1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/mm.h> 3 #include <linux/slab.h> 4 #include <linux/string.h> 5 #include <linux/compiler.h> 6 #include <linux/export.h> 7 #include <linux/err.h> 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/task_stack.h> 12 #include <linux/security.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/mman.h> 16 #include <linux/hugetlb.h> 17 #include <linux/vmalloc.h> 18 #include <linux/userfaultfd_k.h> 19 #include <linux/elf.h> 20 #include <linux/elf-randomize.h> 21 #include <linux/personality.h> 22 #include <linux/random.h> 23 #include <linux/processor.h> 24 #include <linux/sizes.h> 25 #include <linux/compat.h> 26 27 #include <linux/uaccess.h> 28 29 #include "internal.h" 30 31 /** 32 * kfree_const - conditionally free memory 33 * @x: pointer to the memory 34 * 35 * Function calls kfree only if @x is not in .rodata section. 36 */ 37 void kfree_const(const void *x) 38 { 39 if (!is_kernel_rodata((unsigned long)x)) 40 kfree(x); 41 } 42 EXPORT_SYMBOL(kfree_const); 43 44 /** 45 * kstrdup - allocate space for and copy an existing string 46 * @s: the string to duplicate 47 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 48 * 49 * Return: newly allocated copy of @s or %NULL in case of error 50 */ 51 char *kstrdup(const char *s, gfp_t gfp) 52 { 53 size_t len; 54 char *buf; 55 56 if (!s) 57 return NULL; 58 59 len = strlen(s) + 1; 60 buf = kmalloc_track_caller(len, gfp); 61 if (buf) 62 memcpy(buf, s, len); 63 return buf; 64 } 65 EXPORT_SYMBOL(kstrdup); 66 67 /** 68 * kstrdup_const - conditionally duplicate an existing const string 69 * @s: the string to duplicate 70 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 71 * 72 * Note: Strings allocated by kstrdup_const should be freed by kfree_const. 73 * 74 * Return: source string if it is in .rodata section otherwise 75 * fallback to kstrdup. 76 */ 77 const char *kstrdup_const(const char *s, gfp_t gfp) 78 { 79 if (is_kernel_rodata((unsigned long)s)) 80 return s; 81 82 return kstrdup(s, gfp); 83 } 84 EXPORT_SYMBOL(kstrdup_const); 85 86 /** 87 * kstrndup - allocate space for and copy an existing string 88 * @s: the string to duplicate 89 * @max: read at most @max chars from @s 90 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 91 * 92 * Note: Use kmemdup_nul() instead if the size is known exactly. 93 * 94 * Return: newly allocated copy of @s or %NULL in case of error 95 */ 96 char *kstrndup(const char *s, size_t max, gfp_t gfp) 97 { 98 size_t len; 99 char *buf; 100 101 if (!s) 102 return NULL; 103 104 len = strnlen(s, max); 105 buf = kmalloc_track_caller(len+1, gfp); 106 if (buf) { 107 memcpy(buf, s, len); 108 buf[len] = '\0'; 109 } 110 return buf; 111 } 112 EXPORT_SYMBOL(kstrndup); 113 114 /** 115 * kmemdup - duplicate region of memory 116 * 117 * @src: memory region to duplicate 118 * @len: memory region length 119 * @gfp: GFP mask to use 120 * 121 * Return: newly allocated copy of @src or %NULL in case of error 122 */ 123 void *kmemdup(const void *src, size_t len, gfp_t gfp) 124 { 125 void *p; 126 127 p = kmalloc_track_caller(len, gfp); 128 if (p) 129 memcpy(p, src, len); 130 return p; 131 } 132 EXPORT_SYMBOL(kmemdup); 133 134 /** 135 * kmemdup_nul - Create a NUL-terminated string from unterminated data 136 * @s: The data to stringify 137 * @len: The size of the data 138 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 139 * 140 * Return: newly allocated copy of @s with NUL-termination or %NULL in 141 * case of error 142 */ 143 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) 144 { 145 char *buf; 146 147 if (!s) 148 return NULL; 149 150 buf = kmalloc_track_caller(len + 1, gfp); 151 if (buf) { 152 memcpy(buf, s, len); 153 buf[len] = '\0'; 154 } 155 return buf; 156 } 157 EXPORT_SYMBOL(kmemdup_nul); 158 159 /** 160 * memdup_user - duplicate memory region from user space 161 * 162 * @src: source address in user space 163 * @len: number of bytes to copy 164 * 165 * Return: an ERR_PTR() on failure. Result is physically 166 * contiguous, to be freed by kfree(). 167 */ 168 void *memdup_user(const void __user *src, size_t len) 169 { 170 void *p; 171 172 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN); 173 if (!p) 174 return ERR_PTR(-ENOMEM); 175 176 if (copy_from_user(p, src, len)) { 177 kfree(p); 178 return ERR_PTR(-EFAULT); 179 } 180 181 return p; 182 } 183 EXPORT_SYMBOL(memdup_user); 184 185 /** 186 * vmemdup_user - duplicate memory region from user space 187 * 188 * @src: source address in user space 189 * @len: number of bytes to copy 190 * 191 * Return: an ERR_PTR() on failure. Result may be not 192 * physically contiguous. Use kvfree() to free. 193 */ 194 void *vmemdup_user(const void __user *src, size_t len) 195 { 196 void *p; 197 198 p = kvmalloc(len, GFP_USER); 199 if (!p) 200 return ERR_PTR(-ENOMEM); 201 202 if (copy_from_user(p, src, len)) { 203 kvfree(p); 204 return ERR_PTR(-EFAULT); 205 } 206 207 return p; 208 } 209 EXPORT_SYMBOL(vmemdup_user); 210 211 /** 212 * strndup_user - duplicate an existing string from user space 213 * @s: The string to duplicate 214 * @n: Maximum number of bytes to copy, including the trailing NUL. 215 * 216 * Return: newly allocated copy of @s or an ERR_PTR() in case of error 217 */ 218 char *strndup_user(const char __user *s, long n) 219 { 220 char *p; 221 long length; 222 223 length = strnlen_user(s, n); 224 225 if (!length) 226 return ERR_PTR(-EFAULT); 227 228 if (length > n) 229 return ERR_PTR(-EINVAL); 230 231 p = memdup_user(s, length); 232 233 if (IS_ERR(p)) 234 return p; 235 236 p[length - 1] = '\0'; 237 238 return p; 239 } 240 EXPORT_SYMBOL(strndup_user); 241 242 /** 243 * memdup_user_nul - duplicate memory region from user space and NUL-terminate 244 * 245 * @src: source address in user space 246 * @len: number of bytes to copy 247 * 248 * Return: an ERR_PTR() on failure. 249 */ 250 void *memdup_user_nul(const void __user *src, size_t len) 251 { 252 char *p; 253 254 /* 255 * Always use GFP_KERNEL, since copy_from_user() can sleep and 256 * cause pagefault, which makes it pointless to use GFP_NOFS 257 * or GFP_ATOMIC. 258 */ 259 p = kmalloc_track_caller(len + 1, GFP_KERNEL); 260 if (!p) 261 return ERR_PTR(-ENOMEM); 262 263 if (copy_from_user(p, src, len)) { 264 kfree(p); 265 return ERR_PTR(-EFAULT); 266 } 267 p[len] = '\0'; 268 269 return p; 270 } 271 EXPORT_SYMBOL(memdup_user_nul); 272 273 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 274 struct vm_area_struct *prev, struct rb_node *rb_parent) 275 { 276 struct vm_area_struct *next; 277 278 vma->vm_prev = prev; 279 if (prev) { 280 next = prev->vm_next; 281 prev->vm_next = vma; 282 } else { 283 mm->mmap = vma; 284 if (rb_parent) 285 next = rb_entry(rb_parent, 286 struct vm_area_struct, vm_rb); 287 else 288 next = NULL; 289 } 290 vma->vm_next = next; 291 if (next) 292 next->vm_prev = vma; 293 } 294 295 /* Check if the vma is being used as a stack by this task */ 296 int vma_is_stack_for_current(struct vm_area_struct *vma) 297 { 298 struct task_struct * __maybe_unused t = current; 299 300 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); 301 } 302 303 #ifndef STACK_RND_MASK 304 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ 305 #endif 306 307 unsigned long randomize_stack_top(unsigned long stack_top) 308 { 309 unsigned long random_variable = 0; 310 311 if (current->flags & PF_RANDOMIZE) { 312 random_variable = get_random_long(); 313 random_variable &= STACK_RND_MASK; 314 random_variable <<= PAGE_SHIFT; 315 } 316 #ifdef CONFIG_STACK_GROWSUP 317 return PAGE_ALIGN(stack_top) + random_variable; 318 #else 319 return PAGE_ALIGN(stack_top) - random_variable; 320 #endif 321 } 322 323 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 324 #ifdef CONFIG_ARCH_HAS_ELF_RANDOMIZE 325 unsigned long arch_mmap_rnd(void) 326 { 327 unsigned long rnd; 328 329 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 330 if (is_compat_task()) 331 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1); 332 else 333 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */ 334 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1); 335 336 return rnd << PAGE_SHIFT; 337 } 338 #endif /* CONFIG_ARCH_HAS_ELF_RANDOMIZE */ 339 340 static int mmap_is_legacy(struct rlimit *rlim_stack) 341 { 342 if (current->personality & ADDR_COMPAT_LAYOUT) 343 return 1; 344 345 if (rlim_stack->rlim_cur == RLIM_INFINITY) 346 return 1; 347 348 return sysctl_legacy_va_layout; 349 } 350 351 /* 352 * Leave enough space between the mmap area and the stack to honour ulimit in 353 * the face of randomisation. 354 */ 355 #define MIN_GAP (SZ_128M) 356 #define MAX_GAP (STACK_TOP / 6 * 5) 357 358 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack) 359 { 360 unsigned long gap = rlim_stack->rlim_cur; 361 unsigned long pad = stack_guard_gap; 362 363 /* Account for stack randomization if necessary */ 364 if (current->flags & PF_RANDOMIZE) 365 pad += (STACK_RND_MASK << PAGE_SHIFT); 366 367 /* Values close to RLIM_INFINITY can overflow. */ 368 if (gap + pad > gap) 369 gap += pad; 370 371 if (gap < MIN_GAP) 372 gap = MIN_GAP; 373 else if (gap > MAX_GAP) 374 gap = MAX_GAP; 375 376 return PAGE_ALIGN(STACK_TOP - gap - rnd); 377 } 378 379 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 380 { 381 unsigned long random_factor = 0UL; 382 383 if (current->flags & PF_RANDOMIZE) 384 random_factor = arch_mmap_rnd(); 385 386 if (mmap_is_legacy(rlim_stack)) { 387 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor; 388 mm->get_unmapped_area = arch_get_unmapped_area; 389 } else { 390 mm->mmap_base = mmap_base(random_factor, rlim_stack); 391 mm->get_unmapped_area = arch_get_unmapped_area_topdown; 392 } 393 } 394 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) 395 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 396 { 397 mm->mmap_base = TASK_UNMAPPED_BASE; 398 mm->get_unmapped_area = arch_get_unmapped_area; 399 } 400 #endif 401 402 /** 403 * __account_locked_vm - account locked pages to an mm's locked_vm 404 * @mm: mm to account against 405 * @pages: number of pages to account 406 * @inc: %true if @pages should be considered positive, %false if not 407 * @task: task used to check RLIMIT_MEMLOCK 408 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped 409 * 410 * Assumes @task and @mm are valid (i.e. at least one reference on each), and 411 * that mmap_sem is held as writer. 412 * 413 * Return: 414 * * 0 on success 415 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. 416 */ 417 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 418 struct task_struct *task, bool bypass_rlim) 419 { 420 unsigned long locked_vm, limit; 421 int ret = 0; 422 423 lockdep_assert_held_write(&mm->mmap_sem); 424 425 locked_vm = mm->locked_vm; 426 if (inc) { 427 if (!bypass_rlim) { 428 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT; 429 if (locked_vm + pages > limit) 430 ret = -ENOMEM; 431 } 432 if (!ret) 433 mm->locked_vm = locked_vm + pages; 434 } else { 435 WARN_ON_ONCE(pages > locked_vm); 436 mm->locked_vm = locked_vm - pages; 437 } 438 439 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid, 440 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT, 441 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK), 442 ret ? " - exceeded" : ""); 443 444 return ret; 445 } 446 EXPORT_SYMBOL_GPL(__account_locked_vm); 447 448 /** 449 * account_locked_vm - account locked pages to an mm's locked_vm 450 * @mm: mm to account against, may be NULL 451 * @pages: number of pages to account 452 * @inc: %true if @pages should be considered positive, %false if not 453 * 454 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it). 455 * 456 * Return: 457 * * 0 on success, or if mm is NULL 458 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. 459 */ 460 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc) 461 { 462 int ret; 463 464 if (pages == 0 || !mm) 465 return 0; 466 467 down_write(&mm->mmap_sem); 468 ret = __account_locked_vm(mm, pages, inc, current, 469 capable(CAP_IPC_LOCK)); 470 up_write(&mm->mmap_sem); 471 472 return ret; 473 } 474 EXPORT_SYMBOL_GPL(account_locked_vm); 475 476 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, 477 unsigned long len, unsigned long prot, 478 unsigned long flag, unsigned long pgoff) 479 { 480 unsigned long ret; 481 struct mm_struct *mm = current->mm; 482 unsigned long populate; 483 LIST_HEAD(uf); 484 485 ret = security_mmap_file(file, prot, flag); 486 if (!ret) { 487 if (down_write_killable(&mm->mmap_sem)) 488 return -EINTR; 489 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff, 490 &populate, &uf); 491 up_write(&mm->mmap_sem); 492 userfaultfd_unmap_complete(mm, &uf); 493 if (populate) 494 mm_populate(ret, populate); 495 } 496 return ret; 497 } 498 499 unsigned long vm_mmap(struct file *file, unsigned long addr, 500 unsigned long len, unsigned long prot, 501 unsigned long flag, unsigned long offset) 502 { 503 if (unlikely(offset + PAGE_ALIGN(len) < offset)) 504 return -EINVAL; 505 if (unlikely(offset_in_page(offset))) 506 return -EINVAL; 507 508 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 509 } 510 EXPORT_SYMBOL(vm_mmap); 511 512 /** 513 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon 514 * failure, fall back to non-contiguous (vmalloc) allocation. 515 * @size: size of the request. 516 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. 517 * @node: numa node to allocate from 518 * 519 * Uses kmalloc to get the memory but if the allocation fails then falls back 520 * to the vmalloc allocator. Use kvfree for freeing the memory. 521 * 522 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported. 523 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is 524 * preferable to the vmalloc fallback, due to visible performance drawbacks. 525 * 526 * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not 527 * fall back to vmalloc. 528 * 529 * Return: pointer to the allocated memory of %NULL in case of failure 530 */ 531 void *kvmalloc_node(size_t size, gfp_t flags, int node) 532 { 533 gfp_t kmalloc_flags = flags; 534 void *ret; 535 536 /* 537 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables) 538 * so the given set of flags has to be compatible. 539 */ 540 if ((flags & GFP_KERNEL) != GFP_KERNEL) 541 return kmalloc_node(size, flags, node); 542 543 /* 544 * We want to attempt a large physically contiguous block first because 545 * it is less likely to fragment multiple larger blocks and therefore 546 * contribute to a long term fragmentation less than vmalloc fallback. 547 * However make sure that larger requests are not too disruptive - no 548 * OOM killer and no allocation failure warnings as we have a fallback. 549 */ 550 if (size > PAGE_SIZE) { 551 kmalloc_flags |= __GFP_NOWARN; 552 553 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL)) 554 kmalloc_flags |= __GFP_NORETRY; 555 } 556 557 ret = kmalloc_node(size, kmalloc_flags, node); 558 559 /* 560 * It doesn't really make sense to fallback to vmalloc for sub page 561 * requests 562 */ 563 if (ret || size <= PAGE_SIZE) 564 return ret; 565 566 return __vmalloc_node_flags_caller(size, node, flags, 567 __builtin_return_address(0)); 568 } 569 EXPORT_SYMBOL(kvmalloc_node); 570 571 /** 572 * kvfree() - Free memory. 573 * @addr: Pointer to allocated memory. 574 * 575 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). 576 * It is slightly more efficient to use kfree() or vfree() if you are certain 577 * that you know which one to use. 578 * 579 * Context: Either preemptible task context or not-NMI interrupt. 580 */ 581 void kvfree(const void *addr) 582 { 583 if (is_vmalloc_addr(addr)) 584 vfree(addr); 585 else 586 kfree(addr); 587 } 588 EXPORT_SYMBOL(kvfree); 589 590 static inline void *__page_rmapping(struct page *page) 591 { 592 unsigned long mapping; 593 594 mapping = (unsigned long)page->mapping; 595 mapping &= ~PAGE_MAPPING_FLAGS; 596 597 return (void *)mapping; 598 } 599 600 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 601 void *page_rmapping(struct page *page) 602 { 603 page = compound_head(page); 604 return __page_rmapping(page); 605 } 606 607 /* 608 * Return true if this page is mapped into pagetables. 609 * For compound page it returns true if any subpage of compound page is mapped. 610 */ 611 bool page_mapped(struct page *page) 612 { 613 int i; 614 615 if (likely(!PageCompound(page))) 616 return atomic_read(&page->_mapcount) >= 0; 617 page = compound_head(page); 618 if (atomic_read(compound_mapcount_ptr(page)) >= 0) 619 return true; 620 if (PageHuge(page)) 621 return false; 622 for (i = 0; i < compound_nr(page); i++) { 623 if (atomic_read(&page[i]._mapcount) >= 0) 624 return true; 625 } 626 return false; 627 } 628 EXPORT_SYMBOL(page_mapped); 629 630 struct anon_vma *page_anon_vma(struct page *page) 631 { 632 unsigned long mapping; 633 634 page = compound_head(page); 635 mapping = (unsigned long)page->mapping; 636 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 637 return NULL; 638 return __page_rmapping(page); 639 } 640 641 struct address_space *page_mapping(struct page *page) 642 { 643 struct address_space *mapping; 644 645 page = compound_head(page); 646 647 /* This happens if someone calls flush_dcache_page on slab page */ 648 if (unlikely(PageSlab(page))) 649 return NULL; 650 651 if (unlikely(PageSwapCache(page))) { 652 swp_entry_t entry; 653 654 entry.val = page_private(page); 655 return swap_address_space(entry); 656 } 657 658 mapping = page->mapping; 659 if ((unsigned long)mapping & PAGE_MAPPING_ANON) 660 return NULL; 661 662 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS); 663 } 664 EXPORT_SYMBOL(page_mapping); 665 666 /* 667 * For file cache pages, return the address_space, otherwise return NULL 668 */ 669 struct address_space *page_mapping_file(struct page *page) 670 { 671 if (unlikely(PageSwapCache(page))) 672 return NULL; 673 return page_mapping(page); 674 } 675 676 /* Slow path of page_mapcount() for compound pages */ 677 int __page_mapcount(struct page *page) 678 { 679 int ret; 680 681 ret = atomic_read(&page->_mapcount) + 1; 682 /* 683 * For file THP page->_mapcount contains total number of mapping 684 * of the page: no need to look into compound_mapcount. 685 */ 686 if (!PageAnon(page) && !PageHuge(page)) 687 return ret; 688 page = compound_head(page); 689 ret += atomic_read(compound_mapcount_ptr(page)) + 1; 690 if (PageDoubleMap(page)) 691 ret--; 692 return ret; 693 } 694 EXPORT_SYMBOL_GPL(__page_mapcount); 695 696 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; 697 int sysctl_overcommit_ratio __read_mostly = 50; 698 unsigned long sysctl_overcommit_kbytes __read_mostly; 699 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 700 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 701 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 702 703 int overcommit_ratio_handler(struct ctl_table *table, int write, 704 void __user *buffer, size_t *lenp, 705 loff_t *ppos) 706 { 707 int ret; 708 709 ret = proc_dointvec(table, write, buffer, lenp, ppos); 710 if (ret == 0 && write) 711 sysctl_overcommit_kbytes = 0; 712 return ret; 713 } 714 715 int overcommit_kbytes_handler(struct ctl_table *table, int write, 716 void __user *buffer, size_t *lenp, 717 loff_t *ppos) 718 { 719 int ret; 720 721 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 722 if (ret == 0 && write) 723 sysctl_overcommit_ratio = 0; 724 return ret; 725 } 726 727 /* 728 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used 729 */ 730 unsigned long vm_commit_limit(void) 731 { 732 unsigned long allowed; 733 734 if (sysctl_overcommit_kbytes) 735 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); 736 else 737 allowed = ((totalram_pages() - hugetlb_total_pages()) 738 * sysctl_overcommit_ratio / 100); 739 allowed += total_swap_pages; 740 741 return allowed; 742 } 743 744 /* 745 * Make sure vm_committed_as in one cacheline and not cacheline shared with 746 * other variables. It can be updated by several CPUs frequently. 747 */ 748 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 749 750 /* 751 * The global memory commitment made in the system can be a metric 752 * that can be used to drive ballooning decisions when Linux is hosted 753 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 754 * balancing memory across competing virtual machines that are hosted. 755 * Several metrics drive this policy engine including the guest reported 756 * memory commitment. 757 */ 758 unsigned long vm_memory_committed(void) 759 { 760 return percpu_counter_read_positive(&vm_committed_as); 761 } 762 EXPORT_SYMBOL_GPL(vm_memory_committed); 763 764 /* 765 * Check that a process has enough memory to allocate a new virtual 766 * mapping. 0 means there is enough memory for the allocation to 767 * succeed and -ENOMEM implies there is not. 768 * 769 * We currently support three overcommit policies, which are set via the 770 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst 771 * 772 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 773 * Additional code 2002 Jul 20 by Robert Love. 774 * 775 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 776 * 777 * Note this is a helper function intended to be used by LSMs which 778 * wish to use this logic. 779 */ 780 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 781 { 782 long allowed; 783 784 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) < 785 -(s64)vm_committed_as_batch * num_online_cpus(), 786 "memory commitment underflow"); 787 788 vm_acct_memory(pages); 789 790 /* 791 * Sometimes we want to use more memory than we have 792 */ 793 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 794 return 0; 795 796 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 797 if (pages > totalram_pages() + total_swap_pages) 798 goto error; 799 return 0; 800 } 801 802 allowed = vm_commit_limit(); 803 /* 804 * Reserve some for root 805 */ 806 if (!cap_sys_admin) 807 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 808 809 /* 810 * Don't let a single process grow so big a user can't recover 811 */ 812 if (mm) { 813 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 814 815 allowed -= min_t(long, mm->total_vm / 32, reserve); 816 } 817 818 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 819 return 0; 820 error: 821 vm_unacct_memory(pages); 822 823 return -ENOMEM; 824 } 825 826 /** 827 * get_cmdline() - copy the cmdline value to a buffer. 828 * @task: the task whose cmdline value to copy. 829 * @buffer: the buffer to copy to. 830 * @buflen: the length of the buffer. Larger cmdline values are truncated 831 * to this length. 832 * 833 * Return: the size of the cmdline field copied. Note that the copy does 834 * not guarantee an ending NULL byte. 835 */ 836 int get_cmdline(struct task_struct *task, char *buffer, int buflen) 837 { 838 int res = 0; 839 unsigned int len; 840 struct mm_struct *mm = get_task_mm(task); 841 unsigned long arg_start, arg_end, env_start, env_end; 842 if (!mm) 843 goto out; 844 if (!mm->arg_end) 845 goto out_mm; /* Shh! No looking before we're done */ 846 847 spin_lock(&mm->arg_lock); 848 arg_start = mm->arg_start; 849 arg_end = mm->arg_end; 850 env_start = mm->env_start; 851 env_end = mm->env_end; 852 spin_unlock(&mm->arg_lock); 853 854 len = arg_end - arg_start; 855 856 if (len > buflen) 857 len = buflen; 858 859 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); 860 861 /* 862 * If the nul at the end of args has been overwritten, then 863 * assume application is using setproctitle(3). 864 */ 865 if (res > 0 && buffer[res-1] != '\0' && len < buflen) { 866 len = strnlen(buffer, res); 867 if (len < res) { 868 res = len; 869 } else { 870 len = env_end - env_start; 871 if (len > buflen - res) 872 len = buflen - res; 873 res += access_process_vm(task, env_start, 874 buffer+res, len, 875 FOLL_FORCE); 876 res = strnlen(buffer, res); 877 } 878 } 879 out_mm: 880 mmput(mm); 881 out: 882 return res; 883 } 884 885 int memcmp_pages(struct page *page1, struct page *page2) 886 { 887 char *addr1, *addr2; 888 int ret; 889 890 addr1 = kmap_atomic(page1); 891 addr2 = kmap_atomic(page2); 892 ret = memcmp(addr1, addr2, PAGE_SIZE); 893 kunmap_atomic(addr2); 894 kunmap_atomic(addr1); 895 return ret; 896 } 897