1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/module.h> 13 #include <linux/highmem.h> 14 #include <linux/slab.h> 15 #include <linux/spinlock.h> 16 #include <linux/interrupt.h> 17 18 #include <linux/vmalloc.h> 19 20 #include <asm/uaccess.h> 21 #include <asm/tlbflush.h> 22 23 24 DEFINE_RWLOCK(vmlist_lock); 25 struct vm_struct *vmlist; 26 27 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 28 int node); 29 30 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 31 { 32 pte_t *pte; 33 34 pte = pte_offset_kernel(pmd, addr); 35 do { 36 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 37 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 38 } while (pte++, addr += PAGE_SIZE, addr != end); 39 } 40 41 static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr, 42 unsigned long end) 43 { 44 pmd_t *pmd; 45 unsigned long next; 46 47 pmd = pmd_offset(pud, addr); 48 do { 49 next = pmd_addr_end(addr, end); 50 if (pmd_none_or_clear_bad(pmd)) 51 continue; 52 vunmap_pte_range(pmd, addr, next); 53 } while (pmd++, addr = next, addr != end); 54 } 55 56 static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr, 57 unsigned long end) 58 { 59 pud_t *pud; 60 unsigned long next; 61 62 pud = pud_offset(pgd, addr); 63 do { 64 next = pud_addr_end(addr, end); 65 if (pud_none_or_clear_bad(pud)) 66 continue; 67 vunmap_pmd_range(pud, addr, next); 68 } while (pud++, addr = next, addr != end); 69 } 70 71 void unmap_vm_area(struct vm_struct *area) 72 { 73 pgd_t *pgd; 74 unsigned long next; 75 unsigned long addr = (unsigned long) area->addr; 76 unsigned long end = addr + area->size; 77 78 BUG_ON(addr >= end); 79 pgd = pgd_offset_k(addr); 80 flush_cache_vunmap(addr, end); 81 do { 82 next = pgd_addr_end(addr, end); 83 if (pgd_none_or_clear_bad(pgd)) 84 continue; 85 vunmap_pud_range(pgd, addr, next); 86 } while (pgd++, addr = next, addr != end); 87 flush_tlb_kernel_range((unsigned long) area->addr, end); 88 } 89 90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 91 unsigned long end, pgprot_t prot, struct page ***pages) 92 { 93 pte_t *pte; 94 95 pte = pte_alloc_kernel(pmd, addr); 96 if (!pte) 97 return -ENOMEM; 98 do { 99 struct page *page = **pages; 100 WARN_ON(!pte_none(*pte)); 101 if (!page) 102 return -ENOMEM; 103 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 104 (*pages)++; 105 } while (pte++, addr += PAGE_SIZE, addr != end); 106 return 0; 107 } 108 109 static inline int vmap_pmd_range(pud_t *pud, unsigned long addr, 110 unsigned long end, pgprot_t prot, struct page ***pages) 111 { 112 pmd_t *pmd; 113 unsigned long next; 114 115 pmd = pmd_alloc(&init_mm, pud, addr); 116 if (!pmd) 117 return -ENOMEM; 118 do { 119 next = pmd_addr_end(addr, end); 120 if (vmap_pte_range(pmd, addr, next, prot, pages)) 121 return -ENOMEM; 122 } while (pmd++, addr = next, addr != end); 123 return 0; 124 } 125 126 static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr, 127 unsigned long end, pgprot_t prot, struct page ***pages) 128 { 129 pud_t *pud; 130 unsigned long next; 131 132 pud = pud_alloc(&init_mm, pgd, addr); 133 if (!pud) 134 return -ENOMEM; 135 do { 136 next = pud_addr_end(addr, end); 137 if (vmap_pmd_range(pud, addr, next, prot, pages)) 138 return -ENOMEM; 139 } while (pud++, addr = next, addr != end); 140 return 0; 141 } 142 143 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 144 { 145 pgd_t *pgd; 146 unsigned long next; 147 unsigned long addr = (unsigned long) area->addr; 148 unsigned long end = addr + area->size - PAGE_SIZE; 149 int err; 150 151 BUG_ON(addr >= end); 152 pgd = pgd_offset_k(addr); 153 do { 154 next = pgd_addr_end(addr, end); 155 err = vmap_pud_range(pgd, addr, next, prot, pages); 156 if (err) 157 break; 158 } while (pgd++, addr = next, addr != end); 159 flush_cache_vmap((unsigned long) area->addr, end); 160 return err; 161 } 162 163 struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long flags, 164 unsigned long start, unsigned long end, int node) 165 { 166 struct vm_struct **p, *tmp, *area; 167 unsigned long align = 1; 168 unsigned long addr; 169 170 if (flags & VM_IOREMAP) { 171 int bit = fls(size); 172 173 if (bit > IOREMAP_MAX_ORDER) 174 bit = IOREMAP_MAX_ORDER; 175 else if (bit < PAGE_SHIFT) 176 bit = PAGE_SHIFT; 177 178 align = 1ul << bit; 179 } 180 addr = ALIGN(start, align); 181 size = PAGE_ALIGN(size); 182 183 area = kmalloc_node(sizeof(*area), GFP_KERNEL, node); 184 if (unlikely(!area)) 185 return NULL; 186 187 if (unlikely(!size)) { 188 kfree (area); 189 return NULL; 190 } 191 192 /* 193 * We always allocate a guard page. 194 */ 195 size += PAGE_SIZE; 196 197 write_lock(&vmlist_lock); 198 for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) { 199 if ((unsigned long)tmp->addr < addr) { 200 if((unsigned long)tmp->addr + tmp->size >= addr) 201 addr = ALIGN(tmp->size + 202 (unsigned long)tmp->addr, align); 203 continue; 204 } 205 if ((size + addr) < addr) 206 goto out; 207 if (size + addr <= (unsigned long)tmp->addr) 208 goto found; 209 addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align); 210 if (addr > end - size) 211 goto out; 212 } 213 214 found: 215 area->next = *p; 216 *p = area; 217 218 area->flags = flags; 219 area->addr = (void *)addr; 220 area->size = size; 221 area->pages = NULL; 222 area->nr_pages = 0; 223 area->phys_addr = 0; 224 write_unlock(&vmlist_lock); 225 226 return area; 227 228 out: 229 write_unlock(&vmlist_lock); 230 kfree(area); 231 if (printk_ratelimit()) 232 printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n"); 233 return NULL; 234 } 235 236 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 237 unsigned long start, unsigned long end) 238 { 239 return __get_vm_area_node(size, flags, start, end, -1); 240 } 241 242 /** 243 * get_vm_area - reserve a contingous kernel virtual area 244 * @size: size of the area 245 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 246 * 247 * Search an area of @size in the kernel virtual mapping area, 248 * and reserved it for out purposes. Returns the area descriptor 249 * on success or %NULL on failure. 250 */ 251 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 252 { 253 return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END); 254 } 255 256 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, int node) 257 { 258 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node); 259 } 260 261 /* Caller must hold vmlist_lock */ 262 static struct vm_struct *__find_vm_area(void *addr) 263 { 264 struct vm_struct *tmp; 265 266 for (tmp = vmlist; tmp != NULL; tmp = tmp->next) { 267 if (tmp->addr == addr) 268 break; 269 } 270 271 return tmp; 272 } 273 274 /* Caller must hold vmlist_lock */ 275 static struct vm_struct *__remove_vm_area(void *addr) 276 { 277 struct vm_struct **p, *tmp; 278 279 for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) { 280 if (tmp->addr == addr) 281 goto found; 282 } 283 return NULL; 284 285 found: 286 unmap_vm_area(tmp); 287 *p = tmp->next; 288 289 /* 290 * Remove the guard page. 291 */ 292 tmp->size -= PAGE_SIZE; 293 return tmp; 294 } 295 296 /** 297 * remove_vm_area - find and remove a contingous kernel virtual area 298 * @addr: base address 299 * 300 * Search for the kernel VM area starting at @addr, and remove it. 301 * This function returns the found VM area, but using it is NOT safe 302 * on SMP machines, except for its size or flags. 303 */ 304 struct vm_struct *remove_vm_area(void *addr) 305 { 306 struct vm_struct *v; 307 write_lock(&vmlist_lock); 308 v = __remove_vm_area(addr); 309 write_unlock(&vmlist_lock); 310 return v; 311 } 312 313 void __vunmap(void *addr, int deallocate_pages) 314 { 315 struct vm_struct *area; 316 317 if (!addr) 318 return; 319 320 if ((PAGE_SIZE-1) & (unsigned long)addr) { 321 printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 322 WARN_ON(1); 323 return; 324 } 325 326 area = remove_vm_area(addr); 327 if (unlikely(!area)) { 328 printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 329 addr); 330 WARN_ON(1); 331 return; 332 } 333 334 debug_check_no_locks_freed(addr, area->size); 335 336 if (deallocate_pages) { 337 int i; 338 339 for (i = 0; i < area->nr_pages; i++) { 340 BUG_ON(!area->pages[i]); 341 __free_page(area->pages[i]); 342 } 343 344 if (area->flags & VM_VPAGES) 345 vfree(area->pages); 346 else 347 kfree(area->pages); 348 } 349 350 kfree(area); 351 return; 352 } 353 354 /** 355 * vfree - release memory allocated by vmalloc() 356 * @addr: memory base address 357 * 358 * Free the virtually contiguous memory area starting at @addr, as 359 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 360 * NULL, no operation is performed. 361 * 362 * Must not be called in interrupt context. 363 */ 364 void vfree(void *addr) 365 { 366 BUG_ON(in_interrupt()); 367 __vunmap(addr, 1); 368 } 369 EXPORT_SYMBOL(vfree); 370 371 /** 372 * vunmap - release virtual mapping obtained by vmap() 373 * @addr: memory base address 374 * 375 * Free the virtually contiguous memory area starting at @addr, 376 * which was created from the page array passed to vmap(). 377 * 378 * Must not be called in interrupt context. 379 */ 380 void vunmap(void *addr) 381 { 382 BUG_ON(in_interrupt()); 383 __vunmap(addr, 0); 384 } 385 EXPORT_SYMBOL(vunmap); 386 387 /** 388 * vmap - map an array of pages into virtually contiguous space 389 * @pages: array of page pointers 390 * @count: number of pages to map 391 * @flags: vm_area->flags 392 * @prot: page protection for the mapping 393 * 394 * Maps @count pages from @pages into contiguous kernel virtual 395 * space. 396 */ 397 void *vmap(struct page **pages, unsigned int count, 398 unsigned long flags, pgprot_t prot) 399 { 400 struct vm_struct *area; 401 402 if (count > num_physpages) 403 return NULL; 404 405 area = get_vm_area((count << PAGE_SHIFT), flags); 406 if (!area) 407 return NULL; 408 if (map_vm_area(area, prot, &pages)) { 409 vunmap(area->addr); 410 return NULL; 411 } 412 413 return area->addr; 414 } 415 EXPORT_SYMBOL(vmap); 416 417 void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 418 pgprot_t prot, int node) 419 { 420 struct page **pages; 421 unsigned int nr_pages, array_size, i; 422 423 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 424 array_size = (nr_pages * sizeof(struct page *)); 425 426 area->nr_pages = nr_pages; 427 /* Please note that the recursion is strictly bounded. */ 428 if (array_size > PAGE_SIZE) { 429 pages = __vmalloc_node(array_size, gfp_mask, PAGE_KERNEL, node); 430 area->flags |= VM_VPAGES; 431 } else { 432 pages = kmalloc_node(array_size, 433 (gfp_mask & ~(__GFP_HIGHMEM | __GFP_ZERO)), 434 node); 435 } 436 area->pages = pages; 437 if (!area->pages) { 438 remove_vm_area(area->addr); 439 kfree(area); 440 return NULL; 441 } 442 memset(area->pages, 0, array_size); 443 444 for (i = 0; i < area->nr_pages; i++) { 445 if (node < 0) 446 area->pages[i] = alloc_page(gfp_mask); 447 else 448 area->pages[i] = alloc_pages_node(node, gfp_mask, 0); 449 if (unlikely(!area->pages[i])) { 450 /* Successfully allocated i pages, free them in __vunmap() */ 451 area->nr_pages = i; 452 goto fail; 453 } 454 } 455 456 if (map_vm_area(area, prot, &pages)) 457 goto fail; 458 return area->addr; 459 460 fail: 461 vfree(area->addr); 462 return NULL; 463 } 464 465 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot) 466 { 467 return __vmalloc_area_node(area, gfp_mask, prot, -1); 468 } 469 470 /** 471 * __vmalloc_node - allocate virtually contiguous memory 472 * @size: allocation size 473 * @gfp_mask: flags for the page level allocator 474 * @prot: protection mask for the allocated pages 475 * @node: node to use for allocation or -1 476 * 477 * Allocate enough pages to cover @size from the page level 478 * allocator with @gfp_mask flags. Map them into contiguous 479 * kernel virtual space, using a pagetable protection of @prot. 480 */ 481 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 482 int node) 483 { 484 struct vm_struct *area; 485 486 size = PAGE_ALIGN(size); 487 if (!size || (size >> PAGE_SHIFT) > num_physpages) 488 return NULL; 489 490 area = get_vm_area_node(size, VM_ALLOC, node); 491 if (!area) 492 return NULL; 493 494 return __vmalloc_area_node(area, gfp_mask, prot, node); 495 } 496 497 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 498 { 499 return __vmalloc_node(size, gfp_mask, prot, -1); 500 } 501 EXPORT_SYMBOL(__vmalloc); 502 503 /** 504 * vmalloc - allocate virtually contiguous memory 505 * @size: allocation size 506 * Allocate enough pages to cover @size from the page level 507 * allocator and map them into contiguous kernel virtual space. 508 * 509 * For tight control over page level allocator and protection flags 510 * use __vmalloc() instead. 511 */ 512 void *vmalloc(unsigned long size) 513 { 514 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 515 } 516 EXPORT_SYMBOL(vmalloc); 517 518 /** 519 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 520 * @size: allocation size 521 * 522 * The resulting memory area is zeroed so it can be mapped to userspace 523 * without leaking data. 524 */ 525 void *vmalloc_user(unsigned long size) 526 { 527 struct vm_struct *area; 528 void *ret; 529 530 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL); 531 write_lock(&vmlist_lock); 532 area = __find_vm_area(ret); 533 area->flags |= VM_USERMAP; 534 write_unlock(&vmlist_lock); 535 536 return ret; 537 } 538 EXPORT_SYMBOL(vmalloc_user); 539 540 /** 541 * vmalloc_node - allocate memory on a specific node 542 * @size: allocation size 543 * @node: numa node 544 * 545 * Allocate enough pages to cover @size from the page level 546 * allocator and map them into contiguous kernel virtual space. 547 * 548 * For tight control over page level allocator and protection flags 549 * use __vmalloc() instead. 550 */ 551 void *vmalloc_node(unsigned long size, int node) 552 { 553 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, node); 554 } 555 EXPORT_SYMBOL(vmalloc_node); 556 557 #ifndef PAGE_KERNEL_EXEC 558 # define PAGE_KERNEL_EXEC PAGE_KERNEL 559 #endif 560 561 /** 562 * vmalloc_exec - allocate virtually contiguous, executable memory 563 * @size: allocation size 564 * 565 * Kernel-internal function to allocate enough pages to cover @size 566 * the page level allocator and map them into contiguous and 567 * executable kernel virtual space. 568 * 569 * For tight control over page level allocator and protection flags 570 * use __vmalloc() instead. 571 */ 572 573 void *vmalloc_exec(unsigned long size) 574 { 575 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 576 } 577 578 /** 579 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 580 * @size: allocation size 581 * 582 * Allocate enough 32bit PA addressable pages to cover @size from the 583 * page level allocator and map them into contiguous kernel virtual space. 584 */ 585 void *vmalloc_32(unsigned long size) 586 { 587 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 588 } 589 EXPORT_SYMBOL(vmalloc_32); 590 591 /** 592 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 593 * @size: allocation size 594 * 595 * The resulting memory area is 32bit addressable and zeroed so it can be 596 * mapped to userspace without leaking data. 597 */ 598 void *vmalloc_32_user(unsigned long size) 599 { 600 struct vm_struct *area; 601 void *ret; 602 603 ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL); 604 write_lock(&vmlist_lock); 605 area = __find_vm_area(ret); 606 area->flags |= VM_USERMAP; 607 write_unlock(&vmlist_lock); 608 609 return ret; 610 } 611 EXPORT_SYMBOL(vmalloc_32_user); 612 613 long vread(char *buf, char *addr, unsigned long count) 614 { 615 struct vm_struct *tmp; 616 char *vaddr, *buf_start = buf; 617 unsigned long n; 618 619 /* Don't allow overflow */ 620 if ((unsigned long) addr + count < count) 621 count = -(unsigned long) addr; 622 623 read_lock(&vmlist_lock); 624 for (tmp = vmlist; tmp; tmp = tmp->next) { 625 vaddr = (char *) tmp->addr; 626 if (addr >= vaddr + tmp->size - PAGE_SIZE) 627 continue; 628 while (addr < vaddr) { 629 if (count == 0) 630 goto finished; 631 *buf = '\0'; 632 buf++; 633 addr++; 634 count--; 635 } 636 n = vaddr + tmp->size - PAGE_SIZE - addr; 637 do { 638 if (count == 0) 639 goto finished; 640 *buf = *addr; 641 buf++; 642 addr++; 643 count--; 644 } while (--n > 0); 645 } 646 finished: 647 read_unlock(&vmlist_lock); 648 return buf - buf_start; 649 } 650 651 long vwrite(char *buf, char *addr, unsigned long count) 652 { 653 struct vm_struct *tmp; 654 char *vaddr, *buf_start = buf; 655 unsigned long n; 656 657 /* Don't allow overflow */ 658 if ((unsigned long) addr + count < count) 659 count = -(unsigned long) addr; 660 661 read_lock(&vmlist_lock); 662 for (tmp = vmlist; tmp; tmp = tmp->next) { 663 vaddr = (char *) tmp->addr; 664 if (addr >= vaddr + tmp->size - PAGE_SIZE) 665 continue; 666 while (addr < vaddr) { 667 if (count == 0) 668 goto finished; 669 buf++; 670 addr++; 671 count--; 672 } 673 n = vaddr + tmp->size - PAGE_SIZE - addr; 674 do { 675 if (count == 0) 676 goto finished; 677 *addr = *buf; 678 buf++; 679 addr++; 680 count--; 681 } while (--n > 0); 682 } 683 finished: 684 read_unlock(&vmlist_lock); 685 return buf - buf_start; 686 } 687 688 /** 689 * remap_vmalloc_range - map vmalloc pages to userspace 690 * @vma: vma to cover (map full range of vma) 691 * @addr: vmalloc memory 692 * @pgoff: number of pages into addr before first page to map 693 * @returns: 0 for success, -Exxx on failure 694 * 695 * This function checks that addr is a valid vmalloc'ed area, and 696 * that it is big enough to cover the vma. Will return failure if 697 * that criteria isn't met. 698 * 699 * Similar to remap_pfn_range (see mm/memory.c) 700 */ 701 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 702 unsigned long pgoff) 703 { 704 struct vm_struct *area; 705 unsigned long uaddr = vma->vm_start; 706 unsigned long usize = vma->vm_end - vma->vm_start; 707 int ret; 708 709 if ((PAGE_SIZE-1) & (unsigned long)addr) 710 return -EINVAL; 711 712 read_lock(&vmlist_lock); 713 area = __find_vm_area(addr); 714 if (!area) 715 goto out_einval_locked; 716 717 if (!(area->flags & VM_USERMAP)) 718 goto out_einval_locked; 719 720 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) 721 goto out_einval_locked; 722 read_unlock(&vmlist_lock); 723 724 addr += pgoff << PAGE_SHIFT; 725 do { 726 struct page *page = vmalloc_to_page(addr); 727 ret = vm_insert_page(vma, uaddr, page); 728 if (ret) 729 return ret; 730 731 uaddr += PAGE_SIZE; 732 addr += PAGE_SIZE; 733 usize -= PAGE_SIZE; 734 } while (usize > 0); 735 736 /* Prevent "things" like memory migration? VM_flags need a cleanup... */ 737 vma->vm_flags |= VM_RESERVED; 738 739 return ret; 740 741 out_einval_locked: 742 read_unlock(&vmlist_lock); 743 return -EINVAL; 744 } 745 EXPORT_SYMBOL(remap_vmalloc_range); 746 747