1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/module.h> 13 #include <linux/highmem.h> 14 #include <linux/slab.h> 15 #include <linux/spinlock.h> 16 #include <linux/interrupt.h> 17 18 #include <linux/vmalloc.h> 19 20 #include <asm/uaccess.h> 21 #include <asm/tlbflush.h> 22 23 24 DEFINE_RWLOCK(vmlist_lock); 25 struct vm_struct *vmlist; 26 27 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 28 int node); 29 30 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 31 { 32 pte_t *pte; 33 34 pte = pte_offset_kernel(pmd, addr); 35 do { 36 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 37 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 38 } while (pte++, addr += PAGE_SIZE, addr != end); 39 } 40 41 static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr, 42 unsigned long end) 43 { 44 pmd_t *pmd; 45 unsigned long next; 46 47 pmd = pmd_offset(pud, addr); 48 do { 49 next = pmd_addr_end(addr, end); 50 if (pmd_none_or_clear_bad(pmd)) 51 continue; 52 vunmap_pte_range(pmd, addr, next); 53 } while (pmd++, addr = next, addr != end); 54 } 55 56 static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr, 57 unsigned long end) 58 { 59 pud_t *pud; 60 unsigned long next; 61 62 pud = pud_offset(pgd, addr); 63 do { 64 next = pud_addr_end(addr, end); 65 if (pud_none_or_clear_bad(pud)) 66 continue; 67 vunmap_pmd_range(pud, addr, next); 68 } while (pud++, addr = next, addr != end); 69 } 70 71 void unmap_kernel_range(unsigned long addr, unsigned long size) 72 { 73 pgd_t *pgd; 74 unsigned long next; 75 unsigned long start = addr; 76 unsigned long end = addr + size; 77 78 BUG_ON(addr >= end); 79 pgd = pgd_offset_k(addr); 80 flush_cache_vunmap(addr, end); 81 do { 82 next = pgd_addr_end(addr, end); 83 if (pgd_none_or_clear_bad(pgd)) 84 continue; 85 vunmap_pud_range(pgd, addr, next); 86 } while (pgd++, addr = next, addr != end); 87 flush_tlb_kernel_range(start, end); 88 } 89 90 static void unmap_vm_area(struct vm_struct *area) 91 { 92 unmap_kernel_range((unsigned long)area->addr, area->size); 93 } 94 95 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 96 unsigned long end, pgprot_t prot, struct page ***pages) 97 { 98 pte_t *pte; 99 100 pte = pte_alloc_kernel(pmd, addr); 101 if (!pte) 102 return -ENOMEM; 103 do { 104 struct page *page = **pages; 105 WARN_ON(!pte_none(*pte)); 106 if (!page) 107 return -ENOMEM; 108 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 109 (*pages)++; 110 } while (pte++, addr += PAGE_SIZE, addr != end); 111 return 0; 112 } 113 114 static inline int vmap_pmd_range(pud_t *pud, unsigned long addr, 115 unsigned long end, pgprot_t prot, struct page ***pages) 116 { 117 pmd_t *pmd; 118 unsigned long next; 119 120 pmd = pmd_alloc(&init_mm, pud, addr); 121 if (!pmd) 122 return -ENOMEM; 123 do { 124 next = pmd_addr_end(addr, end); 125 if (vmap_pte_range(pmd, addr, next, prot, pages)) 126 return -ENOMEM; 127 } while (pmd++, addr = next, addr != end); 128 return 0; 129 } 130 131 static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr, 132 unsigned long end, pgprot_t prot, struct page ***pages) 133 { 134 pud_t *pud; 135 unsigned long next; 136 137 pud = pud_alloc(&init_mm, pgd, addr); 138 if (!pud) 139 return -ENOMEM; 140 do { 141 next = pud_addr_end(addr, end); 142 if (vmap_pmd_range(pud, addr, next, prot, pages)) 143 return -ENOMEM; 144 } while (pud++, addr = next, addr != end); 145 return 0; 146 } 147 148 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 149 { 150 pgd_t *pgd; 151 unsigned long next; 152 unsigned long addr = (unsigned long) area->addr; 153 unsigned long end = addr + area->size - PAGE_SIZE; 154 int err; 155 156 BUG_ON(addr >= end); 157 pgd = pgd_offset_k(addr); 158 do { 159 next = pgd_addr_end(addr, end); 160 err = vmap_pud_range(pgd, addr, next, prot, pages); 161 if (err) 162 break; 163 } while (pgd++, addr = next, addr != end); 164 flush_cache_vmap((unsigned long) area->addr, end); 165 return err; 166 } 167 EXPORT_SYMBOL_GPL(map_vm_area); 168 169 static struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long flags, 170 unsigned long start, unsigned long end, 171 int node, gfp_t gfp_mask) 172 { 173 struct vm_struct **p, *tmp, *area; 174 unsigned long align = 1; 175 unsigned long addr; 176 177 BUG_ON(in_interrupt()); 178 if (flags & VM_IOREMAP) { 179 int bit = fls(size); 180 181 if (bit > IOREMAP_MAX_ORDER) 182 bit = IOREMAP_MAX_ORDER; 183 else if (bit < PAGE_SHIFT) 184 bit = PAGE_SHIFT; 185 186 align = 1ul << bit; 187 } 188 addr = ALIGN(start, align); 189 size = PAGE_ALIGN(size); 190 if (unlikely(!size)) 191 return NULL; 192 193 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 194 195 if (unlikely(!area)) 196 return NULL; 197 198 /* 199 * We always allocate a guard page. 200 */ 201 size += PAGE_SIZE; 202 203 write_lock(&vmlist_lock); 204 for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) { 205 if ((unsigned long)tmp->addr < addr) { 206 if((unsigned long)tmp->addr + tmp->size >= addr) 207 addr = ALIGN(tmp->size + 208 (unsigned long)tmp->addr, align); 209 continue; 210 } 211 if ((size + addr) < addr) 212 goto out; 213 if (size + addr <= (unsigned long)tmp->addr) 214 goto found; 215 addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align); 216 if (addr > end - size) 217 goto out; 218 } 219 220 found: 221 area->next = *p; 222 *p = area; 223 224 area->flags = flags; 225 area->addr = (void *)addr; 226 area->size = size; 227 area->pages = NULL; 228 area->nr_pages = 0; 229 area->phys_addr = 0; 230 write_unlock(&vmlist_lock); 231 232 return area; 233 234 out: 235 write_unlock(&vmlist_lock); 236 kfree(area); 237 if (printk_ratelimit()) 238 printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n"); 239 return NULL; 240 } 241 242 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 243 unsigned long start, unsigned long end) 244 { 245 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL); 246 } 247 EXPORT_SYMBOL_GPL(__get_vm_area); 248 249 /** 250 * get_vm_area - reserve a contingous kernel virtual area 251 * @size: size of the area 252 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 253 * 254 * Search an area of @size in the kernel virtual mapping area, 255 * and reserved it for out purposes. Returns the area descriptor 256 * on success or %NULL on failure. 257 */ 258 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 259 { 260 return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END); 261 } 262 263 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, 264 int node, gfp_t gfp_mask) 265 { 266 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node, 267 gfp_mask); 268 } 269 270 /* Caller must hold vmlist_lock */ 271 static struct vm_struct *__find_vm_area(void *addr) 272 { 273 struct vm_struct *tmp; 274 275 for (tmp = vmlist; tmp != NULL; tmp = tmp->next) { 276 if (tmp->addr == addr) 277 break; 278 } 279 280 return tmp; 281 } 282 283 /* Caller must hold vmlist_lock */ 284 static struct vm_struct *__remove_vm_area(void *addr) 285 { 286 struct vm_struct **p, *tmp; 287 288 for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) { 289 if (tmp->addr == addr) 290 goto found; 291 } 292 return NULL; 293 294 found: 295 unmap_vm_area(tmp); 296 *p = tmp->next; 297 298 /* 299 * Remove the guard page. 300 */ 301 tmp->size -= PAGE_SIZE; 302 return tmp; 303 } 304 305 /** 306 * remove_vm_area - find and remove a contingous kernel virtual area 307 * @addr: base address 308 * 309 * Search for the kernel VM area starting at @addr, and remove it. 310 * This function returns the found VM area, but using it is NOT safe 311 * on SMP machines, except for its size or flags. 312 */ 313 struct vm_struct *remove_vm_area(void *addr) 314 { 315 struct vm_struct *v; 316 write_lock(&vmlist_lock); 317 v = __remove_vm_area(addr); 318 write_unlock(&vmlist_lock); 319 return v; 320 } 321 322 static void __vunmap(void *addr, int deallocate_pages) 323 { 324 struct vm_struct *area; 325 326 if (!addr) 327 return; 328 329 if ((PAGE_SIZE-1) & (unsigned long)addr) { 330 printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 331 WARN_ON(1); 332 return; 333 } 334 335 area = remove_vm_area(addr); 336 if (unlikely(!area)) { 337 printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 338 addr); 339 WARN_ON(1); 340 return; 341 } 342 343 debug_check_no_locks_freed(addr, area->size); 344 345 if (deallocate_pages) { 346 int i; 347 348 for (i = 0; i < area->nr_pages; i++) { 349 BUG_ON(!area->pages[i]); 350 __free_page(area->pages[i]); 351 } 352 353 if (area->flags & VM_VPAGES) 354 vfree(area->pages); 355 else 356 kfree(area->pages); 357 } 358 359 kfree(area); 360 return; 361 } 362 363 /** 364 * vfree - release memory allocated by vmalloc() 365 * @addr: memory base address 366 * 367 * Free the virtually contiguous memory area starting at @addr, as 368 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 369 * NULL, no operation is performed. 370 * 371 * Must not be called in interrupt context. 372 */ 373 void vfree(void *addr) 374 { 375 BUG_ON(in_interrupt()); 376 __vunmap(addr, 1); 377 } 378 EXPORT_SYMBOL(vfree); 379 380 /** 381 * vunmap - release virtual mapping obtained by vmap() 382 * @addr: memory base address 383 * 384 * Free the virtually contiguous memory area starting at @addr, 385 * which was created from the page array passed to vmap(). 386 * 387 * Must not be called in interrupt context. 388 */ 389 void vunmap(void *addr) 390 { 391 BUG_ON(in_interrupt()); 392 __vunmap(addr, 0); 393 } 394 EXPORT_SYMBOL(vunmap); 395 396 /** 397 * vmap - map an array of pages into virtually contiguous space 398 * @pages: array of page pointers 399 * @count: number of pages to map 400 * @flags: vm_area->flags 401 * @prot: page protection for the mapping 402 * 403 * Maps @count pages from @pages into contiguous kernel virtual 404 * space. 405 */ 406 void *vmap(struct page **pages, unsigned int count, 407 unsigned long flags, pgprot_t prot) 408 { 409 struct vm_struct *area; 410 411 if (count > num_physpages) 412 return NULL; 413 414 area = get_vm_area((count << PAGE_SHIFT), flags); 415 if (!area) 416 return NULL; 417 if (map_vm_area(area, prot, &pages)) { 418 vunmap(area->addr); 419 return NULL; 420 } 421 422 return area->addr; 423 } 424 EXPORT_SYMBOL(vmap); 425 426 void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 427 pgprot_t prot, int node) 428 { 429 struct page **pages; 430 unsigned int nr_pages, array_size, i; 431 432 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 433 array_size = (nr_pages * sizeof(struct page *)); 434 435 area->nr_pages = nr_pages; 436 /* Please note that the recursion is strictly bounded. */ 437 if (array_size > PAGE_SIZE) { 438 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO, 439 PAGE_KERNEL, node); 440 area->flags |= VM_VPAGES; 441 } else { 442 pages = kmalloc_node(array_size, 443 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO, 444 node); 445 } 446 area->pages = pages; 447 if (!area->pages) { 448 remove_vm_area(area->addr); 449 kfree(area); 450 return NULL; 451 } 452 453 for (i = 0; i < area->nr_pages; i++) { 454 if (node < 0) 455 area->pages[i] = alloc_page(gfp_mask); 456 else 457 area->pages[i] = alloc_pages_node(node, gfp_mask, 0); 458 if (unlikely(!area->pages[i])) { 459 /* Successfully allocated i pages, free them in __vunmap() */ 460 area->nr_pages = i; 461 goto fail; 462 } 463 } 464 465 if (map_vm_area(area, prot, &pages)) 466 goto fail; 467 return area->addr; 468 469 fail: 470 vfree(area->addr); 471 return NULL; 472 } 473 474 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot) 475 { 476 return __vmalloc_area_node(area, gfp_mask, prot, -1); 477 } 478 479 /** 480 * __vmalloc_node - allocate virtually contiguous memory 481 * @size: allocation size 482 * @gfp_mask: flags for the page level allocator 483 * @prot: protection mask for the allocated pages 484 * @node: node to use for allocation or -1 485 * 486 * Allocate enough pages to cover @size from the page level 487 * allocator with @gfp_mask flags. Map them into contiguous 488 * kernel virtual space, using a pagetable protection of @prot. 489 */ 490 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 491 int node) 492 { 493 struct vm_struct *area; 494 495 size = PAGE_ALIGN(size); 496 if (!size || (size >> PAGE_SHIFT) > num_physpages) 497 return NULL; 498 499 area = get_vm_area_node(size, VM_ALLOC, node, gfp_mask); 500 if (!area) 501 return NULL; 502 503 return __vmalloc_area_node(area, gfp_mask, prot, node); 504 } 505 506 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 507 { 508 return __vmalloc_node(size, gfp_mask, prot, -1); 509 } 510 EXPORT_SYMBOL(__vmalloc); 511 512 /** 513 * vmalloc - allocate virtually contiguous memory 514 * @size: allocation size 515 * Allocate enough pages to cover @size from the page level 516 * allocator and map them into contiguous kernel virtual space. 517 * 518 * For tight control over page level allocator and protection flags 519 * use __vmalloc() instead. 520 */ 521 void *vmalloc(unsigned long size) 522 { 523 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 524 } 525 EXPORT_SYMBOL(vmalloc); 526 527 /** 528 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 529 * @size: allocation size 530 * 531 * The resulting memory area is zeroed so it can be mapped to userspace 532 * without leaking data. 533 */ 534 void *vmalloc_user(unsigned long size) 535 { 536 struct vm_struct *area; 537 void *ret; 538 539 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL); 540 if (ret) { 541 write_lock(&vmlist_lock); 542 area = __find_vm_area(ret); 543 area->flags |= VM_USERMAP; 544 write_unlock(&vmlist_lock); 545 } 546 return ret; 547 } 548 EXPORT_SYMBOL(vmalloc_user); 549 550 /** 551 * vmalloc_node - allocate memory on a specific node 552 * @size: allocation size 553 * @node: numa node 554 * 555 * Allocate enough pages to cover @size from the page level 556 * allocator and map them into contiguous kernel virtual space. 557 * 558 * For tight control over page level allocator and protection flags 559 * use __vmalloc() instead. 560 */ 561 void *vmalloc_node(unsigned long size, int node) 562 { 563 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, node); 564 } 565 EXPORT_SYMBOL(vmalloc_node); 566 567 #ifndef PAGE_KERNEL_EXEC 568 # define PAGE_KERNEL_EXEC PAGE_KERNEL 569 #endif 570 571 /** 572 * vmalloc_exec - allocate virtually contiguous, executable memory 573 * @size: allocation size 574 * 575 * Kernel-internal function to allocate enough pages to cover @size 576 * the page level allocator and map them into contiguous and 577 * executable kernel virtual space. 578 * 579 * For tight control over page level allocator and protection flags 580 * use __vmalloc() instead. 581 */ 582 583 void *vmalloc_exec(unsigned long size) 584 { 585 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 586 } 587 588 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 589 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 590 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 591 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 592 #else 593 #define GFP_VMALLOC32 GFP_KERNEL 594 #endif 595 596 /** 597 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 598 * @size: allocation size 599 * 600 * Allocate enough 32bit PA addressable pages to cover @size from the 601 * page level allocator and map them into contiguous kernel virtual space. 602 */ 603 void *vmalloc_32(unsigned long size) 604 { 605 return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL); 606 } 607 EXPORT_SYMBOL(vmalloc_32); 608 609 /** 610 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 611 * @size: allocation size 612 * 613 * The resulting memory area is 32bit addressable and zeroed so it can be 614 * mapped to userspace without leaking data. 615 */ 616 void *vmalloc_32_user(unsigned long size) 617 { 618 struct vm_struct *area; 619 void *ret; 620 621 ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL); 622 if (ret) { 623 write_lock(&vmlist_lock); 624 area = __find_vm_area(ret); 625 area->flags |= VM_USERMAP; 626 write_unlock(&vmlist_lock); 627 } 628 return ret; 629 } 630 EXPORT_SYMBOL(vmalloc_32_user); 631 632 long vread(char *buf, char *addr, unsigned long count) 633 { 634 struct vm_struct *tmp; 635 char *vaddr, *buf_start = buf; 636 unsigned long n; 637 638 /* Don't allow overflow */ 639 if ((unsigned long) addr + count < count) 640 count = -(unsigned long) addr; 641 642 read_lock(&vmlist_lock); 643 for (tmp = vmlist; tmp; tmp = tmp->next) { 644 vaddr = (char *) tmp->addr; 645 if (addr >= vaddr + tmp->size - PAGE_SIZE) 646 continue; 647 while (addr < vaddr) { 648 if (count == 0) 649 goto finished; 650 *buf = '\0'; 651 buf++; 652 addr++; 653 count--; 654 } 655 n = vaddr + tmp->size - PAGE_SIZE - addr; 656 do { 657 if (count == 0) 658 goto finished; 659 *buf = *addr; 660 buf++; 661 addr++; 662 count--; 663 } while (--n > 0); 664 } 665 finished: 666 read_unlock(&vmlist_lock); 667 return buf - buf_start; 668 } 669 670 long vwrite(char *buf, char *addr, unsigned long count) 671 { 672 struct vm_struct *tmp; 673 char *vaddr, *buf_start = buf; 674 unsigned long n; 675 676 /* Don't allow overflow */ 677 if ((unsigned long) addr + count < count) 678 count = -(unsigned long) addr; 679 680 read_lock(&vmlist_lock); 681 for (tmp = vmlist; tmp; tmp = tmp->next) { 682 vaddr = (char *) tmp->addr; 683 if (addr >= vaddr + tmp->size - PAGE_SIZE) 684 continue; 685 while (addr < vaddr) { 686 if (count == 0) 687 goto finished; 688 buf++; 689 addr++; 690 count--; 691 } 692 n = vaddr + tmp->size - PAGE_SIZE - addr; 693 do { 694 if (count == 0) 695 goto finished; 696 *addr = *buf; 697 buf++; 698 addr++; 699 count--; 700 } while (--n > 0); 701 } 702 finished: 703 read_unlock(&vmlist_lock); 704 return buf - buf_start; 705 } 706 707 /** 708 * remap_vmalloc_range - map vmalloc pages to userspace 709 * @vma: vma to cover (map full range of vma) 710 * @addr: vmalloc memory 711 * @pgoff: number of pages into addr before first page to map 712 * @returns: 0 for success, -Exxx on failure 713 * 714 * This function checks that addr is a valid vmalloc'ed area, and 715 * that it is big enough to cover the vma. Will return failure if 716 * that criteria isn't met. 717 * 718 * Similar to remap_pfn_range() (see mm/memory.c) 719 */ 720 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 721 unsigned long pgoff) 722 { 723 struct vm_struct *area; 724 unsigned long uaddr = vma->vm_start; 725 unsigned long usize = vma->vm_end - vma->vm_start; 726 int ret; 727 728 if ((PAGE_SIZE-1) & (unsigned long)addr) 729 return -EINVAL; 730 731 read_lock(&vmlist_lock); 732 area = __find_vm_area(addr); 733 if (!area) 734 goto out_einval_locked; 735 736 if (!(area->flags & VM_USERMAP)) 737 goto out_einval_locked; 738 739 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) 740 goto out_einval_locked; 741 read_unlock(&vmlist_lock); 742 743 addr += pgoff << PAGE_SHIFT; 744 do { 745 struct page *page = vmalloc_to_page(addr); 746 ret = vm_insert_page(vma, uaddr, page); 747 if (ret) 748 return ret; 749 750 uaddr += PAGE_SIZE; 751 addr += PAGE_SIZE; 752 usize -= PAGE_SIZE; 753 } while (usize > 0); 754 755 /* Prevent "things" like memory migration? VM_flags need a cleanup... */ 756 vma->vm_flags |= VM_RESERVED; 757 758 return ret; 759 760 out_einval_locked: 761 read_unlock(&vmlist_lock); 762 return -EINVAL; 763 } 764 EXPORT_SYMBOL(remap_vmalloc_range); 765 766 /* 767 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 768 * have one. 769 */ 770 void __attribute__((weak)) vmalloc_sync_all(void) 771 { 772 } 773 774 775 static int f(pte_t *pte, struct page *pmd_page, unsigned long addr, void *data) 776 { 777 /* apply_to_page_range() does all the hard work. */ 778 return 0; 779 } 780 781 /** 782 * alloc_vm_area - allocate a range of kernel address space 783 * @size: size of the area 784 * @returns: NULL on failure, vm_struct on success 785 * 786 * This function reserves a range of kernel address space, and 787 * allocates pagetables to map that range. No actual mappings 788 * are created. If the kernel address space is not shared 789 * between processes, it syncs the pagetable across all 790 * processes. 791 */ 792 struct vm_struct *alloc_vm_area(size_t size) 793 { 794 struct vm_struct *area; 795 796 area = get_vm_area(size, VM_IOREMAP); 797 if (area == NULL) 798 return NULL; 799 800 /* 801 * This ensures that page tables are constructed for this region 802 * of kernel virtual address space and mapped into init_mm. 803 */ 804 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 805 area->size, f, NULL)) { 806 free_vm_area(area); 807 return NULL; 808 } 809 810 /* Make sure the pagetables are constructed in process kernel 811 mappings */ 812 vmalloc_sync_all(); 813 814 return area; 815 } 816 EXPORT_SYMBOL_GPL(alloc_vm_area); 817 818 void free_vm_area(struct vm_struct *area) 819 { 820 struct vm_struct *ret; 821 ret = remove_vm_area(area->addr); 822 BUG_ON(ret != area); 823 kfree(area); 824 } 825 EXPORT_SYMBOL_GPL(free_vm_area); 826