xref: /openbmc/linux/mm/swapfile.c (revision 9b4469410cf9a0fcbccc92c480fd42f7c815a745)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/frontswap.h>
39 #include <linux/swapfile.h>
40 #include <linux/export.h>
41 #include <linux/swap_slots.h>
42 #include <linux/sort.h>
43 #include <linux/completion.h>
44 
45 #include <asm/tlbflush.h>
46 #include <linux/swapops.h>
47 #include <linux/swap_cgroup.h>
48 #include "swap.h"
49 
50 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
51 				 unsigned char);
52 static void free_swap_count_continuations(struct swap_info_struct *);
53 
54 static DEFINE_SPINLOCK(swap_lock);
55 static unsigned int nr_swapfiles;
56 atomic_long_t nr_swap_pages;
57 /*
58  * Some modules use swappable objects and may try to swap them out under
59  * memory pressure (via the shrinker). Before doing so, they may wish to
60  * check to see if any swap space is available.
61  */
62 EXPORT_SYMBOL_GPL(nr_swap_pages);
63 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
64 long total_swap_pages;
65 static int least_priority = -1;
66 unsigned long swapfile_maximum_size;
67 #ifdef CONFIG_MIGRATION
68 bool swap_migration_ad_supported;
69 #endif	/* CONFIG_MIGRATION */
70 
71 static const char Bad_file[] = "Bad swap file entry ";
72 static const char Unused_file[] = "Unused swap file entry ";
73 static const char Bad_offset[] = "Bad swap offset entry ";
74 static const char Unused_offset[] = "Unused swap offset entry ";
75 
76 /*
77  * all active swap_info_structs
78  * protected with swap_lock, and ordered by priority.
79  */
80 static PLIST_HEAD(swap_active_head);
81 
82 /*
83  * all available (active, not full) swap_info_structs
84  * protected with swap_avail_lock, ordered by priority.
85  * This is used by folio_alloc_swap() instead of swap_active_head
86  * because swap_active_head includes all swap_info_structs,
87  * but folio_alloc_swap() doesn't need to look at full ones.
88  * This uses its own lock instead of swap_lock because when a
89  * swap_info_struct changes between not-full/full, it needs to
90  * add/remove itself to/from this list, but the swap_info_struct->lock
91  * is held and the locking order requires swap_lock to be taken
92  * before any swap_info_struct->lock.
93  */
94 static struct plist_head *swap_avail_heads;
95 static DEFINE_SPINLOCK(swap_avail_lock);
96 
97 struct swap_info_struct *swap_info[MAX_SWAPFILES];
98 
99 static DEFINE_MUTEX(swapon_mutex);
100 
101 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
102 /* Activity counter to indicate that a swapon or swapoff has occurred */
103 static atomic_t proc_poll_event = ATOMIC_INIT(0);
104 
105 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
106 
107 static struct swap_info_struct *swap_type_to_swap_info(int type)
108 {
109 	if (type >= MAX_SWAPFILES)
110 		return NULL;
111 
112 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
113 }
114 
115 static inline unsigned char swap_count(unsigned char ent)
116 {
117 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
118 }
119 
120 /* Reclaim the swap entry anyway if possible */
121 #define TTRS_ANYWAY		0x1
122 /*
123  * Reclaim the swap entry if there are no more mappings of the
124  * corresponding page
125  */
126 #define TTRS_UNMAPPED		0x2
127 /* Reclaim the swap entry if swap is getting full*/
128 #define TTRS_FULL		0x4
129 
130 /* returns 1 if swap entry is freed */
131 static int __try_to_reclaim_swap(struct swap_info_struct *si,
132 				 unsigned long offset, unsigned long flags)
133 {
134 	swp_entry_t entry = swp_entry(si->type, offset);
135 	struct folio *folio;
136 	int ret = 0;
137 
138 	folio = filemap_get_folio(swap_address_space(entry), offset);
139 	if (IS_ERR(folio))
140 		return 0;
141 	/*
142 	 * When this function is called from scan_swap_map_slots() and it's
143 	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
144 	 * here. We have to use trylock for avoiding deadlock. This is a special
145 	 * case and you should use folio_free_swap() with explicit folio_lock()
146 	 * in usual operations.
147 	 */
148 	if (folio_trylock(folio)) {
149 		if ((flags & TTRS_ANYWAY) ||
150 		    ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
151 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
152 			ret = folio_free_swap(folio);
153 		folio_unlock(folio);
154 	}
155 	folio_put(folio);
156 	return ret;
157 }
158 
159 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
160 {
161 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
162 	return rb_entry(rb, struct swap_extent, rb_node);
163 }
164 
165 static inline struct swap_extent *next_se(struct swap_extent *se)
166 {
167 	struct rb_node *rb = rb_next(&se->rb_node);
168 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
169 }
170 
171 /*
172  * swapon tell device that all the old swap contents can be discarded,
173  * to allow the swap device to optimize its wear-levelling.
174  */
175 static int discard_swap(struct swap_info_struct *si)
176 {
177 	struct swap_extent *se;
178 	sector_t start_block;
179 	sector_t nr_blocks;
180 	int err = 0;
181 
182 	/* Do not discard the swap header page! */
183 	se = first_se(si);
184 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
185 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
186 	if (nr_blocks) {
187 		err = blkdev_issue_discard(si->bdev, start_block,
188 				nr_blocks, GFP_KERNEL);
189 		if (err)
190 			return err;
191 		cond_resched();
192 	}
193 
194 	for (se = next_se(se); se; se = next_se(se)) {
195 		start_block = se->start_block << (PAGE_SHIFT - 9);
196 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
197 
198 		err = blkdev_issue_discard(si->bdev, start_block,
199 				nr_blocks, GFP_KERNEL);
200 		if (err)
201 			break;
202 
203 		cond_resched();
204 	}
205 	return err;		/* That will often be -EOPNOTSUPP */
206 }
207 
208 static struct swap_extent *
209 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
210 {
211 	struct swap_extent *se;
212 	struct rb_node *rb;
213 
214 	rb = sis->swap_extent_root.rb_node;
215 	while (rb) {
216 		se = rb_entry(rb, struct swap_extent, rb_node);
217 		if (offset < se->start_page)
218 			rb = rb->rb_left;
219 		else if (offset >= se->start_page + se->nr_pages)
220 			rb = rb->rb_right;
221 		else
222 			return se;
223 	}
224 	/* It *must* be present */
225 	BUG();
226 }
227 
228 sector_t swap_page_sector(struct page *page)
229 {
230 	struct swap_info_struct *sis = page_swap_info(page);
231 	struct swap_extent *se;
232 	sector_t sector;
233 	pgoff_t offset;
234 
235 	offset = __page_file_index(page);
236 	se = offset_to_swap_extent(sis, offset);
237 	sector = se->start_block + (offset - se->start_page);
238 	return sector << (PAGE_SHIFT - 9);
239 }
240 
241 /*
242  * swap allocation tell device that a cluster of swap can now be discarded,
243  * to allow the swap device to optimize its wear-levelling.
244  */
245 static void discard_swap_cluster(struct swap_info_struct *si,
246 				 pgoff_t start_page, pgoff_t nr_pages)
247 {
248 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
249 
250 	while (nr_pages) {
251 		pgoff_t offset = start_page - se->start_page;
252 		sector_t start_block = se->start_block + offset;
253 		sector_t nr_blocks = se->nr_pages - offset;
254 
255 		if (nr_blocks > nr_pages)
256 			nr_blocks = nr_pages;
257 		start_page += nr_blocks;
258 		nr_pages -= nr_blocks;
259 
260 		start_block <<= PAGE_SHIFT - 9;
261 		nr_blocks <<= PAGE_SHIFT - 9;
262 		if (blkdev_issue_discard(si->bdev, start_block,
263 					nr_blocks, GFP_NOIO))
264 			break;
265 
266 		se = next_se(se);
267 	}
268 }
269 
270 #ifdef CONFIG_THP_SWAP
271 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
272 
273 #define swap_entry_size(size)	(size)
274 #else
275 #define SWAPFILE_CLUSTER	256
276 
277 /*
278  * Define swap_entry_size() as constant to let compiler to optimize
279  * out some code if !CONFIG_THP_SWAP
280  */
281 #define swap_entry_size(size)	1
282 #endif
283 #define LATENCY_LIMIT		256
284 
285 static inline void cluster_set_flag(struct swap_cluster_info *info,
286 	unsigned int flag)
287 {
288 	info->flags = flag;
289 }
290 
291 static inline unsigned int cluster_count(struct swap_cluster_info *info)
292 {
293 	return info->data;
294 }
295 
296 static inline void cluster_set_count(struct swap_cluster_info *info,
297 				     unsigned int c)
298 {
299 	info->data = c;
300 }
301 
302 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
303 					 unsigned int c, unsigned int f)
304 {
305 	info->flags = f;
306 	info->data = c;
307 }
308 
309 static inline unsigned int cluster_next(struct swap_cluster_info *info)
310 {
311 	return info->data;
312 }
313 
314 static inline void cluster_set_next(struct swap_cluster_info *info,
315 				    unsigned int n)
316 {
317 	info->data = n;
318 }
319 
320 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
321 					 unsigned int n, unsigned int f)
322 {
323 	info->flags = f;
324 	info->data = n;
325 }
326 
327 static inline bool cluster_is_free(struct swap_cluster_info *info)
328 {
329 	return info->flags & CLUSTER_FLAG_FREE;
330 }
331 
332 static inline bool cluster_is_null(struct swap_cluster_info *info)
333 {
334 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
335 }
336 
337 static inline void cluster_set_null(struct swap_cluster_info *info)
338 {
339 	info->flags = CLUSTER_FLAG_NEXT_NULL;
340 	info->data = 0;
341 }
342 
343 static inline bool cluster_is_huge(struct swap_cluster_info *info)
344 {
345 	if (IS_ENABLED(CONFIG_THP_SWAP))
346 		return info->flags & CLUSTER_FLAG_HUGE;
347 	return false;
348 }
349 
350 static inline void cluster_clear_huge(struct swap_cluster_info *info)
351 {
352 	info->flags &= ~CLUSTER_FLAG_HUGE;
353 }
354 
355 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
356 						     unsigned long offset)
357 {
358 	struct swap_cluster_info *ci;
359 
360 	ci = si->cluster_info;
361 	if (ci) {
362 		ci += offset / SWAPFILE_CLUSTER;
363 		spin_lock(&ci->lock);
364 	}
365 	return ci;
366 }
367 
368 static inline void unlock_cluster(struct swap_cluster_info *ci)
369 {
370 	if (ci)
371 		spin_unlock(&ci->lock);
372 }
373 
374 /*
375  * Determine the locking method in use for this device.  Return
376  * swap_cluster_info if SSD-style cluster-based locking is in place.
377  */
378 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
379 		struct swap_info_struct *si, unsigned long offset)
380 {
381 	struct swap_cluster_info *ci;
382 
383 	/* Try to use fine-grained SSD-style locking if available: */
384 	ci = lock_cluster(si, offset);
385 	/* Otherwise, fall back to traditional, coarse locking: */
386 	if (!ci)
387 		spin_lock(&si->lock);
388 
389 	return ci;
390 }
391 
392 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
393 					       struct swap_cluster_info *ci)
394 {
395 	if (ci)
396 		unlock_cluster(ci);
397 	else
398 		spin_unlock(&si->lock);
399 }
400 
401 static inline bool cluster_list_empty(struct swap_cluster_list *list)
402 {
403 	return cluster_is_null(&list->head);
404 }
405 
406 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
407 {
408 	return cluster_next(&list->head);
409 }
410 
411 static void cluster_list_init(struct swap_cluster_list *list)
412 {
413 	cluster_set_null(&list->head);
414 	cluster_set_null(&list->tail);
415 }
416 
417 static void cluster_list_add_tail(struct swap_cluster_list *list,
418 				  struct swap_cluster_info *ci,
419 				  unsigned int idx)
420 {
421 	if (cluster_list_empty(list)) {
422 		cluster_set_next_flag(&list->head, idx, 0);
423 		cluster_set_next_flag(&list->tail, idx, 0);
424 	} else {
425 		struct swap_cluster_info *ci_tail;
426 		unsigned int tail = cluster_next(&list->tail);
427 
428 		/*
429 		 * Nested cluster lock, but both cluster locks are
430 		 * only acquired when we held swap_info_struct->lock
431 		 */
432 		ci_tail = ci + tail;
433 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
434 		cluster_set_next(ci_tail, idx);
435 		spin_unlock(&ci_tail->lock);
436 		cluster_set_next_flag(&list->tail, idx, 0);
437 	}
438 }
439 
440 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
441 					   struct swap_cluster_info *ci)
442 {
443 	unsigned int idx;
444 
445 	idx = cluster_next(&list->head);
446 	if (cluster_next(&list->tail) == idx) {
447 		cluster_set_null(&list->head);
448 		cluster_set_null(&list->tail);
449 	} else
450 		cluster_set_next_flag(&list->head,
451 				      cluster_next(&ci[idx]), 0);
452 
453 	return idx;
454 }
455 
456 /* Add a cluster to discard list and schedule it to do discard */
457 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
458 		unsigned int idx)
459 {
460 	/*
461 	 * If scan_swap_map_slots() can't find a free cluster, it will check
462 	 * si->swap_map directly. To make sure the discarding cluster isn't
463 	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
464 	 * It will be cleared after discard
465 	 */
466 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
467 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
468 
469 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
470 
471 	schedule_work(&si->discard_work);
472 }
473 
474 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
475 {
476 	struct swap_cluster_info *ci = si->cluster_info;
477 
478 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
479 	cluster_list_add_tail(&si->free_clusters, ci, idx);
480 }
481 
482 /*
483  * Doing discard actually. After a cluster discard is finished, the cluster
484  * will be added to free cluster list. caller should hold si->lock.
485 */
486 static void swap_do_scheduled_discard(struct swap_info_struct *si)
487 {
488 	struct swap_cluster_info *info, *ci;
489 	unsigned int idx;
490 
491 	info = si->cluster_info;
492 
493 	while (!cluster_list_empty(&si->discard_clusters)) {
494 		idx = cluster_list_del_first(&si->discard_clusters, info);
495 		spin_unlock(&si->lock);
496 
497 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
498 				SWAPFILE_CLUSTER);
499 
500 		spin_lock(&si->lock);
501 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
502 		__free_cluster(si, idx);
503 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
504 				0, SWAPFILE_CLUSTER);
505 		unlock_cluster(ci);
506 	}
507 }
508 
509 static void swap_discard_work(struct work_struct *work)
510 {
511 	struct swap_info_struct *si;
512 
513 	si = container_of(work, struct swap_info_struct, discard_work);
514 
515 	spin_lock(&si->lock);
516 	swap_do_scheduled_discard(si);
517 	spin_unlock(&si->lock);
518 }
519 
520 static void swap_users_ref_free(struct percpu_ref *ref)
521 {
522 	struct swap_info_struct *si;
523 
524 	si = container_of(ref, struct swap_info_struct, users);
525 	complete(&si->comp);
526 }
527 
528 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
529 {
530 	struct swap_cluster_info *ci = si->cluster_info;
531 
532 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
533 	cluster_list_del_first(&si->free_clusters, ci);
534 	cluster_set_count_flag(ci + idx, 0, 0);
535 }
536 
537 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
538 {
539 	struct swap_cluster_info *ci = si->cluster_info + idx;
540 
541 	VM_BUG_ON(cluster_count(ci) != 0);
542 	/*
543 	 * If the swap is discardable, prepare discard the cluster
544 	 * instead of free it immediately. The cluster will be freed
545 	 * after discard.
546 	 */
547 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
548 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
549 		swap_cluster_schedule_discard(si, idx);
550 		return;
551 	}
552 
553 	__free_cluster(si, idx);
554 }
555 
556 /*
557  * The cluster corresponding to page_nr will be used. The cluster will be
558  * removed from free cluster list and its usage counter will be increased.
559  */
560 static void inc_cluster_info_page(struct swap_info_struct *p,
561 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
562 {
563 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
564 
565 	if (!cluster_info)
566 		return;
567 	if (cluster_is_free(&cluster_info[idx]))
568 		alloc_cluster(p, idx);
569 
570 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
571 	cluster_set_count(&cluster_info[idx],
572 		cluster_count(&cluster_info[idx]) + 1);
573 }
574 
575 /*
576  * The cluster corresponding to page_nr decreases one usage. If the usage
577  * counter becomes 0, which means no page in the cluster is in using, we can
578  * optionally discard the cluster and add it to free cluster list.
579  */
580 static void dec_cluster_info_page(struct swap_info_struct *p,
581 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
582 {
583 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
584 
585 	if (!cluster_info)
586 		return;
587 
588 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
589 	cluster_set_count(&cluster_info[idx],
590 		cluster_count(&cluster_info[idx]) - 1);
591 
592 	if (cluster_count(&cluster_info[idx]) == 0)
593 		free_cluster(p, idx);
594 }
595 
596 /*
597  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
598  * cluster list. Avoiding such abuse to avoid list corruption.
599  */
600 static bool
601 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
602 	unsigned long offset)
603 {
604 	struct percpu_cluster *percpu_cluster;
605 	bool conflict;
606 
607 	offset /= SWAPFILE_CLUSTER;
608 	conflict = !cluster_list_empty(&si->free_clusters) &&
609 		offset != cluster_list_first(&si->free_clusters) &&
610 		cluster_is_free(&si->cluster_info[offset]);
611 
612 	if (!conflict)
613 		return false;
614 
615 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
616 	cluster_set_null(&percpu_cluster->index);
617 	return true;
618 }
619 
620 /*
621  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
622  * might involve allocating a new cluster for current CPU too.
623  */
624 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
625 	unsigned long *offset, unsigned long *scan_base)
626 {
627 	struct percpu_cluster *cluster;
628 	struct swap_cluster_info *ci;
629 	unsigned long tmp, max;
630 
631 new_cluster:
632 	cluster = this_cpu_ptr(si->percpu_cluster);
633 	if (cluster_is_null(&cluster->index)) {
634 		if (!cluster_list_empty(&si->free_clusters)) {
635 			cluster->index = si->free_clusters.head;
636 			cluster->next = cluster_next(&cluster->index) *
637 					SWAPFILE_CLUSTER;
638 		} else if (!cluster_list_empty(&si->discard_clusters)) {
639 			/*
640 			 * we don't have free cluster but have some clusters in
641 			 * discarding, do discard now and reclaim them, then
642 			 * reread cluster_next_cpu since we dropped si->lock
643 			 */
644 			swap_do_scheduled_discard(si);
645 			*scan_base = this_cpu_read(*si->cluster_next_cpu);
646 			*offset = *scan_base;
647 			goto new_cluster;
648 		} else
649 			return false;
650 	}
651 
652 	/*
653 	 * Other CPUs can use our cluster if they can't find a free cluster,
654 	 * check if there is still free entry in the cluster
655 	 */
656 	tmp = cluster->next;
657 	max = min_t(unsigned long, si->max,
658 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
659 	if (tmp < max) {
660 		ci = lock_cluster(si, tmp);
661 		while (tmp < max) {
662 			if (!si->swap_map[tmp])
663 				break;
664 			tmp++;
665 		}
666 		unlock_cluster(ci);
667 	}
668 	if (tmp >= max) {
669 		cluster_set_null(&cluster->index);
670 		goto new_cluster;
671 	}
672 	cluster->next = tmp + 1;
673 	*offset = tmp;
674 	*scan_base = tmp;
675 	return true;
676 }
677 
678 static void __del_from_avail_list(struct swap_info_struct *p)
679 {
680 	int nid;
681 
682 	assert_spin_locked(&p->lock);
683 	for_each_node(nid)
684 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
685 }
686 
687 static void del_from_avail_list(struct swap_info_struct *p)
688 {
689 	spin_lock(&swap_avail_lock);
690 	__del_from_avail_list(p);
691 	spin_unlock(&swap_avail_lock);
692 }
693 
694 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
695 			     unsigned int nr_entries)
696 {
697 	unsigned int end = offset + nr_entries - 1;
698 
699 	if (offset == si->lowest_bit)
700 		si->lowest_bit += nr_entries;
701 	if (end == si->highest_bit)
702 		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
703 	WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
704 	if (si->inuse_pages == si->pages) {
705 		si->lowest_bit = si->max;
706 		si->highest_bit = 0;
707 		del_from_avail_list(si);
708 	}
709 }
710 
711 static void add_to_avail_list(struct swap_info_struct *p)
712 {
713 	int nid;
714 
715 	spin_lock(&swap_avail_lock);
716 	for_each_node(nid) {
717 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
718 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
719 	}
720 	spin_unlock(&swap_avail_lock);
721 }
722 
723 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
724 			    unsigned int nr_entries)
725 {
726 	unsigned long begin = offset;
727 	unsigned long end = offset + nr_entries - 1;
728 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
729 
730 	if (offset < si->lowest_bit)
731 		si->lowest_bit = offset;
732 	if (end > si->highest_bit) {
733 		bool was_full = !si->highest_bit;
734 
735 		WRITE_ONCE(si->highest_bit, end);
736 		if (was_full && (si->flags & SWP_WRITEOK))
737 			add_to_avail_list(si);
738 	}
739 	atomic_long_add(nr_entries, &nr_swap_pages);
740 	WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
741 	if (si->flags & SWP_BLKDEV)
742 		swap_slot_free_notify =
743 			si->bdev->bd_disk->fops->swap_slot_free_notify;
744 	else
745 		swap_slot_free_notify = NULL;
746 	while (offset <= end) {
747 		arch_swap_invalidate_page(si->type, offset);
748 		frontswap_invalidate_page(si->type, offset);
749 		if (swap_slot_free_notify)
750 			swap_slot_free_notify(si->bdev, offset);
751 		offset++;
752 	}
753 	clear_shadow_from_swap_cache(si->type, begin, end);
754 }
755 
756 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
757 {
758 	unsigned long prev;
759 
760 	if (!(si->flags & SWP_SOLIDSTATE)) {
761 		si->cluster_next = next;
762 		return;
763 	}
764 
765 	prev = this_cpu_read(*si->cluster_next_cpu);
766 	/*
767 	 * Cross the swap address space size aligned trunk, choose
768 	 * another trunk randomly to avoid lock contention on swap
769 	 * address space if possible.
770 	 */
771 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
772 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
773 		/* No free swap slots available */
774 		if (si->highest_bit <= si->lowest_bit)
775 			return;
776 		next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
777 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
778 		next = max_t(unsigned int, next, si->lowest_bit);
779 	}
780 	this_cpu_write(*si->cluster_next_cpu, next);
781 }
782 
783 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
784 					     unsigned long offset)
785 {
786 	if (data_race(!si->swap_map[offset])) {
787 		spin_lock(&si->lock);
788 		return true;
789 	}
790 
791 	if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
792 		spin_lock(&si->lock);
793 		return true;
794 	}
795 
796 	return false;
797 }
798 
799 static int scan_swap_map_slots(struct swap_info_struct *si,
800 			       unsigned char usage, int nr,
801 			       swp_entry_t slots[])
802 {
803 	struct swap_cluster_info *ci;
804 	unsigned long offset;
805 	unsigned long scan_base;
806 	unsigned long last_in_cluster = 0;
807 	int latency_ration = LATENCY_LIMIT;
808 	int n_ret = 0;
809 	bool scanned_many = false;
810 
811 	/*
812 	 * We try to cluster swap pages by allocating them sequentially
813 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
814 	 * way, however, we resort to first-free allocation, starting
815 	 * a new cluster.  This prevents us from scattering swap pages
816 	 * all over the entire swap partition, so that we reduce
817 	 * overall disk seek times between swap pages.  -- sct
818 	 * But we do now try to find an empty cluster.  -Andrea
819 	 * And we let swap pages go all over an SSD partition.  Hugh
820 	 */
821 
822 	si->flags += SWP_SCANNING;
823 	/*
824 	 * Use percpu scan base for SSD to reduce lock contention on
825 	 * cluster and swap cache.  For HDD, sequential access is more
826 	 * important.
827 	 */
828 	if (si->flags & SWP_SOLIDSTATE)
829 		scan_base = this_cpu_read(*si->cluster_next_cpu);
830 	else
831 		scan_base = si->cluster_next;
832 	offset = scan_base;
833 
834 	/* SSD algorithm */
835 	if (si->cluster_info) {
836 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
837 			goto scan;
838 	} else if (unlikely(!si->cluster_nr--)) {
839 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
840 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
841 			goto checks;
842 		}
843 
844 		spin_unlock(&si->lock);
845 
846 		/*
847 		 * If seek is expensive, start searching for new cluster from
848 		 * start of partition, to minimize the span of allocated swap.
849 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
850 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
851 		 */
852 		scan_base = offset = si->lowest_bit;
853 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
854 
855 		/* Locate the first empty (unaligned) cluster */
856 		for (; last_in_cluster <= si->highest_bit; offset++) {
857 			if (si->swap_map[offset])
858 				last_in_cluster = offset + SWAPFILE_CLUSTER;
859 			else if (offset == last_in_cluster) {
860 				spin_lock(&si->lock);
861 				offset -= SWAPFILE_CLUSTER - 1;
862 				si->cluster_next = offset;
863 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
864 				goto checks;
865 			}
866 			if (unlikely(--latency_ration < 0)) {
867 				cond_resched();
868 				latency_ration = LATENCY_LIMIT;
869 			}
870 		}
871 
872 		offset = scan_base;
873 		spin_lock(&si->lock);
874 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
875 	}
876 
877 checks:
878 	if (si->cluster_info) {
879 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
880 		/* take a break if we already got some slots */
881 			if (n_ret)
882 				goto done;
883 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
884 							&scan_base))
885 				goto scan;
886 		}
887 	}
888 	if (!(si->flags & SWP_WRITEOK))
889 		goto no_page;
890 	if (!si->highest_bit)
891 		goto no_page;
892 	if (offset > si->highest_bit)
893 		scan_base = offset = si->lowest_bit;
894 
895 	ci = lock_cluster(si, offset);
896 	/* reuse swap entry of cache-only swap if not busy. */
897 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
898 		int swap_was_freed;
899 		unlock_cluster(ci);
900 		spin_unlock(&si->lock);
901 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
902 		spin_lock(&si->lock);
903 		/* entry was freed successfully, try to use this again */
904 		if (swap_was_freed)
905 			goto checks;
906 		goto scan; /* check next one */
907 	}
908 
909 	if (si->swap_map[offset]) {
910 		unlock_cluster(ci);
911 		if (!n_ret)
912 			goto scan;
913 		else
914 			goto done;
915 	}
916 	WRITE_ONCE(si->swap_map[offset], usage);
917 	inc_cluster_info_page(si, si->cluster_info, offset);
918 	unlock_cluster(ci);
919 
920 	swap_range_alloc(si, offset, 1);
921 	slots[n_ret++] = swp_entry(si->type, offset);
922 
923 	/* got enough slots or reach max slots? */
924 	if ((n_ret == nr) || (offset >= si->highest_bit))
925 		goto done;
926 
927 	/* search for next available slot */
928 
929 	/* time to take a break? */
930 	if (unlikely(--latency_ration < 0)) {
931 		if (n_ret)
932 			goto done;
933 		spin_unlock(&si->lock);
934 		cond_resched();
935 		spin_lock(&si->lock);
936 		latency_ration = LATENCY_LIMIT;
937 	}
938 
939 	/* try to get more slots in cluster */
940 	if (si->cluster_info) {
941 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
942 			goto checks;
943 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
944 		/* non-ssd case, still more slots in cluster? */
945 		--si->cluster_nr;
946 		goto checks;
947 	}
948 
949 	/*
950 	 * Even if there's no free clusters available (fragmented),
951 	 * try to scan a little more quickly with lock held unless we
952 	 * have scanned too many slots already.
953 	 */
954 	if (!scanned_many) {
955 		unsigned long scan_limit;
956 
957 		if (offset < scan_base)
958 			scan_limit = scan_base;
959 		else
960 			scan_limit = si->highest_bit;
961 		for (; offset <= scan_limit && --latency_ration > 0;
962 		     offset++) {
963 			if (!si->swap_map[offset])
964 				goto checks;
965 		}
966 	}
967 
968 done:
969 	set_cluster_next(si, offset + 1);
970 	si->flags -= SWP_SCANNING;
971 	return n_ret;
972 
973 scan:
974 	spin_unlock(&si->lock);
975 	while (++offset <= READ_ONCE(si->highest_bit)) {
976 		if (unlikely(--latency_ration < 0)) {
977 			cond_resched();
978 			latency_ration = LATENCY_LIMIT;
979 			scanned_many = true;
980 		}
981 		if (swap_offset_available_and_locked(si, offset))
982 			goto checks;
983 	}
984 	offset = si->lowest_bit;
985 	while (offset < scan_base) {
986 		if (unlikely(--latency_ration < 0)) {
987 			cond_resched();
988 			latency_ration = LATENCY_LIMIT;
989 			scanned_many = true;
990 		}
991 		if (swap_offset_available_and_locked(si, offset))
992 			goto checks;
993 		offset++;
994 	}
995 	spin_lock(&si->lock);
996 
997 no_page:
998 	si->flags -= SWP_SCANNING;
999 	return n_ret;
1000 }
1001 
1002 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1003 {
1004 	unsigned long idx;
1005 	struct swap_cluster_info *ci;
1006 	unsigned long offset;
1007 
1008 	/*
1009 	 * Should not even be attempting cluster allocations when huge
1010 	 * page swap is disabled.  Warn and fail the allocation.
1011 	 */
1012 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1013 		VM_WARN_ON_ONCE(1);
1014 		return 0;
1015 	}
1016 
1017 	if (cluster_list_empty(&si->free_clusters))
1018 		return 0;
1019 
1020 	idx = cluster_list_first(&si->free_clusters);
1021 	offset = idx * SWAPFILE_CLUSTER;
1022 	ci = lock_cluster(si, offset);
1023 	alloc_cluster(si, idx);
1024 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1025 
1026 	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1027 	unlock_cluster(ci);
1028 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1029 	*slot = swp_entry(si->type, offset);
1030 
1031 	return 1;
1032 }
1033 
1034 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1035 {
1036 	unsigned long offset = idx * SWAPFILE_CLUSTER;
1037 	struct swap_cluster_info *ci;
1038 
1039 	ci = lock_cluster(si, offset);
1040 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1041 	cluster_set_count_flag(ci, 0, 0);
1042 	free_cluster(si, idx);
1043 	unlock_cluster(ci);
1044 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1045 }
1046 
1047 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1048 {
1049 	unsigned long size = swap_entry_size(entry_size);
1050 	struct swap_info_struct *si, *next;
1051 	long avail_pgs;
1052 	int n_ret = 0;
1053 	int node;
1054 
1055 	/* Only single cluster request supported */
1056 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1057 
1058 	spin_lock(&swap_avail_lock);
1059 
1060 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1061 	if (avail_pgs <= 0) {
1062 		spin_unlock(&swap_avail_lock);
1063 		goto noswap;
1064 	}
1065 
1066 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1067 
1068 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1069 
1070 start_over:
1071 	node = numa_node_id();
1072 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1073 		/* requeue si to after same-priority siblings */
1074 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1075 		spin_unlock(&swap_avail_lock);
1076 		spin_lock(&si->lock);
1077 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1078 			spin_lock(&swap_avail_lock);
1079 			if (plist_node_empty(&si->avail_lists[node])) {
1080 				spin_unlock(&si->lock);
1081 				goto nextsi;
1082 			}
1083 			WARN(!si->highest_bit,
1084 			     "swap_info %d in list but !highest_bit\n",
1085 			     si->type);
1086 			WARN(!(si->flags & SWP_WRITEOK),
1087 			     "swap_info %d in list but !SWP_WRITEOK\n",
1088 			     si->type);
1089 			__del_from_avail_list(si);
1090 			spin_unlock(&si->lock);
1091 			goto nextsi;
1092 		}
1093 		if (size == SWAPFILE_CLUSTER) {
1094 			if (si->flags & SWP_BLKDEV)
1095 				n_ret = swap_alloc_cluster(si, swp_entries);
1096 		} else
1097 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1098 						    n_goal, swp_entries);
1099 		spin_unlock(&si->lock);
1100 		if (n_ret || size == SWAPFILE_CLUSTER)
1101 			goto check_out;
1102 		cond_resched();
1103 
1104 		spin_lock(&swap_avail_lock);
1105 nextsi:
1106 		/*
1107 		 * if we got here, it's likely that si was almost full before,
1108 		 * and since scan_swap_map_slots() can drop the si->lock,
1109 		 * multiple callers probably all tried to get a page from the
1110 		 * same si and it filled up before we could get one; or, the si
1111 		 * filled up between us dropping swap_avail_lock and taking
1112 		 * si->lock. Since we dropped the swap_avail_lock, the
1113 		 * swap_avail_head list may have been modified; so if next is
1114 		 * still in the swap_avail_head list then try it, otherwise
1115 		 * start over if we have not gotten any slots.
1116 		 */
1117 		if (plist_node_empty(&next->avail_lists[node]))
1118 			goto start_over;
1119 	}
1120 
1121 	spin_unlock(&swap_avail_lock);
1122 
1123 check_out:
1124 	if (n_ret < n_goal)
1125 		atomic_long_add((long)(n_goal - n_ret) * size,
1126 				&nr_swap_pages);
1127 noswap:
1128 	return n_ret;
1129 }
1130 
1131 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1132 {
1133 	struct swap_info_struct *p;
1134 	unsigned long offset;
1135 
1136 	if (!entry.val)
1137 		goto out;
1138 	p = swp_swap_info(entry);
1139 	if (!p)
1140 		goto bad_nofile;
1141 	if (data_race(!(p->flags & SWP_USED)))
1142 		goto bad_device;
1143 	offset = swp_offset(entry);
1144 	if (offset >= p->max)
1145 		goto bad_offset;
1146 	if (data_race(!p->swap_map[swp_offset(entry)]))
1147 		goto bad_free;
1148 	return p;
1149 
1150 bad_free:
1151 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1152 	goto out;
1153 bad_offset:
1154 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1155 	goto out;
1156 bad_device:
1157 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1158 	goto out;
1159 bad_nofile:
1160 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1161 out:
1162 	return NULL;
1163 }
1164 
1165 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1166 					struct swap_info_struct *q)
1167 {
1168 	struct swap_info_struct *p;
1169 
1170 	p = _swap_info_get(entry);
1171 
1172 	if (p != q) {
1173 		if (q != NULL)
1174 			spin_unlock(&q->lock);
1175 		if (p != NULL)
1176 			spin_lock(&p->lock);
1177 	}
1178 	return p;
1179 }
1180 
1181 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1182 					      unsigned long offset,
1183 					      unsigned char usage)
1184 {
1185 	unsigned char count;
1186 	unsigned char has_cache;
1187 
1188 	count = p->swap_map[offset];
1189 
1190 	has_cache = count & SWAP_HAS_CACHE;
1191 	count &= ~SWAP_HAS_CACHE;
1192 
1193 	if (usage == SWAP_HAS_CACHE) {
1194 		VM_BUG_ON(!has_cache);
1195 		has_cache = 0;
1196 	} else if (count == SWAP_MAP_SHMEM) {
1197 		/*
1198 		 * Or we could insist on shmem.c using a special
1199 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1200 		 */
1201 		count = 0;
1202 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1203 		if (count == COUNT_CONTINUED) {
1204 			if (swap_count_continued(p, offset, count))
1205 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1206 			else
1207 				count = SWAP_MAP_MAX;
1208 		} else
1209 			count--;
1210 	}
1211 
1212 	usage = count | has_cache;
1213 	if (usage)
1214 		WRITE_ONCE(p->swap_map[offset], usage);
1215 	else
1216 		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1217 
1218 	return usage;
1219 }
1220 
1221 /*
1222  * Check whether swap entry is valid in the swap device.  If so,
1223  * return pointer to swap_info_struct, and keep the swap entry valid
1224  * via preventing the swap device from being swapoff, until
1225  * put_swap_device() is called.  Otherwise return NULL.
1226  *
1227  * Notice that swapoff or swapoff+swapon can still happen before the
1228  * percpu_ref_tryget_live() in get_swap_device() or after the
1229  * percpu_ref_put() in put_swap_device() if there isn't any other way
1230  * to prevent swapoff, such as page lock, page table lock, etc.  The
1231  * caller must be prepared for that.  For example, the following
1232  * situation is possible.
1233  *
1234  *   CPU1				CPU2
1235  *   do_swap_page()
1236  *     ...				swapoff+swapon
1237  *     __read_swap_cache_async()
1238  *       swapcache_prepare()
1239  *         __swap_duplicate()
1240  *           // check swap_map
1241  *     // verify PTE not changed
1242  *
1243  * In __swap_duplicate(), the swap_map need to be checked before
1244  * changing partly because the specified swap entry may be for another
1245  * swap device which has been swapoff.  And in do_swap_page(), after
1246  * the page is read from the swap device, the PTE is verified not
1247  * changed with the page table locked to check whether the swap device
1248  * has been swapoff or swapoff+swapon.
1249  */
1250 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1251 {
1252 	struct swap_info_struct *si;
1253 	unsigned long offset;
1254 
1255 	if (!entry.val)
1256 		goto out;
1257 	si = swp_swap_info(entry);
1258 	if (!si)
1259 		goto bad_nofile;
1260 	if (!percpu_ref_tryget_live(&si->users))
1261 		goto out;
1262 	/*
1263 	 * Guarantee the si->users are checked before accessing other
1264 	 * fields of swap_info_struct.
1265 	 *
1266 	 * Paired with the spin_unlock() after setup_swap_info() in
1267 	 * enable_swap_info().
1268 	 */
1269 	smp_rmb();
1270 	offset = swp_offset(entry);
1271 	if (offset >= si->max)
1272 		goto put_out;
1273 
1274 	return si;
1275 bad_nofile:
1276 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1277 out:
1278 	return NULL;
1279 put_out:
1280 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1281 	percpu_ref_put(&si->users);
1282 	return NULL;
1283 }
1284 
1285 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1286 				       swp_entry_t entry)
1287 {
1288 	struct swap_cluster_info *ci;
1289 	unsigned long offset = swp_offset(entry);
1290 	unsigned char usage;
1291 
1292 	ci = lock_cluster_or_swap_info(p, offset);
1293 	usage = __swap_entry_free_locked(p, offset, 1);
1294 	unlock_cluster_or_swap_info(p, ci);
1295 	if (!usage)
1296 		free_swap_slot(entry);
1297 
1298 	return usage;
1299 }
1300 
1301 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1302 {
1303 	struct swap_cluster_info *ci;
1304 	unsigned long offset = swp_offset(entry);
1305 	unsigned char count;
1306 
1307 	ci = lock_cluster(p, offset);
1308 	count = p->swap_map[offset];
1309 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1310 	p->swap_map[offset] = 0;
1311 	dec_cluster_info_page(p, p->cluster_info, offset);
1312 	unlock_cluster(ci);
1313 
1314 	mem_cgroup_uncharge_swap(entry, 1);
1315 	swap_range_free(p, offset, 1);
1316 }
1317 
1318 /*
1319  * Caller has made sure that the swap device corresponding to entry
1320  * is still around or has not been recycled.
1321  */
1322 void swap_free(swp_entry_t entry)
1323 {
1324 	struct swap_info_struct *p;
1325 
1326 	p = _swap_info_get(entry);
1327 	if (p)
1328 		__swap_entry_free(p, entry);
1329 }
1330 
1331 /*
1332  * Called after dropping swapcache to decrease refcnt to swap entries.
1333  */
1334 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1335 {
1336 	unsigned long offset = swp_offset(entry);
1337 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1338 	struct swap_cluster_info *ci;
1339 	struct swap_info_struct *si;
1340 	unsigned char *map;
1341 	unsigned int i, free_entries = 0;
1342 	unsigned char val;
1343 	int size = swap_entry_size(folio_nr_pages(folio));
1344 
1345 	si = _swap_info_get(entry);
1346 	if (!si)
1347 		return;
1348 
1349 	ci = lock_cluster_or_swap_info(si, offset);
1350 	if (size == SWAPFILE_CLUSTER) {
1351 		VM_BUG_ON(!cluster_is_huge(ci));
1352 		map = si->swap_map + offset;
1353 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1354 			val = map[i];
1355 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1356 			if (val == SWAP_HAS_CACHE)
1357 				free_entries++;
1358 		}
1359 		cluster_clear_huge(ci);
1360 		if (free_entries == SWAPFILE_CLUSTER) {
1361 			unlock_cluster_or_swap_info(si, ci);
1362 			spin_lock(&si->lock);
1363 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1364 			swap_free_cluster(si, idx);
1365 			spin_unlock(&si->lock);
1366 			return;
1367 		}
1368 	}
1369 	for (i = 0; i < size; i++, entry.val++) {
1370 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1371 			unlock_cluster_or_swap_info(si, ci);
1372 			free_swap_slot(entry);
1373 			if (i == size - 1)
1374 				return;
1375 			lock_cluster_or_swap_info(si, offset);
1376 		}
1377 	}
1378 	unlock_cluster_or_swap_info(si, ci);
1379 }
1380 
1381 #ifdef CONFIG_THP_SWAP
1382 int split_swap_cluster(swp_entry_t entry)
1383 {
1384 	struct swap_info_struct *si;
1385 	struct swap_cluster_info *ci;
1386 	unsigned long offset = swp_offset(entry);
1387 
1388 	si = _swap_info_get(entry);
1389 	if (!si)
1390 		return -EBUSY;
1391 	ci = lock_cluster(si, offset);
1392 	cluster_clear_huge(ci);
1393 	unlock_cluster(ci);
1394 	return 0;
1395 }
1396 #endif
1397 
1398 static int swp_entry_cmp(const void *ent1, const void *ent2)
1399 {
1400 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1401 
1402 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1403 }
1404 
1405 void swapcache_free_entries(swp_entry_t *entries, int n)
1406 {
1407 	struct swap_info_struct *p, *prev;
1408 	int i;
1409 
1410 	if (n <= 0)
1411 		return;
1412 
1413 	prev = NULL;
1414 	p = NULL;
1415 
1416 	/*
1417 	 * Sort swap entries by swap device, so each lock is only taken once.
1418 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1419 	 * so low that it isn't necessary to optimize further.
1420 	 */
1421 	if (nr_swapfiles > 1)
1422 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1423 	for (i = 0; i < n; ++i) {
1424 		p = swap_info_get_cont(entries[i], prev);
1425 		if (p)
1426 			swap_entry_free(p, entries[i]);
1427 		prev = p;
1428 	}
1429 	if (p)
1430 		spin_unlock(&p->lock);
1431 }
1432 
1433 int __swap_count(swp_entry_t entry)
1434 {
1435 	struct swap_info_struct *si;
1436 	pgoff_t offset = swp_offset(entry);
1437 	int count = 0;
1438 
1439 	si = get_swap_device(entry);
1440 	if (si) {
1441 		count = swap_count(si->swap_map[offset]);
1442 		put_swap_device(si);
1443 	}
1444 	return count;
1445 }
1446 
1447 /*
1448  * How many references to @entry are currently swapped out?
1449  * This does not give an exact answer when swap count is continued,
1450  * but does include the high COUNT_CONTINUED flag to allow for that.
1451  */
1452 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1453 {
1454 	pgoff_t offset = swp_offset(entry);
1455 	struct swap_cluster_info *ci;
1456 	int count;
1457 
1458 	ci = lock_cluster_or_swap_info(si, offset);
1459 	count = swap_count(si->swap_map[offset]);
1460 	unlock_cluster_or_swap_info(si, ci);
1461 	return count;
1462 }
1463 
1464 /*
1465  * How many references to @entry are currently swapped out?
1466  * This does not give an exact answer when swap count is continued,
1467  * but does include the high COUNT_CONTINUED flag to allow for that.
1468  */
1469 int __swp_swapcount(swp_entry_t entry)
1470 {
1471 	int count = 0;
1472 	struct swap_info_struct *si;
1473 
1474 	si = get_swap_device(entry);
1475 	if (si) {
1476 		count = swap_swapcount(si, entry);
1477 		put_swap_device(si);
1478 	}
1479 	return count;
1480 }
1481 
1482 /*
1483  * How many references to @entry are currently swapped out?
1484  * This considers COUNT_CONTINUED so it returns exact answer.
1485  */
1486 int swp_swapcount(swp_entry_t entry)
1487 {
1488 	int count, tmp_count, n;
1489 	struct swap_info_struct *p;
1490 	struct swap_cluster_info *ci;
1491 	struct page *page;
1492 	pgoff_t offset;
1493 	unsigned char *map;
1494 
1495 	p = _swap_info_get(entry);
1496 	if (!p)
1497 		return 0;
1498 
1499 	offset = swp_offset(entry);
1500 
1501 	ci = lock_cluster_or_swap_info(p, offset);
1502 
1503 	count = swap_count(p->swap_map[offset]);
1504 	if (!(count & COUNT_CONTINUED))
1505 		goto out;
1506 
1507 	count &= ~COUNT_CONTINUED;
1508 	n = SWAP_MAP_MAX + 1;
1509 
1510 	page = vmalloc_to_page(p->swap_map + offset);
1511 	offset &= ~PAGE_MASK;
1512 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1513 
1514 	do {
1515 		page = list_next_entry(page, lru);
1516 		map = kmap_atomic(page);
1517 		tmp_count = map[offset];
1518 		kunmap_atomic(map);
1519 
1520 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1521 		n *= (SWAP_CONT_MAX + 1);
1522 	} while (tmp_count & COUNT_CONTINUED);
1523 out:
1524 	unlock_cluster_or_swap_info(p, ci);
1525 	return count;
1526 }
1527 
1528 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1529 					 swp_entry_t entry)
1530 {
1531 	struct swap_cluster_info *ci;
1532 	unsigned char *map = si->swap_map;
1533 	unsigned long roffset = swp_offset(entry);
1534 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1535 	int i;
1536 	bool ret = false;
1537 
1538 	ci = lock_cluster_or_swap_info(si, offset);
1539 	if (!ci || !cluster_is_huge(ci)) {
1540 		if (swap_count(map[roffset]))
1541 			ret = true;
1542 		goto unlock_out;
1543 	}
1544 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1545 		if (swap_count(map[offset + i])) {
1546 			ret = true;
1547 			break;
1548 		}
1549 	}
1550 unlock_out:
1551 	unlock_cluster_or_swap_info(si, ci);
1552 	return ret;
1553 }
1554 
1555 static bool folio_swapped(struct folio *folio)
1556 {
1557 	swp_entry_t entry = folio_swap_entry(folio);
1558 	struct swap_info_struct *si = _swap_info_get(entry);
1559 
1560 	if (!si)
1561 		return false;
1562 
1563 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1564 		return swap_swapcount(si, entry) != 0;
1565 
1566 	return swap_page_trans_huge_swapped(si, entry);
1567 }
1568 
1569 /**
1570  * folio_free_swap() - Free the swap space used for this folio.
1571  * @folio: The folio to remove.
1572  *
1573  * If swap is getting full, or if there are no more mappings of this folio,
1574  * then call folio_free_swap to free its swap space.
1575  *
1576  * Return: true if we were able to release the swap space.
1577  */
1578 bool folio_free_swap(struct folio *folio)
1579 {
1580 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1581 
1582 	if (!folio_test_swapcache(folio))
1583 		return false;
1584 	if (folio_test_writeback(folio))
1585 		return false;
1586 	if (folio_swapped(folio))
1587 		return false;
1588 
1589 	/*
1590 	 * Once hibernation has begun to create its image of memory,
1591 	 * there's a danger that one of the calls to folio_free_swap()
1592 	 * - most probably a call from __try_to_reclaim_swap() while
1593 	 * hibernation is allocating its own swap pages for the image,
1594 	 * but conceivably even a call from memory reclaim - will free
1595 	 * the swap from a folio which has already been recorded in the
1596 	 * image as a clean swapcache folio, and then reuse its swap for
1597 	 * another page of the image.  On waking from hibernation, the
1598 	 * original folio might be freed under memory pressure, then
1599 	 * later read back in from swap, now with the wrong data.
1600 	 *
1601 	 * Hibernation suspends storage while it is writing the image
1602 	 * to disk so check that here.
1603 	 */
1604 	if (pm_suspended_storage())
1605 		return false;
1606 
1607 	delete_from_swap_cache(folio);
1608 	folio_set_dirty(folio);
1609 	return true;
1610 }
1611 
1612 /*
1613  * Free the swap entry like above, but also try to
1614  * free the page cache entry if it is the last user.
1615  */
1616 int free_swap_and_cache(swp_entry_t entry)
1617 {
1618 	struct swap_info_struct *p;
1619 	unsigned char count;
1620 
1621 	if (non_swap_entry(entry))
1622 		return 1;
1623 
1624 	p = _swap_info_get(entry);
1625 	if (p) {
1626 		count = __swap_entry_free(p, entry);
1627 		if (count == SWAP_HAS_CACHE &&
1628 		    !swap_page_trans_huge_swapped(p, entry))
1629 			__try_to_reclaim_swap(p, swp_offset(entry),
1630 					      TTRS_UNMAPPED | TTRS_FULL);
1631 	}
1632 	return p != NULL;
1633 }
1634 
1635 #ifdef CONFIG_HIBERNATION
1636 
1637 swp_entry_t get_swap_page_of_type(int type)
1638 {
1639 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1640 	swp_entry_t entry = {0};
1641 
1642 	if (!si)
1643 		goto fail;
1644 
1645 	/* This is called for allocating swap entry, not cache */
1646 	spin_lock(&si->lock);
1647 	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1648 		atomic_long_dec(&nr_swap_pages);
1649 	spin_unlock(&si->lock);
1650 fail:
1651 	return entry;
1652 }
1653 
1654 /*
1655  * Find the swap type that corresponds to given device (if any).
1656  *
1657  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1658  * from 0, in which the swap header is expected to be located.
1659  *
1660  * This is needed for the suspend to disk (aka swsusp).
1661  */
1662 int swap_type_of(dev_t device, sector_t offset)
1663 {
1664 	int type;
1665 
1666 	if (!device)
1667 		return -1;
1668 
1669 	spin_lock(&swap_lock);
1670 	for (type = 0; type < nr_swapfiles; type++) {
1671 		struct swap_info_struct *sis = swap_info[type];
1672 
1673 		if (!(sis->flags & SWP_WRITEOK))
1674 			continue;
1675 
1676 		if (device == sis->bdev->bd_dev) {
1677 			struct swap_extent *se = first_se(sis);
1678 
1679 			if (se->start_block == offset) {
1680 				spin_unlock(&swap_lock);
1681 				return type;
1682 			}
1683 		}
1684 	}
1685 	spin_unlock(&swap_lock);
1686 	return -ENODEV;
1687 }
1688 
1689 int find_first_swap(dev_t *device)
1690 {
1691 	int type;
1692 
1693 	spin_lock(&swap_lock);
1694 	for (type = 0; type < nr_swapfiles; type++) {
1695 		struct swap_info_struct *sis = swap_info[type];
1696 
1697 		if (!(sis->flags & SWP_WRITEOK))
1698 			continue;
1699 		*device = sis->bdev->bd_dev;
1700 		spin_unlock(&swap_lock);
1701 		return type;
1702 	}
1703 	spin_unlock(&swap_lock);
1704 	return -ENODEV;
1705 }
1706 
1707 /*
1708  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1709  * corresponding to given index in swap_info (swap type).
1710  */
1711 sector_t swapdev_block(int type, pgoff_t offset)
1712 {
1713 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1714 	struct swap_extent *se;
1715 
1716 	if (!si || !(si->flags & SWP_WRITEOK))
1717 		return 0;
1718 	se = offset_to_swap_extent(si, offset);
1719 	return se->start_block + (offset - se->start_page);
1720 }
1721 
1722 /*
1723  * Return either the total number of swap pages of given type, or the number
1724  * of free pages of that type (depending on @free)
1725  *
1726  * This is needed for software suspend
1727  */
1728 unsigned int count_swap_pages(int type, int free)
1729 {
1730 	unsigned int n = 0;
1731 
1732 	spin_lock(&swap_lock);
1733 	if ((unsigned int)type < nr_swapfiles) {
1734 		struct swap_info_struct *sis = swap_info[type];
1735 
1736 		spin_lock(&sis->lock);
1737 		if (sis->flags & SWP_WRITEOK) {
1738 			n = sis->pages;
1739 			if (free)
1740 				n -= sis->inuse_pages;
1741 		}
1742 		spin_unlock(&sis->lock);
1743 	}
1744 	spin_unlock(&swap_lock);
1745 	return n;
1746 }
1747 #endif /* CONFIG_HIBERNATION */
1748 
1749 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1750 {
1751 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1752 }
1753 
1754 /*
1755  * No need to decide whether this PTE shares the swap entry with others,
1756  * just let do_wp_page work it out if a write is requested later - to
1757  * force COW, vm_page_prot omits write permission from any private vma.
1758  */
1759 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1760 		unsigned long addr, swp_entry_t entry, struct folio *folio)
1761 {
1762 	struct page *page = folio_file_page(folio, swp_offset(entry));
1763 	struct page *swapcache;
1764 	spinlock_t *ptl;
1765 	pte_t *pte, new_pte;
1766 	bool hwposioned = false;
1767 	int ret = 1;
1768 
1769 	swapcache = page;
1770 	page = ksm_might_need_to_copy(page, vma, addr);
1771 	if (unlikely(!page))
1772 		return -ENOMEM;
1773 	else if (unlikely(PTR_ERR(page) == -EHWPOISON))
1774 		hwposioned = true;
1775 
1776 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1777 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1778 		ret = 0;
1779 		goto out;
1780 	}
1781 
1782 	if (unlikely(hwposioned || !PageUptodate(page))) {
1783 		swp_entry_t swp_entry;
1784 
1785 		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1786 		if (hwposioned) {
1787 			swp_entry = make_hwpoison_entry(swapcache);
1788 			page = swapcache;
1789 		} else {
1790 			swp_entry = make_swapin_error_entry();
1791 		}
1792 		new_pte = swp_entry_to_pte(swp_entry);
1793 		ret = 0;
1794 		goto setpte;
1795 	}
1796 
1797 	/* See do_swap_page() */
1798 	BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1799 	BUG_ON(PageAnon(page) && PageAnonExclusive(page));
1800 
1801 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1802 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1803 	get_page(page);
1804 	if (page == swapcache) {
1805 		rmap_t rmap_flags = RMAP_NONE;
1806 
1807 		/*
1808 		 * See do_swap_page(): PageWriteback() would be problematic.
1809 		 * However, we do a wait_on_page_writeback() just before this
1810 		 * call and have the page locked.
1811 		 */
1812 		VM_BUG_ON_PAGE(PageWriteback(page), page);
1813 		if (pte_swp_exclusive(*pte))
1814 			rmap_flags |= RMAP_EXCLUSIVE;
1815 
1816 		page_add_anon_rmap(page, vma, addr, rmap_flags);
1817 	} else { /* ksm created a completely new copy */
1818 		page_add_new_anon_rmap(page, vma, addr);
1819 		lru_cache_add_inactive_or_unevictable(page, vma);
1820 	}
1821 	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1822 	if (pte_swp_soft_dirty(*pte))
1823 		new_pte = pte_mksoft_dirty(new_pte);
1824 	if (pte_swp_uffd_wp(*pte))
1825 		new_pte = pte_mkuffd_wp(new_pte);
1826 setpte:
1827 	set_pte_at(vma->vm_mm, addr, pte, new_pte);
1828 	swap_free(entry);
1829 out:
1830 	pte_unmap_unlock(pte, ptl);
1831 	if (page != swapcache) {
1832 		unlock_page(page);
1833 		put_page(page);
1834 	}
1835 	return ret;
1836 }
1837 
1838 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1839 			unsigned long addr, unsigned long end,
1840 			unsigned int type)
1841 {
1842 	swp_entry_t entry;
1843 	pte_t *pte;
1844 	struct swap_info_struct *si;
1845 	int ret = 0;
1846 
1847 	si = swap_info[type];
1848 	pte = pte_offset_map(pmd, addr);
1849 	do {
1850 		struct folio *folio;
1851 		unsigned long offset;
1852 		unsigned char swp_count;
1853 
1854 		if (!is_swap_pte(*pte))
1855 			continue;
1856 
1857 		entry = pte_to_swp_entry(*pte);
1858 		if (swp_type(entry) != type)
1859 			continue;
1860 
1861 		offset = swp_offset(entry);
1862 		pte_unmap(pte);
1863 		folio = swap_cache_get_folio(entry, vma, addr);
1864 		if (!folio) {
1865 			struct page *page;
1866 			struct vm_fault vmf = {
1867 				.vma = vma,
1868 				.address = addr,
1869 				.real_address = addr,
1870 				.pmd = pmd,
1871 			};
1872 
1873 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1874 						&vmf);
1875 			if (page)
1876 				folio = page_folio(page);
1877 		}
1878 		if (!folio) {
1879 			swp_count = READ_ONCE(si->swap_map[offset]);
1880 			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1881 				goto try_next;
1882 
1883 			return -ENOMEM;
1884 		}
1885 
1886 		folio_lock(folio);
1887 		folio_wait_writeback(folio);
1888 		ret = unuse_pte(vma, pmd, addr, entry, folio);
1889 		if (ret < 0) {
1890 			folio_unlock(folio);
1891 			folio_put(folio);
1892 			goto out;
1893 		}
1894 
1895 		folio_free_swap(folio);
1896 		folio_unlock(folio);
1897 		folio_put(folio);
1898 try_next:
1899 		pte = pte_offset_map(pmd, addr);
1900 	} while (pte++, addr += PAGE_SIZE, addr != end);
1901 	pte_unmap(pte - 1);
1902 
1903 	ret = 0;
1904 out:
1905 	return ret;
1906 }
1907 
1908 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1909 				unsigned long addr, unsigned long end,
1910 				unsigned int type)
1911 {
1912 	pmd_t *pmd;
1913 	unsigned long next;
1914 	int ret;
1915 
1916 	pmd = pmd_offset(pud, addr);
1917 	do {
1918 		cond_resched();
1919 		next = pmd_addr_end(addr, end);
1920 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1921 			continue;
1922 		ret = unuse_pte_range(vma, pmd, addr, next, type);
1923 		if (ret)
1924 			return ret;
1925 	} while (pmd++, addr = next, addr != end);
1926 	return 0;
1927 }
1928 
1929 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1930 				unsigned long addr, unsigned long end,
1931 				unsigned int type)
1932 {
1933 	pud_t *pud;
1934 	unsigned long next;
1935 	int ret;
1936 
1937 	pud = pud_offset(p4d, addr);
1938 	do {
1939 		next = pud_addr_end(addr, end);
1940 		if (pud_none_or_clear_bad(pud))
1941 			continue;
1942 		ret = unuse_pmd_range(vma, pud, addr, next, type);
1943 		if (ret)
1944 			return ret;
1945 	} while (pud++, addr = next, addr != end);
1946 	return 0;
1947 }
1948 
1949 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1950 				unsigned long addr, unsigned long end,
1951 				unsigned int type)
1952 {
1953 	p4d_t *p4d;
1954 	unsigned long next;
1955 	int ret;
1956 
1957 	p4d = p4d_offset(pgd, addr);
1958 	do {
1959 		next = p4d_addr_end(addr, end);
1960 		if (p4d_none_or_clear_bad(p4d))
1961 			continue;
1962 		ret = unuse_pud_range(vma, p4d, addr, next, type);
1963 		if (ret)
1964 			return ret;
1965 	} while (p4d++, addr = next, addr != end);
1966 	return 0;
1967 }
1968 
1969 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1970 {
1971 	pgd_t *pgd;
1972 	unsigned long addr, end, next;
1973 	int ret;
1974 
1975 	addr = vma->vm_start;
1976 	end = vma->vm_end;
1977 
1978 	pgd = pgd_offset(vma->vm_mm, addr);
1979 	do {
1980 		next = pgd_addr_end(addr, end);
1981 		if (pgd_none_or_clear_bad(pgd))
1982 			continue;
1983 		ret = unuse_p4d_range(vma, pgd, addr, next, type);
1984 		if (ret)
1985 			return ret;
1986 	} while (pgd++, addr = next, addr != end);
1987 	return 0;
1988 }
1989 
1990 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1991 {
1992 	struct vm_area_struct *vma;
1993 	int ret = 0;
1994 	VMA_ITERATOR(vmi, mm, 0);
1995 
1996 	mmap_read_lock(mm);
1997 	for_each_vma(vmi, vma) {
1998 		if (vma->anon_vma) {
1999 			ret = unuse_vma(vma, type);
2000 			if (ret)
2001 				break;
2002 		}
2003 
2004 		cond_resched();
2005 	}
2006 	mmap_read_unlock(mm);
2007 	return ret;
2008 }
2009 
2010 /*
2011  * Scan swap_map from current position to next entry still in use.
2012  * Return 0 if there are no inuse entries after prev till end of
2013  * the map.
2014  */
2015 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2016 					unsigned int prev)
2017 {
2018 	unsigned int i;
2019 	unsigned char count;
2020 
2021 	/*
2022 	 * No need for swap_lock here: we're just looking
2023 	 * for whether an entry is in use, not modifying it; false
2024 	 * hits are okay, and sys_swapoff() has already prevented new
2025 	 * allocations from this area (while holding swap_lock).
2026 	 */
2027 	for (i = prev + 1; i < si->max; i++) {
2028 		count = READ_ONCE(si->swap_map[i]);
2029 		if (count && swap_count(count) != SWAP_MAP_BAD)
2030 			break;
2031 		if ((i % LATENCY_LIMIT) == 0)
2032 			cond_resched();
2033 	}
2034 
2035 	if (i == si->max)
2036 		i = 0;
2037 
2038 	return i;
2039 }
2040 
2041 static int try_to_unuse(unsigned int type)
2042 {
2043 	struct mm_struct *prev_mm;
2044 	struct mm_struct *mm;
2045 	struct list_head *p;
2046 	int retval = 0;
2047 	struct swap_info_struct *si = swap_info[type];
2048 	struct folio *folio;
2049 	swp_entry_t entry;
2050 	unsigned int i;
2051 
2052 	if (!READ_ONCE(si->inuse_pages))
2053 		return 0;
2054 
2055 retry:
2056 	retval = shmem_unuse(type);
2057 	if (retval)
2058 		return retval;
2059 
2060 	prev_mm = &init_mm;
2061 	mmget(prev_mm);
2062 
2063 	spin_lock(&mmlist_lock);
2064 	p = &init_mm.mmlist;
2065 	while (READ_ONCE(si->inuse_pages) &&
2066 	       !signal_pending(current) &&
2067 	       (p = p->next) != &init_mm.mmlist) {
2068 
2069 		mm = list_entry(p, struct mm_struct, mmlist);
2070 		if (!mmget_not_zero(mm))
2071 			continue;
2072 		spin_unlock(&mmlist_lock);
2073 		mmput(prev_mm);
2074 		prev_mm = mm;
2075 		retval = unuse_mm(mm, type);
2076 		if (retval) {
2077 			mmput(prev_mm);
2078 			return retval;
2079 		}
2080 
2081 		/*
2082 		 * Make sure that we aren't completely killing
2083 		 * interactive performance.
2084 		 */
2085 		cond_resched();
2086 		spin_lock(&mmlist_lock);
2087 	}
2088 	spin_unlock(&mmlist_lock);
2089 
2090 	mmput(prev_mm);
2091 
2092 	i = 0;
2093 	while (READ_ONCE(si->inuse_pages) &&
2094 	       !signal_pending(current) &&
2095 	       (i = find_next_to_unuse(si, i)) != 0) {
2096 
2097 		entry = swp_entry(type, i);
2098 		folio = filemap_get_folio(swap_address_space(entry), i);
2099 		if (IS_ERR(folio))
2100 			continue;
2101 
2102 		/*
2103 		 * It is conceivable that a racing task removed this folio from
2104 		 * swap cache just before we acquired the page lock. The folio
2105 		 * might even be back in swap cache on another swap area. But
2106 		 * that is okay, folio_free_swap() only removes stale folios.
2107 		 */
2108 		folio_lock(folio);
2109 		folio_wait_writeback(folio);
2110 		folio_free_swap(folio);
2111 		folio_unlock(folio);
2112 		folio_put(folio);
2113 	}
2114 
2115 	/*
2116 	 * Lets check again to see if there are still swap entries in the map.
2117 	 * If yes, we would need to do retry the unuse logic again.
2118 	 * Under global memory pressure, swap entries can be reinserted back
2119 	 * into process space after the mmlist loop above passes over them.
2120 	 *
2121 	 * Limit the number of retries? No: when mmget_not_zero()
2122 	 * above fails, that mm is likely to be freeing swap from
2123 	 * exit_mmap(), which proceeds at its own independent pace;
2124 	 * and even shmem_writepage() could have been preempted after
2125 	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2126 	 * and robust (though cpu-intensive) just to keep retrying.
2127 	 */
2128 	if (READ_ONCE(si->inuse_pages)) {
2129 		if (!signal_pending(current))
2130 			goto retry;
2131 		return -EINTR;
2132 	}
2133 
2134 	return 0;
2135 }
2136 
2137 /*
2138  * After a successful try_to_unuse, if no swap is now in use, we know
2139  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2140  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2141  * added to the mmlist just after page_duplicate - before would be racy.
2142  */
2143 static void drain_mmlist(void)
2144 {
2145 	struct list_head *p, *next;
2146 	unsigned int type;
2147 
2148 	for (type = 0; type < nr_swapfiles; type++)
2149 		if (swap_info[type]->inuse_pages)
2150 			return;
2151 	spin_lock(&mmlist_lock);
2152 	list_for_each_safe(p, next, &init_mm.mmlist)
2153 		list_del_init(p);
2154 	spin_unlock(&mmlist_lock);
2155 }
2156 
2157 /*
2158  * Free all of a swapdev's extent information
2159  */
2160 static void destroy_swap_extents(struct swap_info_struct *sis)
2161 {
2162 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2163 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2164 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2165 
2166 		rb_erase(rb, &sis->swap_extent_root);
2167 		kfree(se);
2168 	}
2169 
2170 	if (sis->flags & SWP_ACTIVATED) {
2171 		struct file *swap_file = sis->swap_file;
2172 		struct address_space *mapping = swap_file->f_mapping;
2173 
2174 		sis->flags &= ~SWP_ACTIVATED;
2175 		if (mapping->a_ops->swap_deactivate)
2176 			mapping->a_ops->swap_deactivate(swap_file);
2177 	}
2178 }
2179 
2180 /*
2181  * Add a block range (and the corresponding page range) into this swapdev's
2182  * extent tree.
2183  *
2184  * This function rather assumes that it is called in ascending page order.
2185  */
2186 int
2187 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2188 		unsigned long nr_pages, sector_t start_block)
2189 {
2190 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2191 	struct swap_extent *se;
2192 	struct swap_extent *new_se;
2193 
2194 	/*
2195 	 * place the new node at the right most since the
2196 	 * function is called in ascending page order.
2197 	 */
2198 	while (*link) {
2199 		parent = *link;
2200 		link = &parent->rb_right;
2201 	}
2202 
2203 	if (parent) {
2204 		se = rb_entry(parent, struct swap_extent, rb_node);
2205 		BUG_ON(se->start_page + se->nr_pages != start_page);
2206 		if (se->start_block + se->nr_pages == start_block) {
2207 			/* Merge it */
2208 			se->nr_pages += nr_pages;
2209 			return 0;
2210 		}
2211 	}
2212 
2213 	/* No merge, insert a new extent. */
2214 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2215 	if (new_se == NULL)
2216 		return -ENOMEM;
2217 	new_se->start_page = start_page;
2218 	new_se->nr_pages = nr_pages;
2219 	new_se->start_block = start_block;
2220 
2221 	rb_link_node(&new_se->rb_node, parent, link);
2222 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2223 	return 1;
2224 }
2225 EXPORT_SYMBOL_GPL(add_swap_extent);
2226 
2227 /*
2228  * A `swap extent' is a simple thing which maps a contiguous range of pages
2229  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2230  * built at swapon time and is then used at swap_writepage/swap_readpage
2231  * time for locating where on disk a page belongs.
2232  *
2233  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2234  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2235  * swap files identically.
2236  *
2237  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2238  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2239  * swapfiles are handled *identically* after swapon time.
2240  *
2241  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2242  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2243  * blocks are found which do not fall within the PAGE_SIZE alignment
2244  * requirements, they are simply tossed out - we will never use those blocks
2245  * for swapping.
2246  *
2247  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2248  * prevents users from writing to the swap device, which will corrupt memory.
2249  *
2250  * The amount of disk space which a single swap extent represents varies.
2251  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2252  * extents in the rbtree. - akpm.
2253  */
2254 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2255 {
2256 	struct file *swap_file = sis->swap_file;
2257 	struct address_space *mapping = swap_file->f_mapping;
2258 	struct inode *inode = mapping->host;
2259 	int ret;
2260 
2261 	if (S_ISBLK(inode->i_mode)) {
2262 		ret = add_swap_extent(sis, 0, sis->max, 0);
2263 		*span = sis->pages;
2264 		return ret;
2265 	}
2266 
2267 	if (mapping->a_ops->swap_activate) {
2268 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2269 		if (ret < 0)
2270 			return ret;
2271 		sis->flags |= SWP_ACTIVATED;
2272 		if ((sis->flags & SWP_FS_OPS) &&
2273 		    sio_pool_init() != 0) {
2274 			destroy_swap_extents(sis);
2275 			return -ENOMEM;
2276 		}
2277 		return ret;
2278 	}
2279 
2280 	return generic_swapfile_activate(sis, swap_file, span);
2281 }
2282 
2283 static int swap_node(struct swap_info_struct *p)
2284 {
2285 	struct block_device *bdev;
2286 
2287 	if (p->bdev)
2288 		bdev = p->bdev;
2289 	else
2290 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2291 
2292 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2293 }
2294 
2295 static void setup_swap_info(struct swap_info_struct *p, int prio,
2296 			    unsigned char *swap_map,
2297 			    struct swap_cluster_info *cluster_info)
2298 {
2299 	int i;
2300 
2301 	if (prio >= 0)
2302 		p->prio = prio;
2303 	else
2304 		p->prio = --least_priority;
2305 	/*
2306 	 * the plist prio is negated because plist ordering is
2307 	 * low-to-high, while swap ordering is high-to-low
2308 	 */
2309 	p->list.prio = -p->prio;
2310 	for_each_node(i) {
2311 		if (p->prio >= 0)
2312 			p->avail_lists[i].prio = -p->prio;
2313 		else {
2314 			if (swap_node(p) == i)
2315 				p->avail_lists[i].prio = 1;
2316 			else
2317 				p->avail_lists[i].prio = -p->prio;
2318 		}
2319 	}
2320 	p->swap_map = swap_map;
2321 	p->cluster_info = cluster_info;
2322 }
2323 
2324 static void _enable_swap_info(struct swap_info_struct *p)
2325 {
2326 	p->flags |= SWP_WRITEOK;
2327 	atomic_long_add(p->pages, &nr_swap_pages);
2328 	total_swap_pages += p->pages;
2329 
2330 	assert_spin_locked(&swap_lock);
2331 	/*
2332 	 * both lists are plists, and thus priority ordered.
2333 	 * swap_active_head needs to be priority ordered for swapoff(),
2334 	 * which on removal of any swap_info_struct with an auto-assigned
2335 	 * (i.e. negative) priority increments the auto-assigned priority
2336 	 * of any lower-priority swap_info_structs.
2337 	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2338 	 * which allocates swap pages from the highest available priority
2339 	 * swap_info_struct.
2340 	 */
2341 	plist_add(&p->list, &swap_active_head);
2342 	add_to_avail_list(p);
2343 }
2344 
2345 static void enable_swap_info(struct swap_info_struct *p, int prio,
2346 				unsigned char *swap_map,
2347 				struct swap_cluster_info *cluster_info,
2348 				unsigned long *frontswap_map)
2349 {
2350 	if (IS_ENABLED(CONFIG_FRONTSWAP))
2351 		frontswap_init(p->type, frontswap_map);
2352 	spin_lock(&swap_lock);
2353 	spin_lock(&p->lock);
2354 	setup_swap_info(p, prio, swap_map, cluster_info);
2355 	spin_unlock(&p->lock);
2356 	spin_unlock(&swap_lock);
2357 	/*
2358 	 * Finished initializing swap device, now it's safe to reference it.
2359 	 */
2360 	percpu_ref_resurrect(&p->users);
2361 	spin_lock(&swap_lock);
2362 	spin_lock(&p->lock);
2363 	_enable_swap_info(p);
2364 	spin_unlock(&p->lock);
2365 	spin_unlock(&swap_lock);
2366 }
2367 
2368 static void reinsert_swap_info(struct swap_info_struct *p)
2369 {
2370 	spin_lock(&swap_lock);
2371 	spin_lock(&p->lock);
2372 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2373 	_enable_swap_info(p);
2374 	spin_unlock(&p->lock);
2375 	spin_unlock(&swap_lock);
2376 }
2377 
2378 bool has_usable_swap(void)
2379 {
2380 	bool ret = true;
2381 
2382 	spin_lock(&swap_lock);
2383 	if (plist_head_empty(&swap_active_head))
2384 		ret = false;
2385 	spin_unlock(&swap_lock);
2386 	return ret;
2387 }
2388 
2389 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2390 {
2391 	struct swap_info_struct *p = NULL;
2392 	unsigned char *swap_map;
2393 	struct swap_cluster_info *cluster_info;
2394 	unsigned long *frontswap_map;
2395 	struct file *swap_file, *victim;
2396 	struct address_space *mapping;
2397 	struct inode *inode;
2398 	struct filename *pathname;
2399 	int err, found = 0;
2400 	unsigned int old_block_size;
2401 
2402 	if (!capable(CAP_SYS_ADMIN))
2403 		return -EPERM;
2404 
2405 	BUG_ON(!current->mm);
2406 
2407 	pathname = getname(specialfile);
2408 	if (IS_ERR(pathname))
2409 		return PTR_ERR(pathname);
2410 
2411 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2412 	err = PTR_ERR(victim);
2413 	if (IS_ERR(victim))
2414 		goto out;
2415 
2416 	mapping = victim->f_mapping;
2417 	spin_lock(&swap_lock);
2418 	plist_for_each_entry(p, &swap_active_head, list) {
2419 		if (p->flags & SWP_WRITEOK) {
2420 			if (p->swap_file->f_mapping == mapping) {
2421 				found = 1;
2422 				break;
2423 			}
2424 		}
2425 	}
2426 	if (!found) {
2427 		err = -EINVAL;
2428 		spin_unlock(&swap_lock);
2429 		goto out_dput;
2430 	}
2431 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2432 		vm_unacct_memory(p->pages);
2433 	else {
2434 		err = -ENOMEM;
2435 		spin_unlock(&swap_lock);
2436 		goto out_dput;
2437 	}
2438 	spin_lock(&p->lock);
2439 	del_from_avail_list(p);
2440 	if (p->prio < 0) {
2441 		struct swap_info_struct *si = p;
2442 		int nid;
2443 
2444 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2445 			si->prio++;
2446 			si->list.prio--;
2447 			for_each_node(nid) {
2448 				if (si->avail_lists[nid].prio != 1)
2449 					si->avail_lists[nid].prio--;
2450 			}
2451 		}
2452 		least_priority++;
2453 	}
2454 	plist_del(&p->list, &swap_active_head);
2455 	atomic_long_sub(p->pages, &nr_swap_pages);
2456 	total_swap_pages -= p->pages;
2457 	p->flags &= ~SWP_WRITEOK;
2458 	spin_unlock(&p->lock);
2459 	spin_unlock(&swap_lock);
2460 
2461 	disable_swap_slots_cache_lock();
2462 
2463 	set_current_oom_origin();
2464 	err = try_to_unuse(p->type);
2465 	clear_current_oom_origin();
2466 
2467 	if (err) {
2468 		/* re-insert swap space back into swap_list */
2469 		reinsert_swap_info(p);
2470 		reenable_swap_slots_cache_unlock();
2471 		goto out_dput;
2472 	}
2473 
2474 	reenable_swap_slots_cache_unlock();
2475 
2476 	/*
2477 	 * Wait for swap operations protected by get/put_swap_device()
2478 	 * to complete.
2479 	 *
2480 	 * We need synchronize_rcu() here to protect the accessing to
2481 	 * the swap cache data structure.
2482 	 */
2483 	percpu_ref_kill(&p->users);
2484 	synchronize_rcu();
2485 	wait_for_completion(&p->comp);
2486 
2487 	flush_work(&p->discard_work);
2488 
2489 	destroy_swap_extents(p);
2490 	if (p->flags & SWP_CONTINUED)
2491 		free_swap_count_continuations(p);
2492 
2493 	if (!p->bdev || !bdev_nonrot(p->bdev))
2494 		atomic_dec(&nr_rotate_swap);
2495 
2496 	mutex_lock(&swapon_mutex);
2497 	spin_lock(&swap_lock);
2498 	spin_lock(&p->lock);
2499 	drain_mmlist();
2500 
2501 	/* wait for anyone still in scan_swap_map_slots */
2502 	p->highest_bit = 0;		/* cuts scans short */
2503 	while (p->flags >= SWP_SCANNING) {
2504 		spin_unlock(&p->lock);
2505 		spin_unlock(&swap_lock);
2506 		schedule_timeout_uninterruptible(1);
2507 		spin_lock(&swap_lock);
2508 		spin_lock(&p->lock);
2509 	}
2510 
2511 	swap_file = p->swap_file;
2512 	old_block_size = p->old_block_size;
2513 	p->swap_file = NULL;
2514 	p->max = 0;
2515 	swap_map = p->swap_map;
2516 	p->swap_map = NULL;
2517 	cluster_info = p->cluster_info;
2518 	p->cluster_info = NULL;
2519 	frontswap_map = frontswap_map_get(p);
2520 	spin_unlock(&p->lock);
2521 	spin_unlock(&swap_lock);
2522 	arch_swap_invalidate_area(p->type);
2523 	frontswap_invalidate_area(p->type);
2524 	frontswap_map_set(p, NULL);
2525 	mutex_unlock(&swapon_mutex);
2526 	free_percpu(p->percpu_cluster);
2527 	p->percpu_cluster = NULL;
2528 	free_percpu(p->cluster_next_cpu);
2529 	p->cluster_next_cpu = NULL;
2530 	vfree(swap_map);
2531 	kvfree(cluster_info);
2532 	kvfree(frontswap_map);
2533 	/* Destroy swap account information */
2534 	swap_cgroup_swapoff(p->type);
2535 	exit_swap_address_space(p->type);
2536 
2537 	inode = mapping->host;
2538 	if (S_ISBLK(inode->i_mode)) {
2539 		struct block_device *bdev = I_BDEV(inode);
2540 
2541 		set_blocksize(bdev, old_block_size);
2542 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2543 	}
2544 
2545 	inode_lock(inode);
2546 	inode->i_flags &= ~S_SWAPFILE;
2547 	inode_unlock(inode);
2548 	filp_close(swap_file, NULL);
2549 
2550 	/*
2551 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2552 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2553 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2554 	 */
2555 	spin_lock(&swap_lock);
2556 	p->flags = 0;
2557 	spin_unlock(&swap_lock);
2558 
2559 	err = 0;
2560 	atomic_inc(&proc_poll_event);
2561 	wake_up_interruptible(&proc_poll_wait);
2562 
2563 out_dput:
2564 	filp_close(victim, NULL);
2565 out:
2566 	putname(pathname);
2567 	return err;
2568 }
2569 
2570 #ifdef CONFIG_PROC_FS
2571 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2572 {
2573 	struct seq_file *seq = file->private_data;
2574 
2575 	poll_wait(file, &proc_poll_wait, wait);
2576 
2577 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2578 		seq->poll_event = atomic_read(&proc_poll_event);
2579 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2580 	}
2581 
2582 	return EPOLLIN | EPOLLRDNORM;
2583 }
2584 
2585 /* iterator */
2586 static void *swap_start(struct seq_file *swap, loff_t *pos)
2587 {
2588 	struct swap_info_struct *si;
2589 	int type;
2590 	loff_t l = *pos;
2591 
2592 	mutex_lock(&swapon_mutex);
2593 
2594 	if (!l)
2595 		return SEQ_START_TOKEN;
2596 
2597 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2598 		if (!(si->flags & SWP_USED) || !si->swap_map)
2599 			continue;
2600 		if (!--l)
2601 			return si;
2602 	}
2603 
2604 	return NULL;
2605 }
2606 
2607 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2608 {
2609 	struct swap_info_struct *si = v;
2610 	int type;
2611 
2612 	if (v == SEQ_START_TOKEN)
2613 		type = 0;
2614 	else
2615 		type = si->type + 1;
2616 
2617 	++(*pos);
2618 	for (; (si = swap_type_to_swap_info(type)); type++) {
2619 		if (!(si->flags & SWP_USED) || !si->swap_map)
2620 			continue;
2621 		return si;
2622 	}
2623 
2624 	return NULL;
2625 }
2626 
2627 static void swap_stop(struct seq_file *swap, void *v)
2628 {
2629 	mutex_unlock(&swapon_mutex);
2630 }
2631 
2632 static int swap_show(struct seq_file *swap, void *v)
2633 {
2634 	struct swap_info_struct *si = v;
2635 	struct file *file;
2636 	int len;
2637 	unsigned long bytes, inuse;
2638 
2639 	if (si == SEQ_START_TOKEN) {
2640 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2641 		return 0;
2642 	}
2643 
2644 	bytes = si->pages << (PAGE_SHIFT - 10);
2645 	inuse = READ_ONCE(si->inuse_pages) << (PAGE_SHIFT - 10);
2646 
2647 	file = si->swap_file;
2648 	len = seq_file_path(swap, file, " \t\n\\");
2649 	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2650 			len < 40 ? 40 - len : 1, " ",
2651 			S_ISBLK(file_inode(file)->i_mode) ?
2652 				"partition" : "file\t",
2653 			bytes, bytes < 10000000 ? "\t" : "",
2654 			inuse, inuse < 10000000 ? "\t" : "",
2655 			si->prio);
2656 	return 0;
2657 }
2658 
2659 static const struct seq_operations swaps_op = {
2660 	.start =	swap_start,
2661 	.next =		swap_next,
2662 	.stop =		swap_stop,
2663 	.show =		swap_show
2664 };
2665 
2666 static int swaps_open(struct inode *inode, struct file *file)
2667 {
2668 	struct seq_file *seq;
2669 	int ret;
2670 
2671 	ret = seq_open(file, &swaps_op);
2672 	if (ret)
2673 		return ret;
2674 
2675 	seq = file->private_data;
2676 	seq->poll_event = atomic_read(&proc_poll_event);
2677 	return 0;
2678 }
2679 
2680 static const struct proc_ops swaps_proc_ops = {
2681 	.proc_flags	= PROC_ENTRY_PERMANENT,
2682 	.proc_open	= swaps_open,
2683 	.proc_read	= seq_read,
2684 	.proc_lseek	= seq_lseek,
2685 	.proc_release	= seq_release,
2686 	.proc_poll	= swaps_poll,
2687 };
2688 
2689 static int __init procswaps_init(void)
2690 {
2691 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2692 	return 0;
2693 }
2694 __initcall(procswaps_init);
2695 #endif /* CONFIG_PROC_FS */
2696 
2697 #ifdef MAX_SWAPFILES_CHECK
2698 static int __init max_swapfiles_check(void)
2699 {
2700 	MAX_SWAPFILES_CHECK();
2701 	return 0;
2702 }
2703 late_initcall(max_swapfiles_check);
2704 #endif
2705 
2706 static struct swap_info_struct *alloc_swap_info(void)
2707 {
2708 	struct swap_info_struct *p;
2709 	struct swap_info_struct *defer = NULL;
2710 	unsigned int type;
2711 	int i;
2712 
2713 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2714 	if (!p)
2715 		return ERR_PTR(-ENOMEM);
2716 
2717 	if (percpu_ref_init(&p->users, swap_users_ref_free,
2718 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2719 		kvfree(p);
2720 		return ERR_PTR(-ENOMEM);
2721 	}
2722 
2723 	spin_lock(&swap_lock);
2724 	for (type = 0; type < nr_swapfiles; type++) {
2725 		if (!(swap_info[type]->flags & SWP_USED))
2726 			break;
2727 	}
2728 	if (type >= MAX_SWAPFILES) {
2729 		spin_unlock(&swap_lock);
2730 		percpu_ref_exit(&p->users);
2731 		kvfree(p);
2732 		return ERR_PTR(-EPERM);
2733 	}
2734 	if (type >= nr_swapfiles) {
2735 		p->type = type;
2736 		/*
2737 		 * Publish the swap_info_struct after initializing it.
2738 		 * Note that kvzalloc() above zeroes all its fields.
2739 		 */
2740 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2741 		nr_swapfiles++;
2742 	} else {
2743 		defer = p;
2744 		p = swap_info[type];
2745 		/*
2746 		 * Do not memset this entry: a racing procfs swap_next()
2747 		 * would be relying on p->type to remain valid.
2748 		 */
2749 	}
2750 	p->swap_extent_root = RB_ROOT;
2751 	plist_node_init(&p->list, 0);
2752 	for_each_node(i)
2753 		plist_node_init(&p->avail_lists[i], 0);
2754 	p->flags = SWP_USED;
2755 	spin_unlock(&swap_lock);
2756 	if (defer) {
2757 		percpu_ref_exit(&defer->users);
2758 		kvfree(defer);
2759 	}
2760 	spin_lock_init(&p->lock);
2761 	spin_lock_init(&p->cont_lock);
2762 	init_completion(&p->comp);
2763 
2764 	return p;
2765 }
2766 
2767 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2768 {
2769 	int error;
2770 
2771 	if (S_ISBLK(inode->i_mode)) {
2772 		p->bdev = blkdev_get_by_dev(inode->i_rdev,
2773 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2774 		if (IS_ERR(p->bdev)) {
2775 			error = PTR_ERR(p->bdev);
2776 			p->bdev = NULL;
2777 			return error;
2778 		}
2779 		p->old_block_size = block_size(p->bdev);
2780 		error = set_blocksize(p->bdev, PAGE_SIZE);
2781 		if (error < 0)
2782 			return error;
2783 		/*
2784 		 * Zoned block devices contain zones that have a sequential
2785 		 * write only restriction.  Hence zoned block devices are not
2786 		 * suitable for swapping.  Disallow them here.
2787 		 */
2788 		if (bdev_is_zoned(p->bdev))
2789 			return -EINVAL;
2790 		p->flags |= SWP_BLKDEV;
2791 	} else if (S_ISREG(inode->i_mode)) {
2792 		p->bdev = inode->i_sb->s_bdev;
2793 	}
2794 
2795 	return 0;
2796 }
2797 
2798 
2799 /*
2800  * Find out how many pages are allowed for a single swap device. There
2801  * are two limiting factors:
2802  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2803  * 2) the number of bits in the swap pte, as defined by the different
2804  * architectures.
2805  *
2806  * In order to find the largest possible bit mask, a swap entry with
2807  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2808  * decoded to a swp_entry_t again, and finally the swap offset is
2809  * extracted.
2810  *
2811  * This will mask all the bits from the initial ~0UL mask that can't
2812  * be encoded in either the swp_entry_t or the architecture definition
2813  * of a swap pte.
2814  */
2815 unsigned long generic_max_swapfile_size(void)
2816 {
2817 	return swp_offset(pte_to_swp_entry(
2818 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2819 }
2820 
2821 /* Can be overridden by an architecture for additional checks. */
2822 __weak unsigned long arch_max_swapfile_size(void)
2823 {
2824 	return generic_max_swapfile_size();
2825 }
2826 
2827 static unsigned long read_swap_header(struct swap_info_struct *p,
2828 					union swap_header *swap_header,
2829 					struct inode *inode)
2830 {
2831 	int i;
2832 	unsigned long maxpages;
2833 	unsigned long swapfilepages;
2834 	unsigned long last_page;
2835 
2836 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2837 		pr_err("Unable to find swap-space signature\n");
2838 		return 0;
2839 	}
2840 
2841 	/* swap partition endianness hack... */
2842 	if (swab32(swap_header->info.version) == 1) {
2843 		swab32s(&swap_header->info.version);
2844 		swab32s(&swap_header->info.last_page);
2845 		swab32s(&swap_header->info.nr_badpages);
2846 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2847 			return 0;
2848 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2849 			swab32s(&swap_header->info.badpages[i]);
2850 	}
2851 	/* Check the swap header's sub-version */
2852 	if (swap_header->info.version != 1) {
2853 		pr_warn("Unable to handle swap header version %d\n",
2854 			swap_header->info.version);
2855 		return 0;
2856 	}
2857 
2858 	p->lowest_bit  = 1;
2859 	p->cluster_next = 1;
2860 	p->cluster_nr = 0;
2861 
2862 	maxpages = swapfile_maximum_size;
2863 	last_page = swap_header->info.last_page;
2864 	if (!last_page) {
2865 		pr_warn("Empty swap-file\n");
2866 		return 0;
2867 	}
2868 	if (last_page > maxpages) {
2869 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2870 			maxpages << (PAGE_SHIFT - 10),
2871 			last_page << (PAGE_SHIFT - 10));
2872 	}
2873 	if (maxpages > last_page) {
2874 		maxpages = last_page + 1;
2875 		/* p->max is an unsigned int: don't overflow it */
2876 		if ((unsigned int)maxpages == 0)
2877 			maxpages = UINT_MAX;
2878 	}
2879 	p->highest_bit = maxpages - 1;
2880 
2881 	if (!maxpages)
2882 		return 0;
2883 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2884 	if (swapfilepages && maxpages > swapfilepages) {
2885 		pr_warn("Swap area shorter than signature indicates\n");
2886 		return 0;
2887 	}
2888 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2889 		return 0;
2890 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2891 		return 0;
2892 
2893 	return maxpages;
2894 }
2895 
2896 #define SWAP_CLUSTER_INFO_COLS						\
2897 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2898 #define SWAP_CLUSTER_SPACE_COLS						\
2899 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2900 #define SWAP_CLUSTER_COLS						\
2901 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2902 
2903 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2904 					union swap_header *swap_header,
2905 					unsigned char *swap_map,
2906 					struct swap_cluster_info *cluster_info,
2907 					unsigned long maxpages,
2908 					sector_t *span)
2909 {
2910 	unsigned int j, k;
2911 	unsigned int nr_good_pages;
2912 	int nr_extents;
2913 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2914 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2915 	unsigned long i, idx;
2916 
2917 	nr_good_pages = maxpages - 1;	/* omit header page */
2918 
2919 	cluster_list_init(&p->free_clusters);
2920 	cluster_list_init(&p->discard_clusters);
2921 
2922 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2923 		unsigned int page_nr = swap_header->info.badpages[i];
2924 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2925 			return -EINVAL;
2926 		if (page_nr < maxpages) {
2927 			swap_map[page_nr] = SWAP_MAP_BAD;
2928 			nr_good_pages--;
2929 			/*
2930 			 * Haven't marked the cluster free yet, no list
2931 			 * operation involved
2932 			 */
2933 			inc_cluster_info_page(p, cluster_info, page_nr);
2934 		}
2935 	}
2936 
2937 	/* Haven't marked the cluster free yet, no list operation involved */
2938 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2939 		inc_cluster_info_page(p, cluster_info, i);
2940 
2941 	if (nr_good_pages) {
2942 		swap_map[0] = SWAP_MAP_BAD;
2943 		/*
2944 		 * Not mark the cluster free yet, no list
2945 		 * operation involved
2946 		 */
2947 		inc_cluster_info_page(p, cluster_info, 0);
2948 		p->max = maxpages;
2949 		p->pages = nr_good_pages;
2950 		nr_extents = setup_swap_extents(p, span);
2951 		if (nr_extents < 0)
2952 			return nr_extents;
2953 		nr_good_pages = p->pages;
2954 	}
2955 	if (!nr_good_pages) {
2956 		pr_warn("Empty swap-file\n");
2957 		return -EINVAL;
2958 	}
2959 
2960 	if (!cluster_info)
2961 		return nr_extents;
2962 
2963 
2964 	/*
2965 	 * Reduce false cache line sharing between cluster_info and
2966 	 * sharing same address space.
2967 	 */
2968 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2969 		j = (k + col) % SWAP_CLUSTER_COLS;
2970 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2971 			idx = i * SWAP_CLUSTER_COLS + j;
2972 			if (idx >= nr_clusters)
2973 				continue;
2974 			if (cluster_count(&cluster_info[idx]))
2975 				continue;
2976 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2977 			cluster_list_add_tail(&p->free_clusters, cluster_info,
2978 					      idx);
2979 		}
2980 	}
2981 	return nr_extents;
2982 }
2983 
2984 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2985 {
2986 	struct swap_info_struct *p;
2987 	struct filename *name;
2988 	struct file *swap_file = NULL;
2989 	struct address_space *mapping;
2990 	struct dentry *dentry;
2991 	int prio;
2992 	int error;
2993 	union swap_header *swap_header;
2994 	int nr_extents;
2995 	sector_t span;
2996 	unsigned long maxpages;
2997 	unsigned char *swap_map = NULL;
2998 	struct swap_cluster_info *cluster_info = NULL;
2999 	unsigned long *frontswap_map = NULL;
3000 	struct page *page = NULL;
3001 	struct inode *inode = NULL;
3002 	bool inced_nr_rotate_swap = false;
3003 
3004 	if (swap_flags & ~SWAP_FLAGS_VALID)
3005 		return -EINVAL;
3006 
3007 	if (!capable(CAP_SYS_ADMIN))
3008 		return -EPERM;
3009 
3010 	if (!swap_avail_heads)
3011 		return -ENOMEM;
3012 
3013 	p = alloc_swap_info();
3014 	if (IS_ERR(p))
3015 		return PTR_ERR(p);
3016 
3017 	INIT_WORK(&p->discard_work, swap_discard_work);
3018 
3019 	name = getname(specialfile);
3020 	if (IS_ERR(name)) {
3021 		error = PTR_ERR(name);
3022 		name = NULL;
3023 		goto bad_swap;
3024 	}
3025 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3026 	if (IS_ERR(swap_file)) {
3027 		error = PTR_ERR(swap_file);
3028 		swap_file = NULL;
3029 		goto bad_swap;
3030 	}
3031 
3032 	p->swap_file = swap_file;
3033 	mapping = swap_file->f_mapping;
3034 	dentry = swap_file->f_path.dentry;
3035 	inode = mapping->host;
3036 
3037 	error = claim_swapfile(p, inode);
3038 	if (unlikely(error))
3039 		goto bad_swap;
3040 
3041 	inode_lock(inode);
3042 	if (d_unlinked(dentry) || cant_mount(dentry)) {
3043 		error = -ENOENT;
3044 		goto bad_swap_unlock_inode;
3045 	}
3046 	if (IS_SWAPFILE(inode)) {
3047 		error = -EBUSY;
3048 		goto bad_swap_unlock_inode;
3049 	}
3050 
3051 	/*
3052 	 * Read the swap header.
3053 	 */
3054 	if (!mapping->a_ops->read_folio) {
3055 		error = -EINVAL;
3056 		goto bad_swap_unlock_inode;
3057 	}
3058 	page = read_mapping_page(mapping, 0, swap_file);
3059 	if (IS_ERR(page)) {
3060 		error = PTR_ERR(page);
3061 		goto bad_swap_unlock_inode;
3062 	}
3063 	swap_header = kmap(page);
3064 
3065 	maxpages = read_swap_header(p, swap_header, inode);
3066 	if (unlikely(!maxpages)) {
3067 		error = -EINVAL;
3068 		goto bad_swap_unlock_inode;
3069 	}
3070 
3071 	/* OK, set up the swap map and apply the bad block list */
3072 	swap_map = vzalloc(maxpages);
3073 	if (!swap_map) {
3074 		error = -ENOMEM;
3075 		goto bad_swap_unlock_inode;
3076 	}
3077 
3078 	if (p->bdev && bdev_stable_writes(p->bdev))
3079 		p->flags |= SWP_STABLE_WRITES;
3080 
3081 	if (p->bdev && bdev_synchronous(p->bdev))
3082 		p->flags |= SWP_SYNCHRONOUS_IO;
3083 
3084 	if (p->bdev && bdev_nonrot(p->bdev)) {
3085 		int cpu;
3086 		unsigned long ci, nr_cluster;
3087 
3088 		p->flags |= SWP_SOLIDSTATE;
3089 		p->cluster_next_cpu = alloc_percpu(unsigned int);
3090 		if (!p->cluster_next_cpu) {
3091 			error = -ENOMEM;
3092 			goto bad_swap_unlock_inode;
3093 		}
3094 		/*
3095 		 * select a random position to start with to help wear leveling
3096 		 * SSD
3097 		 */
3098 		for_each_possible_cpu(cpu) {
3099 			per_cpu(*p->cluster_next_cpu, cpu) =
3100 				get_random_u32_inclusive(1, p->highest_bit);
3101 		}
3102 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3103 
3104 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3105 					GFP_KERNEL);
3106 		if (!cluster_info) {
3107 			error = -ENOMEM;
3108 			goto bad_swap_unlock_inode;
3109 		}
3110 
3111 		for (ci = 0; ci < nr_cluster; ci++)
3112 			spin_lock_init(&((cluster_info + ci)->lock));
3113 
3114 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3115 		if (!p->percpu_cluster) {
3116 			error = -ENOMEM;
3117 			goto bad_swap_unlock_inode;
3118 		}
3119 		for_each_possible_cpu(cpu) {
3120 			struct percpu_cluster *cluster;
3121 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3122 			cluster_set_null(&cluster->index);
3123 		}
3124 	} else {
3125 		atomic_inc(&nr_rotate_swap);
3126 		inced_nr_rotate_swap = true;
3127 	}
3128 
3129 	error = swap_cgroup_swapon(p->type, maxpages);
3130 	if (error)
3131 		goto bad_swap_unlock_inode;
3132 
3133 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3134 		cluster_info, maxpages, &span);
3135 	if (unlikely(nr_extents < 0)) {
3136 		error = nr_extents;
3137 		goto bad_swap_unlock_inode;
3138 	}
3139 	/* frontswap enabled? set up bit-per-page map for frontswap */
3140 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3141 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3142 					 sizeof(long),
3143 					 GFP_KERNEL);
3144 
3145 	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3146 	    p->bdev && bdev_max_discard_sectors(p->bdev)) {
3147 		/*
3148 		 * When discard is enabled for swap with no particular
3149 		 * policy flagged, we set all swap discard flags here in
3150 		 * order to sustain backward compatibility with older
3151 		 * swapon(8) releases.
3152 		 */
3153 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3154 			     SWP_PAGE_DISCARD);
3155 
3156 		/*
3157 		 * By flagging sys_swapon, a sysadmin can tell us to
3158 		 * either do single-time area discards only, or to just
3159 		 * perform discards for released swap page-clusters.
3160 		 * Now it's time to adjust the p->flags accordingly.
3161 		 */
3162 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3163 			p->flags &= ~SWP_PAGE_DISCARD;
3164 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3165 			p->flags &= ~SWP_AREA_DISCARD;
3166 
3167 		/* issue a swapon-time discard if it's still required */
3168 		if (p->flags & SWP_AREA_DISCARD) {
3169 			int err = discard_swap(p);
3170 			if (unlikely(err))
3171 				pr_err("swapon: discard_swap(%p): %d\n",
3172 					p, err);
3173 		}
3174 	}
3175 
3176 	error = init_swap_address_space(p->type, maxpages);
3177 	if (error)
3178 		goto bad_swap_unlock_inode;
3179 
3180 	/*
3181 	 * Flush any pending IO and dirty mappings before we start using this
3182 	 * swap device.
3183 	 */
3184 	inode->i_flags |= S_SWAPFILE;
3185 	error = inode_drain_writes(inode);
3186 	if (error) {
3187 		inode->i_flags &= ~S_SWAPFILE;
3188 		goto free_swap_address_space;
3189 	}
3190 
3191 	mutex_lock(&swapon_mutex);
3192 	prio = -1;
3193 	if (swap_flags & SWAP_FLAG_PREFER)
3194 		prio =
3195 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3196 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3197 
3198 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3199 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3200 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3201 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3202 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3203 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3204 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3205 		(frontswap_map) ? "FS" : "");
3206 
3207 	mutex_unlock(&swapon_mutex);
3208 	atomic_inc(&proc_poll_event);
3209 	wake_up_interruptible(&proc_poll_wait);
3210 
3211 	error = 0;
3212 	goto out;
3213 free_swap_address_space:
3214 	exit_swap_address_space(p->type);
3215 bad_swap_unlock_inode:
3216 	inode_unlock(inode);
3217 bad_swap:
3218 	free_percpu(p->percpu_cluster);
3219 	p->percpu_cluster = NULL;
3220 	free_percpu(p->cluster_next_cpu);
3221 	p->cluster_next_cpu = NULL;
3222 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3223 		set_blocksize(p->bdev, p->old_block_size);
3224 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3225 	}
3226 	inode = NULL;
3227 	destroy_swap_extents(p);
3228 	swap_cgroup_swapoff(p->type);
3229 	spin_lock(&swap_lock);
3230 	p->swap_file = NULL;
3231 	p->flags = 0;
3232 	spin_unlock(&swap_lock);
3233 	vfree(swap_map);
3234 	kvfree(cluster_info);
3235 	kvfree(frontswap_map);
3236 	if (inced_nr_rotate_swap)
3237 		atomic_dec(&nr_rotate_swap);
3238 	if (swap_file)
3239 		filp_close(swap_file, NULL);
3240 out:
3241 	if (page && !IS_ERR(page)) {
3242 		kunmap(page);
3243 		put_page(page);
3244 	}
3245 	if (name)
3246 		putname(name);
3247 	if (inode)
3248 		inode_unlock(inode);
3249 	if (!error)
3250 		enable_swap_slots_cache();
3251 	return error;
3252 }
3253 
3254 void si_swapinfo(struct sysinfo *val)
3255 {
3256 	unsigned int type;
3257 	unsigned long nr_to_be_unused = 0;
3258 
3259 	spin_lock(&swap_lock);
3260 	for (type = 0; type < nr_swapfiles; type++) {
3261 		struct swap_info_struct *si = swap_info[type];
3262 
3263 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3264 			nr_to_be_unused += READ_ONCE(si->inuse_pages);
3265 	}
3266 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3267 	val->totalswap = total_swap_pages + nr_to_be_unused;
3268 	spin_unlock(&swap_lock);
3269 }
3270 
3271 /*
3272  * Verify that a swap entry is valid and increment its swap map count.
3273  *
3274  * Returns error code in following case.
3275  * - success -> 0
3276  * - swp_entry is invalid -> EINVAL
3277  * - swp_entry is migration entry -> EINVAL
3278  * - swap-cache reference is requested but there is already one. -> EEXIST
3279  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3280  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3281  */
3282 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3283 {
3284 	struct swap_info_struct *p;
3285 	struct swap_cluster_info *ci;
3286 	unsigned long offset;
3287 	unsigned char count;
3288 	unsigned char has_cache;
3289 	int err;
3290 
3291 	p = get_swap_device(entry);
3292 	if (!p)
3293 		return -EINVAL;
3294 
3295 	offset = swp_offset(entry);
3296 	ci = lock_cluster_or_swap_info(p, offset);
3297 
3298 	count = p->swap_map[offset];
3299 
3300 	/*
3301 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3302 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3303 	 */
3304 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3305 		err = -ENOENT;
3306 		goto unlock_out;
3307 	}
3308 
3309 	has_cache = count & SWAP_HAS_CACHE;
3310 	count &= ~SWAP_HAS_CACHE;
3311 	err = 0;
3312 
3313 	if (usage == SWAP_HAS_CACHE) {
3314 
3315 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3316 		if (!has_cache && count)
3317 			has_cache = SWAP_HAS_CACHE;
3318 		else if (has_cache)		/* someone else added cache */
3319 			err = -EEXIST;
3320 		else				/* no users remaining */
3321 			err = -ENOENT;
3322 
3323 	} else if (count || has_cache) {
3324 
3325 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3326 			count += usage;
3327 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3328 			err = -EINVAL;
3329 		else if (swap_count_continued(p, offset, count))
3330 			count = COUNT_CONTINUED;
3331 		else
3332 			err = -ENOMEM;
3333 	} else
3334 		err = -ENOENT;			/* unused swap entry */
3335 
3336 	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3337 
3338 unlock_out:
3339 	unlock_cluster_or_swap_info(p, ci);
3340 	put_swap_device(p);
3341 	return err;
3342 }
3343 
3344 /*
3345  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3346  * (in which case its reference count is never incremented).
3347  */
3348 void swap_shmem_alloc(swp_entry_t entry)
3349 {
3350 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3351 }
3352 
3353 /*
3354  * Increase reference count of swap entry by 1.
3355  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3356  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3357  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3358  * might occur if a page table entry has got corrupted.
3359  */
3360 int swap_duplicate(swp_entry_t entry)
3361 {
3362 	int err = 0;
3363 
3364 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3365 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3366 	return err;
3367 }
3368 
3369 /*
3370  * @entry: swap entry for which we allocate swap cache.
3371  *
3372  * Called when allocating swap cache for existing swap entry,
3373  * This can return error codes. Returns 0 at success.
3374  * -EEXIST means there is a swap cache.
3375  * Note: return code is different from swap_duplicate().
3376  */
3377 int swapcache_prepare(swp_entry_t entry)
3378 {
3379 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3380 }
3381 
3382 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3383 {
3384 	return swap_type_to_swap_info(swp_type(entry));
3385 }
3386 
3387 struct swap_info_struct *page_swap_info(struct page *page)
3388 {
3389 	swp_entry_t entry = { .val = page_private(page) };
3390 	return swp_swap_info(entry);
3391 }
3392 
3393 /*
3394  * out-of-line methods to avoid include hell.
3395  */
3396 struct address_space *swapcache_mapping(struct folio *folio)
3397 {
3398 	return page_swap_info(&folio->page)->swap_file->f_mapping;
3399 }
3400 EXPORT_SYMBOL_GPL(swapcache_mapping);
3401 
3402 pgoff_t __page_file_index(struct page *page)
3403 {
3404 	swp_entry_t swap = { .val = page_private(page) };
3405 	return swp_offset(swap);
3406 }
3407 EXPORT_SYMBOL_GPL(__page_file_index);
3408 
3409 /*
3410  * add_swap_count_continuation - called when a swap count is duplicated
3411  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3412  * page of the original vmalloc'ed swap_map, to hold the continuation count
3413  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3414  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3415  *
3416  * These continuation pages are seldom referenced: the common paths all work
3417  * on the original swap_map, only referring to a continuation page when the
3418  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3419  *
3420  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3421  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3422  * can be called after dropping locks.
3423  */
3424 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3425 {
3426 	struct swap_info_struct *si;
3427 	struct swap_cluster_info *ci;
3428 	struct page *head;
3429 	struct page *page;
3430 	struct page *list_page;
3431 	pgoff_t offset;
3432 	unsigned char count;
3433 	int ret = 0;
3434 
3435 	/*
3436 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3437 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3438 	 */
3439 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3440 
3441 	si = get_swap_device(entry);
3442 	if (!si) {
3443 		/*
3444 		 * An acceptable race has occurred since the failing
3445 		 * __swap_duplicate(): the swap device may be swapoff
3446 		 */
3447 		goto outer;
3448 	}
3449 	spin_lock(&si->lock);
3450 
3451 	offset = swp_offset(entry);
3452 
3453 	ci = lock_cluster(si, offset);
3454 
3455 	count = swap_count(si->swap_map[offset]);
3456 
3457 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3458 		/*
3459 		 * The higher the swap count, the more likely it is that tasks
3460 		 * will race to add swap count continuation: we need to avoid
3461 		 * over-provisioning.
3462 		 */
3463 		goto out;
3464 	}
3465 
3466 	if (!page) {
3467 		ret = -ENOMEM;
3468 		goto out;
3469 	}
3470 
3471 	/*
3472 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3473 	 * no architecture is using highmem pages for kernel page tables: so it
3474 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3475 	 */
3476 	head = vmalloc_to_page(si->swap_map + offset);
3477 	offset &= ~PAGE_MASK;
3478 
3479 	spin_lock(&si->cont_lock);
3480 	/*
3481 	 * Page allocation does not initialize the page's lru field,
3482 	 * but it does always reset its private field.
3483 	 */
3484 	if (!page_private(head)) {
3485 		BUG_ON(count & COUNT_CONTINUED);
3486 		INIT_LIST_HEAD(&head->lru);
3487 		set_page_private(head, SWP_CONTINUED);
3488 		si->flags |= SWP_CONTINUED;
3489 	}
3490 
3491 	list_for_each_entry(list_page, &head->lru, lru) {
3492 		unsigned char *map;
3493 
3494 		/*
3495 		 * If the previous map said no continuation, but we've found
3496 		 * a continuation page, free our allocation and use this one.
3497 		 */
3498 		if (!(count & COUNT_CONTINUED))
3499 			goto out_unlock_cont;
3500 
3501 		map = kmap_atomic(list_page) + offset;
3502 		count = *map;
3503 		kunmap_atomic(map);
3504 
3505 		/*
3506 		 * If this continuation count now has some space in it,
3507 		 * free our allocation and use this one.
3508 		 */
3509 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3510 			goto out_unlock_cont;
3511 	}
3512 
3513 	list_add_tail(&page->lru, &head->lru);
3514 	page = NULL;			/* now it's attached, don't free it */
3515 out_unlock_cont:
3516 	spin_unlock(&si->cont_lock);
3517 out:
3518 	unlock_cluster(ci);
3519 	spin_unlock(&si->lock);
3520 	put_swap_device(si);
3521 outer:
3522 	if (page)
3523 		__free_page(page);
3524 	return ret;
3525 }
3526 
3527 /*
3528  * swap_count_continued - when the original swap_map count is incremented
3529  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3530  * into, carry if so, or else fail until a new continuation page is allocated;
3531  * when the original swap_map count is decremented from 0 with continuation,
3532  * borrow from the continuation and report whether it still holds more.
3533  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3534  * lock.
3535  */
3536 static bool swap_count_continued(struct swap_info_struct *si,
3537 				 pgoff_t offset, unsigned char count)
3538 {
3539 	struct page *head;
3540 	struct page *page;
3541 	unsigned char *map;
3542 	bool ret;
3543 
3544 	head = vmalloc_to_page(si->swap_map + offset);
3545 	if (page_private(head) != SWP_CONTINUED) {
3546 		BUG_ON(count & COUNT_CONTINUED);
3547 		return false;		/* need to add count continuation */
3548 	}
3549 
3550 	spin_lock(&si->cont_lock);
3551 	offset &= ~PAGE_MASK;
3552 	page = list_next_entry(head, lru);
3553 	map = kmap_atomic(page) + offset;
3554 
3555 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3556 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3557 
3558 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3559 		/*
3560 		 * Think of how you add 1 to 999
3561 		 */
3562 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3563 			kunmap_atomic(map);
3564 			page = list_next_entry(page, lru);
3565 			BUG_ON(page == head);
3566 			map = kmap_atomic(page) + offset;
3567 		}
3568 		if (*map == SWAP_CONT_MAX) {
3569 			kunmap_atomic(map);
3570 			page = list_next_entry(page, lru);
3571 			if (page == head) {
3572 				ret = false;	/* add count continuation */
3573 				goto out;
3574 			}
3575 			map = kmap_atomic(page) + offset;
3576 init_map:		*map = 0;		/* we didn't zero the page */
3577 		}
3578 		*map += 1;
3579 		kunmap_atomic(map);
3580 		while ((page = list_prev_entry(page, lru)) != head) {
3581 			map = kmap_atomic(page) + offset;
3582 			*map = COUNT_CONTINUED;
3583 			kunmap_atomic(map);
3584 		}
3585 		ret = true;			/* incremented */
3586 
3587 	} else {				/* decrementing */
3588 		/*
3589 		 * Think of how you subtract 1 from 1000
3590 		 */
3591 		BUG_ON(count != COUNT_CONTINUED);
3592 		while (*map == COUNT_CONTINUED) {
3593 			kunmap_atomic(map);
3594 			page = list_next_entry(page, lru);
3595 			BUG_ON(page == head);
3596 			map = kmap_atomic(page) + offset;
3597 		}
3598 		BUG_ON(*map == 0);
3599 		*map -= 1;
3600 		if (*map == 0)
3601 			count = 0;
3602 		kunmap_atomic(map);
3603 		while ((page = list_prev_entry(page, lru)) != head) {
3604 			map = kmap_atomic(page) + offset;
3605 			*map = SWAP_CONT_MAX | count;
3606 			count = COUNT_CONTINUED;
3607 			kunmap_atomic(map);
3608 		}
3609 		ret = count == COUNT_CONTINUED;
3610 	}
3611 out:
3612 	spin_unlock(&si->cont_lock);
3613 	return ret;
3614 }
3615 
3616 /*
3617  * free_swap_count_continuations - swapoff free all the continuation pages
3618  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3619  */
3620 static void free_swap_count_continuations(struct swap_info_struct *si)
3621 {
3622 	pgoff_t offset;
3623 
3624 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3625 		struct page *head;
3626 		head = vmalloc_to_page(si->swap_map + offset);
3627 		if (page_private(head)) {
3628 			struct page *page, *next;
3629 
3630 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3631 				list_del(&page->lru);
3632 				__free_page(page);
3633 			}
3634 		}
3635 	}
3636 }
3637 
3638 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3639 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3640 {
3641 	struct swap_info_struct *si, *next;
3642 	int nid = folio_nid(folio);
3643 
3644 	if (!(gfp & __GFP_IO))
3645 		return;
3646 
3647 	if (!blk_cgroup_congested())
3648 		return;
3649 
3650 	/*
3651 	 * We've already scheduled a throttle, avoid taking the global swap
3652 	 * lock.
3653 	 */
3654 	if (current->throttle_disk)
3655 		return;
3656 
3657 	spin_lock(&swap_avail_lock);
3658 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3659 				  avail_lists[nid]) {
3660 		if (si->bdev) {
3661 			blkcg_schedule_throttle(si->bdev->bd_disk, true);
3662 			break;
3663 		}
3664 	}
3665 	spin_unlock(&swap_avail_lock);
3666 }
3667 #endif
3668 
3669 static int __init swapfile_init(void)
3670 {
3671 	int nid;
3672 
3673 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3674 					 GFP_KERNEL);
3675 	if (!swap_avail_heads) {
3676 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3677 		return -ENOMEM;
3678 	}
3679 
3680 	for_each_node(nid)
3681 		plist_head_init(&swap_avail_heads[nid]);
3682 
3683 	swapfile_maximum_size = arch_max_swapfile_size();
3684 
3685 #ifdef CONFIG_MIGRATION
3686 	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3687 		swap_migration_ad_supported = true;
3688 #endif	/* CONFIG_MIGRATION */
3689 
3690 	return 0;
3691 }
3692 subsys_initcall(swapfile_init);
3693