1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/slab.h> 16 #include <linux/spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/proc_fs.h> 19 #include <linux/seq_file.h> 20 #include <linux/debugobjects.h> 21 #include <linux/kallsyms.h> 22 #include <linux/list.h> 23 #include <linux/rbtree.h> 24 #include <linux/radix-tree.h> 25 #include <linux/rcupdate.h> 26 #include <linux/bootmem.h> 27 #include <linux/pfn.h> 28 29 #include <asm/atomic.h> 30 #include <asm/uaccess.h> 31 #include <asm/tlbflush.h> 32 33 34 /*** Page table manipulation functions ***/ 35 36 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 37 { 38 pte_t *pte; 39 40 pte = pte_offset_kernel(pmd, addr); 41 do { 42 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 43 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 44 } while (pte++, addr += PAGE_SIZE, addr != end); 45 } 46 47 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 48 { 49 pmd_t *pmd; 50 unsigned long next; 51 52 pmd = pmd_offset(pud, addr); 53 do { 54 next = pmd_addr_end(addr, end); 55 if (pmd_none_or_clear_bad(pmd)) 56 continue; 57 vunmap_pte_range(pmd, addr, next); 58 } while (pmd++, addr = next, addr != end); 59 } 60 61 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) 62 { 63 pud_t *pud; 64 unsigned long next; 65 66 pud = pud_offset(pgd, addr); 67 do { 68 next = pud_addr_end(addr, end); 69 if (pud_none_or_clear_bad(pud)) 70 continue; 71 vunmap_pmd_range(pud, addr, next); 72 } while (pud++, addr = next, addr != end); 73 } 74 75 static void vunmap_page_range(unsigned long addr, unsigned long end) 76 { 77 pgd_t *pgd; 78 unsigned long next; 79 80 BUG_ON(addr >= end); 81 pgd = pgd_offset_k(addr); 82 do { 83 next = pgd_addr_end(addr, end); 84 if (pgd_none_or_clear_bad(pgd)) 85 continue; 86 vunmap_pud_range(pgd, addr, next); 87 } while (pgd++, addr = next, addr != end); 88 } 89 90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 91 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 92 { 93 pte_t *pte; 94 95 /* 96 * nr is a running index into the array which helps higher level 97 * callers keep track of where we're up to. 98 */ 99 100 pte = pte_alloc_kernel(pmd, addr); 101 if (!pte) 102 return -ENOMEM; 103 do { 104 struct page *page = pages[*nr]; 105 106 if (WARN_ON(!pte_none(*pte))) 107 return -EBUSY; 108 if (WARN_ON(!page)) 109 return -ENOMEM; 110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 111 (*nr)++; 112 } while (pte++, addr += PAGE_SIZE, addr != end); 113 return 0; 114 } 115 116 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 117 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 118 { 119 pmd_t *pmd; 120 unsigned long next; 121 122 pmd = pmd_alloc(&init_mm, pud, addr); 123 if (!pmd) 124 return -ENOMEM; 125 do { 126 next = pmd_addr_end(addr, end); 127 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 128 return -ENOMEM; 129 } while (pmd++, addr = next, addr != end); 130 return 0; 131 } 132 133 static int vmap_pud_range(pgd_t *pgd, unsigned long addr, 134 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 135 { 136 pud_t *pud; 137 unsigned long next; 138 139 pud = pud_alloc(&init_mm, pgd, addr); 140 if (!pud) 141 return -ENOMEM; 142 do { 143 next = pud_addr_end(addr, end); 144 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 145 return -ENOMEM; 146 } while (pud++, addr = next, addr != end); 147 return 0; 148 } 149 150 /* 151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 152 * will have pfns corresponding to the "pages" array. 153 * 154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 155 */ 156 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 157 pgprot_t prot, struct page **pages) 158 { 159 pgd_t *pgd; 160 unsigned long next; 161 unsigned long addr = start; 162 int err = 0; 163 int nr = 0; 164 165 BUG_ON(addr >= end); 166 pgd = pgd_offset_k(addr); 167 do { 168 next = pgd_addr_end(addr, end); 169 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); 170 if (err) 171 break; 172 } while (pgd++, addr = next, addr != end); 173 174 if (unlikely(err)) 175 return err; 176 return nr; 177 } 178 179 static int vmap_page_range(unsigned long start, unsigned long end, 180 pgprot_t prot, struct page **pages) 181 { 182 int ret; 183 184 ret = vmap_page_range_noflush(start, end, prot, pages); 185 flush_cache_vmap(start, end); 186 return ret; 187 } 188 189 static inline int is_vmalloc_or_module_addr(const void *x) 190 { 191 /* 192 * ARM, x86-64 and sparc64 put modules in a special place, 193 * and fall back on vmalloc() if that fails. Others 194 * just put it in the vmalloc space. 195 */ 196 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 197 unsigned long addr = (unsigned long)x; 198 if (addr >= MODULES_VADDR && addr < MODULES_END) 199 return 1; 200 #endif 201 return is_vmalloc_addr(x); 202 } 203 204 /* 205 * Walk a vmap address to the struct page it maps. 206 */ 207 struct page *vmalloc_to_page(const void *vmalloc_addr) 208 { 209 unsigned long addr = (unsigned long) vmalloc_addr; 210 struct page *page = NULL; 211 pgd_t *pgd = pgd_offset_k(addr); 212 213 /* 214 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 215 * architectures that do not vmalloc module space 216 */ 217 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 218 219 if (!pgd_none(*pgd)) { 220 pud_t *pud = pud_offset(pgd, addr); 221 if (!pud_none(*pud)) { 222 pmd_t *pmd = pmd_offset(pud, addr); 223 if (!pmd_none(*pmd)) { 224 pte_t *ptep, pte; 225 226 ptep = pte_offset_map(pmd, addr); 227 pte = *ptep; 228 if (pte_present(pte)) 229 page = pte_page(pte); 230 pte_unmap(ptep); 231 } 232 } 233 } 234 return page; 235 } 236 EXPORT_SYMBOL(vmalloc_to_page); 237 238 /* 239 * Map a vmalloc()-space virtual address to the physical page frame number. 240 */ 241 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 242 { 243 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 244 } 245 EXPORT_SYMBOL(vmalloc_to_pfn); 246 247 248 /*** Global kva allocator ***/ 249 250 #define VM_LAZY_FREE 0x01 251 #define VM_LAZY_FREEING 0x02 252 #define VM_VM_AREA 0x04 253 254 struct vmap_area { 255 unsigned long va_start; 256 unsigned long va_end; 257 unsigned long flags; 258 struct rb_node rb_node; /* address sorted rbtree */ 259 struct list_head list; /* address sorted list */ 260 struct list_head purge_list; /* "lazy purge" list */ 261 void *private; 262 struct rcu_head rcu_head; 263 }; 264 265 static DEFINE_SPINLOCK(vmap_area_lock); 266 static struct rb_root vmap_area_root = RB_ROOT; 267 static LIST_HEAD(vmap_area_list); 268 269 static struct vmap_area *__find_vmap_area(unsigned long addr) 270 { 271 struct rb_node *n = vmap_area_root.rb_node; 272 273 while (n) { 274 struct vmap_area *va; 275 276 va = rb_entry(n, struct vmap_area, rb_node); 277 if (addr < va->va_start) 278 n = n->rb_left; 279 else if (addr > va->va_start) 280 n = n->rb_right; 281 else 282 return va; 283 } 284 285 return NULL; 286 } 287 288 static void __insert_vmap_area(struct vmap_area *va) 289 { 290 struct rb_node **p = &vmap_area_root.rb_node; 291 struct rb_node *parent = NULL; 292 struct rb_node *tmp; 293 294 while (*p) { 295 struct vmap_area *tmp; 296 297 parent = *p; 298 tmp = rb_entry(parent, struct vmap_area, rb_node); 299 if (va->va_start < tmp->va_end) 300 p = &(*p)->rb_left; 301 else if (va->va_end > tmp->va_start) 302 p = &(*p)->rb_right; 303 else 304 BUG(); 305 } 306 307 rb_link_node(&va->rb_node, parent, p); 308 rb_insert_color(&va->rb_node, &vmap_area_root); 309 310 /* address-sort this list so it is usable like the vmlist */ 311 tmp = rb_prev(&va->rb_node); 312 if (tmp) { 313 struct vmap_area *prev; 314 prev = rb_entry(tmp, struct vmap_area, rb_node); 315 list_add_rcu(&va->list, &prev->list); 316 } else 317 list_add_rcu(&va->list, &vmap_area_list); 318 } 319 320 static void purge_vmap_area_lazy(void); 321 322 /* 323 * Allocate a region of KVA of the specified size and alignment, within the 324 * vstart and vend. 325 */ 326 static struct vmap_area *alloc_vmap_area(unsigned long size, 327 unsigned long align, 328 unsigned long vstart, unsigned long vend, 329 int node, gfp_t gfp_mask) 330 { 331 struct vmap_area *va; 332 struct rb_node *n; 333 unsigned long addr; 334 int purged = 0; 335 336 BUG_ON(!size); 337 BUG_ON(size & ~PAGE_MASK); 338 339 va = kmalloc_node(sizeof(struct vmap_area), 340 gfp_mask & GFP_RECLAIM_MASK, node); 341 if (unlikely(!va)) 342 return ERR_PTR(-ENOMEM); 343 344 retry: 345 addr = ALIGN(vstart, align); 346 347 spin_lock(&vmap_area_lock); 348 if (addr + size - 1 < addr) 349 goto overflow; 350 351 /* XXX: could have a last_hole cache */ 352 n = vmap_area_root.rb_node; 353 if (n) { 354 struct vmap_area *first = NULL; 355 356 do { 357 struct vmap_area *tmp; 358 tmp = rb_entry(n, struct vmap_area, rb_node); 359 if (tmp->va_end >= addr) { 360 if (!first && tmp->va_start < addr + size) 361 first = tmp; 362 n = n->rb_left; 363 } else { 364 first = tmp; 365 n = n->rb_right; 366 } 367 } while (n); 368 369 if (!first) 370 goto found; 371 372 if (first->va_end < addr) { 373 n = rb_next(&first->rb_node); 374 if (n) 375 first = rb_entry(n, struct vmap_area, rb_node); 376 else 377 goto found; 378 } 379 380 while (addr + size > first->va_start && addr + size <= vend) { 381 addr = ALIGN(first->va_end + PAGE_SIZE, align); 382 if (addr + size - 1 < addr) 383 goto overflow; 384 385 n = rb_next(&first->rb_node); 386 if (n) 387 first = rb_entry(n, struct vmap_area, rb_node); 388 else 389 goto found; 390 } 391 } 392 found: 393 if (addr + size > vend) { 394 overflow: 395 spin_unlock(&vmap_area_lock); 396 if (!purged) { 397 purge_vmap_area_lazy(); 398 purged = 1; 399 goto retry; 400 } 401 if (printk_ratelimit()) 402 printk(KERN_WARNING 403 "vmap allocation for size %lu failed: " 404 "use vmalloc=<size> to increase size.\n", size); 405 return ERR_PTR(-EBUSY); 406 } 407 408 BUG_ON(addr & (align-1)); 409 410 va->va_start = addr; 411 va->va_end = addr + size; 412 va->flags = 0; 413 __insert_vmap_area(va); 414 spin_unlock(&vmap_area_lock); 415 416 return va; 417 } 418 419 static void rcu_free_va(struct rcu_head *head) 420 { 421 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head); 422 423 kfree(va); 424 } 425 426 static void __free_vmap_area(struct vmap_area *va) 427 { 428 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 429 rb_erase(&va->rb_node, &vmap_area_root); 430 RB_CLEAR_NODE(&va->rb_node); 431 list_del_rcu(&va->list); 432 433 call_rcu(&va->rcu_head, rcu_free_va); 434 } 435 436 /* 437 * Free a region of KVA allocated by alloc_vmap_area 438 */ 439 static void free_vmap_area(struct vmap_area *va) 440 { 441 spin_lock(&vmap_area_lock); 442 __free_vmap_area(va); 443 spin_unlock(&vmap_area_lock); 444 } 445 446 /* 447 * Clear the pagetable entries of a given vmap_area 448 */ 449 static void unmap_vmap_area(struct vmap_area *va) 450 { 451 vunmap_page_range(va->va_start, va->va_end); 452 } 453 454 static void vmap_debug_free_range(unsigned long start, unsigned long end) 455 { 456 /* 457 * Unmap page tables and force a TLB flush immediately if 458 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free 459 * bugs similarly to those in linear kernel virtual address 460 * space after a page has been freed. 461 * 462 * All the lazy freeing logic is still retained, in order to 463 * minimise intrusiveness of this debugging feature. 464 * 465 * This is going to be *slow* (linear kernel virtual address 466 * debugging doesn't do a broadcast TLB flush so it is a lot 467 * faster). 468 */ 469 #ifdef CONFIG_DEBUG_PAGEALLOC 470 vunmap_page_range(start, end); 471 flush_tlb_kernel_range(start, end); 472 #endif 473 } 474 475 /* 476 * lazy_max_pages is the maximum amount of virtual address space we gather up 477 * before attempting to purge with a TLB flush. 478 * 479 * There is a tradeoff here: a larger number will cover more kernel page tables 480 * and take slightly longer to purge, but it will linearly reduce the number of 481 * global TLB flushes that must be performed. It would seem natural to scale 482 * this number up linearly with the number of CPUs (because vmapping activity 483 * could also scale linearly with the number of CPUs), however it is likely 484 * that in practice, workloads might be constrained in other ways that mean 485 * vmap activity will not scale linearly with CPUs. Also, I want to be 486 * conservative and not introduce a big latency on huge systems, so go with 487 * a less aggressive log scale. It will still be an improvement over the old 488 * code, and it will be simple to change the scale factor if we find that it 489 * becomes a problem on bigger systems. 490 */ 491 static unsigned long lazy_max_pages(void) 492 { 493 unsigned int log; 494 495 log = fls(num_online_cpus()); 496 497 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 498 } 499 500 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 501 502 /* 503 * Purges all lazily-freed vmap areas. 504 * 505 * If sync is 0 then don't purge if there is already a purge in progress. 506 * If force_flush is 1, then flush kernel TLBs between *start and *end even 507 * if we found no lazy vmap areas to unmap (callers can use this to optimise 508 * their own TLB flushing). 509 * Returns with *start = min(*start, lowest purged address) 510 * *end = max(*end, highest purged address) 511 */ 512 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, 513 int sync, int force_flush) 514 { 515 static DEFINE_SPINLOCK(purge_lock); 516 LIST_HEAD(valist); 517 struct vmap_area *va; 518 struct vmap_area *n_va; 519 int nr = 0; 520 521 /* 522 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers 523 * should not expect such behaviour. This just simplifies locking for 524 * the case that isn't actually used at the moment anyway. 525 */ 526 if (!sync && !force_flush) { 527 if (!spin_trylock(&purge_lock)) 528 return; 529 } else 530 spin_lock(&purge_lock); 531 532 rcu_read_lock(); 533 list_for_each_entry_rcu(va, &vmap_area_list, list) { 534 if (va->flags & VM_LAZY_FREE) { 535 if (va->va_start < *start) 536 *start = va->va_start; 537 if (va->va_end > *end) 538 *end = va->va_end; 539 nr += (va->va_end - va->va_start) >> PAGE_SHIFT; 540 unmap_vmap_area(va); 541 list_add_tail(&va->purge_list, &valist); 542 va->flags |= VM_LAZY_FREEING; 543 va->flags &= ~VM_LAZY_FREE; 544 } 545 } 546 rcu_read_unlock(); 547 548 if (nr) { 549 BUG_ON(nr > atomic_read(&vmap_lazy_nr)); 550 atomic_sub(nr, &vmap_lazy_nr); 551 } 552 553 if (nr || force_flush) 554 flush_tlb_kernel_range(*start, *end); 555 556 if (nr) { 557 spin_lock(&vmap_area_lock); 558 list_for_each_entry_safe(va, n_va, &valist, purge_list) 559 __free_vmap_area(va); 560 spin_unlock(&vmap_area_lock); 561 } 562 spin_unlock(&purge_lock); 563 } 564 565 /* 566 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 567 * is already purging. 568 */ 569 static void try_purge_vmap_area_lazy(void) 570 { 571 unsigned long start = ULONG_MAX, end = 0; 572 573 __purge_vmap_area_lazy(&start, &end, 0, 0); 574 } 575 576 /* 577 * Kick off a purge of the outstanding lazy areas. 578 */ 579 static void purge_vmap_area_lazy(void) 580 { 581 unsigned long start = ULONG_MAX, end = 0; 582 583 __purge_vmap_area_lazy(&start, &end, 1, 0); 584 } 585 586 /* 587 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been 588 * called for the correct range previously. 589 */ 590 static void free_unmap_vmap_area_noflush(struct vmap_area *va) 591 { 592 va->flags |= VM_LAZY_FREE; 593 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); 594 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) 595 try_purge_vmap_area_lazy(); 596 } 597 598 /* 599 * Free and unmap a vmap area 600 */ 601 static void free_unmap_vmap_area(struct vmap_area *va) 602 { 603 flush_cache_vunmap(va->va_start, va->va_end); 604 free_unmap_vmap_area_noflush(va); 605 } 606 607 static struct vmap_area *find_vmap_area(unsigned long addr) 608 { 609 struct vmap_area *va; 610 611 spin_lock(&vmap_area_lock); 612 va = __find_vmap_area(addr); 613 spin_unlock(&vmap_area_lock); 614 615 return va; 616 } 617 618 static void free_unmap_vmap_area_addr(unsigned long addr) 619 { 620 struct vmap_area *va; 621 622 va = find_vmap_area(addr); 623 BUG_ON(!va); 624 free_unmap_vmap_area(va); 625 } 626 627 628 /*** Per cpu kva allocator ***/ 629 630 /* 631 * vmap space is limited especially on 32 bit architectures. Ensure there is 632 * room for at least 16 percpu vmap blocks per CPU. 633 */ 634 /* 635 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 636 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 637 * instead (we just need a rough idea) 638 */ 639 #if BITS_PER_LONG == 32 640 #define VMALLOC_SPACE (128UL*1024*1024) 641 #else 642 #define VMALLOC_SPACE (128UL*1024*1024*1024) 643 #endif 644 645 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 646 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 647 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 648 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 649 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 650 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 651 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 652 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 653 VMALLOC_PAGES / NR_CPUS / 16)) 654 655 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 656 657 static bool vmap_initialized __read_mostly = false; 658 659 struct vmap_block_queue { 660 spinlock_t lock; 661 struct list_head free; 662 struct list_head dirty; 663 unsigned int nr_dirty; 664 }; 665 666 struct vmap_block { 667 spinlock_t lock; 668 struct vmap_area *va; 669 struct vmap_block_queue *vbq; 670 unsigned long free, dirty; 671 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); 672 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); 673 union { 674 struct { 675 struct list_head free_list; 676 struct list_head dirty_list; 677 }; 678 struct rcu_head rcu_head; 679 }; 680 }; 681 682 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 683 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 684 685 /* 686 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 687 * in the free path. Could get rid of this if we change the API to return a 688 * "cookie" from alloc, to be passed to free. But no big deal yet. 689 */ 690 static DEFINE_SPINLOCK(vmap_block_tree_lock); 691 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 692 693 /* 694 * We should probably have a fallback mechanism to allocate virtual memory 695 * out of partially filled vmap blocks. However vmap block sizing should be 696 * fairly reasonable according to the vmalloc size, so it shouldn't be a 697 * big problem. 698 */ 699 700 static unsigned long addr_to_vb_idx(unsigned long addr) 701 { 702 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 703 addr /= VMAP_BLOCK_SIZE; 704 return addr; 705 } 706 707 static struct vmap_block *new_vmap_block(gfp_t gfp_mask) 708 { 709 struct vmap_block_queue *vbq; 710 struct vmap_block *vb; 711 struct vmap_area *va; 712 unsigned long vb_idx; 713 int node, err; 714 715 node = numa_node_id(); 716 717 vb = kmalloc_node(sizeof(struct vmap_block), 718 gfp_mask & GFP_RECLAIM_MASK, node); 719 if (unlikely(!vb)) 720 return ERR_PTR(-ENOMEM); 721 722 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 723 VMALLOC_START, VMALLOC_END, 724 node, gfp_mask); 725 if (unlikely(IS_ERR(va))) { 726 kfree(vb); 727 return ERR_PTR(PTR_ERR(va)); 728 } 729 730 err = radix_tree_preload(gfp_mask); 731 if (unlikely(err)) { 732 kfree(vb); 733 free_vmap_area(va); 734 return ERR_PTR(err); 735 } 736 737 spin_lock_init(&vb->lock); 738 vb->va = va; 739 vb->free = VMAP_BBMAP_BITS; 740 vb->dirty = 0; 741 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); 742 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); 743 INIT_LIST_HEAD(&vb->free_list); 744 INIT_LIST_HEAD(&vb->dirty_list); 745 746 vb_idx = addr_to_vb_idx(va->va_start); 747 spin_lock(&vmap_block_tree_lock); 748 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 749 spin_unlock(&vmap_block_tree_lock); 750 BUG_ON(err); 751 radix_tree_preload_end(); 752 753 vbq = &get_cpu_var(vmap_block_queue); 754 vb->vbq = vbq; 755 spin_lock(&vbq->lock); 756 list_add(&vb->free_list, &vbq->free); 757 spin_unlock(&vbq->lock); 758 put_cpu_var(vmap_cpu_blocks); 759 760 return vb; 761 } 762 763 static void rcu_free_vb(struct rcu_head *head) 764 { 765 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head); 766 767 kfree(vb); 768 } 769 770 static void free_vmap_block(struct vmap_block *vb) 771 { 772 struct vmap_block *tmp; 773 unsigned long vb_idx; 774 775 spin_lock(&vb->vbq->lock); 776 if (!list_empty(&vb->free_list)) 777 list_del(&vb->free_list); 778 if (!list_empty(&vb->dirty_list)) 779 list_del(&vb->dirty_list); 780 spin_unlock(&vb->vbq->lock); 781 782 vb_idx = addr_to_vb_idx(vb->va->va_start); 783 spin_lock(&vmap_block_tree_lock); 784 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 785 spin_unlock(&vmap_block_tree_lock); 786 BUG_ON(tmp != vb); 787 788 free_unmap_vmap_area_noflush(vb->va); 789 call_rcu(&vb->rcu_head, rcu_free_vb); 790 } 791 792 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 793 { 794 struct vmap_block_queue *vbq; 795 struct vmap_block *vb; 796 unsigned long addr = 0; 797 unsigned int order; 798 799 BUG_ON(size & ~PAGE_MASK); 800 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 801 order = get_order(size); 802 803 again: 804 rcu_read_lock(); 805 vbq = &get_cpu_var(vmap_block_queue); 806 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 807 int i; 808 809 spin_lock(&vb->lock); 810 i = bitmap_find_free_region(vb->alloc_map, 811 VMAP_BBMAP_BITS, order); 812 813 if (i >= 0) { 814 addr = vb->va->va_start + (i << PAGE_SHIFT); 815 BUG_ON(addr_to_vb_idx(addr) != 816 addr_to_vb_idx(vb->va->va_start)); 817 vb->free -= 1UL << order; 818 if (vb->free == 0) { 819 spin_lock(&vbq->lock); 820 list_del_init(&vb->free_list); 821 spin_unlock(&vbq->lock); 822 } 823 spin_unlock(&vb->lock); 824 break; 825 } 826 spin_unlock(&vb->lock); 827 } 828 put_cpu_var(vmap_cpu_blocks); 829 rcu_read_unlock(); 830 831 if (!addr) { 832 vb = new_vmap_block(gfp_mask); 833 if (IS_ERR(vb)) 834 return vb; 835 goto again; 836 } 837 838 return (void *)addr; 839 } 840 841 static void vb_free(const void *addr, unsigned long size) 842 { 843 unsigned long offset; 844 unsigned long vb_idx; 845 unsigned int order; 846 struct vmap_block *vb; 847 848 BUG_ON(size & ~PAGE_MASK); 849 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 850 851 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 852 853 order = get_order(size); 854 855 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 856 857 vb_idx = addr_to_vb_idx((unsigned long)addr); 858 rcu_read_lock(); 859 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 860 rcu_read_unlock(); 861 BUG_ON(!vb); 862 863 spin_lock(&vb->lock); 864 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order); 865 if (!vb->dirty) { 866 spin_lock(&vb->vbq->lock); 867 list_add(&vb->dirty_list, &vb->vbq->dirty); 868 spin_unlock(&vb->vbq->lock); 869 } 870 vb->dirty += 1UL << order; 871 if (vb->dirty == VMAP_BBMAP_BITS) { 872 BUG_ON(vb->free || !list_empty(&vb->free_list)); 873 spin_unlock(&vb->lock); 874 free_vmap_block(vb); 875 } else 876 spin_unlock(&vb->lock); 877 } 878 879 /** 880 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 881 * 882 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 883 * to amortize TLB flushing overheads. What this means is that any page you 884 * have now, may, in a former life, have been mapped into kernel virtual 885 * address by the vmap layer and so there might be some CPUs with TLB entries 886 * still referencing that page (additional to the regular 1:1 kernel mapping). 887 * 888 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 889 * be sure that none of the pages we have control over will have any aliases 890 * from the vmap layer. 891 */ 892 void vm_unmap_aliases(void) 893 { 894 unsigned long start = ULONG_MAX, end = 0; 895 int cpu; 896 int flush = 0; 897 898 if (unlikely(!vmap_initialized)) 899 return; 900 901 for_each_possible_cpu(cpu) { 902 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 903 struct vmap_block *vb; 904 905 rcu_read_lock(); 906 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 907 int i; 908 909 spin_lock(&vb->lock); 910 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); 911 while (i < VMAP_BBMAP_BITS) { 912 unsigned long s, e; 913 int j; 914 j = find_next_zero_bit(vb->dirty_map, 915 VMAP_BBMAP_BITS, i); 916 917 s = vb->va->va_start + (i << PAGE_SHIFT); 918 e = vb->va->va_start + (j << PAGE_SHIFT); 919 vunmap_page_range(s, e); 920 flush = 1; 921 922 if (s < start) 923 start = s; 924 if (e > end) 925 end = e; 926 927 i = j; 928 i = find_next_bit(vb->dirty_map, 929 VMAP_BBMAP_BITS, i); 930 } 931 spin_unlock(&vb->lock); 932 } 933 rcu_read_unlock(); 934 } 935 936 __purge_vmap_area_lazy(&start, &end, 1, flush); 937 } 938 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 939 940 /** 941 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 942 * @mem: the pointer returned by vm_map_ram 943 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 944 */ 945 void vm_unmap_ram(const void *mem, unsigned int count) 946 { 947 unsigned long size = count << PAGE_SHIFT; 948 unsigned long addr = (unsigned long)mem; 949 950 BUG_ON(!addr); 951 BUG_ON(addr < VMALLOC_START); 952 BUG_ON(addr > VMALLOC_END); 953 BUG_ON(addr & (PAGE_SIZE-1)); 954 955 debug_check_no_locks_freed(mem, size); 956 vmap_debug_free_range(addr, addr+size); 957 958 if (likely(count <= VMAP_MAX_ALLOC)) 959 vb_free(mem, size); 960 else 961 free_unmap_vmap_area_addr(addr); 962 } 963 EXPORT_SYMBOL(vm_unmap_ram); 964 965 /** 966 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 967 * @pages: an array of pointers to the pages to be mapped 968 * @count: number of pages 969 * @node: prefer to allocate data structures on this node 970 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 971 * 972 * Returns: a pointer to the address that has been mapped, or %NULL on failure 973 */ 974 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 975 { 976 unsigned long size = count << PAGE_SHIFT; 977 unsigned long addr; 978 void *mem; 979 980 if (likely(count <= VMAP_MAX_ALLOC)) { 981 mem = vb_alloc(size, GFP_KERNEL); 982 if (IS_ERR(mem)) 983 return NULL; 984 addr = (unsigned long)mem; 985 } else { 986 struct vmap_area *va; 987 va = alloc_vmap_area(size, PAGE_SIZE, 988 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 989 if (IS_ERR(va)) 990 return NULL; 991 992 addr = va->va_start; 993 mem = (void *)addr; 994 } 995 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 996 vm_unmap_ram(mem, count); 997 return NULL; 998 } 999 return mem; 1000 } 1001 EXPORT_SYMBOL(vm_map_ram); 1002 1003 /** 1004 * vm_area_register_early - register vmap area early during boot 1005 * @vm: vm_struct to register 1006 * @align: requested alignment 1007 * 1008 * This function is used to register kernel vm area before 1009 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1010 * proper values on entry and other fields should be zero. On return, 1011 * vm->addr contains the allocated address. 1012 * 1013 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1014 */ 1015 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1016 { 1017 static size_t vm_init_off __initdata; 1018 unsigned long addr; 1019 1020 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1021 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1022 1023 vm->addr = (void *)addr; 1024 1025 vm->next = vmlist; 1026 vmlist = vm; 1027 } 1028 1029 void __init vmalloc_init(void) 1030 { 1031 struct vmap_area *va; 1032 struct vm_struct *tmp; 1033 int i; 1034 1035 for_each_possible_cpu(i) { 1036 struct vmap_block_queue *vbq; 1037 1038 vbq = &per_cpu(vmap_block_queue, i); 1039 spin_lock_init(&vbq->lock); 1040 INIT_LIST_HEAD(&vbq->free); 1041 INIT_LIST_HEAD(&vbq->dirty); 1042 vbq->nr_dirty = 0; 1043 } 1044 1045 /* Import existing vmlist entries. */ 1046 for (tmp = vmlist; tmp; tmp = tmp->next) { 1047 va = alloc_bootmem(sizeof(struct vmap_area)); 1048 va->flags = tmp->flags | VM_VM_AREA; 1049 va->va_start = (unsigned long)tmp->addr; 1050 va->va_end = va->va_start + tmp->size; 1051 __insert_vmap_area(va); 1052 } 1053 vmap_initialized = true; 1054 } 1055 1056 /** 1057 * map_kernel_range_noflush - map kernel VM area with the specified pages 1058 * @addr: start of the VM area to map 1059 * @size: size of the VM area to map 1060 * @prot: page protection flags to use 1061 * @pages: pages to map 1062 * 1063 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1064 * specify should have been allocated using get_vm_area() and its 1065 * friends. 1066 * 1067 * NOTE: 1068 * This function does NOT do any cache flushing. The caller is 1069 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1070 * before calling this function. 1071 * 1072 * RETURNS: 1073 * The number of pages mapped on success, -errno on failure. 1074 */ 1075 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1076 pgprot_t prot, struct page **pages) 1077 { 1078 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1079 } 1080 1081 /** 1082 * unmap_kernel_range_noflush - unmap kernel VM area 1083 * @addr: start of the VM area to unmap 1084 * @size: size of the VM area to unmap 1085 * 1086 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1087 * specify should have been allocated using get_vm_area() and its 1088 * friends. 1089 * 1090 * NOTE: 1091 * This function does NOT do any cache flushing. The caller is 1092 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1093 * before calling this function and flush_tlb_kernel_range() after. 1094 */ 1095 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1096 { 1097 vunmap_page_range(addr, addr + size); 1098 } 1099 1100 /** 1101 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1102 * @addr: start of the VM area to unmap 1103 * @size: size of the VM area to unmap 1104 * 1105 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1106 * the unmapping and tlb after. 1107 */ 1108 void unmap_kernel_range(unsigned long addr, unsigned long size) 1109 { 1110 unsigned long end = addr + size; 1111 1112 flush_cache_vunmap(addr, end); 1113 vunmap_page_range(addr, end); 1114 flush_tlb_kernel_range(addr, end); 1115 } 1116 1117 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 1118 { 1119 unsigned long addr = (unsigned long)area->addr; 1120 unsigned long end = addr + area->size - PAGE_SIZE; 1121 int err; 1122 1123 err = vmap_page_range(addr, end, prot, *pages); 1124 if (err > 0) { 1125 *pages += err; 1126 err = 0; 1127 } 1128 1129 return err; 1130 } 1131 EXPORT_SYMBOL_GPL(map_vm_area); 1132 1133 /*** Old vmalloc interfaces ***/ 1134 DEFINE_RWLOCK(vmlist_lock); 1135 struct vm_struct *vmlist; 1136 1137 static struct vm_struct *__get_vm_area_node(unsigned long size, 1138 unsigned long flags, unsigned long start, unsigned long end, 1139 int node, gfp_t gfp_mask, void *caller) 1140 { 1141 static struct vmap_area *va; 1142 struct vm_struct *area; 1143 struct vm_struct *tmp, **p; 1144 unsigned long align = 1; 1145 1146 BUG_ON(in_interrupt()); 1147 if (flags & VM_IOREMAP) { 1148 int bit = fls(size); 1149 1150 if (bit > IOREMAP_MAX_ORDER) 1151 bit = IOREMAP_MAX_ORDER; 1152 else if (bit < PAGE_SHIFT) 1153 bit = PAGE_SHIFT; 1154 1155 align = 1ul << bit; 1156 } 1157 1158 size = PAGE_ALIGN(size); 1159 if (unlikely(!size)) 1160 return NULL; 1161 1162 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1163 if (unlikely(!area)) 1164 return NULL; 1165 1166 /* 1167 * We always allocate a guard page. 1168 */ 1169 size += PAGE_SIZE; 1170 1171 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1172 if (IS_ERR(va)) { 1173 kfree(area); 1174 return NULL; 1175 } 1176 1177 area->flags = flags; 1178 area->addr = (void *)va->va_start; 1179 area->size = size; 1180 area->pages = NULL; 1181 area->nr_pages = 0; 1182 area->phys_addr = 0; 1183 area->caller = caller; 1184 va->private = area; 1185 va->flags |= VM_VM_AREA; 1186 1187 write_lock(&vmlist_lock); 1188 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1189 if (tmp->addr >= area->addr) 1190 break; 1191 } 1192 area->next = *p; 1193 *p = area; 1194 write_unlock(&vmlist_lock); 1195 1196 return area; 1197 } 1198 1199 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1200 unsigned long start, unsigned long end) 1201 { 1202 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL, 1203 __builtin_return_address(0)); 1204 } 1205 EXPORT_SYMBOL_GPL(__get_vm_area); 1206 1207 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1208 unsigned long start, unsigned long end, 1209 void *caller) 1210 { 1211 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL, 1212 caller); 1213 } 1214 1215 /** 1216 * get_vm_area - reserve a contiguous kernel virtual area 1217 * @size: size of the area 1218 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1219 * 1220 * Search an area of @size in the kernel virtual mapping area, 1221 * and reserved it for out purposes. Returns the area descriptor 1222 * on success or %NULL on failure. 1223 */ 1224 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1225 { 1226 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, 1227 -1, GFP_KERNEL, __builtin_return_address(0)); 1228 } 1229 1230 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1231 void *caller) 1232 { 1233 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, 1234 -1, GFP_KERNEL, caller); 1235 } 1236 1237 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, 1238 int node, gfp_t gfp_mask) 1239 { 1240 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node, 1241 gfp_mask, __builtin_return_address(0)); 1242 } 1243 1244 static struct vm_struct *find_vm_area(const void *addr) 1245 { 1246 struct vmap_area *va; 1247 1248 va = find_vmap_area((unsigned long)addr); 1249 if (va && va->flags & VM_VM_AREA) 1250 return va->private; 1251 1252 return NULL; 1253 } 1254 1255 /** 1256 * remove_vm_area - find and remove a continuous kernel virtual area 1257 * @addr: base address 1258 * 1259 * Search for the kernel VM area starting at @addr, and remove it. 1260 * This function returns the found VM area, but using it is NOT safe 1261 * on SMP machines, except for its size or flags. 1262 */ 1263 struct vm_struct *remove_vm_area(const void *addr) 1264 { 1265 struct vmap_area *va; 1266 1267 va = find_vmap_area((unsigned long)addr); 1268 if (va && va->flags & VM_VM_AREA) { 1269 struct vm_struct *vm = va->private; 1270 struct vm_struct *tmp, **p; 1271 1272 vmap_debug_free_range(va->va_start, va->va_end); 1273 free_unmap_vmap_area(va); 1274 vm->size -= PAGE_SIZE; 1275 1276 write_lock(&vmlist_lock); 1277 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next) 1278 ; 1279 *p = tmp->next; 1280 write_unlock(&vmlist_lock); 1281 1282 return vm; 1283 } 1284 return NULL; 1285 } 1286 1287 static void __vunmap(const void *addr, int deallocate_pages) 1288 { 1289 struct vm_struct *area; 1290 1291 if (!addr) 1292 return; 1293 1294 if ((PAGE_SIZE-1) & (unsigned long)addr) { 1295 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 1296 return; 1297 } 1298 1299 area = remove_vm_area(addr); 1300 if (unlikely(!area)) { 1301 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1302 addr); 1303 return; 1304 } 1305 1306 debug_check_no_locks_freed(addr, area->size); 1307 debug_check_no_obj_freed(addr, area->size); 1308 1309 if (deallocate_pages) { 1310 int i; 1311 1312 for (i = 0; i < area->nr_pages; i++) { 1313 struct page *page = area->pages[i]; 1314 1315 BUG_ON(!page); 1316 __free_page(page); 1317 } 1318 1319 if (area->flags & VM_VPAGES) 1320 vfree(area->pages); 1321 else 1322 kfree(area->pages); 1323 } 1324 1325 kfree(area); 1326 return; 1327 } 1328 1329 /** 1330 * vfree - release memory allocated by vmalloc() 1331 * @addr: memory base address 1332 * 1333 * Free the virtually continuous memory area starting at @addr, as 1334 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1335 * NULL, no operation is performed. 1336 * 1337 * Must not be called in interrupt context. 1338 */ 1339 void vfree(const void *addr) 1340 { 1341 BUG_ON(in_interrupt()); 1342 __vunmap(addr, 1); 1343 } 1344 EXPORT_SYMBOL(vfree); 1345 1346 /** 1347 * vunmap - release virtual mapping obtained by vmap() 1348 * @addr: memory base address 1349 * 1350 * Free the virtually contiguous memory area starting at @addr, 1351 * which was created from the page array passed to vmap(). 1352 * 1353 * Must not be called in interrupt context. 1354 */ 1355 void vunmap(const void *addr) 1356 { 1357 BUG_ON(in_interrupt()); 1358 might_sleep(); 1359 __vunmap(addr, 0); 1360 } 1361 EXPORT_SYMBOL(vunmap); 1362 1363 /** 1364 * vmap - map an array of pages into virtually contiguous space 1365 * @pages: array of page pointers 1366 * @count: number of pages to map 1367 * @flags: vm_area->flags 1368 * @prot: page protection for the mapping 1369 * 1370 * Maps @count pages from @pages into contiguous kernel virtual 1371 * space. 1372 */ 1373 void *vmap(struct page **pages, unsigned int count, 1374 unsigned long flags, pgprot_t prot) 1375 { 1376 struct vm_struct *area; 1377 1378 might_sleep(); 1379 1380 if (count > num_physpages) 1381 return NULL; 1382 1383 area = get_vm_area_caller((count << PAGE_SHIFT), flags, 1384 __builtin_return_address(0)); 1385 if (!area) 1386 return NULL; 1387 1388 if (map_vm_area(area, prot, &pages)) { 1389 vunmap(area->addr); 1390 return NULL; 1391 } 1392 1393 return area->addr; 1394 } 1395 EXPORT_SYMBOL(vmap); 1396 1397 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 1398 int node, void *caller); 1399 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1400 pgprot_t prot, int node, void *caller) 1401 { 1402 struct page **pages; 1403 unsigned int nr_pages, array_size, i; 1404 1405 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 1406 array_size = (nr_pages * sizeof(struct page *)); 1407 1408 area->nr_pages = nr_pages; 1409 /* Please note that the recursion is strictly bounded. */ 1410 if (array_size > PAGE_SIZE) { 1411 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO, 1412 PAGE_KERNEL, node, caller); 1413 area->flags |= VM_VPAGES; 1414 } else { 1415 pages = kmalloc_node(array_size, 1416 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO, 1417 node); 1418 } 1419 area->pages = pages; 1420 area->caller = caller; 1421 if (!area->pages) { 1422 remove_vm_area(area->addr); 1423 kfree(area); 1424 return NULL; 1425 } 1426 1427 for (i = 0; i < area->nr_pages; i++) { 1428 struct page *page; 1429 1430 if (node < 0) 1431 page = alloc_page(gfp_mask); 1432 else 1433 page = alloc_pages_node(node, gfp_mask, 0); 1434 1435 if (unlikely(!page)) { 1436 /* Successfully allocated i pages, free them in __vunmap() */ 1437 area->nr_pages = i; 1438 goto fail; 1439 } 1440 area->pages[i] = page; 1441 } 1442 1443 if (map_vm_area(area, prot, &pages)) 1444 goto fail; 1445 return area->addr; 1446 1447 fail: 1448 vfree(area->addr); 1449 return NULL; 1450 } 1451 1452 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot) 1453 { 1454 return __vmalloc_area_node(area, gfp_mask, prot, -1, 1455 __builtin_return_address(0)); 1456 } 1457 1458 /** 1459 * __vmalloc_node - allocate virtually contiguous memory 1460 * @size: allocation size 1461 * @gfp_mask: flags for the page level allocator 1462 * @prot: protection mask for the allocated pages 1463 * @node: node to use for allocation or -1 1464 * @caller: caller's return address 1465 * 1466 * Allocate enough pages to cover @size from the page level 1467 * allocator with @gfp_mask flags. Map them into contiguous 1468 * kernel virtual space, using a pagetable protection of @prot. 1469 */ 1470 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 1471 int node, void *caller) 1472 { 1473 struct vm_struct *area; 1474 1475 size = PAGE_ALIGN(size); 1476 if (!size || (size >> PAGE_SHIFT) > num_physpages) 1477 return NULL; 1478 1479 area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END, 1480 node, gfp_mask, caller); 1481 1482 if (!area) 1483 return NULL; 1484 1485 return __vmalloc_area_node(area, gfp_mask, prot, node, caller); 1486 } 1487 1488 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1489 { 1490 return __vmalloc_node(size, gfp_mask, prot, -1, 1491 __builtin_return_address(0)); 1492 } 1493 EXPORT_SYMBOL(__vmalloc); 1494 1495 /** 1496 * vmalloc - allocate virtually contiguous memory 1497 * @size: allocation size 1498 * Allocate enough pages to cover @size from the page level 1499 * allocator and map them into contiguous kernel virtual space. 1500 * 1501 * For tight control over page level allocator and protection flags 1502 * use __vmalloc() instead. 1503 */ 1504 void *vmalloc(unsigned long size) 1505 { 1506 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1507 -1, __builtin_return_address(0)); 1508 } 1509 EXPORT_SYMBOL(vmalloc); 1510 1511 /** 1512 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1513 * @size: allocation size 1514 * 1515 * The resulting memory area is zeroed so it can be mapped to userspace 1516 * without leaking data. 1517 */ 1518 void *vmalloc_user(unsigned long size) 1519 { 1520 struct vm_struct *area; 1521 void *ret; 1522 1523 ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 1524 PAGE_KERNEL, -1, __builtin_return_address(0)); 1525 if (ret) { 1526 area = find_vm_area(ret); 1527 area->flags |= VM_USERMAP; 1528 } 1529 return ret; 1530 } 1531 EXPORT_SYMBOL(vmalloc_user); 1532 1533 /** 1534 * vmalloc_node - allocate memory on a specific node 1535 * @size: allocation size 1536 * @node: numa node 1537 * 1538 * Allocate enough pages to cover @size from the page level 1539 * allocator and map them into contiguous kernel virtual space. 1540 * 1541 * For tight control over page level allocator and protection flags 1542 * use __vmalloc() instead. 1543 */ 1544 void *vmalloc_node(unsigned long size, int node) 1545 { 1546 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1547 node, __builtin_return_address(0)); 1548 } 1549 EXPORT_SYMBOL(vmalloc_node); 1550 1551 #ifndef PAGE_KERNEL_EXEC 1552 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1553 #endif 1554 1555 /** 1556 * vmalloc_exec - allocate virtually contiguous, executable memory 1557 * @size: allocation size 1558 * 1559 * Kernel-internal function to allocate enough pages to cover @size 1560 * the page level allocator and map them into contiguous and 1561 * executable kernel virtual space. 1562 * 1563 * For tight control over page level allocator and protection flags 1564 * use __vmalloc() instead. 1565 */ 1566 1567 void *vmalloc_exec(unsigned long size) 1568 { 1569 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, 1570 -1, __builtin_return_address(0)); 1571 } 1572 1573 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1574 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1575 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1576 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1577 #else 1578 #define GFP_VMALLOC32 GFP_KERNEL 1579 #endif 1580 1581 /** 1582 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1583 * @size: allocation size 1584 * 1585 * Allocate enough 32bit PA addressable pages to cover @size from the 1586 * page level allocator and map them into contiguous kernel virtual space. 1587 */ 1588 void *vmalloc_32(unsigned long size) 1589 { 1590 return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL, 1591 -1, __builtin_return_address(0)); 1592 } 1593 EXPORT_SYMBOL(vmalloc_32); 1594 1595 /** 1596 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1597 * @size: allocation size 1598 * 1599 * The resulting memory area is 32bit addressable and zeroed so it can be 1600 * mapped to userspace without leaking data. 1601 */ 1602 void *vmalloc_32_user(unsigned long size) 1603 { 1604 struct vm_struct *area; 1605 void *ret; 1606 1607 ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 1608 -1, __builtin_return_address(0)); 1609 if (ret) { 1610 area = find_vm_area(ret); 1611 area->flags |= VM_USERMAP; 1612 } 1613 return ret; 1614 } 1615 EXPORT_SYMBOL(vmalloc_32_user); 1616 1617 long vread(char *buf, char *addr, unsigned long count) 1618 { 1619 struct vm_struct *tmp; 1620 char *vaddr, *buf_start = buf; 1621 unsigned long n; 1622 1623 /* Don't allow overflow */ 1624 if ((unsigned long) addr + count < count) 1625 count = -(unsigned long) addr; 1626 1627 read_lock(&vmlist_lock); 1628 for (tmp = vmlist; tmp; tmp = tmp->next) { 1629 vaddr = (char *) tmp->addr; 1630 if (addr >= vaddr + tmp->size - PAGE_SIZE) 1631 continue; 1632 while (addr < vaddr) { 1633 if (count == 0) 1634 goto finished; 1635 *buf = '\0'; 1636 buf++; 1637 addr++; 1638 count--; 1639 } 1640 n = vaddr + tmp->size - PAGE_SIZE - addr; 1641 do { 1642 if (count == 0) 1643 goto finished; 1644 *buf = *addr; 1645 buf++; 1646 addr++; 1647 count--; 1648 } while (--n > 0); 1649 } 1650 finished: 1651 read_unlock(&vmlist_lock); 1652 return buf - buf_start; 1653 } 1654 1655 long vwrite(char *buf, char *addr, unsigned long count) 1656 { 1657 struct vm_struct *tmp; 1658 char *vaddr, *buf_start = buf; 1659 unsigned long n; 1660 1661 /* Don't allow overflow */ 1662 if ((unsigned long) addr + count < count) 1663 count = -(unsigned long) addr; 1664 1665 read_lock(&vmlist_lock); 1666 for (tmp = vmlist; tmp; tmp = tmp->next) { 1667 vaddr = (char *) tmp->addr; 1668 if (addr >= vaddr + tmp->size - PAGE_SIZE) 1669 continue; 1670 while (addr < vaddr) { 1671 if (count == 0) 1672 goto finished; 1673 buf++; 1674 addr++; 1675 count--; 1676 } 1677 n = vaddr + tmp->size - PAGE_SIZE - addr; 1678 do { 1679 if (count == 0) 1680 goto finished; 1681 *addr = *buf; 1682 buf++; 1683 addr++; 1684 count--; 1685 } while (--n > 0); 1686 } 1687 finished: 1688 read_unlock(&vmlist_lock); 1689 return buf - buf_start; 1690 } 1691 1692 /** 1693 * remap_vmalloc_range - map vmalloc pages to userspace 1694 * @vma: vma to cover (map full range of vma) 1695 * @addr: vmalloc memory 1696 * @pgoff: number of pages into addr before first page to map 1697 * 1698 * Returns: 0 for success, -Exxx on failure 1699 * 1700 * This function checks that addr is a valid vmalloc'ed area, and 1701 * that it is big enough to cover the vma. Will return failure if 1702 * that criteria isn't met. 1703 * 1704 * Similar to remap_pfn_range() (see mm/memory.c) 1705 */ 1706 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1707 unsigned long pgoff) 1708 { 1709 struct vm_struct *area; 1710 unsigned long uaddr = vma->vm_start; 1711 unsigned long usize = vma->vm_end - vma->vm_start; 1712 1713 if ((PAGE_SIZE-1) & (unsigned long)addr) 1714 return -EINVAL; 1715 1716 area = find_vm_area(addr); 1717 if (!area) 1718 return -EINVAL; 1719 1720 if (!(area->flags & VM_USERMAP)) 1721 return -EINVAL; 1722 1723 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) 1724 return -EINVAL; 1725 1726 addr += pgoff << PAGE_SHIFT; 1727 do { 1728 struct page *page = vmalloc_to_page(addr); 1729 int ret; 1730 1731 ret = vm_insert_page(vma, uaddr, page); 1732 if (ret) 1733 return ret; 1734 1735 uaddr += PAGE_SIZE; 1736 addr += PAGE_SIZE; 1737 usize -= PAGE_SIZE; 1738 } while (usize > 0); 1739 1740 /* Prevent "things" like memory migration? VM_flags need a cleanup... */ 1741 vma->vm_flags |= VM_RESERVED; 1742 1743 return 0; 1744 } 1745 EXPORT_SYMBOL(remap_vmalloc_range); 1746 1747 /* 1748 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 1749 * have one. 1750 */ 1751 void __attribute__((weak)) vmalloc_sync_all(void) 1752 { 1753 } 1754 1755 1756 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 1757 { 1758 /* apply_to_page_range() does all the hard work. */ 1759 return 0; 1760 } 1761 1762 /** 1763 * alloc_vm_area - allocate a range of kernel address space 1764 * @size: size of the area 1765 * 1766 * Returns: NULL on failure, vm_struct on success 1767 * 1768 * This function reserves a range of kernel address space, and 1769 * allocates pagetables to map that range. No actual mappings 1770 * are created. If the kernel address space is not shared 1771 * between processes, it syncs the pagetable across all 1772 * processes. 1773 */ 1774 struct vm_struct *alloc_vm_area(size_t size) 1775 { 1776 struct vm_struct *area; 1777 1778 area = get_vm_area_caller(size, VM_IOREMAP, 1779 __builtin_return_address(0)); 1780 if (area == NULL) 1781 return NULL; 1782 1783 /* 1784 * This ensures that page tables are constructed for this region 1785 * of kernel virtual address space and mapped into init_mm. 1786 */ 1787 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 1788 area->size, f, NULL)) { 1789 free_vm_area(area); 1790 return NULL; 1791 } 1792 1793 /* Make sure the pagetables are constructed in process kernel 1794 mappings */ 1795 vmalloc_sync_all(); 1796 1797 return area; 1798 } 1799 EXPORT_SYMBOL_GPL(alloc_vm_area); 1800 1801 void free_vm_area(struct vm_struct *area) 1802 { 1803 struct vm_struct *ret; 1804 ret = remove_vm_area(area->addr); 1805 BUG_ON(ret != area); 1806 kfree(area); 1807 } 1808 EXPORT_SYMBOL_GPL(free_vm_area); 1809 1810 1811 #ifdef CONFIG_PROC_FS 1812 static void *s_start(struct seq_file *m, loff_t *pos) 1813 { 1814 loff_t n = *pos; 1815 struct vm_struct *v; 1816 1817 read_lock(&vmlist_lock); 1818 v = vmlist; 1819 while (n > 0 && v) { 1820 n--; 1821 v = v->next; 1822 } 1823 if (!n) 1824 return v; 1825 1826 return NULL; 1827 1828 } 1829 1830 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 1831 { 1832 struct vm_struct *v = p; 1833 1834 ++*pos; 1835 return v->next; 1836 } 1837 1838 static void s_stop(struct seq_file *m, void *p) 1839 { 1840 read_unlock(&vmlist_lock); 1841 } 1842 1843 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 1844 { 1845 if (NUMA_BUILD) { 1846 unsigned int nr, *counters = m->private; 1847 1848 if (!counters) 1849 return; 1850 1851 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 1852 1853 for (nr = 0; nr < v->nr_pages; nr++) 1854 counters[page_to_nid(v->pages[nr])]++; 1855 1856 for_each_node_state(nr, N_HIGH_MEMORY) 1857 if (counters[nr]) 1858 seq_printf(m, " N%u=%u", nr, counters[nr]); 1859 } 1860 } 1861 1862 static int s_show(struct seq_file *m, void *p) 1863 { 1864 struct vm_struct *v = p; 1865 1866 seq_printf(m, "0x%p-0x%p %7ld", 1867 v->addr, v->addr + v->size, v->size); 1868 1869 if (v->caller) { 1870 char buff[KSYM_SYMBOL_LEN]; 1871 1872 seq_putc(m, ' '); 1873 sprint_symbol(buff, (unsigned long)v->caller); 1874 seq_puts(m, buff); 1875 } 1876 1877 if (v->nr_pages) 1878 seq_printf(m, " pages=%d", v->nr_pages); 1879 1880 if (v->phys_addr) 1881 seq_printf(m, " phys=%lx", v->phys_addr); 1882 1883 if (v->flags & VM_IOREMAP) 1884 seq_printf(m, " ioremap"); 1885 1886 if (v->flags & VM_ALLOC) 1887 seq_printf(m, " vmalloc"); 1888 1889 if (v->flags & VM_MAP) 1890 seq_printf(m, " vmap"); 1891 1892 if (v->flags & VM_USERMAP) 1893 seq_printf(m, " user"); 1894 1895 if (v->flags & VM_VPAGES) 1896 seq_printf(m, " vpages"); 1897 1898 show_numa_info(m, v); 1899 seq_putc(m, '\n'); 1900 return 0; 1901 } 1902 1903 static const struct seq_operations vmalloc_op = { 1904 .start = s_start, 1905 .next = s_next, 1906 .stop = s_stop, 1907 .show = s_show, 1908 }; 1909 1910 static int vmalloc_open(struct inode *inode, struct file *file) 1911 { 1912 unsigned int *ptr = NULL; 1913 int ret; 1914 1915 if (NUMA_BUILD) 1916 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); 1917 ret = seq_open(file, &vmalloc_op); 1918 if (!ret) { 1919 struct seq_file *m = file->private_data; 1920 m->private = ptr; 1921 } else 1922 kfree(ptr); 1923 return ret; 1924 } 1925 1926 static const struct file_operations proc_vmalloc_operations = { 1927 .open = vmalloc_open, 1928 .read = seq_read, 1929 .llseek = seq_lseek, 1930 .release = seq_release_private, 1931 }; 1932 1933 static int __init proc_vmalloc_init(void) 1934 { 1935 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); 1936 return 0; 1937 } 1938 module_init(proc_vmalloc_init); 1939 #endif 1940 1941