xref: /openbmc/linux/mm/vmalloc.c (revision 513b046c96cc2fbce730a3474f6f7ff0c4fdd05c)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/highmem.h>
14 #include <linux/slab.h>
15 #include <linux/spinlock.h>
16 #include <linux/interrupt.h>
17 
18 #include <linux/vmalloc.h>
19 
20 #include <asm/uaccess.h>
21 #include <asm/tlbflush.h>
22 
23 
24 DEFINE_RWLOCK(vmlist_lock);
25 struct vm_struct *vmlist;
26 
27 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
28 			    int node);
29 
30 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
31 {
32 	pte_t *pte;
33 
34 	pte = pte_offset_kernel(pmd, addr);
35 	do {
36 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
37 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
38 	} while (pte++, addr += PAGE_SIZE, addr != end);
39 }
40 
41 static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr,
42 						unsigned long end)
43 {
44 	pmd_t *pmd;
45 	unsigned long next;
46 
47 	pmd = pmd_offset(pud, addr);
48 	do {
49 		next = pmd_addr_end(addr, end);
50 		if (pmd_none_or_clear_bad(pmd))
51 			continue;
52 		vunmap_pte_range(pmd, addr, next);
53 	} while (pmd++, addr = next, addr != end);
54 }
55 
56 static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr,
57 						unsigned long end)
58 {
59 	pud_t *pud;
60 	unsigned long next;
61 
62 	pud = pud_offset(pgd, addr);
63 	do {
64 		next = pud_addr_end(addr, end);
65 		if (pud_none_or_clear_bad(pud))
66 			continue;
67 		vunmap_pmd_range(pud, addr, next);
68 	} while (pud++, addr = next, addr != end);
69 }
70 
71 void unmap_vm_area(struct vm_struct *area)
72 {
73 	pgd_t *pgd;
74 	unsigned long next;
75 	unsigned long addr = (unsigned long) area->addr;
76 	unsigned long end = addr + area->size;
77 
78 	BUG_ON(addr >= end);
79 	pgd = pgd_offset_k(addr);
80 	flush_cache_vunmap(addr, end);
81 	do {
82 		next = pgd_addr_end(addr, end);
83 		if (pgd_none_or_clear_bad(pgd))
84 			continue;
85 		vunmap_pud_range(pgd, addr, next);
86 	} while (pgd++, addr = next, addr != end);
87 	flush_tlb_kernel_range((unsigned long) area->addr, end);
88 }
89 
90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
91 			unsigned long end, pgprot_t prot, struct page ***pages)
92 {
93 	pte_t *pte;
94 
95 	pte = pte_alloc_kernel(pmd, addr);
96 	if (!pte)
97 		return -ENOMEM;
98 	do {
99 		struct page *page = **pages;
100 		WARN_ON(!pte_none(*pte));
101 		if (!page)
102 			return -ENOMEM;
103 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
104 		(*pages)++;
105 	} while (pte++, addr += PAGE_SIZE, addr != end);
106 	return 0;
107 }
108 
109 static inline int vmap_pmd_range(pud_t *pud, unsigned long addr,
110 			unsigned long end, pgprot_t prot, struct page ***pages)
111 {
112 	pmd_t *pmd;
113 	unsigned long next;
114 
115 	pmd = pmd_alloc(&init_mm, pud, addr);
116 	if (!pmd)
117 		return -ENOMEM;
118 	do {
119 		next = pmd_addr_end(addr, end);
120 		if (vmap_pte_range(pmd, addr, next, prot, pages))
121 			return -ENOMEM;
122 	} while (pmd++, addr = next, addr != end);
123 	return 0;
124 }
125 
126 static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr,
127 			unsigned long end, pgprot_t prot, struct page ***pages)
128 {
129 	pud_t *pud;
130 	unsigned long next;
131 
132 	pud = pud_alloc(&init_mm, pgd, addr);
133 	if (!pud)
134 		return -ENOMEM;
135 	do {
136 		next = pud_addr_end(addr, end);
137 		if (vmap_pmd_range(pud, addr, next, prot, pages))
138 			return -ENOMEM;
139 	} while (pud++, addr = next, addr != end);
140 	return 0;
141 }
142 
143 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
144 {
145 	pgd_t *pgd;
146 	unsigned long next;
147 	unsigned long addr = (unsigned long) area->addr;
148 	unsigned long end = addr + area->size - PAGE_SIZE;
149 	int err;
150 
151 	BUG_ON(addr >= end);
152 	pgd = pgd_offset_k(addr);
153 	do {
154 		next = pgd_addr_end(addr, end);
155 		err = vmap_pud_range(pgd, addr, next, prot, pages);
156 		if (err)
157 			break;
158 	} while (pgd++, addr = next, addr != end);
159 	flush_cache_vmap((unsigned long) area->addr, end);
160 	return err;
161 }
162 
163 struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long flags,
164 				unsigned long start, unsigned long end, int node)
165 {
166 	struct vm_struct **p, *tmp, *area;
167 	unsigned long align = 1;
168 	unsigned long addr;
169 
170 	if (flags & VM_IOREMAP) {
171 		int bit = fls(size);
172 
173 		if (bit > IOREMAP_MAX_ORDER)
174 			bit = IOREMAP_MAX_ORDER;
175 		else if (bit < PAGE_SHIFT)
176 			bit = PAGE_SHIFT;
177 
178 		align = 1ul << bit;
179 	}
180 	addr = ALIGN(start, align);
181 	size = PAGE_ALIGN(size);
182 
183 	area = kmalloc_node(sizeof(*area), GFP_KERNEL, node);
184 	if (unlikely(!area))
185 		return NULL;
186 
187 	if (unlikely(!size)) {
188 		kfree (area);
189 		return NULL;
190 	}
191 
192 	/*
193 	 * We always allocate a guard page.
194 	 */
195 	size += PAGE_SIZE;
196 
197 	write_lock(&vmlist_lock);
198 	for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) {
199 		if ((unsigned long)tmp->addr < addr) {
200 			if((unsigned long)tmp->addr + tmp->size >= addr)
201 				addr = ALIGN(tmp->size +
202 					     (unsigned long)tmp->addr, align);
203 			continue;
204 		}
205 		if ((size + addr) < addr)
206 			goto out;
207 		if (size + addr <= (unsigned long)tmp->addr)
208 			goto found;
209 		addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align);
210 		if (addr > end - size)
211 			goto out;
212 	}
213 
214 found:
215 	area->next = *p;
216 	*p = area;
217 
218 	area->flags = flags;
219 	area->addr = (void *)addr;
220 	area->size = size;
221 	area->pages = NULL;
222 	area->nr_pages = 0;
223 	area->phys_addr = 0;
224 	write_unlock(&vmlist_lock);
225 
226 	return area;
227 
228 out:
229 	write_unlock(&vmlist_lock);
230 	kfree(area);
231 	if (printk_ratelimit())
232 		printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n");
233 	return NULL;
234 }
235 
236 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
237 				unsigned long start, unsigned long end)
238 {
239 	return __get_vm_area_node(size, flags, start, end, -1);
240 }
241 
242 /**
243  *	get_vm_area  -  reserve a contingous kernel virtual area
244  *	@size:		size of the area
245  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
246  *
247  *	Search an area of @size in the kernel virtual mapping area,
248  *	and reserved it for out purposes.  Returns the area descriptor
249  *	on success or %NULL on failure.
250  */
251 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
252 {
253 	return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END);
254 }
255 
256 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, int node)
257 {
258 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node);
259 }
260 
261 /* Caller must hold vmlist_lock */
262 static struct vm_struct *__find_vm_area(void *addr)
263 {
264 	struct vm_struct *tmp;
265 
266 	for (tmp = vmlist; tmp != NULL; tmp = tmp->next) {
267 		 if (tmp->addr == addr)
268 			break;
269 	}
270 
271 	return tmp;
272 }
273 
274 /* Caller must hold vmlist_lock */
275 static struct vm_struct *__remove_vm_area(void *addr)
276 {
277 	struct vm_struct **p, *tmp;
278 
279 	for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) {
280 		 if (tmp->addr == addr)
281 			 goto found;
282 	}
283 	return NULL;
284 
285 found:
286 	unmap_vm_area(tmp);
287 	*p = tmp->next;
288 
289 	/*
290 	 * Remove the guard page.
291 	 */
292 	tmp->size -= PAGE_SIZE;
293 	return tmp;
294 }
295 
296 /**
297  *	remove_vm_area  -  find and remove a contingous kernel virtual area
298  *	@addr:		base address
299  *
300  *	Search for the kernel VM area starting at @addr, and remove it.
301  *	This function returns the found VM area, but using it is NOT safe
302  *	on SMP machines, except for its size or flags.
303  */
304 struct vm_struct *remove_vm_area(void *addr)
305 {
306 	struct vm_struct *v;
307 	write_lock(&vmlist_lock);
308 	v = __remove_vm_area(addr);
309 	write_unlock(&vmlist_lock);
310 	return v;
311 }
312 
313 void __vunmap(void *addr, int deallocate_pages)
314 {
315 	struct vm_struct *area;
316 
317 	if (!addr)
318 		return;
319 
320 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
321 		printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
322 		WARN_ON(1);
323 		return;
324 	}
325 
326 	area = remove_vm_area(addr);
327 	if (unlikely(!area)) {
328 		printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
329 				addr);
330 		WARN_ON(1);
331 		return;
332 	}
333 
334 	debug_check_no_locks_freed(addr, area->size);
335 
336 	if (deallocate_pages) {
337 		int i;
338 
339 		for (i = 0; i < area->nr_pages; i++) {
340 			BUG_ON(!area->pages[i]);
341 			__free_page(area->pages[i]);
342 		}
343 
344 		if (area->flags & VM_VPAGES)
345 			vfree(area->pages);
346 		else
347 			kfree(area->pages);
348 	}
349 
350 	kfree(area);
351 	return;
352 }
353 
354 /**
355  *	vfree  -  release memory allocated by vmalloc()
356  *	@addr:		memory base address
357  *
358  *	Free the virtually contiguous memory area starting at @addr, as
359  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
360  *	NULL, no operation is performed.
361  *
362  *	Must not be called in interrupt context.
363  */
364 void vfree(void *addr)
365 {
366 	BUG_ON(in_interrupt());
367 	__vunmap(addr, 1);
368 }
369 EXPORT_SYMBOL(vfree);
370 
371 /**
372  *	vunmap  -  release virtual mapping obtained by vmap()
373  *	@addr:		memory base address
374  *
375  *	Free the virtually contiguous memory area starting at @addr,
376  *	which was created from the page array passed to vmap().
377  *
378  *	Must not be called in interrupt context.
379  */
380 void vunmap(void *addr)
381 {
382 	BUG_ON(in_interrupt());
383 	__vunmap(addr, 0);
384 }
385 EXPORT_SYMBOL(vunmap);
386 
387 /**
388  *	vmap  -  map an array of pages into virtually contiguous space
389  *	@pages:		array of page pointers
390  *	@count:		number of pages to map
391  *	@flags:		vm_area->flags
392  *	@prot:		page protection for the mapping
393  *
394  *	Maps @count pages from @pages into contiguous kernel virtual
395  *	space.
396  */
397 void *vmap(struct page **pages, unsigned int count,
398 		unsigned long flags, pgprot_t prot)
399 {
400 	struct vm_struct *area;
401 
402 	if (count > num_physpages)
403 		return NULL;
404 
405 	area = get_vm_area((count << PAGE_SHIFT), flags);
406 	if (!area)
407 		return NULL;
408 	if (map_vm_area(area, prot, &pages)) {
409 		vunmap(area->addr);
410 		return NULL;
411 	}
412 
413 	return area->addr;
414 }
415 EXPORT_SYMBOL(vmap);
416 
417 void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
418 				pgprot_t prot, int node)
419 {
420 	struct page **pages;
421 	unsigned int nr_pages, array_size, i;
422 
423 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
424 	array_size = (nr_pages * sizeof(struct page *));
425 
426 	area->nr_pages = nr_pages;
427 	/* Please note that the recursion is strictly bounded. */
428 	if (array_size > PAGE_SIZE) {
429 		pages = __vmalloc_node(array_size, gfp_mask, PAGE_KERNEL, node);
430 		area->flags |= VM_VPAGES;
431 	} else {
432 		pages = kmalloc_node(array_size,
433 				(gfp_mask & ~(__GFP_HIGHMEM | __GFP_ZERO)),
434 				node);
435 	}
436 	area->pages = pages;
437 	if (!area->pages) {
438 		remove_vm_area(area->addr);
439 		kfree(area);
440 		return NULL;
441 	}
442 	memset(area->pages, 0, array_size);
443 
444 	for (i = 0; i < area->nr_pages; i++) {
445 		if (node < 0)
446 			area->pages[i] = alloc_page(gfp_mask);
447 		else
448 			area->pages[i] = alloc_pages_node(node, gfp_mask, 0);
449 		if (unlikely(!area->pages[i])) {
450 			/* Successfully allocated i pages, free them in __vunmap() */
451 			area->nr_pages = i;
452 			goto fail;
453 		}
454 	}
455 
456 	if (map_vm_area(area, prot, &pages))
457 		goto fail;
458 	return area->addr;
459 
460 fail:
461 	vfree(area->addr);
462 	return NULL;
463 }
464 
465 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
466 {
467 	return __vmalloc_area_node(area, gfp_mask, prot, -1);
468 }
469 
470 /**
471  *	__vmalloc_node  -  allocate virtually contiguous memory
472  *	@size:		allocation size
473  *	@gfp_mask:	flags for the page level allocator
474  *	@prot:		protection mask for the allocated pages
475  *	@node:		node to use for allocation or -1
476  *
477  *	Allocate enough pages to cover @size from the page level
478  *	allocator with @gfp_mask flags.  Map them into contiguous
479  *	kernel virtual space, using a pagetable protection of @prot.
480  */
481 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
482 			    int node)
483 {
484 	struct vm_struct *area;
485 
486 	size = PAGE_ALIGN(size);
487 	if (!size || (size >> PAGE_SHIFT) > num_physpages)
488 		return NULL;
489 
490 	area = get_vm_area_node(size, VM_ALLOC, node);
491 	if (!area)
492 		return NULL;
493 
494 	return __vmalloc_area_node(area, gfp_mask, prot, node);
495 }
496 
497 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
498 {
499 	return __vmalloc_node(size, gfp_mask, prot, -1);
500 }
501 EXPORT_SYMBOL(__vmalloc);
502 
503 /**
504  *	vmalloc  -  allocate virtually contiguous memory
505  *	@size:		allocation size
506  *	Allocate enough pages to cover @size from the page level
507  *	allocator and map them into contiguous kernel virtual space.
508  *
509  *	For tight control over page level allocator and protection flags
510  *	use __vmalloc() instead.
511  */
512 void *vmalloc(unsigned long size)
513 {
514 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
515 }
516 EXPORT_SYMBOL(vmalloc);
517 
518 /**
519  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
520  * @size: allocation size
521  *
522  * The resulting memory area is zeroed so it can be mapped to userspace
523  * without leaking data.
524  */
525 void *vmalloc_user(unsigned long size)
526 {
527 	struct vm_struct *area;
528 	void *ret;
529 
530 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
531 	write_lock(&vmlist_lock);
532 	area = __find_vm_area(ret);
533 	area->flags |= VM_USERMAP;
534 	write_unlock(&vmlist_lock);
535 
536 	return ret;
537 }
538 EXPORT_SYMBOL(vmalloc_user);
539 
540 /**
541  *	vmalloc_node  -  allocate memory on a specific node
542  *	@size:		allocation size
543  *	@node:		numa node
544  *
545  *	Allocate enough pages to cover @size from the page level
546  *	allocator and map them into contiguous kernel virtual space.
547  *
548  *	For tight control over page level allocator and protection flags
549  *	use __vmalloc() instead.
550  */
551 void *vmalloc_node(unsigned long size, int node)
552 {
553 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, node);
554 }
555 EXPORT_SYMBOL(vmalloc_node);
556 
557 #ifndef PAGE_KERNEL_EXEC
558 # define PAGE_KERNEL_EXEC PAGE_KERNEL
559 #endif
560 
561 /**
562  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
563  *	@size:		allocation size
564  *
565  *	Kernel-internal function to allocate enough pages to cover @size
566  *	the page level allocator and map them into contiguous and
567  *	executable kernel virtual space.
568  *
569  *	For tight control over page level allocator and protection flags
570  *	use __vmalloc() instead.
571  */
572 
573 void *vmalloc_exec(unsigned long size)
574 {
575 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
576 }
577 
578 /**
579  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
580  *	@size:		allocation size
581  *
582  *	Allocate enough 32bit PA addressable pages to cover @size from the
583  *	page level allocator and map them into contiguous kernel virtual space.
584  */
585 void *vmalloc_32(unsigned long size)
586 {
587 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
588 }
589 EXPORT_SYMBOL(vmalloc_32);
590 
591 /**
592  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
593  *	@size:		allocation size
594  *
595  * The resulting memory area is 32bit addressable and zeroed so it can be
596  * mapped to userspace without leaking data.
597  */
598 void *vmalloc_32_user(unsigned long size)
599 {
600 	struct vm_struct *area;
601 	void *ret;
602 
603 	ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
604 	write_lock(&vmlist_lock);
605 	area = __find_vm_area(ret);
606 	area->flags |= VM_USERMAP;
607 	write_unlock(&vmlist_lock);
608 
609 	return ret;
610 }
611 EXPORT_SYMBOL(vmalloc_32_user);
612 
613 long vread(char *buf, char *addr, unsigned long count)
614 {
615 	struct vm_struct *tmp;
616 	char *vaddr, *buf_start = buf;
617 	unsigned long n;
618 
619 	/* Don't allow overflow */
620 	if ((unsigned long) addr + count < count)
621 		count = -(unsigned long) addr;
622 
623 	read_lock(&vmlist_lock);
624 	for (tmp = vmlist; tmp; tmp = tmp->next) {
625 		vaddr = (char *) tmp->addr;
626 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
627 			continue;
628 		while (addr < vaddr) {
629 			if (count == 0)
630 				goto finished;
631 			*buf = '\0';
632 			buf++;
633 			addr++;
634 			count--;
635 		}
636 		n = vaddr + tmp->size - PAGE_SIZE - addr;
637 		do {
638 			if (count == 0)
639 				goto finished;
640 			*buf = *addr;
641 			buf++;
642 			addr++;
643 			count--;
644 		} while (--n > 0);
645 	}
646 finished:
647 	read_unlock(&vmlist_lock);
648 	return buf - buf_start;
649 }
650 
651 long vwrite(char *buf, char *addr, unsigned long count)
652 {
653 	struct vm_struct *tmp;
654 	char *vaddr, *buf_start = buf;
655 	unsigned long n;
656 
657 	/* Don't allow overflow */
658 	if ((unsigned long) addr + count < count)
659 		count = -(unsigned long) addr;
660 
661 	read_lock(&vmlist_lock);
662 	for (tmp = vmlist; tmp; tmp = tmp->next) {
663 		vaddr = (char *) tmp->addr;
664 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
665 			continue;
666 		while (addr < vaddr) {
667 			if (count == 0)
668 				goto finished;
669 			buf++;
670 			addr++;
671 			count--;
672 		}
673 		n = vaddr + tmp->size - PAGE_SIZE - addr;
674 		do {
675 			if (count == 0)
676 				goto finished;
677 			*addr = *buf;
678 			buf++;
679 			addr++;
680 			count--;
681 		} while (--n > 0);
682 	}
683 finished:
684 	read_unlock(&vmlist_lock);
685 	return buf - buf_start;
686 }
687 
688 /**
689  *	remap_vmalloc_range  -  map vmalloc pages to userspace
690  *	@vma:		vma to cover (map full range of vma)
691  *	@addr:		vmalloc memory
692  *	@pgoff:		number of pages into addr before first page to map
693  *	@returns:	0 for success, -Exxx on failure
694  *
695  *	This function checks that addr is a valid vmalloc'ed area, and
696  *	that it is big enough to cover the vma. Will return failure if
697  *	that criteria isn't met.
698  *
699  *	Similar to remap_pfn_range (see mm/memory.c)
700  */
701 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
702 						unsigned long pgoff)
703 {
704 	struct vm_struct *area;
705 	unsigned long uaddr = vma->vm_start;
706 	unsigned long usize = vma->vm_end - vma->vm_start;
707 	int ret;
708 
709 	if ((PAGE_SIZE-1) & (unsigned long)addr)
710 		return -EINVAL;
711 
712 	read_lock(&vmlist_lock);
713 	area = __find_vm_area(addr);
714 	if (!area)
715 		goto out_einval_locked;
716 
717 	if (!(area->flags & VM_USERMAP))
718 		goto out_einval_locked;
719 
720 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
721 		goto out_einval_locked;
722 	read_unlock(&vmlist_lock);
723 
724 	addr += pgoff << PAGE_SHIFT;
725 	do {
726 		struct page *page = vmalloc_to_page(addr);
727 		ret = vm_insert_page(vma, uaddr, page);
728 		if (ret)
729 			return ret;
730 
731 		uaddr += PAGE_SIZE;
732 		addr += PAGE_SIZE;
733 		usize -= PAGE_SIZE;
734 	} while (usize > 0);
735 
736 	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
737 	vma->vm_flags |= VM_RESERVED;
738 
739 	return ret;
740 
741 out_einval_locked:
742 	read_unlock(&vmlist_lock);
743 	return -EINVAL;
744 }
745 EXPORT_SYMBOL(remap_vmalloc_range);
746 
747