1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shmem_fs.h> 18 #include <linux/blkdev.h> 19 #include <linux/random.h> 20 #include <linux/writeback.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/init.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/security.h> 27 #include <linux/backing-dev.h> 28 #include <linux/mutex.h> 29 #include <linux/capability.h> 30 #include <linux/syscalls.h> 31 #include <linux/memcontrol.h> 32 #include <linux/poll.h> 33 #include <linux/oom.h> 34 #include <linux/frontswap.h> 35 #include <linux/swapfile.h> 36 #include <linux/export.h> 37 38 #include <asm/pgtable.h> 39 #include <asm/tlbflush.h> 40 #include <linux/swapops.h> 41 #include <linux/page_cgroup.h> 42 43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 44 unsigned char); 45 static void free_swap_count_continuations(struct swap_info_struct *); 46 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 47 48 DEFINE_SPINLOCK(swap_lock); 49 static unsigned int nr_swapfiles; 50 atomic_long_t nr_swap_pages; 51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 52 long total_swap_pages; 53 static int least_priority; 54 static atomic_t highest_priority_index = ATOMIC_INIT(-1); 55 56 static const char Bad_file[] = "Bad swap file entry "; 57 static const char Unused_file[] = "Unused swap file entry "; 58 static const char Bad_offset[] = "Bad swap offset entry "; 59 static const char Unused_offset[] = "Unused swap offset entry "; 60 61 struct swap_list_t swap_list = {-1, -1}; 62 63 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 64 65 static DEFINE_MUTEX(swapon_mutex); 66 67 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 68 /* Activity counter to indicate that a swapon or swapoff has occurred */ 69 static atomic_t proc_poll_event = ATOMIC_INIT(0); 70 71 static inline unsigned char swap_count(unsigned char ent) 72 { 73 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ 74 } 75 76 /* returns 1 if swap entry is freed */ 77 static int 78 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) 79 { 80 swp_entry_t entry = swp_entry(si->type, offset); 81 struct page *page; 82 int ret = 0; 83 84 page = find_get_page(swap_address_space(entry), entry.val); 85 if (!page) 86 return 0; 87 /* 88 * This function is called from scan_swap_map() and it's called 89 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. 90 * We have to use trylock for avoiding deadlock. This is a special 91 * case and you should use try_to_free_swap() with explicit lock_page() 92 * in usual operations. 93 */ 94 if (trylock_page(page)) { 95 ret = try_to_free_swap(page); 96 unlock_page(page); 97 } 98 page_cache_release(page); 99 return ret; 100 } 101 102 /* 103 * swapon tell device that all the old swap contents can be discarded, 104 * to allow the swap device to optimize its wear-levelling. 105 */ 106 static int discard_swap(struct swap_info_struct *si) 107 { 108 struct swap_extent *se; 109 sector_t start_block; 110 sector_t nr_blocks; 111 int err = 0; 112 113 /* Do not discard the swap header page! */ 114 se = &si->first_swap_extent; 115 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 116 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 117 if (nr_blocks) { 118 err = blkdev_issue_discard(si->bdev, start_block, 119 nr_blocks, GFP_KERNEL, 0); 120 if (err) 121 return err; 122 cond_resched(); 123 } 124 125 list_for_each_entry(se, &si->first_swap_extent.list, list) { 126 start_block = se->start_block << (PAGE_SHIFT - 9); 127 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 128 129 err = blkdev_issue_discard(si->bdev, start_block, 130 nr_blocks, GFP_KERNEL, 0); 131 if (err) 132 break; 133 134 cond_resched(); 135 } 136 return err; /* That will often be -EOPNOTSUPP */ 137 } 138 139 /* 140 * swap allocation tell device that a cluster of swap can now be discarded, 141 * to allow the swap device to optimize its wear-levelling. 142 */ 143 static void discard_swap_cluster(struct swap_info_struct *si, 144 pgoff_t start_page, pgoff_t nr_pages) 145 { 146 struct swap_extent *se = si->curr_swap_extent; 147 int found_extent = 0; 148 149 while (nr_pages) { 150 struct list_head *lh; 151 152 if (se->start_page <= start_page && 153 start_page < se->start_page + se->nr_pages) { 154 pgoff_t offset = start_page - se->start_page; 155 sector_t start_block = se->start_block + offset; 156 sector_t nr_blocks = se->nr_pages - offset; 157 158 if (nr_blocks > nr_pages) 159 nr_blocks = nr_pages; 160 start_page += nr_blocks; 161 nr_pages -= nr_blocks; 162 163 if (!found_extent++) 164 si->curr_swap_extent = se; 165 166 start_block <<= PAGE_SHIFT - 9; 167 nr_blocks <<= PAGE_SHIFT - 9; 168 if (blkdev_issue_discard(si->bdev, start_block, 169 nr_blocks, GFP_NOIO, 0)) 170 break; 171 } 172 173 lh = se->list.next; 174 se = list_entry(lh, struct swap_extent, list); 175 } 176 } 177 178 static int wait_for_discard(void *word) 179 { 180 schedule(); 181 return 0; 182 } 183 184 #define SWAPFILE_CLUSTER 256 185 #define LATENCY_LIMIT 256 186 187 static unsigned long scan_swap_map(struct swap_info_struct *si, 188 unsigned char usage) 189 { 190 unsigned long offset; 191 unsigned long scan_base; 192 unsigned long last_in_cluster = 0; 193 int latency_ration = LATENCY_LIMIT; 194 int found_free_cluster = 0; 195 196 /* 197 * We try to cluster swap pages by allocating them sequentially 198 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 199 * way, however, we resort to first-free allocation, starting 200 * a new cluster. This prevents us from scattering swap pages 201 * all over the entire swap partition, so that we reduce 202 * overall disk seek times between swap pages. -- sct 203 * But we do now try to find an empty cluster. -Andrea 204 * And we let swap pages go all over an SSD partition. Hugh 205 */ 206 207 si->flags += SWP_SCANNING; 208 scan_base = offset = si->cluster_next; 209 210 if (unlikely(!si->cluster_nr--)) { 211 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 212 si->cluster_nr = SWAPFILE_CLUSTER - 1; 213 goto checks; 214 } 215 if (si->flags & SWP_DISCARDABLE) { 216 /* 217 * Start range check on racing allocations, in case 218 * they overlap the cluster we eventually decide on 219 * (we scan without swap_lock to allow preemption). 220 * It's hardly conceivable that cluster_nr could be 221 * wrapped during our scan, but don't depend on it. 222 */ 223 if (si->lowest_alloc) 224 goto checks; 225 si->lowest_alloc = si->max; 226 si->highest_alloc = 0; 227 } 228 spin_unlock(&si->lock); 229 230 /* 231 * If seek is expensive, start searching for new cluster from 232 * start of partition, to minimize the span of allocated swap. 233 * But if seek is cheap, search from our current position, so 234 * that swap is allocated from all over the partition: if the 235 * Flash Translation Layer only remaps within limited zones, 236 * we don't want to wear out the first zone too quickly. 237 */ 238 if (!(si->flags & SWP_SOLIDSTATE)) 239 scan_base = offset = si->lowest_bit; 240 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 241 242 /* Locate the first empty (unaligned) cluster */ 243 for (; last_in_cluster <= si->highest_bit; offset++) { 244 if (si->swap_map[offset]) 245 last_in_cluster = offset + SWAPFILE_CLUSTER; 246 else if (offset == last_in_cluster) { 247 spin_lock(&si->lock); 248 offset -= SWAPFILE_CLUSTER - 1; 249 si->cluster_next = offset; 250 si->cluster_nr = SWAPFILE_CLUSTER - 1; 251 found_free_cluster = 1; 252 goto checks; 253 } 254 if (unlikely(--latency_ration < 0)) { 255 cond_resched(); 256 latency_ration = LATENCY_LIMIT; 257 } 258 } 259 260 offset = si->lowest_bit; 261 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 262 263 /* Locate the first empty (unaligned) cluster */ 264 for (; last_in_cluster < scan_base; offset++) { 265 if (si->swap_map[offset]) 266 last_in_cluster = offset + SWAPFILE_CLUSTER; 267 else if (offset == last_in_cluster) { 268 spin_lock(&si->lock); 269 offset -= SWAPFILE_CLUSTER - 1; 270 si->cluster_next = offset; 271 si->cluster_nr = SWAPFILE_CLUSTER - 1; 272 found_free_cluster = 1; 273 goto checks; 274 } 275 if (unlikely(--latency_ration < 0)) { 276 cond_resched(); 277 latency_ration = LATENCY_LIMIT; 278 } 279 } 280 281 offset = scan_base; 282 spin_lock(&si->lock); 283 si->cluster_nr = SWAPFILE_CLUSTER - 1; 284 si->lowest_alloc = 0; 285 } 286 287 checks: 288 if (!(si->flags & SWP_WRITEOK)) 289 goto no_page; 290 if (!si->highest_bit) 291 goto no_page; 292 if (offset > si->highest_bit) 293 scan_base = offset = si->lowest_bit; 294 295 /* reuse swap entry of cache-only swap if not busy. */ 296 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 297 int swap_was_freed; 298 spin_unlock(&si->lock); 299 swap_was_freed = __try_to_reclaim_swap(si, offset); 300 spin_lock(&si->lock); 301 /* entry was freed successfully, try to use this again */ 302 if (swap_was_freed) 303 goto checks; 304 goto scan; /* check next one */ 305 } 306 307 if (si->swap_map[offset]) 308 goto scan; 309 310 if (offset == si->lowest_bit) 311 si->lowest_bit++; 312 if (offset == si->highest_bit) 313 si->highest_bit--; 314 si->inuse_pages++; 315 if (si->inuse_pages == si->pages) { 316 si->lowest_bit = si->max; 317 si->highest_bit = 0; 318 } 319 si->swap_map[offset] = usage; 320 si->cluster_next = offset + 1; 321 si->flags -= SWP_SCANNING; 322 323 if (si->lowest_alloc) { 324 /* 325 * Only set when SWP_DISCARDABLE, and there's a scan 326 * for a free cluster in progress or just completed. 327 */ 328 if (found_free_cluster) { 329 /* 330 * To optimize wear-levelling, discard the 331 * old data of the cluster, taking care not to 332 * discard any of its pages that have already 333 * been allocated by racing tasks (offset has 334 * already stepped over any at the beginning). 335 */ 336 if (offset < si->highest_alloc && 337 si->lowest_alloc <= last_in_cluster) 338 last_in_cluster = si->lowest_alloc - 1; 339 si->flags |= SWP_DISCARDING; 340 spin_unlock(&si->lock); 341 342 if (offset < last_in_cluster) 343 discard_swap_cluster(si, offset, 344 last_in_cluster - offset + 1); 345 346 spin_lock(&si->lock); 347 si->lowest_alloc = 0; 348 si->flags &= ~SWP_DISCARDING; 349 350 smp_mb(); /* wake_up_bit advises this */ 351 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING)); 352 353 } else if (si->flags & SWP_DISCARDING) { 354 /* 355 * Delay using pages allocated by racing tasks 356 * until the whole discard has been issued. We 357 * could defer that delay until swap_writepage, 358 * but it's easier to keep this self-contained. 359 */ 360 spin_unlock(&si->lock); 361 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING), 362 wait_for_discard, TASK_UNINTERRUPTIBLE); 363 spin_lock(&si->lock); 364 } else { 365 /* 366 * Note pages allocated by racing tasks while 367 * scan for a free cluster is in progress, so 368 * that its final discard can exclude them. 369 */ 370 if (offset < si->lowest_alloc) 371 si->lowest_alloc = offset; 372 if (offset > si->highest_alloc) 373 si->highest_alloc = offset; 374 } 375 } 376 return offset; 377 378 scan: 379 spin_unlock(&si->lock); 380 while (++offset <= si->highest_bit) { 381 if (!si->swap_map[offset]) { 382 spin_lock(&si->lock); 383 goto checks; 384 } 385 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 386 spin_lock(&si->lock); 387 goto checks; 388 } 389 if (unlikely(--latency_ration < 0)) { 390 cond_resched(); 391 latency_ration = LATENCY_LIMIT; 392 } 393 } 394 offset = si->lowest_bit; 395 while (++offset < scan_base) { 396 if (!si->swap_map[offset]) { 397 spin_lock(&si->lock); 398 goto checks; 399 } 400 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 401 spin_lock(&si->lock); 402 goto checks; 403 } 404 if (unlikely(--latency_ration < 0)) { 405 cond_resched(); 406 latency_ration = LATENCY_LIMIT; 407 } 408 } 409 spin_lock(&si->lock); 410 411 no_page: 412 si->flags -= SWP_SCANNING; 413 return 0; 414 } 415 416 swp_entry_t get_swap_page(void) 417 { 418 struct swap_info_struct *si; 419 pgoff_t offset; 420 int type, next; 421 int wrapped = 0; 422 int hp_index; 423 424 spin_lock(&swap_lock); 425 if (atomic_long_read(&nr_swap_pages) <= 0) 426 goto noswap; 427 atomic_long_dec(&nr_swap_pages); 428 429 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { 430 hp_index = atomic_xchg(&highest_priority_index, -1); 431 /* 432 * highest_priority_index records current highest priority swap 433 * type which just frees swap entries. If its priority is 434 * higher than that of swap_list.next swap type, we use it. It 435 * isn't protected by swap_lock, so it can be an invalid value 436 * if the corresponding swap type is swapoff. We double check 437 * the flags here. It's even possible the swap type is swapoff 438 * and swapon again and its priority is changed. In such rare 439 * case, low prority swap type might be used, but eventually 440 * high priority swap will be used after several rounds of 441 * swap. 442 */ 443 if (hp_index != -1 && hp_index != type && 444 swap_info[type]->prio < swap_info[hp_index]->prio && 445 (swap_info[hp_index]->flags & SWP_WRITEOK)) { 446 type = hp_index; 447 swap_list.next = type; 448 } 449 450 si = swap_info[type]; 451 next = si->next; 452 if (next < 0 || 453 (!wrapped && si->prio != swap_info[next]->prio)) { 454 next = swap_list.head; 455 wrapped++; 456 } 457 458 spin_lock(&si->lock); 459 if (!si->highest_bit) { 460 spin_unlock(&si->lock); 461 continue; 462 } 463 if (!(si->flags & SWP_WRITEOK)) { 464 spin_unlock(&si->lock); 465 continue; 466 } 467 468 swap_list.next = next; 469 470 spin_unlock(&swap_lock); 471 /* This is called for allocating swap entry for cache */ 472 offset = scan_swap_map(si, SWAP_HAS_CACHE); 473 spin_unlock(&si->lock); 474 if (offset) 475 return swp_entry(type, offset); 476 spin_lock(&swap_lock); 477 next = swap_list.next; 478 } 479 480 atomic_long_inc(&nr_swap_pages); 481 noswap: 482 spin_unlock(&swap_lock); 483 return (swp_entry_t) {0}; 484 } 485 486 /* The only caller of this function is now susupend routine */ 487 swp_entry_t get_swap_page_of_type(int type) 488 { 489 struct swap_info_struct *si; 490 pgoff_t offset; 491 492 si = swap_info[type]; 493 spin_lock(&si->lock); 494 if (si && (si->flags & SWP_WRITEOK)) { 495 atomic_long_dec(&nr_swap_pages); 496 /* This is called for allocating swap entry, not cache */ 497 offset = scan_swap_map(si, 1); 498 if (offset) { 499 spin_unlock(&si->lock); 500 return swp_entry(type, offset); 501 } 502 atomic_long_inc(&nr_swap_pages); 503 } 504 spin_unlock(&si->lock); 505 return (swp_entry_t) {0}; 506 } 507 508 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 509 { 510 struct swap_info_struct *p; 511 unsigned long offset, type; 512 513 if (!entry.val) 514 goto out; 515 type = swp_type(entry); 516 if (type >= nr_swapfiles) 517 goto bad_nofile; 518 p = swap_info[type]; 519 if (!(p->flags & SWP_USED)) 520 goto bad_device; 521 offset = swp_offset(entry); 522 if (offset >= p->max) 523 goto bad_offset; 524 if (!p->swap_map[offset]) 525 goto bad_free; 526 spin_lock(&p->lock); 527 return p; 528 529 bad_free: 530 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); 531 goto out; 532 bad_offset: 533 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); 534 goto out; 535 bad_device: 536 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); 537 goto out; 538 bad_nofile: 539 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); 540 out: 541 return NULL; 542 } 543 544 /* 545 * This swap type frees swap entry, check if it is the highest priority swap 546 * type which just frees swap entry. get_swap_page() uses 547 * highest_priority_index to search highest priority swap type. The 548 * swap_info_struct.lock can't protect us if there are multiple swap types 549 * active, so we use atomic_cmpxchg. 550 */ 551 static void set_highest_priority_index(int type) 552 { 553 int old_hp_index, new_hp_index; 554 555 do { 556 old_hp_index = atomic_read(&highest_priority_index); 557 if (old_hp_index != -1 && 558 swap_info[old_hp_index]->prio >= swap_info[type]->prio) 559 break; 560 new_hp_index = type; 561 } while (atomic_cmpxchg(&highest_priority_index, 562 old_hp_index, new_hp_index) != old_hp_index); 563 } 564 565 static unsigned char swap_entry_free(struct swap_info_struct *p, 566 swp_entry_t entry, unsigned char usage) 567 { 568 unsigned long offset = swp_offset(entry); 569 unsigned char count; 570 unsigned char has_cache; 571 572 count = p->swap_map[offset]; 573 has_cache = count & SWAP_HAS_CACHE; 574 count &= ~SWAP_HAS_CACHE; 575 576 if (usage == SWAP_HAS_CACHE) { 577 VM_BUG_ON(!has_cache); 578 has_cache = 0; 579 } else if (count == SWAP_MAP_SHMEM) { 580 /* 581 * Or we could insist on shmem.c using a special 582 * swap_shmem_free() and free_shmem_swap_and_cache()... 583 */ 584 count = 0; 585 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 586 if (count == COUNT_CONTINUED) { 587 if (swap_count_continued(p, offset, count)) 588 count = SWAP_MAP_MAX | COUNT_CONTINUED; 589 else 590 count = SWAP_MAP_MAX; 591 } else 592 count--; 593 } 594 595 if (!count) 596 mem_cgroup_uncharge_swap(entry); 597 598 usage = count | has_cache; 599 p->swap_map[offset] = usage; 600 601 /* free if no reference */ 602 if (!usage) { 603 if (offset < p->lowest_bit) 604 p->lowest_bit = offset; 605 if (offset > p->highest_bit) 606 p->highest_bit = offset; 607 set_highest_priority_index(p->type); 608 atomic_long_inc(&nr_swap_pages); 609 p->inuse_pages--; 610 frontswap_invalidate_page(p->type, offset); 611 if (p->flags & SWP_BLKDEV) { 612 struct gendisk *disk = p->bdev->bd_disk; 613 if (disk->fops->swap_slot_free_notify) 614 disk->fops->swap_slot_free_notify(p->bdev, 615 offset); 616 } 617 } 618 619 return usage; 620 } 621 622 /* 623 * Caller has made sure that the swapdevice corresponding to entry 624 * is still around or has not been recycled. 625 */ 626 void swap_free(swp_entry_t entry) 627 { 628 struct swap_info_struct *p; 629 630 p = swap_info_get(entry); 631 if (p) { 632 swap_entry_free(p, entry, 1); 633 spin_unlock(&p->lock); 634 } 635 } 636 637 /* 638 * Called after dropping swapcache to decrease refcnt to swap entries. 639 */ 640 void swapcache_free(swp_entry_t entry, struct page *page) 641 { 642 struct swap_info_struct *p; 643 unsigned char count; 644 645 p = swap_info_get(entry); 646 if (p) { 647 count = swap_entry_free(p, entry, SWAP_HAS_CACHE); 648 if (page) 649 mem_cgroup_uncharge_swapcache(page, entry, count != 0); 650 spin_unlock(&p->lock); 651 } 652 } 653 654 /* 655 * How many references to page are currently swapped out? 656 * This does not give an exact answer when swap count is continued, 657 * but does include the high COUNT_CONTINUED flag to allow for that. 658 */ 659 int page_swapcount(struct page *page) 660 { 661 int count = 0; 662 struct swap_info_struct *p; 663 swp_entry_t entry; 664 665 entry.val = page_private(page); 666 p = swap_info_get(entry); 667 if (p) { 668 count = swap_count(p->swap_map[swp_offset(entry)]); 669 spin_unlock(&p->lock); 670 } 671 return count; 672 } 673 674 /* 675 * We can write to an anon page without COW if there are no other references 676 * to it. And as a side-effect, free up its swap: because the old content 677 * on disk will never be read, and seeking back there to write new content 678 * later would only waste time away from clustering. 679 */ 680 int reuse_swap_page(struct page *page) 681 { 682 int count; 683 684 VM_BUG_ON(!PageLocked(page)); 685 if (unlikely(PageKsm(page))) 686 return 0; 687 count = page_mapcount(page); 688 if (count <= 1 && PageSwapCache(page)) { 689 count += page_swapcount(page); 690 if (count == 1 && !PageWriteback(page)) { 691 delete_from_swap_cache(page); 692 SetPageDirty(page); 693 } 694 } 695 return count <= 1; 696 } 697 698 /* 699 * If swap is getting full, or if there are no more mappings of this page, 700 * then try_to_free_swap is called to free its swap space. 701 */ 702 int try_to_free_swap(struct page *page) 703 { 704 VM_BUG_ON(!PageLocked(page)); 705 706 if (!PageSwapCache(page)) 707 return 0; 708 if (PageWriteback(page)) 709 return 0; 710 if (page_swapcount(page)) 711 return 0; 712 713 /* 714 * Once hibernation has begun to create its image of memory, 715 * there's a danger that one of the calls to try_to_free_swap() 716 * - most probably a call from __try_to_reclaim_swap() while 717 * hibernation is allocating its own swap pages for the image, 718 * but conceivably even a call from memory reclaim - will free 719 * the swap from a page which has already been recorded in the 720 * image as a clean swapcache page, and then reuse its swap for 721 * another page of the image. On waking from hibernation, the 722 * original page might be freed under memory pressure, then 723 * later read back in from swap, now with the wrong data. 724 * 725 * Hibration suspends storage while it is writing the image 726 * to disk so check that here. 727 */ 728 if (pm_suspended_storage()) 729 return 0; 730 731 delete_from_swap_cache(page); 732 SetPageDirty(page); 733 return 1; 734 } 735 736 /* 737 * Free the swap entry like above, but also try to 738 * free the page cache entry if it is the last user. 739 */ 740 int free_swap_and_cache(swp_entry_t entry) 741 { 742 struct swap_info_struct *p; 743 struct page *page = NULL; 744 745 if (non_swap_entry(entry)) 746 return 1; 747 748 p = swap_info_get(entry); 749 if (p) { 750 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) { 751 page = find_get_page(swap_address_space(entry), 752 entry.val); 753 if (page && !trylock_page(page)) { 754 page_cache_release(page); 755 page = NULL; 756 } 757 } 758 spin_unlock(&p->lock); 759 } 760 if (page) { 761 /* 762 * Not mapped elsewhere, or swap space full? Free it! 763 * Also recheck PageSwapCache now page is locked (above). 764 */ 765 if (PageSwapCache(page) && !PageWriteback(page) && 766 (!page_mapped(page) || vm_swap_full())) { 767 delete_from_swap_cache(page); 768 SetPageDirty(page); 769 } 770 unlock_page(page); 771 page_cache_release(page); 772 } 773 return p != NULL; 774 } 775 776 #ifdef CONFIG_HIBERNATION 777 /* 778 * Find the swap type that corresponds to given device (if any). 779 * 780 * @offset - number of the PAGE_SIZE-sized block of the device, starting 781 * from 0, in which the swap header is expected to be located. 782 * 783 * This is needed for the suspend to disk (aka swsusp). 784 */ 785 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 786 { 787 struct block_device *bdev = NULL; 788 int type; 789 790 if (device) 791 bdev = bdget(device); 792 793 spin_lock(&swap_lock); 794 for (type = 0; type < nr_swapfiles; type++) { 795 struct swap_info_struct *sis = swap_info[type]; 796 797 if (!(sis->flags & SWP_WRITEOK)) 798 continue; 799 800 if (!bdev) { 801 if (bdev_p) 802 *bdev_p = bdgrab(sis->bdev); 803 804 spin_unlock(&swap_lock); 805 return type; 806 } 807 if (bdev == sis->bdev) { 808 struct swap_extent *se = &sis->first_swap_extent; 809 810 if (se->start_block == offset) { 811 if (bdev_p) 812 *bdev_p = bdgrab(sis->bdev); 813 814 spin_unlock(&swap_lock); 815 bdput(bdev); 816 return type; 817 } 818 } 819 } 820 spin_unlock(&swap_lock); 821 if (bdev) 822 bdput(bdev); 823 824 return -ENODEV; 825 } 826 827 /* 828 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 829 * corresponding to given index in swap_info (swap type). 830 */ 831 sector_t swapdev_block(int type, pgoff_t offset) 832 { 833 struct block_device *bdev; 834 835 if ((unsigned int)type >= nr_swapfiles) 836 return 0; 837 if (!(swap_info[type]->flags & SWP_WRITEOK)) 838 return 0; 839 return map_swap_entry(swp_entry(type, offset), &bdev); 840 } 841 842 /* 843 * Return either the total number of swap pages of given type, or the number 844 * of free pages of that type (depending on @free) 845 * 846 * This is needed for software suspend 847 */ 848 unsigned int count_swap_pages(int type, int free) 849 { 850 unsigned int n = 0; 851 852 spin_lock(&swap_lock); 853 if ((unsigned int)type < nr_swapfiles) { 854 struct swap_info_struct *sis = swap_info[type]; 855 856 spin_lock(&sis->lock); 857 if (sis->flags & SWP_WRITEOK) { 858 n = sis->pages; 859 if (free) 860 n -= sis->inuse_pages; 861 } 862 spin_unlock(&sis->lock); 863 } 864 spin_unlock(&swap_lock); 865 return n; 866 } 867 #endif /* CONFIG_HIBERNATION */ 868 869 /* 870 * No need to decide whether this PTE shares the swap entry with others, 871 * just let do_wp_page work it out if a write is requested later - to 872 * force COW, vm_page_prot omits write permission from any private vma. 873 */ 874 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 875 unsigned long addr, swp_entry_t entry, struct page *page) 876 { 877 struct mem_cgroup *memcg; 878 spinlock_t *ptl; 879 pte_t *pte; 880 int ret = 1; 881 882 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, 883 GFP_KERNEL, &memcg)) { 884 ret = -ENOMEM; 885 goto out_nolock; 886 } 887 888 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 889 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) { 890 mem_cgroup_cancel_charge_swapin(memcg); 891 ret = 0; 892 goto out; 893 } 894 895 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 896 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 897 get_page(page); 898 set_pte_at(vma->vm_mm, addr, pte, 899 pte_mkold(mk_pte(page, vma->vm_page_prot))); 900 page_add_anon_rmap(page, vma, addr); 901 mem_cgroup_commit_charge_swapin(page, memcg); 902 swap_free(entry); 903 /* 904 * Move the page to the active list so it is not 905 * immediately swapped out again after swapon. 906 */ 907 activate_page(page); 908 out: 909 pte_unmap_unlock(pte, ptl); 910 out_nolock: 911 return ret; 912 } 913 914 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 915 unsigned long addr, unsigned long end, 916 swp_entry_t entry, struct page *page) 917 { 918 pte_t swp_pte = swp_entry_to_pte(entry); 919 pte_t *pte; 920 int ret = 0; 921 922 /* 923 * We don't actually need pte lock while scanning for swp_pte: since 924 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 925 * page table while we're scanning; though it could get zapped, and on 926 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 927 * of unmatched parts which look like swp_pte, so unuse_pte must 928 * recheck under pte lock. Scanning without pte lock lets it be 929 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 930 */ 931 pte = pte_offset_map(pmd, addr); 932 do { 933 /* 934 * swapoff spends a _lot_ of time in this loop! 935 * Test inline before going to call unuse_pte. 936 */ 937 if (unlikely(pte_same(*pte, swp_pte))) { 938 pte_unmap(pte); 939 ret = unuse_pte(vma, pmd, addr, entry, page); 940 if (ret) 941 goto out; 942 pte = pte_offset_map(pmd, addr); 943 } 944 } while (pte++, addr += PAGE_SIZE, addr != end); 945 pte_unmap(pte - 1); 946 out: 947 return ret; 948 } 949 950 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 951 unsigned long addr, unsigned long end, 952 swp_entry_t entry, struct page *page) 953 { 954 pmd_t *pmd; 955 unsigned long next; 956 int ret; 957 958 pmd = pmd_offset(pud, addr); 959 do { 960 next = pmd_addr_end(addr, end); 961 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 962 continue; 963 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 964 if (ret) 965 return ret; 966 } while (pmd++, addr = next, addr != end); 967 return 0; 968 } 969 970 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 971 unsigned long addr, unsigned long end, 972 swp_entry_t entry, struct page *page) 973 { 974 pud_t *pud; 975 unsigned long next; 976 int ret; 977 978 pud = pud_offset(pgd, addr); 979 do { 980 next = pud_addr_end(addr, end); 981 if (pud_none_or_clear_bad(pud)) 982 continue; 983 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 984 if (ret) 985 return ret; 986 } while (pud++, addr = next, addr != end); 987 return 0; 988 } 989 990 static int unuse_vma(struct vm_area_struct *vma, 991 swp_entry_t entry, struct page *page) 992 { 993 pgd_t *pgd; 994 unsigned long addr, end, next; 995 int ret; 996 997 if (page_anon_vma(page)) { 998 addr = page_address_in_vma(page, vma); 999 if (addr == -EFAULT) 1000 return 0; 1001 else 1002 end = addr + PAGE_SIZE; 1003 } else { 1004 addr = vma->vm_start; 1005 end = vma->vm_end; 1006 } 1007 1008 pgd = pgd_offset(vma->vm_mm, addr); 1009 do { 1010 next = pgd_addr_end(addr, end); 1011 if (pgd_none_or_clear_bad(pgd)) 1012 continue; 1013 ret = unuse_pud_range(vma, pgd, addr, next, entry, page); 1014 if (ret) 1015 return ret; 1016 } while (pgd++, addr = next, addr != end); 1017 return 0; 1018 } 1019 1020 static int unuse_mm(struct mm_struct *mm, 1021 swp_entry_t entry, struct page *page) 1022 { 1023 struct vm_area_struct *vma; 1024 int ret = 0; 1025 1026 if (!down_read_trylock(&mm->mmap_sem)) { 1027 /* 1028 * Activate page so shrink_inactive_list is unlikely to unmap 1029 * its ptes while lock is dropped, so swapoff can make progress. 1030 */ 1031 activate_page(page); 1032 unlock_page(page); 1033 down_read(&mm->mmap_sem); 1034 lock_page(page); 1035 } 1036 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1037 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 1038 break; 1039 } 1040 up_read(&mm->mmap_sem); 1041 return (ret < 0)? ret: 0; 1042 } 1043 1044 /* 1045 * Scan swap_map (or frontswap_map if frontswap parameter is true) 1046 * from current position to next entry still in use. 1047 * Recycle to start on reaching the end, returning 0 when empty. 1048 */ 1049 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1050 unsigned int prev, bool frontswap) 1051 { 1052 unsigned int max = si->max; 1053 unsigned int i = prev; 1054 unsigned char count; 1055 1056 /* 1057 * No need for swap_lock here: we're just looking 1058 * for whether an entry is in use, not modifying it; false 1059 * hits are okay, and sys_swapoff() has already prevented new 1060 * allocations from this area (while holding swap_lock). 1061 */ 1062 for (;;) { 1063 if (++i >= max) { 1064 if (!prev) { 1065 i = 0; 1066 break; 1067 } 1068 /* 1069 * No entries in use at top of swap_map, 1070 * loop back to start and recheck there. 1071 */ 1072 max = prev + 1; 1073 prev = 0; 1074 i = 1; 1075 } 1076 if (frontswap) { 1077 if (frontswap_test(si, i)) 1078 break; 1079 else 1080 continue; 1081 } 1082 count = si->swap_map[i]; 1083 if (count && swap_count(count) != SWAP_MAP_BAD) 1084 break; 1085 } 1086 return i; 1087 } 1088 1089 /* 1090 * We completely avoid races by reading each swap page in advance, 1091 * and then search for the process using it. All the necessary 1092 * page table adjustments can then be made atomically. 1093 * 1094 * if the boolean frontswap is true, only unuse pages_to_unuse pages; 1095 * pages_to_unuse==0 means all pages; ignored if frontswap is false 1096 */ 1097 int try_to_unuse(unsigned int type, bool frontswap, 1098 unsigned long pages_to_unuse) 1099 { 1100 struct swap_info_struct *si = swap_info[type]; 1101 struct mm_struct *start_mm; 1102 unsigned char *swap_map; 1103 unsigned char swcount; 1104 struct page *page; 1105 swp_entry_t entry; 1106 unsigned int i = 0; 1107 int retval = 0; 1108 1109 /* 1110 * When searching mms for an entry, a good strategy is to 1111 * start at the first mm we freed the previous entry from 1112 * (though actually we don't notice whether we or coincidence 1113 * freed the entry). Initialize this start_mm with a hold. 1114 * 1115 * A simpler strategy would be to start at the last mm we 1116 * freed the previous entry from; but that would take less 1117 * advantage of mmlist ordering, which clusters forked mms 1118 * together, child after parent. If we race with dup_mmap(), we 1119 * prefer to resolve parent before child, lest we miss entries 1120 * duplicated after we scanned child: using last mm would invert 1121 * that. 1122 */ 1123 start_mm = &init_mm; 1124 atomic_inc(&init_mm.mm_users); 1125 1126 /* 1127 * Keep on scanning until all entries have gone. Usually, 1128 * one pass through swap_map is enough, but not necessarily: 1129 * there are races when an instance of an entry might be missed. 1130 */ 1131 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) { 1132 if (signal_pending(current)) { 1133 retval = -EINTR; 1134 break; 1135 } 1136 1137 /* 1138 * Get a page for the entry, using the existing swap 1139 * cache page if there is one. Otherwise, get a clean 1140 * page and read the swap into it. 1141 */ 1142 swap_map = &si->swap_map[i]; 1143 entry = swp_entry(type, i); 1144 page = read_swap_cache_async(entry, 1145 GFP_HIGHUSER_MOVABLE, NULL, 0); 1146 if (!page) { 1147 /* 1148 * Either swap_duplicate() failed because entry 1149 * has been freed independently, and will not be 1150 * reused since sys_swapoff() already disabled 1151 * allocation from here, or alloc_page() failed. 1152 */ 1153 if (!*swap_map) 1154 continue; 1155 retval = -ENOMEM; 1156 break; 1157 } 1158 1159 /* 1160 * Don't hold on to start_mm if it looks like exiting. 1161 */ 1162 if (atomic_read(&start_mm->mm_users) == 1) { 1163 mmput(start_mm); 1164 start_mm = &init_mm; 1165 atomic_inc(&init_mm.mm_users); 1166 } 1167 1168 /* 1169 * Wait for and lock page. When do_swap_page races with 1170 * try_to_unuse, do_swap_page can handle the fault much 1171 * faster than try_to_unuse can locate the entry. This 1172 * apparently redundant "wait_on_page_locked" lets try_to_unuse 1173 * defer to do_swap_page in such a case - in some tests, 1174 * do_swap_page and try_to_unuse repeatedly compete. 1175 */ 1176 wait_on_page_locked(page); 1177 wait_on_page_writeback(page); 1178 lock_page(page); 1179 wait_on_page_writeback(page); 1180 1181 /* 1182 * Remove all references to entry. 1183 */ 1184 swcount = *swap_map; 1185 if (swap_count(swcount) == SWAP_MAP_SHMEM) { 1186 retval = shmem_unuse(entry, page); 1187 /* page has already been unlocked and released */ 1188 if (retval < 0) 1189 break; 1190 continue; 1191 } 1192 if (swap_count(swcount) && start_mm != &init_mm) 1193 retval = unuse_mm(start_mm, entry, page); 1194 1195 if (swap_count(*swap_map)) { 1196 int set_start_mm = (*swap_map >= swcount); 1197 struct list_head *p = &start_mm->mmlist; 1198 struct mm_struct *new_start_mm = start_mm; 1199 struct mm_struct *prev_mm = start_mm; 1200 struct mm_struct *mm; 1201 1202 atomic_inc(&new_start_mm->mm_users); 1203 atomic_inc(&prev_mm->mm_users); 1204 spin_lock(&mmlist_lock); 1205 while (swap_count(*swap_map) && !retval && 1206 (p = p->next) != &start_mm->mmlist) { 1207 mm = list_entry(p, struct mm_struct, mmlist); 1208 if (!atomic_inc_not_zero(&mm->mm_users)) 1209 continue; 1210 spin_unlock(&mmlist_lock); 1211 mmput(prev_mm); 1212 prev_mm = mm; 1213 1214 cond_resched(); 1215 1216 swcount = *swap_map; 1217 if (!swap_count(swcount)) /* any usage ? */ 1218 ; 1219 else if (mm == &init_mm) 1220 set_start_mm = 1; 1221 else 1222 retval = unuse_mm(mm, entry, page); 1223 1224 if (set_start_mm && *swap_map < swcount) { 1225 mmput(new_start_mm); 1226 atomic_inc(&mm->mm_users); 1227 new_start_mm = mm; 1228 set_start_mm = 0; 1229 } 1230 spin_lock(&mmlist_lock); 1231 } 1232 spin_unlock(&mmlist_lock); 1233 mmput(prev_mm); 1234 mmput(start_mm); 1235 start_mm = new_start_mm; 1236 } 1237 if (retval) { 1238 unlock_page(page); 1239 page_cache_release(page); 1240 break; 1241 } 1242 1243 /* 1244 * If a reference remains (rare), we would like to leave 1245 * the page in the swap cache; but try_to_unmap could 1246 * then re-duplicate the entry once we drop page lock, 1247 * so we might loop indefinitely; also, that page could 1248 * not be swapped out to other storage meanwhile. So: 1249 * delete from cache even if there's another reference, 1250 * after ensuring that the data has been saved to disk - 1251 * since if the reference remains (rarer), it will be 1252 * read from disk into another page. Splitting into two 1253 * pages would be incorrect if swap supported "shared 1254 * private" pages, but they are handled by tmpfs files. 1255 * 1256 * Given how unuse_vma() targets one particular offset 1257 * in an anon_vma, once the anon_vma has been determined, 1258 * this splitting happens to be just what is needed to 1259 * handle where KSM pages have been swapped out: re-reading 1260 * is unnecessarily slow, but we can fix that later on. 1261 */ 1262 if (swap_count(*swap_map) && 1263 PageDirty(page) && PageSwapCache(page)) { 1264 struct writeback_control wbc = { 1265 .sync_mode = WB_SYNC_NONE, 1266 }; 1267 1268 swap_writepage(page, &wbc); 1269 lock_page(page); 1270 wait_on_page_writeback(page); 1271 } 1272 1273 /* 1274 * It is conceivable that a racing task removed this page from 1275 * swap cache just before we acquired the page lock at the top, 1276 * or while we dropped it in unuse_mm(). The page might even 1277 * be back in swap cache on another swap area: that we must not 1278 * delete, since it may not have been written out to swap yet. 1279 */ 1280 if (PageSwapCache(page) && 1281 likely(page_private(page) == entry.val)) 1282 delete_from_swap_cache(page); 1283 1284 /* 1285 * So we could skip searching mms once swap count went 1286 * to 1, we did not mark any present ptes as dirty: must 1287 * mark page dirty so shrink_page_list will preserve it. 1288 */ 1289 SetPageDirty(page); 1290 unlock_page(page); 1291 page_cache_release(page); 1292 1293 /* 1294 * Make sure that we aren't completely killing 1295 * interactive performance. 1296 */ 1297 cond_resched(); 1298 if (frontswap && pages_to_unuse > 0) { 1299 if (!--pages_to_unuse) 1300 break; 1301 } 1302 } 1303 1304 mmput(start_mm); 1305 return retval; 1306 } 1307 1308 /* 1309 * After a successful try_to_unuse, if no swap is now in use, we know 1310 * we can empty the mmlist. swap_lock must be held on entry and exit. 1311 * Note that mmlist_lock nests inside swap_lock, and an mm must be 1312 * added to the mmlist just after page_duplicate - before would be racy. 1313 */ 1314 static void drain_mmlist(void) 1315 { 1316 struct list_head *p, *next; 1317 unsigned int type; 1318 1319 for (type = 0; type < nr_swapfiles; type++) 1320 if (swap_info[type]->inuse_pages) 1321 return; 1322 spin_lock(&mmlist_lock); 1323 list_for_each_safe(p, next, &init_mm.mmlist) 1324 list_del_init(p); 1325 spin_unlock(&mmlist_lock); 1326 } 1327 1328 /* 1329 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 1330 * corresponds to page offset for the specified swap entry. 1331 * Note that the type of this function is sector_t, but it returns page offset 1332 * into the bdev, not sector offset. 1333 */ 1334 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 1335 { 1336 struct swap_info_struct *sis; 1337 struct swap_extent *start_se; 1338 struct swap_extent *se; 1339 pgoff_t offset; 1340 1341 sis = swap_info[swp_type(entry)]; 1342 *bdev = sis->bdev; 1343 1344 offset = swp_offset(entry); 1345 start_se = sis->curr_swap_extent; 1346 se = start_se; 1347 1348 for ( ; ; ) { 1349 struct list_head *lh; 1350 1351 if (se->start_page <= offset && 1352 offset < (se->start_page + se->nr_pages)) { 1353 return se->start_block + (offset - se->start_page); 1354 } 1355 lh = se->list.next; 1356 se = list_entry(lh, struct swap_extent, list); 1357 sis->curr_swap_extent = se; 1358 BUG_ON(se == start_se); /* It *must* be present */ 1359 } 1360 } 1361 1362 /* 1363 * Returns the page offset into bdev for the specified page's swap entry. 1364 */ 1365 sector_t map_swap_page(struct page *page, struct block_device **bdev) 1366 { 1367 swp_entry_t entry; 1368 entry.val = page_private(page); 1369 return map_swap_entry(entry, bdev); 1370 } 1371 1372 /* 1373 * Free all of a swapdev's extent information 1374 */ 1375 static void destroy_swap_extents(struct swap_info_struct *sis) 1376 { 1377 while (!list_empty(&sis->first_swap_extent.list)) { 1378 struct swap_extent *se; 1379 1380 se = list_entry(sis->first_swap_extent.list.next, 1381 struct swap_extent, list); 1382 list_del(&se->list); 1383 kfree(se); 1384 } 1385 1386 if (sis->flags & SWP_FILE) { 1387 struct file *swap_file = sis->swap_file; 1388 struct address_space *mapping = swap_file->f_mapping; 1389 1390 sis->flags &= ~SWP_FILE; 1391 mapping->a_ops->swap_deactivate(swap_file); 1392 } 1393 } 1394 1395 /* 1396 * Add a block range (and the corresponding page range) into this swapdev's 1397 * extent list. The extent list is kept sorted in page order. 1398 * 1399 * This function rather assumes that it is called in ascending page order. 1400 */ 1401 int 1402 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 1403 unsigned long nr_pages, sector_t start_block) 1404 { 1405 struct swap_extent *se; 1406 struct swap_extent *new_se; 1407 struct list_head *lh; 1408 1409 if (start_page == 0) { 1410 se = &sis->first_swap_extent; 1411 sis->curr_swap_extent = se; 1412 se->start_page = 0; 1413 se->nr_pages = nr_pages; 1414 se->start_block = start_block; 1415 return 1; 1416 } else { 1417 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 1418 se = list_entry(lh, struct swap_extent, list); 1419 BUG_ON(se->start_page + se->nr_pages != start_page); 1420 if (se->start_block + se->nr_pages == start_block) { 1421 /* Merge it */ 1422 se->nr_pages += nr_pages; 1423 return 0; 1424 } 1425 } 1426 1427 /* 1428 * No merge. Insert a new extent, preserving ordering. 1429 */ 1430 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 1431 if (new_se == NULL) 1432 return -ENOMEM; 1433 new_se->start_page = start_page; 1434 new_se->nr_pages = nr_pages; 1435 new_se->start_block = start_block; 1436 1437 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 1438 return 1; 1439 } 1440 1441 /* 1442 * A `swap extent' is a simple thing which maps a contiguous range of pages 1443 * onto a contiguous range of disk blocks. An ordered list of swap extents 1444 * is built at swapon time and is then used at swap_writepage/swap_readpage 1445 * time for locating where on disk a page belongs. 1446 * 1447 * If the swapfile is an S_ISBLK block device, a single extent is installed. 1448 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 1449 * swap files identically. 1450 * 1451 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 1452 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 1453 * swapfiles are handled *identically* after swapon time. 1454 * 1455 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1456 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1457 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1458 * requirements, they are simply tossed out - we will never use those blocks 1459 * for swapping. 1460 * 1461 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1462 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1463 * which will scribble on the fs. 1464 * 1465 * The amount of disk space which a single swap extent represents varies. 1466 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1467 * extents in the list. To avoid much list walking, we cache the previous 1468 * search location in `curr_swap_extent', and start new searches from there. 1469 * This is extremely effective. The average number of iterations in 1470 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1471 */ 1472 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1473 { 1474 struct file *swap_file = sis->swap_file; 1475 struct address_space *mapping = swap_file->f_mapping; 1476 struct inode *inode = mapping->host; 1477 int ret; 1478 1479 if (S_ISBLK(inode->i_mode)) { 1480 ret = add_swap_extent(sis, 0, sis->max, 0); 1481 *span = sis->pages; 1482 return ret; 1483 } 1484 1485 if (mapping->a_ops->swap_activate) { 1486 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 1487 if (!ret) { 1488 sis->flags |= SWP_FILE; 1489 ret = add_swap_extent(sis, 0, sis->max, 0); 1490 *span = sis->pages; 1491 } 1492 return ret; 1493 } 1494 1495 return generic_swapfile_activate(sis, swap_file, span); 1496 } 1497 1498 static void _enable_swap_info(struct swap_info_struct *p, int prio, 1499 unsigned char *swap_map, 1500 unsigned long *frontswap_map) 1501 { 1502 int i, prev; 1503 1504 if (prio >= 0) 1505 p->prio = prio; 1506 else 1507 p->prio = --least_priority; 1508 p->swap_map = swap_map; 1509 frontswap_map_set(p, frontswap_map); 1510 p->flags |= SWP_WRITEOK; 1511 atomic_long_add(p->pages, &nr_swap_pages); 1512 total_swap_pages += p->pages; 1513 1514 /* insert swap space into swap_list: */ 1515 prev = -1; 1516 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) { 1517 if (p->prio >= swap_info[i]->prio) 1518 break; 1519 prev = i; 1520 } 1521 p->next = i; 1522 if (prev < 0) 1523 swap_list.head = swap_list.next = p->type; 1524 else 1525 swap_info[prev]->next = p->type; 1526 } 1527 1528 static void enable_swap_info(struct swap_info_struct *p, int prio, 1529 unsigned char *swap_map, 1530 unsigned long *frontswap_map) 1531 { 1532 spin_lock(&swap_lock); 1533 spin_lock(&p->lock); 1534 _enable_swap_info(p, prio, swap_map, frontswap_map); 1535 frontswap_init(p->type); 1536 spin_unlock(&p->lock); 1537 spin_unlock(&swap_lock); 1538 } 1539 1540 static void reinsert_swap_info(struct swap_info_struct *p) 1541 { 1542 spin_lock(&swap_lock); 1543 spin_lock(&p->lock); 1544 _enable_swap_info(p, p->prio, p->swap_map, frontswap_map_get(p)); 1545 spin_unlock(&p->lock); 1546 spin_unlock(&swap_lock); 1547 } 1548 1549 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 1550 { 1551 struct swap_info_struct *p = NULL; 1552 unsigned char *swap_map; 1553 struct file *swap_file, *victim; 1554 struct address_space *mapping; 1555 struct inode *inode; 1556 struct filename *pathname; 1557 int i, type, prev; 1558 int err; 1559 1560 if (!capable(CAP_SYS_ADMIN)) 1561 return -EPERM; 1562 1563 BUG_ON(!current->mm); 1564 1565 pathname = getname(specialfile); 1566 if (IS_ERR(pathname)) 1567 return PTR_ERR(pathname); 1568 1569 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 1570 err = PTR_ERR(victim); 1571 if (IS_ERR(victim)) 1572 goto out; 1573 1574 mapping = victim->f_mapping; 1575 prev = -1; 1576 spin_lock(&swap_lock); 1577 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) { 1578 p = swap_info[type]; 1579 if (p->flags & SWP_WRITEOK) { 1580 if (p->swap_file->f_mapping == mapping) 1581 break; 1582 } 1583 prev = type; 1584 } 1585 if (type < 0) { 1586 err = -EINVAL; 1587 spin_unlock(&swap_lock); 1588 goto out_dput; 1589 } 1590 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 1591 vm_unacct_memory(p->pages); 1592 else { 1593 err = -ENOMEM; 1594 spin_unlock(&swap_lock); 1595 goto out_dput; 1596 } 1597 if (prev < 0) 1598 swap_list.head = p->next; 1599 else 1600 swap_info[prev]->next = p->next; 1601 if (type == swap_list.next) { 1602 /* just pick something that's safe... */ 1603 swap_list.next = swap_list.head; 1604 } 1605 spin_lock(&p->lock); 1606 if (p->prio < 0) { 1607 for (i = p->next; i >= 0; i = swap_info[i]->next) 1608 swap_info[i]->prio = p->prio--; 1609 least_priority++; 1610 } 1611 atomic_long_sub(p->pages, &nr_swap_pages); 1612 total_swap_pages -= p->pages; 1613 p->flags &= ~SWP_WRITEOK; 1614 spin_unlock(&p->lock); 1615 spin_unlock(&swap_lock); 1616 1617 set_current_oom_origin(); 1618 err = try_to_unuse(type, false, 0); /* force all pages to be unused */ 1619 clear_current_oom_origin(); 1620 1621 if (err) { 1622 /* re-insert swap space back into swap_list */ 1623 reinsert_swap_info(p); 1624 goto out_dput; 1625 } 1626 1627 destroy_swap_extents(p); 1628 if (p->flags & SWP_CONTINUED) 1629 free_swap_count_continuations(p); 1630 1631 mutex_lock(&swapon_mutex); 1632 spin_lock(&swap_lock); 1633 spin_lock(&p->lock); 1634 drain_mmlist(); 1635 1636 /* wait for anyone still in scan_swap_map */ 1637 p->highest_bit = 0; /* cuts scans short */ 1638 while (p->flags >= SWP_SCANNING) { 1639 spin_unlock(&p->lock); 1640 spin_unlock(&swap_lock); 1641 schedule_timeout_uninterruptible(1); 1642 spin_lock(&swap_lock); 1643 spin_lock(&p->lock); 1644 } 1645 1646 swap_file = p->swap_file; 1647 p->swap_file = NULL; 1648 p->max = 0; 1649 swap_map = p->swap_map; 1650 p->swap_map = NULL; 1651 p->flags = 0; 1652 frontswap_invalidate_area(type); 1653 spin_unlock(&p->lock); 1654 spin_unlock(&swap_lock); 1655 mutex_unlock(&swapon_mutex); 1656 vfree(swap_map); 1657 vfree(frontswap_map_get(p)); 1658 /* Destroy swap account informatin */ 1659 swap_cgroup_swapoff(type); 1660 1661 inode = mapping->host; 1662 if (S_ISBLK(inode->i_mode)) { 1663 struct block_device *bdev = I_BDEV(inode); 1664 set_blocksize(bdev, p->old_block_size); 1665 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 1666 } else { 1667 mutex_lock(&inode->i_mutex); 1668 inode->i_flags &= ~S_SWAPFILE; 1669 mutex_unlock(&inode->i_mutex); 1670 } 1671 filp_close(swap_file, NULL); 1672 err = 0; 1673 atomic_inc(&proc_poll_event); 1674 wake_up_interruptible(&proc_poll_wait); 1675 1676 out_dput: 1677 filp_close(victim, NULL); 1678 out: 1679 putname(pathname); 1680 return err; 1681 } 1682 1683 #ifdef CONFIG_PROC_FS 1684 static unsigned swaps_poll(struct file *file, poll_table *wait) 1685 { 1686 struct seq_file *seq = file->private_data; 1687 1688 poll_wait(file, &proc_poll_wait, wait); 1689 1690 if (seq->poll_event != atomic_read(&proc_poll_event)) { 1691 seq->poll_event = atomic_read(&proc_poll_event); 1692 return POLLIN | POLLRDNORM | POLLERR | POLLPRI; 1693 } 1694 1695 return POLLIN | POLLRDNORM; 1696 } 1697 1698 /* iterator */ 1699 static void *swap_start(struct seq_file *swap, loff_t *pos) 1700 { 1701 struct swap_info_struct *si; 1702 int type; 1703 loff_t l = *pos; 1704 1705 mutex_lock(&swapon_mutex); 1706 1707 if (!l) 1708 return SEQ_START_TOKEN; 1709 1710 for (type = 0; type < nr_swapfiles; type++) { 1711 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 1712 si = swap_info[type]; 1713 if (!(si->flags & SWP_USED) || !si->swap_map) 1714 continue; 1715 if (!--l) 1716 return si; 1717 } 1718 1719 return NULL; 1720 } 1721 1722 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 1723 { 1724 struct swap_info_struct *si = v; 1725 int type; 1726 1727 if (v == SEQ_START_TOKEN) 1728 type = 0; 1729 else 1730 type = si->type + 1; 1731 1732 for (; type < nr_swapfiles; type++) { 1733 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 1734 si = swap_info[type]; 1735 if (!(si->flags & SWP_USED) || !si->swap_map) 1736 continue; 1737 ++*pos; 1738 return si; 1739 } 1740 1741 return NULL; 1742 } 1743 1744 static void swap_stop(struct seq_file *swap, void *v) 1745 { 1746 mutex_unlock(&swapon_mutex); 1747 } 1748 1749 static int swap_show(struct seq_file *swap, void *v) 1750 { 1751 struct swap_info_struct *si = v; 1752 struct file *file; 1753 int len; 1754 1755 if (si == SEQ_START_TOKEN) { 1756 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 1757 return 0; 1758 } 1759 1760 file = si->swap_file; 1761 len = seq_path(swap, &file->f_path, " \t\n\\"); 1762 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 1763 len < 40 ? 40 - len : 1, " ", 1764 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ? 1765 "partition" : "file\t", 1766 si->pages << (PAGE_SHIFT - 10), 1767 si->inuse_pages << (PAGE_SHIFT - 10), 1768 si->prio); 1769 return 0; 1770 } 1771 1772 static const struct seq_operations swaps_op = { 1773 .start = swap_start, 1774 .next = swap_next, 1775 .stop = swap_stop, 1776 .show = swap_show 1777 }; 1778 1779 static int swaps_open(struct inode *inode, struct file *file) 1780 { 1781 struct seq_file *seq; 1782 int ret; 1783 1784 ret = seq_open(file, &swaps_op); 1785 if (ret) 1786 return ret; 1787 1788 seq = file->private_data; 1789 seq->poll_event = atomic_read(&proc_poll_event); 1790 return 0; 1791 } 1792 1793 static const struct file_operations proc_swaps_operations = { 1794 .open = swaps_open, 1795 .read = seq_read, 1796 .llseek = seq_lseek, 1797 .release = seq_release, 1798 .poll = swaps_poll, 1799 }; 1800 1801 static int __init procswaps_init(void) 1802 { 1803 proc_create("swaps", 0, NULL, &proc_swaps_operations); 1804 return 0; 1805 } 1806 __initcall(procswaps_init); 1807 #endif /* CONFIG_PROC_FS */ 1808 1809 #ifdef MAX_SWAPFILES_CHECK 1810 static int __init max_swapfiles_check(void) 1811 { 1812 MAX_SWAPFILES_CHECK(); 1813 return 0; 1814 } 1815 late_initcall(max_swapfiles_check); 1816 #endif 1817 1818 static struct swap_info_struct *alloc_swap_info(void) 1819 { 1820 struct swap_info_struct *p; 1821 unsigned int type; 1822 1823 p = kzalloc(sizeof(*p), GFP_KERNEL); 1824 if (!p) 1825 return ERR_PTR(-ENOMEM); 1826 1827 spin_lock(&swap_lock); 1828 for (type = 0; type < nr_swapfiles; type++) { 1829 if (!(swap_info[type]->flags & SWP_USED)) 1830 break; 1831 } 1832 if (type >= MAX_SWAPFILES) { 1833 spin_unlock(&swap_lock); 1834 kfree(p); 1835 return ERR_PTR(-EPERM); 1836 } 1837 if (type >= nr_swapfiles) { 1838 p->type = type; 1839 swap_info[type] = p; 1840 /* 1841 * Write swap_info[type] before nr_swapfiles, in case a 1842 * racing procfs swap_start() or swap_next() is reading them. 1843 * (We never shrink nr_swapfiles, we never free this entry.) 1844 */ 1845 smp_wmb(); 1846 nr_swapfiles++; 1847 } else { 1848 kfree(p); 1849 p = swap_info[type]; 1850 /* 1851 * Do not memset this entry: a racing procfs swap_next() 1852 * would be relying on p->type to remain valid. 1853 */ 1854 } 1855 INIT_LIST_HEAD(&p->first_swap_extent.list); 1856 p->flags = SWP_USED; 1857 p->next = -1; 1858 spin_unlock(&swap_lock); 1859 spin_lock_init(&p->lock); 1860 1861 return p; 1862 } 1863 1864 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 1865 { 1866 int error; 1867 1868 if (S_ISBLK(inode->i_mode)) { 1869 p->bdev = bdgrab(I_BDEV(inode)); 1870 error = blkdev_get(p->bdev, 1871 FMODE_READ | FMODE_WRITE | FMODE_EXCL, 1872 sys_swapon); 1873 if (error < 0) { 1874 p->bdev = NULL; 1875 return -EINVAL; 1876 } 1877 p->old_block_size = block_size(p->bdev); 1878 error = set_blocksize(p->bdev, PAGE_SIZE); 1879 if (error < 0) 1880 return error; 1881 p->flags |= SWP_BLKDEV; 1882 } else if (S_ISREG(inode->i_mode)) { 1883 p->bdev = inode->i_sb->s_bdev; 1884 mutex_lock(&inode->i_mutex); 1885 if (IS_SWAPFILE(inode)) 1886 return -EBUSY; 1887 } else 1888 return -EINVAL; 1889 1890 return 0; 1891 } 1892 1893 static unsigned long read_swap_header(struct swap_info_struct *p, 1894 union swap_header *swap_header, 1895 struct inode *inode) 1896 { 1897 int i; 1898 unsigned long maxpages; 1899 unsigned long swapfilepages; 1900 1901 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 1902 printk(KERN_ERR "Unable to find swap-space signature\n"); 1903 return 0; 1904 } 1905 1906 /* swap partition endianess hack... */ 1907 if (swab32(swap_header->info.version) == 1) { 1908 swab32s(&swap_header->info.version); 1909 swab32s(&swap_header->info.last_page); 1910 swab32s(&swap_header->info.nr_badpages); 1911 for (i = 0; i < swap_header->info.nr_badpages; i++) 1912 swab32s(&swap_header->info.badpages[i]); 1913 } 1914 /* Check the swap header's sub-version */ 1915 if (swap_header->info.version != 1) { 1916 printk(KERN_WARNING 1917 "Unable to handle swap header version %d\n", 1918 swap_header->info.version); 1919 return 0; 1920 } 1921 1922 p->lowest_bit = 1; 1923 p->cluster_next = 1; 1924 p->cluster_nr = 0; 1925 1926 /* 1927 * Find out how many pages are allowed for a single swap 1928 * device. There are two limiting factors: 1) the number 1929 * of bits for the swap offset in the swp_entry_t type, and 1930 * 2) the number of bits in the swap pte as defined by the 1931 * different architectures. In order to find the 1932 * largest possible bit mask, a swap entry with swap type 0 1933 * and swap offset ~0UL is created, encoded to a swap pte, 1934 * decoded to a swp_entry_t again, and finally the swap 1935 * offset is extracted. This will mask all the bits from 1936 * the initial ~0UL mask that can't be encoded in either 1937 * the swp_entry_t or the architecture definition of a 1938 * swap pte. 1939 */ 1940 maxpages = swp_offset(pte_to_swp_entry( 1941 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 1942 if (maxpages > swap_header->info.last_page) { 1943 maxpages = swap_header->info.last_page + 1; 1944 /* p->max is an unsigned int: don't overflow it */ 1945 if ((unsigned int)maxpages == 0) 1946 maxpages = UINT_MAX; 1947 } 1948 p->highest_bit = maxpages - 1; 1949 1950 if (!maxpages) 1951 return 0; 1952 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 1953 if (swapfilepages && maxpages > swapfilepages) { 1954 printk(KERN_WARNING 1955 "Swap area shorter than signature indicates\n"); 1956 return 0; 1957 } 1958 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 1959 return 0; 1960 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 1961 return 0; 1962 1963 return maxpages; 1964 } 1965 1966 static int setup_swap_map_and_extents(struct swap_info_struct *p, 1967 union swap_header *swap_header, 1968 unsigned char *swap_map, 1969 unsigned long maxpages, 1970 sector_t *span) 1971 { 1972 int i; 1973 unsigned int nr_good_pages; 1974 int nr_extents; 1975 1976 nr_good_pages = maxpages - 1; /* omit header page */ 1977 1978 for (i = 0; i < swap_header->info.nr_badpages; i++) { 1979 unsigned int page_nr = swap_header->info.badpages[i]; 1980 if (page_nr == 0 || page_nr > swap_header->info.last_page) 1981 return -EINVAL; 1982 if (page_nr < maxpages) { 1983 swap_map[page_nr] = SWAP_MAP_BAD; 1984 nr_good_pages--; 1985 } 1986 } 1987 1988 if (nr_good_pages) { 1989 swap_map[0] = SWAP_MAP_BAD; 1990 p->max = maxpages; 1991 p->pages = nr_good_pages; 1992 nr_extents = setup_swap_extents(p, span); 1993 if (nr_extents < 0) 1994 return nr_extents; 1995 nr_good_pages = p->pages; 1996 } 1997 if (!nr_good_pages) { 1998 printk(KERN_WARNING "Empty swap-file\n"); 1999 return -EINVAL; 2000 } 2001 2002 return nr_extents; 2003 } 2004 2005 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2006 { 2007 struct swap_info_struct *p; 2008 struct filename *name; 2009 struct file *swap_file = NULL; 2010 struct address_space *mapping; 2011 int i; 2012 int prio; 2013 int error; 2014 union swap_header *swap_header; 2015 int nr_extents; 2016 sector_t span; 2017 unsigned long maxpages; 2018 unsigned char *swap_map = NULL; 2019 unsigned long *frontswap_map = NULL; 2020 struct page *page = NULL; 2021 struct inode *inode = NULL; 2022 2023 if (swap_flags & ~SWAP_FLAGS_VALID) 2024 return -EINVAL; 2025 2026 if (!capable(CAP_SYS_ADMIN)) 2027 return -EPERM; 2028 2029 p = alloc_swap_info(); 2030 if (IS_ERR(p)) 2031 return PTR_ERR(p); 2032 2033 name = getname(specialfile); 2034 if (IS_ERR(name)) { 2035 error = PTR_ERR(name); 2036 name = NULL; 2037 goto bad_swap; 2038 } 2039 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 2040 if (IS_ERR(swap_file)) { 2041 error = PTR_ERR(swap_file); 2042 swap_file = NULL; 2043 goto bad_swap; 2044 } 2045 2046 p->swap_file = swap_file; 2047 mapping = swap_file->f_mapping; 2048 2049 for (i = 0; i < nr_swapfiles; i++) { 2050 struct swap_info_struct *q = swap_info[i]; 2051 2052 if (q == p || !q->swap_file) 2053 continue; 2054 if (mapping == q->swap_file->f_mapping) { 2055 error = -EBUSY; 2056 goto bad_swap; 2057 } 2058 } 2059 2060 inode = mapping->host; 2061 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */ 2062 error = claim_swapfile(p, inode); 2063 if (unlikely(error)) 2064 goto bad_swap; 2065 2066 /* 2067 * Read the swap header. 2068 */ 2069 if (!mapping->a_ops->readpage) { 2070 error = -EINVAL; 2071 goto bad_swap; 2072 } 2073 page = read_mapping_page(mapping, 0, swap_file); 2074 if (IS_ERR(page)) { 2075 error = PTR_ERR(page); 2076 goto bad_swap; 2077 } 2078 swap_header = kmap(page); 2079 2080 maxpages = read_swap_header(p, swap_header, inode); 2081 if (unlikely(!maxpages)) { 2082 error = -EINVAL; 2083 goto bad_swap; 2084 } 2085 2086 /* OK, set up the swap map and apply the bad block list */ 2087 swap_map = vzalloc(maxpages); 2088 if (!swap_map) { 2089 error = -ENOMEM; 2090 goto bad_swap; 2091 } 2092 2093 error = swap_cgroup_swapon(p->type, maxpages); 2094 if (error) 2095 goto bad_swap; 2096 2097 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 2098 maxpages, &span); 2099 if (unlikely(nr_extents < 0)) { 2100 error = nr_extents; 2101 goto bad_swap; 2102 } 2103 /* frontswap enabled? set up bit-per-page map for frontswap */ 2104 if (frontswap_enabled) 2105 frontswap_map = vzalloc(maxpages / sizeof(long)); 2106 2107 if (p->bdev) { 2108 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) { 2109 p->flags |= SWP_SOLIDSTATE; 2110 p->cluster_next = 1 + (random32() % p->highest_bit); 2111 } 2112 if ((swap_flags & SWAP_FLAG_DISCARD) && discard_swap(p) == 0) 2113 p->flags |= SWP_DISCARDABLE; 2114 } 2115 2116 mutex_lock(&swapon_mutex); 2117 prio = -1; 2118 if (swap_flags & SWAP_FLAG_PREFER) 2119 prio = 2120 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 2121 enable_swap_info(p, prio, swap_map, frontswap_map); 2122 2123 printk(KERN_INFO "Adding %uk swap on %s. " 2124 "Priority:%d extents:%d across:%lluk %s%s%s\n", 2125 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 2126 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 2127 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 2128 (p->flags & SWP_DISCARDABLE) ? "D" : "", 2129 (frontswap_map) ? "FS" : ""); 2130 2131 mutex_unlock(&swapon_mutex); 2132 atomic_inc(&proc_poll_event); 2133 wake_up_interruptible(&proc_poll_wait); 2134 2135 if (S_ISREG(inode->i_mode)) 2136 inode->i_flags |= S_SWAPFILE; 2137 error = 0; 2138 goto out; 2139 bad_swap: 2140 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 2141 set_blocksize(p->bdev, p->old_block_size); 2142 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2143 } 2144 destroy_swap_extents(p); 2145 swap_cgroup_swapoff(p->type); 2146 spin_lock(&swap_lock); 2147 p->swap_file = NULL; 2148 p->flags = 0; 2149 spin_unlock(&swap_lock); 2150 vfree(swap_map); 2151 if (swap_file) { 2152 if (inode && S_ISREG(inode->i_mode)) { 2153 mutex_unlock(&inode->i_mutex); 2154 inode = NULL; 2155 } 2156 filp_close(swap_file, NULL); 2157 } 2158 out: 2159 if (page && !IS_ERR(page)) { 2160 kunmap(page); 2161 page_cache_release(page); 2162 } 2163 if (name) 2164 putname(name); 2165 if (inode && S_ISREG(inode->i_mode)) 2166 mutex_unlock(&inode->i_mutex); 2167 return error; 2168 } 2169 2170 void si_swapinfo(struct sysinfo *val) 2171 { 2172 unsigned int type; 2173 unsigned long nr_to_be_unused = 0; 2174 2175 spin_lock(&swap_lock); 2176 for (type = 0; type < nr_swapfiles; type++) { 2177 struct swap_info_struct *si = swap_info[type]; 2178 2179 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 2180 nr_to_be_unused += si->inuse_pages; 2181 } 2182 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 2183 val->totalswap = total_swap_pages + nr_to_be_unused; 2184 spin_unlock(&swap_lock); 2185 } 2186 2187 /* 2188 * Verify that a swap entry is valid and increment its swap map count. 2189 * 2190 * Returns error code in following case. 2191 * - success -> 0 2192 * - swp_entry is invalid -> EINVAL 2193 * - swp_entry is migration entry -> EINVAL 2194 * - swap-cache reference is requested but there is already one. -> EEXIST 2195 * - swap-cache reference is requested but the entry is not used. -> ENOENT 2196 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 2197 */ 2198 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 2199 { 2200 struct swap_info_struct *p; 2201 unsigned long offset, type; 2202 unsigned char count; 2203 unsigned char has_cache; 2204 int err = -EINVAL; 2205 2206 if (non_swap_entry(entry)) 2207 goto out; 2208 2209 type = swp_type(entry); 2210 if (type >= nr_swapfiles) 2211 goto bad_file; 2212 p = swap_info[type]; 2213 offset = swp_offset(entry); 2214 2215 spin_lock(&p->lock); 2216 if (unlikely(offset >= p->max)) 2217 goto unlock_out; 2218 2219 count = p->swap_map[offset]; 2220 has_cache = count & SWAP_HAS_CACHE; 2221 count &= ~SWAP_HAS_CACHE; 2222 err = 0; 2223 2224 if (usage == SWAP_HAS_CACHE) { 2225 2226 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 2227 if (!has_cache && count) 2228 has_cache = SWAP_HAS_CACHE; 2229 else if (has_cache) /* someone else added cache */ 2230 err = -EEXIST; 2231 else /* no users remaining */ 2232 err = -ENOENT; 2233 2234 } else if (count || has_cache) { 2235 2236 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 2237 count += usage; 2238 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 2239 err = -EINVAL; 2240 else if (swap_count_continued(p, offset, count)) 2241 count = COUNT_CONTINUED; 2242 else 2243 err = -ENOMEM; 2244 } else 2245 err = -ENOENT; /* unused swap entry */ 2246 2247 p->swap_map[offset] = count | has_cache; 2248 2249 unlock_out: 2250 spin_unlock(&p->lock); 2251 out: 2252 return err; 2253 2254 bad_file: 2255 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); 2256 goto out; 2257 } 2258 2259 /* 2260 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 2261 * (in which case its reference count is never incremented). 2262 */ 2263 void swap_shmem_alloc(swp_entry_t entry) 2264 { 2265 __swap_duplicate(entry, SWAP_MAP_SHMEM); 2266 } 2267 2268 /* 2269 * Increase reference count of swap entry by 1. 2270 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 2271 * but could not be atomically allocated. Returns 0, just as if it succeeded, 2272 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 2273 * might occur if a page table entry has got corrupted. 2274 */ 2275 int swap_duplicate(swp_entry_t entry) 2276 { 2277 int err = 0; 2278 2279 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 2280 err = add_swap_count_continuation(entry, GFP_ATOMIC); 2281 return err; 2282 } 2283 2284 /* 2285 * @entry: swap entry for which we allocate swap cache. 2286 * 2287 * Called when allocating swap cache for existing swap entry, 2288 * This can return error codes. Returns 0 at success. 2289 * -EBUSY means there is a swap cache. 2290 * Note: return code is different from swap_duplicate(). 2291 */ 2292 int swapcache_prepare(swp_entry_t entry) 2293 { 2294 return __swap_duplicate(entry, SWAP_HAS_CACHE); 2295 } 2296 2297 struct swap_info_struct *page_swap_info(struct page *page) 2298 { 2299 swp_entry_t swap = { .val = page_private(page) }; 2300 BUG_ON(!PageSwapCache(page)); 2301 return swap_info[swp_type(swap)]; 2302 } 2303 2304 /* 2305 * out-of-line __page_file_ methods to avoid include hell. 2306 */ 2307 struct address_space *__page_file_mapping(struct page *page) 2308 { 2309 VM_BUG_ON(!PageSwapCache(page)); 2310 return page_swap_info(page)->swap_file->f_mapping; 2311 } 2312 EXPORT_SYMBOL_GPL(__page_file_mapping); 2313 2314 pgoff_t __page_file_index(struct page *page) 2315 { 2316 swp_entry_t swap = { .val = page_private(page) }; 2317 VM_BUG_ON(!PageSwapCache(page)); 2318 return swp_offset(swap); 2319 } 2320 EXPORT_SYMBOL_GPL(__page_file_index); 2321 2322 /* 2323 * add_swap_count_continuation - called when a swap count is duplicated 2324 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 2325 * page of the original vmalloc'ed swap_map, to hold the continuation count 2326 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 2327 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 2328 * 2329 * These continuation pages are seldom referenced: the common paths all work 2330 * on the original swap_map, only referring to a continuation page when the 2331 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 2332 * 2333 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 2334 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 2335 * can be called after dropping locks. 2336 */ 2337 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 2338 { 2339 struct swap_info_struct *si; 2340 struct page *head; 2341 struct page *page; 2342 struct page *list_page; 2343 pgoff_t offset; 2344 unsigned char count; 2345 2346 /* 2347 * When debugging, it's easier to use __GFP_ZERO here; but it's better 2348 * for latency not to zero a page while GFP_ATOMIC and holding locks. 2349 */ 2350 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 2351 2352 si = swap_info_get(entry); 2353 if (!si) { 2354 /* 2355 * An acceptable race has occurred since the failing 2356 * __swap_duplicate(): the swap entry has been freed, 2357 * perhaps even the whole swap_map cleared for swapoff. 2358 */ 2359 goto outer; 2360 } 2361 2362 offset = swp_offset(entry); 2363 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 2364 2365 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 2366 /* 2367 * The higher the swap count, the more likely it is that tasks 2368 * will race to add swap count continuation: we need to avoid 2369 * over-provisioning. 2370 */ 2371 goto out; 2372 } 2373 2374 if (!page) { 2375 spin_unlock(&si->lock); 2376 return -ENOMEM; 2377 } 2378 2379 /* 2380 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 2381 * no architecture is using highmem pages for kernel pagetables: so it 2382 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps. 2383 */ 2384 head = vmalloc_to_page(si->swap_map + offset); 2385 offset &= ~PAGE_MASK; 2386 2387 /* 2388 * Page allocation does not initialize the page's lru field, 2389 * but it does always reset its private field. 2390 */ 2391 if (!page_private(head)) { 2392 BUG_ON(count & COUNT_CONTINUED); 2393 INIT_LIST_HEAD(&head->lru); 2394 set_page_private(head, SWP_CONTINUED); 2395 si->flags |= SWP_CONTINUED; 2396 } 2397 2398 list_for_each_entry(list_page, &head->lru, lru) { 2399 unsigned char *map; 2400 2401 /* 2402 * If the previous map said no continuation, but we've found 2403 * a continuation page, free our allocation and use this one. 2404 */ 2405 if (!(count & COUNT_CONTINUED)) 2406 goto out; 2407 2408 map = kmap_atomic(list_page) + offset; 2409 count = *map; 2410 kunmap_atomic(map); 2411 2412 /* 2413 * If this continuation count now has some space in it, 2414 * free our allocation and use this one. 2415 */ 2416 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 2417 goto out; 2418 } 2419 2420 list_add_tail(&page->lru, &head->lru); 2421 page = NULL; /* now it's attached, don't free it */ 2422 out: 2423 spin_unlock(&si->lock); 2424 outer: 2425 if (page) 2426 __free_page(page); 2427 return 0; 2428 } 2429 2430 /* 2431 * swap_count_continued - when the original swap_map count is incremented 2432 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 2433 * into, carry if so, or else fail until a new continuation page is allocated; 2434 * when the original swap_map count is decremented from 0 with continuation, 2435 * borrow from the continuation and report whether it still holds more. 2436 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock. 2437 */ 2438 static bool swap_count_continued(struct swap_info_struct *si, 2439 pgoff_t offset, unsigned char count) 2440 { 2441 struct page *head; 2442 struct page *page; 2443 unsigned char *map; 2444 2445 head = vmalloc_to_page(si->swap_map + offset); 2446 if (page_private(head) != SWP_CONTINUED) { 2447 BUG_ON(count & COUNT_CONTINUED); 2448 return false; /* need to add count continuation */ 2449 } 2450 2451 offset &= ~PAGE_MASK; 2452 page = list_entry(head->lru.next, struct page, lru); 2453 map = kmap_atomic(page) + offset; 2454 2455 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 2456 goto init_map; /* jump over SWAP_CONT_MAX checks */ 2457 2458 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 2459 /* 2460 * Think of how you add 1 to 999 2461 */ 2462 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 2463 kunmap_atomic(map); 2464 page = list_entry(page->lru.next, struct page, lru); 2465 BUG_ON(page == head); 2466 map = kmap_atomic(page) + offset; 2467 } 2468 if (*map == SWAP_CONT_MAX) { 2469 kunmap_atomic(map); 2470 page = list_entry(page->lru.next, struct page, lru); 2471 if (page == head) 2472 return false; /* add count continuation */ 2473 map = kmap_atomic(page) + offset; 2474 init_map: *map = 0; /* we didn't zero the page */ 2475 } 2476 *map += 1; 2477 kunmap_atomic(map); 2478 page = list_entry(page->lru.prev, struct page, lru); 2479 while (page != head) { 2480 map = kmap_atomic(page) + offset; 2481 *map = COUNT_CONTINUED; 2482 kunmap_atomic(map); 2483 page = list_entry(page->lru.prev, struct page, lru); 2484 } 2485 return true; /* incremented */ 2486 2487 } else { /* decrementing */ 2488 /* 2489 * Think of how you subtract 1 from 1000 2490 */ 2491 BUG_ON(count != COUNT_CONTINUED); 2492 while (*map == COUNT_CONTINUED) { 2493 kunmap_atomic(map); 2494 page = list_entry(page->lru.next, struct page, lru); 2495 BUG_ON(page == head); 2496 map = kmap_atomic(page) + offset; 2497 } 2498 BUG_ON(*map == 0); 2499 *map -= 1; 2500 if (*map == 0) 2501 count = 0; 2502 kunmap_atomic(map); 2503 page = list_entry(page->lru.prev, struct page, lru); 2504 while (page != head) { 2505 map = kmap_atomic(page) + offset; 2506 *map = SWAP_CONT_MAX | count; 2507 count = COUNT_CONTINUED; 2508 kunmap_atomic(map); 2509 page = list_entry(page->lru.prev, struct page, lru); 2510 } 2511 return count == COUNT_CONTINUED; 2512 } 2513 } 2514 2515 /* 2516 * free_swap_count_continuations - swapoff free all the continuation pages 2517 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 2518 */ 2519 static void free_swap_count_continuations(struct swap_info_struct *si) 2520 { 2521 pgoff_t offset; 2522 2523 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 2524 struct page *head; 2525 head = vmalloc_to_page(si->swap_map + offset); 2526 if (page_private(head)) { 2527 struct list_head *this, *next; 2528 list_for_each_safe(this, next, &head->lru) { 2529 struct page *page; 2530 page = list_entry(this, struct page, lru); 2531 list_del(this); 2532 __free_page(page); 2533 } 2534 } 2535 } 2536 } 2537