xref: /openbmc/linux/mm/swapfile.c (revision ec8acf20afb8534ed511f6613dd2226b9e301010)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37 
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/page_cgroup.h>
42 
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 				 unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47 
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages;
53 static int least_priority;
54 static atomic_t highest_priority_index = ATOMIC_INIT(-1);
55 
56 static const char Bad_file[] = "Bad swap file entry ";
57 static const char Unused_file[] = "Unused swap file entry ";
58 static const char Bad_offset[] = "Bad swap offset entry ";
59 static const char Unused_offset[] = "Unused swap offset entry ";
60 
61 struct swap_list_t swap_list = {-1, -1};
62 
63 struct swap_info_struct *swap_info[MAX_SWAPFILES];
64 
65 static DEFINE_MUTEX(swapon_mutex);
66 
67 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
68 /* Activity counter to indicate that a swapon or swapoff has occurred */
69 static atomic_t proc_poll_event = ATOMIC_INIT(0);
70 
71 static inline unsigned char swap_count(unsigned char ent)
72 {
73 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
74 }
75 
76 /* returns 1 if swap entry is freed */
77 static int
78 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
79 {
80 	swp_entry_t entry = swp_entry(si->type, offset);
81 	struct page *page;
82 	int ret = 0;
83 
84 	page = find_get_page(swap_address_space(entry), entry.val);
85 	if (!page)
86 		return 0;
87 	/*
88 	 * This function is called from scan_swap_map() and it's called
89 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
90 	 * We have to use trylock for avoiding deadlock. This is a special
91 	 * case and you should use try_to_free_swap() with explicit lock_page()
92 	 * in usual operations.
93 	 */
94 	if (trylock_page(page)) {
95 		ret = try_to_free_swap(page);
96 		unlock_page(page);
97 	}
98 	page_cache_release(page);
99 	return ret;
100 }
101 
102 /*
103  * swapon tell device that all the old swap contents can be discarded,
104  * to allow the swap device to optimize its wear-levelling.
105  */
106 static int discard_swap(struct swap_info_struct *si)
107 {
108 	struct swap_extent *se;
109 	sector_t start_block;
110 	sector_t nr_blocks;
111 	int err = 0;
112 
113 	/* Do not discard the swap header page! */
114 	se = &si->first_swap_extent;
115 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
116 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
117 	if (nr_blocks) {
118 		err = blkdev_issue_discard(si->bdev, start_block,
119 				nr_blocks, GFP_KERNEL, 0);
120 		if (err)
121 			return err;
122 		cond_resched();
123 	}
124 
125 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
126 		start_block = se->start_block << (PAGE_SHIFT - 9);
127 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
128 
129 		err = blkdev_issue_discard(si->bdev, start_block,
130 				nr_blocks, GFP_KERNEL, 0);
131 		if (err)
132 			break;
133 
134 		cond_resched();
135 	}
136 	return err;		/* That will often be -EOPNOTSUPP */
137 }
138 
139 /*
140  * swap allocation tell device that a cluster of swap can now be discarded,
141  * to allow the swap device to optimize its wear-levelling.
142  */
143 static void discard_swap_cluster(struct swap_info_struct *si,
144 				 pgoff_t start_page, pgoff_t nr_pages)
145 {
146 	struct swap_extent *se = si->curr_swap_extent;
147 	int found_extent = 0;
148 
149 	while (nr_pages) {
150 		struct list_head *lh;
151 
152 		if (se->start_page <= start_page &&
153 		    start_page < se->start_page + se->nr_pages) {
154 			pgoff_t offset = start_page - se->start_page;
155 			sector_t start_block = se->start_block + offset;
156 			sector_t nr_blocks = se->nr_pages - offset;
157 
158 			if (nr_blocks > nr_pages)
159 				nr_blocks = nr_pages;
160 			start_page += nr_blocks;
161 			nr_pages -= nr_blocks;
162 
163 			if (!found_extent++)
164 				si->curr_swap_extent = se;
165 
166 			start_block <<= PAGE_SHIFT - 9;
167 			nr_blocks <<= PAGE_SHIFT - 9;
168 			if (blkdev_issue_discard(si->bdev, start_block,
169 				    nr_blocks, GFP_NOIO, 0))
170 				break;
171 		}
172 
173 		lh = se->list.next;
174 		se = list_entry(lh, struct swap_extent, list);
175 	}
176 }
177 
178 static int wait_for_discard(void *word)
179 {
180 	schedule();
181 	return 0;
182 }
183 
184 #define SWAPFILE_CLUSTER	256
185 #define LATENCY_LIMIT		256
186 
187 static unsigned long scan_swap_map(struct swap_info_struct *si,
188 				   unsigned char usage)
189 {
190 	unsigned long offset;
191 	unsigned long scan_base;
192 	unsigned long last_in_cluster = 0;
193 	int latency_ration = LATENCY_LIMIT;
194 	int found_free_cluster = 0;
195 
196 	/*
197 	 * We try to cluster swap pages by allocating them sequentially
198 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
199 	 * way, however, we resort to first-free allocation, starting
200 	 * a new cluster.  This prevents us from scattering swap pages
201 	 * all over the entire swap partition, so that we reduce
202 	 * overall disk seek times between swap pages.  -- sct
203 	 * But we do now try to find an empty cluster.  -Andrea
204 	 * And we let swap pages go all over an SSD partition.  Hugh
205 	 */
206 
207 	si->flags += SWP_SCANNING;
208 	scan_base = offset = si->cluster_next;
209 
210 	if (unlikely(!si->cluster_nr--)) {
211 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
212 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
213 			goto checks;
214 		}
215 		if (si->flags & SWP_DISCARDABLE) {
216 			/*
217 			 * Start range check on racing allocations, in case
218 			 * they overlap the cluster we eventually decide on
219 			 * (we scan without swap_lock to allow preemption).
220 			 * It's hardly conceivable that cluster_nr could be
221 			 * wrapped during our scan, but don't depend on it.
222 			 */
223 			if (si->lowest_alloc)
224 				goto checks;
225 			si->lowest_alloc = si->max;
226 			si->highest_alloc = 0;
227 		}
228 		spin_unlock(&si->lock);
229 
230 		/*
231 		 * If seek is expensive, start searching for new cluster from
232 		 * start of partition, to minimize the span of allocated swap.
233 		 * But if seek is cheap, search from our current position, so
234 		 * that swap is allocated from all over the partition: if the
235 		 * Flash Translation Layer only remaps within limited zones,
236 		 * we don't want to wear out the first zone too quickly.
237 		 */
238 		if (!(si->flags & SWP_SOLIDSTATE))
239 			scan_base = offset = si->lowest_bit;
240 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
241 
242 		/* Locate the first empty (unaligned) cluster */
243 		for (; last_in_cluster <= si->highest_bit; offset++) {
244 			if (si->swap_map[offset])
245 				last_in_cluster = offset + SWAPFILE_CLUSTER;
246 			else if (offset == last_in_cluster) {
247 				spin_lock(&si->lock);
248 				offset -= SWAPFILE_CLUSTER - 1;
249 				si->cluster_next = offset;
250 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
251 				found_free_cluster = 1;
252 				goto checks;
253 			}
254 			if (unlikely(--latency_ration < 0)) {
255 				cond_resched();
256 				latency_ration = LATENCY_LIMIT;
257 			}
258 		}
259 
260 		offset = si->lowest_bit;
261 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
262 
263 		/* Locate the first empty (unaligned) cluster */
264 		for (; last_in_cluster < scan_base; offset++) {
265 			if (si->swap_map[offset])
266 				last_in_cluster = offset + SWAPFILE_CLUSTER;
267 			else if (offset == last_in_cluster) {
268 				spin_lock(&si->lock);
269 				offset -= SWAPFILE_CLUSTER - 1;
270 				si->cluster_next = offset;
271 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
272 				found_free_cluster = 1;
273 				goto checks;
274 			}
275 			if (unlikely(--latency_ration < 0)) {
276 				cond_resched();
277 				latency_ration = LATENCY_LIMIT;
278 			}
279 		}
280 
281 		offset = scan_base;
282 		spin_lock(&si->lock);
283 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
284 		si->lowest_alloc = 0;
285 	}
286 
287 checks:
288 	if (!(si->flags & SWP_WRITEOK))
289 		goto no_page;
290 	if (!si->highest_bit)
291 		goto no_page;
292 	if (offset > si->highest_bit)
293 		scan_base = offset = si->lowest_bit;
294 
295 	/* reuse swap entry of cache-only swap if not busy. */
296 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
297 		int swap_was_freed;
298 		spin_unlock(&si->lock);
299 		swap_was_freed = __try_to_reclaim_swap(si, offset);
300 		spin_lock(&si->lock);
301 		/* entry was freed successfully, try to use this again */
302 		if (swap_was_freed)
303 			goto checks;
304 		goto scan; /* check next one */
305 	}
306 
307 	if (si->swap_map[offset])
308 		goto scan;
309 
310 	if (offset == si->lowest_bit)
311 		si->lowest_bit++;
312 	if (offset == si->highest_bit)
313 		si->highest_bit--;
314 	si->inuse_pages++;
315 	if (si->inuse_pages == si->pages) {
316 		si->lowest_bit = si->max;
317 		si->highest_bit = 0;
318 	}
319 	si->swap_map[offset] = usage;
320 	si->cluster_next = offset + 1;
321 	si->flags -= SWP_SCANNING;
322 
323 	if (si->lowest_alloc) {
324 		/*
325 		 * Only set when SWP_DISCARDABLE, and there's a scan
326 		 * for a free cluster in progress or just completed.
327 		 */
328 		if (found_free_cluster) {
329 			/*
330 			 * To optimize wear-levelling, discard the
331 			 * old data of the cluster, taking care not to
332 			 * discard any of its pages that have already
333 			 * been allocated by racing tasks (offset has
334 			 * already stepped over any at the beginning).
335 			 */
336 			if (offset < si->highest_alloc &&
337 			    si->lowest_alloc <= last_in_cluster)
338 				last_in_cluster = si->lowest_alloc - 1;
339 			si->flags |= SWP_DISCARDING;
340 			spin_unlock(&si->lock);
341 
342 			if (offset < last_in_cluster)
343 				discard_swap_cluster(si, offset,
344 					last_in_cluster - offset + 1);
345 
346 			spin_lock(&si->lock);
347 			si->lowest_alloc = 0;
348 			si->flags &= ~SWP_DISCARDING;
349 
350 			smp_mb();	/* wake_up_bit advises this */
351 			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
352 
353 		} else if (si->flags & SWP_DISCARDING) {
354 			/*
355 			 * Delay using pages allocated by racing tasks
356 			 * until the whole discard has been issued. We
357 			 * could defer that delay until swap_writepage,
358 			 * but it's easier to keep this self-contained.
359 			 */
360 			spin_unlock(&si->lock);
361 			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
362 				wait_for_discard, TASK_UNINTERRUPTIBLE);
363 			spin_lock(&si->lock);
364 		} else {
365 			/*
366 			 * Note pages allocated by racing tasks while
367 			 * scan for a free cluster is in progress, so
368 			 * that its final discard can exclude them.
369 			 */
370 			if (offset < si->lowest_alloc)
371 				si->lowest_alloc = offset;
372 			if (offset > si->highest_alloc)
373 				si->highest_alloc = offset;
374 		}
375 	}
376 	return offset;
377 
378 scan:
379 	spin_unlock(&si->lock);
380 	while (++offset <= si->highest_bit) {
381 		if (!si->swap_map[offset]) {
382 			spin_lock(&si->lock);
383 			goto checks;
384 		}
385 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
386 			spin_lock(&si->lock);
387 			goto checks;
388 		}
389 		if (unlikely(--latency_ration < 0)) {
390 			cond_resched();
391 			latency_ration = LATENCY_LIMIT;
392 		}
393 	}
394 	offset = si->lowest_bit;
395 	while (++offset < scan_base) {
396 		if (!si->swap_map[offset]) {
397 			spin_lock(&si->lock);
398 			goto checks;
399 		}
400 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
401 			spin_lock(&si->lock);
402 			goto checks;
403 		}
404 		if (unlikely(--latency_ration < 0)) {
405 			cond_resched();
406 			latency_ration = LATENCY_LIMIT;
407 		}
408 	}
409 	spin_lock(&si->lock);
410 
411 no_page:
412 	si->flags -= SWP_SCANNING;
413 	return 0;
414 }
415 
416 swp_entry_t get_swap_page(void)
417 {
418 	struct swap_info_struct *si;
419 	pgoff_t offset;
420 	int type, next;
421 	int wrapped = 0;
422 	int hp_index;
423 
424 	spin_lock(&swap_lock);
425 	if (atomic_long_read(&nr_swap_pages) <= 0)
426 		goto noswap;
427 	atomic_long_dec(&nr_swap_pages);
428 
429 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
430 		hp_index = atomic_xchg(&highest_priority_index, -1);
431 		/*
432 		 * highest_priority_index records current highest priority swap
433 		 * type which just frees swap entries. If its priority is
434 		 * higher than that of swap_list.next swap type, we use it.  It
435 		 * isn't protected by swap_lock, so it can be an invalid value
436 		 * if the corresponding swap type is swapoff. We double check
437 		 * the flags here. It's even possible the swap type is swapoff
438 		 * and swapon again and its priority is changed. In such rare
439 		 * case, low prority swap type might be used, but eventually
440 		 * high priority swap will be used after several rounds of
441 		 * swap.
442 		 */
443 		if (hp_index != -1 && hp_index != type &&
444 		    swap_info[type]->prio < swap_info[hp_index]->prio &&
445 		    (swap_info[hp_index]->flags & SWP_WRITEOK)) {
446 			type = hp_index;
447 			swap_list.next = type;
448 		}
449 
450 		si = swap_info[type];
451 		next = si->next;
452 		if (next < 0 ||
453 		    (!wrapped && si->prio != swap_info[next]->prio)) {
454 			next = swap_list.head;
455 			wrapped++;
456 		}
457 
458 		spin_lock(&si->lock);
459 		if (!si->highest_bit) {
460 			spin_unlock(&si->lock);
461 			continue;
462 		}
463 		if (!(si->flags & SWP_WRITEOK)) {
464 			spin_unlock(&si->lock);
465 			continue;
466 		}
467 
468 		swap_list.next = next;
469 
470 		spin_unlock(&swap_lock);
471 		/* This is called for allocating swap entry for cache */
472 		offset = scan_swap_map(si, SWAP_HAS_CACHE);
473 		spin_unlock(&si->lock);
474 		if (offset)
475 			return swp_entry(type, offset);
476 		spin_lock(&swap_lock);
477 		next = swap_list.next;
478 	}
479 
480 	atomic_long_inc(&nr_swap_pages);
481 noswap:
482 	spin_unlock(&swap_lock);
483 	return (swp_entry_t) {0};
484 }
485 
486 /* The only caller of this function is now susupend routine */
487 swp_entry_t get_swap_page_of_type(int type)
488 {
489 	struct swap_info_struct *si;
490 	pgoff_t offset;
491 
492 	si = swap_info[type];
493 	spin_lock(&si->lock);
494 	if (si && (si->flags & SWP_WRITEOK)) {
495 		atomic_long_dec(&nr_swap_pages);
496 		/* This is called for allocating swap entry, not cache */
497 		offset = scan_swap_map(si, 1);
498 		if (offset) {
499 			spin_unlock(&si->lock);
500 			return swp_entry(type, offset);
501 		}
502 		atomic_long_inc(&nr_swap_pages);
503 	}
504 	spin_unlock(&si->lock);
505 	return (swp_entry_t) {0};
506 }
507 
508 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
509 {
510 	struct swap_info_struct *p;
511 	unsigned long offset, type;
512 
513 	if (!entry.val)
514 		goto out;
515 	type = swp_type(entry);
516 	if (type >= nr_swapfiles)
517 		goto bad_nofile;
518 	p = swap_info[type];
519 	if (!(p->flags & SWP_USED))
520 		goto bad_device;
521 	offset = swp_offset(entry);
522 	if (offset >= p->max)
523 		goto bad_offset;
524 	if (!p->swap_map[offset])
525 		goto bad_free;
526 	spin_lock(&p->lock);
527 	return p;
528 
529 bad_free:
530 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
531 	goto out;
532 bad_offset:
533 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
534 	goto out;
535 bad_device:
536 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
537 	goto out;
538 bad_nofile:
539 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
540 out:
541 	return NULL;
542 }
543 
544 /*
545  * This swap type frees swap entry, check if it is the highest priority swap
546  * type which just frees swap entry. get_swap_page() uses
547  * highest_priority_index to search highest priority swap type. The
548  * swap_info_struct.lock can't protect us if there are multiple swap types
549  * active, so we use atomic_cmpxchg.
550  */
551 static void set_highest_priority_index(int type)
552 {
553 	int old_hp_index, new_hp_index;
554 
555 	do {
556 		old_hp_index = atomic_read(&highest_priority_index);
557 		if (old_hp_index != -1 &&
558 			swap_info[old_hp_index]->prio >= swap_info[type]->prio)
559 			break;
560 		new_hp_index = type;
561 	} while (atomic_cmpxchg(&highest_priority_index,
562 		old_hp_index, new_hp_index) != old_hp_index);
563 }
564 
565 static unsigned char swap_entry_free(struct swap_info_struct *p,
566 				     swp_entry_t entry, unsigned char usage)
567 {
568 	unsigned long offset = swp_offset(entry);
569 	unsigned char count;
570 	unsigned char has_cache;
571 
572 	count = p->swap_map[offset];
573 	has_cache = count & SWAP_HAS_CACHE;
574 	count &= ~SWAP_HAS_CACHE;
575 
576 	if (usage == SWAP_HAS_CACHE) {
577 		VM_BUG_ON(!has_cache);
578 		has_cache = 0;
579 	} else if (count == SWAP_MAP_SHMEM) {
580 		/*
581 		 * Or we could insist on shmem.c using a special
582 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
583 		 */
584 		count = 0;
585 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
586 		if (count == COUNT_CONTINUED) {
587 			if (swap_count_continued(p, offset, count))
588 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
589 			else
590 				count = SWAP_MAP_MAX;
591 		} else
592 			count--;
593 	}
594 
595 	if (!count)
596 		mem_cgroup_uncharge_swap(entry);
597 
598 	usage = count | has_cache;
599 	p->swap_map[offset] = usage;
600 
601 	/* free if no reference */
602 	if (!usage) {
603 		if (offset < p->lowest_bit)
604 			p->lowest_bit = offset;
605 		if (offset > p->highest_bit)
606 			p->highest_bit = offset;
607 		set_highest_priority_index(p->type);
608 		atomic_long_inc(&nr_swap_pages);
609 		p->inuse_pages--;
610 		frontswap_invalidate_page(p->type, offset);
611 		if (p->flags & SWP_BLKDEV) {
612 			struct gendisk *disk = p->bdev->bd_disk;
613 			if (disk->fops->swap_slot_free_notify)
614 				disk->fops->swap_slot_free_notify(p->bdev,
615 								  offset);
616 		}
617 	}
618 
619 	return usage;
620 }
621 
622 /*
623  * Caller has made sure that the swapdevice corresponding to entry
624  * is still around or has not been recycled.
625  */
626 void swap_free(swp_entry_t entry)
627 {
628 	struct swap_info_struct *p;
629 
630 	p = swap_info_get(entry);
631 	if (p) {
632 		swap_entry_free(p, entry, 1);
633 		spin_unlock(&p->lock);
634 	}
635 }
636 
637 /*
638  * Called after dropping swapcache to decrease refcnt to swap entries.
639  */
640 void swapcache_free(swp_entry_t entry, struct page *page)
641 {
642 	struct swap_info_struct *p;
643 	unsigned char count;
644 
645 	p = swap_info_get(entry);
646 	if (p) {
647 		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
648 		if (page)
649 			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
650 		spin_unlock(&p->lock);
651 	}
652 }
653 
654 /*
655  * How many references to page are currently swapped out?
656  * This does not give an exact answer when swap count is continued,
657  * but does include the high COUNT_CONTINUED flag to allow for that.
658  */
659 int page_swapcount(struct page *page)
660 {
661 	int count = 0;
662 	struct swap_info_struct *p;
663 	swp_entry_t entry;
664 
665 	entry.val = page_private(page);
666 	p = swap_info_get(entry);
667 	if (p) {
668 		count = swap_count(p->swap_map[swp_offset(entry)]);
669 		spin_unlock(&p->lock);
670 	}
671 	return count;
672 }
673 
674 /*
675  * We can write to an anon page without COW if there are no other references
676  * to it.  And as a side-effect, free up its swap: because the old content
677  * on disk will never be read, and seeking back there to write new content
678  * later would only waste time away from clustering.
679  */
680 int reuse_swap_page(struct page *page)
681 {
682 	int count;
683 
684 	VM_BUG_ON(!PageLocked(page));
685 	if (unlikely(PageKsm(page)))
686 		return 0;
687 	count = page_mapcount(page);
688 	if (count <= 1 && PageSwapCache(page)) {
689 		count += page_swapcount(page);
690 		if (count == 1 && !PageWriteback(page)) {
691 			delete_from_swap_cache(page);
692 			SetPageDirty(page);
693 		}
694 	}
695 	return count <= 1;
696 }
697 
698 /*
699  * If swap is getting full, or if there are no more mappings of this page,
700  * then try_to_free_swap is called to free its swap space.
701  */
702 int try_to_free_swap(struct page *page)
703 {
704 	VM_BUG_ON(!PageLocked(page));
705 
706 	if (!PageSwapCache(page))
707 		return 0;
708 	if (PageWriteback(page))
709 		return 0;
710 	if (page_swapcount(page))
711 		return 0;
712 
713 	/*
714 	 * Once hibernation has begun to create its image of memory,
715 	 * there's a danger that one of the calls to try_to_free_swap()
716 	 * - most probably a call from __try_to_reclaim_swap() while
717 	 * hibernation is allocating its own swap pages for the image,
718 	 * but conceivably even a call from memory reclaim - will free
719 	 * the swap from a page which has already been recorded in the
720 	 * image as a clean swapcache page, and then reuse its swap for
721 	 * another page of the image.  On waking from hibernation, the
722 	 * original page might be freed under memory pressure, then
723 	 * later read back in from swap, now with the wrong data.
724 	 *
725 	 * Hibration suspends storage while it is writing the image
726 	 * to disk so check that here.
727 	 */
728 	if (pm_suspended_storage())
729 		return 0;
730 
731 	delete_from_swap_cache(page);
732 	SetPageDirty(page);
733 	return 1;
734 }
735 
736 /*
737  * Free the swap entry like above, but also try to
738  * free the page cache entry if it is the last user.
739  */
740 int free_swap_and_cache(swp_entry_t entry)
741 {
742 	struct swap_info_struct *p;
743 	struct page *page = NULL;
744 
745 	if (non_swap_entry(entry))
746 		return 1;
747 
748 	p = swap_info_get(entry);
749 	if (p) {
750 		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
751 			page = find_get_page(swap_address_space(entry),
752 						entry.val);
753 			if (page && !trylock_page(page)) {
754 				page_cache_release(page);
755 				page = NULL;
756 			}
757 		}
758 		spin_unlock(&p->lock);
759 	}
760 	if (page) {
761 		/*
762 		 * Not mapped elsewhere, or swap space full? Free it!
763 		 * Also recheck PageSwapCache now page is locked (above).
764 		 */
765 		if (PageSwapCache(page) && !PageWriteback(page) &&
766 				(!page_mapped(page) || vm_swap_full())) {
767 			delete_from_swap_cache(page);
768 			SetPageDirty(page);
769 		}
770 		unlock_page(page);
771 		page_cache_release(page);
772 	}
773 	return p != NULL;
774 }
775 
776 #ifdef CONFIG_HIBERNATION
777 /*
778  * Find the swap type that corresponds to given device (if any).
779  *
780  * @offset - number of the PAGE_SIZE-sized block of the device, starting
781  * from 0, in which the swap header is expected to be located.
782  *
783  * This is needed for the suspend to disk (aka swsusp).
784  */
785 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
786 {
787 	struct block_device *bdev = NULL;
788 	int type;
789 
790 	if (device)
791 		bdev = bdget(device);
792 
793 	spin_lock(&swap_lock);
794 	for (type = 0; type < nr_swapfiles; type++) {
795 		struct swap_info_struct *sis = swap_info[type];
796 
797 		if (!(sis->flags & SWP_WRITEOK))
798 			continue;
799 
800 		if (!bdev) {
801 			if (bdev_p)
802 				*bdev_p = bdgrab(sis->bdev);
803 
804 			spin_unlock(&swap_lock);
805 			return type;
806 		}
807 		if (bdev == sis->bdev) {
808 			struct swap_extent *se = &sis->first_swap_extent;
809 
810 			if (se->start_block == offset) {
811 				if (bdev_p)
812 					*bdev_p = bdgrab(sis->bdev);
813 
814 				spin_unlock(&swap_lock);
815 				bdput(bdev);
816 				return type;
817 			}
818 		}
819 	}
820 	spin_unlock(&swap_lock);
821 	if (bdev)
822 		bdput(bdev);
823 
824 	return -ENODEV;
825 }
826 
827 /*
828  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
829  * corresponding to given index in swap_info (swap type).
830  */
831 sector_t swapdev_block(int type, pgoff_t offset)
832 {
833 	struct block_device *bdev;
834 
835 	if ((unsigned int)type >= nr_swapfiles)
836 		return 0;
837 	if (!(swap_info[type]->flags & SWP_WRITEOK))
838 		return 0;
839 	return map_swap_entry(swp_entry(type, offset), &bdev);
840 }
841 
842 /*
843  * Return either the total number of swap pages of given type, or the number
844  * of free pages of that type (depending on @free)
845  *
846  * This is needed for software suspend
847  */
848 unsigned int count_swap_pages(int type, int free)
849 {
850 	unsigned int n = 0;
851 
852 	spin_lock(&swap_lock);
853 	if ((unsigned int)type < nr_swapfiles) {
854 		struct swap_info_struct *sis = swap_info[type];
855 
856 		spin_lock(&sis->lock);
857 		if (sis->flags & SWP_WRITEOK) {
858 			n = sis->pages;
859 			if (free)
860 				n -= sis->inuse_pages;
861 		}
862 		spin_unlock(&sis->lock);
863 	}
864 	spin_unlock(&swap_lock);
865 	return n;
866 }
867 #endif /* CONFIG_HIBERNATION */
868 
869 /*
870  * No need to decide whether this PTE shares the swap entry with others,
871  * just let do_wp_page work it out if a write is requested later - to
872  * force COW, vm_page_prot omits write permission from any private vma.
873  */
874 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
875 		unsigned long addr, swp_entry_t entry, struct page *page)
876 {
877 	struct mem_cgroup *memcg;
878 	spinlock_t *ptl;
879 	pte_t *pte;
880 	int ret = 1;
881 
882 	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
883 					 GFP_KERNEL, &memcg)) {
884 		ret = -ENOMEM;
885 		goto out_nolock;
886 	}
887 
888 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
889 	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
890 		mem_cgroup_cancel_charge_swapin(memcg);
891 		ret = 0;
892 		goto out;
893 	}
894 
895 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
896 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
897 	get_page(page);
898 	set_pte_at(vma->vm_mm, addr, pte,
899 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
900 	page_add_anon_rmap(page, vma, addr);
901 	mem_cgroup_commit_charge_swapin(page, memcg);
902 	swap_free(entry);
903 	/*
904 	 * Move the page to the active list so it is not
905 	 * immediately swapped out again after swapon.
906 	 */
907 	activate_page(page);
908 out:
909 	pte_unmap_unlock(pte, ptl);
910 out_nolock:
911 	return ret;
912 }
913 
914 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
915 				unsigned long addr, unsigned long end,
916 				swp_entry_t entry, struct page *page)
917 {
918 	pte_t swp_pte = swp_entry_to_pte(entry);
919 	pte_t *pte;
920 	int ret = 0;
921 
922 	/*
923 	 * We don't actually need pte lock while scanning for swp_pte: since
924 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
925 	 * page table while we're scanning; though it could get zapped, and on
926 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
927 	 * of unmatched parts which look like swp_pte, so unuse_pte must
928 	 * recheck under pte lock.  Scanning without pte lock lets it be
929 	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
930 	 */
931 	pte = pte_offset_map(pmd, addr);
932 	do {
933 		/*
934 		 * swapoff spends a _lot_ of time in this loop!
935 		 * Test inline before going to call unuse_pte.
936 		 */
937 		if (unlikely(pte_same(*pte, swp_pte))) {
938 			pte_unmap(pte);
939 			ret = unuse_pte(vma, pmd, addr, entry, page);
940 			if (ret)
941 				goto out;
942 			pte = pte_offset_map(pmd, addr);
943 		}
944 	} while (pte++, addr += PAGE_SIZE, addr != end);
945 	pte_unmap(pte - 1);
946 out:
947 	return ret;
948 }
949 
950 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
951 				unsigned long addr, unsigned long end,
952 				swp_entry_t entry, struct page *page)
953 {
954 	pmd_t *pmd;
955 	unsigned long next;
956 	int ret;
957 
958 	pmd = pmd_offset(pud, addr);
959 	do {
960 		next = pmd_addr_end(addr, end);
961 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
962 			continue;
963 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
964 		if (ret)
965 			return ret;
966 	} while (pmd++, addr = next, addr != end);
967 	return 0;
968 }
969 
970 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
971 				unsigned long addr, unsigned long end,
972 				swp_entry_t entry, struct page *page)
973 {
974 	pud_t *pud;
975 	unsigned long next;
976 	int ret;
977 
978 	pud = pud_offset(pgd, addr);
979 	do {
980 		next = pud_addr_end(addr, end);
981 		if (pud_none_or_clear_bad(pud))
982 			continue;
983 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
984 		if (ret)
985 			return ret;
986 	} while (pud++, addr = next, addr != end);
987 	return 0;
988 }
989 
990 static int unuse_vma(struct vm_area_struct *vma,
991 				swp_entry_t entry, struct page *page)
992 {
993 	pgd_t *pgd;
994 	unsigned long addr, end, next;
995 	int ret;
996 
997 	if (page_anon_vma(page)) {
998 		addr = page_address_in_vma(page, vma);
999 		if (addr == -EFAULT)
1000 			return 0;
1001 		else
1002 			end = addr + PAGE_SIZE;
1003 	} else {
1004 		addr = vma->vm_start;
1005 		end = vma->vm_end;
1006 	}
1007 
1008 	pgd = pgd_offset(vma->vm_mm, addr);
1009 	do {
1010 		next = pgd_addr_end(addr, end);
1011 		if (pgd_none_or_clear_bad(pgd))
1012 			continue;
1013 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1014 		if (ret)
1015 			return ret;
1016 	} while (pgd++, addr = next, addr != end);
1017 	return 0;
1018 }
1019 
1020 static int unuse_mm(struct mm_struct *mm,
1021 				swp_entry_t entry, struct page *page)
1022 {
1023 	struct vm_area_struct *vma;
1024 	int ret = 0;
1025 
1026 	if (!down_read_trylock(&mm->mmap_sem)) {
1027 		/*
1028 		 * Activate page so shrink_inactive_list is unlikely to unmap
1029 		 * its ptes while lock is dropped, so swapoff can make progress.
1030 		 */
1031 		activate_page(page);
1032 		unlock_page(page);
1033 		down_read(&mm->mmap_sem);
1034 		lock_page(page);
1035 	}
1036 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1037 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1038 			break;
1039 	}
1040 	up_read(&mm->mmap_sem);
1041 	return (ret < 0)? ret: 0;
1042 }
1043 
1044 /*
1045  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1046  * from current position to next entry still in use.
1047  * Recycle to start on reaching the end, returning 0 when empty.
1048  */
1049 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1050 					unsigned int prev, bool frontswap)
1051 {
1052 	unsigned int max = si->max;
1053 	unsigned int i = prev;
1054 	unsigned char count;
1055 
1056 	/*
1057 	 * No need for swap_lock here: we're just looking
1058 	 * for whether an entry is in use, not modifying it; false
1059 	 * hits are okay, and sys_swapoff() has already prevented new
1060 	 * allocations from this area (while holding swap_lock).
1061 	 */
1062 	for (;;) {
1063 		if (++i >= max) {
1064 			if (!prev) {
1065 				i = 0;
1066 				break;
1067 			}
1068 			/*
1069 			 * No entries in use at top of swap_map,
1070 			 * loop back to start and recheck there.
1071 			 */
1072 			max = prev + 1;
1073 			prev = 0;
1074 			i = 1;
1075 		}
1076 		if (frontswap) {
1077 			if (frontswap_test(si, i))
1078 				break;
1079 			else
1080 				continue;
1081 		}
1082 		count = si->swap_map[i];
1083 		if (count && swap_count(count) != SWAP_MAP_BAD)
1084 			break;
1085 	}
1086 	return i;
1087 }
1088 
1089 /*
1090  * We completely avoid races by reading each swap page in advance,
1091  * and then search for the process using it.  All the necessary
1092  * page table adjustments can then be made atomically.
1093  *
1094  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1095  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1096  */
1097 int try_to_unuse(unsigned int type, bool frontswap,
1098 		 unsigned long pages_to_unuse)
1099 {
1100 	struct swap_info_struct *si = swap_info[type];
1101 	struct mm_struct *start_mm;
1102 	unsigned char *swap_map;
1103 	unsigned char swcount;
1104 	struct page *page;
1105 	swp_entry_t entry;
1106 	unsigned int i = 0;
1107 	int retval = 0;
1108 
1109 	/*
1110 	 * When searching mms for an entry, a good strategy is to
1111 	 * start at the first mm we freed the previous entry from
1112 	 * (though actually we don't notice whether we or coincidence
1113 	 * freed the entry).  Initialize this start_mm with a hold.
1114 	 *
1115 	 * A simpler strategy would be to start at the last mm we
1116 	 * freed the previous entry from; but that would take less
1117 	 * advantage of mmlist ordering, which clusters forked mms
1118 	 * together, child after parent.  If we race with dup_mmap(), we
1119 	 * prefer to resolve parent before child, lest we miss entries
1120 	 * duplicated after we scanned child: using last mm would invert
1121 	 * that.
1122 	 */
1123 	start_mm = &init_mm;
1124 	atomic_inc(&init_mm.mm_users);
1125 
1126 	/*
1127 	 * Keep on scanning until all entries have gone.  Usually,
1128 	 * one pass through swap_map is enough, but not necessarily:
1129 	 * there are races when an instance of an entry might be missed.
1130 	 */
1131 	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1132 		if (signal_pending(current)) {
1133 			retval = -EINTR;
1134 			break;
1135 		}
1136 
1137 		/*
1138 		 * Get a page for the entry, using the existing swap
1139 		 * cache page if there is one.  Otherwise, get a clean
1140 		 * page and read the swap into it.
1141 		 */
1142 		swap_map = &si->swap_map[i];
1143 		entry = swp_entry(type, i);
1144 		page = read_swap_cache_async(entry,
1145 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1146 		if (!page) {
1147 			/*
1148 			 * Either swap_duplicate() failed because entry
1149 			 * has been freed independently, and will not be
1150 			 * reused since sys_swapoff() already disabled
1151 			 * allocation from here, or alloc_page() failed.
1152 			 */
1153 			if (!*swap_map)
1154 				continue;
1155 			retval = -ENOMEM;
1156 			break;
1157 		}
1158 
1159 		/*
1160 		 * Don't hold on to start_mm if it looks like exiting.
1161 		 */
1162 		if (atomic_read(&start_mm->mm_users) == 1) {
1163 			mmput(start_mm);
1164 			start_mm = &init_mm;
1165 			atomic_inc(&init_mm.mm_users);
1166 		}
1167 
1168 		/*
1169 		 * Wait for and lock page.  When do_swap_page races with
1170 		 * try_to_unuse, do_swap_page can handle the fault much
1171 		 * faster than try_to_unuse can locate the entry.  This
1172 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1173 		 * defer to do_swap_page in such a case - in some tests,
1174 		 * do_swap_page and try_to_unuse repeatedly compete.
1175 		 */
1176 		wait_on_page_locked(page);
1177 		wait_on_page_writeback(page);
1178 		lock_page(page);
1179 		wait_on_page_writeback(page);
1180 
1181 		/*
1182 		 * Remove all references to entry.
1183 		 */
1184 		swcount = *swap_map;
1185 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1186 			retval = shmem_unuse(entry, page);
1187 			/* page has already been unlocked and released */
1188 			if (retval < 0)
1189 				break;
1190 			continue;
1191 		}
1192 		if (swap_count(swcount) && start_mm != &init_mm)
1193 			retval = unuse_mm(start_mm, entry, page);
1194 
1195 		if (swap_count(*swap_map)) {
1196 			int set_start_mm = (*swap_map >= swcount);
1197 			struct list_head *p = &start_mm->mmlist;
1198 			struct mm_struct *new_start_mm = start_mm;
1199 			struct mm_struct *prev_mm = start_mm;
1200 			struct mm_struct *mm;
1201 
1202 			atomic_inc(&new_start_mm->mm_users);
1203 			atomic_inc(&prev_mm->mm_users);
1204 			spin_lock(&mmlist_lock);
1205 			while (swap_count(*swap_map) && !retval &&
1206 					(p = p->next) != &start_mm->mmlist) {
1207 				mm = list_entry(p, struct mm_struct, mmlist);
1208 				if (!atomic_inc_not_zero(&mm->mm_users))
1209 					continue;
1210 				spin_unlock(&mmlist_lock);
1211 				mmput(prev_mm);
1212 				prev_mm = mm;
1213 
1214 				cond_resched();
1215 
1216 				swcount = *swap_map;
1217 				if (!swap_count(swcount)) /* any usage ? */
1218 					;
1219 				else if (mm == &init_mm)
1220 					set_start_mm = 1;
1221 				else
1222 					retval = unuse_mm(mm, entry, page);
1223 
1224 				if (set_start_mm && *swap_map < swcount) {
1225 					mmput(new_start_mm);
1226 					atomic_inc(&mm->mm_users);
1227 					new_start_mm = mm;
1228 					set_start_mm = 0;
1229 				}
1230 				spin_lock(&mmlist_lock);
1231 			}
1232 			spin_unlock(&mmlist_lock);
1233 			mmput(prev_mm);
1234 			mmput(start_mm);
1235 			start_mm = new_start_mm;
1236 		}
1237 		if (retval) {
1238 			unlock_page(page);
1239 			page_cache_release(page);
1240 			break;
1241 		}
1242 
1243 		/*
1244 		 * If a reference remains (rare), we would like to leave
1245 		 * the page in the swap cache; but try_to_unmap could
1246 		 * then re-duplicate the entry once we drop page lock,
1247 		 * so we might loop indefinitely; also, that page could
1248 		 * not be swapped out to other storage meanwhile.  So:
1249 		 * delete from cache even if there's another reference,
1250 		 * after ensuring that the data has been saved to disk -
1251 		 * since if the reference remains (rarer), it will be
1252 		 * read from disk into another page.  Splitting into two
1253 		 * pages would be incorrect if swap supported "shared
1254 		 * private" pages, but they are handled by tmpfs files.
1255 		 *
1256 		 * Given how unuse_vma() targets one particular offset
1257 		 * in an anon_vma, once the anon_vma has been determined,
1258 		 * this splitting happens to be just what is needed to
1259 		 * handle where KSM pages have been swapped out: re-reading
1260 		 * is unnecessarily slow, but we can fix that later on.
1261 		 */
1262 		if (swap_count(*swap_map) &&
1263 		     PageDirty(page) && PageSwapCache(page)) {
1264 			struct writeback_control wbc = {
1265 				.sync_mode = WB_SYNC_NONE,
1266 			};
1267 
1268 			swap_writepage(page, &wbc);
1269 			lock_page(page);
1270 			wait_on_page_writeback(page);
1271 		}
1272 
1273 		/*
1274 		 * It is conceivable that a racing task removed this page from
1275 		 * swap cache just before we acquired the page lock at the top,
1276 		 * or while we dropped it in unuse_mm().  The page might even
1277 		 * be back in swap cache on another swap area: that we must not
1278 		 * delete, since it may not have been written out to swap yet.
1279 		 */
1280 		if (PageSwapCache(page) &&
1281 		    likely(page_private(page) == entry.val))
1282 			delete_from_swap_cache(page);
1283 
1284 		/*
1285 		 * So we could skip searching mms once swap count went
1286 		 * to 1, we did not mark any present ptes as dirty: must
1287 		 * mark page dirty so shrink_page_list will preserve it.
1288 		 */
1289 		SetPageDirty(page);
1290 		unlock_page(page);
1291 		page_cache_release(page);
1292 
1293 		/*
1294 		 * Make sure that we aren't completely killing
1295 		 * interactive performance.
1296 		 */
1297 		cond_resched();
1298 		if (frontswap && pages_to_unuse > 0) {
1299 			if (!--pages_to_unuse)
1300 				break;
1301 		}
1302 	}
1303 
1304 	mmput(start_mm);
1305 	return retval;
1306 }
1307 
1308 /*
1309  * After a successful try_to_unuse, if no swap is now in use, we know
1310  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1311  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1312  * added to the mmlist just after page_duplicate - before would be racy.
1313  */
1314 static void drain_mmlist(void)
1315 {
1316 	struct list_head *p, *next;
1317 	unsigned int type;
1318 
1319 	for (type = 0; type < nr_swapfiles; type++)
1320 		if (swap_info[type]->inuse_pages)
1321 			return;
1322 	spin_lock(&mmlist_lock);
1323 	list_for_each_safe(p, next, &init_mm.mmlist)
1324 		list_del_init(p);
1325 	spin_unlock(&mmlist_lock);
1326 }
1327 
1328 /*
1329  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1330  * corresponds to page offset for the specified swap entry.
1331  * Note that the type of this function is sector_t, but it returns page offset
1332  * into the bdev, not sector offset.
1333  */
1334 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1335 {
1336 	struct swap_info_struct *sis;
1337 	struct swap_extent *start_se;
1338 	struct swap_extent *se;
1339 	pgoff_t offset;
1340 
1341 	sis = swap_info[swp_type(entry)];
1342 	*bdev = sis->bdev;
1343 
1344 	offset = swp_offset(entry);
1345 	start_se = sis->curr_swap_extent;
1346 	se = start_se;
1347 
1348 	for ( ; ; ) {
1349 		struct list_head *lh;
1350 
1351 		if (se->start_page <= offset &&
1352 				offset < (se->start_page + se->nr_pages)) {
1353 			return se->start_block + (offset - se->start_page);
1354 		}
1355 		lh = se->list.next;
1356 		se = list_entry(lh, struct swap_extent, list);
1357 		sis->curr_swap_extent = se;
1358 		BUG_ON(se == start_se);		/* It *must* be present */
1359 	}
1360 }
1361 
1362 /*
1363  * Returns the page offset into bdev for the specified page's swap entry.
1364  */
1365 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1366 {
1367 	swp_entry_t entry;
1368 	entry.val = page_private(page);
1369 	return map_swap_entry(entry, bdev);
1370 }
1371 
1372 /*
1373  * Free all of a swapdev's extent information
1374  */
1375 static void destroy_swap_extents(struct swap_info_struct *sis)
1376 {
1377 	while (!list_empty(&sis->first_swap_extent.list)) {
1378 		struct swap_extent *se;
1379 
1380 		se = list_entry(sis->first_swap_extent.list.next,
1381 				struct swap_extent, list);
1382 		list_del(&se->list);
1383 		kfree(se);
1384 	}
1385 
1386 	if (sis->flags & SWP_FILE) {
1387 		struct file *swap_file = sis->swap_file;
1388 		struct address_space *mapping = swap_file->f_mapping;
1389 
1390 		sis->flags &= ~SWP_FILE;
1391 		mapping->a_ops->swap_deactivate(swap_file);
1392 	}
1393 }
1394 
1395 /*
1396  * Add a block range (and the corresponding page range) into this swapdev's
1397  * extent list.  The extent list is kept sorted in page order.
1398  *
1399  * This function rather assumes that it is called in ascending page order.
1400  */
1401 int
1402 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1403 		unsigned long nr_pages, sector_t start_block)
1404 {
1405 	struct swap_extent *se;
1406 	struct swap_extent *new_se;
1407 	struct list_head *lh;
1408 
1409 	if (start_page == 0) {
1410 		se = &sis->first_swap_extent;
1411 		sis->curr_swap_extent = se;
1412 		se->start_page = 0;
1413 		se->nr_pages = nr_pages;
1414 		se->start_block = start_block;
1415 		return 1;
1416 	} else {
1417 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1418 		se = list_entry(lh, struct swap_extent, list);
1419 		BUG_ON(se->start_page + se->nr_pages != start_page);
1420 		if (se->start_block + se->nr_pages == start_block) {
1421 			/* Merge it */
1422 			se->nr_pages += nr_pages;
1423 			return 0;
1424 		}
1425 	}
1426 
1427 	/*
1428 	 * No merge.  Insert a new extent, preserving ordering.
1429 	 */
1430 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1431 	if (new_se == NULL)
1432 		return -ENOMEM;
1433 	new_se->start_page = start_page;
1434 	new_se->nr_pages = nr_pages;
1435 	new_se->start_block = start_block;
1436 
1437 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1438 	return 1;
1439 }
1440 
1441 /*
1442  * A `swap extent' is a simple thing which maps a contiguous range of pages
1443  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1444  * is built at swapon time and is then used at swap_writepage/swap_readpage
1445  * time for locating where on disk a page belongs.
1446  *
1447  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1448  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1449  * swap files identically.
1450  *
1451  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1452  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1453  * swapfiles are handled *identically* after swapon time.
1454  *
1455  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1456  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1457  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1458  * requirements, they are simply tossed out - we will never use those blocks
1459  * for swapping.
1460  *
1461  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1462  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1463  * which will scribble on the fs.
1464  *
1465  * The amount of disk space which a single swap extent represents varies.
1466  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1467  * extents in the list.  To avoid much list walking, we cache the previous
1468  * search location in `curr_swap_extent', and start new searches from there.
1469  * This is extremely effective.  The average number of iterations in
1470  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1471  */
1472 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1473 {
1474 	struct file *swap_file = sis->swap_file;
1475 	struct address_space *mapping = swap_file->f_mapping;
1476 	struct inode *inode = mapping->host;
1477 	int ret;
1478 
1479 	if (S_ISBLK(inode->i_mode)) {
1480 		ret = add_swap_extent(sis, 0, sis->max, 0);
1481 		*span = sis->pages;
1482 		return ret;
1483 	}
1484 
1485 	if (mapping->a_ops->swap_activate) {
1486 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1487 		if (!ret) {
1488 			sis->flags |= SWP_FILE;
1489 			ret = add_swap_extent(sis, 0, sis->max, 0);
1490 			*span = sis->pages;
1491 		}
1492 		return ret;
1493 	}
1494 
1495 	return generic_swapfile_activate(sis, swap_file, span);
1496 }
1497 
1498 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1499 				unsigned char *swap_map,
1500 				unsigned long *frontswap_map)
1501 {
1502 	int i, prev;
1503 
1504 	if (prio >= 0)
1505 		p->prio = prio;
1506 	else
1507 		p->prio = --least_priority;
1508 	p->swap_map = swap_map;
1509 	frontswap_map_set(p, frontswap_map);
1510 	p->flags |= SWP_WRITEOK;
1511 	atomic_long_add(p->pages, &nr_swap_pages);
1512 	total_swap_pages += p->pages;
1513 
1514 	/* insert swap space into swap_list: */
1515 	prev = -1;
1516 	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1517 		if (p->prio >= swap_info[i]->prio)
1518 			break;
1519 		prev = i;
1520 	}
1521 	p->next = i;
1522 	if (prev < 0)
1523 		swap_list.head = swap_list.next = p->type;
1524 	else
1525 		swap_info[prev]->next = p->type;
1526 }
1527 
1528 static void enable_swap_info(struct swap_info_struct *p, int prio,
1529 				unsigned char *swap_map,
1530 				unsigned long *frontswap_map)
1531 {
1532 	spin_lock(&swap_lock);
1533 	spin_lock(&p->lock);
1534 	_enable_swap_info(p, prio, swap_map, frontswap_map);
1535 	frontswap_init(p->type);
1536 	spin_unlock(&p->lock);
1537 	spin_unlock(&swap_lock);
1538 }
1539 
1540 static void reinsert_swap_info(struct swap_info_struct *p)
1541 {
1542 	spin_lock(&swap_lock);
1543 	spin_lock(&p->lock);
1544 	_enable_swap_info(p, p->prio, p->swap_map, frontswap_map_get(p));
1545 	spin_unlock(&p->lock);
1546 	spin_unlock(&swap_lock);
1547 }
1548 
1549 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1550 {
1551 	struct swap_info_struct *p = NULL;
1552 	unsigned char *swap_map;
1553 	struct file *swap_file, *victim;
1554 	struct address_space *mapping;
1555 	struct inode *inode;
1556 	struct filename *pathname;
1557 	int i, type, prev;
1558 	int err;
1559 
1560 	if (!capable(CAP_SYS_ADMIN))
1561 		return -EPERM;
1562 
1563 	BUG_ON(!current->mm);
1564 
1565 	pathname = getname(specialfile);
1566 	if (IS_ERR(pathname))
1567 		return PTR_ERR(pathname);
1568 
1569 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1570 	err = PTR_ERR(victim);
1571 	if (IS_ERR(victim))
1572 		goto out;
1573 
1574 	mapping = victim->f_mapping;
1575 	prev = -1;
1576 	spin_lock(&swap_lock);
1577 	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1578 		p = swap_info[type];
1579 		if (p->flags & SWP_WRITEOK) {
1580 			if (p->swap_file->f_mapping == mapping)
1581 				break;
1582 		}
1583 		prev = type;
1584 	}
1585 	if (type < 0) {
1586 		err = -EINVAL;
1587 		spin_unlock(&swap_lock);
1588 		goto out_dput;
1589 	}
1590 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
1591 		vm_unacct_memory(p->pages);
1592 	else {
1593 		err = -ENOMEM;
1594 		spin_unlock(&swap_lock);
1595 		goto out_dput;
1596 	}
1597 	if (prev < 0)
1598 		swap_list.head = p->next;
1599 	else
1600 		swap_info[prev]->next = p->next;
1601 	if (type == swap_list.next) {
1602 		/* just pick something that's safe... */
1603 		swap_list.next = swap_list.head;
1604 	}
1605 	spin_lock(&p->lock);
1606 	if (p->prio < 0) {
1607 		for (i = p->next; i >= 0; i = swap_info[i]->next)
1608 			swap_info[i]->prio = p->prio--;
1609 		least_priority++;
1610 	}
1611 	atomic_long_sub(p->pages, &nr_swap_pages);
1612 	total_swap_pages -= p->pages;
1613 	p->flags &= ~SWP_WRITEOK;
1614 	spin_unlock(&p->lock);
1615 	spin_unlock(&swap_lock);
1616 
1617 	set_current_oom_origin();
1618 	err = try_to_unuse(type, false, 0); /* force all pages to be unused */
1619 	clear_current_oom_origin();
1620 
1621 	if (err) {
1622 		/* re-insert swap space back into swap_list */
1623 		reinsert_swap_info(p);
1624 		goto out_dput;
1625 	}
1626 
1627 	destroy_swap_extents(p);
1628 	if (p->flags & SWP_CONTINUED)
1629 		free_swap_count_continuations(p);
1630 
1631 	mutex_lock(&swapon_mutex);
1632 	spin_lock(&swap_lock);
1633 	spin_lock(&p->lock);
1634 	drain_mmlist();
1635 
1636 	/* wait for anyone still in scan_swap_map */
1637 	p->highest_bit = 0;		/* cuts scans short */
1638 	while (p->flags >= SWP_SCANNING) {
1639 		spin_unlock(&p->lock);
1640 		spin_unlock(&swap_lock);
1641 		schedule_timeout_uninterruptible(1);
1642 		spin_lock(&swap_lock);
1643 		spin_lock(&p->lock);
1644 	}
1645 
1646 	swap_file = p->swap_file;
1647 	p->swap_file = NULL;
1648 	p->max = 0;
1649 	swap_map = p->swap_map;
1650 	p->swap_map = NULL;
1651 	p->flags = 0;
1652 	frontswap_invalidate_area(type);
1653 	spin_unlock(&p->lock);
1654 	spin_unlock(&swap_lock);
1655 	mutex_unlock(&swapon_mutex);
1656 	vfree(swap_map);
1657 	vfree(frontswap_map_get(p));
1658 	/* Destroy swap account informatin */
1659 	swap_cgroup_swapoff(type);
1660 
1661 	inode = mapping->host;
1662 	if (S_ISBLK(inode->i_mode)) {
1663 		struct block_device *bdev = I_BDEV(inode);
1664 		set_blocksize(bdev, p->old_block_size);
1665 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1666 	} else {
1667 		mutex_lock(&inode->i_mutex);
1668 		inode->i_flags &= ~S_SWAPFILE;
1669 		mutex_unlock(&inode->i_mutex);
1670 	}
1671 	filp_close(swap_file, NULL);
1672 	err = 0;
1673 	atomic_inc(&proc_poll_event);
1674 	wake_up_interruptible(&proc_poll_wait);
1675 
1676 out_dput:
1677 	filp_close(victim, NULL);
1678 out:
1679 	putname(pathname);
1680 	return err;
1681 }
1682 
1683 #ifdef CONFIG_PROC_FS
1684 static unsigned swaps_poll(struct file *file, poll_table *wait)
1685 {
1686 	struct seq_file *seq = file->private_data;
1687 
1688 	poll_wait(file, &proc_poll_wait, wait);
1689 
1690 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
1691 		seq->poll_event = atomic_read(&proc_poll_event);
1692 		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1693 	}
1694 
1695 	return POLLIN | POLLRDNORM;
1696 }
1697 
1698 /* iterator */
1699 static void *swap_start(struct seq_file *swap, loff_t *pos)
1700 {
1701 	struct swap_info_struct *si;
1702 	int type;
1703 	loff_t l = *pos;
1704 
1705 	mutex_lock(&swapon_mutex);
1706 
1707 	if (!l)
1708 		return SEQ_START_TOKEN;
1709 
1710 	for (type = 0; type < nr_swapfiles; type++) {
1711 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1712 		si = swap_info[type];
1713 		if (!(si->flags & SWP_USED) || !si->swap_map)
1714 			continue;
1715 		if (!--l)
1716 			return si;
1717 	}
1718 
1719 	return NULL;
1720 }
1721 
1722 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1723 {
1724 	struct swap_info_struct *si = v;
1725 	int type;
1726 
1727 	if (v == SEQ_START_TOKEN)
1728 		type = 0;
1729 	else
1730 		type = si->type + 1;
1731 
1732 	for (; type < nr_swapfiles; type++) {
1733 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1734 		si = swap_info[type];
1735 		if (!(si->flags & SWP_USED) || !si->swap_map)
1736 			continue;
1737 		++*pos;
1738 		return si;
1739 	}
1740 
1741 	return NULL;
1742 }
1743 
1744 static void swap_stop(struct seq_file *swap, void *v)
1745 {
1746 	mutex_unlock(&swapon_mutex);
1747 }
1748 
1749 static int swap_show(struct seq_file *swap, void *v)
1750 {
1751 	struct swap_info_struct *si = v;
1752 	struct file *file;
1753 	int len;
1754 
1755 	if (si == SEQ_START_TOKEN) {
1756 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1757 		return 0;
1758 	}
1759 
1760 	file = si->swap_file;
1761 	len = seq_path(swap, &file->f_path, " \t\n\\");
1762 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1763 			len < 40 ? 40 - len : 1, " ",
1764 			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1765 				"partition" : "file\t",
1766 			si->pages << (PAGE_SHIFT - 10),
1767 			si->inuse_pages << (PAGE_SHIFT - 10),
1768 			si->prio);
1769 	return 0;
1770 }
1771 
1772 static const struct seq_operations swaps_op = {
1773 	.start =	swap_start,
1774 	.next =		swap_next,
1775 	.stop =		swap_stop,
1776 	.show =		swap_show
1777 };
1778 
1779 static int swaps_open(struct inode *inode, struct file *file)
1780 {
1781 	struct seq_file *seq;
1782 	int ret;
1783 
1784 	ret = seq_open(file, &swaps_op);
1785 	if (ret)
1786 		return ret;
1787 
1788 	seq = file->private_data;
1789 	seq->poll_event = atomic_read(&proc_poll_event);
1790 	return 0;
1791 }
1792 
1793 static const struct file_operations proc_swaps_operations = {
1794 	.open		= swaps_open,
1795 	.read		= seq_read,
1796 	.llseek		= seq_lseek,
1797 	.release	= seq_release,
1798 	.poll		= swaps_poll,
1799 };
1800 
1801 static int __init procswaps_init(void)
1802 {
1803 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1804 	return 0;
1805 }
1806 __initcall(procswaps_init);
1807 #endif /* CONFIG_PROC_FS */
1808 
1809 #ifdef MAX_SWAPFILES_CHECK
1810 static int __init max_swapfiles_check(void)
1811 {
1812 	MAX_SWAPFILES_CHECK();
1813 	return 0;
1814 }
1815 late_initcall(max_swapfiles_check);
1816 #endif
1817 
1818 static struct swap_info_struct *alloc_swap_info(void)
1819 {
1820 	struct swap_info_struct *p;
1821 	unsigned int type;
1822 
1823 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1824 	if (!p)
1825 		return ERR_PTR(-ENOMEM);
1826 
1827 	spin_lock(&swap_lock);
1828 	for (type = 0; type < nr_swapfiles; type++) {
1829 		if (!(swap_info[type]->flags & SWP_USED))
1830 			break;
1831 	}
1832 	if (type >= MAX_SWAPFILES) {
1833 		spin_unlock(&swap_lock);
1834 		kfree(p);
1835 		return ERR_PTR(-EPERM);
1836 	}
1837 	if (type >= nr_swapfiles) {
1838 		p->type = type;
1839 		swap_info[type] = p;
1840 		/*
1841 		 * Write swap_info[type] before nr_swapfiles, in case a
1842 		 * racing procfs swap_start() or swap_next() is reading them.
1843 		 * (We never shrink nr_swapfiles, we never free this entry.)
1844 		 */
1845 		smp_wmb();
1846 		nr_swapfiles++;
1847 	} else {
1848 		kfree(p);
1849 		p = swap_info[type];
1850 		/*
1851 		 * Do not memset this entry: a racing procfs swap_next()
1852 		 * would be relying on p->type to remain valid.
1853 		 */
1854 	}
1855 	INIT_LIST_HEAD(&p->first_swap_extent.list);
1856 	p->flags = SWP_USED;
1857 	p->next = -1;
1858 	spin_unlock(&swap_lock);
1859 	spin_lock_init(&p->lock);
1860 
1861 	return p;
1862 }
1863 
1864 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1865 {
1866 	int error;
1867 
1868 	if (S_ISBLK(inode->i_mode)) {
1869 		p->bdev = bdgrab(I_BDEV(inode));
1870 		error = blkdev_get(p->bdev,
1871 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1872 				   sys_swapon);
1873 		if (error < 0) {
1874 			p->bdev = NULL;
1875 			return -EINVAL;
1876 		}
1877 		p->old_block_size = block_size(p->bdev);
1878 		error = set_blocksize(p->bdev, PAGE_SIZE);
1879 		if (error < 0)
1880 			return error;
1881 		p->flags |= SWP_BLKDEV;
1882 	} else if (S_ISREG(inode->i_mode)) {
1883 		p->bdev = inode->i_sb->s_bdev;
1884 		mutex_lock(&inode->i_mutex);
1885 		if (IS_SWAPFILE(inode))
1886 			return -EBUSY;
1887 	} else
1888 		return -EINVAL;
1889 
1890 	return 0;
1891 }
1892 
1893 static unsigned long read_swap_header(struct swap_info_struct *p,
1894 					union swap_header *swap_header,
1895 					struct inode *inode)
1896 {
1897 	int i;
1898 	unsigned long maxpages;
1899 	unsigned long swapfilepages;
1900 
1901 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1902 		printk(KERN_ERR "Unable to find swap-space signature\n");
1903 		return 0;
1904 	}
1905 
1906 	/* swap partition endianess hack... */
1907 	if (swab32(swap_header->info.version) == 1) {
1908 		swab32s(&swap_header->info.version);
1909 		swab32s(&swap_header->info.last_page);
1910 		swab32s(&swap_header->info.nr_badpages);
1911 		for (i = 0; i < swap_header->info.nr_badpages; i++)
1912 			swab32s(&swap_header->info.badpages[i]);
1913 	}
1914 	/* Check the swap header's sub-version */
1915 	if (swap_header->info.version != 1) {
1916 		printk(KERN_WARNING
1917 		       "Unable to handle swap header version %d\n",
1918 		       swap_header->info.version);
1919 		return 0;
1920 	}
1921 
1922 	p->lowest_bit  = 1;
1923 	p->cluster_next = 1;
1924 	p->cluster_nr = 0;
1925 
1926 	/*
1927 	 * Find out how many pages are allowed for a single swap
1928 	 * device. There are two limiting factors: 1) the number
1929 	 * of bits for the swap offset in the swp_entry_t type, and
1930 	 * 2) the number of bits in the swap pte as defined by the
1931 	 * different architectures. In order to find the
1932 	 * largest possible bit mask, a swap entry with swap type 0
1933 	 * and swap offset ~0UL is created, encoded to a swap pte,
1934 	 * decoded to a swp_entry_t again, and finally the swap
1935 	 * offset is extracted. This will mask all the bits from
1936 	 * the initial ~0UL mask that can't be encoded in either
1937 	 * the swp_entry_t or the architecture definition of a
1938 	 * swap pte.
1939 	 */
1940 	maxpages = swp_offset(pte_to_swp_entry(
1941 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1942 	if (maxpages > swap_header->info.last_page) {
1943 		maxpages = swap_header->info.last_page + 1;
1944 		/* p->max is an unsigned int: don't overflow it */
1945 		if ((unsigned int)maxpages == 0)
1946 			maxpages = UINT_MAX;
1947 	}
1948 	p->highest_bit = maxpages - 1;
1949 
1950 	if (!maxpages)
1951 		return 0;
1952 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1953 	if (swapfilepages && maxpages > swapfilepages) {
1954 		printk(KERN_WARNING
1955 		       "Swap area shorter than signature indicates\n");
1956 		return 0;
1957 	}
1958 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1959 		return 0;
1960 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1961 		return 0;
1962 
1963 	return maxpages;
1964 }
1965 
1966 static int setup_swap_map_and_extents(struct swap_info_struct *p,
1967 					union swap_header *swap_header,
1968 					unsigned char *swap_map,
1969 					unsigned long maxpages,
1970 					sector_t *span)
1971 {
1972 	int i;
1973 	unsigned int nr_good_pages;
1974 	int nr_extents;
1975 
1976 	nr_good_pages = maxpages - 1;	/* omit header page */
1977 
1978 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
1979 		unsigned int page_nr = swap_header->info.badpages[i];
1980 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
1981 			return -EINVAL;
1982 		if (page_nr < maxpages) {
1983 			swap_map[page_nr] = SWAP_MAP_BAD;
1984 			nr_good_pages--;
1985 		}
1986 	}
1987 
1988 	if (nr_good_pages) {
1989 		swap_map[0] = SWAP_MAP_BAD;
1990 		p->max = maxpages;
1991 		p->pages = nr_good_pages;
1992 		nr_extents = setup_swap_extents(p, span);
1993 		if (nr_extents < 0)
1994 			return nr_extents;
1995 		nr_good_pages = p->pages;
1996 	}
1997 	if (!nr_good_pages) {
1998 		printk(KERN_WARNING "Empty swap-file\n");
1999 		return -EINVAL;
2000 	}
2001 
2002 	return nr_extents;
2003 }
2004 
2005 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2006 {
2007 	struct swap_info_struct *p;
2008 	struct filename *name;
2009 	struct file *swap_file = NULL;
2010 	struct address_space *mapping;
2011 	int i;
2012 	int prio;
2013 	int error;
2014 	union swap_header *swap_header;
2015 	int nr_extents;
2016 	sector_t span;
2017 	unsigned long maxpages;
2018 	unsigned char *swap_map = NULL;
2019 	unsigned long *frontswap_map = NULL;
2020 	struct page *page = NULL;
2021 	struct inode *inode = NULL;
2022 
2023 	if (swap_flags & ~SWAP_FLAGS_VALID)
2024 		return -EINVAL;
2025 
2026 	if (!capable(CAP_SYS_ADMIN))
2027 		return -EPERM;
2028 
2029 	p = alloc_swap_info();
2030 	if (IS_ERR(p))
2031 		return PTR_ERR(p);
2032 
2033 	name = getname(specialfile);
2034 	if (IS_ERR(name)) {
2035 		error = PTR_ERR(name);
2036 		name = NULL;
2037 		goto bad_swap;
2038 	}
2039 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2040 	if (IS_ERR(swap_file)) {
2041 		error = PTR_ERR(swap_file);
2042 		swap_file = NULL;
2043 		goto bad_swap;
2044 	}
2045 
2046 	p->swap_file = swap_file;
2047 	mapping = swap_file->f_mapping;
2048 
2049 	for (i = 0; i < nr_swapfiles; i++) {
2050 		struct swap_info_struct *q = swap_info[i];
2051 
2052 		if (q == p || !q->swap_file)
2053 			continue;
2054 		if (mapping == q->swap_file->f_mapping) {
2055 			error = -EBUSY;
2056 			goto bad_swap;
2057 		}
2058 	}
2059 
2060 	inode = mapping->host;
2061 	/* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2062 	error = claim_swapfile(p, inode);
2063 	if (unlikely(error))
2064 		goto bad_swap;
2065 
2066 	/*
2067 	 * Read the swap header.
2068 	 */
2069 	if (!mapping->a_ops->readpage) {
2070 		error = -EINVAL;
2071 		goto bad_swap;
2072 	}
2073 	page = read_mapping_page(mapping, 0, swap_file);
2074 	if (IS_ERR(page)) {
2075 		error = PTR_ERR(page);
2076 		goto bad_swap;
2077 	}
2078 	swap_header = kmap(page);
2079 
2080 	maxpages = read_swap_header(p, swap_header, inode);
2081 	if (unlikely(!maxpages)) {
2082 		error = -EINVAL;
2083 		goto bad_swap;
2084 	}
2085 
2086 	/* OK, set up the swap map and apply the bad block list */
2087 	swap_map = vzalloc(maxpages);
2088 	if (!swap_map) {
2089 		error = -ENOMEM;
2090 		goto bad_swap;
2091 	}
2092 
2093 	error = swap_cgroup_swapon(p->type, maxpages);
2094 	if (error)
2095 		goto bad_swap;
2096 
2097 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2098 		maxpages, &span);
2099 	if (unlikely(nr_extents < 0)) {
2100 		error = nr_extents;
2101 		goto bad_swap;
2102 	}
2103 	/* frontswap enabled? set up bit-per-page map for frontswap */
2104 	if (frontswap_enabled)
2105 		frontswap_map = vzalloc(maxpages / sizeof(long));
2106 
2107 	if (p->bdev) {
2108 		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2109 			p->flags |= SWP_SOLIDSTATE;
2110 			p->cluster_next = 1 + (random32() % p->highest_bit);
2111 		}
2112 		if ((swap_flags & SWAP_FLAG_DISCARD) && discard_swap(p) == 0)
2113 			p->flags |= SWP_DISCARDABLE;
2114 	}
2115 
2116 	mutex_lock(&swapon_mutex);
2117 	prio = -1;
2118 	if (swap_flags & SWAP_FLAG_PREFER)
2119 		prio =
2120 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2121 	enable_swap_info(p, prio, swap_map, frontswap_map);
2122 
2123 	printk(KERN_INFO "Adding %uk swap on %s.  "
2124 			"Priority:%d extents:%d across:%lluk %s%s%s\n",
2125 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2126 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2127 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2128 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
2129 		(frontswap_map) ? "FS" : "");
2130 
2131 	mutex_unlock(&swapon_mutex);
2132 	atomic_inc(&proc_poll_event);
2133 	wake_up_interruptible(&proc_poll_wait);
2134 
2135 	if (S_ISREG(inode->i_mode))
2136 		inode->i_flags |= S_SWAPFILE;
2137 	error = 0;
2138 	goto out;
2139 bad_swap:
2140 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2141 		set_blocksize(p->bdev, p->old_block_size);
2142 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2143 	}
2144 	destroy_swap_extents(p);
2145 	swap_cgroup_swapoff(p->type);
2146 	spin_lock(&swap_lock);
2147 	p->swap_file = NULL;
2148 	p->flags = 0;
2149 	spin_unlock(&swap_lock);
2150 	vfree(swap_map);
2151 	if (swap_file) {
2152 		if (inode && S_ISREG(inode->i_mode)) {
2153 			mutex_unlock(&inode->i_mutex);
2154 			inode = NULL;
2155 		}
2156 		filp_close(swap_file, NULL);
2157 	}
2158 out:
2159 	if (page && !IS_ERR(page)) {
2160 		kunmap(page);
2161 		page_cache_release(page);
2162 	}
2163 	if (name)
2164 		putname(name);
2165 	if (inode && S_ISREG(inode->i_mode))
2166 		mutex_unlock(&inode->i_mutex);
2167 	return error;
2168 }
2169 
2170 void si_swapinfo(struct sysinfo *val)
2171 {
2172 	unsigned int type;
2173 	unsigned long nr_to_be_unused = 0;
2174 
2175 	spin_lock(&swap_lock);
2176 	for (type = 0; type < nr_swapfiles; type++) {
2177 		struct swap_info_struct *si = swap_info[type];
2178 
2179 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2180 			nr_to_be_unused += si->inuse_pages;
2181 	}
2182 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2183 	val->totalswap = total_swap_pages + nr_to_be_unused;
2184 	spin_unlock(&swap_lock);
2185 }
2186 
2187 /*
2188  * Verify that a swap entry is valid and increment its swap map count.
2189  *
2190  * Returns error code in following case.
2191  * - success -> 0
2192  * - swp_entry is invalid -> EINVAL
2193  * - swp_entry is migration entry -> EINVAL
2194  * - swap-cache reference is requested but there is already one. -> EEXIST
2195  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2196  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2197  */
2198 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2199 {
2200 	struct swap_info_struct *p;
2201 	unsigned long offset, type;
2202 	unsigned char count;
2203 	unsigned char has_cache;
2204 	int err = -EINVAL;
2205 
2206 	if (non_swap_entry(entry))
2207 		goto out;
2208 
2209 	type = swp_type(entry);
2210 	if (type >= nr_swapfiles)
2211 		goto bad_file;
2212 	p = swap_info[type];
2213 	offset = swp_offset(entry);
2214 
2215 	spin_lock(&p->lock);
2216 	if (unlikely(offset >= p->max))
2217 		goto unlock_out;
2218 
2219 	count = p->swap_map[offset];
2220 	has_cache = count & SWAP_HAS_CACHE;
2221 	count &= ~SWAP_HAS_CACHE;
2222 	err = 0;
2223 
2224 	if (usage == SWAP_HAS_CACHE) {
2225 
2226 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2227 		if (!has_cache && count)
2228 			has_cache = SWAP_HAS_CACHE;
2229 		else if (has_cache)		/* someone else added cache */
2230 			err = -EEXIST;
2231 		else				/* no users remaining */
2232 			err = -ENOENT;
2233 
2234 	} else if (count || has_cache) {
2235 
2236 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2237 			count += usage;
2238 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2239 			err = -EINVAL;
2240 		else if (swap_count_continued(p, offset, count))
2241 			count = COUNT_CONTINUED;
2242 		else
2243 			err = -ENOMEM;
2244 	} else
2245 		err = -ENOENT;			/* unused swap entry */
2246 
2247 	p->swap_map[offset] = count | has_cache;
2248 
2249 unlock_out:
2250 	spin_unlock(&p->lock);
2251 out:
2252 	return err;
2253 
2254 bad_file:
2255 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2256 	goto out;
2257 }
2258 
2259 /*
2260  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2261  * (in which case its reference count is never incremented).
2262  */
2263 void swap_shmem_alloc(swp_entry_t entry)
2264 {
2265 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2266 }
2267 
2268 /*
2269  * Increase reference count of swap entry by 1.
2270  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2271  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2272  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2273  * might occur if a page table entry has got corrupted.
2274  */
2275 int swap_duplicate(swp_entry_t entry)
2276 {
2277 	int err = 0;
2278 
2279 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2280 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2281 	return err;
2282 }
2283 
2284 /*
2285  * @entry: swap entry for which we allocate swap cache.
2286  *
2287  * Called when allocating swap cache for existing swap entry,
2288  * This can return error codes. Returns 0 at success.
2289  * -EBUSY means there is a swap cache.
2290  * Note: return code is different from swap_duplicate().
2291  */
2292 int swapcache_prepare(swp_entry_t entry)
2293 {
2294 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2295 }
2296 
2297 struct swap_info_struct *page_swap_info(struct page *page)
2298 {
2299 	swp_entry_t swap = { .val = page_private(page) };
2300 	BUG_ON(!PageSwapCache(page));
2301 	return swap_info[swp_type(swap)];
2302 }
2303 
2304 /*
2305  * out-of-line __page_file_ methods to avoid include hell.
2306  */
2307 struct address_space *__page_file_mapping(struct page *page)
2308 {
2309 	VM_BUG_ON(!PageSwapCache(page));
2310 	return page_swap_info(page)->swap_file->f_mapping;
2311 }
2312 EXPORT_SYMBOL_GPL(__page_file_mapping);
2313 
2314 pgoff_t __page_file_index(struct page *page)
2315 {
2316 	swp_entry_t swap = { .val = page_private(page) };
2317 	VM_BUG_ON(!PageSwapCache(page));
2318 	return swp_offset(swap);
2319 }
2320 EXPORT_SYMBOL_GPL(__page_file_index);
2321 
2322 /*
2323  * add_swap_count_continuation - called when a swap count is duplicated
2324  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2325  * page of the original vmalloc'ed swap_map, to hold the continuation count
2326  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2327  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2328  *
2329  * These continuation pages are seldom referenced: the common paths all work
2330  * on the original swap_map, only referring to a continuation page when the
2331  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2332  *
2333  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2334  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2335  * can be called after dropping locks.
2336  */
2337 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2338 {
2339 	struct swap_info_struct *si;
2340 	struct page *head;
2341 	struct page *page;
2342 	struct page *list_page;
2343 	pgoff_t offset;
2344 	unsigned char count;
2345 
2346 	/*
2347 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2348 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2349 	 */
2350 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2351 
2352 	si = swap_info_get(entry);
2353 	if (!si) {
2354 		/*
2355 		 * An acceptable race has occurred since the failing
2356 		 * __swap_duplicate(): the swap entry has been freed,
2357 		 * perhaps even the whole swap_map cleared for swapoff.
2358 		 */
2359 		goto outer;
2360 	}
2361 
2362 	offset = swp_offset(entry);
2363 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2364 
2365 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2366 		/*
2367 		 * The higher the swap count, the more likely it is that tasks
2368 		 * will race to add swap count continuation: we need to avoid
2369 		 * over-provisioning.
2370 		 */
2371 		goto out;
2372 	}
2373 
2374 	if (!page) {
2375 		spin_unlock(&si->lock);
2376 		return -ENOMEM;
2377 	}
2378 
2379 	/*
2380 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2381 	 * no architecture is using highmem pages for kernel pagetables: so it
2382 	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2383 	 */
2384 	head = vmalloc_to_page(si->swap_map + offset);
2385 	offset &= ~PAGE_MASK;
2386 
2387 	/*
2388 	 * Page allocation does not initialize the page's lru field,
2389 	 * but it does always reset its private field.
2390 	 */
2391 	if (!page_private(head)) {
2392 		BUG_ON(count & COUNT_CONTINUED);
2393 		INIT_LIST_HEAD(&head->lru);
2394 		set_page_private(head, SWP_CONTINUED);
2395 		si->flags |= SWP_CONTINUED;
2396 	}
2397 
2398 	list_for_each_entry(list_page, &head->lru, lru) {
2399 		unsigned char *map;
2400 
2401 		/*
2402 		 * If the previous map said no continuation, but we've found
2403 		 * a continuation page, free our allocation and use this one.
2404 		 */
2405 		if (!(count & COUNT_CONTINUED))
2406 			goto out;
2407 
2408 		map = kmap_atomic(list_page) + offset;
2409 		count = *map;
2410 		kunmap_atomic(map);
2411 
2412 		/*
2413 		 * If this continuation count now has some space in it,
2414 		 * free our allocation and use this one.
2415 		 */
2416 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2417 			goto out;
2418 	}
2419 
2420 	list_add_tail(&page->lru, &head->lru);
2421 	page = NULL;			/* now it's attached, don't free it */
2422 out:
2423 	spin_unlock(&si->lock);
2424 outer:
2425 	if (page)
2426 		__free_page(page);
2427 	return 0;
2428 }
2429 
2430 /*
2431  * swap_count_continued - when the original swap_map count is incremented
2432  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2433  * into, carry if so, or else fail until a new continuation page is allocated;
2434  * when the original swap_map count is decremented from 0 with continuation,
2435  * borrow from the continuation and report whether it still holds more.
2436  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2437  */
2438 static bool swap_count_continued(struct swap_info_struct *si,
2439 				 pgoff_t offset, unsigned char count)
2440 {
2441 	struct page *head;
2442 	struct page *page;
2443 	unsigned char *map;
2444 
2445 	head = vmalloc_to_page(si->swap_map + offset);
2446 	if (page_private(head) != SWP_CONTINUED) {
2447 		BUG_ON(count & COUNT_CONTINUED);
2448 		return false;		/* need to add count continuation */
2449 	}
2450 
2451 	offset &= ~PAGE_MASK;
2452 	page = list_entry(head->lru.next, struct page, lru);
2453 	map = kmap_atomic(page) + offset;
2454 
2455 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2456 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2457 
2458 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2459 		/*
2460 		 * Think of how you add 1 to 999
2461 		 */
2462 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2463 			kunmap_atomic(map);
2464 			page = list_entry(page->lru.next, struct page, lru);
2465 			BUG_ON(page == head);
2466 			map = kmap_atomic(page) + offset;
2467 		}
2468 		if (*map == SWAP_CONT_MAX) {
2469 			kunmap_atomic(map);
2470 			page = list_entry(page->lru.next, struct page, lru);
2471 			if (page == head)
2472 				return false;	/* add count continuation */
2473 			map = kmap_atomic(page) + offset;
2474 init_map:		*map = 0;		/* we didn't zero the page */
2475 		}
2476 		*map += 1;
2477 		kunmap_atomic(map);
2478 		page = list_entry(page->lru.prev, struct page, lru);
2479 		while (page != head) {
2480 			map = kmap_atomic(page) + offset;
2481 			*map = COUNT_CONTINUED;
2482 			kunmap_atomic(map);
2483 			page = list_entry(page->lru.prev, struct page, lru);
2484 		}
2485 		return true;			/* incremented */
2486 
2487 	} else {				/* decrementing */
2488 		/*
2489 		 * Think of how you subtract 1 from 1000
2490 		 */
2491 		BUG_ON(count != COUNT_CONTINUED);
2492 		while (*map == COUNT_CONTINUED) {
2493 			kunmap_atomic(map);
2494 			page = list_entry(page->lru.next, struct page, lru);
2495 			BUG_ON(page == head);
2496 			map = kmap_atomic(page) + offset;
2497 		}
2498 		BUG_ON(*map == 0);
2499 		*map -= 1;
2500 		if (*map == 0)
2501 			count = 0;
2502 		kunmap_atomic(map);
2503 		page = list_entry(page->lru.prev, struct page, lru);
2504 		while (page != head) {
2505 			map = kmap_atomic(page) + offset;
2506 			*map = SWAP_CONT_MAX | count;
2507 			count = COUNT_CONTINUED;
2508 			kunmap_atomic(map);
2509 			page = list_entry(page->lru.prev, struct page, lru);
2510 		}
2511 		return count == COUNT_CONTINUED;
2512 	}
2513 }
2514 
2515 /*
2516  * free_swap_count_continuations - swapoff free all the continuation pages
2517  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2518  */
2519 static void free_swap_count_continuations(struct swap_info_struct *si)
2520 {
2521 	pgoff_t offset;
2522 
2523 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2524 		struct page *head;
2525 		head = vmalloc_to_page(si->swap_map + offset);
2526 		if (page_private(head)) {
2527 			struct list_head *this, *next;
2528 			list_for_each_safe(this, next, &head->lru) {
2529 				struct page *page;
2530 				page = list_entry(this, struct page, lru);
2531 				list_del(this);
2532 				__free_page(page);
2533 			}
2534 		}
2535 	}
2536 }
2537