1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/config.h> 9 #include <linux/mm.h> 10 #include <linux/hugetlb.h> 11 #include <linux/mman.h> 12 #include <linux/slab.h> 13 #include <linux/kernel_stat.h> 14 #include <linux/swap.h> 15 #include <linux/vmalloc.h> 16 #include <linux/pagemap.h> 17 #include <linux/namei.h> 18 #include <linux/shm.h> 19 #include <linux/blkdev.h> 20 #include <linux/writeback.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/init.h> 24 #include <linux/module.h> 25 #include <linux/rmap.h> 26 #include <linux/security.h> 27 #include <linux/backing-dev.h> 28 #include <linux/syscalls.h> 29 30 #include <asm/pgtable.h> 31 #include <asm/tlbflush.h> 32 #include <linux/swapops.h> 33 34 DEFINE_SPINLOCK(swaplock); 35 unsigned int nr_swapfiles; 36 long total_swap_pages; 37 static int swap_overflow; 38 39 EXPORT_SYMBOL(total_swap_pages); 40 41 static const char Bad_file[] = "Bad swap file entry "; 42 static const char Unused_file[] = "Unused swap file entry "; 43 static const char Bad_offset[] = "Bad swap offset entry "; 44 static const char Unused_offset[] = "Unused swap offset entry "; 45 46 struct swap_list_t swap_list = {-1, -1}; 47 48 struct swap_info_struct swap_info[MAX_SWAPFILES]; 49 50 static DECLARE_MUTEX(swapon_sem); 51 52 /* 53 * We need this because the bdev->unplug_fn can sleep and we cannot 54 * hold swap_list_lock while calling the unplug_fn. And swap_list_lock 55 * cannot be turned into a semaphore. 56 */ 57 static DECLARE_RWSEM(swap_unplug_sem); 58 59 #define SWAPFILE_CLUSTER 256 60 61 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page) 62 { 63 swp_entry_t entry; 64 65 down_read(&swap_unplug_sem); 66 entry.val = page->private; 67 if (PageSwapCache(page)) { 68 struct block_device *bdev = swap_info[swp_type(entry)].bdev; 69 struct backing_dev_info *bdi; 70 71 /* 72 * If the page is removed from swapcache from under us (with a 73 * racy try_to_unuse/swapoff) we need an additional reference 74 * count to avoid reading garbage from page->private above. If 75 * the WARN_ON triggers during a swapoff it maybe the race 76 * condition and it's harmless. However if it triggers without 77 * swapoff it signals a problem. 78 */ 79 WARN_ON(page_count(page) <= 1); 80 81 bdi = bdev->bd_inode->i_mapping->backing_dev_info; 82 blk_run_backing_dev(bdi, page); 83 } 84 up_read(&swap_unplug_sem); 85 } 86 87 static inline int scan_swap_map(struct swap_info_struct *si) 88 { 89 unsigned long offset; 90 /* 91 * We try to cluster swap pages by allocating them 92 * sequentially in swap. Once we've allocated 93 * SWAPFILE_CLUSTER pages this way, however, we resort to 94 * first-free allocation, starting a new cluster. This 95 * prevents us from scattering swap pages all over the entire 96 * swap partition, so that we reduce overall disk seek times 97 * between swap pages. -- sct */ 98 if (si->cluster_nr) { 99 while (si->cluster_next <= si->highest_bit) { 100 offset = si->cluster_next++; 101 if (si->swap_map[offset]) 102 continue; 103 si->cluster_nr--; 104 goto got_page; 105 } 106 } 107 si->cluster_nr = SWAPFILE_CLUSTER; 108 109 /* try to find an empty (even not aligned) cluster. */ 110 offset = si->lowest_bit; 111 check_next_cluster: 112 if (offset+SWAPFILE_CLUSTER-1 <= si->highest_bit) 113 { 114 unsigned long nr; 115 for (nr = offset; nr < offset+SWAPFILE_CLUSTER; nr++) 116 if (si->swap_map[nr]) 117 { 118 offset = nr+1; 119 goto check_next_cluster; 120 } 121 /* We found a completly empty cluster, so start 122 * using it. 123 */ 124 goto got_page; 125 } 126 /* No luck, so now go finegrined as usual. -Andrea */ 127 for (offset = si->lowest_bit; offset <= si->highest_bit ; offset++) { 128 if (si->swap_map[offset]) 129 continue; 130 si->lowest_bit = offset+1; 131 got_page: 132 if (offset == si->lowest_bit) 133 si->lowest_bit++; 134 if (offset == si->highest_bit) 135 si->highest_bit--; 136 if (si->lowest_bit > si->highest_bit) { 137 si->lowest_bit = si->max; 138 si->highest_bit = 0; 139 } 140 si->swap_map[offset] = 1; 141 si->inuse_pages++; 142 nr_swap_pages--; 143 si->cluster_next = offset+1; 144 return offset; 145 } 146 si->lowest_bit = si->max; 147 si->highest_bit = 0; 148 return 0; 149 } 150 151 swp_entry_t get_swap_page(void) 152 { 153 struct swap_info_struct * p; 154 unsigned long offset; 155 swp_entry_t entry; 156 int type, wrapped = 0; 157 158 entry.val = 0; /* Out of memory */ 159 swap_list_lock(); 160 type = swap_list.next; 161 if (type < 0) 162 goto out; 163 if (nr_swap_pages <= 0) 164 goto out; 165 166 while (1) { 167 p = &swap_info[type]; 168 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) { 169 swap_device_lock(p); 170 offset = scan_swap_map(p); 171 swap_device_unlock(p); 172 if (offset) { 173 entry = swp_entry(type,offset); 174 type = swap_info[type].next; 175 if (type < 0 || 176 p->prio != swap_info[type].prio) { 177 swap_list.next = swap_list.head; 178 } else { 179 swap_list.next = type; 180 } 181 goto out; 182 } 183 } 184 type = p->next; 185 if (!wrapped) { 186 if (type < 0 || p->prio != swap_info[type].prio) { 187 type = swap_list.head; 188 wrapped = 1; 189 } 190 } else 191 if (type < 0) 192 goto out; /* out of swap space */ 193 } 194 out: 195 swap_list_unlock(); 196 return entry; 197 } 198 199 static struct swap_info_struct * swap_info_get(swp_entry_t entry) 200 { 201 struct swap_info_struct * p; 202 unsigned long offset, type; 203 204 if (!entry.val) 205 goto out; 206 type = swp_type(entry); 207 if (type >= nr_swapfiles) 208 goto bad_nofile; 209 p = & swap_info[type]; 210 if (!(p->flags & SWP_USED)) 211 goto bad_device; 212 offset = swp_offset(entry); 213 if (offset >= p->max) 214 goto bad_offset; 215 if (!p->swap_map[offset]) 216 goto bad_free; 217 swap_list_lock(); 218 if (p->prio > swap_info[swap_list.next].prio) 219 swap_list.next = type; 220 swap_device_lock(p); 221 return p; 222 223 bad_free: 224 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); 225 goto out; 226 bad_offset: 227 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); 228 goto out; 229 bad_device: 230 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); 231 goto out; 232 bad_nofile: 233 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); 234 out: 235 return NULL; 236 } 237 238 static void swap_info_put(struct swap_info_struct * p) 239 { 240 swap_device_unlock(p); 241 swap_list_unlock(); 242 } 243 244 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset) 245 { 246 int count = p->swap_map[offset]; 247 248 if (count < SWAP_MAP_MAX) { 249 count--; 250 p->swap_map[offset] = count; 251 if (!count) { 252 if (offset < p->lowest_bit) 253 p->lowest_bit = offset; 254 if (offset > p->highest_bit) 255 p->highest_bit = offset; 256 nr_swap_pages++; 257 p->inuse_pages--; 258 } 259 } 260 return count; 261 } 262 263 /* 264 * Caller has made sure that the swapdevice corresponding to entry 265 * is still around or has not been recycled. 266 */ 267 void swap_free(swp_entry_t entry) 268 { 269 struct swap_info_struct * p; 270 271 p = swap_info_get(entry); 272 if (p) { 273 swap_entry_free(p, swp_offset(entry)); 274 swap_info_put(p); 275 } 276 } 277 278 /* 279 * How many references to page are currently swapped out? 280 */ 281 static inline int page_swapcount(struct page *page) 282 { 283 int count = 0; 284 struct swap_info_struct *p; 285 swp_entry_t entry; 286 287 entry.val = page->private; 288 p = swap_info_get(entry); 289 if (p) { 290 /* Subtract the 1 for the swap cache itself */ 291 count = p->swap_map[swp_offset(entry)] - 1; 292 swap_info_put(p); 293 } 294 return count; 295 } 296 297 /* 298 * We can use this swap cache entry directly 299 * if there are no other references to it. 300 */ 301 int can_share_swap_page(struct page *page) 302 { 303 int count; 304 305 BUG_ON(!PageLocked(page)); 306 count = page_mapcount(page); 307 if (count <= 1 && PageSwapCache(page)) 308 count += page_swapcount(page); 309 return count == 1; 310 } 311 312 /* 313 * Work out if there are any other processes sharing this 314 * swap cache page. Free it if you can. Return success. 315 */ 316 int remove_exclusive_swap_page(struct page *page) 317 { 318 int retval; 319 struct swap_info_struct * p; 320 swp_entry_t entry; 321 322 BUG_ON(PagePrivate(page)); 323 BUG_ON(!PageLocked(page)); 324 325 if (!PageSwapCache(page)) 326 return 0; 327 if (PageWriteback(page)) 328 return 0; 329 if (page_count(page) != 2) /* 2: us + cache */ 330 return 0; 331 332 entry.val = page->private; 333 p = swap_info_get(entry); 334 if (!p) 335 return 0; 336 337 /* Is the only swap cache user the cache itself? */ 338 retval = 0; 339 if (p->swap_map[swp_offset(entry)] == 1) { 340 /* Recheck the page count with the swapcache lock held.. */ 341 write_lock_irq(&swapper_space.tree_lock); 342 if ((page_count(page) == 2) && !PageWriteback(page)) { 343 __delete_from_swap_cache(page); 344 SetPageDirty(page); 345 retval = 1; 346 } 347 write_unlock_irq(&swapper_space.tree_lock); 348 } 349 swap_info_put(p); 350 351 if (retval) { 352 swap_free(entry); 353 page_cache_release(page); 354 } 355 356 return retval; 357 } 358 359 /* 360 * Free the swap entry like above, but also try to 361 * free the page cache entry if it is the last user. 362 */ 363 void free_swap_and_cache(swp_entry_t entry) 364 { 365 struct swap_info_struct * p; 366 struct page *page = NULL; 367 368 p = swap_info_get(entry); 369 if (p) { 370 if (swap_entry_free(p, swp_offset(entry)) == 1) 371 page = find_trylock_page(&swapper_space, entry.val); 372 swap_info_put(p); 373 } 374 if (page) { 375 int one_user; 376 377 BUG_ON(PagePrivate(page)); 378 page_cache_get(page); 379 one_user = (page_count(page) == 2); 380 /* Only cache user (+us), or swap space full? Free it! */ 381 if (!PageWriteback(page) && (one_user || vm_swap_full())) { 382 delete_from_swap_cache(page); 383 SetPageDirty(page); 384 } 385 unlock_page(page); 386 page_cache_release(page); 387 } 388 } 389 390 /* 391 * Always set the resulting pte to be nowrite (the same as COW pages 392 * after one process has exited). We don't know just how many PTEs will 393 * share this swap entry, so be cautious and let do_wp_page work out 394 * what to do if a write is requested later. 395 * 396 * vma->vm_mm->page_table_lock is held. 397 */ 398 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte, 399 unsigned long addr, swp_entry_t entry, struct page *page) 400 { 401 inc_mm_counter(vma->vm_mm, rss); 402 get_page(page); 403 set_pte_at(vma->vm_mm, addr, pte, 404 pte_mkold(mk_pte(page, vma->vm_page_prot))); 405 page_add_anon_rmap(page, vma, addr); 406 swap_free(entry); 407 /* 408 * Move the page to the active list so it is not 409 * immediately swapped out again after swapon. 410 */ 411 activate_page(page); 412 } 413 414 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 415 unsigned long addr, unsigned long end, 416 swp_entry_t entry, struct page *page) 417 { 418 pte_t *pte; 419 pte_t swp_pte = swp_entry_to_pte(entry); 420 421 pte = pte_offset_map(pmd, addr); 422 do { 423 /* 424 * swapoff spends a _lot_ of time in this loop! 425 * Test inline before going to call unuse_pte. 426 */ 427 if (unlikely(pte_same(*pte, swp_pte))) { 428 unuse_pte(vma, pte, addr, entry, page); 429 pte_unmap(pte); 430 return 1; 431 } 432 } while (pte++, addr += PAGE_SIZE, addr != end); 433 pte_unmap(pte - 1); 434 return 0; 435 } 436 437 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 438 unsigned long addr, unsigned long end, 439 swp_entry_t entry, struct page *page) 440 { 441 pmd_t *pmd; 442 unsigned long next; 443 444 pmd = pmd_offset(pud, addr); 445 do { 446 next = pmd_addr_end(addr, end); 447 if (pmd_none_or_clear_bad(pmd)) 448 continue; 449 if (unuse_pte_range(vma, pmd, addr, next, entry, page)) 450 return 1; 451 } while (pmd++, addr = next, addr != end); 452 return 0; 453 } 454 455 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 456 unsigned long addr, unsigned long end, 457 swp_entry_t entry, struct page *page) 458 { 459 pud_t *pud; 460 unsigned long next; 461 462 pud = pud_offset(pgd, addr); 463 do { 464 next = pud_addr_end(addr, end); 465 if (pud_none_or_clear_bad(pud)) 466 continue; 467 if (unuse_pmd_range(vma, pud, addr, next, entry, page)) 468 return 1; 469 } while (pud++, addr = next, addr != end); 470 return 0; 471 } 472 473 static int unuse_vma(struct vm_area_struct *vma, 474 swp_entry_t entry, struct page *page) 475 { 476 pgd_t *pgd; 477 unsigned long addr, end, next; 478 479 if (page->mapping) { 480 addr = page_address_in_vma(page, vma); 481 if (addr == -EFAULT) 482 return 0; 483 else 484 end = addr + PAGE_SIZE; 485 } else { 486 addr = vma->vm_start; 487 end = vma->vm_end; 488 } 489 490 pgd = pgd_offset(vma->vm_mm, addr); 491 do { 492 next = pgd_addr_end(addr, end); 493 if (pgd_none_or_clear_bad(pgd)) 494 continue; 495 if (unuse_pud_range(vma, pgd, addr, next, entry, page)) 496 return 1; 497 } while (pgd++, addr = next, addr != end); 498 return 0; 499 } 500 501 static int unuse_mm(struct mm_struct *mm, 502 swp_entry_t entry, struct page *page) 503 { 504 struct vm_area_struct *vma; 505 506 if (!down_read_trylock(&mm->mmap_sem)) { 507 /* 508 * Activate page so shrink_cache is unlikely to unmap its 509 * ptes while lock is dropped, so swapoff can make progress. 510 */ 511 activate_page(page); 512 unlock_page(page); 513 down_read(&mm->mmap_sem); 514 lock_page(page); 515 } 516 spin_lock(&mm->page_table_lock); 517 for (vma = mm->mmap; vma; vma = vma->vm_next) { 518 if (vma->anon_vma && unuse_vma(vma, entry, page)) 519 break; 520 } 521 spin_unlock(&mm->page_table_lock); 522 up_read(&mm->mmap_sem); 523 /* 524 * Currently unuse_mm cannot fail, but leave error handling 525 * at call sites for now, since we change it from time to time. 526 */ 527 return 0; 528 } 529 530 /* 531 * Scan swap_map from current position to next entry still in use. 532 * Recycle to start on reaching the end, returning 0 when empty. 533 */ 534 static int find_next_to_unuse(struct swap_info_struct *si, int prev) 535 { 536 int max = si->max; 537 int i = prev; 538 int count; 539 540 /* 541 * No need for swap_device_lock(si) here: we're just looking 542 * for whether an entry is in use, not modifying it; false 543 * hits are okay, and sys_swapoff() has already prevented new 544 * allocations from this area (while holding swap_list_lock()). 545 */ 546 for (;;) { 547 if (++i >= max) { 548 if (!prev) { 549 i = 0; 550 break; 551 } 552 /* 553 * No entries in use at top of swap_map, 554 * loop back to start and recheck there. 555 */ 556 max = prev + 1; 557 prev = 0; 558 i = 1; 559 } 560 count = si->swap_map[i]; 561 if (count && count != SWAP_MAP_BAD) 562 break; 563 } 564 return i; 565 } 566 567 /* 568 * We completely avoid races by reading each swap page in advance, 569 * and then search for the process using it. All the necessary 570 * page table adjustments can then be made atomically. 571 */ 572 static int try_to_unuse(unsigned int type) 573 { 574 struct swap_info_struct * si = &swap_info[type]; 575 struct mm_struct *start_mm; 576 unsigned short *swap_map; 577 unsigned short swcount; 578 struct page *page; 579 swp_entry_t entry; 580 int i = 0; 581 int retval = 0; 582 int reset_overflow = 0; 583 int shmem; 584 585 /* 586 * When searching mms for an entry, a good strategy is to 587 * start at the first mm we freed the previous entry from 588 * (though actually we don't notice whether we or coincidence 589 * freed the entry). Initialize this start_mm with a hold. 590 * 591 * A simpler strategy would be to start at the last mm we 592 * freed the previous entry from; but that would take less 593 * advantage of mmlist ordering, which clusters forked mms 594 * together, child after parent. If we race with dup_mmap(), we 595 * prefer to resolve parent before child, lest we miss entries 596 * duplicated after we scanned child: using last mm would invert 597 * that. Though it's only a serious concern when an overflowed 598 * swap count is reset from SWAP_MAP_MAX, preventing a rescan. 599 */ 600 start_mm = &init_mm; 601 atomic_inc(&init_mm.mm_users); 602 603 /* 604 * Keep on scanning until all entries have gone. Usually, 605 * one pass through swap_map is enough, but not necessarily: 606 * there are races when an instance of an entry might be missed. 607 */ 608 while ((i = find_next_to_unuse(si, i)) != 0) { 609 if (signal_pending(current)) { 610 retval = -EINTR; 611 break; 612 } 613 614 /* 615 * Get a page for the entry, using the existing swap 616 * cache page if there is one. Otherwise, get a clean 617 * page and read the swap into it. 618 */ 619 swap_map = &si->swap_map[i]; 620 entry = swp_entry(type, i); 621 page = read_swap_cache_async(entry, NULL, 0); 622 if (!page) { 623 /* 624 * Either swap_duplicate() failed because entry 625 * has been freed independently, and will not be 626 * reused since sys_swapoff() already disabled 627 * allocation from here, or alloc_page() failed. 628 */ 629 if (!*swap_map) 630 continue; 631 retval = -ENOMEM; 632 break; 633 } 634 635 /* 636 * Don't hold on to start_mm if it looks like exiting. 637 */ 638 if (atomic_read(&start_mm->mm_users) == 1) { 639 mmput(start_mm); 640 start_mm = &init_mm; 641 atomic_inc(&init_mm.mm_users); 642 } 643 644 /* 645 * Wait for and lock page. When do_swap_page races with 646 * try_to_unuse, do_swap_page can handle the fault much 647 * faster than try_to_unuse can locate the entry. This 648 * apparently redundant "wait_on_page_locked" lets try_to_unuse 649 * defer to do_swap_page in such a case - in some tests, 650 * do_swap_page and try_to_unuse repeatedly compete. 651 */ 652 wait_on_page_locked(page); 653 wait_on_page_writeback(page); 654 lock_page(page); 655 wait_on_page_writeback(page); 656 657 /* 658 * Remove all references to entry. 659 * Whenever we reach init_mm, there's no address space 660 * to search, but use it as a reminder to search shmem. 661 */ 662 shmem = 0; 663 swcount = *swap_map; 664 if (swcount > 1) { 665 if (start_mm == &init_mm) 666 shmem = shmem_unuse(entry, page); 667 else 668 retval = unuse_mm(start_mm, entry, page); 669 } 670 if (*swap_map > 1) { 671 int set_start_mm = (*swap_map >= swcount); 672 struct list_head *p = &start_mm->mmlist; 673 struct mm_struct *new_start_mm = start_mm; 674 struct mm_struct *prev_mm = start_mm; 675 struct mm_struct *mm; 676 677 atomic_inc(&new_start_mm->mm_users); 678 atomic_inc(&prev_mm->mm_users); 679 spin_lock(&mmlist_lock); 680 while (*swap_map > 1 && !retval && 681 (p = p->next) != &start_mm->mmlist) { 682 mm = list_entry(p, struct mm_struct, mmlist); 683 if (atomic_inc_return(&mm->mm_users) == 1) { 684 atomic_dec(&mm->mm_users); 685 continue; 686 } 687 spin_unlock(&mmlist_lock); 688 mmput(prev_mm); 689 prev_mm = mm; 690 691 cond_resched(); 692 693 swcount = *swap_map; 694 if (swcount <= 1) 695 ; 696 else if (mm == &init_mm) { 697 set_start_mm = 1; 698 shmem = shmem_unuse(entry, page); 699 } else 700 retval = unuse_mm(mm, entry, page); 701 if (set_start_mm && *swap_map < swcount) { 702 mmput(new_start_mm); 703 atomic_inc(&mm->mm_users); 704 new_start_mm = mm; 705 set_start_mm = 0; 706 } 707 spin_lock(&mmlist_lock); 708 } 709 spin_unlock(&mmlist_lock); 710 mmput(prev_mm); 711 mmput(start_mm); 712 start_mm = new_start_mm; 713 } 714 if (retval) { 715 unlock_page(page); 716 page_cache_release(page); 717 break; 718 } 719 720 /* 721 * How could swap count reach 0x7fff when the maximum 722 * pid is 0x7fff, and there's no way to repeat a swap 723 * page within an mm (except in shmem, where it's the 724 * shared object which takes the reference count)? 725 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4. 726 * 727 * If that's wrong, then we should worry more about 728 * exit_mmap() and do_munmap() cases described above: 729 * we might be resetting SWAP_MAP_MAX too early here. 730 * We know "Undead"s can happen, they're okay, so don't 731 * report them; but do report if we reset SWAP_MAP_MAX. 732 */ 733 if (*swap_map == SWAP_MAP_MAX) { 734 swap_device_lock(si); 735 *swap_map = 1; 736 swap_device_unlock(si); 737 reset_overflow = 1; 738 } 739 740 /* 741 * If a reference remains (rare), we would like to leave 742 * the page in the swap cache; but try_to_unmap could 743 * then re-duplicate the entry once we drop page lock, 744 * so we might loop indefinitely; also, that page could 745 * not be swapped out to other storage meanwhile. So: 746 * delete from cache even if there's another reference, 747 * after ensuring that the data has been saved to disk - 748 * since if the reference remains (rarer), it will be 749 * read from disk into another page. Splitting into two 750 * pages would be incorrect if swap supported "shared 751 * private" pages, but they are handled by tmpfs files. 752 * 753 * Note shmem_unuse already deleted a swappage from 754 * the swap cache, unless the move to filepage failed: 755 * in which case it left swappage in cache, lowered its 756 * swap count to pass quickly through the loops above, 757 * and now we must reincrement count to try again later. 758 */ 759 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) { 760 struct writeback_control wbc = { 761 .sync_mode = WB_SYNC_NONE, 762 }; 763 764 swap_writepage(page, &wbc); 765 lock_page(page); 766 wait_on_page_writeback(page); 767 } 768 if (PageSwapCache(page)) { 769 if (shmem) 770 swap_duplicate(entry); 771 else 772 delete_from_swap_cache(page); 773 } 774 775 /* 776 * So we could skip searching mms once swap count went 777 * to 1, we did not mark any present ptes as dirty: must 778 * mark page dirty so shrink_list will preserve it. 779 */ 780 SetPageDirty(page); 781 unlock_page(page); 782 page_cache_release(page); 783 784 /* 785 * Make sure that we aren't completely killing 786 * interactive performance. 787 */ 788 cond_resched(); 789 } 790 791 mmput(start_mm); 792 if (reset_overflow) { 793 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n"); 794 swap_overflow = 0; 795 } 796 return retval; 797 } 798 799 /* 800 * After a successful try_to_unuse, if no swap is now in use, we know we 801 * can empty the mmlist. swap_list_lock must be held on entry and exit. 802 * Note that mmlist_lock nests inside swap_list_lock, and an mm must be 803 * added to the mmlist just after page_duplicate - before would be racy. 804 */ 805 static void drain_mmlist(void) 806 { 807 struct list_head *p, *next; 808 unsigned int i; 809 810 for (i = 0; i < nr_swapfiles; i++) 811 if (swap_info[i].inuse_pages) 812 return; 813 spin_lock(&mmlist_lock); 814 list_for_each_safe(p, next, &init_mm.mmlist) 815 list_del_init(p); 816 spin_unlock(&mmlist_lock); 817 } 818 819 /* 820 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 821 * corresponds to page offset `offset'. 822 */ 823 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset) 824 { 825 struct swap_extent *se = sis->curr_swap_extent; 826 struct swap_extent *start_se = se; 827 828 for ( ; ; ) { 829 struct list_head *lh; 830 831 if (se->start_page <= offset && 832 offset < (se->start_page + se->nr_pages)) { 833 return se->start_block + (offset - se->start_page); 834 } 835 lh = se->list.prev; 836 if (lh == &sis->extent_list) 837 lh = lh->prev; 838 se = list_entry(lh, struct swap_extent, list); 839 sis->curr_swap_extent = se; 840 BUG_ON(se == start_se); /* It *must* be present */ 841 } 842 } 843 844 /* 845 * Free all of a swapdev's extent information 846 */ 847 static void destroy_swap_extents(struct swap_info_struct *sis) 848 { 849 while (!list_empty(&sis->extent_list)) { 850 struct swap_extent *se; 851 852 se = list_entry(sis->extent_list.next, 853 struct swap_extent, list); 854 list_del(&se->list); 855 kfree(se); 856 } 857 sis->nr_extents = 0; 858 } 859 860 /* 861 * Add a block range (and the corresponding page range) into this swapdev's 862 * extent list. The extent list is kept sorted in block order. 863 * 864 * This function rather assumes that it is called in ascending sector_t order. 865 * It doesn't look for extent coalescing opportunities. 866 */ 867 static int 868 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 869 unsigned long nr_pages, sector_t start_block) 870 { 871 struct swap_extent *se; 872 struct swap_extent *new_se; 873 struct list_head *lh; 874 875 lh = sis->extent_list.next; /* The highest-addressed block */ 876 while (lh != &sis->extent_list) { 877 se = list_entry(lh, struct swap_extent, list); 878 if (se->start_block + se->nr_pages == start_block && 879 se->start_page + se->nr_pages == start_page) { 880 /* Merge it */ 881 se->nr_pages += nr_pages; 882 return 0; 883 } 884 lh = lh->next; 885 } 886 887 /* 888 * No merge. Insert a new extent, preserving ordering. 889 */ 890 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 891 if (new_se == NULL) 892 return -ENOMEM; 893 new_se->start_page = start_page; 894 new_se->nr_pages = nr_pages; 895 new_se->start_block = start_block; 896 897 lh = sis->extent_list.prev; /* The lowest block */ 898 while (lh != &sis->extent_list) { 899 se = list_entry(lh, struct swap_extent, list); 900 if (se->start_block > start_block) 901 break; 902 lh = lh->prev; 903 } 904 list_add_tail(&new_se->list, lh); 905 sis->nr_extents++; 906 return 0; 907 } 908 909 /* 910 * A `swap extent' is a simple thing which maps a contiguous range of pages 911 * onto a contiguous range of disk blocks. An ordered list of swap extents 912 * is built at swapon time and is then used at swap_writepage/swap_readpage 913 * time for locating where on disk a page belongs. 914 * 915 * If the swapfile is an S_ISBLK block device, a single extent is installed. 916 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 917 * swap files identically. 918 * 919 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 920 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 921 * swapfiles are handled *identically* after swapon time. 922 * 923 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 924 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 925 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 926 * requirements, they are simply tossed out - we will never use those blocks 927 * for swapping. 928 * 929 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 930 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 931 * which will scribble on the fs. 932 * 933 * The amount of disk space which a single swap extent represents varies. 934 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 935 * extents in the list. To avoid much list walking, we cache the previous 936 * search location in `curr_swap_extent', and start new searches from there. 937 * This is extremely effective. The average number of iterations in 938 * map_swap_page() has been measured at about 0.3 per page. - akpm. 939 */ 940 static int setup_swap_extents(struct swap_info_struct *sis) 941 { 942 struct inode *inode; 943 unsigned blocks_per_page; 944 unsigned long page_no; 945 unsigned blkbits; 946 sector_t probe_block; 947 sector_t last_block; 948 int ret; 949 950 inode = sis->swap_file->f_mapping->host; 951 if (S_ISBLK(inode->i_mode)) { 952 ret = add_swap_extent(sis, 0, sis->max, 0); 953 goto done; 954 } 955 956 blkbits = inode->i_blkbits; 957 blocks_per_page = PAGE_SIZE >> blkbits; 958 959 /* 960 * Map all the blocks into the extent list. This code doesn't try 961 * to be very smart. 962 */ 963 probe_block = 0; 964 page_no = 0; 965 last_block = i_size_read(inode) >> blkbits; 966 while ((probe_block + blocks_per_page) <= last_block && 967 page_no < sis->max) { 968 unsigned block_in_page; 969 sector_t first_block; 970 971 first_block = bmap(inode, probe_block); 972 if (first_block == 0) 973 goto bad_bmap; 974 975 /* 976 * It must be PAGE_SIZE aligned on-disk 977 */ 978 if (first_block & (blocks_per_page - 1)) { 979 probe_block++; 980 goto reprobe; 981 } 982 983 for (block_in_page = 1; block_in_page < blocks_per_page; 984 block_in_page++) { 985 sector_t block; 986 987 block = bmap(inode, probe_block + block_in_page); 988 if (block == 0) 989 goto bad_bmap; 990 if (block != first_block + block_in_page) { 991 /* Discontiguity */ 992 probe_block++; 993 goto reprobe; 994 } 995 } 996 997 /* 998 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 999 */ 1000 ret = add_swap_extent(sis, page_no, 1, 1001 first_block >> (PAGE_SHIFT - blkbits)); 1002 if (ret) 1003 goto out; 1004 page_no++; 1005 probe_block += blocks_per_page; 1006 reprobe: 1007 continue; 1008 } 1009 ret = 0; 1010 if (page_no == 0) 1011 ret = -EINVAL; 1012 sis->max = page_no; 1013 sis->highest_bit = page_no - 1; 1014 done: 1015 sis->curr_swap_extent = list_entry(sis->extent_list.prev, 1016 struct swap_extent, list); 1017 goto out; 1018 bad_bmap: 1019 printk(KERN_ERR "swapon: swapfile has holes\n"); 1020 ret = -EINVAL; 1021 out: 1022 return ret; 1023 } 1024 1025 #if 0 /* We don't need this yet */ 1026 #include <linux/backing-dev.h> 1027 int page_queue_congested(struct page *page) 1028 { 1029 struct backing_dev_info *bdi; 1030 1031 BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */ 1032 1033 if (PageSwapCache(page)) { 1034 swp_entry_t entry = { .val = page->private }; 1035 struct swap_info_struct *sis; 1036 1037 sis = get_swap_info_struct(swp_type(entry)); 1038 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info; 1039 } else 1040 bdi = page->mapping->backing_dev_info; 1041 return bdi_write_congested(bdi); 1042 } 1043 #endif 1044 1045 asmlinkage long sys_swapoff(const char __user * specialfile) 1046 { 1047 struct swap_info_struct * p = NULL; 1048 unsigned short *swap_map; 1049 struct file *swap_file, *victim; 1050 struct address_space *mapping; 1051 struct inode *inode; 1052 char * pathname; 1053 int i, type, prev; 1054 int err; 1055 1056 if (!capable(CAP_SYS_ADMIN)) 1057 return -EPERM; 1058 1059 pathname = getname(specialfile); 1060 err = PTR_ERR(pathname); 1061 if (IS_ERR(pathname)) 1062 goto out; 1063 1064 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0); 1065 putname(pathname); 1066 err = PTR_ERR(victim); 1067 if (IS_ERR(victim)) 1068 goto out; 1069 1070 mapping = victim->f_mapping; 1071 prev = -1; 1072 swap_list_lock(); 1073 for (type = swap_list.head; type >= 0; type = swap_info[type].next) { 1074 p = swap_info + type; 1075 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) { 1076 if (p->swap_file->f_mapping == mapping) 1077 break; 1078 } 1079 prev = type; 1080 } 1081 if (type < 0) { 1082 err = -EINVAL; 1083 swap_list_unlock(); 1084 goto out_dput; 1085 } 1086 if (!security_vm_enough_memory(p->pages)) 1087 vm_unacct_memory(p->pages); 1088 else { 1089 err = -ENOMEM; 1090 swap_list_unlock(); 1091 goto out_dput; 1092 } 1093 if (prev < 0) { 1094 swap_list.head = p->next; 1095 } else { 1096 swap_info[prev].next = p->next; 1097 } 1098 if (type == swap_list.next) { 1099 /* just pick something that's safe... */ 1100 swap_list.next = swap_list.head; 1101 } 1102 nr_swap_pages -= p->pages; 1103 total_swap_pages -= p->pages; 1104 p->flags &= ~SWP_WRITEOK; 1105 swap_list_unlock(); 1106 current->flags |= PF_SWAPOFF; 1107 err = try_to_unuse(type); 1108 current->flags &= ~PF_SWAPOFF; 1109 1110 /* wait for any unplug function to finish */ 1111 down_write(&swap_unplug_sem); 1112 up_write(&swap_unplug_sem); 1113 1114 if (err) { 1115 /* re-insert swap space back into swap_list */ 1116 swap_list_lock(); 1117 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next) 1118 if (p->prio >= swap_info[i].prio) 1119 break; 1120 p->next = i; 1121 if (prev < 0) 1122 swap_list.head = swap_list.next = p - swap_info; 1123 else 1124 swap_info[prev].next = p - swap_info; 1125 nr_swap_pages += p->pages; 1126 total_swap_pages += p->pages; 1127 p->flags |= SWP_WRITEOK; 1128 swap_list_unlock(); 1129 goto out_dput; 1130 } 1131 down(&swapon_sem); 1132 swap_list_lock(); 1133 drain_mmlist(); 1134 swap_device_lock(p); 1135 swap_file = p->swap_file; 1136 p->swap_file = NULL; 1137 p->max = 0; 1138 swap_map = p->swap_map; 1139 p->swap_map = NULL; 1140 p->flags = 0; 1141 destroy_swap_extents(p); 1142 swap_device_unlock(p); 1143 swap_list_unlock(); 1144 up(&swapon_sem); 1145 vfree(swap_map); 1146 inode = mapping->host; 1147 if (S_ISBLK(inode->i_mode)) { 1148 struct block_device *bdev = I_BDEV(inode); 1149 set_blocksize(bdev, p->old_block_size); 1150 bd_release(bdev); 1151 } else { 1152 down(&inode->i_sem); 1153 inode->i_flags &= ~S_SWAPFILE; 1154 up(&inode->i_sem); 1155 } 1156 filp_close(swap_file, NULL); 1157 err = 0; 1158 1159 out_dput: 1160 filp_close(victim, NULL); 1161 out: 1162 return err; 1163 } 1164 1165 #ifdef CONFIG_PROC_FS 1166 /* iterator */ 1167 static void *swap_start(struct seq_file *swap, loff_t *pos) 1168 { 1169 struct swap_info_struct *ptr = swap_info; 1170 int i; 1171 loff_t l = *pos; 1172 1173 down(&swapon_sem); 1174 1175 for (i = 0; i < nr_swapfiles; i++, ptr++) { 1176 if (!(ptr->flags & SWP_USED) || !ptr->swap_map) 1177 continue; 1178 if (!l--) 1179 return ptr; 1180 } 1181 1182 return NULL; 1183 } 1184 1185 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 1186 { 1187 struct swap_info_struct *ptr = v; 1188 struct swap_info_struct *endptr = swap_info + nr_swapfiles; 1189 1190 for (++ptr; ptr < endptr; ptr++) { 1191 if (!(ptr->flags & SWP_USED) || !ptr->swap_map) 1192 continue; 1193 ++*pos; 1194 return ptr; 1195 } 1196 1197 return NULL; 1198 } 1199 1200 static void swap_stop(struct seq_file *swap, void *v) 1201 { 1202 up(&swapon_sem); 1203 } 1204 1205 static int swap_show(struct seq_file *swap, void *v) 1206 { 1207 struct swap_info_struct *ptr = v; 1208 struct file *file; 1209 int len; 1210 1211 if (v == swap_info) 1212 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 1213 1214 file = ptr->swap_file; 1215 len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\"); 1216 seq_printf(swap, "%*s%s\t%d\t%ld\t%d\n", 1217 len < 40 ? 40 - len : 1, " ", 1218 S_ISBLK(file->f_dentry->d_inode->i_mode) ? 1219 "partition" : "file\t", 1220 ptr->pages << (PAGE_SHIFT - 10), 1221 ptr->inuse_pages << (PAGE_SHIFT - 10), 1222 ptr->prio); 1223 return 0; 1224 } 1225 1226 static struct seq_operations swaps_op = { 1227 .start = swap_start, 1228 .next = swap_next, 1229 .stop = swap_stop, 1230 .show = swap_show 1231 }; 1232 1233 static int swaps_open(struct inode *inode, struct file *file) 1234 { 1235 return seq_open(file, &swaps_op); 1236 } 1237 1238 static struct file_operations proc_swaps_operations = { 1239 .open = swaps_open, 1240 .read = seq_read, 1241 .llseek = seq_lseek, 1242 .release = seq_release, 1243 }; 1244 1245 static int __init procswaps_init(void) 1246 { 1247 struct proc_dir_entry *entry; 1248 1249 entry = create_proc_entry("swaps", 0, NULL); 1250 if (entry) 1251 entry->proc_fops = &proc_swaps_operations; 1252 return 0; 1253 } 1254 __initcall(procswaps_init); 1255 #endif /* CONFIG_PROC_FS */ 1256 1257 /* 1258 * Written 01/25/92 by Simmule Turner, heavily changed by Linus. 1259 * 1260 * The swapon system call 1261 */ 1262 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) 1263 { 1264 struct swap_info_struct * p; 1265 char *name = NULL; 1266 struct block_device *bdev = NULL; 1267 struct file *swap_file = NULL; 1268 struct address_space *mapping; 1269 unsigned int type; 1270 int i, prev; 1271 int error; 1272 static int least_priority; 1273 union swap_header *swap_header = NULL; 1274 int swap_header_version; 1275 int nr_good_pages = 0; 1276 unsigned long maxpages = 1; 1277 int swapfilesize; 1278 unsigned short *swap_map; 1279 struct page *page = NULL; 1280 struct inode *inode = NULL; 1281 int did_down = 0; 1282 1283 if (!capable(CAP_SYS_ADMIN)) 1284 return -EPERM; 1285 swap_list_lock(); 1286 p = swap_info; 1287 for (type = 0 ; type < nr_swapfiles ; type++,p++) 1288 if (!(p->flags & SWP_USED)) 1289 break; 1290 error = -EPERM; 1291 /* 1292 * Test if adding another swap device is possible. There are 1293 * two limiting factors: 1) the number of bits for the swap 1294 * type swp_entry_t definition and 2) the number of bits for 1295 * the swap type in the swap ptes as defined by the different 1296 * architectures. To honor both limitations a swap entry 1297 * with swap offset 0 and swap type ~0UL is created, encoded 1298 * to a swap pte, decoded to a swp_entry_t again and finally 1299 * the swap type part is extracted. This will mask all bits 1300 * from the initial ~0UL that can't be encoded in either the 1301 * swp_entry_t or the architecture definition of a swap pte. 1302 */ 1303 if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) { 1304 swap_list_unlock(); 1305 goto out; 1306 } 1307 if (type >= nr_swapfiles) 1308 nr_swapfiles = type+1; 1309 INIT_LIST_HEAD(&p->extent_list); 1310 p->flags = SWP_USED; 1311 p->nr_extents = 0; 1312 p->swap_file = NULL; 1313 p->old_block_size = 0; 1314 p->swap_map = NULL; 1315 p->lowest_bit = 0; 1316 p->highest_bit = 0; 1317 p->cluster_nr = 0; 1318 p->inuse_pages = 0; 1319 spin_lock_init(&p->sdev_lock); 1320 p->next = -1; 1321 if (swap_flags & SWAP_FLAG_PREFER) { 1322 p->prio = 1323 (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT; 1324 } else { 1325 p->prio = --least_priority; 1326 } 1327 swap_list_unlock(); 1328 name = getname(specialfile); 1329 error = PTR_ERR(name); 1330 if (IS_ERR(name)) { 1331 name = NULL; 1332 goto bad_swap_2; 1333 } 1334 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); 1335 error = PTR_ERR(swap_file); 1336 if (IS_ERR(swap_file)) { 1337 swap_file = NULL; 1338 goto bad_swap_2; 1339 } 1340 1341 p->swap_file = swap_file; 1342 mapping = swap_file->f_mapping; 1343 inode = mapping->host; 1344 1345 error = -EBUSY; 1346 for (i = 0; i < nr_swapfiles; i++) { 1347 struct swap_info_struct *q = &swap_info[i]; 1348 1349 if (i == type || !q->swap_file) 1350 continue; 1351 if (mapping == q->swap_file->f_mapping) 1352 goto bad_swap; 1353 } 1354 1355 error = -EINVAL; 1356 if (S_ISBLK(inode->i_mode)) { 1357 bdev = I_BDEV(inode); 1358 error = bd_claim(bdev, sys_swapon); 1359 if (error < 0) { 1360 bdev = NULL; 1361 goto bad_swap; 1362 } 1363 p->old_block_size = block_size(bdev); 1364 error = set_blocksize(bdev, PAGE_SIZE); 1365 if (error < 0) 1366 goto bad_swap; 1367 p->bdev = bdev; 1368 } else if (S_ISREG(inode->i_mode)) { 1369 p->bdev = inode->i_sb->s_bdev; 1370 down(&inode->i_sem); 1371 did_down = 1; 1372 if (IS_SWAPFILE(inode)) { 1373 error = -EBUSY; 1374 goto bad_swap; 1375 } 1376 } else { 1377 goto bad_swap; 1378 } 1379 1380 swapfilesize = i_size_read(inode) >> PAGE_SHIFT; 1381 1382 /* 1383 * Read the swap header. 1384 */ 1385 if (!mapping->a_ops->readpage) { 1386 error = -EINVAL; 1387 goto bad_swap; 1388 } 1389 page = read_cache_page(mapping, 0, 1390 (filler_t *)mapping->a_ops->readpage, swap_file); 1391 if (IS_ERR(page)) { 1392 error = PTR_ERR(page); 1393 goto bad_swap; 1394 } 1395 wait_on_page_locked(page); 1396 if (!PageUptodate(page)) 1397 goto bad_swap; 1398 kmap(page); 1399 swap_header = page_address(page); 1400 1401 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10)) 1402 swap_header_version = 1; 1403 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10)) 1404 swap_header_version = 2; 1405 else { 1406 printk("Unable to find swap-space signature\n"); 1407 error = -EINVAL; 1408 goto bad_swap; 1409 } 1410 1411 switch (swap_header_version) { 1412 case 1: 1413 printk(KERN_ERR "version 0 swap is no longer supported. " 1414 "Use mkswap -v1 %s\n", name); 1415 error = -EINVAL; 1416 goto bad_swap; 1417 case 2: 1418 /* Check the swap header's sub-version and the size of 1419 the swap file and bad block lists */ 1420 if (swap_header->info.version != 1) { 1421 printk(KERN_WARNING 1422 "Unable to handle swap header version %d\n", 1423 swap_header->info.version); 1424 error = -EINVAL; 1425 goto bad_swap; 1426 } 1427 1428 p->lowest_bit = 1; 1429 /* 1430 * Find out how many pages are allowed for a single swap 1431 * device. There are two limiting factors: 1) the number of 1432 * bits for the swap offset in the swp_entry_t type and 1433 * 2) the number of bits in the a swap pte as defined by 1434 * the different architectures. In order to find the 1435 * largest possible bit mask a swap entry with swap type 0 1436 * and swap offset ~0UL is created, encoded to a swap pte, 1437 * decoded to a swp_entry_t again and finally the swap 1438 * offset is extracted. This will mask all the bits from 1439 * the initial ~0UL mask that can't be encoded in either 1440 * the swp_entry_t or the architecture definition of a 1441 * swap pte. 1442 */ 1443 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1; 1444 if (maxpages > swap_header->info.last_page) 1445 maxpages = swap_header->info.last_page; 1446 p->highest_bit = maxpages - 1; 1447 1448 error = -EINVAL; 1449 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 1450 goto bad_swap; 1451 1452 /* OK, set up the swap map and apply the bad block list */ 1453 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) { 1454 error = -ENOMEM; 1455 goto bad_swap; 1456 } 1457 1458 error = 0; 1459 memset(p->swap_map, 0, maxpages * sizeof(short)); 1460 for (i=0; i<swap_header->info.nr_badpages; i++) { 1461 int page = swap_header->info.badpages[i]; 1462 if (page <= 0 || page >= swap_header->info.last_page) 1463 error = -EINVAL; 1464 else 1465 p->swap_map[page] = SWAP_MAP_BAD; 1466 } 1467 nr_good_pages = swap_header->info.last_page - 1468 swap_header->info.nr_badpages - 1469 1 /* header page */; 1470 if (error) 1471 goto bad_swap; 1472 } 1473 1474 if (swapfilesize && maxpages > swapfilesize) { 1475 printk(KERN_WARNING 1476 "Swap area shorter than signature indicates\n"); 1477 error = -EINVAL; 1478 goto bad_swap; 1479 } 1480 if (!nr_good_pages) { 1481 printk(KERN_WARNING "Empty swap-file\n"); 1482 error = -EINVAL; 1483 goto bad_swap; 1484 } 1485 p->swap_map[0] = SWAP_MAP_BAD; 1486 p->max = maxpages; 1487 p->pages = nr_good_pages; 1488 1489 error = setup_swap_extents(p); 1490 if (error) 1491 goto bad_swap; 1492 1493 down(&swapon_sem); 1494 swap_list_lock(); 1495 swap_device_lock(p); 1496 p->flags = SWP_ACTIVE; 1497 nr_swap_pages += nr_good_pages; 1498 total_swap_pages += nr_good_pages; 1499 printk(KERN_INFO "Adding %dk swap on %s. Priority:%d extents:%d\n", 1500 nr_good_pages<<(PAGE_SHIFT-10), name, 1501 p->prio, p->nr_extents); 1502 1503 /* insert swap space into swap_list: */ 1504 prev = -1; 1505 for (i = swap_list.head; i >= 0; i = swap_info[i].next) { 1506 if (p->prio >= swap_info[i].prio) { 1507 break; 1508 } 1509 prev = i; 1510 } 1511 p->next = i; 1512 if (prev < 0) { 1513 swap_list.head = swap_list.next = p - swap_info; 1514 } else { 1515 swap_info[prev].next = p - swap_info; 1516 } 1517 swap_device_unlock(p); 1518 swap_list_unlock(); 1519 up(&swapon_sem); 1520 error = 0; 1521 goto out; 1522 bad_swap: 1523 if (bdev) { 1524 set_blocksize(bdev, p->old_block_size); 1525 bd_release(bdev); 1526 } 1527 bad_swap_2: 1528 swap_list_lock(); 1529 swap_map = p->swap_map; 1530 p->swap_file = NULL; 1531 p->swap_map = NULL; 1532 p->flags = 0; 1533 if (!(swap_flags & SWAP_FLAG_PREFER)) 1534 ++least_priority; 1535 swap_list_unlock(); 1536 destroy_swap_extents(p); 1537 vfree(swap_map); 1538 if (swap_file) 1539 filp_close(swap_file, NULL); 1540 out: 1541 if (page && !IS_ERR(page)) { 1542 kunmap(page); 1543 page_cache_release(page); 1544 } 1545 if (name) 1546 putname(name); 1547 if (did_down) { 1548 if (!error) 1549 inode->i_flags |= S_SWAPFILE; 1550 up(&inode->i_sem); 1551 } 1552 return error; 1553 } 1554 1555 void si_swapinfo(struct sysinfo *val) 1556 { 1557 unsigned int i; 1558 unsigned long nr_to_be_unused = 0; 1559 1560 swap_list_lock(); 1561 for (i = 0; i < nr_swapfiles; i++) { 1562 if (!(swap_info[i].flags & SWP_USED) || 1563 (swap_info[i].flags & SWP_WRITEOK)) 1564 continue; 1565 nr_to_be_unused += swap_info[i].inuse_pages; 1566 } 1567 val->freeswap = nr_swap_pages + nr_to_be_unused; 1568 val->totalswap = total_swap_pages + nr_to_be_unused; 1569 swap_list_unlock(); 1570 } 1571 1572 /* 1573 * Verify that a swap entry is valid and increment its swap map count. 1574 * 1575 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as 1576 * "permanent", but will be reclaimed by the next swapoff. 1577 */ 1578 int swap_duplicate(swp_entry_t entry) 1579 { 1580 struct swap_info_struct * p; 1581 unsigned long offset, type; 1582 int result = 0; 1583 1584 type = swp_type(entry); 1585 if (type >= nr_swapfiles) 1586 goto bad_file; 1587 p = type + swap_info; 1588 offset = swp_offset(entry); 1589 1590 swap_device_lock(p); 1591 if (offset < p->max && p->swap_map[offset]) { 1592 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) { 1593 p->swap_map[offset]++; 1594 result = 1; 1595 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) { 1596 if (swap_overflow++ < 5) 1597 printk(KERN_WARNING "swap_dup: swap entry overflow\n"); 1598 p->swap_map[offset] = SWAP_MAP_MAX; 1599 result = 1; 1600 } 1601 } 1602 swap_device_unlock(p); 1603 out: 1604 return result; 1605 1606 bad_file: 1607 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); 1608 goto out; 1609 } 1610 1611 struct swap_info_struct * 1612 get_swap_info_struct(unsigned type) 1613 { 1614 return &swap_info[type]; 1615 } 1616 1617 /* 1618 * swap_device_lock prevents swap_map being freed. Don't grab an extra 1619 * reference on the swaphandle, it doesn't matter if it becomes unused. 1620 */ 1621 int valid_swaphandles(swp_entry_t entry, unsigned long *offset) 1622 { 1623 int ret = 0, i = 1 << page_cluster; 1624 unsigned long toff; 1625 struct swap_info_struct *swapdev = swp_type(entry) + swap_info; 1626 1627 if (!page_cluster) /* no readahead */ 1628 return 0; 1629 toff = (swp_offset(entry) >> page_cluster) << page_cluster; 1630 if (!toff) /* first page is swap header */ 1631 toff++, i--; 1632 *offset = toff; 1633 1634 swap_device_lock(swapdev); 1635 do { 1636 /* Don't read-ahead past the end of the swap area */ 1637 if (toff >= swapdev->max) 1638 break; 1639 /* Don't read in free or bad pages */ 1640 if (!swapdev->swap_map[toff]) 1641 break; 1642 if (swapdev->swap_map[toff] == SWAP_MAP_BAD) 1643 break; 1644 toff++; 1645 ret++; 1646 } while (--i); 1647 swap_device_unlock(swapdev); 1648 return ret; 1649 } 1650