xref: /openbmc/linux/mm/swapfile.c (revision b0d9bcd4bb79a7834f8492f2ae5c2655a551f23d)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/config.h>
9 #include <linux/mm.h>
10 #include <linux/hugetlb.h>
11 #include <linux/mman.h>
12 #include <linux/slab.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/swap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/shm.h>
19 #include <linux/blkdev.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/syscalls.h>
29 
30 #include <asm/pgtable.h>
31 #include <asm/tlbflush.h>
32 #include <linux/swapops.h>
33 
34 DEFINE_SPINLOCK(swaplock);
35 unsigned int nr_swapfiles;
36 long total_swap_pages;
37 static int swap_overflow;
38 
39 EXPORT_SYMBOL(total_swap_pages);
40 
41 static const char Bad_file[] = "Bad swap file entry ";
42 static const char Unused_file[] = "Unused swap file entry ";
43 static const char Bad_offset[] = "Bad swap offset entry ";
44 static const char Unused_offset[] = "Unused swap offset entry ";
45 
46 struct swap_list_t swap_list = {-1, -1};
47 
48 struct swap_info_struct swap_info[MAX_SWAPFILES];
49 
50 static DECLARE_MUTEX(swapon_sem);
51 
52 /*
53  * We need this because the bdev->unplug_fn can sleep and we cannot
54  * hold swap_list_lock while calling the unplug_fn. And swap_list_lock
55  * cannot be turned into a semaphore.
56  */
57 static DECLARE_RWSEM(swap_unplug_sem);
58 
59 #define SWAPFILE_CLUSTER 256
60 
61 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
62 {
63 	swp_entry_t entry;
64 
65 	down_read(&swap_unplug_sem);
66 	entry.val = page->private;
67 	if (PageSwapCache(page)) {
68 		struct block_device *bdev = swap_info[swp_type(entry)].bdev;
69 		struct backing_dev_info *bdi;
70 
71 		/*
72 		 * If the page is removed from swapcache from under us (with a
73 		 * racy try_to_unuse/swapoff) we need an additional reference
74 		 * count to avoid reading garbage from page->private above. If
75 		 * the WARN_ON triggers during a swapoff it maybe the race
76 		 * condition and it's harmless. However if it triggers without
77 		 * swapoff it signals a problem.
78 		 */
79 		WARN_ON(page_count(page) <= 1);
80 
81 		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
82 		blk_run_backing_dev(bdi, page);
83 	}
84 	up_read(&swap_unplug_sem);
85 }
86 
87 static inline int scan_swap_map(struct swap_info_struct *si)
88 {
89 	unsigned long offset;
90 	/*
91 	 * We try to cluster swap pages by allocating them
92 	 * sequentially in swap.  Once we've allocated
93 	 * SWAPFILE_CLUSTER pages this way, however, we resort to
94 	 * first-free allocation, starting a new cluster.  This
95 	 * prevents us from scattering swap pages all over the entire
96 	 * swap partition, so that we reduce overall disk seek times
97 	 * between swap pages.  -- sct */
98 	if (si->cluster_nr) {
99 		while (si->cluster_next <= si->highest_bit) {
100 			offset = si->cluster_next++;
101 			if (si->swap_map[offset])
102 				continue;
103 			si->cluster_nr--;
104 			goto got_page;
105 		}
106 	}
107 	si->cluster_nr = SWAPFILE_CLUSTER;
108 
109 	/* try to find an empty (even not aligned) cluster. */
110 	offset = si->lowest_bit;
111  check_next_cluster:
112 	if (offset+SWAPFILE_CLUSTER-1 <= si->highest_bit)
113 	{
114 		unsigned long nr;
115 		for (nr = offset; nr < offset+SWAPFILE_CLUSTER; nr++)
116 			if (si->swap_map[nr])
117 			{
118 				offset = nr+1;
119 				goto check_next_cluster;
120 			}
121 		/* We found a completly empty cluster, so start
122 		 * using it.
123 		 */
124 		goto got_page;
125 	}
126 	/* No luck, so now go finegrined as usual. -Andrea */
127 	for (offset = si->lowest_bit; offset <= si->highest_bit ; offset++) {
128 		if (si->swap_map[offset])
129 			continue;
130 		si->lowest_bit = offset+1;
131 	got_page:
132 		if (offset == si->lowest_bit)
133 			si->lowest_bit++;
134 		if (offset == si->highest_bit)
135 			si->highest_bit--;
136 		if (si->lowest_bit > si->highest_bit) {
137 			si->lowest_bit = si->max;
138 			si->highest_bit = 0;
139 		}
140 		si->swap_map[offset] = 1;
141 		si->inuse_pages++;
142 		nr_swap_pages--;
143 		si->cluster_next = offset+1;
144 		return offset;
145 	}
146 	si->lowest_bit = si->max;
147 	si->highest_bit = 0;
148 	return 0;
149 }
150 
151 swp_entry_t get_swap_page(void)
152 {
153 	struct swap_info_struct * p;
154 	unsigned long offset;
155 	swp_entry_t entry;
156 	int type, wrapped = 0;
157 
158 	entry.val = 0;	/* Out of memory */
159 	swap_list_lock();
160 	type = swap_list.next;
161 	if (type < 0)
162 		goto out;
163 	if (nr_swap_pages <= 0)
164 		goto out;
165 
166 	while (1) {
167 		p = &swap_info[type];
168 		if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
169 			swap_device_lock(p);
170 			offset = scan_swap_map(p);
171 			swap_device_unlock(p);
172 			if (offset) {
173 				entry = swp_entry(type,offset);
174 				type = swap_info[type].next;
175 				if (type < 0 ||
176 					p->prio != swap_info[type].prio) {
177 						swap_list.next = swap_list.head;
178 				} else {
179 					swap_list.next = type;
180 				}
181 				goto out;
182 			}
183 		}
184 		type = p->next;
185 		if (!wrapped) {
186 			if (type < 0 || p->prio != swap_info[type].prio) {
187 				type = swap_list.head;
188 				wrapped = 1;
189 			}
190 		} else
191 			if (type < 0)
192 				goto out;	/* out of swap space */
193 	}
194 out:
195 	swap_list_unlock();
196 	return entry;
197 }
198 
199 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
200 {
201 	struct swap_info_struct * p;
202 	unsigned long offset, type;
203 
204 	if (!entry.val)
205 		goto out;
206 	type = swp_type(entry);
207 	if (type >= nr_swapfiles)
208 		goto bad_nofile;
209 	p = & swap_info[type];
210 	if (!(p->flags & SWP_USED))
211 		goto bad_device;
212 	offset = swp_offset(entry);
213 	if (offset >= p->max)
214 		goto bad_offset;
215 	if (!p->swap_map[offset])
216 		goto bad_free;
217 	swap_list_lock();
218 	if (p->prio > swap_info[swap_list.next].prio)
219 		swap_list.next = type;
220 	swap_device_lock(p);
221 	return p;
222 
223 bad_free:
224 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
225 	goto out;
226 bad_offset:
227 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
228 	goto out;
229 bad_device:
230 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
231 	goto out;
232 bad_nofile:
233 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
234 out:
235 	return NULL;
236 }
237 
238 static void swap_info_put(struct swap_info_struct * p)
239 {
240 	swap_device_unlock(p);
241 	swap_list_unlock();
242 }
243 
244 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
245 {
246 	int count = p->swap_map[offset];
247 
248 	if (count < SWAP_MAP_MAX) {
249 		count--;
250 		p->swap_map[offset] = count;
251 		if (!count) {
252 			if (offset < p->lowest_bit)
253 				p->lowest_bit = offset;
254 			if (offset > p->highest_bit)
255 				p->highest_bit = offset;
256 			nr_swap_pages++;
257 			p->inuse_pages--;
258 		}
259 	}
260 	return count;
261 }
262 
263 /*
264  * Caller has made sure that the swapdevice corresponding to entry
265  * is still around or has not been recycled.
266  */
267 void swap_free(swp_entry_t entry)
268 {
269 	struct swap_info_struct * p;
270 
271 	p = swap_info_get(entry);
272 	if (p) {
273 		swap_entry_free(p, swp_offset(entry));
274 		swap_info_put(p);
275 	}
276 }
277 
278 /*
279  * How many references to page are currently swapped out?
280  */
281 static inline int page_swapcount(struct page *page)
282 {
283 	int count = 0;
284 	struct swap_info_struct *p;
285 	swp_entry_t entry;
286 
287 	entry.val = page->private;
288 	p = swap_info_get(entry);
289 	if (p) {
290 		/* Subtract the 1 for the swap cache itself */
291 		count = p->swap_map[swp_offset(entry)] - 1;
292 		swap_info_put(p);
293 	}
294 	return count;
295 }
296 
297 /*
298  * We can use this swap cache entry directly
299  * if there are no other references to it.
300  */
301 int can_share_swap_page(struct page *page)
302 {
303 	int count;
304 
305 	BUG_ON(!PageLocked(page));
306 	count = page_mapcount(page);
307 	if (count <= 1 && PageSwapCache(page))
308 		count += page_swapcount(page);
309 	return count == 1;
310 }
311 
312 /*
313  * Work out if there are any other processes sharing this
314  * swap cache page. Free it if you can. Return success.
315  */
316 int remove_exclusive_swap_page(struct page *page)
317 {
318 	int retval;
319 	struct swap_info_struct * p;
320 	swp_entry_t entry;
321 
322 	BUG_ON(PagePrivate(page));
323 	BUG_ON(!PageLocked(page));
324 
325 	if (!PageSwapCache(page))
326 		return 0;
327 	if (PageWriteback(page))
328 		return 0;
329 	if (page_count(page) != 2) /* 2: us + cache */
330 		return 0;
331 
332 	entry.val = page->private;
333 	p = swap_info_get(entry);
334 	if (!p)
335 		return 0;
336 
337 	/* Is the only swap cache user the cache itself? */
338 	retval = 0;
339 	if (p->swap_map[swp_offset(entry)] == 1) {
340 		/* Recheck the page count with the swapcache lock held.. */
341 		write_lock_irq(&swapper_space.tree_lock);
342 		if ((page_count(page) == 2) && !PageWriteback(page)) {
343 			__delete_from_swap_cache(page);
344 			SetPageDirty(page);
345 			retval = 1;
346 		}
347 		write_unlock_irq(&swapper_space.tree_lock);
348 	}
349 	swap_info_put(p);
350 
351 	if (retval) {
352 		swap_free(entry);
353 		page_cache_release(page);
354 	}
355 
356 	return retval;
357 }
358 
359 /*
360  * Free the swap entry like above, but also try to
361  * free the page cache entry if it is the last user.
362  */
363 void free_swap_and_cache(swp_entry_t entry)
364 {
365 	struct swap_info_struct * p;
366 	struct page *page = NULL;
367 
368 	p = swap_info_get(entry);
369 	if (p) {
370 		if (swap_entry_free(p, swp_offset(entry)) == 1)
371 			page = find_trylock_page(&swapper_space, entry.val);
372 		swap_info_put(p);
373 	}
374 	if (page) {
375 		int one_user;
376 
377 		BUG_ON(PagePrivate(page));
378 		page_cache_get(page);
379 		one_user = (page_count(page) == 2);
380 		/* Only cache user (+us), or swap space full? Free it! */
381 		if (!PageWriteback(page) && (one_user || vm_swap_full())) {
382 			delete_from_swap_cache(page);
383 			SetPageDirty(page);
384 		}
385 		unlock_page(page);
386 		page_cache_release(page);
387 	}
388 }
389 
390 /*
391  * Always set the resulting pte to be nowrite (the same as COW pages
392  * after one process has exited).  We don't know just how many PTEs will
393  * share this swap entry, so be cautious and let do_wp_page work out
394  * what to do if a write is requested later.
395  *
396  * vma->vm_mm->page_table_lock is held.
397  */
398 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
399 		unsigned long addr, swp_entry_t entry, struct page *page)
400 {
401 	inc_mm_counter(vma->vm_mm, rss);
402 	get_page(page);
403 	set_pte_at(vma->vm_mm, addr, pte,
404 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
405 	page_add_anon_rmap(page, vma, addr);
406 	swap_free(entry);
407 	/*
408 	 * Move the page to the active list so it is not
409 	 * immediately swapped out again after swapon.
410 	 */
411 	activate_page(page);
412 }
413 
414 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
415 				unsigned long addr, unsigned long end,
416 				swp_entry_t entry, struct page *page)
417 {
418 	pte_t *pte;
419 	pte_t swp_pte = swp_entry_to_pte(entry);
420 
421 	pte = pte_offset_map(pmd, addr);
422 	do {
423 		/*
424 		 * swapoff spends a _lot_ of time in this loop!
425 		 * Test inline before going to call unuse_pte.
426 		 */
427 		if (unlikely(pte_same(*pte, swp_pte))) {
428 			unuse_pte(vma, pte, addr, entry, page);
429 			pte_unmap(pte);
430 			return 1;
431 		}
432 	} while (pte++, addr += PAGE_SIZE, addr != end);
433 	pte_unmap(pte - 1);
434 	return 0;
435 }
436 
437 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
438 				unsigned long addr, unsigned long end,
439 				swp_entry_t entry, struct page *page)
440 {
441 	pmd_t *pmd;
442 	unsigned long next;
443 
444 	pmd = pmd_offset(pud, addr);
445 	do {
446 		next = pmd_addr_end(addr, end);
447 		if (pmd_none_or_clear_bad(pmd))
448 			continue;
449 		if (unuse_pte_range(vma, pmd, addr, next, entry, page))
450 			return 1;
451 	} while (pmd++, addr = next, addr != end);
452 	return 0;
453 }
454 
455 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
456 				unsigned long addr, unsigned long end,
457 				swp_entry_t entry, struct page *page)
458 {
459 	pud_t *pud;
460 	unsigned long next;
461 
462 	pud = pud_offset(pgd, addr);
463 	do {
464 		next = pud_addr_end(addr, end);
465 		if (pud_none_or_clear_bad(pud))
466 			continue;
467 		if (unuse_pmd_range(vma, pud, addr, next, entry, page))
468 			return 1;
469 	} while (pud++, addr = next, addr != end);
470 	return 0;
471 }
472 
473 static int unuse_vma(struct vm_area_struct *vma,
474 				swp_entry_t entry, struct page *page)
475 {
476 	pgd_t *pgd;
477 	unsigned long addr, end, next;
478 
479 	if (page->mapping) {
480 		addr = page_address_in_vma(page, vma);
481 		if (addr == -EFAULT)
482 			return 0;
483 		else
484 			end = addr + PAGE_SIZE;
485 	} else {
486 		addr = vma->vm_start;
487 		end = vma->vm_end;
488 	}
489 
490 	pgd = pgd_offset(vma->vm_mm, addr);
491 	do {
492 		next = pgd_addr_end(addr, end);
493 		if (pgd_none_or_clear_bad(pgd))
494 			continue;
495 		if (unuse_pud_range(vma, pgd, addr, next, entry, page))
496 			return 1;
497 	} while (pgd++, addr = next, addr != end);
498 	return 0;
499 }
500 
501 static int unuse_mm(struct mm_struct *mm,
502 				swp_entry_t entry, struct page *page)
503 {
504 	struct vm_area_struct *vma;
505 
506 	if (!down_read_trylock(&mm->mmap_sem)) {
507 		/*
508 		 * Activate page so shrink_cache is unlikely to unmap its
509 		 * ptes while lock is dropped, so swapoff can make progress.
510 		 */
511 		activate_page(page);
512 		unlock_page(page);
513 		down_read(&mm->mmap_sem);
514 		lock_page(page);
515 	}
516 	spin_lock(&mm->page_table_lock);
517 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
518 		if (vma->anon_vma && unuse_vma(vma, entry, page))
519 			break;
520 	}
521 	spin_unlock(&mm->page_table_lock);
522 	up_read(&mm->mmap_sem);
523 	/*
524 	 * Currently unuse_mm cannot fail, but leave error handling
525 	 * at call sites for now, since we change it from time to time.
526 	 */
527 	return 0;
528 }
529 
530 /*
531  * Scan swap_map from current position to next entry still in use.
532  * Recycle to start on reaching the end, returning 0 when empty.
533  */
534 static int find_next_to_unuse(struct swap_info_struct *si, int prev)
535 {
536 	int max = si->max;
537 	int i = prev;
538 	int count;
539 
540 	/*
541 	 * No need for swap_device_lock(si) here: we're just looking
542 	 * for whether an entry is in use, not modifying it; false
543 	 * hits are okay, and sys_swapoff() has already prevented new
544 	 * allocations from this area (while holding swap_list_lock()).
545 	 */
546 	for (;;) {
547 		if (++i >= max) {
548 			if (!prev) {
549 				i = 0;
550 				break;
551 			}
552 			/*
553 			 * No entries in use at top of swap_map,
554 			 * loop back to start and recheck there.
555 			 */
556 			max = prev + 1;
557 			prev = 0;
558 			i = 1;
559 		}
560 		count = si->swap_map[i];
561 		if (count && count != SWAP_MAP_BAD)
562 			break;
563 	}
564 	return i;
565 }
566 
567 /*
568  * We completely avoid races by reading each swap page in advance,
569  * and then search for the process using it.  All the necessary
570  * page table adjustments can then be made atomically.
571  */
572 static int try_to_unuse(unsigned int type)
573 {
574 	struct swap_info_struct * si = &swap_info[type];
575 	struct mm_struct *start_mm;
576 	unsigned short *swap_map;
577 	unsigned short swcount;
578 	struct page *page;
579 	swp_entry_t entry;
580 	int i = 0;
581 	int retval = 0;
582 	int reset_overflow = 0;
583 	int shmem;
584 
585 	/*
586 	 * When searching mms for an entry, a good strategy is to
587 	 * start at the first mm we freed the previous entry from
588 	 * (though actually we don't notice whether we or coincidence
589 	 * freed the entry).  Initialize this start_mm with a hold.
590 	 *
591 	 * A simpler strategy would be to start at the last mm we
592 	 * freed the previous entry from; but that would take less
593 	 * advantage of mmlist ordering, which clusters forked mms
594 	 * together, child after parent.  If we race with dup_mmap(), we
595 	 * prefer to resolve parent before child, lest we miss entries
596 	 * duplicated after we scanned child: using last mm would invert
597 	 * that.  Though it's only a serious concern when an overflowed
598 	 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
599 	 */
600 	start_mm = &init_mm;
601 	atomic_inc(&init_mm.mm_users);
602 
603 	/*
604 	 * Keep on scanning until all entries have gone.  Usually,
605 	 * one pass through swap_map is enough, but not necessarily:
606 	 * there are races when an instance of an entry might be missed.
607 	 */
608 	while ((i = find_next_to_unuse(si, i)) != 0) {
609 		if (signal_pending(current)) {
610 			retval = -EINTR;
611 			break;
612 		}
613 
614 		/*
615 		 * Get a page for the entry, using the existing swap
616 		 * cache page if there is one.  Otherwise, get a clean
617 		 * page and read the swap into it.
618 		 */
619 		swap_map = &si->swap_map[i];
620 		entry = swp_entry(type, i);
621 		page = read_swap_cache_async(entry, NULL, 0);
622 		if (!page) {
623 			/*
624 			 * Either swap_duplicate() failed because entry
625 			 * has been freed independently, and will not be
626 			 * reused since sys_swapoff() already disabled
627 			 * allocation from here, or alloc_page() failed.
628 			 */
629 			if (!*swap_map)
630 				continue;
631 			retval = -ENOMEM;
632 			break;
633 		}
634 
635 		/*
636 		 * Don't hold on to start_mm if it looks like exiting.
637 		 */
638 		if (atomic_read(&start_mm->mm_users) == 1) {
639 			mmput(start_mm);
640 			start_mm = &init_mm;
641 			atomic_inc(&init_mm.mm_users);
642 		}
643 
644 		/*
645 		 * Wait for and lock page.  When do_swap_page races with
646 		 * try_to_unuse, do_swap_page can handle the fault much
647 		 * faster than try_to_unuse can locate the entry.  This
648 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
649 		 * defer to do_swap_page in such a case - in some tests,
650 		 * do_swap_page and try_to_unuse repeatedly compete.
651 		 */
652 		wait_on_page_locked(page);
653 		wait_on_page_writeback(page);
654 		lock_page(page);
655 		wait_on_page_writeback(page);
656 
657 		/*
658 		 * Remove all references to entry.
659 		 * Whenever we reach init_mm, there's no address space
660 		 * to search, but use it as a reminder to search shmem.
661 		 */
662 		shmem = 0;
663 		swcount = *swap_map;
664 		if (swcount > 1) {
665 			if (start_mm == &init_mm)
666 				shmem = shmem_unuse(entry, page);
667 			else
668 				retval = unuse_mm(start_mm, entry, page);
669 		}
670 		if (*swap_map > 1) {
671 			int set_start_mm = (*swap_map >= swcount);
672 			struct list_head *p = &start_mm->mmlist;
673 			struct mm_struct *new_start_mm = start_mm;
674 			struct mm_struct *prev_mm = start_mm;
675 			struct mm_struct *mm;
676 
677 			atomic_inc(&new_start_mm->mm_users);
678 			atomic_inc(&prev_mm->mm_users);
679 			spin_lock(&mmlist_lock);
680 			while (*swap_map > 1 && !retval &&
681 					(p = p->next) != &start_mm->mmlist) {
682 				mm = list_entry(p, struct mm_struct, mmlist);
683 				if (atomic_inc_return(&mm->mm_users) == 1) {
684 					atomic_dec(&mm->mm_users);
685 					continue;
686 				}
687 				spin_unlock(&mmlist_lock);
688 				mmput(prev_mm);
689 				prev_mm = mm;
690 
691 				cond_resched();
692 
693 				swcount = *swap_map;
694 				if (swcount <= 1)
695 					;
696 				else if (mm == &init_mm) {
697 					set_start_mm = 1;
698 					shmem = shmem_unuse(entry, page);
699 				} else
700 					retval = unuse_mm(mm, entry, page);
701 				if (set_start_mm && *swap_map < swcount) {
702 					mmput(new_start_mm);
703 					atomic_inc(&mm->mm_users);
704 					new_start_mm = mm;
705 					set_start_mm = 0;
706 				}
707 				spin_lock(&mmlist_lock);
708 			}
709 			spin_unlock(&mmlist_lock);
710 			mmput(prev_mm);
711 			mmput(start_mm);
712 			start_mm = new_start_mm;
713 		}
714 		if (retval) {
715 			unlock_page(page);
716 			page_cache_release(page);
717 			break;
718 		}
719 
720 		/*
721 		 * How could swap count reach 0x7fff when the maximum
722 		 * pid is 0x7fff, and there's no way to repeat a swap
723 		 * page within an mm (except in shmem, where it's the
724 		 * shared object which takes the reference count)?
725 		 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
726 		 *
727 		 * If that's wrong, then we should worry more about
728 		 * exit_mmap() and do_munmap() cases described above:
729 		 * we might be resetting SWAP_MAP_MAX too early here.
730 		 * We know "Undead"s can happen, they're okay, so don't
731 		 * report them; but do report if we reset SWAP_MAP_MAX.
732 		 */
733 		if (*swap_map == SWAP_MAP_MAX) {
734 			swap_device_lock(si);
735 			*swap_map = 1;
736 			swap_device_unlock(si);
737 			reset_overflow = 1;
738 		}
739 
740 		/*
741 		 * If a reference remains (rare), we would like to leave
742 		 * the page in the swap cache; but try_to_unmap could
743 		 * then re-duplicate the entry once we drop page lock,
744 		 * so we might loop indefinitely; also, that page could
745 		 * not be swapped out to other storage meanwhile.  So:
746 		 * delete from cache even if there's another reference,
747 		 * after ensuring that the data has been saved to disk -
748 		 * since if the reference remains (rarer), it will be
749 		 * read from disk into another page.  Splitting into two
750 		 * pages would be incorrect if swap supported "shared
751 		 * private" pages, but they are handled by tmpfs files.
752 		 *
753 		 * Note shmem_unuse already deleted a swappage from
754 		 * the swap cache, unless the move to filepage failed:
755 		 * in which case it left swappage in cache, lowered its
756 		 * swap count to pass quickly through the loops above,
757 		 * and now we must reincrement count to try again later.
758 		 */
759 		if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
760 			struct writeback_control wbc = {
761 				.sync_mode = WB_SYNC_NONE,
762 			};
763 
764 			swap_writepage(page, &wbc);
765 			lock_page(page);
766 			wait_on_page_writeback(page);
767 		}
768 		if (PageSwapCache(page)) {
769 			if (shmem)
770 				swap_duplicate(entry);
771 			else
772 				delete_from_swap_cache(page);
773 		}
774 
775 		/*
776 		 * So we could skip searching mms once swap count went
777 		 * to 1, we did not mark any present ptes as dirty: must
778 		 * mark page dirty so shrink_list will preserve it.
779 		 */
780 		SetPageDirty(page);
781 		unlock_page(page);
782 		page_cache_release(page);
783 
784 		/*
785 		 * Make sure that we aren't completely killing
786 		 * interactive performance.
787 		 */
788 		cond_resched();
789 	}
790 
791 	mmput(start_mm);
792 	if (reset_overflow) {
793 		printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
794 		swap_overflow = 0;
795 	}
796 	return retval;
797 }
798 
799 /*
800  * After a successful try_to_unuse, if no swap is now in use, we know we
801  * can empty the mmlist.  swap_list_lock must be held on entry and exit.
802  * Note that mmlist_lock nests inside swap_list_lock, and an mm must be
803  * added to the mmlist just after page_duplicate - before would be racy.
804  */
805 static void drain_mmlist(void)
806 {
807 	struct list_head *p, *next;
808 	unsigned int i;
809 
810 	for (i = 0; i < nr_swapfiles; i++)
811 		if (swap_info[i].inuse_pages)
812 			return;
813 	spin_lock(&mmlist_lock);
814 	list_for_each_safe(p, next, &init_mm.mmlist)
815 		list_del_init(p);
816 	spin_unlock(&mmlist_lock);
817 }
818 
819 /*
820  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
821  * corresponds to page offset `offset'.
822  */
823 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
824 {
825 	struct swap_extent *se = sis->curr_swap_extent;
826 	struct swap_extent *start_se = se;
827 
828 	for ( ; ; ) {
829 		struct list_head *lh;
830 
831 		if (se->start_page <= offset &&
832 				offset < (se->start_page + se->nr_pages)) {
833 			return se->start_block + (offset - se->start_page);
834 		}
835 		lh = se->list.prev;
836 		if (lh == &sis->extent_list)
837 			lh = lh->prev;
838 		se = list_entry(lh, struct swap_extent, list);
839 		sis->curr_swap_extent = se;
840 		BUG_ON(se == start_se);		/* It *must* be present */
841 	}
842 }
843 
844 /*
845  * Free all of a swapdev's extent information
846  */
847 static void destroy_swap_extents(struct swap_info_struct *sis)
848 {
849 	while (!list_empty(&sis->extent_list)) {
850 		struct swap_extent *se;
851 
852 		se = list_entry(sis->extent_list.next,
853 				struct swap_extent, list);
854 		list_del(&se->list);
855 		kfree(se);
856 	}
857 	sis->nr_extents = 0;
858 }
859 
860 /*
861  * Add a block range (and the corresponding page range) into this swapdev's
862  * extent list.  The extent list is kept sorted in block order.
863  *
864  * This function rather assumes that it is called in ascending sector_t order.
865  * It doesn't look for extent coalescing opportunities.
866  */
867 static int
868 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
869 		unsigned long nr_pages, sector_t start_block)
870 {
871 	struct swap_extent *se;
872 	struct swap_extent *new_se;
873 	struct list_head *lh;
874 
875 	lh = sis->extent_list.next;	/* The highest-addressed block */
876 	while (lh != &sis->extent_list) {
877 		se = list_entry(lh, struct swap_extent, list);
878 		if (se->start_block + se->nr_pages == start_block &&
879 		    se->start_page  + se->nr_pages == start_page) {
880 			/* Merge it */
881 			se->nr_pages += nr_pages;
882 			return 0;
883 		}
884 		lh = lh->next;
885 	}
886 
887 	/*
888 	 * No merge.  Insert a new extent, preserving ordering.
889 	 */
890 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
891 	if (new_se == NULL)
892 		return -ENOMEM;
893 	new_se->start_page = start_page;
894 	new_se->nr_pages = nr_pages;
895 	new_se->start_block = start_block;
896 
897 	lh = sis->extent_list.prev;	/* The lowest block */
898 	while (lh != &sis->extent_list) {
899 		se = list_entry(lh, struct swap_extent, list);
900 		if (se->start_block > start_block)
901 			break;
902 		lh = lh->prev;
903 	}
904 	list_add_tail(&new_se->list, lh);
905 	sis->nr_extents++;
906 	return 0;
907 }
908 
909 /*
910  * A `swap extent' is a simple thing which maps a contiguous range of pages
911  * onto a contiguous range of disk blocks.  An ordered list of swap extents
912  * is built at swapon time and is then used at swap_writepage/swap_readpage
913  * time for locating where on disk a page belongs.
914  *
915  * If the swapfile is an S_ISBLK block device, a single extent is installed.
916  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
917  * swap files identically.
918  *
919  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
920  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
921  * swapfiles are handled *identically* after swapon time.
922  *
923  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
924  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
925  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
926  * requirements, they are simply tossed out - we will never use those blocks
927  * for swapping.
928  *
929  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
930  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
931  * which will scribble on the fs.
932  *
933  * The amount of disk space which a single swap extent represents varies.
934  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
935  * extents in the list.  To avoid much list walking, we cache the previous
936  * search location in `curr_swap_extent', and start new searches from there.
937  * This is extremely effective.  The average number of iterations in
938  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
939  */
940 static int setup_swap_extents(struct swap_info_struct *sis)
941 {
942 	struct inode *inode;
943 	unsigned blocks_per_page;
944 	unsigned long page_no;
945 	unsigned blkbits;
946 	sector_t probe_block;
947 	sector_t last_block;
948 	int ret;
949 
950 	inode = sis->swap_file->f_mapping->host;
951 	if (S_ISBLK(inode->i_mode)) {
952 		ret = add_swap_extent(sis, 0, sis->max, 0);
953 		goto done;
954 	}
955 
956 	blkbits = inode->i_blkbits;
957 	blocks_per_page = PAGE_SIZE >> blkbits;
958 
959 	/*
960 	 * Map all the blocks into the extent list.  This code doesn't try
961 	 * to be very smart.
962 	 */
963 	probe_block = 0;
964 	page_no = 0;
965 	last_block = i_size_read(inode) >> blkbits;
966 	while ((probe_block + blocks_per_page) <= last_block &&
967 			page_no < sis->max) {
968 		unsigned block_in_page;
969 		sector_t first_block;
970 
971 		first_block = bmap(inode, probe_block);
972 		if (first_block == 0)
973 			goto bad_bmap;
974 
975 		/*
976 		 * It must be PAGE_SIZE aligned on-disk
977 		 */
978 		if (first_block & (blocks_per_page - 1)) {
979 			probe_block++;
980 			goto reprobe;
981 		}
982 
983 		for (block_in_page = 1; block_in_page < blocks_per_page;
984 					block_in_page++) {
985 			sector_t block;
986 
987 			block = bmap(inode, probe_block + block_in_page);
988 			if (block == 0)
989 				goto bad_bmap;
990 			if (block != first_block + block_in_page) {
991 				/* Discontiguity */
992 				probe_block++;
993 				goto reprobe;
994 			}
995 		}
996 
997 		/*
998 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
999 		 */
1000 		ret = add_swap_extent(sis, page_no, 1,
1001 				first_block >> (PAGE_SHIFT - blkbits));
1002 		if (ret)
1003 			goto out;
1004 		page_no++;
1005 		probe_block += blocks_per_page;
1006 reprobe:
1007 		continue;
1008 	}
1009 	ret = 0;
1010 	if (page_no == 0)
1011 		ret = -EINVAL;
1012 	sis->max = page_no;
1013 	sis->highest_bit = page_no - 1;
1014 done:
1015 	sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1016 					struct swap_extent, list);
1017 	goto out;
1018 bad_bmap:
1019 	printk(KERN_ERR "swapon: swapfile has holes\n");
1020 	ret = -EINVAL;
1021 out:
1022 	return ret;
1023 }
1024 
1025 #if 0	/* We don't need this yet */
1026 #include <linux/backing-dev.h>
1027 int page_queue_congested(struct page *page)
1028 {
1029 	struct backing_dev_info *bdi;
1030 
1031 	BUG_ON(!PageLocked(page));	/* It pins the swap_info_struct */
1032 
1033 	if (PageSwapCache(page)) {
1034 		swp_entry_t entry = { .val = page->private };
1035 		struct swap_info_struct *sis;
1036 
1037 		sis = get_swap_info_struct(swp_type(entry));
1038 		bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1039 	} else
1040 		bdi = page->mapping->backing_dev_info;
1041 	return bdi_write_congested(bdi);
1042 }
1043 #endif
1044 
1045 asmlinkage long sys_swapoff(const char __user * specialfile)
1046 {
1047 	struct swap_info_struct * p = NULL;
1048 	unsigned short *swap_map;
1049 	struct file *swap_file, *victim;
1050 	struct address_space *mapping;
1051 	struct inode *inode;
1052 	char * pathname;
1053 	int i, type, prev;
1054 	int err;
1055 
1056 	if (!capable(CAP_SYS_ADMIN))
1057 		return -EPERM;
1058 
1059 	pathname = getname(specialfile);
1060 	err = PTR_ERR(pathname);
1061 	if (IS_ERR(pathname))
1062 		goto out;
1063 
1064 	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1065 	putname(pathname);
1066 	err = PTR_ERR(victim);
1067 	if (IS_ERR(victim))
1068 		goto out;
1069 
1070 	mapping = victim->f_mapping;
1071 	prev = -1;
1072 	swap_list_lock();
1073 	for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1074 		p = swap_info + type;
1075 		if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1076 			if (p->swap_file->f_mapping == mapping)
1077 				break;
1078 		}
1079 		prev = type;
1080 	}
1081 	if (type < 0) {
1082 		err = -EINVAL;
1083 		swap_list_unlock();
1084 		goto out_dput;
1085 	}
1086 	if (!security_vm_enough_memory(p->pages))
1087 		vm_unacct_memory(p->pages);
1088 	else {
1089 		err = -ENOMEM;
1090 		swap_list_unlock();
1091 		goto out_dput;
1092 	}
1093 	if (prev < 0) {
1094 		swap_list.head = p->next;
1095 	} else {
1096 		swap_info[prev].next = p->next;
1097 	}
1098 	if (type == swap_list.next) {
1099 		/* just pick something that's safe... */
1100 		swap_list.next = swap_list.head;
1101 	}
1102 	nr_swap_pages -= p->pages;
1103 	total_swap_pages -= p->pages;
1104 	p->flags &= ~SWP_WRITEOK;
1105 	swap_list_unlock();
1106 	current->flags |= PF_SWAPOFF;
1107 	err = try_to_unuse(type);
1108 	current->flags &= ~PF_SWAPOFF;
1109 
1110 	/* wait for any unplug function to finish */
1111 	down_write(&swap_unplug_sem);
1112 	up_write(&swap_unplug_sem);
1113 
1114 	if (err) {
1115 		/* re-insert swap space back into swap_list */
1116 		swap_list_lock();
1117 		for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1118 			if (p->prio >= swap_info[i].prio)
1119 				break;
1120 		p->next = i;
1121 		if (prev < 0)
1122 			swap_list.head = swap_list.next = p - swap_info;
1123 		else
1124 			swap_info[prev].next = p - swap_info;
1125 		nr_swap_pages += p->pages;
1126 		total_swap_pages += p->pages;
1127 		p->flags |= SWP_WRITEOK;
1128 		swap_list_unlock();
1129 		goto out_dput;
1130 	}
1131 	down(&swapon_sem);
1132 	swap_list_lock();
1133 	drain_mmlist();
1134 	swap_device_lock(p);
1135 	swap_file = p->swap_file;
1136 	p->swap_file = NULL;
1137 	p->max = 0;
1138 	swap_map = p->swap_map;
1139 	p->swap_map = NULL;
1140 	p->flags = 0;
1141 	destroy_swap_extents(p);
1142 	swap_device_unlock(p);
1143 	swap_list_unlock();
1144 	up(&swapon_sem);
1145 	vfree(swap_map);
1146 	inode = mapping->host;
1147 	if (S_ISBLK(inode->i_mode)) {
1148 		struct block_device *bdev = I_BDEV(inode);
1149 		set_blocksize(bdev, p->old_block_size);
1150 		bd_release(bdev);
1151 	} else {
1152 		down(&inode->i_sem);
1153 		inode->i_flags &= ~S_SWAPFILE;
1154 		up(&inode->i_sem);
1155 	}
1156 	filp_close(swap_file, NULL);
1157 	err = 0;
1158 
1159 out_dput:
1160 	filp_close(victim, NULL);
1161 out:
1162 	return err;
1163 }
1164 
1165 #ifdef CONFIG_PROC_FS
1166 /* iterator */
1167 static void *swap_start(struct seq_file *swap, loff_t *pos)
1168 {
1169 	struct swap_info_struct *ptr = swap_info;
1170 	int i;
1171 	loff_t l = *pos;
1172 
1173 	down(&swapon_sem);
1174 
1175 	for (i = 0; i < nr_swapfiles; i++, ptr++) {
1176 		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1177 			continue;
1178 		if (!l--)
1179 			return ptr;
1180 	}
1181 
1182 	return NULL;
1183 }
1184 
1185 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1186 {
1187 	struct swap_info_struct *ptr = v;
1188 	struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1189 
1190 	for (++ptr; ptr < endptr; ptr++) {
1191 		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1192 			continue;
1193 		++*pos;
1194 		return ptr;
1195 	}
1196 
1197 	return NULL;
1198 }
1199 
1200 static void swap_stop(struct seq_file *swap, void *v)
1201 {
1202 	up(&swapon_sem);
1203 }
1204 
1205 static int swap_show(struct seq_file *swap, void *v)
1206 {
1207 	struct swap_info_struct *ptr = v;
1208 	struct file *file;
1209 	int len;
1210 
1211 	if (v == swap_info)
1212 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1213 
1214 	file = ptr->swap_file;
1215 	len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
1216 	seq_printf(swap, "%*s%s\t%d\t%ld\t%d\n",
1217 		       len < 40 ? 40 - len : 1, " ",
1218 		       S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1219 				"partition" : "file\t",
1220 		       ptr->pages << (PAGE_SHIFT - 10),
1221 		       ptr->inuse_pages << (PAGE_SHIFT - 10),
1222 		       ptr->prio);
1223 	return 0;
1224 }
1225 
1226 static struct seq_operations swaps_op = {
1227 	.start =	swap_start,
1228 	.next =		swap_next,
1229 	.stop =		swap_stop,
1230 	.show =		swap_show
1231 };
1232 
1233 static int swaps_open(struct inode *inode, struct file *file)
1234 {
1235 	return seq_open(file, &swaps_op);
1236 }
1237 
1238 static struct file_operations proc_swaps_operations = {
1239 	.open		= swaps_open,
1240 	.read		= seq_read,
1241 	.llseek		= seq_lseek,
1242 	.release	= seq_release,
1243 };
1244 
1245 static int __init procswaps_init(void)
1246 {
1247 	struct proc_dir_entry *entry;
1248 
1249 	entry = create_proc_entry("swaps", 0, NULL);
1250 	if (entry)
1251 		entry->proc_fops = &proc_swaps_operations;
1252 	return 0;
1253 }
1254 __initcall(procswaps_init);
1255 #endif /* CONFIG_PROC_FS */
1256 
1257 /*
1258  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1259  *
1260  * The swapon system call
1261  */
1262 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1263 {
1264 	struct swap_info_struct * p;
1265 	char *name = NULL;
1266 	struct block_device *bdev = NULL;
1267 	struct file *swap_file = NULL;
1268 	struct address_space *mapping;
1269 	unsigned int type;
1270 	int i, prev;
1271 	int error;
1272 	static int least_priority;
1273 	union swap_header *swap_header = NULL;
1274 	int swap_header_version;
1275 	int nr_good_pages = 0;
1276 	unsigned long maxpages = 1;
1277 	int swapfilesize;
1278 	unsigned short *swap_map;
1279 	struct page *page = NULL;
1280 	struct inode *inode = NULL;
1281 	int did_down = 0;
1282 
1283 	if (!capable(CAP_SYS_ADMIN))
1284 		return -EPERM;
1285 	swap_list_lock();
1286 	p = swap_info;
1287 	for (type = 0 ; type < nr_swapfiles ; type++,p++)
1288 		if (!(p->flags & SWP_USED))
1289 			break;
1290 	error = -EPERM;
1291 	/*
1292 	 * Test if adding another swap device is possible. There are
1293 	 * two limiting factors: 1) the number of bits for the swap
1294 	 * type swp_entry_t definition and 2) the number of bits for
1295 	 * the swap type in the swap ptes as defined by the different
1296 	 * architectures. To honor both limitations a swap entry
1297 	 * with swap offset 0 and swap type ~0UL is created, encoded
1298 	 * to a swap pte, decoded to a swp_entry_t again and finally
1299 	 * the swap type part is extracted. This will mask all bits
1300 	 * from the initial ~0UL that can't be encoded in either the
1301 	 * swp_entry_t or the architecture definition of a swap pte.
1302 	 */
1303 	if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
1304 		swap_list_unlock();
1305 		goto out;
1306 	}
1307 	if (type >= nr_swapfiles)
1308 		nr_swapfiles = type+1;
1309 	INIT_LIST_HEAD(&p->extent_list);
1310 	p->flags = SWP_USED;
1311 	p->nr_extents = 0;
1312 	p->swap_file = NULL;
1313 	p->old_block_size = 0;
1314 	p->swap_map = NULL;
1315 	p->lowest_bit = 0;
1316 	p->highest_bit = 0;
1317 	p->cluster_nr = 0;
1318 	p->inuse_pages = 0;
1319 	spin_lock_init(&p->sdev_lock);
1320 	p->next = -1;
1321 	if (swap_flags & SWAP_FLAG_PREFER) {
1322 		p->prio =
1323 		  (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1324 	} else {
1325 		p->prio = --least_priority;
1326 	}
1327 	swap_list_unlock();
1328 	name = getname(specialfile);
1329 	error = PTR_ERR(name);
1330 	if (IS_ERR(name)) {
1331 		name = NULL;
1332 		goto bad_swap_2;
1333 	}
1334 	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1335 	error = PTR_ERR(swap_file);
1336 	if (IS_ERR(swap_file)) {
1337 		swap_file = NULL;
1338 		goto bad_swap_2;
1339 	}
1340 
1341 	p->swap_file = swap_file;
1342 	mapping = swap_file->f_mapping;
1343 	inode = mapping->host;
1344 
1345 	error = -EBUSY;
1346 	for (i = 0; i < nr_swapfiles; i++) {
1347 		struct swap_info_struct *q = &swap_info[i];
1348 
1349 		if (i == type || !q->swap_file)
1350 			continue;
1351 		if (mapping == q->swap_file->f_mapping)
1352 			goto bad_swap;
1353 	}
1354 
1355 	error = -EINVAL;
1356 	if (S_ISBLK(inode->i_mode)) {
1357 		bdev = I_BDEV(inode);
1358 		error = bd_claim(bdev, sys_swapon);
1359 		if (error < 0) {
1360 			bdev = NULL;
1361 			goto bad_swap;
1362 		}
1363 		p->old_block_size = block_size(bdev);
1364 		error = set_blocksize(bdev, PAGE_SIZE);
1365 		if (error < 0)
1366 			goto bad_swap;
1367 		p->bdev = bdev;
1368 	} else if (S_ISREG(inode->i_mode)) {
1369 		p->bdev = inode->i_sb->s_bdev;
1370 		down(&inode->i_sem);
1371 		did_down = 1;
1372 		if (IS_SWAPFILE(inode)) {
1373 			error = -EBUSY;
1374 			goto bad_swap;
1375 		}
1376 	} else {
1377 		goto bad_swap;
1378 	}
1379 
1380 	swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1381 
1382 	/*
1383 	 * Read the swap header.
1384 	 */
1385 	if (!mapping->a_ops->readpage) {
1386 		error = -EINVAL;
1387 		goto bad_swap;
1388 	}
1389 	page = read_cache_page(mapping, 0,
1390 			(filler_t *)mapping->a_ops->readpage, swap_file);
1391 	if (IS_ERR(page)) {
1392 		error = PTR_ERR(page);
1393 		goto bad_swap;
1394 	}
1395 	wait_on_page_locked(page);
1396 	if (!PageUptodate(page))
1397 		goto bad_swap;
1398 	kmap(page);
1399 	swap_header = page_address(page);
1400 
1401 	if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1402 		swap_header_version = 1;
1403 	else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1404 		swap_header_version = 2;
1405 	else {
1406 		printk("Unable to find swap-space signature\n");
1407 		error = -EINVAL;
1408 		goto bad_swap;
1409 	}
1410 
1411 	switch (swap_header_version) {
1412 	case 1:
1413 		printk(KERN_ERR "version 0 swap is no longer supported. "
1414 			"Use mkswap -v1 %s\n", name);
1415 		error = -EINVAL;
1416 		goto bad_swap;
1417 	case 2:
1418 		/* Check the swap header's sub-version and the size of
1419                    the swap file and bad block lists */
1420 		if (swap_header->info.version != 1) {
1421 			printk(KERN_WARNING
1422 			       "Unable to handle swap header version %d\n",
1423 			       swap_header->info.version);
1424 			error = -EINVAL;
1425 			goto bad_swap;
1426 		}
1427 
1428 		p->lowest_bit  = 1;
1429 		/*
1430 		 * Find out how many pages are allowed for a single swap
1431 		 * device. There are two limiting factors: 1) the number of
1432 		 * bits for the swap offset in the swp_entry_t type and
1433 		 * 2) the number of bits in the a swap pte as defined by
1434 		 * the different architectures. In order to find the
1435 		 * largest possible bit mask a swap entry with swap type 0
1436 		 * and swap offset ~0UL is created, encoded to a swap pte,
1437 		 * decoded to a swp_entry_t again and finally the swap
1438 		 * offset is extracted. This will mask all the bits from
1439 		 * the initial ~0UL mask that can't be encoded in either
1440 		 * the swp_entry_t or the architecture definition of a
1441 		 * swap pte.
1442 		 */
1443 		maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1444 		if (maxpages > swap_header->info.last_page)
1445 			maxpages = swap_header->info.last_page;
1446 		p->highest_bit = maxpages - 1;
1447 
1448 		error = -EINVAL;
1449 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1450 			goto bad_swap;
1451 
1452 		/* OK, set up the swap map and apply the bad block list */
1453 		if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1454 			error = -ENOMEM;
1455 			goto bad_swap;
1456 		}
1457 
1458 		error = 0;
1459 		memset(p->swap_map, 0, maxpages * sizeof(short));
1460 		for (i=0; i<swap_header->info.nr_badpages; i++) {
1461 			int page = swap_header->info.badpages[i];
1462 			if (page <= 0 || page >= swap_header->info.last_page)
1463 				error = -EINVAL;
1464 			else
1465 				p->swap_map[page] = SWAP_MAP_BAD;
1466 		}
1467 		nr_good_pages = swap_header->info.last_page -
1468 				swap_header->info.nr_badpages -
1469 				1 /* header page */;
1470 		if (error)
1471 			goto bad_swap;
1472 	}
1473 
1474 	if (swapfilesize && maxpages > swapfilesize) {
1475 		printk(KERN_WARNING
1476 		       "Swap area shorter than signature indicates\n");
1477 		error = -EINVAL;
1478 		goto bad_swap;
1479 	}
1480 	if (!nr_good_pages) {
1481 		printk(KERN_WARNING "Empty swap-file\n");
1482 		error = -EINVAL;
1483 		goto bad_swap;
1484 	}
1485 	p->swap_map[0] = SWAP_MAP_BAD;
1486 	p->max = maxpages;
1487 	p->pages = nr_good_pages;
1488 
1489 	error = setup_swap_extents(p);
1490 	if (error)
1491 		goto bad_swap;
1492 
1493 	down(&swapon_sem);
1494 	swap_list_lock();
1495 	swap_device_lock(p);
1496 	p->flags = SWP_ACTIVE;
1497 	nr_swap_pages += nr_good_pages;
1498 	total_swap_pages += nr_good_pages;
1499 	printk(KERN_INFO "Adding %dk swap on %s.  Priority:%d extents:%d\n",
1500 		nr_good_pages<<(PAGE_SHIFT-10), name,
1501 		p->prio, p->nr_extents);
1502 
1503 	/* insert swap space into swap_list: */
1504 	prev = -1;
1505 	for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1506 		if (p->prio >= swap_info[i].prio) {
1507 			break;
1508 		}
1509 		prev = i;
1510 	}
1511 	p->next = i;
1512 	if (prev < 0) {
1513 		swap_list.head = swap_list.next = p - swap_info;
1514 	} else {
1515 		swap_info[prev].next = p - swap_info;
1516 	}
1517 	swap_device_unlock(p);
1518 	swap_list_unlock();
1519 	up(&swapon_sem);
1520 	error = 0;
1521 	goto out;
1522 bad_swap:
1523 	if (bdev) {
1524 		set_blocksize(bdev, p->old_block_size);
1525 		bd_release(bdev);
1526 	}
1527 bad_swap_2:
1528 	swap_list_lock();
1529 	swap_map = p->swap_map;
1530 	p->swap_file = NULL;
1531 	p->swap_map = NULL;
1532 	p->flags = 0;
1533 	if (!(swap_flags & SWAP_FLAG_PREFER))
1534 		++least_priority;
1535 	swap_list_unlock();
1536 	destroy_swap_extents(p);
1537 	vfree(swap_map);
1538 	if (swap_file)
1539 		filp_close(swap_file, NULL);
1540 out:
1541 	if (page && !IS_ERR(page)) {
1542 		kunmap(page);
1543 		page_cache_release(page);
1544 	}
1545 	if (name)
1546 		putname(name);
1547 	if (did_down) {
1548 		if (!error)
1549 			inode->i_flags |= S_SWAPFILE;
1550 		up(&inode->i_sem);
1551 	}
1552 	return error;
1553 }
1554 
1555 void si_swapinfo(struct sysinfo *val)
1556 {
1557 	unsigned int i;
1558 	unsigned long nr_to_be_unused = 0;
1559 
1560 	swap_list_lock();
1561 	for (i = 0; i < nr_swapfiles; i++) {
1562 		if (!(swap_info[i].flags & SWP_USED) ||
1563 		     (swap_info[i].flags & SWP_WRITEOK))
1564 			continue;
1565 		nr_to_be_unused += swap_info[i].inuse_pages;
1566 	}
1567 	val->freeswap = nr_swap_pages + nr_to_be_unused;
1568 	val->totalswap = total_swap_pages + nr_to_be_unused;
1569 	swap_list_unlock();
1570 }
1571 
1572 /*
1573  * Verify that a swap entry is valid and increment its swap map count.
1574  *
1575  * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1576  * "permanent", but will be reclaimed by the next swapoff.
1577  */
1578 int swap_duplicate(swp_entry_t entry)
1579 {
1580 	struct swap_info_struct * p;
1581 	unsigned long offset, type;
1582 	int result = 0;
1583 
1584 	type = swp_type(entry);
1585 	if (type >= nr_swapfiles)
1586 		goto bad_file;
1587 	p = type + swap_info;
1588 	offset = swp_offset(entry);
1589 
1590 	swap_device_lock(p);
1591 	if (offset < p->max && p->swap_map[offset]) {
1592 		if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1593 			p->swap_map[offset]++;
1594 			result = 1;
1595 		} else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1596 			if (swap_overflow++ < 5)
1597 				printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1598 			p->swap_map[offset] = SWAP_MAP_MAX;
1599 			result = 1;
1600 		}
1601 	}
1602 	swap_device_unlock(p);
1603 out:
1604 	return result;
1605 
1606 bad_file:
1607 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1608 	goto out;
1609 }
1610 
1611 struct swap_info_struct *
1612 get_swap_info_struct(unsigned type)
1613 {
1614 	return &swap_info[type];
1615 }
1616 
1617 /*
1618  * swap_device_lock prevents swap_map being freed. Don't grab an extra
1619  * reference on the swaphandle, it doesn't matter if it becomes unused.
1620  */
1621 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1622 {
1623 	int ret = 0, i = 1 << page_cluster;
1624 	unsigned long toff;
1625 	struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1626 
1627 	if (!page_cluster)	/* no readahead */
1628 		return 0;
1629 	toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1630 	if (!toff)		/* first page is swap header */
1631 		toff++, i--;
1632 	*offset = toff;
1633 
1634 	swap_device_lock(swapdev);
1635 	do {
1636 		/* Don't read-ahead past the end of the swap area */
1637 		if (toff >= swapdev->max)
1638 			break;
1639 		/* Don't read in free or bad pages */
1640 		if (!swapdev->swap_map[toff])
1641 			break;
1642 		if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1643 			break;
1644 		toff++;
1645 		ret++;
1646 	} while (--i);
1647 	swap_device_unlock(swapdev);
1648 	return ret;
1649 }
1650