1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/blkdev.h> 10 #include <linux/mm.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/task.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mman.h> 15 #include <linux/slab.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/swap.h> 18 #include <linux/vmalloc.h> 19 #include <linux/pagemap.h> 20 #include <linux/namei.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/blk-cgroup.h> 23 #include <linux/random.h> 24 #include <linux/writeback.h> 25 #include <linux/proc_fs.h> 26 #include <linux/seq_file.h> 27 #include <linux/init.h> 28 #include <linux/ksm.h> 29 #include <linux/rmap.h> 30 #include <linux/security.h> 31 #include <linux/backing-dev.h> 32 #include <linux/mutex.h> 33 #include <linux/capability.h> 34 #include <linux/syscalls.h> 35 #include <linux/memcontrol.h> 36 #include <linux/poll.h> 37 #include <linux/oom.h> 38 #include <linux/frontswap.h> 39 #include <linux/swapfile.h> 40 #include <linux/export.h> 41 #include <linux/swap_slots.h> 42 #include <linux/sort.h> 43 #include <linux/completion.h> 44 #include <linux/suspend.h> 45 46 #include <asm/tlbflush.h> 47 #include <linux/swapops.h> 48 #include <linux/swap_cgroup.h> 49 #include "swap.h" 50 51 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 52 unsigned char); 53 static void free_swap_count_continuations(struct swap_info_struct *); 54 55 static DEFINE_SPINLOCK(swap_lock); 56 static unsigned int nr_swapfiles; 57 atomic_long_t nr_swap_pages; 58 /* 59 * Some modules use swappable objects and may try to swap them out under 60 * memory pressure (via the shrinker). Before doing so, they may wish to 61 * check to see if any swap space is available. 62 */ 63 EXPORT_SYMBOL_GPL(nr_swap_pages); 64 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 65 long total_swap_pages; 66 static int least_priority = -1; 67 unsigned long swapfile_maximum_size; 68 #ifdef CONFIG_MIGRATION 69 bool swap_migration_ad_supported; 70 #endif /* CONFIG_MIGRATION */ 71 72 static const char Bad_file[] = "Bad swap file entry "; 73 static const char Unused_file[] = "Unused swap file entry "; 74 static const char Bad_offset[] = "Bad swap offset entry "; 75 static const char Unused_offset[] = "Unused swap offset entry "; 76 77 /* 78 * all active swap_info_structs 79 * protected with swap_lock, and ordered by priority. 80 */ 81 static PLIST_HEAD(swap_active_head); 82 83 /* 84 * all available (active, not full) swap_info_structs 85 * protected with swap_avail_lock, ordered by priority. 86 * This is used by folio_alloc_swap() instead of swap_active_head 87 * because swap_active_head includes all swap_info_structs, 88 * but folio_alloc_swap() doesn't need to look at full ones. 89 * This uses its own lock instead of swap_lock because when a 90 * swap_info_struct changes between not-full/full, it needs to 91 * add/remove itself to/from this list, but the swap_info_struct->lock 92 * is held and the locking order requires swap_lock to be taken 93 * before any swap_info_struct->lock. 94 */ 95 static struct plist_head *swap_avail_heads; 96 static DEFINE_SPINLOCK(swap_avail_lock); 97 98 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 99 100 static DEFINE_MUTEX(swapon_mutex); 101 102 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 103 /* Activity counter to indicate that a swapon or swapoff has occurred */ 104 static atomic_t proc_poll_event = ATOMIC_INIT(0); 105 106 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 107 108 static struct swap_info_struct *swap_type_to_swap_info(int type) 109 { 110 if (type >= MAX_SWAPFILES) 111 return NULL; 112 113 return READ_ONCE(swap_info[type]); /* rcu_dereference() */ 114 } 115 116 static inline unsigned char swap_count(unsigned char ent) 117 { 118 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 119 } 120 121 /* Reclaim the swap entry anyway if possible */ 122 #define TTRS_ANYWAY 0x1 123 /* 124 * Reclaim the swap entry if there are no more mappings of the 125 * corresponding page 126 */ 127 #define TTRS_UNMAPPED 0x2 128 /* Reclaim the swap entry if swap is getting full*/ 129 #define TTRS_FULL 0x4 130 131 /* returns 1 if swap entry is freed */ 132 static int __try_to_reclaim_swap(struct swap_info_struct *si, 133 unsigned long offset, unsigned long flags) 134 { 135 swp_entry_t entry = swp_entry(si->type, offset); 136 struct folio *folio; 137 int ret = 0; 138 139 folio = filemap_get_folio(swap_address_space(entry), offset); 140 if (IS_ERR(folio)) 141 return 0; 142 /* 143 * When this function is called from scan_swap_map_slots() and it's 144 * called by vmscan.c at reclaiming folios. So we hold a folio lock 145 * here. We have to use trylock for avoiding deadlock. This is a special 146 * case and you should use folio_free_swap() with explicit folio_lock() 147 * in usual operations. 148 */ 149 if (folio_trylock(folio)) { 150 if ((flags & TTRS_ANYWAY) || 151 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) || 152 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio))) 153 ret = folio_free_swap(folio); 154 folio_unlock(folio); 155 } 156 folio_put(folio); 157 return ret; 158 } 159 160 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 161 { 162 struct rb_node *rb = rb_first(&sis->swap_extent_root); 163 return rb_entry(rb, struct swap_extent, rb_node); 164 } 165 166 static inline struct swap_extent *next_se(struct swap_extent *se) 167 { 168 struct rb_node *rb = rb_next(&se->rb_node); 169 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 170 } 171 172 /* 173 * swapon tell device that all the old swap contents can be discarded, 174 * to allow the swap device to optimize its wear-levelling. 175 */ 176 static int discard_swap(struct swap_info_struct *si) 177 { 178 struct swap_extent *se; 179 sector_t start_block; 180 sector_t nr_blocks; 181 int err = 0; 182 183 /* Do not discard the swap header page! */ 184 se = first_se(si); 185 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 186 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 187 if (nr_blocks) { 188 err = blkdev_issue_discard(si->bdev, start_block, 189 nr_blocks, GFP_KERNEL); 190 if (err) 191 return err; 192 cond_resched(); 193 } 194 195 for (se = next_se(se); se; se = next_se(se)) { 196 start_block = se->start_block << (PAGE_SHIFT - 9); 197 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 198 199 err = blkdev_issue_discard(si->bdev, start_block, 200 nr_blocks, GFP_KERNEL); 201 if (err) 202 break; 203 204 cond_resched(); 205 } 206 return err; /* That will often be -EOPNOTSUPP */ 207 } 208 209 static struct swap_extent * 210 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 211 { 212 struct swap_extent *se; 213 struct rb_node *rb; 214 215 rb = sis->swap_extent_root.rb_node; 216 while (rb) { 217 se = rb_entry(rb, struct swap_extent, rb_node); 218 if (offset < se->start_page) 219 rb = rb->rb_left; 220 else if (offset >= se->start_page + se->nr_pages) 221 rb = rb->rb_right; 222 else 223 return se; 224 } 225 /* It *must* be present */ 226 BUG(); 227 } 228 229 sector_t swap_page_sector(struct page *page) 230 { 231 struct swap_info_struct *sis = page_swap_info(page); 232 struct swap_extent *se; 233 sector_t sector; 234 pgoff_t offset; 235 236 offset = __page_file_index(page); 237 se = offset_to_swap_extent(sis, offset); 238 sector = se->start_block + (offset - se->start_page); 239 return sector << (PAGE_SHIFT - 9); 240 } 241 242 /* 243 * swap allocation tell device that a cluster of swap can now be discarded, 244 * to allow the swap device to optimize its wear-levelling. 245 */ 246 static void discard_swap_cluster(struct swap_info_struct *si, 247 pgoff_t start_page, pgoff_t nr_pages) 248 { 249 struct swap_extent *se = offset_to_swap_extent(si, start_page); 250 251 while (nr_pages) { 252 pgoff_t offset = start_page - se->start_page; 253 sector_t start_block = se->start_block + offset; 254 sector_t nr_blocks = se->nr_pages - offset; 255 256 if (nr_blocks > nr_pages) 257 nr_blocks = nr_pages; 258 start_page += nr_blocks; 259 nr_pages -= nr_blocks; 260 261 start_block <<= PAGE_SHIFT - 9; 262 nr_blocks <<= PAGE_SHIFT - 9; 263 if (blkdev_issue_discard(si->bdev, start_block, 264 nr_blocks, GFP_NOIO)) 265 break; 266 267 se = next_se(se); 268 } 269 } 270 271 #ifdef CONFIG_THP_SWAP 272 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 273 274 #define swap_entry_size(size) (size) 275 #else 276 #define SWAPFILE_CLUSTER 256 277 278 /* 279 * Define swap_entry_size() as constant to let compiler to optimize 280 * out some code if !CONFIG_THP_SWAP 281 */ 282 #define swap_entry_size(size) 1 283 #endif 284 #define LATENCY_LIMIT 256 285 286 static inline void cluster_set_flag(struct swap_cluster_info *info, 287 unsigned int flag) 288 { 289 info->flags = flag; 290 } 291 292 static inline unsigned int cluster_count(struct swap_cluster_info *info) 293 { 294 return info->data; 295 } 296 297 static inline void cluster_set_count(struct swap_cluster_info *info, 298 unsigned int c) 299 { 300 info->data = c; 301 } 302 303 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 304 unsigned int c, unsigned int f) 305 { 306 info->flags = f; 307 info->data = c; 308 } 309 310 static inline unsigned int cluster_next(struct swap_cluster_info *info) 311 { 312 return info->data; 313 } 314 315 static inline void cluster_set_next(struct swap_cluster_info *info, 316 unsigned int n) 317 { 318 info->data = n; 319 } 320 321 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 322 unsigned int n, unsigned int f) 323 { 324 info->flags = f; 325 info->data = n; 326 } 327 328 static inline bool cluster_is_free(struct swap_cluster_info *info) 329 { 330 return info->flags & CLUSTER_FLAG_FREE; 331 } 332 333 static inline bool cluster_is_null(struct swap_cluster_info *info) 334 { 335 return info->flags & CLUSTER_FLAG_NEXT_NULL; 336 } 337 338 static inline void cluster_set_null(struct swap_cluster_info *info) 339 { 340 info->flags = CLUSTER_FLAG_NEXT_NULL; 341 info->data = 0; 342 } 343 344 static inline bool cluster_is_huge(struct swap_cluster_info *info) 345 { 346 if (IS_ENABLED(CONFIG_THP_SWAP)) 347 return info->flags & CLUSTER_FLAG_HUGE; 348 return false; 349 } 350 351 static inline void cluster_clear_huge(struct swap_cluster_info *info) 352 { 353 info->flags &= ~CLUSTER_FLAG_HUGE; 354 } 355 356 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 357 unsigned long offset) 358 { 359 struct swap_cluster_info *ci; 360 361 ci = si->cluster_info; 362 if (ci) { 363 ci += offset / SWAPFILE_CLUSTER; 364 spin_lock(&ci->lock); 365 } 366 return ci; 367 } 368 369 static inline void unlock_cluster(struct swap_cluster_info *ci) 370 { 371 if (ci) 372 spin_unlock(&ci->lock); 373 } 374 375 /* 376 * Determine the locking method in use for this device. Return 377 * swap_cluster_info if SSD-style cluster-based locking is in place. 378 */ 379 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 380 struct swap_info_struct *si, unsigned long offset) 381 { 382 struct swap_cluster_info *ci; 383 384 /* Try to use fine-grained SSD-style locking if available: */ 385 ci = lock_cluster(si, offset); 386 /* Otherwise, fall back to traditional, coarse locking: */ 387 if (!ci) 388 spin_lock(&si->lock); 389 390 return ci; 391 } 392 393 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 394 struct swap_cluster_info *ci) 395 { 396 if (ci) 397 unlock_cluster(ci); 398 else 399 spin_unlock(&si->lock); 400 } 401 402 static inline bool cluster_list_empty(struct swap_cluster_list *list) 403 { 404 return cluster_is_null(&list->head); 405 } 406 407 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 408 { 409 return cluster_next(&list->head); 410 } 411 412 static void cluster_list_init(struct swap_cluster_list *list) 413 { 414 cluster_set_null(&list->head); 415 cluster_set_null(&list->tail); 416 } 417 418 static void cluster_list_add_tail(struct swap_cluster_list *list, 419 struct swap_cluster_info *ci, 420 unsigned int idx) 421 { 422 if (cluster_list_empty(list)) { 423 cluster_set_next_flag(&list->head, idx, 0); 424 cluster_set_next_flag(&list->tail, idx, 0); 425 } else { 426 struct swap_cluster_info *ci_tail; 427 unsigned int tail = cluster_next(&list->tail); 428 429 /* 430 * Nested cluster lock, but both cluster locks are 431 * only acquired when we held swap_info_struct->lock 432 */ 433 ci_tail = ci + tail; 434 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 435 cluster_set_next(ci_tail, idx); 436 spin_unlock(&ci_tail->lock); 437 cluster_set_next_flag(&list->tail, idx, 0); 438 } 439 } 440 441 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 442 struct swap_cluster_info *ci) 443 { 444 unsigned int idx; 445 446 idx = cluster_next(&list->head); 447 if (cluster_next(&list->tail) == idx) { 448 cluster_set_null(&list->head); 449 cluster_set_null(&list->tail); 450 } else 451 cluster_set_next_flag(&list->head, 452 cluster_next(&ci[idx]), 0); 453 454 return idx; 455 } 456 457 /* Add a cluster to discard list and schedule it to do discard */ 458 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 459 unsigned int idx) 460 { 461 /* 462 * If scan_swap_map_slots() can't find a free cluster, it will check 463 * si->swap_map directly. To make sure the discarding cluster isn't 464 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied). 465 * It will be cleared after discard 466 */ 467 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 468 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 469 470 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 471 472 schedule_work(&si->discard_work); 473 } 474 475 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 476 { 477 struct swap_cluster_info *ci = si->cluster_info; 478 479 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 480 cluster_list_add_tail(&si->free_clusters, ci, idx); 481 } 482 483 /* 484 * Doing discard actually. After a cluster discard is finished, the cluster 485 * will be added to free cluster list. caller should hold si->lock. 486 */ 487 static void swap_do_scheduled_discard(struct swap_info_struct *si) 488 { 489 struct swap_cluster_info *info, *ci; 490 unsigned int idx; 491 492 info = si->cluster_info; 493 494 while (!cluster_list_empty(&si->discard_clusters)) { 495 idx = cluster_list_del_first(&si->discard_clusters, info); 496 spin_unlock(&si->lock); 497 498 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 499 SWAPFILE_CLUSTER); 500 501 spin_lock(&si->lock); 502 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 503 __free_cluster(si, idx); 504 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 505 0, SWAPFILE_CLUSTER); 506 unlock_cluster(ci); 507 } 508 } 509 510 static void swap_discard_work(struct work_struct *work) 511 { 512 struct swap_info_struct *si; 513 514 si = container_of(work, struct swap_info_struct, discard_work); 515 516 spin_lock(&si->lock); 517 swap_do_scheduled_discard(si); 518 spin_unlock(&si->lock); 519 } 520 521 static void swap_users_ref_free(struct percpu_ref *ref) 522 { 523 struct swap_info_struct *si; 524 525 si = container_of(ref, struct swap_info_struct, users); 526 complete(&si->comp); 527 } 528 529 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 530 { 531 struct swap_cluster_info *ci = si->cluster_info; 532 533 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 534 cluster_list_del_first(&si->free_clusters, ci); 535 cluster_set_count_flag(ci + idx, 0, 0); 536 } 537 538 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 539 { 540 struct swap_cluster_info *ci = si->cluster_info + idx; 541 542 VM_BUG_ON(cluster_count(ci) != 0); 543 /* 544 * If the swap is discardable, prepare discard the cluster 545 * instead of free it immediately. The cluster will be freed 546 * after discard. 547 */ 548 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 549 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 550 swap_cluster_schedule_discard(si, idx); 551 return; 552 } 553 554 __free_cluster(si, idx); 555 } 556 557 /* 558 * The cluster corresponding to page_nr will be used. The cluster will be 559 * removed from free cluster list and its usage counter will be increased. 560 */ 561 static void inc_cluster_info_page(struct swap_info_struct *p, 562 struct swap_cluster_info *cluster_info, unsigned long page_nr) 563 { 564 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 565 566 if (!cluster_info) 567 return; 568 if (cluster_is_free(&cluster_info[idx])) 569 alloc_cluster(p, idx); 570 571 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 572 cluster_set_count(&cluster_info[idx], 573 cluster_count(&cluster_info[idx]) + 1); 574 } 575 576 /* 577 * The cluster corresponding to page_nr decreases one usage. If the usage 578 * counter becomes 0, which means no page in the cluster is in using, we can 579 * optionally discard the cluster and add it to free cluster list. 580 */ 581 static void dec_cluster_info_page(struct swap_info_struct *p, 582 struct swap_cluster_info *cluster_info, unsigned long page_nr) 583 { 584 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 585 586 if (!cluster_info) 587 return; 588 589 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 590 cluster_set_count(&cluster_info[idx], 591 cluster_count(&cluster_info[idx]) - 1); 592 593 if (cluster_count(&cluster_info[idx]) == 0) 594 free_cluster(p, idx); 595 } 596 597 /* 598 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free 599 * cluster list. Avoiding such abuse to avoid list corruption. 600 */ 601 static bool 602 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 603 unsigned long offset) 604 { 605 struct percpu_cluster *percpu_cluster; 606 bool conflict; 607 608 offset /= SWAPFILE_CLUSTER; 609 conflict = !cluster_list_empty(&si->free_clusters) && 610 offset != cluster_list_first(&si->free_clusters) && 611 cluster_is_free(&si->cluster_info[offset]); 612 613 if (!conflict) 614 return false; 615 616 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 617 cluster_set_null(&percpu_cluster->index); 618 return true; 619 } 620 621 /* 622 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 623 * might involve allocating a new cluster for current CPU too. 624 */ 625 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 626 unsigned long *offset, unsigned long *scan_base) 627 { 628 struct percpu_cluster *cluster; 629 struct swap_cluster_info *ci; 630 unsigned long tmp, max; 631 632 new_cluster: 633 cluster = this_cpu_ptr(si->percpu_cluster); 634 if (cluster_is_null(&cluster->index)) { 635 if (!cluster_list_empty(&si->free_clusters)) { 636 cluster->index = si->free_clusters.head; 637 cluster->next = cluster_next(&cluster->index) * 638 SWAPFILE_CLUSTER; 639 } else if (!cluster_list_empty(&si->discard_clusters)) { 640 /* 641 * we don't have free cluster but have some clusters in 642 * discarding, do discard now and reclaim them, then 643 * reread cluster_next_cpu since we dropped si->lock 644 */ 645 swap_do_scheduled_discard(si); 646 *scan_base = this_cpu_read(*si->cluster_next_cpu); 647 *offset = *scan_base; 648 goto new_cluster; 649 } else 650 return false; 651 } 652 653 /* 654 * Other CPUs can use our cluster if they can't find a free cluster, 655 * check if there is still free entry in the cluster 656 */ 657 tmp = cluster->next; 658 max = min_t(unsigned long, si->max, 659 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 660 if (tmp < max) { 661 ci = lock_cluster(si, tmp); 662 while (tmp < max) { 663 if (!si->swap_map[tmp]) 664 break; 665 tmp++; 666 } 667 unlock_cluster(ci); 668 } 669 if (tmp >= max) { 670 cluster_set_null(&cluster->index); 671 goto new_cluster; 672 } 673 cluster->next = tmp + 1; 674 *offset = tmp; 675 *scan_base = tmp; 676 return true; 677 } 678 679 static void __del_from_avail_list(struct swap_info_struct *p) 680 { 681 int nid; 682 683 assert_spin_locked(&p->lock); 684 for_each_node(nid) 685 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 686 } 687 688 static void del_from_avail_list(struct swap_info_struct *p) 689 { 690 spin_lock(&swap_avail_lock); 691 __del_from_avail_list(p); 692 spin_unlock(&swap_avail_lock); 693 } 694 695 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 696 unsigned int nr_entries) 697 { 698 unsigned int end = offset + nr_entries - 1; 699 700 if (offset == si->lowest_bit) 701 si->lowest_bit += nr_entries; 702 if (end == si->highest_bit) 703 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries); 704 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries); 705 if (si->inuse_pages == si->pages) { 706 si->lowest_bit = si->max; 707 si->highest_bit = 0; 708 del_from_avail_list(si); 709 } 710 } 711 712 static void add_to_avail_list(struct swap_info_struct *p) 713 { 714 int nid; 715 716 spin_lock(&swap_avail_lock); 717 for_each_node(nid) { 718 WARN_ON(!plist_node_empty(&p->avail_lists[nid])); 719 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 720 } 721 spin_unlock(&swap_avail_lock); 722 } 723 724 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 725 unsigned int nr_entries) 726 { 727 unsigned long begin = offset; 728 unsigned long end = offset + nr_entries - 1; 729 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 730 731 if (offset < si->lowest_bit) 732 si->lowest_bit = offset; 733 if (end > si->highest_bit) { 734 bool was_full = !si->highest_bit; 735 736 WRITE_ONCE(si->highest_bit, end); 737 if (was_full && (si->flags & SWP_WRITEOK)) 738 add_to_avail_list(si); 739 } 740 atomic_long_add(nr_entries, &nr_swap_pages); 741 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries); 742 if (si->flags & SWP_BLKDEV) 743 swap_slot_free_notify = 744 si->bdev->bd_disk->fops->swap_slot_free_notify; 745 else 746 swap_slot_free_notify = NULL; 747 while (offset <= end) { 748 arch_swap_invalidate_page(si->type, offset); 749 frontswap_invalidate_page(si->type, offset); 750 if (swap_slot_free_notify) 751 swap_slot_free_notify(si->bdev, offset); 752 offset++; 753 } 754 clear_shadow_from_swap_cache(si->type, begin, end); 755 } 756 757 static void set_cluster_next(struct swap_info_struct *si, unsigned long next) 758 { 759 unsigned long prev; 760 761 if (!(si->flags & SWP_SOLIDSTATE)) { 762 si->cluster_next = next; 763 return; 764 } 765 766 prev = this_cpu_read(*si->cluster_next_cpu); 767 /* 768 * Cross the swap address space size aligned trunk, choose 769 * another trunk randomly to avoid lock contention on swap 770 * address space if possible. 771 */ 772 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) != 773 (next >> SWAP_ADDRESS_SPACE_SHIFT)) { 774 /* No free swap slots available */ 775 if (si->highest_bit <= si->lowest_bit) 776 return; 777 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit); 778 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES); 779 next = max_t(unsigned int, next, si->lowest_bit); 780 } 781 this_cpu_write(*si->cluster_next_cpu, next); 782 } 783 784 static bool swap_offset_available_and_locked(struct swap_info_struct *si, 785 unsigned long offset) 786 { 787 if (data_race(!si->swap_map[offset])) { 788 spin_lock(&si->lock); 789 return true; 790 } 791 792 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 793 spin_lock(&si->lock); 794 return true; 795 } 796 797 return false; 798 } 799 800 static int scan_swap_map_slots(struct swap_info_struct *si, 801 unsigned char usage, int nr, 802 swp_entry_t slots[]) 803 { 804 struct swap_cluster_info *ci; 805 unsigned long offset; 806 unsigned long scan_base; 807 unsigned long last_in_cluster = 0; 808 int latency_ration = LATENCY_LIMIT; 809 int n_ret = 0; 810 bool scanned_many = false; 811 812 /* 813 * We try to cluster swap pages by allocating them sequentially 814 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 815 * way, however, we resort to first-free allocation, starting 816 * a new cluster. This prevents us from scattering swap pages 817 * all over the entire swap partition, so that we reduce 818 * overall disk seek times between swap pages. -- sct 819 * But we do now try to find an empty cluster. -Andrea 820 * And we let swap pages go all over an SSD partition. Hugh 821 */ 822 823 si->flags += SWP_SCANNING; 824 /* 825 * Use percpu scan base for SSD to reduce lock contention on 826 * cluster and swap cache. For HDD, sequential access is more 827 * important. 828 */ 829 if (si->flags & SWP_SOLIDSTATE) 830 scan_base = this_cpu_read(*si->cluster_next_cpu); 831 else 832 scan_base = si->cluster_next; 833 offset = scan_base; 834 835 /* SSD algorithm */ 836 if (si->cluster_info) { 837 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 838 goto scan; 839 } else if (unlikely(!si->cluster_nr--)) { 840 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 841 si->cluster_nr = SWAPFILE_CLUSTER - 1; 842 goto checks; 843 } 844 845 spin_unlock(&si->lock); 846 847 /* 848 * If seek is expensive, start searching for new cluster from 849 * start of partition, to minimize the span of allocated swap. 850 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 851 * case, just handled by scan_swap_map_try_ssd_cluster() above. 852 */ 853 scan_base = offset = si->lowest_bit; 854 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 855 856 /* Locate the first empty (unaligned) cluster */ 857 for (; last_in_cluster <= si->highest_bit; offset++) { 858 if (si->swap_map[offset]) 859 last_in_cluster = offset + SWAPFILE_CLUSTER; 860 else if (offset == last_in_cluster) { 861 spin_lock(&si->lock); 862 offset -= SWAPFILE_CLUSTER - 1; 863 si->cluster_next = offset; 864 si->cluster_nr = SWAPFILE_CLUSTER - 1; 865 goto checks; 866 } 867 if (unlikely(--latency_ration < 0)) { 868 cond_resched(); 869 latency_ration = LATENCY_LIMIT; 870 } 871 } 872 873 offset = scan_base; 874 spin_lock(&si->lock); 875 si->cluster_nr = SWAPFILE_CLUSTER - 1; 876 } 877 878 checks: 879 if (si->cluster_info) { 880 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 881 /* take a break if we already got some slots */ 882 if (n_ret) 883 goto done; 884 if (!scan_swap_map_try_ssd_cluster(si, &offset, 885 &scan_base)) 886 goto scan; 887 } 888 } 889 if (!(si->flags & SWP_WRITEOK)) 890 goto no_page; 891 if (!si->highest_bit) 892 goto no_page; 893 if (offset > si->highest_bit) 894 scan_base = offset = si->lowest_bit; 895 896 ci = lock_cluster(si, offset); 897 /* reuse swap entry of cache-only swap if not busy. */ 898 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 899 int swap_was_freed; 900 unlock_cluster(ci); 901 spin_unlock(&si->lock); 902 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 903 spin_lock(&si->lock); 904 /* entry was freed successfully, try to use this again */ 905 if (swap_was_freed) 906 goto checks; 907 goto scan; /* check next one */ 908 } 909 910 if (si->swap_map[offset]) { 911 unlock_cluster(ci); 912 if (!n_ret) 913 goto scan; 914 else 915 goto done; 916 } 917 WRITE_ONCE(si->swap_map[offset], usage); 918 inc_cluster_info_page(si, si->cluster_info, offset); 919 unlock_cluster(ci); 920 921 swap_range_alloc(si, offset, 1); 922 slots[n_ret++] = swp_entry(si->type, offset); 923 924 /* got enough slots or reach max slots? */ 925 if ((n_ret == nr) || (offset >= si->highest_bit)) 926 goto done; 927 928 /* search for next available slot */ 929 930 /* time to take a break? */ 931 if (unlikely(--latency_ration < 0)) { 932 if (n_ret) 933 goto done; 934 spin_unlock(&si->lock); 935 cond_resched(); 936 spin_lock(&si->lock); 937 latency_ration = LATENCY_LIMIT; 938 } 939 940 /* try to get more slots in cluster */ 941 if (si->cluster_info) { 942 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 943 goto checks; 944 } else if (si->cluster_nr && !si->swap_map[++offset]) { 945 /* non-ssd case, still more slots in cluster? */ 946 --si->cluster_nr; 947 goto checks; 948 } 949 950 /* 951 * Even if there's no free clusters available (fragmented), 952 * try to scan a little more quickly with lock held unless we 953 * have scanned too many slots already. 954 */ 955 if (!scanned_many) { 956 unsigned long scan_limit; 957 958 if (offset < scan_base) 959 scan_limit = scan_base; 960 else 961 scan_limit = si->highest_bit; 962 for (; offset <= scan_limit && --latency_ration > 0; 963 offset++) { 964 if (!si->swap_map[offset]) 965 goto checks; 966 } 967 } 968 969 done: 970 set_cluster_next(si, offset + 1); 971 si->flags -= SWP_SCANNING; 972 return n_ret; 973 974 scan: 975 spin_unlock(&si->lock); 976 while (++offset <= READ_ONCE(si->highest_bit)) { 977 if (unlikely(--latency_ration < 0)) { 978 cond_resched(); 979 latency_ration = LATENCY_LIMIT; 980 scanned_many = true; 981 } 982 if (swap_offset_available_and_locked(si, offset)) 983 goto checks; 984 } 985 offset = si->lowest_bit; 986 while (offset < scan_base) { 987 if (unlikely(--latency_ration < 0)) { 988 cond_resched(); 989 latency_ration = LATENCY_LIMIT; 990 scanned_many = true; 991 } 992 if (swap_offset_available_and_locked(si, offset)) 993 goto checks; 994 offset++; 995 } 996 spin_lock(&si->lock); 997 998 no_page: 999 si->flags -= SWP_SCANNING; 1000 return n_ret; 1001 } 1002 1003 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 1004 { 1005 unsigned long idx; 1006 struct swap_cluster_info *ci; 1007 unsigned long offset; 1008 1009 /* 1010 * Should not even be attempting cluster allocations when huge 1011 * page swap is disabled. Warn and fail the allocation. 1012 */ 1013 if (!IS_ENABLED(CONFIG_THP_SWAP)) { 1014 VM_WARN_ON_ONCE(1); 1015 return 0; 1016 } 1017 1018 if (cluster_list_empty(&si->free_clusters)) 1019 return 0; 1020 1021 idx = cluster_list_first(&si->free_clusters); 1022 offset = idx * SWAPFILE_CLUSTER; 1023 ci = lock_cluster(si, offset); 1024 alloc_cluster(si, idx); 1025 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); 1026 1027 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER); 1028 unlock_cluster(ci); 1029 swap_range_alloc(si, offset, SWAPFILE_CLUSTER); 1030 *slot = swp_entry(si->type, offset); 1031 1032 return 1; 1033 } 1034 1035 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 1036 { 1037 unsigned long offset = idx * SWAPFILE_CLUSTER; 1038 struct swap_cluster_info *ci; 1039 1040 ci = lock_cluster(si, offset); 1041 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); 1042 cluster_set_count_flag(ci, 0, 0); 1043 free_cluster(si, idx); 1044 unlock_cluster(ci); 1045 swap_range_free(si, offset, SWAPFILE_CLUSTER); 1046 } 1047 1048 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) 1049 { 1050 unsigned long size = swap_entry_size(entry_size); 1051 struct swap_info_struct *si, *next; 1052 long avail_pgs; 1053 int n_ret = 0; 1054 int node; 1055 1056 /* Only single cluster request supported */ 1057 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); 1058 1059 spin_lock(&swap_avail_lock); 1060 1061 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 1062 if (avail_pgs <= 0) { 1063 spin_unlock(&swap_avail_lock); 1064 goto noswap; 1065 } 1066 1067 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs); 1068 1069 atomic_long_sub(n_goal * size, &nr_swap_pages); 1070 1071 start_over: 1072 node = numa_node_id(); 1073 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1074 /* requeue si to after same-priority siblings */ 1075 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1076 spin_unlock(&swap_avail_lock); 1077 spin_lock(&si->lock); 1078 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 1079 spin_lock(&swap_avail_lock); 1080 if (plist_node_empty(&si->avail_lists[node])) { 1081 spin_unlock(&si->lock); 1082 goto nextsi; 1083 } 1084 WARN(!si->highest_bit, 1085 "swap_info %d in list but !highest_bit\n", 1086 si->type); 1087 WARN(!(si->flags & SWP_WRITEOK), 1088 "swap_info %d in list but !SWP_WRITEOK\n", 1089 si->type); 1090 __del_from_avail_list(si); 1091 spin_unlock(&si->lock); 1092 goto nextsi; 1093 } 1094 if (size == SWAPFILE_CLUSTER) { 1095 if (si->flags & SWP_BLKDEV) 1096 n_ret = swap_alloc_cluster(si, swp_entries); 1097 } else 1098 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1099 n_goal, swp_entries); 1100 spin_unlock(&si->lock); 1101 if (n_ret || size == SWAPFILE_CLUSTER) 1102 goto check_out; 1103 cond_resched(); 1104 1105 spin_lock(&swap_avail_lock); 1106 nextsi: 1107 /* 1108 * if we got here, it's likely that si was almost full before, 1109 * and since scan_swap_map_slots() can drop the si->lock, 1110 * multiple callers probably all tried to get a page from the 1111 * same si and it filled up before we could get one; or, the si 1112 * filled up between us dropping swap_avail_lock and taking 1113 * si->lock. Since we dropped the swap_avail_lock, the 1114 * swap_avail_head list may have been modified; so if next is 1115 * still in the swap_avail_head list then try it, otherwise 1116 * start over if we have not gotten any slots. 1117 */ 1118 if (plist_node_empty(&next->avail_lists[node])) 1119 goto start_over; 1120 } 1121 1122 spin_unlock(&swap_avail_lock); 1123 1124 check_out: 1125 if (n_ret < n_goal) 1126 atomic_long_add((long)(n_goal - n_ret) * size, 1127 &nr_swap_pages); 1128 noswap: 1129 return n_ret; 1130 } 1131 1132 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1133 { 1134 struct swap_info_struct *p; 1135 unsigned long offset; 1136 1137 if (!entry.val) 1138 goto out; 1139 p = swp_swap_info(entry); 1140 if (!p) 1141 goto bad_nofile; 1142 if (data_race(!(p->flags & SWP_USED))) 1143 goto bad_device; 1144 offset = swp_offset(entry); 1145 if (offset >= p->max) 1146 goto bad_offset; 1147 if (data_race(!p->swap_map[swp_offset(entry)])) 1148 goto bad_free; 1149 return p; 1150 1151 bad_free: 1152 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1153 goto out; 1154 bad_offset: 1155 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1156 goto out; 1157 bad_device: 1158 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1159 goto out; 1160 bad_nofile: 1161 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1162 out: 1163 return NULL; 1164 } 1165 1166 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1167 struct swap_info_struct *q) 1168 { 1169 struct swap_info_struct *p; 1170 1171 p = _swap_info_get(entry); 1172 1173 if (p != q) { 1174 if (q != NULL) 1175 spin_unlock(&q->lock); 1176 if (p != NULL) 1177 spin_lock(&p->lock); 1178 } 1179 return p; 1180 } 1181 1182 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1183 unsigned long offset, 1184 unsigned char usage) 1185 { 1186 unsigned char count; 1187 unsigned char has_cache; 1188 1189 count = p->swap_map[offset]; 1190 1191 has_cache = count & SWAP_HAS_CACHE; 1192 count &= ~SWAP_HAS_CACHE; 1193 1194 if (usage == SWAP_HAS_CACHE) { 1195 VM_BUG_ON(!has_cache); 1196 has_cache = 0; 1197 } else if (count == SWAP_MAP_SHMEM) { 1198 /* 1199 * Or we could insist on shmem.c using a special 1200 * swap_shmem_free() and free_shmem_swap_and_cache()... 1201 */ 1202 count = 0; 1203 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1204 if (count == COUNT_CONTINUED) { 1205 if (swap_count_continued(p, offset, count)) 1206 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1207 else 1208 count = SWAP_MAP_MAX; 1209 } else 1210 count--; 1211 } 1212 1213 usage = count | has_cache; 1214 if (usage) 1215 WRITE_ONCE(p->swap_map[offset], usage); 1216 else 1217 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE); 1218 1219 return usage; 1220 } 1221 1222 /* 1223 * Check whether swap entry is valid in the swap device. If so, 1224 * return pointer to swap_info_struct, and keep the swap entry valid 1225 * via preventing the swap device from being swapoff, until 1226 * put_swap_device() is called. Otherwise return NULL. 1227 * 1228 * Notice that swapoff or swapoff+swapon can still happen before the 1229 * percpu_ref_tryget_live() in get_swap_device() or after the 1230 * percpu_ref_put() in put_swap_device() if there isn't any other way 1231 * to prevent swapoff, such as page lock, page table lock, etc. The 1232 * caller must be prepared for that. For example, the following 1233 * situation is possible. 1234 * 1235 * CPU1 CPU2 1236 * do_swap_page() 1237 * ... swapoff+swapon 1238 * __read_swap_cache_async() 1239 * swapcache_prepare() 1240 * __swap_duplicate() 1241 * // check swap_map 1242 * // verify PTE not changed 1243 * 1244 * In __swap_duplicate(), the swap_map need to be checked before 1245 * changing partly because the specified swap entry may be for another 1246 * swap device which has been swapoff. And in do_swap_page(), after 1247 * the page is read from the swap device, the PTE is verified not 1248 * changed with the page table locked to check whether the swap device 1249 * has been swapoff or swapoff+swapon. 1250 */ 1251 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1252 { 1253 struct swap_info_struct *si; 1254 unsigned long offset; 1255 1256 if (!entry.val) 1257 goto out; 1258 si = swp_swap_info(entry); 1259 if (!si) 1260 goto bad_nofile; 1261 if (!percpu_ref_tryget_live(&si->users)) 1262 goto out; 1263 /* 1264 * Guarantee the si->users are checked before accessing other 1265 * fields of swap_info_struct. 1266 * 1267 * Paired with the spin_unlock() after setup_swap_info() in 1268 * enable_swap_info(). 1269 */ 1270 smp_rmb(); 1271 offset = swp_offset(entry); 1272 if (offset >= si->max) 1273 goto put_out; 1274 1275 return si; 1276 bad_nofile: 1277 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1278 out: 1279 return NULL; 1280 put_out: 1281 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1282 percpu_ref_put(&si->users); 1283 return NULL; 1284 } 1285 1286 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1287 swp_entry_t entry) 1288 { 1289 struct swap_cluster_info *ci; 1290 unsigned long offset = swp_offset(entry); 1291 unsigned char usage; 1292 1293 ci = lock_cluster_or_swap_info(p, offset); 1294 usage = __swap_entry_free_locked(p, offset, 1); 1295 unlock_cluster_or_swap_info(p, ci); 1296 if (!usage) 1297 free_swap_slot(entry); 1298 1299 return usage; 1300 } 1301 1302 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1303 { 1304 struct swap_cluster_info *ci; 1305 unsigned long offset = swp_offset(entry); 1306 unsigned char count; 1307 1308 ci = lock_cluster(p, offset); 1309 count = p->swap_map[offset]; 1310 VM_BUG_ON(count != SWAP_HAS_CACHE); 1311 p->swap_map[offset] = 0; 1312 dec_cluster_info_page(p, p->cluster_info, offset); 1313 unlock_cluster(ci); 1314 1315 mem_cgroup_uncharge_swap(entry, 1); 1316 swap_range_free(p, offset, 1); 1317 } 1318 1319 /* 1320 * Caller has made sure that the swap device corresponding to entry 1321 * is still around or has not been recycled. 1322 */ 1323 void swap_free(swp_entry_t entry) 1324 { 1325 struct swap_info_struct *p; 1326 1327 p = _swap_info_get(entry); 1328 if (p) 1329 __swap_entry_free(p, entry); 1330 } 1331 1332 /* 1333 * Called after dropping swapcache to decrease refcnt to swap entries. 1334 */ 1335 void put_swap_folio(struct folio *folio, swp_entry_t entry) 1336 { 1337 unsigned long offset = swp_offset(entry); 1338 unsigned long idx = offset / SWAPFILE_CLUSTER; 1339 struct swap_cluster_info *ci; 1340 struct swap_info_struct *si; 1341 unsigned char *map; 1342 unsigned int i, free_entries = 0; 1343 unsigned char val; 1344 int size = swap_entry_size(folio_nr_pages(folio)); 1345 1346 si = _swap_info_get(entry); 1347 if (!si) 1348 return; 1349 1350 ci = lock_cluster_or_swap_info(si, offset); 1351 if (size == SWAPFILE_CLUSTER) { 1352 VM_BUG_ON(!cluster_is_huge(ci)); 1353 map = si->swap_map + offset; 1354 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1355 val = map[i]; 1356 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1357 if (val == SWAP_HAS_CACHE) 1358 free_entries++; 1359 } 1360 cluster_clear_huge(ci); 1361 if (free_entries == SWAPFILE_CLUSTER) { 1362 unlock_cluster_or_swap_info(si, ci); 1363 spin_lock(&si->lock); 1364 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1365 swap_free_cluster(si, idx); 1366 spin_unlock(&si->lock); 1367 return; 1368 } 1369 } 1370 for (i = 0; i < size; i++, entry.val++) { 1371 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1372 unlock_cluster_or_swap_info(si, ci); 1373 free_swap_slot(entry); 1374 if (i == size - 1) 1375 return; 1376 lock_cluster_or_swap_info(si, offset); 1377 } 1378 } 1379 unlock_cluster_or_swap_info(si, ci); 1380 } 1381 1382 #ifdef CONFIG_THP_SWAP 1383 int split_swap_cluster(swp_entry_t entry) 1384 { 1385 struct swap_info_struct *si; 1386 struct swap_cluster_info *ci; 1387 unsigned long offset = swp_offset(entry); 1388 1389 si = _swap_info_get(entry); 1390 if (!si) 1391 return -EBUSY; 1392 ci = lock_cluster(si, offset); 1393 cluster_clear_huge(ci); 1394 unlock_cluster(ci); 1395 return 0; 1396 } 1397 #endif 1398 1399 static int swp_entry_cmp(const void *ent1, const void *ent2) 1400 { 1401 const swp_entry_t *e1 = ent1, *e2 = ent2; 1402 1403 return (int)swp_type(*e1) - (int)swp_type(*e2); 1404 } 1405 1406 void swapcache_free_entries(swp_entry_t *entries, int n) 1407 { 1408 struct swap_info_struct *p, *prev; 1409 int i; 1410 1411 if (n <= 0) 1412 return; 1413 1414 prev = NULL; 1415 p = NULL; 1416 1417 /* 1418 * Sort swap entries by swap device, so each lock is only taken once. 1419 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1420 * so low that it isn't necessary to optimize further. 1421 */ 1422 if (nr_swapfiles > 1) 1423 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1424 for (i = 0; i < n; ++i) { 1425 p = swap_info_get_cont(entries[i], prev); 1426 if (p) 1427 swap_entry_free(p, entries[i]); 1428 prev = p; 1429 } 1430 if (p) 1431 spin_unlock(&p->lock); 1432 } 1433 1434 int __swap_count(swp_entry_t entry) 1435 { 1436 struct swap_info_struct *si = swp_swap_info(entry); 1437 pgoff_t offset = swp_offset(entry); 1438 1439 return swap_count(si->swap_map[offset]); 1440 } 1441 1442 /* 1443 * How many references to @entry are currently swapped out? 1444 * This does not give an exact answer when swap count is continued, 1445 * but does include the high COUNT_CONTINUED flag to allow for that. 1446 */ 1447 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1448 { 1449 pgoff_t offset = swp_offset(entry); 1450 struct swap_cluster_info *ci; 1451 int count; 1452 1453 ci = lock_cluster_or_swap_info(si, offset); 1454 count = swap_count(si->swap_map[offset]); 1455 unlock_cluster_or_swap_info(si, ci); 1456 return count; 1457 } 1458 1459 /* 1460 * How many references to @entry are currently swapped out? 1461 * This does not give an exact answer when swap count is continued, 1462 * but does include the high COUNT_CONTINUED flag to allow for that. 1463 */ 1464 int __swp_swapcount(swp_entry_t entry) 1465 { 1466 int count = 0; 1467 struct swap_info_struct *si; 1468 1469 si = get_swap_device(entry); 1470 if (si) { 1471 count = swap_swapcount(si, entry); 1472 put_swap_device(si); 1473 } 1474 return count; 1475 } 1476 1477 /* 1478 * How many references to @entry are currently swapped out? 1479 * This considers COUNT_CONTINUED so it returns exact answer. 1480 */ 1481 int swp_swapcount(swp_entry_t entry) 1482 { 1483 int count, tmp_count, n; 1484 struct swap_info_struct *p; 1485 struct swap_cluster_info *ci; 1486 struct page *page; 1487 pgoff_t offset; 1488 unsigned char *map; 1489 1490 p = _swap_info_get(entry); 1491 if (!p) 1492 return 0; 1493 1494 offset = swp_offset(entry); 1495 1496 ci = lock_cluster_or_swap_info(p, offset); 1497 1498 count = swap_count(p->swap_map[offset]); 1499 if (!(count & COUNT_CONTINUED)) 1500 goto out; 1501 1502 count &= ~COUNT_CONTINUED; 1503 n = SWAP_MAP_MAX + 1; 1504 1505 page = vmalloc_to_page(p->swap_map + offset); 1506 offset &= ~PAGE_MASK; 1507 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1508 1509 do { 1510 page = list_next_entry(page, lru); 1511 map = kmap_atomic(page); 1512 tmp_count = map[offset]; 1513 kunmap_atomic(map); 1514 1515 count += (tmp_count & ~COUNT_CONTINUED) * n; 1516 n *= (SWAP_CONT_MAX + 1); 1517 } while (tmp_count & COUNT_CONTINUED); 1518 out: 1519 unlock_cluster_or_swap_info(p, ci); 1520 return count; 1521 } 1522 1523 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1524 swp_entry_t entry) 1525 { 1526 struct swap_cluster_info *ci; 1527 unsigned char *map = si->swap_map; 1528 unsigned long roffset = swp_offset(entry); 1529 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); 1530 int i; 1531 bool ret = false; 1532 1533 ci = lock_cluster_or_swap_info(si, offset); 1534 if (!ci || !cluster_is_huge(ci)) { 1535 if (swap_count(map[roffset])) 1536 ret = true; 1537 goto unlock_out; 1538 } 1539 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1540 if (swap_count(map[offset + i])) { 1541 ret = true; 1542 break; 1543 } 1544 } 1545 unlock_out: 1546 unlock_cluster_or_swap_info(si, ci); 1547 return ret; 1548 } 1549 1550 static bool folio_swapped(struct folio *folio) 1551 { 1552 swp_entry_t entry = folio_swap_entry(folio); 1553 struct swap_info_struct *si = _swap_info_get(entry); 1554 1555 if (!si) 1556 return false; 1557 1558 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio))) 1559 return swap_swapcount(si, entry) != 0; 1560 1561 return swap_page_trans_huge_swapped(si, entry); 1562 } 1563 1564 /** 1565 * folio_free_swap() - Free the swap space used for this folio. 1566 * @folio: The folio to remove. 1567 * 1568 * If swap is getting full, or if there are no more mappings of this folio, 1569 * then call folio_free_swap to free its swap space. 1570 * 1571 * Return: true if we were able to release the swap space. 1572 */ 1573 bool folio_free_swap(struct folio *folio) 1574 { 1575 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1576 1577 if (!folio_test_swapcache(folio)) 1578 return false; 1579 if (folio_test_writeback(folio)) 1580 return false; 1581 if (folio_swapped(folio)) 1582 return false; 1583 1584 /* 1585 * Once hibernation has begun to create its image of memory, 1586 * there's a danger that one of the calls to folio_free_swap() 1587 * - most probably a call from __try_to_reclaim_swap() while 1588 * hibernation is allocating its own swap pages for the image, 1589 * but conceivably even a call from memory reclaim - will free 1590 * the swap from a folio which has already been recorded in the 1591 * image as a clean swapcache folio, and then reuse its swap for 1592 * another page of the image. On waking from hibernation, the 1593 * original folio might be freed under memory pressure, then 1594 * later read back in from swap, now with the wrong data. 1595 * 1596 * Hibernation suspends storage while it is writing the image 1597 * to disk so check that here. 1598 */ 1599 if (pm_suspended_storage()) 1600 return false; 1601 1602 delete_from_swap_cache(folio); 1603 folio_set_dirty(folio); 1604 return true; 1605 } 1606 1607 /* 1608 * Free the swap entry like above, but also try to 1609 * free the page cache entry if it is the last user. 1610 */ 1611 int free_swap_and_cache(swp_entry_t entry) 1612 { 1613 struct swap_info_struct *p; 1614 unsigned char count; 1615 1616 if (non_swap_entry(entry)) 1617 return 1; 1618 1619 p = _swap_info_get(entry); 1620 if (p) { 1621 count = __swap_entry_free(p, entry); 1622 if (count == SWAP_HAS_CACHE && 1623 !swap_page_trans_huge_swapped(p, entry)) 1624 __try_to_reclaim_swap(p, swp_offset(entry), 1625 TTRS_UNMAPPED | TTRS_FULL); 1626 } 1627 return p != NULL; 1628 } 1629 1630 #ifdef CONFIG_HIBERNATION 1631 1632 swp_entry_t get_swap_page_of_type(int type) 1633 { 1634 struct swap_info_struct *si = swap_type_to_swap_info(type); 1635 swp_entry_t entry = {0}; 1636 1637 if (!si) 1638 goto fail; 1639 1640 /* This is called for allocating swap entry, not cache */ 1641 spin_lock(&si->lock); 1642 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry)) 1643 atomic_long_dec(&nr_swap_pages); 1644 spin_unlock(&si->lock); 1645 fail: 1646 return entry; 1647 } 1648 1649 /* 1650 * Find the swap type that corresponds to given device (if any). 1651 * 1652 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1653 * from 0, in which the swap header is expected to be located. 1654 * 1655 * This is needed for the suspend to disk (aka swsusp). 1656 */ 1657 int swap_type_of(dev_t device, sector_t offset) 1658 { 1659 int type; 1660 1661 if (!device) 1662 return -1; 1663 1664 spin_lock(&swap_lock); 1665 for (type = 0; type < nr_swapfiles; type++) { 1666 struct swap_info_struct *sis = swap_info[type]; 1667 1668 if (!(sis->flags & SWP_WRITEOK)) 1669 continue; 1670 1671 if (device == sis->bdev->bd_dev) { 1672 struct swap_extent *se = first_se(sis); 1673 1674 if (se->start_block == offset) { 1675 spin_unlock(&swap_lock); 1676 return type; 1677 } 1678 } 1679 } 1680 spin_unlock(&swap_lock); 1681 return -ENODEV; 1682 } 1683 1684 int find_first_swap(dev_t *device) 1685 { 1686 int type; 1687 1688 spin_lock(&swap_lock); 1689 for (type = 0; type < nr_swapfiles; type++) { 1690 struct swap_info_struct *sis = swap_info[type]; 1691 1692 if (!(sis->flags & SWP_WRITEOK)) 1693 continue; 1694 *device = sis->bdev->bd_dev; 1695 spin_unlock(&swap_lock); 1696 return type; 1697 } 1698 spin_unlock(&swap_lock); 1699 return -ENODEV; 1700 } 1701 1702 /* 1703 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1704 * corresponding to given index in swap_info (swap type). 1705 */ 1706 sector_t swapdev_block(int type, pgoff_t offset) 1707 { 1708 struct swap_info_struct *si = swap_type_to_swap_info(type); 1709 struct swap_extent *se; 1710 1711 if (!si || !(si->flags & SWP_WRITEOK)) 1712 return 0; 1713 se = offset_to_swap_extent(si, offset); 1714 return se->start_block + (offset - se->start_page); 1715 } 1716 1717 /* 1718 * Return either the total number of swap pages of given type, or the number 1719 * of free pages of that type (depending on @free) 1720 * 1721 * This is needed for software suspend 1722 */ 1723 unsigned int count_swap_pages(int type, int free) 1724 { 1725 unsigned int n = 0; 1726 1727 spin_lock(&swap_lock); 1728 if ((unsigned int)type < nr_swapfiles) { 1729 struct swap_info_struct *sis = swap_info[type]; 1730 1731 spin_lock(&sis->lock); 1732 if (sis->flags & SWP_WRITEOK) { 1733 n = sis->pages; 1734 if (free) 1735 n -= sis->inuse_pages; 1736 } 1737 spin_unlock(&sis->lock); 1738 } 1739 spin_unlock(&swap_lock); 1740 return n; 1741 } 1742 #endif /* CONFIG_HIBERNATION */ 1743 1744 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1745 { 1746 return pte_same(pte_swp_clear_flags(pte), swp_pte); 1747 } 1748 1749 /* 1750 * No need to decide whether this PTE shares the swap entry with others, 1751 * just let do_wp_page work it out if a write is requested later - to 1752 * force COW, vm_page_prot omits write permission from any private vma. 1753 */ 1754 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1755 unsigned long addr, swp_entry_t entry, struct folio *folio) 1756 { 1757 struct page *page = folio_file_page(folio, swp_offset(entry)); 1758 struct page *swapcache; 1759 spinlock_t *ptl; 1760 pte_t *pte, new_pte; 1761 bool hwposioned = false; 1762 int ret = 1; 1763 1764 swapcache = page; 1765 page = ksm_might_need_to_copy(page, vma, addr); 1766 if (unlikely(!page)) 1767 return -ENOMEM; 1768 else if (unlikely(PTR_ERR(page) == -EHWPOISON)) 1769 hwposioned = true; 1770 1771 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1772 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1773 ret = 0; 1774 goto out; 1775 } 1776 1777 if (unlikely(hwposioned || !PageUptodate(page))) { 1778 swp_entry_t swp_entry; 1779 1780 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1781 if (hwposioned) { 1782 swp_entry = make_hwpoison_entry(swapcache); 1783 page = swapcache; 1784 } else { 1785 swp_entry = make_swapin_error_entry(); 1786 } 1787 new_pte = swp_entry_to_pte(swp_entry); 1788 ret = 0; 1789 goto setpte; 1790 } 1791 1792 /* See do_swap_page() */ 1793 BUG_ON(!PageAnon(page) && PageMappedToDisk(page)); 1794 BUG_ON(PageAnon(page) && PageAnonExclusive(page)); 1795 1796 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1797 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1798 get_page(page); 1799 if (page == swapcache) { 1800 rmap_t rmap_flags = RMAP_NONE; 1801 1802 /* 1803 * See do_swap_page(): PageWriteback() would be problematic. 1804 * However, we do a wait_on_page_writeback() just before this 1805 * call and have the page locked. 1806 */ 1807 VM_BUG_ON_PAGE(PageWriteback(page), page); 1808 if (pte_swp_exclusive(*pte)) 1809 rmap_flags |= RMAP_EXCLUSIVE; 1810 1811 page_add_anon_rmap(page, vma, addr, rmap_flags); 1812 } else { /* ksm created a completely new copy */ 1813 page_add_new_anon_rmap(page, vma, addr); 1814 lru_cache_add_inactive_or_unevictable(page, vma); 1815 } 1816 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot)); 1817 if (pte_swp_soft_dirty(*pte)) 1818 new_pte = pte_mksoft_dirty(new_pte); 1819 if (pte_swp_uffd_wp(*pte)) 1820 new_pte = pte_mkuffd_wp(new_pte); 1821 setpte: 1822 set_pte_at(vma->vm_mm, addr, pte, new_pte); 1823 swap_free(entry); 1824 out: 1825 pte_unmap_unlock(pte, ptl); 1826 if (page != swapcache) { 1827 unlock_page(page); 1828 put_page(page); 1829 } 1830 return ret; 1831 } 1832 1833 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1834 unsigned long addr, unsigned long end, 1835 unsigned int type) 1836 { 1837 swp_entry_t entry; 1838 pte_t *pte; 1839 struct swap_info_struct *si; 1840 int ret = 0; 1841 1842 si = swap_info[type]; 1843 pte = pte_offset_map(pmd, addr); 1844 do { 1845 struct folio *folio; 1846 unsigned long offset; 1847 unsigned char swp_count; 1848 1849 if (!is_swap_pte(*pte)) 1850 continue; 1851 1852 entry = pte_to_swp_entry(*pte); 1853 if (swp_type(entry) != type) 1854 continue; 1855 1856 offset = swp_offset(entry); 1857 pte_unmap(pte); 1858 folio = swap_cache_get_folio(entry, vma, addr); 1859 if (!folio) { 1860 struct page *page; 1861 struct vm_fault vmf = { 1862 .vma = vma, 1863 .address = addr, 1864 .real_address = addr, 1865 .pmd = pmd, 1866 }; 1867 1868 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 1869 &vmf); 1870 if (page) 1871 folio = page_folio(page); 1872 } 1873 if (!folio) { 1874 swp_count = READ_ONCE(si->swap_map[offset]); 1875 if (swp_count == 0 || swp_count == SWAP_MAP_BAD) 1876 goto try_next; 1877 1878 return -ENOMEM; 1879 } 1880 1881 folio_lock(folio); 1882 folio_wait_writeback(folio); 1883 ret = unuse_pte(vma, pmd, addr, entry, folio); 1884 if (ret < 0) { 1885 folio_unlock(folio); 1886 folio_put(folio); 1887 goto out; 1888 } 1889 1890 folio_free_swap(folio); 1891 folio_unlock(folio); 1892 folio_put(folio); 1893 try_next: 1894 pte = pte_offset_map(pmd, addr); 1895 } while (pte++, addr += PAGE_SIZE, addr != end); 1896 pte_unmap(pte - 1); 1897 1898 ret = 0; 1899 out: 1900 return ret; 1901 } 1902 1903 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1904 unsigned long addr, unsigned long end, 1905 unsigned int type) 1906 { 1907 pmd_t *pmd; 1908 unsigned long next; 1909 int ret; 1910 1911 pmd = pmd_offset(pud, addr); 1912 do { 1913 cond_resched(); 1914 next = pmd_addr_end(addr, end); 1915 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1916 continue; 1917 ret = unuse_pte_range(vma, pmd, addr, next, type); 1918 if (ret) 1919 return ret; 1920 } while (pmd++, addr = next, addr != end); 1921 return 0; 1922 } 1923 1924 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 1925 unsigned long addr, unsigned long end, 1926 unsigned int type) 1927 { 1928 pud_t *pud; 1929 unsigned long next; 1930 int ret; 1931 1932 pud = pud_offset(p4d, addr); 1933 do { 1934 next = pud_addr_end(addr, end); 1935 if (pud_none_or_clear_bad(pud)) 1936 continue; 1937 ret = unuse_pmd_range(vma, pud, addr, next, type); 1938 if (ret) 1939 return ret; 1940 } while (pud++, addr = next, addr != end); 1941 return 0; 1942 } 1943 1944 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 1945 unsigned long addr, unsigned long end, 1946 unsigned int type) 1947 { 1948 p4d_t *p4d; 1949 unsigned long next; 1950 int ret; 1951 1952 p4d = p4d_offset(pgd, addr); 1953 do { 1954 next = p4d_addr_end(addr, end); 1955 if (p4d_none_or_clear_bad(p4d)) 1956 continue; 1957 ret = unuse_pud_range(vma, p4d, addr, next, type); 1958 if (ret) 1959 return ret; 1960 } while (p4d++, addr = next, addr != end); 1961 return 0; 1962 } 1963 1964 static int unuse_vma(struct vm_area_struct *vma, unsigned int type) 1965 { 1966 pgd_t *pgd; 1967 unsigned long addr, end, next; 1968 int ret; 1969 1970 addr = vma->vm_start; 1971 end = vma->vm_end; 1972 1973 pgd = pgd_offset(vma->vm_mm, addr); 1974 do { 1975 next = pgd_addr_end(addr, end); 1976 if (pgd_none_or_clear_bad(pgd)) 1977 continue; 1978 ret = unuse_p4d_range(vma, pgd, addr, next, type); 1979 if (ret) 1980 return ret; 1981 } while (pgd++, addr = next, addr != end); 1982 return 0; 1983 } 1984 1985 static int unuse_mm(struct mm_struct *mm, unsigned int type) 1986 { 1987 struct vm_area_struct *vma; 1988 int ret = 0; 1989 VMA_ITERATOR(vmi, mm, 0); 1990 1991 mmap_read_lock(mm); 1992 for_each_vma(vmi, vma) { 1993 if (vma->anon_vma) { 1994 ret = unuse_vma(vma, type); 1995 if (ret) 1996 break; 1997 } 1998 1999 cond_resched(); 2000 } 2001 mmap_read_unlock(mm); 2002 return ret; 2003 } 2004 2005 /* 2006 * Scan swap_map from current position to next entry still in use. 2007 * Return 0 if there are no inuse entries after prev till end of 2008 * the map. 2009 */ 2010 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2011 unsigned int prev) 2012 { 2013 unsigned int i; 2014 unsigned char count; 2015 2016 /* 2017 * No need for swap_lock here: we're just looking 2018 * for whether an entry is in use, not modifying it; false 2019 * hits are okay, and sys_swapoff() has already prevented new 2020 * allocations from this area (while holding swap_lock). 2021 */ 2022 for (i = prev + 1; i < si->max; i++) { 2023 count = READ_ONCE(si->swap_map[i]); 2024 if (count && swap_count(count) != SWAP_MAP_BAD) 2025 break; 2026 if ((i % LATENCY_LIMIT) == 0) 2027 cond_resched(); 2028 } 2029 2030 if (i == si->max) 2031 i = 0; 2032 2033 return i; 2034 } 2035 2036 static int try_to_unuse(unsigned int type) 2037 { 2038 struct mm_struct *prev_mm; 2039 struct mm_struct *mm; 2040 struct list_head *p; 2041 int retval = 0; 2042 struct swap_info_struct *si = swap_info[type]; 2043 struct folio *folio; 2044 swp_entry_t entry; 2045 unsigned int i; 2046 2047 if (!READ_ONCE(si->inuse_pages)) 2048 return 0; 2049 2050 retry: 2051 retval = shmem_unuse(type); 2052 if (retval) 2053 return retval; 2054 2055 prev_mm = &init_mm; 2056 mmget(prev_mm); 2057 2058 spin_lock(&mmlist_lock); 2059 p = &init_mm.mmlist; 2060 while (READ_ONCE(si->inuse_pages) && 2061 !signal_pending(current) && 2062 (p = p->next) != &init_mm.mmlist) { 2063 2064 mm = list_entry(p, struct mm_struct, mmlist); 2065 if (!mmget_not_zero(mm)) 2066 continue; 2067 spin_unlock(&mmlist_lock); 2068 mmput(prev_mm); 2069 prev_mm = mm; 2070 retval = unuse_mm(mm, type); 2071 if (retval) { 2072 mmput(prev_mm); 2073 return retval; 2074 } 2075 2076 /* 2077 * Make sure that we aren't completely killing 2078 * interactive performance. 2079 */ 2080 cond_resched(); 2081 spin_lock(&mmlist_lock); 2082 } 2083 spin_unlock(&mmlist_lock); 2084 2085 mmput(prev_mm); 2086 2087 i = 0; 2088 while (READ_ONCE(si->inuse_pages) && 2089 !signal_pending(current) && 2090 (i = find_next_to_unuse(si, i)) != 0) { 2091 2092 entry = swp_entry(type, i); 2093 folio = filemap_get_folio(swap_address_space(entry), i); 2094 if (IS_ERR(folio)) 2095 continue; 2096 2097 /* 2098 * It is conceivable that a racing task removed this folio from 2099 * swap cache just before we acquired the page lock. The folio 2100 * might even be back in swap cache on another swap area. But 2101 * that is okay, folio_free_swap() only removes stale folios. 2102 */ 2103 folio_lock(folio); 2104 folio_wait_writeback(folio); 2105 folio_free_swap(folio); 2106 folio_unlock(folio); 2107 folio_put(folio); 2108 } 2109 2110 /* 2111 * Lets check again to see if there are still swap entries in the map. 2112 * If yes, we would need to do retry the unuse logic again. 2113 * Under global memory pressure, swap entries can be reinserted back 2114 * into process space after the mmlist loop above passes over them. 2115 * 2116 * Limit the number of retries? No: when mmget_not_zero() 2117 * above fails, that mm is likely to be freeing swap from 2118 * exit_mmap(), which proceeds at its own independent pace; 2119 * and even shmem_writepage() could have been preempted after 2120 * folio_alloc_swap(), temporarily hiding that swap. It's easy 2121 * and robust (though cpu-intensive) just to keep retrying. 2122 */ 2123 if (READ_ONCE(si->inuse_pages)) { 2124 if (!signal_pending(current)) 2125 goto retry; 2126 return -EINTR; 2127 } 2128 2129 return 0; 2130 } 2131 2132 /* 2133 * After a successful try_to_unuse, if no swap is now in use, we know 2134 * we can empty the mmlist. swap_lock must be held on entry and exit. 2135 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2136 * added to the mmlist just after page_duplicate - before would be racy. 2137 */ 2138 static void drain_mmlist(void) 2139 { 2140 struct list_head *p, *next; 2141 unsigned int type; 2142 2143 for (type = 0; type < nr_swapfiles; type++) 2144 if (swap_info[type]->inuse_pages) 2145 return; 2146 spin_lock(&mmlist_lock); 2147 list_for_each_safe(p, next, &init_mm.mmlist) 2148 list_del_init(p); 2149 spin_unlock(&mmlist_lock); 2150 } 2151 2152 /* 2153 * Free all of a swapdev's extent information 2154 */ 2155 static void destroy_swap_extents(struct swap_info_struct *sis) 2156 { 2157 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2158 struct rb_node *rb = sis->swap_extent_root.rb_node; 2159 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2160 2161 rb_erase(rb, &sis->swap_extent_root); 2162 kfree(se); 2163 } 2164 2165 if (sis->flags & SWP_ACTIVATED) { 2166 struct file *swap_file = sis->swap_file; 2167 struct address_space *mapping = swap_file->f_mapping; 2168 2169 sis->flags &= ~SWP_ACTIVATED; 2170 if (mapping->a_ops->swap_deactivate) 2171 mapping->a_ops->swap_deactivate(swap_file); 2172 } 2173 } 2174 2175 /* 2176 * Add a block range (and the corresponding page range) into this swapdev's 2177 * extent tree. 2178 * 2179 * This function rather assumes that it is called in ascending page order. 2180 */ 2181 int 2182 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2183 unsigned long nr_pages, sector_t start_block) 2184 { 2185 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2186 struct swap_extent *se; 2187 struct swap_extent *new_se; 2188 2189 /* 2190 * place the new node at the right most since the 2191 * function is called in ascending page order. 2192 */ 2193 while (*link) { 2194 parent = *link; 2195 link = &parent->rb_right; 2196 } 2197 2198 if (parent) { 2199 se = rb_entry(parent, struct swap_extent, rb_node); 2200 BUG_ON(se->start_page + se->nr_pages != start_page); 2201 if (se->start_block + se->nr_pages == start_block) { 2202 /* Merge it */ 2203 se->nr_pages += nr_pages; 2204 return 0; 2205 } 2206 } 2207 2208 /* No merge, insert a new extent. */ 2209 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2210 if (new_se == NULL) 2211 return -ENOMEM; 2212 new_se->start_page = start_page; 2213 new_se->nr_pages = nr_pages; 2214 new_se->start_block = start_block; 2215 2216 rb_link_node(&new_se->rb_node, parent, link); 2217 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2218 return 1; 2219 } 2220 EXPORT_SYMBOL_GPL(add_swap_extent); 2221 2222 /* 2223 * A `swap extent' is a simple thing which maps a contiguous range of pages 2224 * onto a contiguous range of disk blocks. A rbtree of swap extents is 2225 * built at swapon time and is then used at swap_writepage/swap_readpage 2226 * time for locating where on disk a page belongs. 2227 * 2228 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2229 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2230 * swap files identically. 2231 * 2232 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2233 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2234 * swapfiles are handled *identically* after swapon time. 2235 * 2236 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2237 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray 2238 * blocks are found which do not fall within the PAGE_SIZE alignment 2239 * requirements, they are simply tossed out - we will never use those blocks 2240 * for swapping. 2241 * 2242 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2243 * prevents users from writing to the swap device, which will corrupt memory. 2244 * 2245 * The amount of disk space which a single swap extent represents varies. 2246 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2247 * extents in the rbtree. - akpm. 2248 */ 2249 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2250 { 2251 struct file *swap_file = sis->swap_file; 2252 struct address_space *mapping = swap_file->f_mapping; 2253 struct inode *inode = mapping->host; 2254 int ret; 2255 2256 if (S_ISBLK(inode->i_mode)) { 2257 ret = add_swap_extent(sis, 0, sis->max, 0); 2258 *span = sis->pages; 2259 return ret; 2260 } 2261 2262 if (mapping->a_ops->swap_activate) { 2263 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2264 if (ret < 0) 2265 return ret; 2266 sis->flags |= SWP_ACTIVATED; 2267 if ((sis->flags & SWP_FS_OPS) && 2268 sio_pool_init() != 0) { 2269 destroy_swap_extents(sis); 2270 return -ENOMEM; 2271 } 2272 return ret; 2273 } 2274 2275 return generic_swapfile_activate(sis, swap_file, span); 2276 } 2277 2278 static int swap_node(struct swap_info_struct *p) 2279 { 2280 struct block_device *bdev; 2281 2282 if (p->bdev) 2283 bdev = p->bdev; 2284 else 2285 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2286 2287 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2288 } 2289 2290 static void setup_swap_info(struct swap_info_struct *p, int prio, 2291 unsigned char *swap_map, 2292 struct swap_cluster_info *cluster_info) 2293 { 2294 int i; 2295 2296 if (prio >= 0) 2297 p->prio = prio; 2298 else 2299 p->prio = --least_priority; 2300 /* 2301 * the plist prio is negated because plist ordering is 2302 * low-to-high, while swap ordering is high-to-low 2303 */ 2304 p->list.prio = -p->prio; 2305 for_each_node(i) { 2306 if (p->prio >= 0) 2307 p->avail_lists[i].prio = -p->prio; 2308 else { 2309 if (swap_node(p) == i) 2310 p->avail_lists[i].prio = 1; 2311 else 2312 p->avail_lists[i].prio = -p->prio; 2313 } 2314 } 2315 p->swap_map = swap_map; 2316 p->cluster_info = cluster_info; 2317 } 2318 2319 static void _enable_swap_info(struct swap_info_struct *p) 2320 { 2321 p->flags |= SWP_WRITEOK; 2322 atomic_long_add(p->pages, &nr_swap_pages); 2323 total_swap_pages += p->pages; 2324 2325 assert_spin_locked(&swap_lock); 2326 /* 2327 * both lists are plists, and thus priority ordered. 2328 * swap_active_head needs to be priority ordered for swapoff(), 2329 * which on removal of any swap_info_struct with an auto-assigned 2330 * (i.e. negative) priority increments the auto-assigned priority 2331 * of any lower-priority swap_info_structs. 2332 * swap_avail_head needs to be priority ordered for folio_alloc_swap(), 2333 * which allocates swap pages from the highest available priority 2334 * swap_info_struct. 2335 */ 2336 plist_add(&p->list, &swap_active_head); 2337 add_to_avail_list(p); 2338 } 2339 2340 static void enable_swap_info(struct swap_info_struct *p, int prio, 2341 unsigned char *swap_map, 2342 struct swap_cluster_info *cluster_info, 2343 unsigned long *frontswap_map) 2344 { 2345 if (IS_ENABLED(CONFIG_FRONTSWAP)) 2346 frontswap_init(p->type, frontswap_map); 2347 spin_lock(&swap_lock); 2348 spin_lock(&p->lock); 2349 setup_swap_info(p, prio, swap_map, cluster_info); 2350 spin_unlock(&p->lock); 2351 spin_unlock(&swap_lock); 2352 /* 2353 * Finished initializing swap device, now it's safe to reference it. 2354 */ 2355 percpu_ref_resurrect(&p->users); 2356 spin_lock(&swap_lock); 2357 spin_lock(&p->lock); 2358 _enable_swap_info(p); 2359 spin_unlock(&p->lock); 2360 spin_unlock(&swap_lock); 2361 } 2362 2363 static void reinsert_swap_info(struct swap_info_struct *p) 2364 { 2365 spin_lock(&swap_lock); 2366 spin_lock(&p->lock); 2367 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2368 _enable_swap_info(p); 2369 spin_unlock(&p->lock); 2370 spin_unlock(&swap_lock); 2371 } 2372 2373 bool has_usable_swap(void) 2374 { 2375 bool ret = true; 2376 2377 spin_lock(&swap_lock); 2378 if (plist_head_empty(&swap_active_head)) 2379 ret = false; 2380 spin_unlock(&swap_lock); 2381 return ret; 2382 } 2383 2384 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2385 { 2386 struct swap_info_struct *p = NULL; 2387 unsigned char *swap_map; 2388 struct swap_cluster_info *cluster_info; 2389 unsigned long *frontswap_map; 2390 struct file *swap_file, *victim; 2391 struct address_space *mapping; 2392 struct inode *inode; 2393 struct filename *pathname; 2394 int err, found = 0; 2395 unsigned int old_block_size; 2396 2397 if (!capable(CAP_SYS_ADMIN)) 2398 return -EPERM; 2399 2400 BUG_ON(!current->mm); 2401 2402 pathname = getname(specialfile); 2403 if (IS_ERR(pathname)) 2404 return PTR_ERR(pathname); 2405 2406 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2407 err = PTR_ERR(victim); 2408 if (IS_ERR(victim)) 2409 goto out; 2410 2411 mapping = victim->f_mapping; 2412 spin_lock(&swap_lock); 2413 plist_for_each_entry(p, &swap_active_head, list) { 2414 if (p->flags & SWP_WRITEOK) { 2415 if (p->swap_file->f_mapping == mapping) { 2416 found = 1; 2417 break; 2418 } 2419 } 2420 } 2421 if (!found) { 2422 err = -EINVAL; 2423 spin_unlock(&swap_lock); 2424 goto out_dput; 2425 } 2426 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2427 vm_unacct_memory(p->pages); 2428 else { 2429 err = -ENOMEM; 2430 spin_unlock(&swap_lock); 2431 goto out_dput; 2432 } 2433 spin_lock(&p->lock); 2434 del_from_avail_list(p); 2435 if (p->prio < 0) { 2436 struct swap_info_struct *si = p; 2437 int nid; 2438 2439 plist_for_each_entry_continue(si, &swap_active_head, list) { 2440 si->prio++; 2441 si->list.prio--; 2442 for_each_node(nid) { 2443 if (si->avail_lists[nid].prio != 1) 2444 si->avail_lists[nid].prio--; 2445 } 2446 } 2447 least_priority++; 2448 } 2449 plist_del(&p->list, &swap_active_head); 2450 atomic_long_sub(p->pages, &nr_swap_pages); 2451 total_swap_pages -= p->pages; 2452 p->flags &= ~SWP_WRITEOK; 2453 spin_unlock(&p->lock); 2454 spin_unlock(&swap_lock); 2455 2456 disable_swap_slots_cache_lock(); 2457 2458 set_current_oom_origin(); 2459 err = try_to_unuse(p->type); 2460 clear_current_oom_origin(); 2461 2462 if (err) { 2463 /* re-insert swap space back into swap_list */ 2464 reinsert_swap_info(p); 2465 reenable_swap_slots_cache_unlock(); 2466 goto out_dput; 2467 } 2468 2469 reenable_swap_slots_cache_unlock(); 2470 2471 /* 2472 * Wait for swap operations protected by get/put_swap_device() 2473 * to complete. 2474 * 2475 * We need synchronize_rcu() here to protect the accessing to 2476 * the swap cache data structure. 2477 */ 2478 percpu_ref_kill(&p->users); 2479 synchronize_rcu(); 2480 wait_for_completion(&p->comp); 2481 2482 flush_work(&p->discard_work); 2483 2484 destroy_swap_extents(p); 2485 if (p->flags & SWP_CONTINUED) 2486 free_swap_count_continuations(p); 2487 2488 if (!p->bdev || !bdev_nonrot(p->bdev)) 2489 atomic_dec(&nr_rotate_swap); 2490 2491 mutex_lock(&swapon_mutex); 2492 spin_lock(&swap_lock); 2493 spin_lock(&p->lock); 2494 drain_mmlist(); 2495 2496 /* wait for anyone still in scan_swap_map_slots */ 2497 p->highest_bit = 0; /* cuts scans short */ 2498 while (p->flags >= SWP_SCANNING) { 2499 spin_unlock(&p->lock); 2500 spin_unlock(&swap_lock); 2501 schedule_timeout_uninterruptible(1); 2502 spin_lock(&swap_lock); 2503 spin_lock(&p->lock); 2504 } 2505 2506 swap_file = p->swap_file; 2507 old_block_size = p->old_block_size; 2508 p->swap_file = NULL; 2509 p->max = 0; 2510 swap_map = p->swap_map; 2511 p->swap_map = NULL; 2512 cluster_info = p->cluster_info; 2513 p->cluster_info = NULL; 2514 frontswap_map = frontswap_map_get(p); 2515 spin_unlock(&p->lock); 2516 spin_unlock(&swap_lock); 2517 arch_swap_invalidate_area(p->type); 2518 frontswap_invalidate_area(p->type); 2519 frontswap_map_set(p, NULL); 2520 mutex_unlock(&swapon_mutex); 2521 free_percpu(p->percpu_cluster); 2522 p->percpu_cluster = NULL; 2523 free_percpu(p->cluster_next_cpu); 2524 p->cluster_next_cpu = NULL; 2525 vfree(swap_map); 2526 kvfree(cluster_info); 2527 kvfree(frontswap_map); 2528 /* Destroy swap account information */ 2529 swap_cgroup_swapoff(p->type); 2530 exit_swap_address_space(p->type); 2531 2532 inode = mapping->host; 2533 if (S_ISBLK(inode->i_mode)) { 2534 struct block_device *bdev = I_BDEV(inode); 2535 2536 set_blocksize(bdev, old_block_size); 2537 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2538 } 2539 2540 inode_lock(inode); 2541 inode->i_flags &= ~S_SWAPFILE; 2542 inode_unlock(inode); 2543 filp_close(swap_file, NULL); 2544 2545 /* 2546 * Clear the SWP_USED flag after all resources are freed so that swapon 2547 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2548 * not hold p->lock after we cleared its SWP_WRITEOK. 2549 */ 2550 spin_lock(&swap_lock); 2551 p->flags = 0; 2552 spin_unlock(&swap_lock); 2553 2554 err = 0; 2555 atomic_inc(&proc_poll_event); 2556 wake_up_interruptible(&proc_poll_wait); 2557 2558 out_dput: 2559 filp_close(victim, NULL); 2560 out: 2561 putname(pathname); 2562 return err; 2563 } 2564 2565 #ifdef CONFIG_PROC_FS 2566 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2567 { 2568 struct seq_file *seq = file->private_data; 2569 2570 poll_wait(file, &proc_poll_wait, wait); 2571 2572 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2573 seq->poll_event = atomic_read(&proc_poll_event); 2574 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2575 } 2576 2577 return EPOLLIN | EPOLLRDNORM; 2578 } 2579 2580 /* iterator */ 2581 static void *swap_start(struct seq_file *swap, loff_t *pos) 2582 { 2583 struct swap_info_struct *si; 2584 int type; 2585 loff_t l = *pos; 2586 2587 mutex_lock(&swapon_mutex); 2588 2589 if (!l) 2590 return SEQ_START_TOKEN; 2591 2592 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2593 if (!(si->flags & SWP_USED) || !si->swap_map) 2594 continue; 2595 if (!--l) 2596 return si; 2597 } 2598 2599 return NULL; 2600 } 2601 2602 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2603 { 2604 struct swap_info_struct *si = v; 2605 int type; 2606 2607 if (v == SEQ_START_TOKEN) 2608 type = 0; 2609 else 2610 type = si->type + 1; 2611 2612 ++(*pos); 2613 for (; (si = swap_type_to_swap_info(type)); type++) { 2614 if (!(si->flags & SWP_USED) || !si->swap_map) 2615 continue; 2616 return si; 2617 } 2618 2619 return NULL; 2620 } 2621 2622 static void swap_stop(struct seq_file *swap, void *v) 2623 { 2624 mutex_unlock(&swapon_mutex); 2625 } 2626 2627 static int swap_show(struct seq_file *swap, void *v) 2628 { 2629 struct swap_info_struct *si = v; 2630 struct file *file; 2631 int len; 2632 unsigned long bytes, inuse; 2633 2634 if (si == SEQ_START_TOKEN) { 2635 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2636 return 0; 2637 } 2638 2639 bytes = si->pages << (PAGE_SHIFT - 10); 2640 inuse = READ_ONCE(si->inuse_pages) << (PAGE_SHIFT - 10); 2641 2642 file = si->swap_file; 2643 len = seq_file_path(swap, file, " \t\n\\"); 2644 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n", 2645 len < 40 ? 40 - len : 1, " ", 2646 S_ISBLK(file_inode(file)->i_mode) ? 2647 "partition" : "file\t", 2648 bytes, bytes < 10000000 ? "\t" : "", 2649 inuse, inuse < 10000000 ? "\t" : "", 2650 si->prio); 2651 return 0; 2652 } 2653 2654 static const struct seq_operations swaps_op = { 2655 .start = swap_start, 2656 .next = swap_next, 2657 .stop = swap_stop, 2658 .show = swap_show 2659 }; 2660 2661 static int swaps_open(struct inode *inode, struct file *file) 2662 { 2663 struct seq_file *seq; 2664 int ret; 2665 2666 ret = seq_open(file, &swaps_op); 2667 if (ret) 2668 return ret; 2669 2670 seq = file->private_data; 2671 seq->poll_event = atomic_read(&proc_poll_event); 2672 return 0; 2673 } 2674 2675 static const struct proc_ops swaps_proc_ops = { 2676 .proc_flags = PROC_ENTRY_PERMANENT, 2677 .proc_open = swaps_open, 2678 .proc_read = seq_read, 2679 .proc_lseek = seq_lseek, 2680 .proc_release = seq_release, 2681 .proc_poll = swaps_poll, 2682 }; 2683 2684 static int __init procswaps_init(void) 2685 { 2686 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2687 return 0; 2688 } 2689 __initcall(procswaps_init); 2690 #endif /* CONFIG_PROC_FS */ 2691 2692 #ifdef MAX_SWAPFILES_CHECK 2693 static int __init max_swapfiles_check(void) 2694 { 2695 MAX_SWAPFILES_CHECK(); 2696 return 0; 2697 } 2698 late_initcall(max_swapfiles_check); 2699 #endif 2700 2701 static struct swap_info_struct *alloc_swap_info(void) 2702 { 2703 struct swap_info_struct *p; 2704 struct swap_info_struct *defer = NULL; 2705 unsigned int type; 2706 int i; 2707 2708 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2709 if (!p) 2710 return ERR_PTR(-ENOMEM); 2711 2712 if (percpu_ref_init(&p->users, swap_users_ref_free, 2713 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { 2714 kvfree(p); 2715 return ERR_PTR(-ENOMEM); 2716 } 2717 2718 spin_lock(&swap_lock); 2719 for (type = 0; type < nr_swapfiles; type++) { 2720 if (!(swap_info[type]->flags & SWP_USED)) 2721 break; 2722 } 2723 if (type >= MAX_SWAPFILES) { 2724 spin_unlock(&swap_lock); 2725 percpu_ref_exit(&p->users); 2726 kvfree(p); 2727 return ERR_PTR(-EPERM); 2728 } 2729 if (type >= nr_swapfiles) { 2730 p->type = type; 2731 /* 2732 * Publish the swap_info_struct after initializing it. 2733 * Note that kvzalloc() above zeroes all its fields. 2734 */ 2735 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ 2736 nr_swapfiles++; 2737 } else { 2738 defer = p; 2739 p = swap_info[type]; 2740 /* 2741 * Do not memset this entry: a racing procfs swap_next() 2742 * would be relying on p->type to remain valid. 2743 */ 2744 } 2745 p->swap_extent_root = RB_ROOT; 2746 plist_node_init(&p->list, 0); 2747 for_each_node(i) 2748 plist_node_init(&p->avail_lists[i], 0); 2749 p->flags = SWP_USED; 2750 spin_unlock(&swap_lock); 2751 if (defer) { 2752 percpu_ref_exit(&defer->users); 2753 kvfree(defer); 2754 } 2755 spin_lock_init(&p->lock); 2756 spin_lock_init(&p->cont_lock); 2757 init_completion(&p->comp); 2758 2759 return p; 2760 } 2761 2762 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2763 { 2764 int error; 2765 2766 if (S_ISBLK(inode->i_mode)) { 2767 p->bdev = blkdev_get_by_dev(inode->i_rdev, 2768 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2769 if (IS_ERR(p->bdev)) { 2770 error = PTR_ERR(p->bdev); 2771 p->bdev = NULL; 2772 return error; 2773 } 2774 p->old_block_size = block_size(p->bdev); 2775 error = set_blocksize(p->bdev, PAGE_SIZE); 2776 if (error < 0) 2777 return error; 2778 /* 2779 * Zoned block devices contain zones that have a sequential 2780 * write only restriction. Hence zoned block devices are not 2781 * suitable for swapping. Disallow them here. 2782 */ 2783 if (bdev_is_zoned(p->bdev)) 2784 return -EINVAL; 2785 p->flags |= SWP_BLKDEV; 2786 } else if (S_ISREG(inode->i_mode)) { 2787 p->bdev = inode->i_sb->s_bdev; 2788 } 2789 2790 return 0; 2791 } 2792 2793 2794 /* 2795 * Find out how many pages are allowed for a single swap device. There 2796 * are two limiting factors: 2797 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2798 * 2) the number of bits in the swap pte, as defined by the different 2799 * architectures. 2800 * 2801 * In order to find the largest possible bit mask, a swap entry with 2802 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2803 * decoded to a swp_entry_t again, and finally the swap offset is 2804 * extracted. 2805 * 2806 * This will mask all the bits from the initial ~0UL mask that can't 2807 * be encoded in either the swp_entry_t or the architecture definition 2808 * of a swap pte. 2809 */ 2810 unsigned long generic_max_swapfile_size(void) 2811 { 2812 return swp_offset(pte_to_swp_entry( 2813 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2814 } 2815 2816 /* Can be overridden by an architecture for additional checks. */ 2817 __weak unsigned long arch_max_swapfile_size(void) 2818 { 2819 return generic_max_swapfile_size(); 2820 } 2821 2822 static unsigned long read_swap_header(struct swap_info_struct *p, 2823 union swap_header *swap_header, 2824 struct inode *inode) 2825 { 2826 int i; 2827 unsigned long maxpages; 2828 unsigned long swapfilepages; 2829 unsigned long last_page; 2830 2831 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2832 pr_err("Unable to find swap-space signature\n"); 2833 return 0; 2834 } 2835 2836 /* swap partition endianness hack... */ 2837 if (swab32(swap_header->info.version) == 1) { 2838 swab32s(&swap_header->info.version); 2839 swab32s(&swap_header->info.last_page); 2840 swab32s(&swap_header->info.nr_badpages); 2841 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2842 return 0; 2843 for (i = 0; i < swap_header->info.nr_badpages; i++) 2844 swab32s(&swap_header->info.badpages[i]); 2845 } 2846 /* Check the swap header's sub-version */ 2847 if (swap_header->info.version != 1) { 2848 pr_warn("Unable to handle swap header version %d\n", 2849 swap_header->info.version); 2850 return 0; 2851 } 2852 2853 p->lowest_bit = 1; 2854 p->cluster_next = 1; 2855 p->cluster_nr = 0; 2856 2857 maxpages = swapfile_maximum_size; 2858 last_page = swap_header->info.last_page; 2859 if (!last_page) { 2860 pr_warn("Empty swap-file\n"); 2861 return 0; 2862 } 2863 if (last_page > maxpages) { 2864 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2865 maxpages << (PAGE_SHIFT - 10), 2866 last_page << (PAGE_SHIFT - 10)); 2867 } 2868 if (maxpages > last_page) { 2869 maxpages = last_page + 1; 2870 /* p->max is an unsigned int: don't overflow it */ 2871 if ((unsigned int)maxpages == 0) 2872 maxpages = UINT_MAX; 2873 } 2874 p->highest_bit = maxpages - 1; 2875 2876 if (!maxpages) 2877 return 0; 2878 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2879 if (swapfilepages && maxpages > swapfilepages) { 2880 pr_warn("Swap area shorter than signature indicates\n"); 2881 return 0; 2882 } 2883 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2884 return 0; 2885 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2886 return 0; 2887 2888 return maxpages; 2889 } 2890 2891 #define SWAP_CLUSTER_INFO_COLS \ 2892 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 2893 #define SWAP_CLUSTER_SPACE_COLS \ 2894 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 2895 #define SWAP_CLUSTER_COLS \ 2896 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 2897 2898 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2899 union swap_header *swap_header, 2900 unsigned char *swap_map, 2901 struct swap_cluster_info *cluster_info, 2902 unsigned long maxpages, 2903 sector_t *span) 2904 { 2905 unsigned int j, k; 2906 unsigned int nr_good_pages; 2907 int nr_extents; 2908 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2909 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 2910 unsigned long i, idx; 2911 2912 nr_good_pages = maxpages - 1; /* omit header page */ 2913 2914 cluster_list_init(&p->free_clusters); 2915 cluster_list_init(&p->discard_clusters); 2916 2917 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2918 unsigned int page_nr = swap_header->info.badpages[i]; 2919 if (page_nr == 0 || page_nr > swap_header->info.last_page) 2920 return -EINVAL; 2921 if (page_nr < maxpages) { 2922 swap_map[page_nr] = SWAP_MAP_BAD; 2923 nr_good_pages--; 2924 /* 2925 * Haven't marked the cluster free yet, no list 2926 * operation involved 2927 */ 2928 inc_cluster_info_page(p, cluster_info, page_nr); 2929 } 2930 } 2931 2932 /* Haven't marked the cluster free yet, no list operation involved */ 2933 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 2934 inc_cluster_info_page(p, cluster_info, i); 2935 2936 if (nr_good_pages) { 2937 swap_map[0] = SWAP_MAP_BAD; 2938 /* 2939 * Not mark the cluster free yet, no list 2940 * operation involved 2941 */ 2942 inc_cluster_info_page(p, cluster_info, 0); 2943 p->max = maxpages; 2944 p->pages = nr_good_pages; 2945 nr_extents = setup_swap_extents(p, span); 2946 if (nr_extents < 0) 2947 return nr_extents; 2948 nr_good_pages = p->pages; 2949 } 2950 if (!nr_good_pages) { 2951 pr_warn("Empty swap-file\n"); 2952 return -EINVAL; 2953 } 2954 2955 if (!cluster_info) 2956 return nr_extents; 2957 2958 2959 /* 2960 * Reduce false cache line sharing between cluster_info and 2961 * sharing same address space. 2962 */ 2963 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 2964 j = (k + col) % SWAP_CLUSTER_COLS; 2965 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 2966 idx = i * SWAP_CLUSTER_COLS + j; 2967 if (idx >= nr_clusters) 2968 continue; 2969 if (cluster_count(&cluster_info[idx])) 2970 continue; 2971 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 2972 cluster_list_add_tail(&p->free_clusters, cluster_info, 2973 idx); 2974 } 2975 } 2976 return nr_extents; 2977 } 2978 2979 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2980 { 2981 struct swap_info_struct *p; 2982 struct filename *name; 2983 struct file *swap_file = NULL; 2984 struct address_space *mapping; 2985 struct dentry *dentry; 2986 int prio; 2987 int error; 2988 union swap_header *swap_header; 2989 int nr_extents; 2990 sector_t span; 2991 unsigned long maxpages; 2992 unsigned char *swap_map = NULL; 2993 struct swap_cluster_info *cluster_info = NULL; 2994 unsigned long *frontswap_map = NULL; 2995 struct page *page = NULL; 2996 struct inode *inode = NULL; 2997 bool inced_nr_rotate_swap = false; 2998 2999 if (swap_flags & ~SWAP_FLAGS_VALID) 3000 return -EINVAL; 3001 3002 if (!capable(CAP_SYS_ADMIN)) 3003 return -EPERM; 3004 3005 if (!swap_avail_heads) 3006 return -ENOMEM; 3007 3008 p = alloc_swap_info(); 3009 if (IS_ERR(p)) 3010 return PTR_ERR(p); 3011 3012 INIT_WORK(&p->discard_work, swap_discard_work); 3013 3014 name = getname(specialfile); 3015 if (IS_ERR(name)) { 3016 error = PTR_ERR(name); 3017 name = NULL; 3018 goto bad_swap; 3019 } 3020 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3021 if (IS_ERR(swap_file)) { 3022 error = PTR_ERR(swap_file); 3023 swap_file = NULL; 3024 goto bad_swap; 3025 } 3026 3027 p->swap_file = swap_file; 3028 mapping = swap_file->f_mapping; 3029 dentry = swap_file->f_path.dentry; 3030 inode = mapping->host; 3031 3032 error = claim_swapfile(p, inode); 3033 if (unlikely(error)) 3034 goto bad_swap; 3035 3036 inode_lock(inode); 3037 if (d_unlinked(dentry) || cant_mount(dentry)) { 3038 error = -ENOENT; 3039 goto bad_swap_unlock_inode; 3040 } 3041 if (IS_SWAPFILE(inode)) { 3042 error = -EBUSY; 3043 goto bad_swap_unlock_inode; 3044 } 3045 3046 /* 3047 * Read the swap header. 3048 */ 3049 if (!mapping->a_ops->read_folio) { 3050 error = -EINVAL; 3051 goto bad_swap_unlock_inode; 3052 } 3053 page = read_mapping_page(mapping, 0, swap_file); 3054 if (IS_ERR(page)) { 3055 error = PTR_ERR(page); 3056 goto bad_swap_unlock_inode; 3057 } 3058 swap_header = kmap(page); 3059 3060 maxpages = read_swap_header(p, swap_header, inode); 3061 if (unlikely(!maxpages)) { 3062 error = -EINVAL; 3063 goto bad_swap_unlock_inode; 3064 } 3065 3066 /* OK, set up the swap map and apply the bad block list */ 3067 swap_map = vzalloc(maxpages); 3068 if (!swap_map) { 3069 error = -ENOMEM; 3070 goto bad_swap_unlock_inode; 3071 } 3072 3073 if (p->bdev && bdev_stable_writes(p->bdev)) 3074 p->flags |= SWP_STABLE_WRITES; 3075 3076 if (p->bdev && bdev_synchronous(p->bdev)) 3077 p->flags |= SWP_SYNCHRONOUS_IO; 3078 3079 if (p->bdev && bdev_nonrot(p->bdev)) { 3080 int cpu; 3081 unsigned long ci, nr_cluster; 3082 3083 p->flags |= SWP_SOLIDSTATE; 3084 p->cluster_next_cpu = alloc_percpu(unsigned int); 3085 if (!p->cluster_next_cpu) { 3086 error = -ENOMEM; 3087 goto bad_swap_unlock_inode; 3088 } 3089 /* 3090 * select a random position to start with to help wear leveling 3091 * SSD 3092 */ 3093 for_each_possible_cpu(cpu) { 3094 per_cpu(*p->cluster_next_cpu, cpu) = 3095 get_random_u32_inclusive(1, p->highest_bit); 3096 } 3097 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3098 3099 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3100 GFP_KERNEL); 3101 if (!cluster_info) { 3102 error = -ENOMEM; 3103 goto bad_swap_unlock_inode; 3104 } 3105 3106 for (ci = 0; ci < nr_cluster; ci++) 3107 spin_lock_init(&((cluster_info + ci)->lock)); 3108 3109 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3110 if (!p->percpu_cluster) { 3111 error = -ENOMEM; 3112 goto bad_swap_unlock_inode; 3113 } 3114 for_each_possible_cpu(cpu) { 3115 struct percpu_cluster *cluster; 3116 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3117 cluster_set_null(&cluster->index); 3118 } 3119 } else { 3120 atomic_inc(&nr_rotate_swap); 3121 inced_nr_rotate_swap = true; 3122 } 3123 3124 error = swap_cgroup_swapon(p->type, maxpages); 3125 if (error) 3126 goto bad_swap_unlock_inode; 3127 3128 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3129 cluster_info, maxpages, &span); 3130 if (unlikely(nr_extents < 0)) { 3131 error = nr_extents; 3132 goto bad_swap_unlock_inode; 3133 } 3134 /* frontswap enabled? set up bit-per-page map for frontswap */ 3135 if (IS_ENABLED(CONFIG_FRONTSWAP)) 3136 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages), 3137 sizeof(long), 3138 GFP_KERNEL); 3139 3140 if ((swap_flags & SWAP_FLAG_DISCARD) && 3141 p->bdev && bdev_max_discard_sectors(p->bdev)) { 3142 /* 3143 * When discard is enabled for swap with no particular 3144 * policy flagged, we set all swap discard flags here in 3145 * order to sustain backward compatibility with older 3146 * swapon(8) releases. 3147 */ 3148 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3149 SWP_PAGE_DISCARD); 3150 3151 /* 3152 * By flagging sys_swapon, a sysadmin can tell us to 3153 * either do single-time area discards only, or to just 3154 * perform discards for released swap page-clusters. 3155 * Now it's time to adjust the p->flags accordingly. 3156 */ 3157 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3158 p->flags &= ~SWP_PAGE_DISCARD; 3159 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3160 p->flags &= ~SWP_AREA_DISCARD; 3161 3162 /* issue a swapon-time discard if it's still required */ 3163 if (p->flags & SWP_AREA_DISCARD) { 3164 int err = discard_swap(p); 3165 if (unlikely(err)) 3166 pr_err("swapon: discard_swap(%p): %d\n", 3167 p, err); 3168 } 3169 } 3170 3171 error = init_swap_address_space(p->type, maxpages); 3172 if (error) 3173 goto bad_swap_unlock_inode; 3174 3175 /* 3176 * Flush any pending IO and dirty mappings before we start using this 3177 * swap device. 3178 */ 3179 inode->i_flags |= S_SWAPFILE; 3180 error = inode_drain_writes(inode); 3181 if (error) { 3182 inode->i_flags &= ~S_SWAPFILE; 3183 goto free_swap_address_space; 3184 } 3185 3186 mutex_lock(&swapon_mutex); 3187 prio = -1; 3188 if (swap_flags & SWAP_FLAG_PREFER) 3189 prio = 3190 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3191 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 3192 3193 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 3194 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 3195 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 3196 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3197 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3198 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3199 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 3200 (frontswap_map) ? "FS" : ""); 3201 3202 mutex_unlock(&swapon_mutex); 3203 atomic_inc(&proc_poll_event); 3204 wake_up_interruptible(&proc_poll_wait); 3205 3206 error = 0; 3207 goto out; 3208 free_swap_address_space: 3209 exit_swap_address_space(p->type); 3210 bad_swap_unlock_inode: 3211 inode_unlock(inode); 3212 bad_swap: 3213 free_percpu(p->percpu_cluster); 3214 p->percpu_cluster = NULL; 3215 free_percpu(p->cluster_next_cpu); 3216 p->cluster_next_cpu = NULL; 3217 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 3218 set_blocksize(p->bdev, p->old_block_size); 3219 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 3220 } 3221 inode = NULL; 3222 destroy_swap_extents(p); 3223 swap_cgroup_swapoff(p->type); 3224 spin_lock(&swap_lock); 3225 p->swap_file = NULL; 3226 p->flags = 0; 3227 spin_unlock(&swap_lock); 3228 vfree(swap_map); 3229 kvfree(cluster_info); 3230 kvfree(frontswap_map); 3231 if (inced_nr_rotate_swap) 3232 atomic_dec(&nr_rotate_swap); 3233 if (swap_file) 3234 filp_close(swap_file, NULL); 3235 out: 3236 if (page && !IS_ERR(page)) { 3237 kunmap(page); 3238 put_page(page); 3239 } 3240 if (name) 3241 putname(name); 3242 if (inode) 3243 inode_unlock(inode); 3244 if (!error) 3245 enable_swap_slots_cache(); 3246 return error; 3247 } 3248 3249 void si_swapinfo(struct sysinfo *val) 3250 { 3251 unsigned int type; 3252 unsigned long nr_to_be_unused = 0; 3253 3254 spin_lock(&swap_lock); 3255 for (type = 0; type < nr_swapfiles; type++) { 3256 struct swap_info_struct *si = swap_info[type]; 3257 3258 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3259 nr_to_be_unused += READ_ONCE(si->inuse_pages); 3260 } 3261 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3262 val->totalswap = total_swap_pages + nr_to_be_unused; 3263 spin_unlock(&swap_lock); 3264 } 3265 3266 /* 3267 * Verify that a swap entry is valid and increment its swap map count. 3268 * 3269 * Returns error code in following case. 3270 * - success -> 0 3271 * - swp_entry is invalid -> EINVAL 3272 * - swp_entry is migration entry -> EINVAL 3273 * - swap-cache reference is requested but there is already one. -> EEXIST 3274 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3275 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3276 */ 3277 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3278 { 3279 struct swap_info_struct *p; 3280 struct swap_cluster_info *ci; 3281 unsigned long offset; 3282 unsigned char count; 3283 unsigned char has_cache; 3284 int err; 3285 3286 p = get_swap_device(entry); 3287 if (!p) 3288 return -EINVAL; 3289 3290 offset = swp_offset(entry); 3291 ci = lock_cluster_or_swap_info(p, offset); 3292 3293 count = p->swap_map[offset]; 3294 3295 /* 3296 * swapin_readahead() doesn't check if a swap entry is valid, so the 3297 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3298 */ 3299 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3300 err = -ENOENT; 3301 goto unlock_out; 3302 } 3303 3304 has_cache = count & SWAP_HAS_CACHE; 3305 count &= ~SWAP_HAS_CACHE; 3306 err = 0; 3307 3308 if (usage == SWAP_HAS_CACHE) { 3309 3310 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3311 if (!has_cache && count) 3312 has_cache = SWAP_HAS_CACHE; 3313 else if (has_cache) /* someone else added cache */ 3314 err = -EEXIST; 3315 else /* no users remaining */ 3316 err = -ENOENT; 3317 3318 } else if (count || has_cache) { 3319 3320 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3321 count += usage; 3322 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3323 err = -EINVAL; 3324 else if (swap_count_continued(p, offset, count)) 3325 count = COUNT_CONTINUED; 3326 else 3327 err = -ENOMEM; 3328 } else 3329 err = -ENOENT; /* unused swap entry */ 3330 3331 WRITE_ONCE(p->swap_map[offset], count | has_cache); 3332 3333 unlock_out: 3334 unlock_cluster_or_swap_info(p, ci); 3335 put_swap_device(p); 3336 return err; 3337 } 3338 3339 /* 3340 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3341 * (in which case its reference count is never incremented). 3342 */ 3343 void swap_shmem_alloc(swp_entry_t entry) 3344 { 3345 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3346 } 3347 3348 /* 3349 * Increase reference count of swap entry by 1. 3350 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3351 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3352 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3353 * might occur if a page table entry has got corrupted. 3354 */ 3355 int swap_duplicate(swp_entry_t entry) 3356 { 3357 int err = 0; 3358 3359 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3360 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3361 return err; 3362 } 3363 3364 /* 3365 * @entry: swap entry for which we allocate swap cache. 3366 * 3367 * Called when allocating swap cache for existing swap entry, 3368 * This can return error codes. Returns 0 at success. 3369 * -EEXIST means there is a swap cache. 3370 * Note: return code is different from swap_duplicate(). 3371 */ 3372 int swapcache_prepare(swp_entry_t entry) 3373 { 3374 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3375 } 3376 3377 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3378 { 3379 return swap_type_to_swap_info(swp_type(entry)); 3380 } 3381 3382 struct swap_info_struct *page_swap_info(struct page *page) 3383 { 3384 swp_entry_t entry = { .val = page_private(page) }; 3385 return swp_swap_info(entry); 3386 } 3387 3388 /* 3389 * out-of-line methods to avoid include hell. 3390 */ 3391 struct address_space *swapcache_mapping(struct folio *folio) 3392 { 3393 return page_swap_info(&folio->page)->swap_file->f_mapping; 3394 } 3395 EXPORT_SYMBOL_GPL(swapcache_mapping); 3396 3397 pgoff_t __page_file_index(struct page *page) 3398 { 3399 swp_entry_t swap = { .val = page_private(page) }; 3400 return swp_offset(swap); 3401 } 3402 EXPORT_SYMBOL_GPL(__page_file_index); 3403 3404 /* 3405 * add_swap_count_continuation - called when a swap count is duplicated 3406 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3407 * page of the original vmalloc'ed swap_map, to hold the continuation count 3408 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3409 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3410 * 3411 * These continuation pages are seldom referenced: the common paths all work 3412 * on the original swap_map, only referring to a continuation page when the 3413 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3414 * 3415 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3416 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3417 * can be called after dropping locks. 3418 */ 3419 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3420 { 3421 struct swap_info_struct *si; 3422 struct swap_cluster_info *ci; 3423 struct page *head; 3424 struct page *page; 3425 struct page *list_page; 3426 pgoff_t offset; 3427 unsigned char count; 3428 int ret = 0; 3429 3430 /* 3431 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3432 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3433 */ 3434 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3435 3436 si = get_swap_device(entry); 3437 if (!si) { 3438 /* 3439 * An acceptable race has occurred since the failing 3440 * __swap_duplicate(): the swap device may be swapoff 3441 */ 3442 goto outer; 3443 } 3444 spin_lock(&si->lock); 3445 3446 offset = swp_offset(entry); 3447 3448 ci = lock_cluster(si, offset); 3449 3450 count = swap_count(si->swap_map[offset]); 3451 3452 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3453 /* 3454 * The higher the swap count, the more likely it is that tasks 3455 * will race to add swap count continuation: we need to avoid 3456 * over-provisioning. 3457 */ 3458 goto out; 3459 } 3460 3461 if (!page) { 3462 ret = -ENOMEM; 3463 goto out; 3464 } 3465 3466 /* 3467 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 3468 * no architecture is using highmem pages for kernel page tables: so it 3469 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 3470 */ 3471 head = vmalloc_to_page(si->swap_map + offset); 3472 offset &= ~PAGE_MASK; 3473 3474 spin_lock(&si->cont_lock); 3475 /* 3476 * Page allocation does not initialize the page's lru field, 3477 * but it does always reset its private field. 3478 */ 3479 if (!page_private(head)) { 3480 BUG_ON(count & COUNT_CONTINUED); 3481 INIT_LIST_HEAD(&head->lru); 3482 set_page_private(head, SWP_CONTINUED); 3483 si->flags |= SWP_CONTINUED; 3484 } 3485 3486 list_for_each_entry(list_page, &head->lru, lru) { 3487 unsigned char *map; 3488 3489 /* 3490 * If the previous map said no continuation, but we've found 3491 * a continuation page, free our allocation and use this one. 3492 */ 3493 if (!(count & COUNT_CONTINUED)) 3494 goto out_unlock_cont; 3495 3496 map = kmap_atomic(list_page) + offset; 3497 count = *map; 3498 kunmap_atomic(map); 3499 3500 /* 3501 * If this continuation count now has some space in it, 3502 * free our allocation and use this one. 3503 */ 3504 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3505 goto out_unlock_cont; 3506 } 3507 3508 list_add_tail(&page->lru, &head->lru); 3509 page = NULL; /* now it's attached, don't free it */ 3510 out_unlock_cont: 3511 spin_unlock(&si->cont_lock); 3512 out: 3513 unlock_cluster(ci); 3514 spin_unlock(&si->lock); 3515 put_swap_device(si); 3516 outer: 3517 if (page) 3518 __free_page(page); 3519 return ret; 3520 } 3521 3522 /* 3523 * swap_count_continued - when the original swap_map count is incremented 3524 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3525 * into, carry if so, or else fail until a new continuation page is allocated; 3526 * when the original swap_map count is decremented from 0 with continuation, 3527 * borrow from the continuation and report whether it still holds more. 3528 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3529 * lock. 3530 */ 3531 static bool swap_count_continued(struct swap_info_struct *si, 3532 pgoff_t offset, unsigned char count) 3533 { 3534 struct page *head; 3535 struct page *page; 3536 unsigned char *map; 3537 bool ret; 3538 3539 head = vmalloc_to_page(si->swap_map + offset); 3540 if (page_private(head) != SWP_CONTINUED) { 3541 BUG_ON(count & COUNT_CONTINUED); 3542 return false; /* need to add count continuation */ 3543 } 3544 3545 spin_lock(&si->cont_lock); 3546 offset &= ~PAGE_MASK; 3547 page = list_next_entry(head, lru); 3548 map = kmap_atomic(page) + offset; 3549 3550 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3551 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3552 3553 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3554 /* 3555 * Think of how you add 1 to 999 3556 */ 3557 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3558 kunmap_atomic(map); 3559 page = list_next_entry(page, lru); 3560 BUG_ON(page == head); 3561 map = kmap_atomic(page) + offset; 3562 } 3563 if (*map == SWAP_CONT_MAX) { 3564 kunmap_atomic(map); 3565 page = list_next_entry(page, lru); 3566 if (page == head) { 3567 ret = false; /* add count continuation */ 3568 goto out; 3569 } 3570 map = kmap_atomic(page) + offset; 3571 init_map: *map = 0; /* we didn't zero the page */ 3572 } 3573 *map += 1; 3574 kunmap_atomic(map); 3575 while ((page = list_prev_entry(page, lru)) != head) { 3576 map = kmap_atomic(page) + offset; 3577 *map = COUNT_CONTINUED; 3578 kunmap_atomic(map); 3579 } 3580 ret = true; /* incremented */ 3581 3582 } else { /* decrementing */ 3583 /* 3584 * Think of how you subtract 1 from 1000 3585 */ 3586 BUG_ON(count != COUNT_CONTINUED); 3587 while (*map == COUNT_CONTINUED) { 3588 kunmap_atomic(map); 3589 page = list_next_entry(page, lru); 3590 BUG_ON(page == head); 3591 map = kmap_atomic(page) + offset; 3592 } 3593 BUG_ON(*map == 0); 3594 *map -= 1; 3595 if (*map == 0) 3596 count = 0; 3597 kunmap_atomic(map); 3598 while ((page = list_prev_entry(page, lru)) != head) { 3599 map = kmap_atomic(page) + offset; 3600 *map = SWAP_CONT_MAX | count; 3601 count = COUNT_CONTINUED; 3602 kunmap_atomic(map); 3603 } 3604 ret = count == COUNT_CONTINUED; 3605 } 3606 out: 3607 spin_unlock(&si->cont_lock); 3608 return ret; 3609 } 3610 3611 /* 3612 * free_swap_count_continuations - swapoff free all the continuation pages 3613 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3614 */ 3615 static void free_swap_count_continuations(struct swap_info_struct *si) 3616 { 3617 pgoff_t offset; 3618 3619 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3620 struct page *head; 3621 head = vmalloc_to_page(si->swap_map + offset); 3622 if (page_private(head)) { 3623 struct page *page, *next; 3624 3625 list_for_each_entry_safe(page, next, &head->lru, lru) { 3626 list_del(&page->lru); 3627 __free_page(page); 3628 } 3629 } 3630 } 3631 } 3632 3633 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3634 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp) 3635 { 3636 struct swap_info_struct *si, *next; 3637 int nid = folio_nid(folio); 3638 3639 if (!(gfp & __GFP_IO)) 3640 return; 3641 3642 if (!blk_cgroup_congested()) 3643 return; 3644 3645 /* 3646 * We've already scheduled a throttle, avoid taking the global swap 3647 * lock. 3648 */ 3649 if (current->throttle_disk) 3650 return; 3651 3652 spin_lock(&swap_avail_lock); 3653 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 3654 avail_lists[nid]) { 3655 if (si->bdev) { 3656 blkcg_schedule_throttle(si->bdev->bd_disk, true); 3657 break; 3658 } 3659 } 3660 spin_unlock(&swap_avail_lock); 3661 } 3662 #endif 3663 3664 static int __init swapfile_init(void) 3665 { 3666 int nid; 3667 3668 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3669 GFP_KERNEL); 3670 if (!swap_avail_heads) { 3671 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3672 return -ENOMEM; 3673 } 3674 3675 for_each_node(nid) 3676 plist_head_init(&swap_avail_heads[nid]); 3677 3678 swapfile_maximum_size = arch_max_swapfile_size(); 3679 3680 #ifdef CONFIG_MIGRATION 3681 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS)) 3682 swap_migration_ad_supported = true; 3683 #endif /* CONFIG_MIGRATION */ 3684 3685 return 0; 3686 } 3687 subsys_initcall(swapfile_init); 3688