (IS_ERR(va)) {
2436 		kfree(area);
2437 		return NULL;
2438 	}
2439 
2440 	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2441 
2442 	setup_vmalloc_vm(area, va, flags, caller);
2443 
2444 	return area;
2445 }
2446 
2447 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2448 				       unsigned long start, unsigned long end,
2449 				       const void *caller)
2450 {
2451 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2452 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2453 }
2454 
2455 /**
2456  * get_vm_area - reserve a contiguous kernel virtual area
2457  * @size:	 size of the area
2458  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2459  *
2460  * Search an area of @size in the kernel virtual mapping area,
2461  * and reserved it for out purposes.  Returns the area descriptor
2462  * on success or %NULL on failure.
2463  *
2464  * Return: the area descriptor on success or %NULL on failure.
2465  */
2466 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2467 {
2468 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2469 				  VMALLOC_START, VMALLOC_END,
2470 				  NUMA_NO_NODE, GFP_KERNEL,
2471 				  __builtin_return_address(0));
2472 }
2473 
2474 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2475 				const void *caller)
2476 {
2477 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2478 				  VMALLOC_START, VMALLOC_END,
2479 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2480 }
2481 
2482 /**
2483  * find_vm_area - find a continuous kernel virtual area
2484  * @addr:	  base address
2485  *
2486  * Search for the kernel VM area starting at @addr, and return it.
2487  * It is up to the caller to do all required locking to keep the returned
2488  * pointer valid.
2489  *
2490  * Return: the area descriptor on success or %NULL on failure.
2491  */
2492 struct vm_struct *find_vm_area(const void *addr)
2493 {
2494 	struct vmap_area *va;
2495 
2496 	va = find_vmap_area((unsigned long)addr);
2497 	if (!va)
2498 		return NULL;
2499 
2500 	return va->vm;
2501 }
2502 
2503 /**
2504  * remove_vm_area - find and remove a continuous kernel virtual area
2505  * @addr:	    base address
2506  *
2507  * Search for the kernel VM area starting at @addr, and remove it.
2508  * This function returns the found VM area, but using it is NOT safe
2509  * on SMP machines, except for its size or flags.
2510  *
2511  * Return: the area descriptor on success or %NULL on failure.
2512  */
2513 struct vm_struct *remove_vm_area(const void *addr)
2514 {
2515 	struct vmap_area *va;
2516 
2517 	might_sleep();
2518 
2519 	spin_lock(&vmap_area_lock);
2520 	va = __find_vmap_area((unsigned long)addr);
2521 	if (va && va->vm) {
2522 		struct vm_struct *vm = va->vm;
2523 
2524 		va->vm = NULL;
2525 		spin_unlock(&vmap_area_lock);
2526 
2527 		kasan_free_shadow(vm);
2528 		free_unmap_vmap_area(va);
2529 
2530 		return vm;
2531 	}
2532 
2533 	spin_unlock(&vmap_area_lock);
2534 	return NULL;
2535 }
2536 
2537 static inline void set_area_direct_map(const struct vm_struct *area,
2538 				       int (*set_direct_map)(struct page *page))
2539 {
2540 	int i;
2541 
2542 	/* HUGE_VMALLOC passes small pages to set_direct_map */
2543 	for (i = 0; i < area->nr_pages; i++)
2544 		if (page_address(area->pages[i]))
2545 			set_direct_map(area->pages[i]);
2546 }
2547 
2548 /* Handle removing and resetting vm mappings related to the vm_struct. */
2549 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2550 {
2551 	unsigned long start = ULONG_MAX, end = 0;
2552 	unsigned int page_order = vm_area_page_order(area);
2553 	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2554 	int flush_dmap = 0;
2555 	int i;
2556 
2557 	remove_vm_area(area->addr);
2558 
2559 	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2560 	if (!flush_reset)
2561 		return;
2562 
2563 	/*
2564 	 * If not deallocating pages, just do the flush of the VM area and
2565 	 * return.
2566 	 */
2567 	if (!deallocate_pages) {
2568 		vm_unmap_aliases();
2569 		return;
2570 	}
2571 
2572 	/*
2573 	 * If execution gets here, flush the vm mapping and reset the direct
2574 	 * map. Find the start and end range of the direct mappings to make sure
2575 	 * the vm_unmap_aliases() flush includes the direct map.
2576 	 */
2577 	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2578 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2579 		if (addr) {
2580 			unsigned long page_size;
2581 
2582 			page_size = PAGE_SIZE << page_order;
2583 			start = min(addr, start);
2584 			end = max(addr + page_size, end);
2585 			flush_dmap = 1;
2586 		}
2587 	}
2588 
2589 	/*
2590 	 * Set direct map to something invalid so that it won't be cached if
2591 	 * there are any accesses after the TLB flush, then flush the TLB and
2592 	 * reset the direct map permissions to the default.
2593 	 */
2594 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2595 	_vm_unmap_aliases(start, end, flush_dmap);
2596 	set_area_direct_map(area, set_direct_map_default_noflush);
2597 }
2598 
2599 static void __vunmap(const void *addr, int deallocate_pages)
2600 {
2601 	struct vm_struct *area;
2602 
2603 	if (!addr)
2604 		return;
2605 
2606 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2607 			addr))
2608 		return;
2609 
2610 	area = find_vm_area(addr);
2611 	if (unlikely(!area)) {
2612 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2613 				addr);
2614 		return;
2615 	}
2616 
2617 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2618 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2619 
2620 	kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2621 
2622 	vm_remove_mappings(area, deallocate_pages);
2623 
2624 	if (deallocate_pages) {
2625 		unsigned int page_order = vm_area_page_order(area);
2626 		int i;
2627 
2628 		for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2629 			struct page *page = area->pages[i];
2630 
2631 			BUG_ON(!page);
2632 			__free_pages(page, page_order);
2633 			cond_resched();
2634 		}
2635 		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2636 
2637 		kvfree(area->pages);
2638 	}
2639 
2640 	kfree(area);
2641 }
2642 
2643 static inline void __vfree_deferred(const void *addr)
2644 {
2645 	/*
2646 	 * Use raw_cpu_ptr() because this can be called from preemptible
2647 	 * context. Preemption is absolutely fine here, because the llist_add()
2648 	 * implementation is lockless, so it works even if we are adding to
2649 	 * another cpu's list. schedule_work() should be fine with this too.
2650 	 */
2651 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2652 
2653 	if (llist_add((struct llist_node *)addr, &p->list))
2654 		schedule_work(&p->wq);
2655 }
2656 
2657 /**
2658  * vfree_atomic - release memory allocated by vmalloc()
2659  * @addr:	  memory base address
2660  *
2661  * This one is just like vfree() but can be called in any atomic context
2662  * except NMIs.
2663  */
2664 void vfree_atomic(const void *addr)
2665 {
2666 	BUG_ON(in_nmi());
2667 
2668 	kmemleak_free(addr);
2669 
2670 	if (!addr)
2671 		return;
2672 	__vfree_deferred(addr);
2673 }
2674 
2675 static void __vfree(const void *addr)
2676 {
2677 	if (unlikely(in_interrupt()))
2678 		__vfree_deferred(addr);
2679 	else
2680 		__vunmap(addr, 1);
2681 }
2682 
2683 /**
2684  * vfree - Release memory allocated by vmalloc()
2685  * @addr:  Memory base address
2686  *
2687  * Free the virtually continuous memory area starting at @addr, as obtained
2688  * from one of the vmalloc() family of APIs.  This will usually also free the
2689  * physical memory underlying the virtual allocation, but that memory is
2690  * reference counted, so it will not be freed until the last user goes away.
2691  *
2692  * If @addr is NULL, no operation is performed.
2693  *
2694  * Context:
2695  * May sleep if called *not* from interrupt context.
2696  * Must not be called in NMI context (strictly speaking, it could be
2697  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2698  * conventions for vfree() arch-dependent would be a really bad idea).
2699  */
2700 void vfree(const void *addr)
2701 {
2702 	BUG_ON(in_nmi());
2703 
2704 	kmemleak_free(addr);
2705 
2706 	might_sleep_if(!in_interrupt());
2707 
2708 	if (!addr)
2709 		return;
2710 
2711 	__vfree(addr);
2712 }
2713 EXPORT_SYMBOL(vfree);
2714 
2715 /**
2716  * vunmap - release virtual mapping obtained by vmap()
2717  * @addr:   memory base address
2718  *
2719  * Free the virtually contiguous memory area starting at @addr,
2720  * which was created from the page array passed to vmap().
2721  *
2722  * Must not be called in interrupt context.
2723  */
2724 void vunmap(const void *addr)
2725 {
2726 	BUG_ON(in_interrupt());
2727 	might_sleep();
2728 	if (addr)
2729 		__vunmap(addr, 0);
2730 }
2731 EXPORT_SYMBOL(vunmap);
2732 
2733 /**
2734  * vmap - map an array of pages into virtually contiguous space
2735  * @pages: array of page pointers
2736  * @count: number of pages to map
2737  * @flags: vm_area->flags
2738  * @prot: page protection for the mapping
2739  *
2740  * Maps @count pages from @pages into contiguous kernel virtual space.
2741  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2742  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2743  * are transferred from the caller to vmap(), and will be freed / dropped when
2744  * vfree() is called on the return value.
2745  *
2746  * Return: the address of the area or %NULL on failure
2747  */
2748 void *vmap(struct page **pages, unsigned int count,
2749 	   unsigned long flags, pgprot_t prot)
2750 {
2751 	struct vm_struct *area;
2752 	unsigned long addr;
2753 	unsigned long size;		/* In bytes */
2754 
2755 	might_sleep();
2756 
2757 	/*
2758 	 * Your top guard is someone else's bottom guard. Not having a top
2759 	 * guard compromises someone else's mappings too.
2760 	 */
2761 	if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2762 		flags &= ~VM_NO_GUARD;
2763 
2764 	if (count > totalram_pages())
2765 		return NULL;
2766 
2767 	size = (unsigned long)count << PAGE_SHIFT;
2768 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2769 	if (!area)
2770 		return NULL;
2771 
2772 	addr = (unsigned long)area->addr;
2773 	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2774 				pages, PAGE_SHIFT) < 0) {
2775 		vunmap(area->addr);
2776 		return NULL;
2777 	}
2778 
2779 	if (flags & VM_MAP_PUT_PAGES) {
2780 		area->pages = pages;
2781 		area->nr_pages = count;
2782 	}
2783 	return area->addr;
2784 }
2785 EXPORT_SYMBOL(vmap);
2786 
2787 #ifdef CONFIG_VMAP_PFN
2788 struct vmap_pfn_data {
2789 	unsigned long	*pfns;
2790 	pgprot_t	prot;
2791 	unsigned int	idx;
2792 };
2793 
2794 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2795 {
2796 	struct vmap_pfn_data *data = private;
2797 
2798 	if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2799 		return -EINVAL;
2800 	*pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2801 	return 0;
2802 }
2803 
2804 /**
2805  * vmap_pfn - map an array of PFNs into virtually contiguous space
2806  * @pfns: array of PFNs
2807  * @count: number of pages to map
2808  * @prot: page protection for the mapping
2809  *
2810  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2811  * the start address of the mapping.
2812  */
2813 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2814 {
2815 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2816 	struct vm_struct *area;
2817 
2818 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2819 			__builtin_return_address(0));
2820 	if (!area)
2821 		return NULL;
2822 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2823 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2824 		free_vm_area(area);
2825 		return NULL;
2826 	}
2827 	return area->addr;
2828 }
2829 EXPORT_SYMBOL_GPL(vmap_pfn);
2830 #endif /* CONFIG_VMAP_PFN */
2831 
2832 static inline unsigned int
2833 vm_area_alloc_pages(gfp_t gfp, int nid,
2834 		unsigned int order, unsigned int nr_pages, struct page **pages)
2835 {
2836 	unsigned int nr_allocated = 0;
2837 	struct page *page;
2838 	int i;
2839 
2840 	/*
2841 	 * For order-0 pages we make use of bulk allocator, if
2842 	 * the page array is partly or not at all populated due
2843 	 * to fails, fallback to a single page allocator that is
2844 	 * more permissive.
2845 	 */
2846 	if (!order && nid != NUMA_NO_NODE) {
2847 		while (nr_allocated < nr_pages) {
2848 			unsigned int nr, nr_pages_request;
2849 
2850 			/*
2851 			 * A maximum allowed request is hard-coded and is 100
2852 			 * pages per call. That is done in order to prevent a
2853 			 * long preemption off scenario in the bulk-allocator
2854 			 * so the range is [1:100].
2855 			 */
2856 			nr_pages_request = min(100U, nr_pages - nr_allocated);
2857 
2858 			nr = alloc_pages_bulk_array_node(gfp, nid,
2859 				nr_pages_request, pages + nr_allocated);
2860 
2861 			nr_allocated += nr;
2862 			cond_resched();
2863 
2864 			/*
2865 			 * If zero or pages were obtained partly,
2866 			 * fallback to a single page allocator.
2867 			 */
2868 			if (nr != nr_pages_request)
2869 				break;
2870 		}
2871 	} else if (order)
2872 		/*
2873 		 * Compound pages required for remap_vmalloc_page if
2874 		 * high-order pages.
2875 		 */
2876 		gfp |= __GFP_COMP;
2877 
2878 	/* High-order pages or fallback path if "bulk" fails. */
2879 
2880 	while (nr_allocated < nr_pages) {
2881 		if (fatal_signal_pending(current))
2882 			break;
2883 
2884 		if (nid == NUMA_NO_NODE)
2885 			page = alloc_pages(gfp, order);
2886 		else
2887 			page = alloc_pages_node(nid, gfp, order);
2888 		if (unlikely(!page))
2889 			break;
2890 
2891 		/*
2892 		 * Careful, we allocate and map page-order pages, but
2893 		 * tracking is done per PAGE_SIZE page so as to keep the
2894 		 * vm_struct APIs independent of the physical/mapped size.
2895 		 */
2896 		for (i = 0; i < (1U << order); i++)
2897 			pages[nr_allocated + i] = page + i;
2898 
2899 		cond_resched();
2900 		nr_allocated += 1U << order;
2901 	}
2902 
2903 	return nr_allocated;
2904 }
2905 
2906 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2907 				 pgprot_t prot, unsigned int page_shift,
2908 				 int node)
2909 {
2910 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2911 	const gfp_t orig_gfp_mask = gfp_mask;
2912 	unsigned long addr = (unsigned long)area->addr;
2913 	unsigned long size = get_vm_area_size(area);
2914 	unsigned long array_size;
2915 	unsigned int nr_small_pages = size >> PAGE_SHIFT;
2916 	unsigned int page_order;
2917 
2918 	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
2919 	gfp_mask |= __GFP_NOWARN;
2920 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2921 		gfp_mask |= __GFP_HIGHMEM;
2922 
2923 	/* Please note that the recursion is strictly bounded. */
2924 	if (array_size > PAGE_SIZE) {
2925 		area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2926 					area->caller);
2927 	} else {
2928 		area->pages = kmalloc_node(array_size, nested_gfp, node);
2929 	}
2930 
2931 	if (!area->pages) {
2932 		warn_alloc(orig_gfp_mask, NULL,
2933 			"vmalloc error: size %lu, failed to allocated page array size %lu",
2934 			nr_small_pages * PAGE_SIZE, array_size);
2935 		free_vm_area(area);
2936 		return NULL;
2937 	}
2938 
2939 	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
2940 	page_order = vm_area_page_order(area);
2941 
2942 	area->nr_pages = vm_area_alloc_pages(gfp_mask, node,
2943 		page_order, nr_small_pages, area->pages);
2944 
2945 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2946 
2947 	/*
2948 	 * If not enough pages were obtained to accomplish an
2949 	 * allocation request, free them via __vfree() if any.
2950 	 */
2951 	if (area->nr_pages != nr_small_pages) {
2952 		warn_alloc(orig_gfp_mask, NULL,
2953 			"vmalloc error: size %lu, page order %u, failed to allocate pages",
2954 			area->nr_pages * PAGE_SIZE, page_order);
2955 		goto fail;
2956 	}
2957 
2958 	if (vmap_pages_range(addr, addr + size, prot, area->pages,
2959 			page_shift) < 0) {
2960 		warn_alloc(orig_gfp_mask, NULL,
2961 			"vmalloc error: size %lu, failed to map pages",
2962 			area->nr_pages * PAGE_SIZE);
2963 		goto fail;
2964 	}
2965 
2966 	return area->addr;
2967 
2968 fail:
2969 	__vfree(area->addr);
2970 	return NULL;
2971 }
2972 
2973 /**
2974  * __vmalloc_node_range - allocate virtually contiguous memory
2975  * @size:		  allocation size
2976  * @align:		  desired alignment
2977  * @start:		  vm area range start
2978  * @end:		  vm area range end
2979  * @gfp_mask:		  flags for the page level allocator
2980  * @prot:		  protection mask for the allocated pages
2981  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
2982  * @node:		  node to use for allocation or NUMA_NO_NODE
2983  * @caller:		  caller's return address
2984  *
2985  * Allocate enough pages to cover @size from the page level
2986  * allocator with @gfp_mask flags. Please note that the full set of gfp
2987  * flags are not supported. GFP_KERNEL would be a preferred allocation mode
2988  * but GFP_NOFS and GFP_NOIO are supported as well. Zone modifiers are not
2989  * supported. From the reclaim modifiers__GFP_DIRECT_RECLAIM is required (aka
2990  * GFP_NOWAIT is not supported) and only __GFP_NOFAIL is supported (aka
2991  * __GFP_NORETRY and __GFP_RETRY_MAYFAIL are not supported).
2992  * __GFP_NOWARN can be used to suppress error messages about failures.
2993  *
2994  * Map them into contiguous kernel virtual space, using a pagetable
2995  * protection of @prot.
2996  *
2997  * Return: the address of the area or %NULL on failure
2998  */
2999 void *__vmalloc_node_range(unsigned long size, unsigned long align,
3000 			unsigned long start, unsigned long end, gfp_t gfp_mask,
3001 			pgprot_t prot, unsigned long vm_flags, int node,
3002 			const void *caller)
3003 {
3004 	struct vm_struct *area;
3005 	void *addr;
3006 	unsigned long real_size = size;
3007 	unsigned long real_align = align;
3008 	unsigned int shift = PAGE_SHIFT;
3009 
3010 	if (WARN_ON_ONCE(!size))
3011 		return NULL;
3012 
3013 	if ((size >> PAGE_SHIFT) > totalram_pages()) {
3014 		warn_alloc(gfp_mask, NULL,
3015 			"vmalloc error: size %lu, exceeds total pages",
3016 			real_size);
3017 		return NULL;
3018 	}
3019 
3020 	if (vmap_allow_huge && !(vm_flags & VM_NO_HUGE_VMAP)) {
3021 		unsigned long size_per_node;
3022 
3023 		/*
3024 		 * Try huge pages. Only try for PAGE_KERNEL allocations,
3025 		 * others like modules don't yet expect huge pages in
3026 		 * their allocations due to apply_to_page_range not
3027 		 * supporting them.
3028 		 */
3029 
3030 		size_per_node = size;
3031 		if (node == NUMA_NO_NODE)
3032 			size_per_node /= num_online_nodes();
3033 		if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3034 			shift = PMD_SHIFT;
3035 		else
3036 			shift = arch_vmap_pte_supported_shift(size_per_node);
3037 
3038 		align = max(real_align, 1UL << shift);
3039 		size = ALIGN(real_size, 1UL << shift);
3040 	}
3041 
3042 again:
3043 	area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3044 				  VM_UNINITIALIZED | vm_flags, start, end, node,
3045 				  gfp_mask, caller);
3046 	if (!area) {
3047 		warn_alloc(gfp_mask, NULL,
3048 			"vmalloc error: size %lu, vm_struct allocation failed",
3049 			real_size);
3050 		goto fail;
3051 	}
3052 
3053 	addr = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3054 	if (!addr)
3055 		goto fail;
3056 
3057 	/*
3058 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3059 	 * flag. It means that vm_struct is not fully initialized.
3060 	 * Now, it is fully initialized, so remove this flag here.
3061 	 */
3062 	clear_vm_uninitialized_flag(area);
3063 
3064 	size = PAGE_ALIGN(size);
3065 	kmemleak_vmalloc(area, size, gfp_mask);
3066 
3067 	return addr;
3068 
3069 fail:
3070 	if (shift > PAGE_SHIFT) {
3071 		shift = PAGE_SHIFT;
3072 		align = real_align;
3073 		size = real_size;
3074 		goto again;
3075 	}
3076 
3077 	return NULL;
3078 }
3079 
3080 /**
3081  * __vmalloc_node - allocate virtually contiguous memory
3082  * @size:	    allocation size
3083  * @align:	    desired alignment
3084  * @gfp_mask:	    flags for the page level allocator
3085  * @node:	    node to use for allocation or NUMA_NO_NODE
3086  * @caller:	    caller's return address
3087  *
3088  * Allocate enough pages to cover @size from the page level allocator with
3089  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3090  *
3091  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3092  * and __GFP_NOFAIL are not supported
3093  *
3094  * Any use of gfp flags outside of GFP_KERNEL should be consulted
3095  * with mm people.
3096  *
3097  * Return: pointer to the allocated memory or %NULL on error
3098  */
3099 void *__vmalloc_node(unsigned long size, unsigned long align,
3100 			    gfp_t gfp_mask, int node, const void *caller)
3101 {
3102 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3103 				gfp_mask, PAGE_KERNEL, 0, node, caller);
3104 }
3105 /*
3106  * This is only for performance analysis of vmalloc and stress purpose.
3107  * It is required by vmalloc test module, therefore do not use it other
3108  * than that.
3109  */
3110 #ifdef CONFIG_TEST_VMALLOC_MODULE
3111 EXPORT_SYMBOL_GPL(__vmalloc_node);
3112 #endif
3113 
3114 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3115 {
3116 	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3117 				__builtin_return_address(0));
3118 }
3119 EXPORT_SYMBOL(__vmalloc);
3120 
3121 /**
3122  * vmalloc - allocate virtually contiguous memory
3123  * @size:    allocation size
3124  *
3125  * Allocate enough pages to cover @size from the page level
3126  * allocator and map them into contiguous kernel virtual space.
3127  *
3128  * For tight control over page level allocator and protection flags
3129  * use __vmalloc() instead.
3130  *
3131  * Return: pointer to the allocated memory or %NULL on error
3132  */
3133 void *vmalloc(unsigned long size)
3134 {
3135 	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3136 				__builtin_return_address(0));
3137 }
3138 EXPORT_SYMBOL(vmalloc);
3139 
3140 /**
3141  * vmalloc_no_huge - allocate virtually contiguous memory using small pages
3142  * @size:    allocation size
3143  *
3144  * Allocate enough non-huge pages to cover @size from the page level
3145  * allocator and map them into contiguous kernel virtual space.
3146  *
3147  * Return: pointer to the allocated memory or %NULL on error
3148  */
3149 void *vmalloc_no_huge(unsigned long size)
3150 {
3151 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3152 				    GFP_KERNEL, PAGE_KERNEL, VM_NO_HUGE_VMAP,
3153 				    NUMA_NO_NODE, __builtin_return_address(0));
3154 }
3155 EXPORT_SYMBOL(vmalloc_no_huge);
3156 
3157 /**
3158  * vzalloc - allocate virtually contiguous memory with zero fill
3159  * @size:    allocation size
3160  *
3161  * Allocate enough pages to cover @size from the page level
3162  * allocator and map them into contiguous kernel virtual space.
3163  * The memory allocated is set to zero.
3164  *
3165  * For tight control over page level allocator and protection flags
3166  * use __vmalloc() instead.
3167  *
3168  * Return: pointer to the allocated memory or %NULL on error
3169  */
3170 void *vzalloc(unsigned long size)
3171 {
3172 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3173 				__builtin_return_address(0));
3174 }
3175 EXPORT_SYMBOL(vzalloc);
3176 
3177 /**
3178  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3179  * @size: allocation size
3180  *
3181  * The resulting memory area is zeroed so it can be mapped to userspace
3182  * without leaking data.
3183  *
3184  * Return: pointer to the allocated memory or %NULL on error
3185  */
3186 void *vmalloc_user(unsigned long size)
3187 {
3188 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3189 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3190 				    VM_USERMAP, NUMA_NO_NODE,
3191 				    __builtin_return_address(0));
3192 }
3193 EXPORT_SYMBOL(vmalloc_user);
3194 
3195 /**
3196  * vmalloc_node - allocate memory on a specific node
3197  * @size:	  allocation size
3198  * @node:	  numa node
3199  *
3200  * Allocate enough pages to cover @size from the page level
3201  * allocator and map them into contiguous kernel virtual space.
3202  *
3203  * For tight control over page level allocator and protection flags
3204  * use __vmalloc() instead.
3205  *
3206  * Return: pointer to the allocated memory or %NULL on error
3207  */
3208 void *vmalloc_node(unsigned long size, int node)
3209 {
3210 	return __vmalloc_node(size, 1, GFP_KERNEL, node,
3211 			__builtin_return_address(0));
3212 }
3213 EXPORT_SYMBOL(vmalloc_node);
3214 
3215 /**
3216  * vzalloc_node - allocate memory on a specific node with zero fill
3217  * @size:	allocation size
3218  * @node:	numa node
3219  *
3220  * Allocate enough pages to cover @size from the page level
3221  * allocator and map them into contiguous kernel virtual space.
3222  * The memory allocated is set to zero.
3223  *
3224  * Return: pointer to the allocated memory or %NULL on error
3225  */
3226 void *vzalloc_node(unsigned long size, int node)
3227 {
3228 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3229 				__builtin_return_address(0));
3230 }
3231 EXPORT_SYMBOL(vzalloc_node);
3232 
3233 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3234 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3235 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3236 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3237 #else
3238 /*
3239  * 64b systems should always have either DMA or DMA32 zones. For others
3240  * GFP_DMA32 should do the right thing and use the normal zone.
3241  */
3242 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3243 #endif
3244 
3245 /**
3246  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3247  * @size:	allocation size
3248  *
3249  * Allocate enough 32bit PA addressable pages to cover @size from the
3250  * page level allocator and map them into contiguous kernel virtual space.
3251  *
3252  * Return: pointer to the allocated memory or %NULL on error
3253  */
3254 void *vmalloc_32(unsigned long size)
3255 {
3256 	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3257 			__builtin_return_address(0));
3258 }
3259 EXPORT_SYMBOL(vmalloc_32);
3260 
3261 /**
3262  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3263  * @size:	     allocation size
3264  *
3265  * The resulting memory area is 32bit addressable and zeroed so it can be
3266  * mapped to userspace without leaking data.
3267  *
3268  * Return: pointer to the allocated memory or %NULL on error
3269  */
3270 void *vmalloc_32_user(unsigned long size)
3271 {
3272 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3273 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3274 				    VM_USERMAP, NUMA_NO_NODE,
3275 				    __builtin_return_address(0));
3276 }
3277 EXPORT_SYMBOL(vmalloc_32_user);
3278 
3279 /*
3280  * small helper routine , copy contents to buf from addr.
3281  * If the page is not present, fill zero.
3282  */
3283 
3284 static int aligned_vread(char *buf, char *addr, unsigned long count)
3285 {
3286 	struct page *p;
3287 	int copied = 0;
3288 
3289 	while (count) {
3290 		unsigned long offset, length;
3291 
3292 		offset = offset_in_page(addr);
3293 		length = PAGE_SIZE - offset;
3294 		if (length > count)
3295 			length = count;
3296 		p = vmalloc_to_page(addr);
3297 		/*
3298 		 * To do safe access to this _mapped_ area, we need
3299 		 * lock. But adding lock here means that we need to add
3300 		 * overhead of vmalloc()/vfree() calls for this _debug_
3301 		 * interface, rarely used. Instead of that, we'll use
3302 		 * kmap() and get small overhead in this access function.
3303 		 */
3304 		if (p) {
3305 			/* We can expect USER0 is not used -- see vread() */
3306 			void *map = kmap_atomic(p);
3307 			memcpy(buf, map + offset, length);
3308 			kunmap_atomic(map);
3309 		} else
3310 			memset(buf, 0, length);
3311 
3312 		addr += length;
3313 		buf += length;
3314 		copied += length;
3315 		count -= length;
3316 	}
3317 	return copied;
3318 }
3319 
3320 /**
3321  * vread() - read vmalloc area in a safe way.
3322  * @buf:     buffer for reading data
3323  * @addr:    vm address.
3324  * @count:   number of bytes to be read.
3325  *
3326  * This function checks that addr is a valid vmalloc'ed area, and
3327  * copy data from that area to a given buffer. If the given memory range
3328  * of [addr...addr+count) includes some valid address, data is copied to
3329  * proper area of @buf. If there are memory holes, they'll be zero-filled.
3330  * IOREMAP area is treated as memory hole and no copy is done.
3331  *
3332  * If [addr...addr+count) doesn't includes any intersects with alive
3333  * vm_struct area, returns 0. @buf should be kernel's buffer.
3334  *
3335  * Note: In usual ops, vread() is never necessary because the caller
3336  * should know vmalloc() area is valid and can use memcpy().
3337  * This is for routines which have to access vmalloc area without
3338  * any information, as /proc/kcore.
3339  *
3340  * Return: number of bytes for which addr and buf should be increased
3341  * (same number as @count) or %0 if [addr...addr+count) doesn't
3342  * include any intersection with valid vmalloc area
3343  */
3344 long vread(char *buf, char *addr, unsigned long count)
3345 {
3346 	struct vmap_area *va;
3347 	struct vm_struct *vm;
3348 	char *vaddr, *buf_start = buf;
3349 	unsigned long buflen = count;
3350 	unsigned long n;
3351 
3352 	/* Don't allow overflow */
3353 	if ((unsigned long) addr + count < count)
3354 		count = -(unsigned long) addr;
3355 
3356 	spin_lock(&vmap_area_lock);
3357 	va = find_vmap_area_exceed_addr((unsigned long)addr);
3358 	if (!va)
3359 		goto finished;
3360 
3361 	/* no intersects with alive vmap_area */
3362 	if ((unsigned long)addr + count <= va->va_start)
3363 		goto finished;
3364 
3365 	list_for_each_entry_from(va, &vmap_area_list, list) {
3366 		if (!count)
3367 			break;
3368 
3369 		if (!va->vm)
3370 			continue;
3371 
3372 		vm = va->vm;
3373 		vaddr = (char *) vm->addr;
3374 		if (addr >= vaddr + get_vm_area_size(vm))
3375 			continue;
3376 		while (addr < vaddr) {
3377 			if (count == 0)
3378 				goto finished;
3379 			*buf = '\0';
3380 			buf++;
3381 			addr++;
3382 			count--;
3383 		}
3384 		n = vaddr + get_vm_area_size(vm) - addr;
3385 		if (n > count)
3386 			n = count;
3387 		if (!(vm->flags & VM_IOREMAP))
3388 			aligned_vread(buf, addr, n);
3389 		else /* IOREMAP area is treated as memory hole */
3390 			memset(buf, 0, n);
3391 		buf += n;
3392 		addr += n;
3393 		count -= n;
3394 	}
3395 finished:
3396 	spin_unlock(&vmap_area_lock);
3397 
3398 	if (buf == buf_start)
3399 		return 0;
3400 	/* zero-fill memory holes */
3401 	if (buf != buf_start + buflen)
3402 		memset(buf, 0, buflen - (buf - buf_start));
3403 
3404 	return buflen;
3405 }
3406 
3407 /**
3408  * remap_vmalloc_range_partial - map vmalloc pages to userspace
3409  * @vma:		vma to cover
3410  * @uaddr:		target user address to start at
3411  * @kaddr:		virtual address of vmalloc kernel memory
3412  * @pgoff:		offset from @kaddr to start at
3413  * @size:		size of map area
3414  *
3415  * Returns:	0 for success, -Exxx on failure
3416  *
3417  * This function checks that @kaddr is a valid vmalloc'ed area,
3418  * and that it is big enough to cover the range starting at
3419  * @uaddr in @vma. Will return failure if that criteria isn't
3420  * met.
3421  *
3422  * Similar to remap_pfn_range() (see mm/memory.c)
3423  */
3424 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3425 				void *kaddr, unsigned long pgoff,
3426 				unsigned long size)
3427 {
3428 	struct vm_struct *area;
3429 	unsigned long off;
3430 	unsigned long end_index;
3431 
3432 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3433 		return -EINVAL;
3434 
3435 	size = PAGE_ALIGN(size);
3436 
3437 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3438 		return -EINVAL;
3439 
3440 	area = find_vm_area(kaddr);
3441 	if (!area)
3442 		return -EINVAL;
3443 
3444 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3445 		return -EINVAL;
3446 
3447 	if (check_add_overflow(size, off, &end_index) ||
3448 	    end_index > get_vm_area_size(area))
3449 		return -EINVAL;
3450 	kaddr += off;
3451 
3452 	do {
3453 		struct page *page = vmalloc_to_page(kaddr);
3454 		int ret;
3455 
3456 		ret = vm_insert_page(vma, uaddr, page);
3457 		if (ret)
3458 			return ret;
3459 
3460 		uaddr += PAGE_SIZE;
3461 		kaddr += PAGE_SIZE;
3462 		size -= PAGE_SIZE;
3463 	} while (size > 0);
3464 
3465 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3466 
3467 	return 0;
3468 }
3469 
3470 /**
3471  * remap_vmalloc_range - map vmalloc pages to userspace
3472  * @vma:		vma to cover (map full range of vma)
3473  * @addr:		vmalloc memory
3474  * @pgoff:		number of pages into addr before first page to map
3475  *
3476  * Returns:	0 for success, -Exxx on failure
3477  *
3478  * This function checks that addr is a valid vmalloc'ed area, and
3479  * that it is big enough to cover the vma. Will return failure if
3480  * that criteria isn't met.
3481  *
3482  * Similar to remap_pfn_range() (see mm/memory.c)
3483  */
3484 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3485 						unsigned long pgoff)
3486 {
3487 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3488 					   addr, pgoff,
3489 					   vma->vm_end - vma->vm_start);
3490 }
3491 EXPORT_SYMBOL(remap_vmalloc_range);
3492 
3493 void free_vm_area(struct vm_struct *area)
3494 {
3495 	struct vm_struct *ret;
3496 	ret = remove_vm_area(area->addr);
3497 	BUG_ON(ret != area);
3498 	kfree(area);
3499 }
3500 EXPORT_SYMBOL_GPL(free_vm_area);
3501 
3502 #ifdef CONFIG_SMP
3503 static struct vmap_area *node_to_va(struct rb_node *n)
3504 {
3505 	return rb_entry_safe(n, struct vmap_area, rb_node);
3506 }
3507 
3508 /**
3509  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3510  * @addr: target address
3511  *
3512  * Returns: vmap_area if it is found. If there is no such area
3513  *   the first highest(reverse order) vmap_area is returned
3514  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3515  *   if there are no any areas before @addr.
3516  */
3517 static struct vmap_area *
3518 pvm_find_va_enclose_addr(unsigned long addr)
3519 {
3520 	struct vmap_area *va, *tmp;
3521 	struct rb_node *n;
3522 
3523 	n = free_vmap_area_root.rb_node;
3524 	va = NULL;
3525 
3526 	while (n) {
3527 		tmp = rb_entry(n, struct vmap_area, rb_node);
3528 		if (tmp->va_start <= addr) {
3529 			va = tmp;
3530 			if (tmp->va_end >= addr)
3531 				break;
3532 
3533 			n = n->rb_right;
3534 		} else {
3535 			n = n->rb_left;
3536 		}
3537 	}
3538 
3539 	return va;
3540 }
3541 
3542 /**
3543  * pvm_determine_end_from_reverse - find the highest aligned address
3544  * of free block below VMALLOC_END
3545  * @va:
3546  *   in - the VA we start the search(reverse order);
3547  *   out - the VA with the highest aligned end address.
3548  * @align: alignment for required highest address
3549  *
3550  * Returns: determined end address within vmap_area
3551  */
3552 static unsigned long
3553 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3554 {
3555 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3556 	unsigned long addr;
3557 
3558 	if (likely(*va)) {
3559 		list_for_each_entry_from_reverse((*va),
3560 				&free_vmap_area_list, list) {
3561 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3562 			if ((*va)->va_start < addr)
3563 				return addr;
3564 		}
3565 	}
3566 
3567 	return 0;
3568 }
3569 
3570 /**
3571  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3572  * @offsets: array containing offset of each area
3573  * @sizes: array containing size of each area
3574  * @nr_vms: the number of areas to allocate
3575  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3576  *
3577  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3578  *	    vm_structs on success, %NULL on failure
3579  *
3580  * Percpu allocator wants to use congruent vm areas so that it can
3581  * maintain the offsets among percpu areas.  This function allocates
3582  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3583  * be scattered pretty far, distance between two areas easily going up
3584  * to gigabytes.  To avoid interacting with regular vmallocs, these
3585  * areas are allocated from top.
3586  *
3587  * Despite its complicated look, this allocator is rather simple. It
3588  * does everything top-down and scans free blocks from the end looking
3589  * for matching base. While scanning, if any of the areas do not fit the
3590  * base address is pulled down to fit the area. Scanning is repeated till
3591  * all the areas fit and then all necessary data structures are inserted
3592  * and the result is returned.
3593  */
3594 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3595 				     const size_t *sizes, int nr_vms,
3596 				     size_t align)
3597 {
3598 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3599 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3600 	struct vmap_area **vas, *va;
3601 	struct vm_struct **vms;
3602 	int area, area2, last_area, term_area;
3603 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3604 	bool purged = false;
3605 	enum fit_type type;
3606 
3607 	/* verify parameters and allocate data structures */
3608 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3609 	for (last_area = 0, area = 0; area < nr_vms; area++) {
3610 		start = offsets[area];
3611 		end = start + sizes[area];
3612 
3613 		/* is everything aligned properly? */
3614 		BUG_ON(!IS_ALIGNED(offsets[area], align));
3615 		BUG_ON(!IS_ALIGNED(sizes[area], align));
3616 
3617 		/* detect the area with the highest address */
3618 		if (start > offsets[last_area])
3619 			last_area = area;
3620 
3621 		for (area2 = area + 1; area2 < nr_vms; area2++) {
3622 			unsigned long start2 = offsets[area2];
3623 			unsigned long end2 = start2 + sizes[area2];
3624 
3625 			BUG_ON(start2 < end && start < end2);
3626 		}
3627 	}
3628 	last_end = offsets[last_area] + sizes[last_area];
3629 
3630 	if (vmalloc_end - vmalloc_start < last_end) {
3631 		WARN_ON(true);
3632 		return NULL;
3633 	}
3634 
3635 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3636 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3637 	if (!vas || !vms)
3638 		goto err_free2;
3639 
3640 	for (area = 0; area < nr_vms; area++) {
3641 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3642 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3643 		if (!vas[area] || !vms[area])
3644 			goto err_free;
3645 	}
3646 retry:
3647 	spin_lock(&free_vmap_area_lock);
3648 
3649 	/* start scanning - we scan from the top, begin with the last area */
3650 	area = term_area = last_area;
3651 	start = offsets[area];
3652 	end = start + sizes[area];
3653 
3654 	va = pvm_find_va_enclose_addr(vmalloc_end);
3655 	base = pvm_determine_end_from_reverse(&va, align) - end;
3656 
3657 	while (true) {
3658 		/*
3659 		 * base might have underflowed, add last_end before
3660 		 * comparing.
3661 		 */
3662 		if (base + last_end < vmalloc_start + last_end)
3663 			goto overflow;
3664 
3665 		/*
3666 		 * Fitting base has not been found.
3667 		 */
3668 		if (va == NULL)
3669 			goto overflow;
3670 
3671 		/*
3672 		 * If required width exceeds current VA block, move
3673 		 * base downwards and then recheck.
3674 		 */
3675 		if (base + end > va->va_end) {
3676 			base = pvm_determine_end_from_reverse(&va, align) - end;
3677 			term_area = area;
3678 			continue;
3679 		}
3680 
3681 		/*
3682 		 * If this VA does not fit, move base downwards and recheck.
3683 		 */
3684 		if (base + start < va->va_start) {
3685 			va = node_to_va(rb_prev(&va->rb_node));
3686 			base = pvm_determine_end_from_reverse(&va, align) - end;
3687 			term_area = area;
3688 			continue;
3689 		}
3690 
3691 		/*
3692 		 * This area fits, move on to the previous one.  If
3693 		 * the previous one is the terminal one, we're done.
3694 		 */
3695 		area = (area + nr_vms - 1) % nr_vms;
3696 		if (area == term_area)
3697 			break;
3698 
3699 		start = offsets[area];
3700 		end = start + sizes[area];
3701 		va = pvm_find_va_enclose_addr(base + end);
3702 	}
3703 
3704 	/* we've found a fitting base, insert all va's */
3705 	for (area = 0; area < nr_vms; area++) {
3706 		int ret;
3707 
3708 		start = base + offsets[area];
3709 		size = sizes[area];
3710 
3711 		va = pvm_find_va_enclose_addr(start);
3712 		if (WARN_ON_ONCE(va == NULL))
3713 			/* It is a BUG(), but trigger recovery instead. */
3714 			goto recovery;
3715 
3716 		type = classify_va_fit_type(va, start, size);
3717 		if (WARN_ON_ONCE(type == NOTHING_FIT))
3718 			/* It is a BUG(), but trigger recovery instead. */
3719 			goto recovery;
3720 
3721 		ret = adjust_va_to_fit_type(va, start, size, type);
3722 		if (unlikely(ret))
3723 			goto recovery;
3724 
3725 		/* Allocated area. */
3726 		va = vas[area];
3727 		va->va_start = start;
3728 		va->va_end = start + size;
3729 	}
3730 
3731 	spin_unlock(&free_vmap_area_lock);
3732 
3733 	/* populate the kasan shadow space */
3734 	for (area = 0; area < nr_vms; area++) {
3735 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3736 			goto err_free_shadow;
3737 
3738 		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3739 				       sizes[area]);
3740 	}
3741 
3742 	/* insert all vm's */
3743 	spin_lock(&vmap_area_lock);
3744 	for (area = 0; area < nr_vms; area++) {
3745 		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3746 
3747 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3748 				 pcpu_get_vm_areas);
3749 	}
3750 	spin_unlock(&vmap_area_lock);
3751 
3752 	kfree(vas);
3753 	return vms;
3754 
3755 recovery:
3756 	/*
3757 	 * Remove previously allocated areas. There is no
3758 	 * need in removing these areas from the busy tree,
3759 	 * because they are inserted only on the final step
3760 	 * and when pcpu_get_vm_areas() is success.
3761 	 */
3762 	while (area--) {
3763 		orig_start = vas[area]->va_start;
3764 		orig_end = vas[area]->va_end;
3765 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3766 				&free_vmap_area_list);
3767 		if (va)
3768 			kasan_release_vmalloc(orig_start, orig_end,
3769 				va->va_start, va->va_end);
3770 		vas[area] = NULL;
3771 	}
3772 
3773 overflow:
3774 	spin_unlock(&free_vmap_area_lock);
3775 	if (!purged) {
3776 		purge_vmap_area_lazy();
3777 		purged = true;
3778 
3779 		/* Before "retry", check if we recover. */
3780 		for (area = 0; area < nr_vms; area++) {
3781 			if (vas[area])
3782 				continue;
3783 
3784 			vas[area] = kmem_cache_zalloc(
3785 				vmap_area_cachep, GFP_KERNEL);
3786 			if (!vas[area])
3787 				goto err_free;
3788 		}
3789 
3790 		goto retry;
3791 	}
3792 
3793 err_free:
3794 	for (area = 0; area < nr_vms; area++) {
3795 		if (vas[area])
3796 			kmem_cache_free(vmap_area_cachep, vas[area]);
3797 
3798 		kfree(vms[area]);
3799 	}
3800 err_free2:
3801 	kfree(vas);
3802 	kfree(vms);
3803 	return NULL;
3804 
3805 err_free_shadow:
3806 	spin_lock(&free_vmap_area_lock);
3807 	/*
3808 	 * We release all the vmalloc shadows, even the ones for regions that
3809 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
3810 	 * being able to tolerate this case.
3811 	 */
3812 	for (area = 0; area < nr_vms; area++) {
3813 		orig_start = vas[area]->va_start;
3814 		orig_end = vas[area]->va_end;
3815 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3816 				&free_vmap_area_list);
3817 		if (va)
3818 			kasan_release_vmalloc(orig_start, orig_end,
3819 				va->va_start, va->va_end);
3820 		vas[area] = NULL;
3821 		kfree(vms[area]);
3822 	}
3823 	spin_unlock(&free_vmap_area_lock);
3824 	kfree(vas);
3825 	kfree(vms);
3826 	return NULL;
3827 }
3828 
3829 /**
3830  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3831  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3832  * @nr_vms: the number of allocated areas
3833  *
3834  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3835  */
3836 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3837 {
3838 	int i;
3839 
3840 	for (i = 0; i < nr_vms; i++)
3841 		free_vm_area(vms[i]);
3842 	kfree(vms);
3843 }
3844 #endif	/* CONFIG_SMP */
3845 
3846 #ifdef CONFIG_PRINTK
3847 bool vmalloc_dump_obj(void *object)
3848 {
3849 	struct vm_struct *vm;
3850 	void *objp = (void *)PAGE_ALIGN((unsigned long)object);
3851 
3852 	vm = find_vm_area(objp);
3853 	if (!vm)
3854 		return false;
3855 	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
3856 		vm->nr_pages, (unsigned long)vm->addr, vm->caller);
3857 	return true;
3858 }
3859 #endif
3860 
3861 #ifdef CONFIG_PROC_FS
3862 static void *s_start(struct seq_file *m, loff_t *pos)
3863 	__acquires(&vmap_purge_lock)
3864 	__acquires(&vmap_area_lock)
3865 {
3866 	mutex_lock(&vmap_purge_lock);
3867 	spin_lock(&vmap_area_lock);
3868 
3869 	return seq_list_start(&vmap_area_list, *pos);
3870 }
3871 
3872 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3873 {
3874 	return seq_list_next(p, &vmap_area_list, pos);
3875 }
3876 
3877 static void s_stop(struct seq_file *m, void *p)
3878 	__releases(&vmap_area_lock)
3879 	__releases(&vmap_purge_lock)
3880 {
3881 	spin_unlock(&vmap_area_lock);
3882 	mutex_unlock(&vmap_purge_lock);
3883 }
3884 
3885 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3886 {
3887 	if (IS_ENABLED(CONFIG_NUMA)) {
3888 		unsigned int nr, *counters = m->private;
3889 		unsigned int step = 1U << vm_area_page_order(v);
3890 
3891 		if (!counters)
3892 			return;
3893 
3894 		if (v->flags & VM_UNINITIALIZED)
3895 			return;
3896 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3897 		smp_rmb();
3898 
3899 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3900 
3901 		for (nr = 0; nr < v->nr_pages; nr += step)
3902 			counters[page_to_nid(v->pages[nr])] += step;
3903 		for_each_node_state(nr, N_HIGH_MEMORY)
3904 			if (counters[nr])
3905 				seq_printf(m, " N%u=%u", nr, counters[nr]);
3906 	}
3907 }
3908 
3909 static void show_purge_info(struct seq_file *m)
3910 {
3911 	struct vmap_area *va;
3912 
3913 	spin_lock(&purge_vmap_area_lock);
3914 	list_for_each_entry(va, &purge_vmap_area_list, list) {
3915 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3916 			(void *)va->va_start, (void *)va->va_end,
3917 			va->va_end - va->va_start);
3918 	}
3919 	spin_unlock(&purge_vmap_area_lock);
3920 }
3921 
3922 static int s_show(struct seq_file *m, void *p)
3923 {
3924 	struct vmap_area *va;
3925 	struct vm_struct *v;
3926 
3927 	va = list_entry(p, struct vmap_area, list);
3928 
3929 	/*
3930 	 * s_show can encounter race with remove_vm_area, !vm on behalf
3931 	 * of vmap area is being tear down or vm_map_ram allocation.
3932 	 */
3933 	if (!va->vm) {
3934 		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3935 			(void *)va->va_start, (void *)va->va_end,
3936 			va->va_end - va->va_start);
3937 
3938 		goto final;
3939 	}
3940 
3941 	v = va->vm;
3942 
3943 	seq_printf(m, "0x%pK-0x%pK %7ld",
3944 		v->addr, v->addr + v->size, v->size);
3945 
3946 	if (v->caller)
3947 		seq_printf(m, " %pS", v->caller);
3948 
3949 	if (v->nr_pages)
3950 		seq_printf(m, " pages=%d", v->nr_pages);
3951 
3952 	if (v->phys_addr)
3953 		seq_printf(m, " phys=%pa", &v->phys_addr);
3954 
3955 	if (v->flags & VM_IOREMAP)
3956 		seq_puts(m, " ioremap");
3957 
3958 	if (v->flags & VM_ALLOC)
3959 		seq_puts(m, " vmalloc");
3960 
3961 	if (v->flags & VM_MAP)
3962 		seq_puts(m, " vmap");
3963 
3964 	if (v->flags & VM_USERMAP)
3965 		seq_puts(m, " user");
3966 
3967 	if (v->flags & VM_DMA_COHERENT)
3968 		seq_puts(m, " dma-coherent");
3969 
3970 	if (is_vmalloc_addr(v->pages))
3971 		seq_puts(m, " vpages");
3972 
3973 	show_numa_info(m, v);
3974 	seq_putc(m, '\n');
3975 
3976 	/*
3977 	 * As a final step, dump "unpurged" areas.
3978 	 */
3979 final:
3980 	if (list_is_last(&va->list, &vmap_area_list))
3981 		show_purge_info(m);
3982 
3983 	return 0;
3984 }
3985 
3986 static const struct seq_operations vmalloc_op = {
3987 	.start = s_start,
3988 	.next = s_next,
3989 	.stop = s_stop,
3990 	.show = s_show,
3991 };
3992 
3993 static int __init proc_vmalloc_init(void)
3994 {
3995 	if (IS_ENABLED(CONFIG_NUMA))
3996 		proc_create_seq_private("vmallocinfo", 0400, NULL,
3997 				&vmalloc_op,
3998 				nr_node_ids * sizeof(unsigned int), NULL);
3999 	else
4000 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4001 	return 0;
4002 }
4003 module_init(proc_vmalloc_init);
4004 
4005 #endif
4006