xref: /openbmc/linux/mm/swapfile.c (revision f9f956b550b8ce6fb902af9f29ba31b3e0fd052d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/frontswap.h>
39 #include <linux/swapfile.h>
40 #include <linux/export.h>
41 #include <linux/swap_slots.h>
42 #include <linux/sort.h>
43 #include <linux/completion.h>
44 #include <linux/suspend.h>
45 
46 #include <asm/tlbflush.h>
47 #include <linux/swapops.h>
48 #include <linux/swap_cgroup.h>
49 #include "swap.h"
50 
51 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
52 				 unsigned char);
53 static void free_swap_count_continuations(struct swap_info_struct *);
54 
55 static DEFINE_SPINLOCK(swap_lock);
56 static unsigned int nr_swapfiles;
57 atomic_long_t nr_swap_pages;
58 /*
59  * Some modules use swappable objects and may try to swap them out under
60  * memory pressure (via the shrinker). Before doing so, they may wish to
61  * check to see if any swap space is available.
62  */
63 EXPORT_SYMBOL_GPL(nr_swap_pages);
64 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
65 long total_swap_pages;
66 static int least_priority = -1;
67 unsigned long swapfile_maximum_size;
68 #ifdef CONFIG_MIGRATION
69 bool swap_migration_ad_supported;
70 #endif	/* CONFIG_MIGRATION */
71 
72 static const char Bad_file[] = "Bad swap file entry ";
73 static const char Unused_file[] = "Unused swap file entry ";
74 static const char Bad_offset[] = "Bad swap offset entry ";
75 static const char Unused_offset[] = "Unused swap offset entry ";
76 
77 /*
78  * all active swap_info_structs
79  * protected with swap_lock, and ordered by priority.
80  */
81 static PLIST_HEAD(swap_active_head);
82 
83 /*
84  * all available (active, not full) swap_info_structs
85  * protected with swap_avail_lock, ordered by priority.
86  * This is used by folio_alloc_swap() instead of swap_active_head
87  * because swap_active_head includes all swap_info_structs,
88  * but folio_alloc_swap() doesn't need to look at full ones.
89  * This uses its own lock instead of swap_lock because when a
90  * swap_info_struct changes between not-full/full, it needs to
91  * add/remove itself to/from this list, but the swap_info_struct->lock
92  * is held and the locking order requires swap_lock to be taken
93  * before any swap_info_struct->lock.
94  */
95 static struct plist_head *swap_avail_heads;
96 static DEFINE_SPINLOCK(swap_avail_lock);
97 
98 struct swap_info_struct *swap_info[MAX_SWAPFILES];
99 
100 static DEFINE_MUTEX(swapon_mutex);
101 
102 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
103 /* Activity counter to indicate that a swapon or swapoff has occurred */
104 static atomic_t proc_poll_event = ATOMIC_INIT(0);
105 
106 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
107 
108 static struct swap_info_struct *swap_type_to_swap_info(int type)
109 {
110 	if (type >= MAX_SWAPFILES)
111 		return NULL;
112 
113 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
114 }
115 
116 static inline unsigned char swap_count(unsigned char ent)
117 {
118 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
119 }
120 
121 /* Reclaim the swap entry anyway if possible */
122 #define TTRS_ANYWAY		0x1
123 /*
124  * Reclaim the swap entry if there are no more mappings of the
125  * corresponding page
126  */
127 #define TTRS_UNMAPPED		0x2
128 /* Reclaim the swap entry if swap is getting full*/
129 #define TTRS_FULL		0x4
130 
131 /* returns 1 if swap entry is freed */
132 static int __try_to_reclaim_swap(struct swap_info_struct *si,
133 				 unsigned long offset, unsigned long flags)
134 {
135 	swp_entry_t entry = swp_entry(si->type, offset);
136 	struct folio *folio;
137 	int ret = 0;
138 
139 	folio = filemap_get_folio(swap_address_space(entry), offset);
140 	if (IS_ERR(folio))
141 		return 0;
142 	/*
143 	 * When this function is called from scan_swap_map_slots() and it's
144 	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
145 	 * here. We have to use trylock for avoiding deadlock. This is a special
146 	 * case and you should use folio_free_swap() with explicit folio_lock()
147 	 * in usual operations.
148 	 */
149 	if (folio_trylock(folio)) {
150 		if ((flags & TTRS_ANYWAY) ||
151 		    ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
152 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
153 			ret = folio_free_swap(folio);
154 		folio_unlock(folio);
155 	}
156 	folio_put(folio);
157 	return ret;
158 }
159 
160 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
161 {
162 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
163 	return rb_entry(rb, struct swap_extent, rb_node);
164 }
165 
166 static inline struct swap_extent *next_se(struct swap_extent *se)
167 {
168 	struct rb_node *rb = rb_next(&se->rb_node);
169 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
170 }
171 
172 /*
173  * swapon tell device that all the old swap contents can be discarded,
174  * to allow the swap device to optimize its wear-levelling.
175  */
176 static int discard_swap(struct swap_info_struct *si)
177 {
178 	struct swap_extent *se;
179 	sector_t start_block;
180 	sector_t nr_blocks;
181 	int err = 0;
182 
183 	/* Do not discard the swap header page! */
184 	se = first_se(si);
185 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
186 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
187 	if (nr_blocks) {
188 		err = blkdev_issue_discard(si->bdev, start_block,
189 				nr_blocks, GFP_KERNEL);
190 		if (err)
191 			return err;
192 		cond_resched();
193 	}
194 
195 	for (se = next_se(se); se; se = next_se(se)) {
196 		start_block = se->start_block << (PAGE_SHIFT - 9);
197 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
198 
199 		err = blkdev_issue_discard(si->bdev, start_block,
200 				nr_blocks, GFP_KERNEL);
201 		if (err)
202 			break;
203 
204 		cond_resched();
205 	}
206 	return err;		/* That will often be -EOPNOTSUPP */
207 }
208 
209 static struct swap_extent *
210 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
211 {
212 	struct swap_extent *se;
213 	struct rb_node *rb;
214 
215 	rb = sis->swap_extent_root.rb_node;
216 	while (rb) {
217 		se = rb_entry(rb, struct swap_extent, rb_node);
218 		if (offset < se->start_page)
219 			rb = rb->rb_left;
220 		else if (offset >= se->start_page + se->nr_pages)
221 			rb = rb->rb_right;
222 		else
223 			return se;
224 	}
225 	/* It *must* be present */
226 	BUG();
227 }
228 
229 sector_t swap_page_sector(struct page *page)
230 {
231 	struct swap_info_struct *sis = page_swap_info(page);
232 	struct swap_extent *se;
233 	sector_t sector;
234 	pgoff_t offset;
235 
236 	offset = __page_file_index(page);
237 	se = offset_to_swap_extent(sis, offset);
238 	sector = se->start_block + (offset - se->start_page);
239 	return sector << (PAGE_SHIFT - 9);
240 }
241 
242 /*
243  * swap allocation tell device that a cluster of swap can now be discarded,
244  * to allow the swap device to optimize its wear-levelling.
245  */
246 static void discard_swap_cluster(struct swap_info_struct *si,
247 				 pgoff_t start_page, pgoff_t nr_pages)
248 {
249 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
250 
251 	while (nr_pages) {
252 		pgoff_t offset = start_page - se->start_page;
253 		sector_t start_block = se->start_block + offset;
254 		sector_t nr_blocks = se->nr_pages - offset;
255 
256 		if (nr_blocks > nr_pages)
257 			nr_blocks = nr_pages;
258 		start_page += nr_blocks;
259 		nr_pages -= nr_blocks;
260 
261 		start_block <<= PAGE_SHIFT - 9;
262 		nr_blocks <<= PAGE_SHIFT - 9;
263 		if (blkdev_issue_discard(si->bdev, start_block,
264 					nr_blocks, GFP_NOIO))
265 			break;
266 
267 		se = next_se(se);
268 	}
269 }
270 
271 #ifdef CONFIG_THP_SWAP
272 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
273 
274 #define swap_entry_size(size)	(size)
275 #else
276 #define SWAPFILE_CLUSTER	256
277 
278 /*
279  * Define swap_entry_size() as constant to let compiler to optimize
280  * out some code if !CONFIG_THP_SWAP
281  */
282 #define swap_entry_size(size)	1
283 #endif
284 #define LATENCY_LIMIT		256
285 
286 static inline void cluster_set_flag(struct swap_cluster_info *info,
287 	unsigned int flag)
288 {
289 	info->flags = flag;
290 }
291 
292 static inline unsigned int cluster_count(struct swap_cluster_info *info)
293 {
294 	return info->data;
295 }
296 
297 static inline void cluster_set_count(struct swap_cluster_info *info,
298 				     unsigned int c)
299 {
300 	info->data = c;
301 }
302 
303 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
304 					 unsigned int c, unsigned int f)
305 {
306 	info->flags = f;
307 	info->data = c;
308 }
309 
310 static inline unsigned int cluster_next(struct swap_cluster_info *info)
311 {
312 	return info->data;
313 }
314 
315 static inline void cluster_set_next(struct swap_cluster_info *info,
316 				    unsigned int n)
317 {
318 	info->data = n;
319 }
320 
321 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
322 					 unsigned int n, unsigned int f)
323 {
324 	info->flags = f;
325 	info->data = n;
326 }
327 
328 static inline bool cluster_is_free(struct swap_cluster_info *info)
329 {
330 	return info->flags & CLUSTER_FLAG_FREE;
331 }
332 
333 static inline bool cluster_is_null(struct swap_cluster_info *info)
334 {
335 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
336 }
337 
338 static inline void cluster_set_null(struct swap_cluster_info *info)
339 {
340 	info->flags = CLUSTER_FLAG_NEXT_NULL;
341 	info->data = 0;
342 }
343 
344 static inline bool cluster_is_huge(struct swap_cluster_info *info)
345 {
346 	if (IS_ENABLED(CONFIG_THP_SWAP))
347 		return info->flags & CLUSTER_FLAG_HUGE;
348 	return false;
349 }
350 
351 static inline void cluster_clear_huge(struct swap_cluster_info *info)
352 {
353 	info->flags &= ~CLUSTER_FLAG_HUGE;
354 }
355 
356 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
357 						     unsigned long offset)
358 {
359 	struct swap_cluster_info *ci;
360 
361 	ci = si->cluster_info;
362 	if (ci) {
363 		ci += offset / SWAPFILE_CLUSTER;
364 		spin_lock(&ci->lock);
365 	}
366 	return ci;
367 }
368 
369 static inline void unlock_cluster(struct swap_cluster_info *ci)
370 {
371 	if (ci)
372 		spin_unlock(&ci->lock);
373 }
374 
375 /*
376  * Determine the locking method in use for this device.  Return
377  * swap_cluster_info if SSD-style cluster-based locking is in place.
378  */
379 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
380 		struct swap_info_struct *si, unsigned long offset)
381 {
382 	struct swap_cluster_info *ci;
383 
384 	/* Try to use fine-grained SSD-style locking if available: */
385 	ci = lock_cluster(si, offset);
386 	/* Otherwise, fall back to traditional, coarse locking: */
387 	if (!ci)
388 		spin_lock(&si->lock);
389 
390 	return ci;
391 }
392 
393 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
394 					       struct swap_cluster_info *ci)
395 {
396 	if (ci)
397 		unlock_cluster(ci);
398 	else
399 		spin_unlock(&si->lock);
400 }
401 
402 static inline bool cluster_list_empty(struct swap_cluster_list *list)
403 {
404 	return cluster_is_null(&list->head);
405 }
406 
407 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
408 {
409 	return cluster_next(&list->head);
410 }
411 
412 static void cluster_list_init(struct swap_cluster_list *list)
413 {
414 	cluster_set_null(&list->head);
415 	cluster_set_null(&list->tail);
416 }
417 
418 static void cluster_list_add_tail(struct swap_cluster_list *list,
419 				  struct swap_cluster_info *ci,
420 				  unsigned int idx)
421 {
422 	if (cluster_list_empty(list)) {
423 		cluster_set_next_flag(&list->head, idx, 0);
424 		cluster_set_next_flag(&list->tail, idx, 0);
425 	} else {
426 		struct swap_cluster_info *ci_tail;
427 		unsigned int tail = cluster_next(&list->tail);
428 
429 		/*
430 		 * Nested cluster lock, but both cluster locks are
431 		 * only acquired when we held swap_info_struct->lock
432 		 */
433 		ci_tail = ci + tail;
434 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
435 		cluster_set_next(ci_tail, idx);
436 		spin_unlock(&ci_tail->lock);
437 		cluster_set_next_flag(&list->tail, idx, 0);
438 	}
439 }
440 
441 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
442 					   struct swap_cluster_info *ci)
443 {
444 	unsigned int idx;
445 
446 	idx = cluster_next(&list->head);
447 	if (cluster_next(&list->tail) == idx) {
448 		cluster_set_null(&list->head);
449 		cluster_set_null(&list->tail);
450 	} else
451 		cluster_set_next_flag(&list->head,
452 				      cluster_next(&ci[idx]), 0);
453 
454 	return idx;
455 }
456 
457 /* Add a cluster to discard list and schedule it to do discard */
458 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
459 		unsigned int idx)
460 {
461 	/*
462 	 * If scan_swap_map_slots() can't find a free cluster, it will check
463 	 * si->swap_map directly. To make sure the discarding cluster isn't
464 	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
465 	 * It will be cleared after discard
466 	 */
467 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
468 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
469 
470 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
471 
472 	schedule_work(&si->discard_work);
473 }
474 
475 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
476 {
477 	struct swap_cluster_info *ci = si->cluster_info;
478 
479 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
480 	cluster_list_add_tail(&si->free_clusters, ci, idx);
481 }
482 
483 /*
484  * Doing discard actually. After a cluster discard is finished, the cluster
485  * will be added to free cluster list. caller should hold si->lock.
486 */
487 static void swap_do_scheduled_discard(struct swap_info_struct *si)
488 {
489 	struct swap_cluster_info *info, *ci;
490 	unsigned int idx;
491 
492 	info = si->cluster_info;
493 
494 	while (!cluster_list_empty(&si->discard_clusters)) {
495 		idx = cluster_list_del_first(&si->discard_clusters, info);
496 		spin_unlock(&si->lock);
497 
498 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
499 				SWAPFILE_CLUSTER);
500 
501 		spin_lock(&si->lock);
502 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
503 		__free_cluster(si, idx);
504 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
505 				0, SWAPFILE_CLUSTER);
506 		unlock_cluster(ci);
507 	}
508 }
509 
510 static void swap_discard_work(struct work_struct *work)
511 {
512 	struct swap_info_struct *si;
513 
514 	si = container_of(work, struct swap_info_struct, discard_work);
515 
516 	spin_lock(&si->lock);
517 	swap_do_scheduled_discard(si);
518 	spin_unlock(&si->lock);
519 }
520 
521 static void swap_users_ref_free(struct percpu_ref *ref)
522 {
523 	struct swap_info_struct *si;
524 
525 	si = container_of(ref, struct swap_info_struct, users);
526 	complete(&si->comp);
527 }
528 
529 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
530 {
531 	struct swap_cluster_info *ci = si->cluster_info;
532 
533 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
534 	cluster_list_del_first(&si->free_clusters, ci);
535 	cluster_set_count_flag(ci + idx, 0, 0);
536 }
537 
538 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
539 {
540 	struct swap_cluster_info *ci = si->cluster_info + idx;
541 
542 	VM_BUG_ON(cluster_count(ci) != 0);
543 	/*
544 	 * If the swap is discardable, prepare discard the cluster
545 	 * instead of free it immediately. The cluster will be freed
546 	 * after discard.
547 	 */
548 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
549 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
550 		swap_cluster_schedule_discard(si, idx);
551 		return;
552 	}
553 
554 	__free_cluster(si, idx);
555 }
556 
557 /*
558  * The cluster corresponding to page_nr will be used. The cluster will be
559  * removed from free cluster list and its usage counter will be increased.
560  */
561 static void inc_cluster_info_page(struct swap_info_struct *p,
562 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
563 {
564 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
565 
566 	if (!cluster_info)
567 		return;
568 	if (cluster_is_free(&cluster_info[idx]))
569 		alloc_cluster(p, idx);
570 
571 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
572 	cluster_set_count(&cluster_info[idx],
573 		cluster_count(&cluster_info[idx]) + 1);
574 }
575 
576 /*
577  * The cluster corresponding to page_nr decreases one usage. If the usage
578  * counter becomes 0, which means no page in the cluster is in using, we can
579  * optionally discard the cluster and add it to free cluster list.
580  */
581 static void dec_cluster_info_page(struct swap_info_struct *p,
582 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
583 {
584 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
585 
586 	if (!cluster_info)
587 		return;
588 
589 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
590 	cluster_set_count(&cluster_info[idx],
591 		cluster_count(&cluster_info[idx]) - 1);
592 
593 	if (cluster_count(&cluster_info[idx]) == 0)
594 		free_cluster(p, idx);
595 }
596 
597 /*
598  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
599  * cluster list. Avoiding such abuse to avoid list corruption.
600  */
601 static bool
602 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
603 	unsigned long offset)
604 {
605 	struct percpu_cluster *percpu_cluster;
606 	bool conflict;
607 
608 	offset /= SWAPFILE_CLUSTER;
609 	conflict = !cluster_list_empty(&si->free_clusters) &&
610 		offset != cluster_list_first(&si->free_clusters) &&
611 		cluster_is_free(&si->cluster_info[offset]);
612 
613 	if (!conflict)
614 		return false;
615 
616 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
617 	cluster_set_null(&percpu_cluster->index);
618 	return true;
619 }
620 
621 /*
622  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
623  * might involve allocating a new cluster for current CPU too.
624  */
625 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
626 	unsigned long *offset, unsigned long *scan_base)
627 {
628 	struct percpu_cluster *cluster;
629 	struct swap_cluster_info *ci;
630 	unsigned long tmp, max;
631 
632 new_cluster:
633 	cluster = this_cpu_ptr(si->percpu_cluster);
634 	if (cluster_is_null(&cluster->index)) {
635 		if (!cluster_list_empty(&si->free_clusters)) {
636 			cluster->index = si->free_clusters.head;
637 			cluster->next = cluster_next(&cluster->index) *
638 					SWAPFILE_CLUSTER;
639 		} else if (!cluster_list_empty(&si->discard_clusters)) {
640 			/*
641 			 * we don't have free cluster but have some clusters in
642 			 * discarding, do discard now and reclaim them, then
643 			 * reread cluster_next_cpu since we dropped si->lock
644 			 */
645 			swap_do_scheduled_discard(si);
646 			*scan_base = this_cpu_read(*si->cluster_next_cpu);
647 			*offset = *scan_base;
648 			goto new_cluster;
649 		} else
650 			return false;
651 	}
652 
653 	/*
654 	 * Other CPUs can use our cluster if they can't find a free cluster,
655 	 * check if there is still free entry in the cluster
656 	 */
657 	tmp = cluster->next;
658 	max = min_t(unsigned long, si->max,
659 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
660 	if (tmp < max) {
661 		ci = lock_cluster(si, tmp);
662 		while (tmp < max) {
663 			if (!si->swap_map[tmp])
664 				break;
665 			tmp++;
666 		}
667 		unlock_cluster(ci);
668 	}
669 	if (tmp >= max) {
670 		cluster_set_null(&cluster->index);
671 		goto new_cluster;
672 	}
673 	cluster->next = tmp + 1;
674 	*offset = tmp;
675 	*scan_base = tmp;
676 	return true;
677 }
678 
679 static void __del_from_avail_list(struct swap_info_struct *p)
680 {
681 	int nid;
682 
683 	assert_spin_locked(&p->lock);
684 	for_each_node(nid)
685 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
686 }
687 
688 static void del_from_avail_list(struct swap_info_struct *p)
689 {
690 	spin_lock(&swap_avail_lock);
691 	__del_from_avail_list(p);
692 	spin_unlock(&swap_avail_lock);
693 }
694 
695 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
696 			     unsigned int nr_entries)
697 {
698 	unsigned int end = offset + nr_entries - 1;
699 
700 	if (offset == si->lowest_bit)
701 		si->lowest_bit += nr_entries;
702 	if (end == si->highest_bit)
703 		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
704 	WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
705 	if (si->inuse_pages == si->pages) {
706 		si->lowest_bit = si->max;
707 		si->highest_bit = 0;
708 		del_from_avail_list(si);
709 	}
710 }
711 
712 static void add_to_avail_list(struct swap_info_struct *p)
713 {
714 	int nid;
715 
716 	spin_lock(&swap_avail_lock);
717 	for_each_node(nid) {
718 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
719 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
720 	}
721 	spin_unlock(&swap_avail_lock);
722 }
723 
724 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
725 			    unsigned int nr_entries)
726 {
727 	unsigned long begin = offset;
728 	unsigned long end = offset + nr_entries - 1;
729 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
730 
731 	if (offset < si->lowest_bit)
732 		si->lowest_bit = offset;
733 	if (end > si->highest_bit) {
734 		bool was_full = !si->highest_bit;
735 
736 		WRITE_ONCE(si->highest_bit, end);
737 		if (was_full && (si->flags & SWP_WRITEOK))
738 			add_to_avail_list(si);
739 	}
740 	atomic_long_add(nr_entries, &nr_swap_pages);
741 	WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
742 	if (si->flags & SWP_BLKDEV)
743 		swap_slot_free_notify =
744 			si->bdev->bd_disk->fops->swap_slot_free_notify;
745 	else
746 		swap_slot_free_notify = NULL;
747 	while (offset <= end) {
748 		arch_swap_invalidate_page(si->type, offset);
749 		frontswap_invalidate_page(si->type, offset);
750 		if (swap_slot_free_notify)
751 			swap_slot_free_notify(si->bdev, offset);
752 		offset++;
753 	}
754 	clear_shadow_from_swap_cache(si->type, begin, end);
755 }
756 
757 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
758 {
759 	unsigned long prev;
760 
761 	if (!(si->flags & SWP_SOLIDSTATE)) {
762 		si->cluster_next = next;
763 		return;
764 	}
765 
766 	prev = this_cpu_read(*si->cluster_next_cpu);
767 	/*
768 	 * Cross the swap address space size aligned trunk, choose
769 	 * another trunk randomly to avoid lock contention on swap
770 	 * address space if possible.
771 	 */
772 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
773 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
774 		/* No free swap slots available */
775 		if (si->highest_bit <= si->lowest_bit)
776 			return;
777 		next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
778 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
779 		next = max_t(unsigned int, next, si->lowest_bit);
780 	}
781 	this_cpu_write(*si->cluster_next_cpu, next);
782 }
783 
784 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
785 					     unsigned long offset)
786 {
787 	if (data_race(!si->swap_map[offset])) {
788 		spin_lock(&si->lock);
789 		return true;
790 	}
791 
792 	if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
793 		spin_lock(&si->lock);
794 		return true;
795 	}
796 
797 	return false;
798 }
799 
800 static int scan_swap_map_slots(struct swap_info_struct *si,
801 			       unsigned char usage, int nr,
802 			       swp_entry_t slots[])
803 {
804 	struct swap_cluster_info *ci;
805 	unsigned long offset;
806 	unsigned long scan_base;
807 	unsigned long last_in_cluster = 0;
808 	int latency_ration = LATENCY_LIMIT;
809 	int n_ret = 0;
810 	bool scanned_many = false;
811 
812 	/*
813 	 * We try to cluster swap pages by allocating them sequentially
814 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
815 	 * way, however, we resort to first-free allocation, starting
816 	 * a new cluster.  This prevents us from scattering swap pages
817 	 * all over the entire swap partition, so that we reduce
818 	 * overall disk seek times between swap pages.  -- sct
819 	 * But we do now try to find an empty cluster.  -Andrea
820 	 * And we let swap pages go all over an SSD partition.  Hugh
821 	 */
822 
823 	si->flags += SWP_SCANNING;
824 	/*
825 	 * Use percpu scan base for SSD to reduce lock contention on
826 	 * cluster and swap cache.  For HDD, sequential access is more
827 	 * important.
828 	 */
829 	if (si->flags & SWP_SOLIDSTATE)
830 		scan_base = this_cpu_read(*si->cluster_next_cpu);
831 	else
832 		scan_base = si->cluster_next;
833 	offset = scan_base;
834 
835 	/* SSD algorithm */
836 	if (si->cluster_info) {
837 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
838 			goto scan;
839 	} else if (unlikely(!si->cluster_nr--)) {
840 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
841 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
842 			goto checks;
843 		}
844 
845 		spin_unlock(&si->lock);
846 
847 		/*
848 		 * If seek is expensive, start searching for new cluster from
849 		 * start of partition, to minimize the span of allocated swap.
850 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
851 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
852 		 */
853 		scan_base = offset = si->lowest_bit;
854 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
855 
856 		/* Locate the first empty (unaligned) cluster */
857 		for (; last_in_cluster <= si->highest_bit; offset++) {
858 			if (si->swap_map[offset])
859 				last_in_cluster = offset + SWAPFILE_CLUSTER;
860 			else if (offset == last_in_cluster) {
861 				spin_lock(&si->lock);
862 				offset -= SWAPFILE_CLUSTER - 1;
863 				si->cluster_next = offset;
864 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
865 				goto checks;
866 			}
867 			if (unlikely(--latency_ration < 0)) {
868 				cond_resched();
869 				latency_ration = LATENCY_LIMIT;
870 			}
871 		}
872 
873 		offset = scan_base;
874 		spin_lock(&si->lock);
875 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
876 	}
877 
878 checks:
879 	if (si->cluster_info) {
880 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
881 		/* take a break if we already got some slots */
882 			if (n_ret)
883 				goto done;
884 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
885 							&scan_base))
886 				goto scan;
887 		}
888 	}
889 	if (!(si->flags & SWP_WRITEOK))
890 		goto no_page;
891 	if (!si->highest_bit)
892 		goto no_page;
893 	if (offset > si->highest_bit)
894 		scan_base = offset = si->lowest_bit;
895 
896 	ci = lock_cluster(si, offset);
897 	/* reuse swap entry of cache-only swap if not busy. */
898 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
899 		int swap_was_freed;
900 		unlock_cluster(ci);
901 		spin_unlock(&si->lock);
902 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
903 		spin_lock(&si->lock);
904 		/* entry was freed successfully, try to use this again */
905 		if (swap_was_freed)
906 			goto checks;
907 		goto scan; /* check next one */
908 	}
909 
910 	if (si->swap_map[offset]) {
911 		unlock_cluster(ci);
912 		if (!n_ret)
913 			goto scan;
914 		else
915 			goto done;
916 	}
917 	WRITE_ONCE(si->swap_map[offset], usage);
918 	inc_cluster_info_page(si, si->cluster_info, offset);
919 	unlock_cluster(ci);
920 
921 	swap_range_alloc(si, offset, 1);
922 	slots[n_ret++] = swp_entry(si->type, offset);
923 
924 	/* got enough slots or reach max slots? */
925 	if ((n_ret == nr) || (offset >= si->highest_bit))
926 		goto done;
927 
928 	/* search for next available slot */
929 
930 	/* time to take a break? */
931 	if (unlikely(--latency_ration < 0)) {
932 		if (n_ret)
933 			goto done;
934 		spin_unlock(&si->lock);
935 		cond_resched();
936 		spin_lock(&si->lock);
937 		latency_ration = LATENCY_LIMIT;
938 	}
939 
940 	/* try to get more slots in cluster */
941 	if (si->cluster_info) {
942 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
943 			goto checks;
944 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
945 		/* non-ssd case, still more slots in cluster? */
946 		--si->cluster_nr;
947 		goto checks;
948 	}
949 
950 	/*
951 	 * Even if there's no free clusters available (fragmented),
952 	 * try to scan a little more quickly with lock held unless we
953 	 * have scanned too many slots already.
954 	 */
955 	if (!scanned_many) {
956 		unsigned long scan_limit;
957 
958 		if (offset < scan_base)
959 			scan_limit = scan_base;
960 		else
961 			scan_limit = si->highest_bit;
962 		for (; offset <= scan_limit && --latency_ration > 0;
963 		     offset++) {
964 			if (!si->swap_map[offset])
965 				goto checks;
966 		}
967 	}
968 
969 done:
970 	set_cluster_next(si, offset + 1);
971 	si->flags -= SWP_SCANNING;
972 	return n_ret;
973 
974 scan:
975 	spin_unlock(&si->lock);
976 	while (++offset <= READ_ONCE(si->highest_bit)) {
977 		if (unlikely(--latency_ration < 0)) {
978 			cond_resched();
979 			latency_ration = LATENCY_LIMIT;
980 			scanned_many = true;
981 		}
982 		if (swap_offset_available_and_locked(si, offset))
983 			goto checks;
984 	}
985 	offset = si->lowest_bit;
986 	while (offset < scan_base) {
987 		if (unlikely(--latency_ration < 0)) {
988 			cond_resched();
989 			latency_ration = LATENCY_LIMIT;
990 			scanned_many = true;
991 		}
992 		if (swap_offset_available_and_locked(si, offset))
993 			goto checks;
994 		offset++;
995 	}
996 	spin_lock(&si->lock);
997 
998 no_page:
999 	si->flags -= SWP_SCANNING;
1000 	return n_ret;
1001 }
1002 
1003 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1004 {
1005 	unsigned long idx;
1006 	struct swap_cluster_info *ci;
1007 	unsigned long offset;
1008 
1009 	/*
1010 	 * Should not even be attempting cluster allocations when huge
1011 	 * page swap is disabled.  Warn and fail the allocation.
1012 	 */
1013 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1014 		VM_WARN_ON_ONCE(1);
1015 		return 0;
1016 	}
1017 
1018 	if (cluster_list_empty(&si->free_clusters))
1019 		return 0;
1020 
1021 	idx = cluster_list_first(&si->free_clusters);
1022 	offset = idx * SWAPFILE_CLUSTER;
1023 	ci = lock_cluster(si, offset);
1024 	alloc_cluster(si, idx);
1025 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1026 
1027 	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1028 	unlock_cluster(ci);
1029 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1030 	*slot = swp_entry(si->type, offset);
1031 
1032 	return 1;
1033 }
1034 
1035 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1036 {
1037 	unsigned long offset = idx * SWAPFILE_CLUSTER;
1038 	struct swap_cluster_info *ci;
1039 
1040 	ci = lock_cluster(si, offset);
1041 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1042 	cluster_set_count_flag(ci, 0, 0);
1043 	free_cluster(si, idx);
1044 	unlock_cluster(ci);
1045 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1046 }
1047 
1048 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1049 {
1050 	unsigned long size = swap_entry_size(entry_size);
1051 	struct swap_info_struct *si, *next;
1052 	long avail_pgs;
1053 	int n_ret = 0;
1054 	int node;
1055 
1056 	/* Only single cluster request supported */
1057 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1058 
1059 	spin_lock(&swap_avail_lock);
1060 
1061 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1062 	if (avail_pgs <= 0) {
1063 		spin_unlock(&swap_avail_lock);
1064 		goto noswap;
1065 	}
1066 
1067 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1068 
1069 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1070 
1071 start_over:
1072 	node = numa_node_id();
1073 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1074 		/* requeue si to after same-priority siblings */
1075 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1076 		spin_unlock(&swap_avail_lock);
1077 		spin_lock(&si->lock);
1078 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1079 			spin_lock(&swap_avail_lock);
1080 			if (plist_node_empty(&si->avail_lists[node])) {
1081 				spin_unlock(&si->lock);
1082 				goto nextsi;
1083 			}
1084 			WARN(!si->highest_bit,
1085 			     "swap_info %d in list but !highest_bit\n",
1086 			     si->type);
1087 			WARN(!(si->flags & SWP_WRITEOK),
1088 			     "swap_info %d in list but !SWP_WRITEOK\n",
1089 			     si->type);
1090 			__del_from_avail_list(si);
1091 			spin_unlock(&si->lock);
1092 			goto nextsi;
1093 		}
1094 		if (size == SWAPFILE_CLUSTER) {
1095 			if (si->flags & SWP_BLKDEV)
1096 				n_ret = swap_alloc_cluster(si, swp_entries);
1097 		} else
1098 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1099 						    n_goal, swp_entries);
1100 		spin_unlock(&si->lock);
1101 		if (n_ret || size == SWAPFILE_CLUSTER)
1102 			goto check_out;
1103 		cond_resched();
1104 
1105 		spin_lock(&swap_avail_lock);
1106 nextsi:
1107 		/*
1108 		 * if we got here, it's likely that si was almost full before,
1109 		 * and since scan_swap_map_slots() can drop the si->lock,
1110 		 * multiple callers probably all tried to get a page from the
1111 		 * same si and it filled up before we could get one; or, the si
1112 		 * filled up between us dropping swap_avail_lock and taking
1113 		 * si->lock. Since we dropped the swap_avail_lock, the
1114 		 * swap_avail_head list may have been modified; so if next is
1115 		 * still in the swap_avail_head list then try it, otherwise
1116 		 * start over if we have not gotten any slots.
1117 		 */
1118 		if (plist_node_empty(&next->avail_lists[node]))
1119 			goto start_over;
1120 	}
1121 
1122 	spin_unlock(&swap_avail_lock);
1123 
1124 check_out:
1125 	if (n_ret < n_goal)
1126 		atomic_long_add((long)(n_goal - n_ret) * size,
1127 				&nr_swap_pages);
1128 noswap:
1129 	return n_ret;
1130 }
1131 
1132 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1133 {
1134 	struct swap_info_struct *p;
1135 	unsigned long offset;
1136 
1137 	if (!entry.val)
1138 		goto out;
1139 	p = swp_swap_info(entry);
1140 	if (!p)
1141 		goto bad_nofile;
1142 	if (data_race(!(p->flags & SWP_USED)))
1143 		goto bad_device;
1144 	offset = swp_offset(entry);
1145 	if (offset >= p->max)
1146 		goto bad_offset;
1147 	if (data_race(!p->swap_map[swp_offset(entry)]))
1148 		goto bad_free;
1149 	return p;
1150 
1151 bad_free:
1152 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1153 	goto out;
1154 bad_offset:
1155 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1156 	goto out;
1157 bad_device:
1158 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1159 	goto out;
1160 bad_nofile:
1161 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1162 out:
1163 	return NULL;
1164 }
1165 
1166 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1167 					struct swap_info_struct *q)
1168 {
1169 	struct swap_info_struct *p;
1170 
1171 	p = _swap_info_get(entry);
1172 
1173 	if (p != q) {
1174 		if (q != NULL)
1175 			spin_unlock(&q->lock);
1176 		if (p != NULL)
1177 			spin_lock(&p->lock);
1178 	}
1179 	return p;
1180 }
1181 
1182 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1183 					      unsigned long offset,
1184 					      unsigned char usage)
1185 {
1186 	unsigned char count;
1187 	unsigned char has_cache;
1188 
1189 	count = p->swap_map[offset];
1190 
1191 	has_cache = count & SWAP_HAS_CACHE;
1192 	count &= ~SWAP_HAS_CACHE;
1193 
1194 	if (usage == SWAP_HAS_CACHE) {
1195 		VM_BUG_ON(!has_cache);
1196 		has_cache = 0;
1197 	} else if (count == SWAP_MAP_SHMEM) {
1198 		/*
1199 		 * Or we could insist on shmem.c using a special
1200 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1201 		 */
1202 		count = 0;
1203 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1204 		if (count == COUNT_CONTINUED) {
1205 			if (swap_count_continued(p, offset, count))
1206 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1207 			else
1208 				count = SWAP_MAP_MAX;
1209 		} else
1210 			count--;
1211 	}
1212 
1213 	usage = count | has_cache;
1214 	if (usage)
1215 		WRITE_ONCE(p->swap_map[offset], usage);
1216 	else
1217 		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1218 
1219 	return usage;
1220 }
1221 
1222 /*
1223  * Check whether swap entry is valid in the swap device.  If so,
1224  * return pointer to swap_info_struct, and keep the swap entry valid
1225  * via preventing the swap device from being swapoff, until
1226  * put_swap_device() is called.  Otherwise return NULL.
1227  *
1228  * Notice that swapoff or swapoff+swapon can still happen before the
1229  * percpu_ref_tryget_live() in get_swap_device() or after the
1230  * percpu_ref_put() in put_swap_device() if there isn't any other way
1231  * to prevent swapoff, such as page lock, page table lock, etc.  The
1232  * caller must be prepared for that.  For example, the following
1233  * situation is possible.
1234  *
1235  *   CPU1				CPU2
1236  *   do_swap_page()
1237  *     ...				swapoff+swapon
1238  *     __read_swap_cache_async()
1239  *       swapcache_prepare()
1240  *         __swap_duplicate()
1241  *           // check swap_map
1242  *     // verify PTE not changed
1243  *
1244  * In __swap_duplicate(), the swap_map need to be checked before
1245  * changing partly because the specified swap entry may be for another
1246  * swap device which has been swapoff.  And in do_swap_page(), after
1247  * the page is read from the swap device, the PTE is verified not
1248  * changed with the page table locked to check whether the swap device
1249  * has been swapoff or swapoff+swapon.
1250  */
1251 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1252 {
1253 	struct swap_info_struct *si;
1254 	unsigned long offset;
1255 
1256 	if (!entry.val)
1257 		goto out;
1258 	si = swp_swap_info(entry);
1259 	if (!si)
1260 		goto bad_nofile;
1261 	if (!percpu_ref_tryget_live(&si->users))
1262 		goto out;
1263 	/*
1264 	 * Guarantee the si->users are checked before accessing other
1265 	 * fields of swap_info_struct.
1266 	 *
1267 	 * Paired with the spin_unlock() after setup_swap_info() in
1268 	 * enable_swap_info().
1269 	 */
1270 	smp_rmb();
1271 	offset = swp_offset(entry);
1272 	if (offset >= si->max)
1273 		goto put_out;
1274 
1275 	return si;
1276 bad_nofile:
1277 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1278 out:
1279 	return NULL;
1280 put_out:
1281 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1282 	percpu_ref_put(&si->users);
1283 	return NULL;
1284 }
1285 
1286 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1287 				       swp_entry_t entry)
1288 {
1289 	struct swap_cluster_info *ci;
1290 	unsigned long offset = swp_offset(entry);
1291 	unsigned char usage;
1292 
1293 	ci = lock_cluster_or_swap_info(p, offset);
1294 	usage = __swap_entry_free_locked(p, offset, 1);
1295 	unlock_cluster_or_swap_info(p, ci);
1296 	if (!usage)
1297 		free_swap_slot(entry);
1298 
1299 	return usage;
1300 }
1301 
1302 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1303 {
1304 	struct swap_cluster_info *ci;
1305 	unsigned long offset = swp_offset(entry);
1306 	unsigned char count;
1307 
1308 	ci = lock_cluster(p, offset);
1309 	count = p->swap_map[offset];
1310 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1311 	p->swap_map[offset] = 0;
1312 	dec_cluster_info_page(p, p->cluster_info, offset);
1313 	unlock_cluster(ci);
1314 
1315 	mem_cgroup_uncharge_swap(entry, 1);
1316 	swap_range_free(p, offset, 1);
1317 }
1318 
1319 /*
1320  * Caller has made sure that the swap device corresponding to entry
1321  * is still around or has not been recycled.
1322  */
1323 void swap_free(swp_entry_t entry)
1324 {
1325 	struct swap_info_struct *p;
1326 
1327 	p = _swap_info_get(entry);
1328 	if (p)
1329 		__swap_entry_free(p, entry);
1330 }
1331 
1332 /*
1333  * Called after dropping swapcache to decrease refcnt to swap entries.
1334  */
1335 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1336 {
1337 	unsigned long offset = swp_offset(entry);
1338 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1339 	struct swap_cluster_info *ci;
1340 	struct swap_info_struct *si;
1341 	unsigned char *map;
1342 	unsigned int i, free_entries = 0;
1343 	unsigned char val;
1344 	int size = swap_entry_size(folio_nr_pages(folio));
1345 
1346 	si = _swap_info_get(entry);
1347 	if (!si)
1348 		return;
1349 
1350 	ci = lock_cluster_or_swap_info(si, offset);
1351 	if (size == SWAPFILE_CLUSTER) {
1352 		VM_BUG_ON(!cluster_is_huge(ci));
1353 		map = si->swap_map + offset;
1354 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1355 			val = map[i];
1356 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1357 			if (val == SWAP_HAS_CACHE)
1358 				free_entries++;
1359 		}
1360 		cluster_clear_huge(ci);
1361 		if (free_entries == SWAPFILE_CLUSTER) {
1362 			unlock_cluster_or_swap_info(si, ci);
1363 			spin_lock(&si->lock);
1364 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1365 			swap_free_cluster(si, idx);
1366 			spin_unlock(&si->lock);
1367 			return;
1368 		}
1369 	}
1370 	for (i = 0; i < size; i++, entry.val++) {
1371 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1372 			unlock_cluster_or_swap_info(si, ci);
1373 			free_swap_slot(entry);
1374 			if (i == size - 1)
1375 				return;
1376 			lock_cluster_or_swap_info(si, offset);
1377 		}
1378 	}
1379 	unlock_cluster_or_swap_info(si, ci);
1380 }
1381 
1382 #ifdef CONFIG_THP_SWAP
1383 int split_swap_cluster(swp_entry_t entry)
1384 {
1385 	struct swap_info_struct *si;
1386 	struct swap_cluster_info *ci;
1387 	unsigned long offset = swp_offset(entry);
1388 
1389 	si = _swap_info_get(entry);
1390 	if (!si)
1391 		return -EBUSY;
1392 	ci = lock_cluster(si, offset);
1393 	cluster_clear_huge(ci);
1394 	unlock_cluster(ci);
1395 	return 0;
1396 }
1397 #endif
1398 
1399 static int swp_entry_cmp(const void *ent1, const void *ent2)
1400 {
1401 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1402 
1403 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1404 }
1405 
1406 void swapcache_free_entries(swp_entry_t *entries, int n)
1407 {
1408 	struct swap_info_struct *p, *prev;
1409 	int i;
1410 
1411 	if (n <= 0)
1412 		return;
1413 
1414 	prev = NULL;
1415 	p = NULL;
1416 
1417 	/*
1418 	 * Sort swap entries by swap device, so each lock is only taken once.
1419 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1420 	 * so low that it isn't necessary to optimize further.
1421 	 */
1422 	if (nr_swapfiles > 1)
1423 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1424 	for (i = 0; i < n; ++i) {
1425 		p = swap_info_get_cont(entries[i], prev);
1426 		if (p)
1427 			swap_entry_free(p, entries[i]);
1428 		prev = p;
1429 	}
1430 	if (p)
1431 		spin_unlock(&p->lock);
1432 }
1433 
1434 int __swap_count(swp_entry_t entry)
1435 {
1436 	struct swap_info_struct *si = swp_swap_info(entry);
1437 	pgoff_t offset = swp_offset(entry);
1438 
1439 	return swap_count(si->swap_map[offset]);
1440 }
1441 
1442 /*
1443  * How many references to @entry are currently swapped out?
1444  * This does not give an exact answer when swap count is continued,
1445  * but does include the high COUNT_CONTINUED flag to allow for that.
1446  */
1447 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1448 {
1449 	pgoff_t offset = swp_offset(entry);
1450 	struct swap_cluster_info *ci;
1451 	int count;
1452 
1453 	ci = lock_cluster_or_swap_info(si, offset);
1454 	count = swap_count(si->swap_map[offset]);
1455 	unlock_cluster_or_swap_info(si, ci);
1456 	return count;
1457 }
1458 
1459 /*
1460  * How many references to @entry are currently swapped out?
1461  * This does not give an exact answer when swap count is continued,
1462  * but does include the high COUNT_CONTINUED flag to allow for that.
1463  */
1464 int __swp_swapcount(swp_entry_t entry)
1465 {
1466 	int count = 0;
1467 	struct swap_info_struct *si;
1468 
1469 	si = get_swap_device(entry);
1470 	if (si) {
1471 		count = swap_swapcount(si, entry);
1472 		put_swap_device(si);
1473 	}
1474 	return count;
1475 }
1476 
1477 /*
1478  * How many references to @entry are currently swapped out?
1479  * This considers COUNT_CONTINUED so it returns exact answer.
1480  */
1481 int swp_swapcount(swp_entry_t entry)
1482 {
1483 	int count, tmp_count, n;
1484 	struct swap_info_struct *p;
1485 	struct swap_cluster_info *ci;
1486 	struct page *page;
1487 	pgoff_t offset;
1488 	unsigned char *map;
1489 
1490 	p = _swap_info_get(entry);
1491 	if (!p)
1492 		return 0;
1493 
1494 	offset = swp_offset(entry);
1495 
1496 	ci = lock_cluster_or_swap_info(p, offset);
1497 
1498 	count = swap_count(p->swap_map[offset]);
1499 	if (!(count & COUNT_CONTINUED))
1500 		goto out;
1501 
1502 	count &= ~COUNT_CONTINUED;
1503 	n = SWAP_MAP_MAX + 1;
1504 
1505 	page = vmalloc_to_page(p->swap_map + offset);
1506 	offset &= ~PAGE_MASK;
1507 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1508 
1509 	do {
1510 		page = list_next_entry(page, lru);
1511 		map = kmap_atomic(page);
1512 		tmp_count = map[offset];
1513 		kunmap_atomic(map);
1514 
1515 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1516 		n *= (SWAP_CONT_MAX + 1);
1517 	} while (tmp_count & COUNT_CONTINUED);
1518 out:
1519 	unlock_cluster_or_swap_info(p, ci);
1520 	return count;
1521 }
1522 
1523 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1524 					 swp_entry_t entry)
1525 {
1526 	struct swap_cluster_info *ci;
1527 	unsigned char *map = si->swap_map;
1528 	unsigned long roffset = swp_offset(entry);
1529 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1530 	int i;
1531 	bool ret = false;
1532 
1533 	ci = lock_cluster_or_swap_info(si, offset);
1534 	if (!ci || !cluster_is_huge(ci)) {
1535 		if (swap_count(map[roffset]))
1536 			ret = true;
1537 		goto unlock_out;
1538 	}
1539 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1540 		if (swap_count(map[offset + i])) {
1541 			ret = true;
1542 			break;
1543 		}
1544 	}
1545 unlock_out:
1546 	unlock_cluster_or_swap_info(si, ci);
1547 	return ret;
1548 }
1549 
1550 static bool folio_swapped(struct folio *folio)
1551 {
1552 	swp_entry_t entry = folio_swap_entry(folio);
1553 	struct swap_info_struct *si = _swap_info_get(entry);
1554 
1555 	if (!si)
1556 		return false;
1557 
1558 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1559 		return swap_swapcount(si, entry) != 0;
1560 
1561 	return swap_page_trans_huge_swapped(si, entry);
1562 }
1563 
1564 /**
1565  * folio_free_swap() - Free the swap space used for this folio.
1566  * @folio: The folio to remove.
1567  *
1568  * If swap is getting full, or if there are no more mappings of this folio,
1569  * then call folio_free_swap to free its swap space.
1570  *
1571  * Return: true if we were able to release the swap space.
1572  */
1573 bool folio_free_swap(struct folio *folio)
1574 {
1575 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1576 
1577 	if (!folio_test_swapcache(folio))
1578 		return false;
1579 	if (folio_test_writeback(folio))
1580 		return false;
1581 	if (folio_swapped(folio))
1582 		return false;
1583 
1584 	/*
1585 	 * Once hibernation has begun to create its image of memory,
1586 	 * there's a danger that one of the calls to folio_free_swap()
1587 	 * - most probably a call from __try_to_reclaim_swap() while
1588 	 * hibernation is allocating its own swap pages for the image,
1589 	 * but conceivably even a call from memory reclaim - will free
1590 	 * the swap from a folio which has already been recorded in the
1591 	 * image as a clean swapcache folio, and then reuse its swap for
1592 	 * another page of the image.  On waking from hibernation, the
1593 	 * original folio might be freed under memory pressure, then
1594 	 * later read back in from swap, now with the wrong data.
1595 	 *
1596 	 * Hibernation suspends storage while it is writing the image
1597 	 * to disk so check that here.
1598 	 */
1599 	if (pm_suspended_storage())
1600 		return false;
1601 
1602 	delete_from_swap_cache(folio);
1603 	folio_set_dirty(folio);
1604 	return true;
1605 }
1606 
1607 /*
1608  * Free the swap entry like above, but also try to
1609  * free the page cache entry if it is the last user.
1610  */
1611 int free_swap_and_cache(swp_entry_t entry)
1612 {
1613 	struct swap_info_struct *p;
1614 	unsigned char count;
1615 
1616 	if (non_swap_entry(entry))
1617 		return 1;
1618 
1619 	p = _swap_info_get(entry);
1620 	if (p) {
1621 		count = __swap_entry_free(p, entry);
1622 		if (count == SWAP_HAS_CACHE &&
1623 		    !swap_page_trans_huge_swapped(p, entry))
1624 			__try_to_reclaim_swap(p, swp_offset(entry),
1625 					      TTRS_UNMAPPED | TTRS_FULL);
1626 	}
1627 	return p != NULL;
1628 }
1629 
1630 #ifdef CONFIG_HIBERNATION
1631 
1632 swp_entry_t get_swap_page_of_type(int type)
1633 {
1634 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1635 	swp_entry_t entry = {0};
1636 
1637 	if (!si)
1638 		goto fail;
1639 
1640 	/* This is called for allocating swap entry, not cache */
1641 	spin_lock(&si->lock);
1642 	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1643 		atomic_long_dec(&nr_swap_pages);
1644 	spin_unlock(&si->lock);
1645 fail:
1646 	return entry;
1647 }
1648 
1649 /*
1650  * Find the swap type that corresponds to given device (if any).
1651  *
1652  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1653  * from 0, in which the swap header is expected to be located.
1654  *
1655  * This is needed for the suspend to disk (aka swsusp).
1656  */
1657 int swap_type_of(dev_t device, sector_t offset)
1658 {
1659 	int type;
1660 
1661 	if (!device)
1662 		return -1;
1663 
1664 	spin_lock(&swap_lock);
1665 	for (type = 0; type < nr_swapfiles; type++) {
1666 		struct swap_info_struct *sis = swap_info[type];
1667 
1668 		if (!(sis->flags & SWP_WRITEOK))
1669 			continue;
1670 
1671 		if (device == sis->bdev->bd_dev) {
1672 			struct swap_extent *se = first_se(sis);
1673 
1674 			if (se->start_block == offset) {
1675 				spin_unlock(&swap_lock);
1676 				return type;
1677 			}
1678 		}
1679 	}
1680 	spin_unlock(&swap_lock);
1681 	return -ENODEV;
1682 }
1683 
1684 int find_first_swap(dev_t *device)
1685 {
1686 	int type;
1687 
1688 	spin_lock(&swap_lock);
1689 	for (type = 0; type < nr_swapfiles; type++) {
1690 		struct swap_info_struct *sis = swap_info[type];
1691 
1692 		if (!(sis->flags & SWP_WRITEOK))
1693 			continue;
1694 		*device = sis->bdev->bd_dev;
1695 		spin_unlock(&swap_lock);
1696 		return type;
1697 	}
1698 	spin_unlock(&swap_lock);
1699 	return -ENODEV;
1700 }
1701 
1702 /*
1703  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1704  * corresponding to given index in swap_info (swap type).
1705  */
1706 sector_t swapdev_block(int type, pgoff_t offset)
1707 {
1708 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1709 	struct swap_extent *se;
1710 
1711 	if (!si || !(si->flags & SWP_WRITEOK))
1712 		return 0;
1713 	se = offset_to_swap_extent(si, offset);
1714 	return se->start_block + (offset - se->start_page);
1715 }
1716 
1717 /*
1718  * Return either the total number of swap pages of given type, or the number
1719  * of free pages of that type (depending on @free)
1720  *
1721  * This is needed for software suspend
1722  */
1723 unsigned int count_swap_pages(int type, int free)
1724 {
1725 	unsigned int n = 0;
1726 
1727 	spin_lock(&swap_lock);
1728 	if ((unsigned int)type < nr_swapfiles) {
1729 		struct swap_info_struct *sis = swap_info[type];
1730 
1731 		spin_lock(&sis->lock);
1732 		if (sis->flags & SWP_WRITEOK) {
1733 			n = sis->pages;
1734 			if (free)
1735 				n -= sis->inuse_pages;
1736 		}
1737 		spin_unlock(&sis->lock);
1738 	}
1739 	spin_unlock(&swap_lock);
1740 	return n;
1741 }
1742 #endif /* CONFIG_HIBERNATION */
1743 
1744 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1745 {
1746 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1747 }
1748 
1749 /*
1750  * No need to decide whether this PTE shares the swap entry with others,
1751  * just let do_wp_page work it out if a write is requested later - to
1752  * force COW, vm_page_prot omits write permission from any private vma.
1753  */
1754 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1755 		unsigned long addr, swp_entry_t entry, struct folio *folio)
1756 {
1757 	struct page *page = folio_file_page(folio, swp_offset(entry));
1758 	struct page *swapcache;
1759 	spinlock_t *ptl;
1760 	pte_t *pte, new_pte;
1761 	bool hwposioned = false;
1762 	int ret = 1;
1763 
1764 	swapcache = page;
1765 	page = ksm_might_need_to_copy(page, vma, addr);
1766 	if (unlikely(!page))
1767 		return -ENOMEM;
1768 	else if (unlikely(PTR_ERR(page) == -EHWPOISON))
1769 		hwposioned = true;
1770 
1771 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1772 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1773 		ret = 0;
1774 		goto out;
1775 	}
1776 
1777 	if (unlikely(hwposioned || !PageUptodate(page))) {
1778 		swp_entry_t swp_entry;
1779 
1780 		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1781 		if (hwposioned) {
1782 			swp_entry = make_hwpoison_entry(swapcache);
1783 			page = swapcache;
1784 		} else {
1785 			swp_entry = make_swapin_error_entry();
1786 		}
1787 		new_pte = swp_entry_to_pte(swp_entry);
1788 		ret = 0;
1789 		goto setpte;
1790 	}
1791 
1792 	/* See do_swap_page() */
1793 	BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1794 	BUG_ON(PageAnon(page) && PageAnonExclusive(page));
1795 
1796 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1797 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1798 	get_page(page);
1799 	if (page == swapcache) {
1800 		rmap_t rmap_flags = RMAP_NONE;
1801 
1802 		/*
1803 		 * See do_swap_page(): PageWriteback() would be problematic.
1804 		 * However, we do a wait_on_page_writeback() just before this
1805 		 * call and have the page locked.
1806 		 */
1807 		VM_BUG_ON_PAGE(PageWriteback(page), page);
1808 		if (pte_swp_exclusive(*pte))
1809 			rmap_flags |= RMAP_EXCLUSIVE;
1810 
1811 		page_add_anon_rmap(page, vma, addr, rmap_flags);
1812 	} else { /* ksm created a completely new copy */
1813 		page_add_new_anon_rmap(page, vma, addr);
1814 		lru_cache_add_inactive_or_unevictable(page, vma);
1815 	}
1816 	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1817 	if (pte_swp_soft_dirty(*pte))
1818 		new_pte = pte_mksoft_dirty(new_pte);
1819 	if (pte_swp_uffd_wp(*pte))
1820 		new_pte = pte_mkuffd_wp(new_pte);
1821 setpte:
1822 	set_pte_at(vma->vm_mm, addr, pte, new_pte);
1823 	swap_free(entry);
1824 out:
1825 	pte_unmap_unlock(pte, ptl);
1826 	if (page != swapcache) {
1827 		unlock_page(page);
1828 		put_page(page);
1829 	}
1830 	return ret;
1831 }
1832 
1833 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1834 			unsigned long addr, unsigned long end,
1835 			unsigned int type)
1836 {
1837 	swp_entry_t entry;
1838 	pte_t *pte;
1839 	struct swap_info_struct *si;
1840 	int ret = 0;
1841 
1842 	si = swap_info[type];
1843 	pte = pte_offset_map(pmd, addr);
1844 	do {
1845 		struct folio *folio;
1846 		unsigned long offset;
1847 		unsigned char swp_count;
1848 
1849 		if (!is_swap_pte(*pte))
1850 			continue;
1851 
1852 		entry = pte_to_swp_entry(*pte);
1853 		if (swp_type(entry) != type)
1854 			continue;
1855 
1856 		offset = swp_offset(entry);
1857 		pte_unmap(pte);
1858 		folio = swap_cache_get_folio(entry, vma, addr);
1859 		if (!folio) {
1860 			struct page *page;
1861 			struct vm_fault vmf = {
1862 				.vma = vma,
1863 				.address = addr,
1864 				.real_address = addr,
1865 				.pmd = pmd,
1866 			};
1867 
1868 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1869 						&vmf);
1870 			if (page)
1871 				folio = page_folio(page);
1872 		}
1873 		if (!folio) {
1874 			swp_count = READ_ONCE(si->swap_map[offset]);
1875 			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1876 				goto try_next;
1877 
1878 			return -ENOMEM;
1879 		}
1880 
1881 		folio_lock(folio);
1882 		folio_wait_writeback(folio);
1883 		ret = unuse_pte(vma, pmd, addr, entry, folio);
1884 		if (ret < 0) {
1885 			folio_unlock(folio);
1886 			folio_put(folio);
1887 			goto out;
1888 		}
1889 
1890 		folio_free_swap(folio);
1891 		folio_unlock(folio);
1892 		folio_put(folio);
1893 try_next:
1894 		pte = pte_offset_map(pmd, addr);
1895 	} while (pte++, addr += PAGE_SIZE, addr != end);
1896 	pte_unmap(pte - 1);
1897 
1898 	ret = 0;
1899 out:
1900 	return ret;
1901 }
1902 
1903 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1904 				unsigned long addr, unsigned long end,
1905 				unsigned int type)
1906 {
1907 	pmd_t *pmd;
1908 	unsigned long next;
1909 	int ret;
1910 
1911 	pmd = pmd_offset(pud, addr);
1912 	do {
1913 		cond_resched();
1914 		next = pmd_addr_end(addr, end);
1915 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1916 			continue;
1917 		ret = unuse_pte_range(vma, pmd, addr, next, type);
1918 		if (ret)
1919 			return ret;
1920 	} while (pmd++, addr = next, addr != end);
1921 	return 0;
1922 }
1923 
1924 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1925 				unsigned long addr, unsigned long end,
1926 				unsigned int type)
1927 {
1928 	pud_t *pud;
1929 	unsigned long next;
1930 	int ret;
1931 
1932 	pud = pud_offset(p4d, addr);
1933 	do {
1934 		next = pud_addr_end(addr, end);
1935 		if (pud_none_or_clear_bad(pud))
1936 			continue;
1937 		ret = unuse_pmd_range(vma, pud, addr, next, type);
1938 		if (ret)
1939 			return ret;
1940 	} while (pud++, addr = next, addr != end);
1941 	return 0;
1942 }
1943 
1944 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1945 				unsigned long addr, unsigned long end,
1946 				unsigned int type)
1947 {
1948 	p4d_t *p4d;
1949 	unsigned long next;
1950 	int ret;
1951 
1952 	p4d = p4d_offset(pgd, addr);
1953 	do {
1954 		next = p4d_addr_end(addr, end);
1955 		if (p4d_none_or_clear_bad(p4d))
1956 			continue;
1957 		ret = unuse_pud_range(vma, p4d, addr, next, type);
1958 		if (ret)
1959 			return ret;
1960 	} while (p4d++, addr = next, addr != end);
1961 	return 0;
1962 }
1963 
1964 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1965 {
1966 	pgd_t *pgd;
1967 	unsigned long addr, end, next;
1968 	int ret;
1969 
1970 	addr = vma->vm_start;
1971 	end = vma->vm_end;
1972 
1973 	pgd = pgd_offset(vma->vm_mm, addr);
1974 	do {
1975 		next = pgd_addr_end(addr, end);
1976 		if (pgd_none_or_clear_bad(pgd))
1977 			continue;
1978 		ret = unuse_p4d_range(vma, pgd, addr, next, type);
1979 		if (ret)
1980 			return ret;
1981 	} while (pgd++, addr = next, addr != end);
1982 	return 0;
1983 }
1984 
1985 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1986 {
1987 	struct vm_area_struct *vma;
1988 	int ret = 0;
1989 	VMA_ITERATOR(vmi, mm, 0);
1990 
1991 	mmap_read_lock(mm);
1992 	for_each_vma(vmi, vma) {
1993 		if (vma->anon_vma) {
1994 			ret = unuse_vma(vma, type);
1995 			if (ret)
1996 				break;
1997 		}
1998 
1999 		cond_resched();
2000 	}
2001 	mmap_read_unlock(mm);
2002 	return ret;
2003 }
2004 
2005 /*
2006  * Scan swap_map from current position to next entry still in use.
2007  * Return 0 if there are no inuse entries after prev till end of
2008  * the map.
2009  */
2010 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2011 					unsigned int prev)
2012 {
2013 	unsigned int i;
2014 	unsigned char count;
2015 
2016 	/*
2017 	 * No need for swap_lock here: we're just looking
2018 	 * for whether an entry is in use, not modifying it; false
2019 	 * hits are okay, and sys_swapoff() has already prevented new
2020 	 * allocations from this area (while holding swap_lock).
2021 	 */
2022 	for (i = prev + 1; i < si->max; i++) {
2023 		count = READ_ONCE(si->swap_map[i]);
2024 		if (count && swap_count(count) != SWAP_MAP_BAD)
2025 			break;
2026 		if ((i % LATENCY_LIMIT) == 0)
2027 			cond_resched();
2028 	}
2029 
2030 	if (i == si->max)
2031 		i = 0;
2032 
2033 	return i;
2034 }
2035 
2036 static int try_to_unuse(unsigned int type)
2037 {
2038 	struct mm_struct *prev_mm;
2039 	struct mm_struct *mm;
2040 	struct list_head *p;
2041 	int retval = 0;
2042 	struct swap_info_struct *si = swap_info[type];
2043 	struct folio *folio;
2044 	swp_entry_t entry;
2045 	unsigned int i;
2046 
2047 	if (!READ_ONCE(si->inuse_pages))
2048 		return 0;
2049 
2050 retry:
2051 	retval = shmem_unuse(type);
2052 	if (retval)
2053 		return retval;
2054 
2055 	prev_mm = &init_mm;
2056 	mmget(prev_mm);
2057 
2058 	spin_lock(&mmlist_lock);
2059 	p = &init_mm.mmlist;
2060 	while (READ_ONCE(si->inuse_pages) &&
2061 	       !signal_pending(current) &&
2062 	       (p = p->next) != &init_mm.mmlist) {
2063 
2064 		mm = list_entry(p, struct mm_struct, mmlist);
2065 		if (!mmget_not_zero(mm))
2066 			continue;
2067 		spin_unlock(&mmlist_lock);
2068 		mmput(prev_mm);
2069 		prev_mm = mm;
2070 		retval = unuse_mm(mm, type);
2071 		if (retval) {
2072 			mmput(prev_mm);
2073 			return retval;
2074 		}
2075 
2076 		/*
2077 		 * Make sure that we aren't completely killing
2078 		 * interactive performance.
2079 		 */
2080 		cond_resched();
2081 		spin_lock(&mmlist_lock);
2082 	}
2083 	spin_unlock(&mmlist_lock);
2084 
2085 	mmput(prev_mm);
2086 
2087 	i = 0;
2088 	while (READ_ONCE(si->inuse_pages) &&
2089 	       !signal_pending(current) &&
2090 	       (i = find_next_to_unuse(si, i)) != 0) {
2091 
2092 		entry = swp_entry(type, i);
2093 		folio = filemap_get_folio(swap_address_space(entry), i);
2094 		if (IS_ERR(folio))
2095 			continue;
2096 
2097 		/*
2098 		 * It is conceivable that a racing task removed this folio from
2099 		 * swap cache just before we acquired the page lock. The folio
2100 		 * might even be back in swap cache on another swap area. But
2101 		 * that is okay, folio_free_swap() only removes stale folios.
2102 		 */
2103 		folio_lock(folio);
2104 		folio_wait_writeback(folio);
2105 		folio_free_swap(folio);
2106 		folio_unlock(folio);
2107 		folio_put(folio);
2108 	}
2109 
2110 	/*
2111 	 * Lets check again to see if there are still swap entries in the map.
2112 	 * If yes, we would need to do retry the unuse logic again.
2113 	 * Under global memory pressure, swap entries can be reinserted back
2114 	 * into process space after the mmlist loop above passes over them.
2115 	 *
2116 	 * Limit the number of retries? No: when mmget_not_zero()
2117 	 * above fails, that mm is likely to be freeing swap from
2118 	 * exit_mmap(), which proceeds at its own independent pace;
2119 	 * and even shmem_writepage() could have been preempted after
2120 	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2121 	 * and robust (though cpu-intensive) just to keep retrying.
2122 	 */
2123 	if (READ_ONCE(si->inuse_pages)) {
2124 		if (!signal_pending(current))
2125 			goto retry;
2126 		return -EINTR;
2127 	}
2128 
2129 	return 0;
2130 }
2131 
2132 /*
2133  * After a successful try_to_unuse, if no swap is now in use, we know
2134  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2135  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2136  * added to the mmlist just after page_duplicate - before would be racy.
2137  */
2138 static void drain_mmlist(void)
2139 {
2140 	struct list_head *p, *next;
2141 	unsigned int type;
2142 
2143 	for (type = 0; type < nr_swapfiles; type++)
2144 		if (swap_info[type]->inuse_pages)
2145 			return;
2146 	spin_lock(&mmlist_lock);
2147 	list_for_each_safe(p, next, &init_mm.mmlist)
2148 		list_del_init(p);
2149 	spin_unlock(&mmlist_lock);
2150 }
2151 
2152 /*
2153  * Free all of a swapdev's extent information
2154  */
2155 static void destroy_swap_extents(struct swap_info_struct *sis)
2156 {
2157 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2158 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2159 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2160 
2161 		rb_erase(rb, &sis->swap_extent_root);
2162 		kfree(se);
2163 	}
2164 
2165 	if (sis->flags & SWP_ACTIVATED) {
2166 		struct file *swap_file = sis->swap_file;
2167 		struct address_space *mapping = swap_file->f_mapping;
2168 
2169 		sis->flags &= ~SWP_ACTIVATED;
2170 		if (mapping->a_ops->swap_deactivate)
2171 			mapping->a_ops->swap_deactivate(swap_file);
2172 	}
2173 }
2174 
2175 /*
2176  * Add a block range (and the corresponding page range) into this swapdev's
2177  * extent tree.
2178  *
2179  * This function rather assumes that it is called in ascending page order.
2180  */
2181 int
2182 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2183 		unsigned long nr_pages, sector_t start_block)
2184 {
2185 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2186 	struct swap_extent *se;
2187 	struct swap_extent *new_se;
2188 
2189 	/*
2190 	 * place the new node at the right most since the
2191 	 * function is called in ascending page order.
2192 	 */
2193 	while (*link) {
2194 		parent = *link;
2195 		link = &parent->rb_right;
2196 	}
2197 
2198 	if (parent) {
2199 		se = rb_entry(parent, struct swap_extent, rb_node);
2200 		BUG_ON(se->start_page + se->nr_pages != start_page);
2201 		if (se->start_block + se->nr_pages == start_block) {
2202 			/* Merge it */
2203 			se->nr_pages += nr_pages;
2204 			return 0;
2205 		}
2206 	}
2207 
2208 	/* No merge, insert a new extent. */
2209 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2210 	if (new_se == NULL)
2211 		return -ENOMEM;
2212 	new_se->start_page = start_page;
2213 	new_se->nr_pages = nr_pages;
2214 	new_se->start_block = start_block;
2215 
2216 	rb_link_node(&new_se->rb_node, parent, link);
2217 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2218 	return 1;
2219 }
2220 EXPORT_SYMBOL_GPL(add_swap_extent);
2221 
2222 /*
2223  * A `swap extent' is a simple thing which maps a contiguous range of pages
2224  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2225  * built at swapon time and is then used at swap_writepage/swap_readpage
2226  * time for locating where on disk a page belongs.
2227  *
2228  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2229  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2230  * swap files identically.
2231  *
2232  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2233  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2234  * swapfiles are handled *identically* after swapon time.
2235  *
2236  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2237  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2238  * blocks are found which do not fall within the PAGE_SIZE alignment
2239  * requirements, they are simply tossed out - we will never use those blocks
2240  * for swapping.
2241  *
2242  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2243  * prevents users from writing to the swap device, which will corrupt memory.
2244  *
2245  * The amount of disk space which a single swap extent represents varies.
2246  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2247  * extents in the rbtree. - akpm.
2248  */
2249 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2250 {
2251 	struct file *swap_file = sis->swap_file;
2252 	struct address_space *mapping = swap_file->f_mapping;
2253 	struct inode *inode = mapping->host;
2254 	int ret;
2255 
2256 	if (S_ISBLK(inode->i_mode)) {
2257 		ret = add_swap_extent(sis, 0, sis->max, 0);
2258 		*span = sis->pages;
2259 		return ret;
2260 	}
2261 
2262 	if (mapping->a_ops->swap_activate) {
2263 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2264 		if (ret < 0)
2265 			return ret;
2266 		sis->flags |= SWP_ACTIVATED;
2267 		if ((sis->flags & SWP_FS_OPS) &&
2268 		    sio_pool_init() != 0) {
2269 			destroy_swap_extents(sis);
2270 			return -ENOMEM;
2271 		}
2272 		return ret;
2273 	}
2274 
2275 	return generic_swapfile_activate(sis, swap_file, span);
2276 }
2277 
2278 static int swap_node(struct swap_info_struct *p)
2279 {
2280 	struct block_device *bdev;
2281 
2282 	if (p->bdev)
2283 		bdev = p->bdev;
2284 	else
2285 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2286 
2287 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2288 }
2289 
2290 static void setup_swap_info(struct swap_info_struct *p, int prio,
2291 			    unsigned char *swap_map,
2292 			    struct swap_cluster_info *cluster_info)
2293 {
2294 	int i;
2295 
2296 	if (prio >= 0)
2297 		p->prio = prio;
2298 	else
2299 		p->prio = --least_priority;
2300 	/*
2301 	 * the plist prio is negated because plist ordering is
2302 	 * low-to-high, while swap ordering is high-to-low
2303 	 */
2304 	p->list.prio = -p->prio;
2305 	for_each_node(i) {
2306 		if (p->prio >= 0)
2307 			p->avail_lists[i].prio = -p->prio;
2308 		else {
2309 			if (swap_node(p) == i)
2310 				p->avail_lists[i].prio = 1;
2311 			else
2312 				p->avail_lists[i].prio = -p->prio;
2313 		}
2314 	}
2315 	p->swap_map = swap_map;
2316 	p->cluster_info = cluster_info;
2317 }
2318 
2319 static void _enable_swap_info(struct swap_info_struct *p)
2320 {
2321 	p->flags |= SWP_WRITEOK;
2322 	atomic_long_add(p->pages, &nr_swap_pages);
2323 	total_swap_pages += p->pages;
2324 
2325 	assert_spin_locked(&swap_lock);
2326 	/*
2327 	 * both lists are plists, and thus priority ordered.
2328 	 * swap_active_head needs to be priority ordered for swapoff(),
2329 	 * which on removal of any swap_info_struct with an auto-assigned
2330 	 * (i.e. negative) priority increments the auto-assigned priority
2331 	 * of any lower-priority swap_info_structs.
2332 	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2333 	 * which allocates swap pages from the highest available priority
2334 	 * swap_info_struct.
2335 	 */
2336 	plist_add(&p->list, &swap_active_head);
2337 	add_to_avail_list(p);
2338 }
2339 
2340 static void enable_swap_info(struct swap_info_struct *p, int prio,
2341 				unsigned char *swap_map,
2342 				struct swap_cluster_info *cluster_info,
2343 				unsigned long *frontswap_map)
2344 {
2345 	if (IS_ENABLED(CONFIG_FRONTSWAP))
2346 		frontswap_init(p->type, frontswap_map);
2347 	spin_lock(&swap_lock);
2348 	spin_lock(&p->lock);
2349 	setup_swap_info(p, prio, swap_map, cluster_info);
2350 	spin_unlock(&p->lock);
2351 	spin_unlock(&swap_lock);
2352 	/*
2353 	 * Finished initializing swap device, now it's safe to reference it.
2354 	 */
2355 	percpu_ref_resurrect(&p->users);
2356 	spin_lock(&swap_lock);
2357 	spin_lock(&p->lock);
2358 	_enable_swap_info(p);
2359 	spin_unlock(&p->lock);
2360 	spin_unlock(&swap_lock);
2361 }
2362 
2363 static void reinsert_swap_info(struct swap_info_struct *p)
2364 {
2365 	spin_lock(&swap_lock);
2366 	spin_lock(&p->lock);
2367 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2368 	_enable_swap_info(p);
2369 	spin_unlock(&p->lock);
2370 	spin_unlock(&swap_lock);
2371 }
2372 
2373 bool has_usable_swap(void)
2374 {
2375 	bool ret = true;
2376 
2377 	spin_lock(&swap_lock);
2378 	if (plist_head_empty(&swap_active_head))
2379 		ret = false;
2380 	spin_unlock(&swap_lock);
2381 	return ret;
2382 }
2383 
2384 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2385 {
2386 	struct swap_info_struct *p = NULL;
2387 	unsigned char *swap_map;
2388 	struct swap_cluster_info *cluster_info;
2389 	unsigned long *frontswap_map;
2390 	struct file *swap_file, *victim;
2391 	struct address_space *mapping;
2392 	struct inode *inode;
2393 	struct filename *pathname;
2394 	int err, found = 0;
2395 	unsigned int old_block_size;
2396 
2397 	if (!capable(CAP_SYS_ADMIN))
2398 		return -EPERM;
2399 
2400 	BUG_ON(!current->mm);
2401 
2402 	pathname = getname(specialfile);
2403 	if (IS_ERR(pathname))
2404 		return PTR_ERR(pathname);
2405 
2406 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2407 	err = PTR_ERR(victim);
2408 	if (IS_ERR(victim))
2409 		goto out;
2410 
2411 	mapping = victim->f_mapping;
2412 	spin_lock(&swap_lock);
2413 	plist_for_each_entry(p, &swap_active_head, list) {
2414 		if (p->flags & SWP_WRITEOK) {
2415 			if (p->swap_file->f_mapping == mapping) {
2416 				found = 1;
2417 				break;
2418 			}
2419 		}
2420 	}
2421 	if (!found) {
2422 		err = -EINVAL;
2423 		spin_unlock(&swap_lock);
2424 		goto out_dput;
2425 	}
2426 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2427 		vm_unacct_memory(p->pages);
2428 	else {
2429 		err = -ENOMEM;
2430 		spin_unlock(&swap_lock);
2431 		goto out_dput;
2432 	}
2433 	spin_lock(&p->lock);
2434 	del_from_avail_list(p);
2435 	if (p->prio < 0) {
2436 		struct swap_info_struct *si = p;
2437 		int nid;
2438 
2439 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2440 			si->prio++;
2441 			si->list.prio--;
2442 			for_each_node(nid) {
2443 				if (si->avail_lists[nid].prio != 1)
2444 					si->avail_lists[nid].prio--;
2445 			}
2446 		}
2447 		least_priority++;
2448 	}
2449 	plist_del(&p->list, &swap_active_head);
2450 	atomic_long_sub(p->pages, &nr_swap_pages);
2451 	total_swap_pages -= p->pages;
2452 	p->flags &= ~SWP_WRITEOK;
2453 	spin_unlock(&p->lock);
2454 	spin_unlock(&swap_lock);
2455 
2456 	disable_swap_slots_cache_lock();
2457 
2458 	set_current_oom_origin();
2459 	err = try_to_unuse(p->type);
2460 	clear_current_oom_origin();
2461 
2462 	if (err) {
2463 		/* re-insert swap space back into swap_list */
2464 		reinsert_swap_info(p);
2465 		reenable_swap_slots_cache_unlock();
2466 		goto out_dput;
2467 	}
2468 
2469 	reenable_swap_slots_cache_unlock();
2470 
2471 	/*
2472 	 * Wait for swap operations protected by get/put_swap_device()
2473 	 * to complete.
2474 	 *
2475 	 * We need synchronize_rcu() here to protect the accessing to
2476 	 * the swap cache data structure.
2477 	 */
2478 	percpu_ref_kill(&p->users);
2479 	synchronize_rcu();
2480 	wait_for_completion(&p->comp);
2481 
2482 	flush_work(&p->discard_work);
2483 
2484 	destroy_swap_extents(p);
2485 	if (p->flags & SWP_CONTINUED)
2486 		free_swap_count_continuations(p);
2487 
2488 	if (!p->bdev || !bdev_nonrot(p->bdev))
2489 		atomic_dec(&nr_rotate_swap);
2490 
2491 	mutex_lock(&swapon_mutex);
2492 	spin_lock(&swap_lock);
2493 	spin_lock(&p->lock);
2494 	drain_mmlist();
2495 
2496 	/* wait for anyone still in scan_swap_map_slots */
2497 	p->highest_bit = 0;		/* cuts scans short */
2498 	while (p->flags >= SWP_SCANNING) {
2499 		spin_unlock(&p->lock);
2500 		spin_unlock(&swap_lock);
2501 		schedule_timeout_uninterruptible(1);
2502 		spin_lock(&swap_lock);
2503 		spin_lock(&p->lock);
2504 	}
2505 
2506 	swap_file = p->swap_file;
2507 	old_block_size = p->old_block_size;
2508 	p->swap_file = NULL;
2509 	p->max = 0;
2510 	swap_map = p->swap_map;
2511 	p->swap_map = NULL;
2512 	cluster_info = p->cluster_info;
2513 	p->cluster_info = NULL;
2514 	frontswap_map = frontswap_map_get(p);
2515 	spin_unlock(&p->lock);
2516 	spin_unlock(&swap_lock);
2517 	arch_swap_invalidate_area(p->type);
2518 	frontswap_invalidate_area(p->type);
2519 	frontswap_map_set(p, NULL);
2520 	mutex_unlock(&swapon_mutex);
2521 	free_percpu(p->percpu_cluster);
2522 	p->percpu_cluster = NULL;
2523 	free_percpu(p->cluster_next_cpu);
2524 	p->cluster_next_cpu = NULL;
2525 	vfree(swap_map);
2526 	kvfree(cluster_info);
2527 	kvfree(frontswap_map);
2528 	/* Destroy swap account information */
2529 	swap_cgroup_swapoff(p->type);
2530 	exit_swap_address_space(p->type);
2531 
2532 	inode = mapping->host;
2533 	if (S_ISBLK(inode->i_mode)) {
2534 		struct block_device *bdev = I_BDEV(inode);
2535 
2536 		set_blocksize(bdev, old_block_size);
2537 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2538 	}
2539 
2540 	inode_lock(inode);
2541 	inode->i_flags &= ~S_SWAPFILE;
2542 	inode_unlock(inode);
2543 	filp_close(swap_file, NULL);
2544 
2545 	/*
2546 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2547 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2548 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2549 	 */
2550 	spin_lock(&swap_lock);
2551 	p->flags = 0;
2552 	spin_unlock(&swap_lock);
2553 
2554 	err = 0;
2555 	atomic_inc(&proc_poll_event);
2556 	wake_up_interruptible(&proc_poll_wait);
2557 
2558 out_dput:
2559 	filp_close(victim, NULL);
2560 out:
2561 	putname(pathname);
2562 	return err;
2563 }
2564 
2565 #ifdef CONFIG_PROC_FS
2566 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2567 {
2568 	struct seq_file *seq = file->private_data;
2569 
2570 	poll_wait(file, &proc_poll_wait, wait);
2571 
2572 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2573 		seq->poll_event = atomic_read(&proc_poll_event);
2574 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2575 	}
2576 
2577 	return EPOLLIN | EPOLLRDNORM;
2578 }
2579 
2580 /* iterator */
2581 static void *swap_start(struct seq_file *swap, loff_t *pos)
2582 {
2583 	struct swap_info_struct *si;
2584 	int type;
2585 	loff_t l = *pos;
2586 
2587 	mutex_lock(&swapon_mutex);
2588 
2589 	if (!l)
2590 		return SEQ_START_TOKEN;
2591 
2592 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2593 		if (!(si->flags & SWP_USED) || !si->swap_map)
2594 			continue;
2595 		if (!--l)
2596 			return si;
2597 	}
2598 
2599 	return NULL;
2600 }
2601 
2602 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2603 {
2604 	struct swap_info_struct *si = v;
2605 	int type;
2606 
2607 	if (v == SEQ_START_TOKEN)
2608 		type = 0;
2609 	else
2610 		type = si->type + 1;
2611 
2612 	++(*pos);
2613 	for (; (si = swap_type_to_swap_info(type)); type++) {
2614 		if (!(si->flags & SWP_USED) || !si->swap_map)
2615 			continue;
2616 		return si;
2617 	}
2618 
2619 	return NULL;
2620 }
2621 
2622 static void swap_stop(struct seq_file *swap, void *v)
2623 {
2624 	mutex_unlock(&swapon_mutex);
2625 }
2626 
2627 static int swap_show(struct seq_file *swap, void *v)
2628 {
2629 	struct swap_info_struct *si = v;
2630 	struct file *file;
2631 	int len;
2632 	unsigned long bytes, inuse;
2633 
2634 	if (si == SEQ_START_TOKEN) {
2635 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2636 		return 0;
2637 	}
2638 
2639 	bytes = si->pages << (PAGE_SHIFT - 10);
2640 	inuse = READ_ONCE(si->inuse_pages) << (PAGE_SHIFT - 10);
2641 
2642 	file = si->swap_file;
2643 	len = seq_file_path(swap, file, " \t\n\\");
2644 	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2645 			len < 40 ? 40 - len : 1, " ",
2646 			S_ISBLK(file_inode(file)->i_mode) ?
2647 				"partition" : "file\t",
2648 			bytes, bytes < 10000000 ? "\t" : "",
2649 			inuse, inuse < 10000000 ? "\t" : "",
2650 			si->prio);
2651 	return 0;
2652 }
2653 
2654 static const struct seq_operations swaps_op = {
2655 	.start =	swap_start,
2656 	.next =		swap_next,
2657 	.stop =		swap_stop,
2658 	.show =		swap_show
2659 };
2660 
2661 static int swaps_open(struct inode *inode, struct file *file)
2662 {
2663 	struct seq_file *seq;
2664 	int ret;
2665 
2666 	ret = seq_open(file, &swaps_op);
2667 	if (ret)
2668 		return ret;
2669 
2670 	seq = file->private_data;
2671 	seq->poll_event = atomic_read(&proc_poll_event);
2672 	return 0;
2673 }
2674 
2675 static const struct proc_ops swaps_proc_ops = {
2676 	.proc_flags	= PROC_ENTRY_PERMANENT,
2677 	.proc_open	= swaps_open,
2678 	.proc_read	= seq_read,
2679 	.proc_lseek	= seq_lseek,
2680 	.proc_release	= seq_release,
2681 	.proc_poll	= swaps_poll,
2682 };
2683 
2684 static int __init procswaps_init(void)
2685 {
2686 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2687 	return 0;
2688 }
2689 __initcall(procswaps_init);
2690 #endif /* CONFIG_PROC_FS */
2691 
2692 #ifdef MAX_SWAPFILES_CHECK
2693 static int __init max_swapfiles_check(void)
2694 {
2695 	MAX_SWAPFILES_CHECK();
2696 	return 0;
2697 }
2698 late_initcall(max_swapfiles_check);
2699 #endif
2700 
2701 static struct swap_info_struct *alloc_swap_info(void)
2702 {
2703 	struct swap_info_struct *p;
2704 	struct swap_info_struct *defer = NULL;
2705 	unsigned int type;
2706 	int i;
2707 
2708 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2709 	if (!p)
2710 		return ERR_PTR(-ENOMEM);
2711 
2712 	if (percpu_ref_init(&p->users, swap_users_ref_free,
2713 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2714 		kvfree(p);
2715 		return ERR_PTR(-ENOMEM);
2716 	}
2717 
2718 	spin_lock(&swap_lock);
2719 	for (type = 0; type < nr_swapfiles; type++) {
2720 		if (!(swap_info[type]->flags & SWP_USED))
2721 			break;
2722 	}
2723 	if (type >= MAX_SWAPFILES) {
2724 		spin_unlock(&swap_lock);
2725 		percpu_ref_exit(&p->users);
2726 		kvfree(p);
2727 		return ERR_PTR(-EPERM);
2728 	}
2729 	if (type >= nr_swapfiles) {
2730 		p->type = type;
2731 		/*
2732 		 * Publish the swap_info_struct after initializing it.
2733 		 * Note that kvzalloc() above zeroes all its fields.
2734 		 */
2735 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2736 		nr_swapfiles++;
2737 	} else {
2738 		defer = p;
2739 		p = swap_info[type];
2740 		/*
2741 		 * Do not memset this entry: a racing procfs swap_next()
2742 		 * would be relying on p->type to remain valid.
2743 		 */
2744 	}
2745 	p->swap_extent_root = RB_ROOT;
2746 	plist_node_init(&p->list, 0);
2747 	for_each_node(i)
2748 		plist_node_init(&p->avail_lists[i], 0);
2749 	p->flags = SWP_USED;
2750 	spin_unlock(&swap_lock);
2751 	if (defer) {
2752 		percpu_ref_exit(&defer->users);
2753 		kvfree(defer);
2754 	}
2755 	spin_lock_init(&p->lock);
2756 	spin_lock_init(&p->cont_lock);
2757 	init_completion(&p->comp);
2758 
2759 	return p;
2760 }
2761 
2762 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2763 {
2764 	int error;
2765 
2766 	if (S_ISBLK(inode->i_mode)) {
2767 		p->bdev = blkdev_get_by_dev(inode->i_rdev,
2768 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2769 		if (IS_ERR(p->bdev)) {
2770 			error = PTR_ERR(p->bdev);
2771 			p->bdev = NULL;
2772 			return error;
2773 		}
2774 		p->old_block_size = block_size(p->bdev);
2775 		error = set_blocksize(p->bdev, PAGE_SIZE);
2776 		if (error < 0)
2777 			return error;
2778 		/*
2779 		 * Zoned block devices contain zones that have a sequential
2780 		 * write only restriction.  Hence zoned block devices are not
2781 		 * suitable for swapping.  Disallow them here.
2782 		 */
2783 		if (bdev_is_zoned(p->bdev))
2784 			return -EINVAL;
2785 		p->flags |= SWP_BLKDEV;
2786 	} else if (S_ISREG(inode->i_mode)) {
2787 		p->bdev = inode->i_sb->s_bdev;
2788 	}
2789 
2790 	return 0;
2791 }
2792 
2793 
2794 /*
2795  * Find out how many pages are allowed for a single swap device. There
2796  * are two limiting factors:
2797  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2798  * 2) the number of bits in the swap pte, as defined by the different
2799  * architectures.
2800  *
2801  * In order to find the largest possible bit mask, a swap entry with
2802  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2803  * decoded to a swp_entry_t again, and finally the swap offset is
2804  * extracted.
2805  *
2806  * This will mask all the bits from the initial ~0UL mask that can't
2807  * be encoded in either the swp_entry_t or the architecture definition
2808  * of a swap pte.
2809  */
2810 unsigned long generic_max_swapfile_size(void)
2811 {
2812 	return swp_offset(pte_to_swp_entry(
2813 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2814 }
2815 
2816 /* Can be overridden by an architecture for additional checks. */
2817 __weak unsigned long arch_max_swapfile_size(void)
2818 {
2819 	return generic_max_swapfile_size();
2820 }
2821 
2822 static unsigned long read_swap_header(struct swap_info_struct *p,
2823 					union swap_header *swap_header,
2824 					struct inode *inode)
2825 {
2826 	int i;
2827 	unsigned long maxpages;
2828 	unsigned long swapfilepages;
2829 	unsigned long last_page;
2830 
2831 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2832 		pr_err("Unable to find swap-space signature\n");
2833 		return 0;
2834 	}
2835 
2836 	/* swap partition endianness hack... */
2837 	if (swab32(swap_header->info.version) == 1) {
2838 		swab32s(&swap_header->info.version);
2839 		swab32s(&swap_header->info.last_page);
2840 		swab32s(&swap_header->info.nr_badpages);
2841 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2842 			return 0;
2843 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2844 			swab32s(&swap_header->info.badpages[i]);
2845 	}
2846 	/* Check the swap header's sub-version */
2847 	if (swap_header->info.version != 1) {
2848 		pr_warn("Unable to handle swap header version %d\n",
2849 			swap_header->info.version);
2850 		return 0;
2851 	}
2852 
2853 	p->lowest_bit  = 1;
2854 	p->cluster_next = 1;
2855 	p->cluster_nr = 0;
2856 
2857 	maxpages = swapfile_maximum_size;
2858 	last_page = swap_header->info.last_page;
2859 	if (!last_page) {
2860 		pr_warn("Empty swap-file\n");
2861 		return 0;
2862 	}
2863 	if (last_page > maxpages) {
2864 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2865 			maxpages << (PAGE_SHIFT - 10),
2866 			last_page << (PAGE_SHIFT - 10));
2867 	}
2868 	if (maxpages > last_page) {
2869 		maxpages = last_page + 1;
2870 		/* p->max is an unsigned int: don't overflow it */
2871 		if ((unsigned int)maxpages == 0)
2872 			maxpages = UINT_MAX;
2873 	}
2874 	p->highest_bit = maxpages - 1;
2875 
2876 	if (!maxpages)
2877 		return 0;
2878 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2879 	if (swapfilepages && maxpages > swapfilepages) {
2880 		pr_warn("Swap area shorter than signature indicates\n");
2881 		return 0;
2882 	}
2883 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2884 		return 0;
2885 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2886 		return 0;
2887 
2888 	return maxpages;
2889 }
2890 
2891 #define SWAP_CLUSTER_INFO_COLS						\
2892 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2893 #define SWAP_CLUSTER_SPACE_COLS						\
2894 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2895 #define SWAP_CLUSTER_COLS						\
2896 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2897 
2898 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2899 					union swap_header *swap_header,
2900 					unsigned char *swap_map,
2901 					struct swap_cluster_info *cluster_info,
2902 					unsigned long maxpages,
2903 					sector_t *span)
2904 {
2905 	unsigned int j, k;
2906 	unsigned int nr_good_pages;
2907 	int nr_extents;
2908 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2909 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2910 	unsigned long i, idx;
2911 
2912 	nr_good_pages = maxpages - 1;	/* omit header page */
2913 
2914 	cluster_list_init(&p->free_clusters);
2915 	cluster_list_init(&p->discard_clusters);
2916 
2917 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2918 		unsigned int page_nr = swap_header->info.badpages[i];
2919 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2920 			return -EINVAL;
2921 		if (page_nr < maxpages) {
2922 			swap_map[page_nr] = SWAP_MAP_BAD;
2923 			nr_good_pages--;
2924 			/*
2925 			 * Haven't marked the cluster free yet, no list
2926 			 * operation involved
2927 			 */
2928 			inc_cluster_info_page(p, cluster_info, page_nr);
2929 		}
2930 	}
2931 
2932 	/* Haven't marked the cluster free yet, no list operation involved */
2933 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2934 		inc_cluster_info_page(p, cluster_info, i);
2935 
2936 	if (nr_good_pages) {
2937 		swap_map[0] = SWAP_MAP_BAD;
2938 		/*
2939 		 * Not mark the cluster free yet, no list
2940 		 * operation involved
2941 		 */
2942 		inc_cluster_info_page(p, cluster_info, 0);
2943 		p->max = maxpages;
2944 		p->pages = nr_good_pages;
2945 		nr_extents = setup_swap_extents(p, span);
2946 		if (nr_extents < 0)
2947 			return nr_extents;
2948 		nr_good_pages = p->pages;
2949 	}
2950 	if (!nr_good_pages) {
2951 		pr_warn("Empty swap-file\n");
2952 		return -EINVAL;
2953 	}
2954 
2955 	if (!cluster_info)
2956 		return nr_extents;
2957 
2958 
2959 	/*
2960 	 * Reduce false cache line sharing between cluster_info and
2961 	 * sharing same address space.
2962 	 */
2963 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2964 		j = (k + col) % SWAP_CLUSTER_COLS;
2965 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2966 			idx = i * SWAP_CLUSTER_COLS + j;
2967 			if (idx >= nr_clusters)
2968 				continue;
2969 			if (cluster_count(&cluster_info[idx]))
2970 				continue;
2971 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2972 			cluster_list_add_tail(&p->free_clusters, cluster_info,
2973 					      idx);
2974 		}
2975 	}
2976 	return nr_extents;
2977 }
2978 
2979 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2980 {
2981 	struct swap_info_struct *p;
2982 	struct filename *name;
2983 	struct file *swap_file = NULL;
2984 	struct address_space *mapping;
2985 	struct dentry *dentry;
2986 	int prio;
2987 	int error;
2988 	union swap_header *swap_header;
2989 	int nr_extents;
2990 	sector_t span;
2991 	unsigned long maxpages;
2992 	unsigned char *swap_map = NULL;
2993 	struct swap_cluster_info *cluster_info = NULL;
2994 	unsigned long *frontswap_map = NULL;
2995 	struct page *page = NULL;
2996 	struct inode *inode = NULL;
2997 	bool inced_nr_rotate_swap = false;
2998 
2999 	if (swap_flags & ~SWAP_FLAGS_VALID)
3000 		return -EINVAL;
3001 
3002 	if (!capable(CAP_SYS_ADMIN))
3003 		return -EPERM;
3004 
3005 	if (!swap_avail_heads)
3006 		return -ENOMEM;
3007 
3008 	p = alloc_swap_info();
3009 	if (IS_ERR(p))
3010 		return PTR_ERR(p);
3011 
3012 	INIT_WORK(&p->discard_work, swap_discard_work);
3013 
3014 	name = getname(specialfile);
3015 	if (IS_ERR(name)) {
3016 		error = PTR_ERR(name);
3017 		name = NULL;
3018 		goto bad_swap;
3019 	}
3020 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3021 	if (IS_ERR(swap_file)) {
3022 		error = PTR_ERR(swap_file);
3023 		swap_file = NULL;
3024 		goto bad_swap;
3025 	}
3026 
3027 	p->swap_file = swap_file;
3028 	mapping = swap_file->f_mapping;
3029 	dentry = swap_file->f_path.dentry;
3030 	inode = mapping->host;
3031 
3032 	error = claim_swapfile(p, inode);
3033 	if (unlikely(error))
3034 		goto bad_swap;
3035 
3036 	inode_lock(inode);
3037 	if (d_unlinked(dentry) || cant_mount(dentry)) {
3038 		error = -ENOENT;
3039 		goto bad_swap_unlock_inode;
3040 	}
3041 	if (IS_SWAPFILE(inode)) {
3042 		error = -EBUSY;
3043 		goto bad_swap_unlock_inode;
3044 	}
3045 
3046 	/*
3047 	 * Read the swap header.
3048 	 */
3049 	if (!mapping->a_ops->read_folio) {
3050 		error = -EINVAL;
3051 		goto bad_swap_unlock_inode;
3052 	}
3053 	page = read_mapping_page(mapping, 0, swap_file);
3054 	if (IS_ERR(page)) {
3055 		error = PTR_ERR(page);
3056 		goto bad_swap_unlock_inode;
3057 	}
3058 	swap_header = kmap(page);
3059 
3060 	maxpages = read_swap_header(p, swap_header, inode);
3061 	if (unlikely(!maxpages)) {
3062 		error = -EINVAL;
3063 		goto bad_swap_unlock_inode;
3064 	}
3065 
3066 	/* OK, set up the swap map and apply the bad block list */
3067 	swap_map = vzalloc(maxpages);
3068 	if (!swap_map) {
3069 		error = -ENOMEM;
3070 		goto bad_swap_unlock_inode;
3071 	}
3072 
3073 	if (p->bdev && bdev_stable_writes(p->bdev))
3074 		p->flags |= SWP_STABLE_WRITES;
3075 
3076 	if (p->bdev && bdev_synchronous(p->bdev))
3077 		p->flags |= SWP_SYNCHRONOUS_IO;
3078 
3079 	if (p->bdev && bdev_nonrot(p->bdev)) {
3080 		int cpu;
3081 		unsigned long ci, nr_cluster;
3082 
3083 		p->flags |= SWP_SOLIDSTATE;
3084 		p->cluster_next_cpu = alloc_percpu(unsigned int);
3085 		if (!p->cluster_next_cpu) {
3086 			error = -ENOMEM;
3087 			goto bad_swap_unlock_inode;
3088 		}
3089 		/*
3090 		 * select a random position to start with to help wear leveling
3091 		 * SSD
3092 		 */
3093 		for_each_possible_cpu(cpu) {
3094 			per_cpu(*p->cluster_next_cpu, cpu) =
3095 				get_random_u32_inclusive(1, p->highest_bit);
3096 		}
3097 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3098 
3099 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3100 					GFP_KERNEL);
3101 		if (!cluster_info) {
3102 			error = -ENOMEM;
3103 			goto bad_swap_unlock_inode;
3104 		}
3105 
3106 		for (ci = 0; ci < nr_cluster; ci++)
3107 			spin_lock_init(&((cluster_info + ci)->lock));
3108 
3109 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3110 		if (!p->percpu_cluster) {
3111 			error = -ENOMEM;
3112 			goto bad_swap_unlock_inode;
3113 		}
3114 		for_each_possible_cpu(cpu) {
3115 			struct percpu_cluster *cluster;
3116 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3117 			cluster_set_null(&cluster->index);
3118 		}
3119 	} else {
3120 		atomic_inc(&nr_rotate_swap);
3121 		inced_nr_rotate_swap = true;
3122 	}
3123 
3124 	error = swap_cgroup_swapon(p->type, maxpages);
3125 	if (error)
3126 		goto bad_swap_unlock_inode;
3127 
3128 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3129 		cluster_info, maxpages, &span);
3130 	if (unlikely(nr_extents < 0)) {
3131 		error = nr_extents;
3132 		goto bad_swap_unlock_inode;
3133 	}
3134 	/* frontswap enabled? set up bit-per-page map for frontswap */
3135 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3136 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3137 					 sizeof(long),
3138 					 GFP_KERNEL);
3139 
3140 	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3141 	    p->bdev && bdev_max_discard_sectors(p->bdev)) {
3142 		/*
3143 		 * When discard is enabled for swap with no particular
3144 		 * policy flagged, we set all swap discard flags here in
3145 		 * order to sustain backward compatibility with older
3146 		 * swapon(8) releases.
3147 		 */
3148 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3149 			     SWP_PAGE_DISCARD);
3150 
3151 		/*
3152 		 * By flagging sys_swapon, a sysadmin can tell us to
3153 		 * either do single-time area discards only, or to just
3154 		 * perform discards for released swap page-clusters.
3155 		 * Now it's time to adjust the p->flags accordingly.
3156 		 */
3157 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3158 			p->flags &= ~SWP_PAGE_DISCARD;
3159 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3160 			p->flags &= ~SWP_AREA_DISCARD;
3161 
3162 		/* issue a swapon-time discard if it's still required */
3163 		if (p->flags & SWP_AREA_DISCARD) {
3164 			int err = discard_swap(p);
3165 			if (unlikely(err))
3166 				pr_err("swapon: discard_swap(%p): %d\n",
3167 					p, err);
3168 		}
3169 	}
3170 
3171 	error = init_swap_address_space(p->type, maxpages);
3172 	if (error)
3173 		goto bad_swap_unlock_inode;
3174 
3175 	/*
3176 	 * Flush any pending IO and dirty mappings before we start using this
3177 	 * swap device.
3178 	 */
3179 	inode->i_flags |= S_SWAPFILE;
3180 	error = inode_drain_writes(inode);
3181 	if (error) {
3182 		inode->i_flags &= ~S_SWAPFILE;
3183 		goto free_swap_address_space;
3184 	}
3185 
3186 	mutex_lock(&swapon_mutex);
3187 	prio = -1;
3188 	if (swap_flags & SWAP_FLAG_PREFER)
3189 		prio =
3190 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3191 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3192 
3193 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3194 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3195 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3196 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3197 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3198 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3199 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3200 		(frontswap_map) ? "FS" : "");
3201 
3202 	mutex_unlock(&swapon_mutex);
3203 	atomic_inc(&proc_poll_event);
3204 	wake_up_interruptible(&proc_poll_wait);
3205 
3206 	error = 0;
3207 	goto out;
3208 free_swap_address_space:
3209 	exit_swap_address_space(p->type);
3210 bad_swap_unlock_inode:
3211 	inode_unlock(inode);
3212 bad_swap:
3213 	free_percpu(p->percpu_cluster);
3214 	p->percpu_cluster = NULL;
3215 	free_percpu(p->cluster_next_cpu);
3216 	p->cluster_next_cpu = NULL;
3217 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3218 		set_blocksize(p->bdev, p->old_block_size);
3219 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3220 	}
3221 	inode = NULL;
3222 	destroy_swap_extents(p);
3223 	swap_cgroup_swapoff(p->type);
3224 	spin_lock(&swap_lock);
3225 	p->swap_file = NULL;
3226 	p->flags = 0;
3227 	spin_unlock(&swap_lock);
3228 	vfree(swap_map);
3229 	kvfree(cluster_info);
3230 	kvfree(frontswap_map);
3231 	if (inced_nr_rotate_swap)
3232 		atomic_dec(&nr_rotate_swap);
3233 	if (swap_file)
3234 		filp_close(swap_file, NULL);
3235 out:
3236 	if (page && !IS_ERR(page)) {
3237 		kunmap(page);
3238 		put_page(page);
3239 	}
3240 	if (name)
3241 		putname(name);
3242 	if (inode)
3243 		inode_unlock(inode);
3244 	if (!error)
3245 		enable_swap_slots_cache();
3246 	return error;
3247 }
3248 
3249 void si_swapinfo(struct sysinfo *val)
3250 {
3251 	unsigned int type;
3252 	unsigned long nr_to_be_unused = 0;
3253 
3254 	spin_lock(&swap_lock);
3255 	for (type = 0; type < nr_swapfiles; type++) {
3256 		struct swap_info_struct *si = swap_info[type];
3257 
3258 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3259 			nr_to_be_unused += READ_ONCE(si->inuse_pages);
3260 	}
3261 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3262 	val->totalswap = total_swap_pages + nr_to_be_unused;
3263 	spin_unlock(&swap_lock);
3264 }
3265 
3266 /*
3267  * Verify that a swap entry is valid and increment its swap map count.
3268  *
3269  * Returns error code in following case.
3270  * - success -> 0
3271  * - swp_entry is invalid -> EINVAL
3272  * - swp_entry is migration entry -> EINVAL
3273  * - swap-cache reference is requested but there is already one. -> EEXIST
3274  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3275  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3276  */
3277 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3278 {
3279 	struct swap_info_struct *p;
3280 	struct swap_cluster_info *ci;
3281 	unsigned long offset;
3282 	unsigned char count;
3283 	unsigned char has_cache;
3284 	int err;
3285 
3286 	p = get_swap_device(entry);
3287 	if (!p)
3288 		return -EINVAL;
3289 
3290 	offset = swp_offset(entry);
3291 	ci = lock_cluster_or_swap_info(p, offset);
3292 
3293 	count = p->swap_map[offset];
3294 
3295 	/*
3296 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3297 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3298 	 */
3299 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3300 		err = -ENOENT;
3301 		goto unlock_out;
3302 	}
3303 
3304 	has_cache = count & SWAP_HAS_CACHE;
3305 	count &= ~SWAP_HAS_CACHE;
3306 	err = 0;
3307 
3308 	if (usage == SWAP_HAS_CACHE) {
3309 
3310 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3311 		if (!has_cache && count)
3312 			has_cache = SWAP_HAS_CACHE;
3313 		else if (has_cache)		/* someone else added cache */
3314 			err = -EEXIST;
3315 		else				/* no users remaining */
3316 			err = -ENOENT;
3317 
3318 	} else if (count || has_cache) {
3319 
3320 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3321 			count += usage;
3322 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3323 			err = -EINVAL;
3324 		else if (swap_count_continued(p, offset, count))
3325 			count = COUNT_CONTINUED;
3326 		else
3327 			err = -ENOMEM;
3328 	} else
3329 		err = -ENOENT;			/* unused swap entry */
3330 
3331 	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3332 
3333 unlock_out:
3334 	unlock_cluster_or_swap_info(p, ci);
3335 	put_swap_device(p);
3336 	return err;
3337 }
3338 
3339 /*
3340  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3341  * (in which case its reference count is never incremented).
3342  */
3343 void swap_shmem_alloc(swp_entry_t entry)
3344 {
3345 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3346 }
3347 
3348 /*
3349  * Increase reference count of swap entry by 1.
3350  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3351  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3352  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3353  * might occur if a page table entry has got corrupted.
3354  */
3355 int swap_duplicate(swp_entry_t entry)
3356 {
3357 	int err = 0;
3358 
3359 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3360 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3361 	return err;
3362 }
3363 
3364 /*
3365  * @entry: swap entry for which we allocate swap cache.
3366  *
3367  * Called when allocating swap cache for existing swap entry,
3368  * This can return error codes. Returns 0 at success.
3369  * -EEXIST means there is a swap cache.
3370  * Note: return code is different from swap_duplicate().
3371  */
3372 int swapcache_prepare(swp_entry_t entry)
3373 {
3374 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3375 }
3376 
3377 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3378 {
3379 	return swap_type_to_swap_info(swp_type(entry));
3380 }
3381 
3382 struct swap_info_struct *page_swap_info(struct page *page)
3383 {
3384 	swp_entry_t entry = { .val = page_private(page) };
3385 	return swp_swap_info(entry);
3386 }
3387 
3388 /*
3389  * out-of-line methods to avoid include hell.
3390  */
3391 struct address_space *swapcache_mapping(struct folio *folio)
3392 {
3393 	return page_swap_info(&folio->page)->swap_file->f_mapping;
3394 }
3395 EXPORT_SYMBOL_GPL(swapcache_mapping);
3396 
3397 pgoff_t __page_file_index(struct page *page)
3398 {
3399 	swp_entry_t swap = { .val = page_private(page) };
3400 	return swp_offset(swap);
3401 }
3402 EXPORT_SYMBOL_GPL(__page_file_index);
3403 
3404 /*
3405  * add_swap_count_continuation - called when a swap count is duplicated
3406  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3407  * page of the original vmalloc'ed swap_map, to hold the continuation count
3408  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3409  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3410  *
3411  * These continuation pages are seldom referenced: the common paths all work
3412  * on the original swap_map, only referring to a continuation page when the
3413  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3414  *
3415  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3416  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3417  * can be called after dropping locks.
3418  */
3419 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3420 {
3421 	struct swap_info_struct *si;
3422 	struct swap_cluster_info *ci;
3423 	struct page *head;
3424 	struct page *page;
3425 	struct page *list_page;
3426 	pgoff_t offset;
3427 	unsigned char count;
3428 	int ret = 0;
3429 
3430 	/*
3431 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3432 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3433 	 */
3434 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3435 
3436 	si = get_swap_device(entry);
3437 	if (!si) {
3438 		/*
3439 		 * An acceptable race has occurred since the failing
3440 		 * __swap_duplicate(): the swap device may be swapoff
3441 		 */
3442 		goto outer;
3443 	}
3444 	spin_lock(&si->lock);
3445 
3446 	offset = swp_offset(entry);
3447 
3448 	ci = lock_cluster(si, offset);
3449 
3450 	count = swap_count(si->swap_map[offset]);
3451 
3452 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3453 		/*
3454 		 * The higher the swap count, the more likely it is that tasks
3455 		 * will race to add swap count continuation: we need to avoid
3456 		 * over-provisioning.
3457 		 */
3458 		goto out;
3459 	}
3460 
3461 	if (!page) {
3462 		ret = -ENOMEM;
3463 		goto out;
3464 	}
3465 
3466 	/*
3467 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3468 	 * no architecture is using highmem pages for kernel page tables: so it
3469 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3470 	 */
3471 	head = vmalloc_to_page(si->swap_map + offset);
3472 	offset &= ~PAGE_MASK;
3473 
3474 	spin_lock(&si->cont_lock);
3475 	/*
3476 	 * Page allocation does not initialize the page's lru field,
3477 	 * but it does always reset its private field.
3478 	 */
3479 	if (!page_private(head)) {
3480 		BUG_ON(count & COUNT_CONTINUED);
3481 		INIT_LIST_HEAD(&head->lru);
3482 		set_page_private(head, SWP_CONTINUED);
3483 		si->flags |= SWP_CONTINUED;
3484 	}
3485 
3486 	list_for_each_entry(list_page, &head->lru, lru) {
3487 		unsigned char *map;
3488 
3489 		/*
3490 		 * If the previous map said no continuation, but we've found
3491 		 * a continuation page, free our allocation and use this one.
3492 		 */
3493 		if (!(count & COUNT_CONTINUED))
3494 			goto out_unlock_cont;
3495 
3496 		map = kmap_atomic(list_page) + offset;
3497 		count = *map;
3498 		kunmap_atomic(map);
3499 
3500 		/*
3501 		 * If this continuation count now has some space in it,
3502 		 * free our allocation and use this one.
3503 		 */
3504 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3505 			goto out_unlock_cont;
3506 	}
3507 
3508 	list_add_tail(&page->lru, &head->lru);
3509 	page = NULL;			/* now it's attached, don't free it */
3510 out_unlock_cont:
3511 	spin_unlock(&si->cont_lock);
3512 out:
3513 	unlock_cluster(ci);
3514 	spin_unlock(&si->lock);
3515 	put_swap_device(si);
3516 outer:
3517 	if (page)
3518 		__free_page(page);
3519 	return ret;
3520 }
3521 
3522 /*
3523  * swap_count_continued - when the original swap_map count is incremented
3524  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3525  * into, carry if so, or else fail until a new continuation page is allocated;
3526  * when the original swap_map count is decremented from 0 with continuation,
3527  * borrow from the continuation and report whether it still holds more.
3528  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3529  * lock.
3530  */
3531 static bool swap_count_continued(struct swap_info_struct *si,
3532 				 pgoff_t offset, unsigned char count)
3533 {
3534 	struct page *head;
3535 	struct page *page;
3536 	unsigned char *map;
3537 	bool ret;
3538 
3539 	head = vmalloc_to_page(si->swap_map + offset);
3540 	if (page_private(head) != SWP_CONTINUED) {
3541 		BUG_ON(count & COUNT_CONTINUED);
3542 		return false;		/* need to add count continuation */
3543 	}
3544 
3545 	spin_lock(&si->cont_lock);
3546 	offset &= ~PAGE_MASK;
3547 	page = list_next_entry(head, lru);
3548 	map = kmap_atomic(page) + offset;
3549 
3550 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3551 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3552 
3553 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3554 		/*
3555 		 * Think of how you add 1 to 999
3556 		 */
3557 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3558 			kunmap_atomic(map);
3559 			page = list_next_entry(page, lru);
3560 			BUG_ON(page == head);
3561 			map = kmap_atomic(page) + offset;
3562 		}
3563 		if (*map == SWAP_CONT_MAX) {
3564 			kunmap_atomic(map);
3565 			page = list_next_entry(page, lru);
3566 			if (page == head) {
3567 				ret = false;	/* add count continuation */
3568 				goto out;
3569 			}
3570 			map = kmap_atomic(page) + offset;
3571 init_map:		*map = 0;		/* we didn't zero the page */
3572 		}
3573 		*map += 1;
3574 		kunmap_atomic(map);
3575 		while ((page = list_prev_entry(page, lru)) != head) {
3576 			map = kmap_atomic(page) + offset;
3577 			*map = COUNT_CONTINUED;
3578 			kunmap_atomic(map);
3579 		}
3580 		ret = true;			/* incremented */
3581 
3582 	} else {				/* decrementing */
3583 		/*
3584 		 * Think of how you subtract 1 from 1000
3585 		 */
3586 		BUG_ON(count != COUNT_CONTINUED);
3587 		while (*map == COUNT_CONTINUED) {
3588 			kunmap_atomic(map);
3589 			page = list_next_entry(page, lru);
3590 			BUG_ON(page == head);
3591 			map = kmap_atomic(page) + offset;
3592 		}
3593 		BUG_ON(*map == 0);
3594 		*map -= 1;
3595 		if (*map == 0)
3596 			count = 0;
3597 		kunmap_atomic(map);
3598 		while ((page = list_prev_entry(page, lru)) != head) {
3599 			map = kmap_atomic(page) + offset;
3600 			*map = SWAP_CONT_MAX | count;
3601 			count = COUNT_CONTINUED;
3602 			kunmap_atomic(map);
3603 		}
3604 		ret = count == COUNT_CONTINUED;
3605 	}
3606 out:
3607 	spin_unlock(&si->cont_lock);
3608 	return ret;
3609 }
3610 
3611 /*
3612  * free_swap_count_continuations - swapoff free all the continuation pages
3613  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3614  */
3615 static void free_swap_count_continuations(struct swap_info_struct *si)
3616 {
3617 	pgoff_t offset;
3618 
3619 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3620 		struct page *head;
3621 		head = vmalloc_to_page(si->swap_map + offset);
3622 		if (page_private(head)) {
3623 			struct page *page, *next;
3624 
3625 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3626 				list_del(&page->lru);
3627 				__free_page(page);
3628 			}
3629 		}
3630 	}
3631 }
3632 
3633 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3634 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3635 {
3636 	struct swap_info_struct *si, *next;
3637 	int nid = folio_nid(folio);
3638 
3639 	if (!(gfp & __GFP_IO))
3640 		return;
3641 
3642 	if (!blk_cgroup_congested())
3643 		return;
3644 
3645 	/*
3646 	 * We've already scheduled a throttle, avoid taking the global swap
3647 	 * lock.
3648 	 */
3649 	if (current->throttle_disk)
3650 		return;
3651 
3652 	spin_lock(&swap_avail_lock);
3653 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3654 				  avail_lists[nid]) {
3655 		if (si->bdev) {
3656 			blkcg_schedule_throttle(si->bdev->bd_disk, true);
3657 			break;
3658 		}
3659 	}
3660 	spin_unlock(&swap_avail_lock);
3661 }
3662 #endif
3663 
3664 static int __init swapfile_init(void)
3665 {
3666 	int nid;
3667 
3668 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3669 					 GFP_KERNEL);
3670 	if (!swap_avail_heads) {
3671 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3672 		return -ENOMEM;
3673 	}
3674 
3675 	for_each_node(nid)
3676 		plist_head_init(&swap_avail_heads[nid]);
3677 
3678 	swapfile_maximum_size = arch_max_swapfile_size();
3679 
3680 #ifdef CONFIG_MIGRATION
3681 	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3682 		swap_migration_ad_supported = true;
3683 #endif	/* CONFIG_MIGRATION */
3684 
3685 	return 0;
3686 }
3687 subsys_initcall(swapfile_init);
3688