xref: /openbmc/linux/mm/vmalloc.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/highmem.h>
14 #include <linux/slab.h>
15 #include <linux/spinlock.h>
16 #include <linux/interrupt.h>
17 
18 #include <linux/vmalloc.h>
19 
20 #include <asm/uaccess.h>
21 #include <asm/tlbflush.h>
22 
23 
24 DEFINE_RWLOCK(vmlist_lock);
25 struct vm_struct *vmlist;
26 
27 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
28 			    int node);
29 
30 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
31 {
32 	pte_t *pte;
33 
34 	pte = pte_offset_kernel(pmd, addr);
35 	do {
36 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
37 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
38 	} while (pte++, addr += PAGE_SIZE, addr != end);
39 }
40 
41 static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr,
42 						unsigned long end)
43 {
44 	pmd_t *pmd;
45 	unsigned long next;
46 
47 	pmd = pmd_offset(pud, addr);
48 	do {
49 		next = pmd_addr_end(addr, end);
50 		if (pmd_none_or_clear_bad(pmd))
51 			continue;
52 		vunmap_pte_range(pmd, addr, next);
53 	} while (pmd++, addr = next, addr != end);
54 }
55 
56 static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr,
57 						unsigned long end)
58 {
59 	pud_t *pud;
60 	unsigned long next;
61 
62 	pud = pud_offset(pgd, addr);
63 	do {
64 		next = pud_addr_end(addr, end);
65 		if (pud_none_or_clear_bad(pud))
66 			continue;
67 		vunmap_pmd_range(pud, addr, next);
68 	} while (pud++, addr = next, addr != end);
69 }
70 
71 void unmap_kernel_range(unsigned long addr, unsigned long size)
72 {
73 	pgd_t *pgd;
74 	unsigned long next;
75 	unsigned long start = addr;
76 	unsigned long end = addr + size;
77 
78 	BUG_ON(addr >= end);
79 	pgd = pgd_offset_k(addr);
80 	flush_cache_vunmap(addr, end);
81 	do {
82 		next = pgd_addr_end(addr, end);
83 		if (pgd_none_or_clear_bad(pgd))
84 			continue;
85 		vunmap_pud_range(pgd, addr, next);
86 	} while (pgd++, addr = next, addr != end);
87 	flush_tlb_kernel_range(start, end);
88 }
89 
90 static void unmap_vm_area(struct vm_struct *area)
91 {
92 	unmap_kernel_range((unsigned long)area->addr, area->size);
93 }
94 
95 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
96 			unsigned long end, pgprot_t prot, struct page ***pages)
97 {
98 	pte_t *pte;
99 
100 	pte = pte_alloc_kernel(pmd, addr);
101 	if (!pte)
102 		return -ENOMEM;
103 	do {
104 		struct page *page = **pages;
105 		WARN_ON(!pte_none(*pte));
106 		if (!page)
107 			return -ENOMEM;
108 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
109 		(*pages)++;
110 	} while (pte++, addr += PAGE_SIZE, addr != end);
111 	return 0;
112 }
113 
114 static inline int vmap_pmd_range(pud_t *pud, unsigned long addr,
115 			unsigned long end, pgprot_t prot, struct page ***pages)
116 {
117 	pmd_t *pmd;
118 	unsigned long next;
119 
120 	pmd = pmd_alloc(&init_mm, pud, addr);
121 	if (!pmd)
122 		return -ENOMEM;
123 	do {
124 		next = pmd_addr_end(addr, end);
125 		if (vmap_pte_range(pmd, addr, next, prot, pages))
126 			return -ENOMEM;
127 	} while (pmd++, addr = next, addr != end);
128 	return 0;
129 }
130 
131 static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr,
132 			unsigned long end, pgprot_t prot, struct page ***pages)
133 {
134 	pud_t *pud;
135 	unsigned long next;
136 
137 	pud = pud_alloc(&init_mm, pgd, addr);
138 	if (!pud)
139 		return -ENOMEM;
140 	do {
141 		next = pud_addr_end(addr, end);
142 		if (vmap_pmd_range(pud, addr, next, prot, pages))
143 			return -ENOMEM;
144 	} while (pud++, addr = next, addr != end);
145 	return 0;
146 }
147 
148 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
149 {
150 	pgd_t *pgd;
151 	unsigned long next;
152 	unsigned long addr = (unsigned long) area->addr;
153 	unsigned long end = addr + area->size - PAGE_SIZE;
154 	int err;
155 
156 	BUG_ON(addr >= end);
157 	pgd = pgd_offset_k(addr);
158 	do {
159 		next = pgd_addr_end(addr, end);
160 		err = vmap_pud_range(pgd, addr, next, prot, pages);
161 		if (err)
162 			break;
163 	} while (pgd++, addr = next, addr != end);
164 	flush_cache_vmap((unsigned long) area->addr, end);
165 	return err;
166 }
167 EXPORT_SYMBOL_GPL(map_vm_area);
168 
169 static struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long flags,
170 					    unsigned long start, unsigned long end,
171 					    int node, gfp_t gfp_mask)
172 {
173 	struct vm_struct **p, *tmp, *area;
174 	unsigned long align = 1;
175 	unsigned long addr;
176 
177 	BUG_ON(in_interrupt());
178 	if (flags & VM_IOREMAP) {
179 		int bit = fls(size);
180 
181 		if (bit > IOREMAP_MAX_ORDER)
182 			bit = IOREMAP_MAX_ORDER;
183 		else if (bit < PAGE_SHIFT)
184 			bit = PAGE_SHIFT;
185 
186 		align = 1ul << bit;
187 	}
188 	addr = ALIGN(start, align);
189 	size = PAGE_ALIGN(size);
190 	if (unlikely(!size))
191 		return NULL;
192 
193 	area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
194 
195 	if (unlikely(!area))
196 		return NULL;
197 
198 	/*
199 	 * We always allocate a guard page.
200 	 */
201 	size += PAGE_SIZE;
202 
203 	write_lock(&vmlist_lock);
204 	for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) {
205 		if ((unsigned long)tmp->addr < addr) {
206 			if((unsigned long)tmp->addr + tmp->size >= addr)
207 				addr = ALIGN(tmp->size +
208 					     (unsigned long)tmp->addr, align);
209 			continue;
210 		}
211 		if ((size + addr) < addr)
212 			goto out;
213 		if (size + addr <= (unsigned long)tmp->addr)
214 			goto found;
215 		addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align);
216 		if (addr > end - size)
217 			goto out;
218 	}
219 
220 found:
221 	area->next = *p;
222 	*p = area;
223 
224 	area->flags = flags;
225 	area->addr = (void *)addr;
226 	area->size = size;
227 	area->pages = NULL;
228 	area->nr_pages = 0;
229 	area->phys_addr = 0;
230 	write_unlock(&vmlist_lock);
231 
232 	return area;
233 
234 out:
235 	write_unlock(&vmlist_lock);
236 	kfree(area);
237 	if (printk_ratelimit())
238 		printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n");
239 	return NULL;
240 }
241 
242 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
243 				unsigned long start, unsigned long end)
244 {
245 	return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL);
246 }
247 EXPORT_SYMBOL_GPL(__get_vm_area);
248 
249 /**
250  *	get_vm_area  -  reserve a contingous kernel virtual area
251  *	@size:		size of the area
252  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
253  *
254  *	Search an area of @size in the kernel virtual mapping area,
255  *	and reserved it for out purposes.  Returns the area descriptor
256  *	on success or %NULL on failure.
257  */
258 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
259 {
260 	return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END);
261 }
262 
263 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
264 				   int node, gfp_t gfp_mask)
265 {
266 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
267 				  gfp_mask);
268 }
269 
270 /* Caller must hold vmlist_lock */
271 static struct vm_struct *__find_vm_area(void *addr)
272 {
273 	struct vm_struct *tmp;
274 
275 	for (tmp = vmlist; tmp != NULL; tmp = tmp->next) {
276 		 if (tmp->addr == addr)
277 			break;
278 	}
279 
280 	return tmp;
281 }
282 
283 /* Caller must hold vmlist_lock */
284 static struct vm_struct *__remove_vm_area(void *addr)
285 {
286 	struct vm_struct **p, *tmp;
287 
288 	for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) {
289 		 if (tmp->addr == addr)
290 			 goto found;
291 	}
292 	return NULL;
293 
294 found:
295 	unmap_vm_area(tmp);
296 	*p = tmp->next;
297 
298 	/*
299 	 * Remove the guard page.
300 	 */
301 	tmp->size -= PAGE_SIZE;
302 	return tmp;
303 }
304 
305 /**
306  *	remove_vm_area  -  find and remove a contingous kernel virtual area
307  *	@addr:		base address
308  *
309  *	Search for the kernel VM area starting at @addr, and remove it.
310  *	This function returns the found VM area, but using it is NOT safe
311  *	on SMP machines, except for its size or flags.
312  */
313 struct vm_struct *remove_vm_area(void *addr)
314 {
315 	struct vm_struct *v;
316 	write_lock(&vmlist_lock);
317 	v = __remove_vm_area(addr);
318 	write_unlock(&vmlist_lock);
319 	return v;
320 }
321 
322 static void __vunmap(void *addr, int deallocate_pages)
323 {
324 	struct vm_struct *area;
325 
326 	if (!addr)
327 		return;
328 
329 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
330 		printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
331 		WARN_ON(1);
332 		return;
333 	}
334 
335 	area = remove_vm_area(addr);
336 	if (unlikely(!area)) {
337 		printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
338 				addr);
339 		WARN_ON(1);
340 		return;
341 	}
342 
343 	debug_check_no_locks_freed(addr, area->size);
344 
345 	if (deallocate_pages) {
346 		int i;
347 
348 		for (i = 0; i < area->nr_pages; i++) {
349 			BUG_ON(!area->pages[i]);
350 			__free_page(area->pages[i]);
351 		}
352 
353 		if (area->flags & VM_VPAGES)
354 			vfree(area->pages);
355 		else
356 			kfree(area->pages);
357 	}
358 
359 	kfree(area);
360 	return;
361 }
362 
363 /**
364  *	vfree  -  release memory allocated by vmalloc()
365  *	@addr:		memory base address
366  *
367  *	Free the virtually contiguous memory area starting at @addr, as
368  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
369  *	NULL, no operation is performed.
370  *
371  *	Must not be called in interrupt context.
372  */
373 void vfree(void *addr)
374 {
375 	BUG_ON(in_interrupt());
376 	__vunmap(addr, 1);
377 }
378 EXPORT_SYMBOL(vfree);
379 
380 /**
381  *	vunmap  -  release virtual mapping obtained by vmap()
382  *	@addr:		memory base address
383  *
384  *	Free the virtually contiguous memory area starting at @addr,
385  *	which was created from the page array passed to vmap().
386  *
387  *	Must not be called in interrupt context.
388  */
389 void vunmap(void *addr)
390 {
391 	BUG_ON(in_interrupt());
392 	__vunmap(addr, 0);
393 }
394 EXPORT_SYMBOL(vunmap);
395 
396 /**
397  *	vmap  -  map an array of pages into virtually contiguous space
398  *	@pages:		array of page pointers
399  *	@count:		number of pages to map
400  *	@flags:		vm_area->flags
401  *	@prot:		page protection for the mapping
402  *
403  *	Maps @count pages from @pages into contiguous kernel virtual
404  *	space.
405  */
406 void *vmap(struct page **pages, unsigned int count,
407 		unsigned long flags, pgprot_t prot)
408 {
409 	struct vm_struct *area;
410 
411 	if (count > num_physpages)
412 		return NULL;
413 
414 	area = get_vm_area((count << PAGE_SHIFT), flags);
415 	if (!area)
416 		return NULL;
417 	if (map_vm_area(area, prot, &pages)) {
418 		vunmap(area->addr);
419 		return NULL;
420 	}
421 
422 	return area->addr;
423 }
424 EXPORT_SYMBOL(vmap);
425 
426 void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
427 				pgprot_t prot, int node)
428 {
429 	struct page **pages;
430 	unsigned int nr_pages, array_size, i;
431 
432 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
433 	array_size = (nr_pages * sizeof(struct page *));
434 
435 	area->nr_pages = nr_pages;
436 	/* Please note that the recursion is strictly bounded. */
437 	if (array_size > PAGE_SIZE) {
438 		pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
439 					PAGE_KERNEL, node);
440 		area->flags |= VM_VPAGES;
441 	} else {
442 		pages = kmalloc_node(array_size,
443 				(gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
444 				node);
445 	}
446 	area->pages = pages;
447 	if (!area->pages) {
448 		remove_vm_area(area->addr);
449 		kfree(area);
450 		return NULL;
451 	}
452 
453 	for (i = 0; i < area->nr_pages; i++) {
454 		if (node < 0)
455 			area->pages[i] = alloc_page(gfp_mask);
456 		else
457 			area->pages[i] = alloc_pages_node(node, gfp_mask, 0);
458 		if (unlikely(!area->pages[i])) {
459 			/* Successfully allocated i pages, free them in __vunmap() */
460 			area->nr_pages = i;
461 			goto fail;
462 		}
463 	}
464 
465 	if (map_vm_area(area, prot, &pages))
466 		goto fail;
467 	return area->addr;
468 
469 fail:
470 	vfree(area->addr);
471 	return NULL;
472 }
473 
474 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
475 {
476 	return __vmalloc_area_node(area, gfp_mask, prot, -1);
477 }
478 
479 /**
480  *	__vmalloc_node  -  allocate virtually contiguous memory
481  *	@size:		allocation size
482  *	@gfp_mask:	flags for the page level allocator
483  *	@prot:		protection mask for the allocated pages
484  *	@node:		node to use for allocation or -1
485  *
486  *	Allocate enough pages to cover @size from the page level
487  *	allocator with @gfp_mask flags.  Map them into contiguous
488  *	kernel virtual space, using a pagetable protection of @prot.
489  */
490 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
491 			    int node)
492 {
493 	struct vm_struct *area;
494 
495 	size = PAGE_ALIGN(size);
496 	if (!size || (size >> PAGE_SHIFT) > num_physpages)
497 		return NULL;
498 
499 	area = get_vm_area_node(size, VM_ALLOC, node, gfp_mask);
500 	if (!area)
501 		return NULL;
502 
503 	return __vmalloc_area_node(area, gfp_mask, prot, node);
504 }
505 
506 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
507 {
508 	return __vmalloc_node(size, gfp_mask, prot, -1);
509 }
510 EXPORT_SYMBOL(__vmalloc);
511 
512 /**
513  *	vmalloc  -  allocate virtually contiguous memory
514  *	@size:		allocation size
515  *	Allocate enough pages to cover @size from the page level
516  *	allocator and map them into contiguous kernel virtual space.
517  *
518  *	For tight control over page level allocator and protection flags
519  *	use __vmalloc() instead.
520  */
521 void *vmalloc(unsigned long size)
522 {
523 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
524 }
525 EXPORT_SYMBOL(vmalloc);
526 
527 /**
528  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
529  * @size: allocation size
530  *
531  * The resulting memory area is zeroed so it can be mapped to userspace
532  * without leaking data.
533  */
534 void *vmalloc_user(unsigned long size)
535 {
536 	struct vm_struct *area;
537 	void *ret;
538 
539 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
540 	if (ret) {
541 		write_lock(&vmlist_lock);
542 		area = __find_vm_area(ret);
543 		area->flags |= VM_USERMAP;
544 		write_unlock(&vmlist_lock);
545 	}
546 	return ret;
547 }
548 EXPORT_SYMBOL(vmalloc_user);
549 
550 /**
551  *	vmalloc_node  -  allocate memory on a specific node
552  *	@size:		allocation size
553  *	@node:		numa node
554  *
555  *	Allocate enough pages to cover @size from the page level
556  *	allocator and map them into contiguous kernel virtual space.
557  *
558  *	For tight control over page level allocator and protection flags
559  *	use __vmalloc() instead.
560  */
561 void *vmalloc_node(unsigned long size, int node)
562 {
563 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, node);
564 }
565 EXPORT_SYMBOL(vmalloc_node);
566 
567 #ifndef PAGE_KERNEL_EXEC
568 # define PAGE_KERNEL_EXEC PAGE_KERNEL
569 #endif
570 
571 /**
572  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
573  *	@size:		allocation size
574  *
575  *	Kernel-internal function to allocate enough pages to cover @size
576  *	the page level allocator and map them into contiguous and
577  *	executable kernel virtual space.
578  *
579  *	For tight control over page level allocator and protection flags
580  *	use __vmalloc() instead.
581  */
582 
583 void *vmalloc_exec(unsigned long size)
584 {
585 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
586 }
587 
588 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
589 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
590 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
591 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
592 #else
593 #define GFP_VMALLOC32 GFP_KERNEL
594 #endif
595 
596 /**
597  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
598  *	@size:		allocation size
599  *
600  *	Allocate enough 32bit PA addressable pages to cover @size from the
601  *	page level allocator and map them into contiguous kernel virtual space.
602  */
603 void *vmalloc_32(unsigned long size)
604 {
605 	return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL);
606 }
607 EXPORT_SYMBOL(vmalloc_32);
608 
609 /**
610  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
611  *	@size:		allocation size
612  *
613  * The resulting memory area is 32bit addressable and zeroed so it can be
614  * mapped to userspace without leaking data.
615  */
616 void *vmalloc_32_user(unsigned long size)
617 {
618 	struct vm_struct *area;
619 	void *ret;
620 
621 	ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
622 	if (ret) {
623 		write_lock(&vmlist_lock);
624 		area = __find_vm_area(ret);
625 		area->flags |= VM_USERMAP;
626 		write_unlock(&vmlist_lock);
627 	}
628 	return ret;
629 }
630 EXPORT_SYMBOL(vmalloc_32_user);
631 
632 long vread(char *buf, char *addr, unsigned long count)
633 {
634 	struct vm_struct *tmp;
635 	char *vaddr, *buf_start = buf;
636 	unsigned long n;
637 
638 	/* Don't allow overflow */
639 	if ((unsigned long) addr + count < count)
640 		count = -(unsigned long) addr;
641 
642 	read_lock(&vmlist_lock);
643 	for (tmp = vmlist; tmp; tmp = tmp->next) {
644 		vaddr = (char *) tmp->addr;
645 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
646 			continue;
647 		while (addr < vaddr) {
648 			if (count == 0)
649 				goto finished;
650 			*buf = '\0';
651 			buf++;
652 			addr++;
653 			count--;
654 		}
655 		n = vaddr + tmp->size - PAGE_SIZE - addr;
656 		do {
657 			if (count == 0)
658 				goto finished;
659 			*buf = *addr;
660 			buf++;
661 			addr++;
662 			count--;
663 		} while (--n > 0);
664 	}
665 finished:
666 	read_unlock(&vmlist_lock);
667 	return buf - buf_start;
668 }
669 
670 long vwrite(char *buf, char *addr, unsigned long count)
671 {
672 	struct vm_struct *tmp;
673 	char *vaddr, *buf_start = buf;
674 	unsigned long n;
675 
676 	/* Don't allow overflow */
677 	if ((unsigned long) addr + count < count)
678 		count = -(unsigned long) addr;
679 
680 	read_lock(&vmlist_lock);
681 	for (tmp = vmlist; tmp; tmp = tmp->next) {
682 		vaddr = (char *) tmp->addr;
683 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
684 			continue;
685 		while (addr < vaddr) {
686 			if (count == 0)
687 				goto finished;
688 			buf++;
689 			addr++;
690 			count--;
691 		}
692 		n = vaddr + tmp->size - PAGE_SIZE - addr;
693 		do {
694 			if (count == 0)
695 				goto finished;
696 			*addr = *buf;
697 			buf++;
698 			addr++;
699 			count--;
700 		} while (--n > 0);
701 	}
702 finished:
703 	read_unlock(&vmlist_lock);
704 	return buf - buf_start;
705 }
706 
707 /**
708  *	remap_vmalloc_range  -  map vmalloc pages to userspace
709  *	@vma:		vma to cover (map full range of vma)
710  *	@addr:		vmalloc memory
711  *	@pgoff:		number of pages into addr before first page to map
712  *	@returns:	0 for success, -Exxx on failure
713  *
714  *	This function checks that addr is a valid vmalloc'ed area, and
715  *	that it is big enough to cover the vma. Will return failure if
716  *	that criteria isn't met.
717  *
718  *	Similar to remap_pfn_range() (see mm/memory.c)
719  */
720 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
721 						unsigned long pgoff)
722 {
723 	struct vm_struct *area;
724 	unsigned long uaddr = vma->vm_start;
725 	unsigned long usize = vma->vm_end - vma->vm_start;
726 	int ret;
727 
728 	if ((PAGE_SIZE-1) & (unsigned long)addr)
729 		return -EINVAL;
730 
731 	read_lock(&vmlist_lock);
732 	area = __find_vm_area(addr);
733 	if (!area)
734 		goto out_einval_locked;
735 
736 	if (!(area->flags & VM_USERMAP))
737 		goto out_einval_locked;
738 
739 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
740 		goto out_einval_locked;
741 	read_unlock(&vmlist_lock);
742 
743 	addr += pgoff << PAGE_SHIFT;
744 	do {
745 		struct page *page = vmalloc_to_page(addr);
746 		ret = vm_insert_page(vma, uaddr, page);
747 		if (ret)
748 			return ret;
749 
750 		uaddr += PAGE_SIZE;
751 		addr += PAGE_SIZE;
752 		usize -= PAGE_SIZE;
753 	} while (usize > 0);
754 
755 	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
756 	vma->vm_flags |= VM_RESERVED;
757 
758 	return ret;
759 
760 out_einval_locked:
761 	read_unlock(&vmlist_lock);
762 	return -EINVAL;
763 }
764 EXPORT_SYMBOL(remap_vmalloc_range);
765 
766 /*
767  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
768  * have one.
769  */
770 void  __attribute__((weak)) vmalloc_sync_all(void)
771 {
772 }
773 
774 
775 static int f(pte_t *pte, struct page *pmd_page, unsigned long addr, void *data)
776 {
777 	/* apply_to_page_range() does all the hard work. */
778 	return 0;
779 }
780 
781 /**
782  *	alloc_vm_area - allocate a range of kernel address space
783  *	@size:		size of the area
784  *	@returns:	NULL on failure, vm_struct on success
785  *
786  *	This function reserves a range of kernel address space, and
787  *	allocates pagetables to map that range.  No actual mappings
788  *	are created.  If the kernel address space is not shared
789  *	between processes, it syncs the pagetable across all
790  *	processes.
791  */
792 struct vm_struct *alloc_vm_area(size_t size)
793 {
794 	struct vm_struct *area;
795 
796 	area = get_vm_area(size, VM_IOREMAP);
797 	if (area == NULL)
798 		return NULL;
799 
800 	/*
801 	 * This ensures that page tables are constructed for this region
802 	 * of kernel virtual address space and mapped into init_mm.
803 	 */
804 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
805 				area->size, f, NULL)) {
806 		free_vm_area(area);
807 		return NULL;
808 	}
809 
810 	/* Make sure the pagetables are constructed in process kernel
811 	   mappings */
812 	vmalloc_sync_all();
813 
814 	return area;
815 }
816 EXPORT_SYMBOL_GPL(alloc_vm_area);
817 
818 void free_vm_area(struct vm_struct *area)
819 {
820 	struct vm_struct *ret;
821 	ret = remove_vm_area(area->addr);
822 	BUG_ON(ret != area);
823 	kfree(area);
824 }
825 EXPORT_SYMBOL_GPL(free_vm_area);
826