1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/module.h> 13 #include <linux/highmem.h> 14 #include <linux/slab.h> 15 #include <linux/spinlock.h> 16 #include <linux/interrupt.h> 17 18 #include <linux/vmalloc.h> 19 20 #include <asm/uaccess.h> 21 #include <asm/tlbflush.h> 22 23 24 DEFINE_RWLOCK(vmlist_lock); 25 struct vm_struct *vmlist; 26 27 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 28 int node); 29 30 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 31 { 32 pte_t *pte; 33 34 pte = pte_offset_kernel(pmd, addr); 35 do { 36 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 37 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 38 } while (pte++, addr += PAGE_SIZE, addr != end); 39 } 40 41 static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr, 42 unsigned long end) 43 { 44 pmd_t *pmd; 45 unsigned long next; 46 47 pmd = pmd_offset(pud, addr); 48 do { 49 next = pmd_addr_end(addr, end); 50 if (pmd_none_or_clear_bad(pmd)) 51 continue; 52 vunmap_pte_range(pmd, addr, next); 53 } while (pmd++, addr = next, addr != end); 54 } 55 56 static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr, 57 unsigned long end) 58 { 59 pud_t *pud; 60 unsigned long next; 61 62 pud = pud_offset(pgd, addr); 63 do { 64 next = pud_addr_end(addr, end); 65 if (pud_none_or_clear_bad(pud)) 66 continue; 67 vunmap_pmd_range(pud, addr, next); 68 } while (pud++, addr = next, addr != end); 69 } 70 71 void unmap_vm_area(struct vm_struct *area) 72 { 73 pgd_t *pgd; 74 unsigned long next; 75 unsigned long addr = (unsigned long) area->addr; 76 unsigned long end = addr + area->size; 77 78 BUG_ON(addr >= end); 79 pgd = pgd_offset_k(addr); 80 flush_cache_vunmap(addr, end); 81 do { 82 next = pgd_addr_end(addr, end); 83 if (pgd_none_or_clear_bad(pgd)) 84 continue; 85 vunmap_pud_range(pgd, addr, next); 86 } while (pgd++, addr = next, addr != end); 87 flush_tlb_kernel_range((unsigned long) area->addr, end); 88 } 89 90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 91 unsigned long end, pgprot_t prot, struct page ***pages) 92 { 93 pte_t *pte; 94 95 pte = pte_alloc_kernel(pmd, addr); 96 if (!pte) 97 return -ENOMEM; 98 do { 99 struct page *page = **pages; 100 WARN_ON(!pte_none(*pte)); 101 if (!page) 102 return -ENOMEM; 103 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 104 (*pages)++; 105 } while (pte++, addr += PAGE_SIZE, addr != end); 106 return 0; 107 } 108 109 static inline int vmap_pmd_range(pud_t *pud, unsigned long addr, 110 unsigned long end, pgprot_t prot, struct page ***pages) 111 { 112 pmd_t *pmd; 113 unsigned long next; 114 115 pmd = pmd_alloc(&init_mm, pud, addr); 116 if (!pmd) 117 return -ENOMEM; 118 do { 119 next = pmd_addr_end(addr, end); 120 if (vmap_pte_range(pmd, addr, next, prot, pages)) 121 return -ENOMEM; 122 } while (pmd++, addr = next, addr != end); 123 return 0; 124 } 125 126 static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr, 127 unsigned long end, pgprot_t prot, struct page ***pages) 128 { 129 pud_t *pud; 130 unsigned long next; 131 132 pud = pud_alloc(&init_mm, pgd, addr); 133 if (!pud) 134 return -ENOMEM; 135 do { 136 next = pud_addr_end(addr, end); 137 if (vmap_pmd_range(pud, addr, next, prot, pages)) 138 return -ENOMEM; 139 } while (pud++, addr = next, addr != end); 140 return 0; 141 } 142 143 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 144 { 145 pgd_t *pgd; 146 unsigned long next; 147 unsigned long addr = (unsigned long) area->addr; 148 unsigned long end = addr + area->size - PAGE_SIZE; 149 int err; 150 151 BUG_ON(addr >= end); 152 pgd = pgd_offset_k(addr); 153 do { 154 next = pgd_addr_end(addr, end); 155 err = vmap_pud_range(pgd, addr, next, prot, pages); 156 if (err) 157 break; 158 } while (pgd++, addr = next, addr != end); 159 flush_cache_vmap((unsigned long) area->addr, end); 160 return err; 161 } 162 163 static struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long flags, 164 unsigned long start, unsigned long end, 165 int node, gfp_t gfp_mask) 166 { 167 struct vm_struct **p, *tmp, *area; 168 unsigned long align = 1; 169 unsigned long addr; 170 171 BUG_ON(in_interrupt()); 172 if (flags & VM_IOREMAP) { 173 int bit = fls(size); 174 175 if (bit > IOREMAP_MAX_ORDER) 176 bit = IOREMAP_MAX_ORDER; 177 else if (bit < PAGE_SHIFT) 178 bit = PAGE_SHIFT; 179 180 align = 1ul << bit; 181 } 182 addr = ALIGN(start, align); 183 size = PAGE_ALIGN(size); 184 185 area = kmalloc_node(sizeof(*area), gfp_mask, node); 186 if (unlikely(!area)) 187 return NULL; 188 189 if (unlikely(!size)) { 190 kfree (area); 191 return NULL; 192 } 193 194 /* 195 * We always allocate a guard page. 196 */ 197 size += PAGE_SIZE; 198 199 write_lock(&vmlist_lock); 200 for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) { 201 if ((unsigned long)tmp->addr < addr) { 202 if((unsigned long)tmp->addr + tmp->size >= addr) 203 addr = ALIGN(tmp->size + 204 (unsigned long)tmp->addr, align); 205 continue; 206 } 207 if ((size + addr) < addr) 208 goto out; 209 if (size + addr <= (unsigned long)tmp->addr) 210 goto found; 211 addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align); 212 if (addr > end - size) 213 goto out; 214 } 215 216 found: 217 area->next = *p; 218 *p = area; 219 220 area->flags = flags; 221 area->addr = (void *)addr; 222 area->size = size; 223 area->pages = NULL; 224 area->nr_pages = 0; 225 area->phys_addr = 0; 226 write_unlock(&vmlist_lock); 227 228 return area; 229 230 out: 231 write_unlock(&vmlist_lock); 232 kfree(area); 233 if (printk_ratelimit()) 234 printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n"); 235 return NULL; 236 } 237 238 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 239 unsigned long start, unsigned long end) 240 { 241 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL); 242 } 243 244 /** 245 * get_vm_area - reserve a contingous kernel virtual area 246 * @size: size of the area 247 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 248 * 249 * Search an area of @size in the kernel virtual mapping area, 250 * and reserved it for out purposes. Returns the area descriptor 251 * on success or %NULL on failure. 252 */ 253 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 254 { 255 return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END); 256 } 257 258 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, 259 int node, gfp_t gfp_mask) 260 { 261 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node, 262 gfp_mask); 263 } 264 265 /* Caller must hold vmlist_lock */ 266 static struct vm_struct *__find_vm_area(void *addr) 267 { 268 struct vm_struct *tmp; 269 270 for (tmp = vmlist; tmp != NULL; tmp = tmp->next) { 271 if (tmp->addr == addr) 272 break; 273 } 274 275 return tmp; 276 } 277 278 /* Caller must hold vmlist_lock */ 279 static struct vm_struct *__remove_vm_area(void *addr) 280 { 281 struct vm_struct **p, *tmp; 282 283 for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) { 284 if (tmp->addr == addr) 285 goto found; 286 } 287 return NULL; 288 289 found: 290 unmap_vm_area(tmp); 291 *p = tmp->next; 292 293 /* 294 * Remove the guard page. 295 */ 296 tmp->size -= PAGE_SIZE; 297 return tmp; 298 } 299 300 /** 301 * remove_vm_area - find and remove a contingous kernel virtual area 302 * @addr: base address 303 * 304 * Search for the kernel VM area starting at @addr, and remove it. 305 * This function returns the found VM area, but using it is NOT safe 306 * on SMP machines, except for its size or flags. 307 */ 308 struct vm_struct *remove_vm_area(void *addr) 309 { 310 struct vm_struct *v; 311 write_lock(&vmlist_lock); 312 v = __remove_vm_area(addr); 313 write_unlock(&vmlist_lock); 314 return v; 315 } 316 317 void __vunmap(void *addr, int deallocate_pages) 318 { 319 struct vm_struct *area; 320 321 if (!addr) 322 return; 323 324 if ((PAGE_SIZE-1) & (unsigned long)addr) { 325 printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 326 WARN_ON(1); 327 return; 328 } 329 330 area = remove_vm_area(addr); 331 if (unlikely(!area)) { 332 printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 333 addr); 334 WARN_ON(1); 335 return; 336 } 337 338 debug_check_no_locks_freed(addr, area->size); 339 340 if (deallocate_pages) { 341 int i; 342 343 for (i = 0; i < area->nr_pages; i++) { 344 BUG_ON(!area->pages[i]); 345 __free_page(area->pages[i]); 346 } 347 348 if (area->flags & VM_VPAGES) 349 vfree(area->pages); 350 else 351 kfree(area->pages); 352 } 353 354 kfree(area); 355 return; 356 } 357 358 /** 359 * vfree - release memory allocated by vmalloc() 360 * @addr: memory base address 361 * 362 * Free the virtually contiguous memory area starting at @addr, as 363 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 364 * NULL, no operation is performed. 365 * 366 * Must not be called in interrupt context. 367 */ 368 void vfree(void *addr) 369 { 370 BUG_ON(in_interrupt()); 371 __vunmap(addr, 1); 372 } 373 EXPORT_SYMBOL(vfree); 374 375 /** 376 * vunmap - release virtual mapping obtained by vmap() 377 * @addr: memory base address 378 * 379 * Free the virtually contiguous memory area starting at @addr, 380 * which was created from the page array passed to vmap(). 381 * 382 * Must not be called in interrupt context. 383 */ 384 void vunmap(void *addr) 385 { 386 BUG_ON(in_interrupt()); 387 __vunmap(addr, 0); 388 } 389 EXPORT_SYMBOL(vunmap); 390 391 /** 392 * vmap - map an array of pages into virtually contiguous space 393 * @pages: array of page pointers 394 * @count: number of pages to map 395 * @flags: vm_area->flags 396 * @prot: page protection for the mapping 397 * 398 * Maps @count pages from @pages into contiguous kernel virtual 399 * space. 400 */ 401 void *vmap(struct page **pages, unsigned int count, 402 unsigned long flags, pgprot_t prot) 403 { 404 struct vm_struct *area; 405 406 if (count > num_physpages) 407 return NULL; 408 409 area = get_vm_area((count << PAGE_SHIFT), flags); 410 if (!area) 411 return NULL; 412 if (map_vm_area(area, prot, &pages)) { 413 vunmap(area->addr); 414 return NULL; 415 } 416 417 return area->addr; 418 } 419 EXPORT_SYMBOL(vmap); 420 421 void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 422 pgprot_t prot, int node) 423 { 424 struct page **pages; 425 unsigned int nr_pages, array_size, i; 426 427 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 428 array_size = (nr_pages * sizeof(struct page *)); 429 430 area->nr_pages = nr_pages; 431 /* Please note that the recursion is strictly bounded. */ 432 if (array_size > PAGE_SIZE) { 433 pages = __vmalloc_node(array_size, gfp_mask, PAGE_KERNEL, node); 434 area->flags |= VM_VPAGES; 435 } else { 436 pages = kmalloc_node(array_size, 437 (gfp_mask & ~(__GFP_HIGHMEM | __GFP_ZERO)), 438 node); 439 } 440 area->pages = pages; 441 if (!area->pages) { 442 remove_vm_area(area->addr); 443 kfree(area); 444 return NULL; 445 } 446 memset(area->pages, 0, array_size); 447 448 for (i = 0; i < area->nr_pages; i++) { 449 if (node < 0) 450 area->pages[i] = alloc_page(gfp_mask); 451 else 452 area->pages[i] = alloc_pages_node(node, gfp_mask, 0); 453 if (unlikely(!area->pages[i])) { 454 /* Successfully allocated i pages, free them in __vunmap() */ 455 area->nr_pages = i; 456 goto fail; 457 } 458 } 459 460 if (map_vm_area(area, prot, &pages)) 461 goto fail; 462 return area->addr; 463 464 fail: 465 vfree(area->addr); 466 return NULL; 467 } 468 469 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot) 470 { 471 return __vmalloc_area_node(area, gfp_mask, prot, -1); 472 } 473 474 /** 475 * __vmalloc_node - allocate virtually contiguous memory 476 * @size: allocation size 477 * @gfp_mask: flags for the page level allocator 478 * @prot: protection mask for the allocated pages 479 * @node: node to use for allocation or -1 480 * 481 * Allocate enough pages to cover @size from the page level 482 * allocator with @gfp_mask flags. Map them into contiguous 483 * kernel virtual space, using a pagetable protection of @prot. 484 */ 485 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 486 int node) 487 { 488 struct vm_struct *area; 489 490 size = PAGE_ALIGN(size); 491 if (!size || (size >> PAGE_SHIFT) > num_physpages) 492 return NULL; 493 494 area = get_vm_area_node(size, VM_ALLOC, node, gfp_mask); 495 if (!area) 496 return NULL; 497 498 return __vmalloc_area_node(area, gfp_mask, prot, node); 499 } 500 501 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 502 { 503 return __vmalloc_node(size, gfp_mask, prot, -1); 504 } 505 EXPORT_SYMBOL(__vmalloc); 506 507 /** 508 * vmalloc - allocate virtually contiguous memory 509 * @size: allocation size 510 * Allocate enough pages to cover @size from the page level 511 * allocator and map them into contiguous kernel virtual space. 512 * 513 * For tight control over page level allocator and protection flags 514 * use __vmalloc() instead. 515 */ 516 void *vmalloc(unsigned long size) 517 { 518 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 519 } 520 EXPORT_SYMBOL(vmalloc); 521 522 /** 523 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 524 * @size: allocation size 525 * 526 * The resulting memory area is zeroed so it can be mapped to userspace 527 * without leaking data. 528 */ 529 void *vmalloc_user(unsigned long size) 530 { 531 struct vm_struct *area; 532 void *ret; 533 534 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL); 535 write_lock(&vmlist_lock); 536 area = __find_vm_area(ret); 537 area->flags |= VM_USERMAP; 538 write_unlock(&vmlist_lock); 539 540 return ret; 541 } 542 EXPORT_SYMBOL(vmalloc_user); 543 544 /** 545 * vmalloc_node - allocate memory on a specific node 546 * @size: allocation size 547 * @node: numa node 548 * 549 * Allocate enough pages to cover @size from the page level 550 * allocator and map them into contiguous kernel virtual space. 551 * 552 * For tight control over page level allocator and protection flags 553 * use __vmalloc() instead. 554 */ 555 void *vmalloc_node(unsigned long size, int node) 556 { 557 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, node); 558 } 559 EXPORT_SYMBOL(vmalloc_node); 560 561 #ifndef PAGE_KERNEL_EXEC 562 # define PAGE_KERNEL_EXEC PAGE_KERNEL 563 #endif 564 565 /** 566 * vmalloc_exec - allocate virtually contiguous, executable memory 567 * @size: allocation size 568 * 569 * Kernel-internal function to allocate enough pages to cover @size 570 * the page level allocator and map them into contiguous and 571 * executable kernel virtual space. 572 * 573 * For tight control over page level allocator and protection flags 574 * use __vmalloc() instead. 575 */ 576 577 void *vmalloc_exec(unsigned long size) 578 { 579 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 580 } 581 582 /** 583 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 584 * @size: allocation size 585 * 586 * Allocate enough 32bit PA addressable pages to cover @size from the 587 * page level allocator and map them into contiguous kernel virtual space. 588 */ 589 void *vmalloc_32(unsigned long size) 590 { 591 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 592 } 593 EXPORT_SYMBOL(vmalloc_32); 594 595 /** 596 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 597 * @size: allocation size 598 * 599 * The resulting memory area is 32bit addressable and zeroed so it can be 600 * mapped to userspace without leaking data. 601 */ 602 void *vmalloc_32_user(unsigned long size) 603 { 604 struct vm_struct *area; 605 void *ret; 606 607 ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL); 608 write_lock(&vmlist_lock); 609 area = __find_vm_area(ret); 610 area->flags |= VM_USERMAP; 611 write_unlock(&vmlist_lock); 612 613 return ret; 614 } 615 EXPORT_SYMBOL(vmalloc_32_user); 616 617 long vread(char *buf, char *addr, unsigned long count) 618 { 619 struct vm_struct *tmp; 620 char *vaddr, *buf_start = buf; 621 unsigned long n; 622 623 /* Don't allow overflow */ 624 if ((unsigned long) addr + count < count) 625 count = -(unsigned long) addr; 626 627 read_lock(&vmlist_lock); 628 for (tmp = vmlist; tmp; tmp = tmp->next) { 629 vaddr = (char *) tmp->addr; 630 if (addr >= vaddr + tmp->size - PAGE_SIZE) 631 continue; 632 while (addr < vaddr) { 633 if (count == 0) 634 goto finished; 635 *buf = '\0'; 636 buf++; 637 addr++; 638 count--; 639 } 640 n = vaddr + tmp->size - PAGE_SIZE - addr; 641 do { 642 if (count == 0) 643 goto finished; 644 *buf = *addr; 645 buf++; 646 addr++; 647 count--; 648 } while (--n > 0); 649 } 650 finished: 651 read_unlock(&vmlist_lock); 652 return buf - buf_start; 653 } 654 655 long vwrite(char *buf, char *addr, unsigned long count) 656 { 657 struct vm_struct *tmp; 658 char *vaddr, *buf_start = buf; 659 unsigned long n; 660 661 /* Don't allow overflow */ 662 if ((unsigned long) addr + count < count) 663 count = -(unsigned long) addr; 664 665 read_lock(&vmlist_lock); 666 for (tmp = vmlist; tmp; tmp = tmp->next) { 667 vaddr = (char *) tmp->addr; 668 if (addr >= vaddr + tmp->size - PAGE_SIZE) 669 continue; 670 while (addr < vaddr) { 671 if (count == 0) 672 goto finished; 673 buf++; 674 addr++; 675 count--; 676 } 677 n = vaddr + tmp->size - PAGE_SIZE - addr; 678 do { 679 if (count == 0) 680 goto finished; 681 *addr = *buf; 682 buf++; 683 addr++; 684 count--; 685 } while (--n > 0); 686 } 687 finished: 688 read_unlock(&vmlist_lock); 689 return buf - buf_start; 690 } 691 692 /** 693 * remap_vmalloc_range - map vmalloc pages to userspace 694 * @vma: vma to cover (map full range of vma) 695 * @addr: vmalloc memory 696 * @pgoff: number of pages into addr before first page to map 697 * @returns: 0 for success, -Exxx on failure 698 * 699 * This function checks that addr is a valid vmalloc'ed area, and 700 * that it is big enough to cover the vma. Will return failure if 701 * that criteria isn't met. 702 * 703 * Similar to remap_pfn_range (see mm/memory.c) 704 */ 705 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 706 unsigned long pgoff) 707 { 708 struct vm_struct *area; 709 unsigned long uaddr = vma->vm_start; 710 unsigned long usize = vma->vm_end - vma->vm_start; 711 int ret; 712 713 if ((PAGE_SIZE-1) & (unsigned long)addr) 714 return -EINVAL; 715 716 read_lock(&vmlist_lock); 717 area = __find_vm_area(addr); 718 if (!area) 719 goto out_einval_locked; 720 721 if (!(area->flags & VM_USERMAP)) 722 goto out_einval_locked; 723 724 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) 725 goto out_einval_locked; 726 read_unlock(&vmlist_lock); 727 728 addr += pgoff << PAGE_SHIFT; 729 do { 730 struct page *page = vmalloc_to_page(addr); 731 ret = vm_insert_page(vma, uaddr, page); 732 if (ret) 733 return ret; 734 735 uaddr += PAGE_SIZE; 736 addr += PAGE_SIZE; 737 usize -= PAGE_SIZE; 738 } while (usize > 0); 739 740 /* Prevent "things" like memory migration? VM_flags need a cleanup... */ 741 vma->vm_flags |= VM_RESERVED; 742 743 return ret; 744 745 out_einval_locked: 746 read_unlock(&vmlist_lock); 747 return -EINVAL; 748 } 749 EXPORT_SYMBOL(remap_vmalloc_range); 750 751