1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shm.h> 18 #include <linux/blkdev.h> 19 #include <linux/writeback.h> 20 #include <linux/proc_fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/init.h> 23 #include <linux/module.h> 24 #include <linux/rmap.h> 25 #include <linux/security.h> 26 #include <linux/backing-dev.h> 27 #include <linux/mutex.h> 28 #include <linux/capability.h> 29 #include <linux/syscalls.h> 30 31 #include <asm/pgtable.h> 32 #include <asm/tlbflush.h> 33 #include <linux/swapops.h> 34 35 DEFINE_SPINLOCK(swap_lock); 36 unsigned int nr_swapfiles; 37 long total_swap_pages; 38 static int swap_overflow; 39 40 static const char Bad_file[] = "Bad swap file entry "; 41 static const char Unused_file[] = "Unused swap file entry "; 42 static const char Bad_offset[] = "Bad swap offset entry "; 43 static const char Unused_offset[] = "Unused swap offset entry "; 44 45 struct swap_list_t swap_list = {-1, -1}; 46 47 static struct swap_info_struct swap_info[MAX_SWAPFILES]; 48 49 static DEFINE_MUTEX(swapon_mutex); 50 51 /* 52 * We need this because the bdev->unplug_fn can sleep and we cannot 53 * hold swap_lock while calling the unplug_fn. And swap_lock 54 * cannot be turned into a mutex. 55 */ 56 static DECLARE_RWSEM(swap_unplug_sem); 57 58 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page) 59 { 60 swp_entry_t entry; 61 62 down_read(&swap_unplug_sem); 63 entry.val = page_private(page); 64 if (PageSwapCache(page)) { 65 struct block_device *bdev = swap_info[swp_type(entry)].bdev; 66 struct backing_dev_info *bdi; 67 68 /* 69 * If the page is removed from swapcache from under us (with a 70 * racy try_to_unuse/swapoff) we need an additional reference 71 * count to avoid reading garbage from page_private(page) above. 72 * If the WARN_ON triggers during a swapoff it maybe the race 73 * condition and it's harmless. However if it triggers without 74 * swapoff it signals a problem. 75 */ 76 WARN_ON(page_count(page) <= 1); 77 78 bdi = bdev->bd_inode->i_mapping->backing_dev_info; 79 blk_run_backing_dev(bdi, page); 80 } 81 up_read(&swap_unplug_sem); 82 } 83 84 #define SWAPFILE_CLUSTER 256 85 #define LATENCY_LIMIT 256 86 87 static inline unsigned long scan_swap_map(struct swap_info_struct *si) 88 { 89 unsigned long offset, last_in_cluster; 90 int latency_ration = LATENCY_LIMIT; 91 92 /* 93 * We try to cluster swap pages by allocating them sequentially 94 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 95 * way, however, we resort to first-free allocation, starting 96 * a new cluster. This prevents us from scattering swap pages 97 * all over the entire swap partition, so that we reduce 98 * overall disk seek times between swap pages. -- sct 99 * But we do now try to find an empty cluster. -Andrea 100 */ 101 102 si->flags += SWP_SCANNING; 103 if (unlikely(!si->cluster_nr)) { 104 si->cluster_nr = SWAPFILE_CLUSTER - 1; 105 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) 106 goto lowest; 107 spin_unlock(&swap_lock); 108 109 offset = si->lowest_bit; 110 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 111 112 /* Locate the first empty (unaligned) cluster */ 113 for (; last_in_cluster <= si->highest_bit; offset++) { 114 if (si->swap_map[offset]) 115 last_in_cluster = offset + SWAPFILE_CLUSTER; 116 else if (offset == last_in_cluster) { 117 spin_lock(&swap_lock); 118 si->cluster_next = offset-SWAPFILE_CLUSTER+1; 119 goto cluster; 120 } 121 if (unlikely(--latency_ration < 0)) { 122 cond_resched(); 123 latency_ration = LATENCY_LIMIT; 124 } 125 } 126 spin_lock(&swap_lock); 127 goto lowest; 128 } 129 130 si->cluster_nr--; 131 cluster: 132 offset = si->cluster_next; 133 if (offset > si->highest_bit) 134 lowest: offset = si->lowest_bit; 135 checks: if (!(si->flags & SWP_WRITEOK)) 136 goto no_page; 137 if (!si->highest_bit) 138 goto no_page; 139 if (!si->swap_map[offset]) { 140 if (offset == si->lowest_bit) 141 si->lowest_bit++; 142 if (offset == si->highest_bit) 143 si->highest_bit--; 144 si->inuse_pages++; 145 if (si->inuse_pages == si->pages) { 146 si->lowest_bit = si->max; 147 si->highest_bit = 0; 148 } 149 si->swap_map[offset] = 1; 150 si->cluster_next = offset + 1; 151 si->flags -= SWP_SCANNING; 152 return offset; 153 } 154 155 spin_unlock(&swap_lock); 156 while (++offset <= si->highest_bit) { 157 if (!si->swap_map[offset]) { 158 spin_lock(&swap_lock); 159 goto checks; 160 } 161 if (unlikely(--latency_ration < 0)) { 162 cond_resched(); 163 latency_ration = LATENCY_LIMIT; 164 } 165 } 166 spin_lock(&swap_lock); 167 goto lowest; 168 169 no_page: 170 si->flags -= SWP_SCANNING; 171 return 0; 172 } 173 174 swp_entry_t get_swap_page(void) 175 { 176 struct swap_info_struct *si; 177 pgoff_t offset; 178 int type, next; 179 int wrapped = 0; 180 181 spin_lock(&swap_lock); 182 if (nr_swap_pages <= 0) 183 goto noswap; 184 nr_swap_pages--; 185 186 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { 187 si = swap_info + type; 188 next = si->next; 189 if (next < 0 || 190 (!wrapped && si->prio != swap_info[next].prio)) { 191 next = swap_list.head; 192 wrapped++; 193 } 194 195 if (!si->highest_bit) 196 continue; 197 if (!(si->flags & SWP_WRITEOK)) 198 continue; 199 200 swap_list.next = next; 201 offset = scan_swap_map(si); 202 if (offset) { 203 spin_unlock(&swap_lock); 204 return swp_entry(type, offset); 205 } 206 next = swap_list.next; 207 } 208 209 nr_swap_pages++; 210 noswap: 211 spin_unlock(&swap_lock); 212 return (swp_entry_t) {0}; 213 } 214 215 swp_entry_t get_swap_page_of_type(int type) 216 { 217 struct swap_info_struct *si; 218 pgoff_t offset; 219 220 spin_lock(&swap_lock); 221 si = swap_info + type; 222 if (si->flags & SWP_WRITEOK) { 223 nr_swap_pages--; 224 offset = scan_swap_map(si); 225 if (offset) { 226 spin_unlock(&swap_lock); 227 return swp_entry(type, offset); 228 } 229 nr_swap_pages++; 230 } 231 spin_unlock(&swap_lock); 232 return (swp_entry_t) {0}; 233 } 234 235 static struct swap_info_struct * swap_info_get(swp_entry_t entry) 236 { 237 struct swap_info_struct * p; 238 unsigned long offset, type; 239 240 if (!entry.val) 241 goto out; 242 type = swp_type(entry); 243 if (type >= nr_swapfiles) 244 goto bad_nofile; 245 p = & swap_info[type]; 246 if (!(p->flags & SWP_USED)) 247 goto bad_device; 248 offset = swp_offset(entry); 249 if (offset >= p->max) 250 goto bad_offset; 251 if (!p->swap_map[offset]) 252 goto bad_free; 253 spin_lock(&swap_lock); 254 return p; 255 256 bad_free: 257 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); 258 goto out; 259 bad_offset: 260 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); 261 goto out; 262 bad_device: 263 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); 264 goto out; 265 bad_nofile: 266 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); 267 out: 268 return NULL; 269 } 270 271 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset) 272 { 273 int count = p->swap_map[offset]; 274 275 if (count < SWAP_MAP_MAX) { 276 count--; 277 p->swap_map[offset] = count; 278 if (!count) { 279 if (offset < p->lowest_bit) 280 p->lowest_bit = offset; 281 if (offset > p->highest_bit) 282 p->highest_bit = offset; 283 if (p->prio > swap_info[swap_list.next].prio) 284 swap_list.next = p - swap_info; 285 nr_swap_pages++; 286 p->inuse_pages--; 287 } 288 } 289 return count; 290 } 291 292 /* 293 * Caller has made sure that the swapdevice corresponding to entry 294 * is still around or has not been recycled. 295 */ 296 void swap_free(swp_entry_t entry) 297 { 298 struct swap_info_struct * p; 299 300 p = swap_info_get(entry); 301 if (p) { 302 swap_entry_free(p, swp_offset(entry)); 303 spin_unlock(&swap_lock); 304 } 305 } 306 307 /* 308 * How many references to page are currently swapped out? 309 */ 310 static inline int page_swapcount(struct page *page) 311 { 312 int count = 0; 313 struct swap_info_struct *p; 314 swp_entry_t entry; 315 316 entry.val = page_private(page); 317 p = swap_info_get(entry); 318 if (p) { 319 /* Subtract the 1 for the swap cache itself */ 320 count = p->swap_map[swp_offset(entry)] - 1; 321 spin_unlock(&swap_lock); 322 } 323 return count; 324 } 325 326 /* 327 * We can use this swap cache entry directly 328 * if there are no other references to it. 329 */ 330 int can_share_swap_page(struct page *page) 331 { 332 int count; 333 334 BUG_ON(!PageLocked(page)); 335 count = page_mapcount(page); 336 if (count <= 1 && PageSwapCache(page)) 337 count += page_swapcount(page); 338 return count == 1; 339 } 340 341 /* 342 * Work out if there are any other processes sharing this 343 * swap cache page. Free it if you can. Return success. 344 */ 345 int remove_exclusive_swap_page(struct page *page) 346 { 347 int retval; 348 struct swap_info_struct * p; 349 swp_entry_t entry; 350 351 BUG_ON(PagePrivate(page)); 352 BUG_ON(!PageLocked(page)); 353 354 if (!PageSwapCache(page)) 355 return 0; 356 if (PageWriteback(page)) 357 return 0; 358 if (page_count(page) != 2) /* 2: us + cache */ 359 return 0; 360 361 entry.val = page_private(page); 362 p = swap_info_get(entry); 363 if (!p) 364 return 0; 365 366 /* Is the only swap cache user the cache itself? */ 367 retval = 0; 368 if (p->swap_map[swp_offset(entry)] == 1) { 369 /* Recheck the page count with the swapcache lock held.. */ 370 write_lock_irq(&swapper_space.tree_lock); 371 if ((page_count(page) == 2) && !PageWriteback(page)) { 372 __delete_from_swap_cache(page); 373 SetPageDirty(page); 374 retval = 1; 375 } 376 write_unlock_irq(&swapper_space.tree_lock); 377 } 378 spin_unlock(&swap_lock); 379 380 if (retval) { 381 swap_free(entry); 382 page_cache_release(page); 383 } 384 385 return retval; 386 } 387 388 /* 389 * Free the swap entry like above, but also try to 390 * free the page cache entry if it is the last user. 391 */ 392 void free_swap_and_cache(swp_entry_t entry) 393 { 394 struct swap_info_struct * p; 395 struct page *page = NULL; 396 397 if (is_migration_entry(entry)) 398 return; 399 400 p = swap_info_get(entry); 401 if (p) { 402 if (swap_entry_free(p, swp_offset(entry)) == 1) { 403 page = find_get_page(&swapper_space, entry.val); 404 if (page && unlikely(TestSetPageLocked(page))) { 405 page_cache_release(page); 406 page = NULL; 407 } 408 } 409 spin_unlock(&swap_lock); 410 } 411 if (page) { 412 int one_user; 413 414 BUG_ON(PagePrivate(page)); 415 one_user = (page_count(page) == 2); 416 /* Only cache user (+us), or swap space full? Free it! */ 417 /* Also recheck PageSwapCache after page is locked (above) */ 418 if (PageSwapCache(page) && !PageWriteback(page) && 419 (one_user || vm_swap_full())) { 420 delete_from_swap_cache(page); 421 SetPageDirty(page); 422 } 423 unlock_page(page); 424 page_cache_release(page); 425 } 426 } 427 428 #ifdef CONFIG_SOFTWARE_SUSPEND 429 /* 430 * Find the swap type that corresponds to given device (if any). 431 * 432 * @offset - number of the PAGE_SIZE-sized block of the device, starting 433 * from 0, in which the swap header is expected to be located. 434 * 435 * This is needed for the suspend to disk (aka swsusp). 436 */ 437 int swap_type_of(dev_t device, sector_t offset) 438 { 439 struct block_device *bdev = NULL; 440 int i; 441 442 if (device) 443 bdev = bdget(device); 444 445 spin_lock(&swap_lock); 446 for (i = 0; i < nr_swapfiles; i++) { 447 struct swap_info_struct *sis = swap_info + i; 448 449 if (!(sis->flags & SWP_WRITEOK)) 450 continue; 451 452 if (!bdev) { 453 spin_unlock(&swap_lock); 454 return i; 455 } 456 if (bdev == sis->bdev) { 457 struct swap_extent *se; 458 459 se = list_entry(sis->extent_list.next, 460 struct swap_extent, list); 461 if (se->start_block == offset) { 462 spin_unlock(&swap_lock); 463 bdput(bdev); 464 return i; 465 } 466 } 467 } 468 spin_unlock(&swap_lock); 469 if (bdev) 470 bdput(bdev); 471 472 return -ENODEV; 473 } 474 475 /* 476 * Return either the total number of swap pages of given type, or the number 477 * of free pages of that type (depending on @free) 478 * 479 * This is needed for software suspend 480 */ 481 unsigned int count_swap_pages(int type, int free) 482 { 483 unsigned int n = 0; 484 485 if (type < nr_swapfiles) { 486 spin_lock(&swap_lock); 487 if (swap_info[type].flags & SWP_WRITEOK) { 488 n = swap_info[type].pages; 489 if (free) 490 n -= swap_info[type].inuse_pages; 491 } 492 spin_unlock(&swap_lock); 493 } 494 return n; 495 } 496 #endif 497 498 /* 499 * No need to decide whether this PTE shares the swap entry with others, 500 * just let do_wp_page work it out if a write is requested later - to 501 * force COW, vm_page_prot omits write permission from any private vma. 502 */ 503 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte, 504 unsigned long addr, swp_entry_t entry, struct page *page) 505 { 506 inc_mm_counter(vma->vm_mm, anon_rss); 507 get_page(page); 508 set_pte_at(vma->vm_mm, addr, pte, 509 pte_mkold(mk_pte(page, vma->vm_page_prot))); 510 page_add_anon_rmap(page, vma, addr); 511 swap_free(entry); 512 /* 513 * Move the page to the active list so it is not 514 * immediately swapped out again after swapon. 515 */ 516 activate_page(page); 517 } 518 519 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 520 unsigned long addr, unsigned long end, 521 swp_entry_t entry, struct page *page) 522 { 523 pte_t swp_pte = swp_entry_to_pte(entry); 524 pte_t *pte; 525 spinlock_t *ptl; 526 int found = 0; 527 528 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 529 do { 530 /* 531 * swapoff spends a _lot_ of time in this loop! 532 * Test inline before going to call unuse_pte. 533 */ 534 if (unlikely(pte_same(*pte, swp_pte))) { 535 unuse_pte(vma, pte++, addr, entry, page); 536 found = 1; 537 break; 538 } 539 } while (pte++, addr += PAGE_SIZE, addr != end); 540 pte_unmap_unlock(pte - 1, ptl); 541 return found; 542 } 543 544 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 545 unsigned long addr, unsigned long end, 546 swp_entry_t entry, struct page *page) 547 { 548 pmd_t *pmd; 549 unsigned long next; 550 551 pmd = pmd_offset(pud, addr); 552 do { 553 next = pmd_addr_end(addr, end); 554 if (pmd_none_or_clear_bad(pmd)) 555 continue; 556 if (unuse_pte_range(vma, pmd, addr, next, entry, page)) 557 return 1; 558 } while (pmd++, addr = next, addr != end); 559 return 0; 560 } 561 562 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 563 unsigned long addr, unsigned long end, 564 swp_entry_t entry, struct page *page) 565 { 566 pud_t *pud; 567 unsigned long next; 568 569 pud = pud_offset(pgd, addr); 570 do { 571 next = pud_addr_end(addr, end); 572 if (pud_none_or_clear_bad(pud)) 573 continue; 574 if (unuse_pmd_range(vma, pud, addr, next, entry, page)) 575 return 1; 576 } while (pud++, addr = next, addr != end); 577 return 0; 578 } 579 580 static int unuse_vma(struct vm_area_struct *vma, 581 swp_entry_t entry, struct page *page) 582 { 583 pgd_t *pgd; 584 unsigned long addr, end, next; 585 586 if (page->mapping) { 587 addr = page_address_in_vma(page, vma); 588 if (addr == -EFAULT) 589 return 0; 590 else 591 end = addr + PAGE_SIZE; 592 } else { 593 addr = vma->vm_start; 594 end = vma->vm_end; 595 } 596 597 pgd = pgd_offset(vma->vm_mm, addr); 598 do { 599 next = pgd_addr_end(addr, end); 600 if (pgd_none_or_clear_bad(pgd)) 601 continue; 602 if (unuse_pud_range(vma, pgd, addr, next, entry, page)) 603 return 1; 604 } while (pgd++, addr = next, addr != end); 605 return 0; 606 } 607 608 static int unuse_mm(struct mm_struct *mm, 609 swp_entry_t entry, struct page *page) 610 { 611 struct vm_area_struct *vma; 612 613 if (!down_read_trylock(&mm->mmap_sem)) { 614 /* 615 * Activate page so shrink_cache is unlikely to unmap its 616 * ptes while lock is dropped, so swapoff can make progress. 617 */ 618 activate_page(page); 619 unlock_page(page); 620 down_read(&mm->mmap_sem); 621 lock_page(page); 622 } 623 for (vma = mm->mmap; vma; vma = vma->vm_next) { 624 if (vma->anon_vma && unuse_vma(vma, entry, page)) 625 break; 626 } 627 up_read(&mm->mmap_sem); 628 /* 629 * Currently unuse_mm cannot fail, but leave error handling 630 * at call sites for now, since we change it from time to time. 631 */ 632 return 0; 633 } 634 635 /* 636 * Scan swap_map from current position to next entry still in use. 637 * Recycle to start on reaching the end, returning 0 when empty. 638 */ 639 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 640 unsigned int prev) 641 { 642 unsigned int max = si->max; 643 unsigned int i = prev; 644 int count; 645 646 /* 647 * No need for swap_lock here: we're just looking 648 * for whether an entry is in use, not modifying it; false 649 * hits are okay, and sys_swapoff() has already prevented new 650 * allocations from this area (while holding swap_lock). 651 */ 652 for (;;) { 653 if (++i >= max) { 654 if (!prev) { 655 i = 0; 656 break; 657 } 658 /* 659 * No entries in use at top of swap_map, 660 * loop back to start and recheck there. 661 */ 662 max = prev + 1; 663 prev = 0; 664 i = 1; 665 } 666 count = si->swap_map[i]; 667 if (count && count != SWAP_MAP_BAD) 668 break; 669 } 670 return i; 671 } 672 673 /* 674 * We completely avoid races by reading each swap page in advance, 675 * and then search for the process using it. All the necessary 676 * page table adjustments can then be made atomically. 677 */ 678 static int try_to_unuse(unsigned int type) 679 { 680 struct swap_info_struct * si = &swap_info[type]; 681 struct mm_struct *start_mm; 682 unsigned short *swap_map; 683 unsigned short swcount; 684 struct page *page; 685 swp_entry_t entry; 686 unsigned int i = 0; 687 int retval = 0; 688 int reset_overflow = 0; 689 int shmem; 690 691 /* 692 * When searching mms for an entry, a good strategy is to 693 * start at the first mm we freed the previous entry from 694 * (though actually we don't notice whether we or coincidence 695 * freed the entry). Initialize this start_mm with a hold. 696 * 697 * A simpler strategy would be to start at the last mm we 698 * freed the previous entry from; but that would take less 699 * advantage of mmlist ordering, which clusters forked mms 700 * together, child after parent. If we race with dup_mmap(), we 701 * prefer to resolve parent before child, lest we miss entries 702 * duplicated after we scanned child: using last mm would invert 703 * that. Though it's only a serious concern when an overflowed 704 * swap count is reset from SWAP_MAP_MAX, preventing a rescan. 705 */ 706 start_mm = &init_mm; 707 atomic_inc(&init_mm.mm_users); 708 709 /* 710 * Keep on scanning until all entries have gone. Usually, 711 * one pass through swap_map is enough, but not necessarily: 712 * there are races when an instance of an entry might be missed. 713 */ 714 while ((i = find_next_to_unuse(si, i)) != 0) { 715 if (signal_pending(current)) { 716 retval = -EINTR; 717 break; 718 } 719 720 /* 721 * Get a page for the entry, using the existing swap 722 * cache page if there is one. Otherwise, get a clean 723 * page and read the swap into it. 724 */ 725 swap_map = &si->swap_map[i]; 726 entry = swp_entry(type, i); 727 page = read_swap_cache_async(entry, NULL, 0); 728 if (!page) { 729 /* 730 * Either swap_duplicate() failed because entry 731 * has been freed independently, and will not be 732 * reused since sys_swapoff() already disabled 733 * allocation from here, or alloc_page() failed. 734 */ 735 if (!*swap_map) 736 continue; 737 retval = -ENOMEM; 738 break; 739 } 740 741 /* 742 * Don't hold on to start_mm if it looks like exiting. 743 */ 744 if (atomic_read(&start_mm->mm_users) == 1) { 745 mmput(start_mm); 746 start_mm = &init_mm; 747 atomic_inc(&init_mm.mm_users); 748 } 749 750 /* 751 * Wait for and lock page. When do_swap_page races with 752 * try_to_unuse, do_swap_page can handle the fault much 753 * faster than try_to_unuse can locate the entry. This 754 * apparently redundant "wait_on_page_locked" lets try_to_unuse 755 * defer to do_swap_page in such a case - in some tests, 756 * do_swap_page and try_to_unuse repeatedly compete. 757 */ 758 wait_on_page_locked(page); 759 wait_on_page_writeback(page); 760 lock_page(page); 761 wait_on_page_writeback(page); 762 763 /* 764 * Remove all references to entry. 765 * Whenever we reach init_mm, there's no address space 766 * to search, but use it as a reminder to search shmem. 767 */ 768 shmem = 0; 769 swcount = *swap_map; 770 if (swcount > 1) { 771 if (start_mm == &init_mm) 772 shmem = shmem_unuse(entry, page); 773 else 774 retval = unuse_mm(start_mm, entry, page); 775 } 776 if (*swap_map > 1) { 777 int set_start_mm = (*swap_map >= swcount); 778 struct list_head *p = &start_mm->mmlist; 779 struct mm_struct *new_start_mm = start_mm; 780 struct mm_struct *prev_mm = start_mm; 781 struct mm_struct *mm; 782 783 atomic_inc(&new_start_mm->mm_users); 784 atomic_inc(&prev_mm->mm_users); 785 spin_lock(&mmlist_lock); 786 while (*swap_map > 1 && !retval && 787 (p = p->next) != &start_mm->mmlist) { 788 mm = list_entry(p, struct mm_struct, mmlist); 789 if (!atomic_inc_not_zero(&mm->mm_users)) 790 continue; 791 spin_unlock(&mmlist_lock); 792 mmput(prev_mm); 793 prev_mm = mm; 794 795 cond_resched(); 796 797 swcount = *swap_map; 798 if (swcount <= 1) 799 ; 800 else if (mm == &init_mm) { 801 set_start_mm = 1; 802 shmem = shmem_unuse(entry, page); 803 } else 804 retval = unuse_mm(mm, entry, page); 805 if (set_start_mm && *swap_map < swcount) { 806 mmput(new_start_mm); 807 atomic_inc(&mm->mm_users); 808 new_start_mm = mm; 809 set_start_mm = 0; 810 } 811 spin_lock(&mmlist_lock); 812 } 813 spin_unlock(&mmlist_lock); 814 mmput(prev_mm); 815 mmput(start_mm); 816 start_mm = new_start_mm; 817 } 818 if (retval) { 819 unlock_page(page); 820 page_cache_release(page); 821 break; 822 } 823 824 /* 825 * How could swap count reach 0x7fff when the maximum 826 * pid is 0x7fff, and there's no way to repeat a swap 827 * page within an mm (except in shmem, where it's the 828 * shared object which takes the reference count)? 829 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4. 830 * 831 * If that's wrong, then we should worry more about 832 * exit_mmap() and do_munmap() cases described above: 833 * we might be resetting SWAP_MAP_MAX too early here. 834 * We know "Undead"s can happen, they're okay, so don't 835 * report them; but do report if we reset SWAP_MAP_MAX. 836 */ 837 if (*swap_map == SWAP_MAP_MAX) { 838 spin_lock(&swap_lock); 839 *swap_map = 1; 840 spin_unlock(&swap_lock); 841 reset_overflow = 1; 842 } 843 844 /* 845 * If a reference remains (rare), we would like to leave 846 * the page in the swap cache; but try_to_unmap could 847 * then re-duplicate the entry once we drop page lock, 848 * so we might loop indefinitely; also, that page could 849 * not be swapped out to other storage meanwhile. So: 850 * delete from cache even if there's another reference, 851 * after ensuring that the data has been saved to disk - 852 * since if the reference remains (rarer), it will be 853 * read from disk into another page. Splitting into two 854 * pages would be incorrect if swap supported "shared 855 * private" pages, but they are handled by tmpfs files. 856 * 857 * Note shmem_unuse already deleted a swappage from 858 * the swap cache, unless the move to filepage failed: 859 * in which case it left swappage in cache, lowered its 860 * swap count to pass quickly through the loops above, 861 * and now we must reincrement count to try again later. 862 */ 863 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) { 864 struct writeback_control wbc = { 865 .sync_mode = WB_SYNC_NONE, 866 }; 867 868 swap_writepage(page, &wbc); 869 lock_page(page); 870 wait_on_page_writeback(page); 871 } 872 if (PageSwapCache(page)) { 873 if (shmem) 874 swap_duplicate(entry); 875 else 876 delete_from_swap_cache(page); 877 } 878 879 /* 880 * So we could skip searching mms once swap count went 881 * to 1, we did not mark any present ptes as dirty: must 882 * mark page dirty so shrink_list will preserve it. 883 */ 884 SetPageDirty(page); 885 unlock_page(page); 886 page_cache_release(page); 887 888 /* 889 * Make sure that we aren't completely killing 890 * interactive performance. 891 */ 892 cond_resched(); 893 } 894 895 mmput(start_mm); 896 if (reset_overflow) { 897 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n"); 898 swap_overflow = 0; 899 } 900 return retval; 901 } 902 903 /* 904 * After a successful try_to_unuse, if no swap is now in use, we know 905 * we can empty the mmlist. swap_lock must be held on entry and exit. 906 * Note that mmlist_lock nests inside swap_lock, and an mm must be 907 * added to the mmlist just after page_duplicate - before would be racy. 908 */ 909 static void drain_mmlist(void) 910 { 911 struct list_head *p, *next; 912 unsigned int i; 913 914 for (i = 0; i < nr_swapfiles; i++) 915 if (swap_info[i].inuse_pages) 916 return; 917 spin_lock(&mmlist_lock); 918 list_for_each_safe(p, next, &init_mm.mmlist) 919 list_del_init(p); 920 spin_unlock(&mmlist_lock); 921 } 922 923 /* 924 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 925 * corresponds to page offset `offset'. 926 */ 927 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset) 928 { 929 struct swap_extent *se = sis->curr_swap_extent; 930 struct swap_extent *start_se = se; 931 932 for ( ; ; ) { 933 struct list_head *lh; 934 935 if (se->start_page <= offset && 936 offset < (se->start_page + se->nr_pages)) { 937 return se->start_block + (offset - se->start_page); 938 } 939 lh = se->list.next; 940 if (lh == &sis->extent_list) 941 lh = lh->next; 942 se = list_entry(lh, struct swap_extent, list); 943 sis->curr_swap_extent = se; 944 BUG_ON(se == start_se); /* It *must* be present */ 945 } 946 } 947 948 /* 949 * Free all of a swapdev's extent information 950 */ 951 static void destroy_swap_extents(struct swap_info_struct *sis) 952 { 953 while (!list_empty(&sis->extent_list)) { 954 struct swap_extent *se; 955 956 se = list_entry(sis->extent_list.next, 957 struct swap_extent, list); 958 list_del(&se->list); 959 kfree(se); 960 } 961 } 962 963 /* 964 * Add a block range (and the corresponding page range) into this swapdev's 965 * extent list. The extent list is kept sorted in page order. 966 * 967 * This function rather assumes that it is called in ascending page order. 968 */ 969 static int 970 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 971 unsigned long nr_pages, sector_t start_block) 972 { 973 struct swap_extent *se; 974 struct swap_extent *new_se; 975 struct list_head *lh; 976 977 lh = sis->extent_list.prev; /* The highest page extent */ 978 if (lh != &sis->extent_list) { 979 se = list_entry(lh, struct swap_extent, list); 980 BUG_ON(se->start_page + se->nr_pages != start_page); 981 if (se->start_block + se->nr_pages == start_block) { 982 /* Merge it */ 983 se->nr_pages += nr_pages; 984 return 0; 985 } 986 } 987 988 /* 989 * No merge. Insert a new extent, preserving ordering. 990 */ 991 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 992 if (new_se == NULL) 993 return -ENOMEM; 994 new_se->start_page = start_page; 995 new_se->nr_pages = nr_pages; 996 new_se->start_block = start_block; 997 998 list_add_tail(&new_se->list, &sis->extent_list); 999 return 1; 1000 } 1001 1002 /* 1003 * A `swap extent' is a simple thing which maps a contiguous range of pages 1004 * onto a contiguous range of disk blocks. An ordered list of swap extents 1005 * is built at swapon time and is then used at swap_writepage/swap_readpage 1006 * time for locating where on disk a page belongs. 1007 * 1008 * If the swapfile is an S_ISBLK block device, a single extent is installed. 1009 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 1010 * swap files identically. 1011 * 1012 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 1013 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 1014 * swapfiles are handled *identically* after swapon time. 1015 * 1016 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1017 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1018 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1019 * requirements, they are simply tossed out - we will never use those blocks 1020 * for swapping. 1021 * 1022 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1023 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1024 * which will scribble on the fs. 1025 * 1026 * The amount of disk space which a single swap extent represents varies. 1027 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1028 * extents in the list. To avoid much list walking, we cache the previous 1029 * search location in `curr_swap_extent', and start new searches from there. 1030 * This is extremely effective. The average number of iterations in 1031 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1032 */ 1033 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1034 { 1035 struct inode *inode; 1036 unsigned blocks_per_page; 1037 unsigned long page_no; 1038 unsigned blkbits; 1039 sector_t probe_block; 1040 sector_t last_block; 1041 sector_t lowest_block = -1; 1042 sector_t highest_block = 0; 1043 int nr_extents = 0; 1044 int ret; 1045 1046 inode = sis->swap_file->f_mapping->host; 1047 if (S_ISBLK(inode->i_mode)) { 1048 ret = add_swap_extent(sis, 0, sis->max, 0); 1049 *span = sis->pages; 1050 goto done; 1051 } 1052 1053 blkbits = inode->i_blkbits; 1054 blocks_per_page = PAGE_SIZE >> blkbits; 1055 1056 /* 1057 * Map all the blocks into the extent list. This code doesn't try 1058 * to be very smart. 1059 */ 1060 probe_block = 0; 1061 page_no = 0; 1062 last_block = i_size_read(inode) >> blkbits; 1063 while ((probe_block + blocks_per_page) <= last_block && 1064 page_no < sis->max) { 1065 unsigned block_in_page; 1066 sector_t first_block; 1067 1068 first_block = bmap(inode, probe_block); 1069 if (first_block == 0) 1070 goto bad_bmap; 1071 1072 /* 1073 * It must be PAGE_SIZE aligned on-disk 1074 */ 1075 if (first_block & (blocks_per_page - 1)) { 1076 probe_block++; 1077 goto reprobe; 1078 } 1079 1080 for (block_in_page = 1; block_in_page < blocks_per_page; 1081 block_in_page++) { 1082 sector_t block; 1083 1084 block = bmap(inode, probe_block + block_in_page); 1085 if (block == 0) 1086 goto bad_bmap; 1087 if (block != first_block + block_in_page) { 1088 /* Discontiguity */ 1089 probe_block++; 1090 goto reprobe; 1091 } 1092 } 1093 1094 first_block >>= (PAGE_SHIFT - blkbits); 1095 if (page_no) { /* exclude the header page */ 1096 if (first_block < lowest_block) 1097 lowest_block = first_block; 1098 if (first_block > highest_block) 1099 highest_block = first_block; 1100 } 1101 1102 /* 1103 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 1104 */ 1105 ret = add_swap_extent(sis, page_no, 1, first_block); 1106 if (ret < 0) 1107 goto out; 1108 nr_extents += ret; 1109 page_no++; 1110 probe_block += blocks_per_page; 1111 reprobe: 1112 continue; 1113 } 1114 ret = nr_extents; 1115 *span = 1 + highest_block - lowest_block; 1116 if (page_no == 0) 1117 page_no = 1; /* force Empty message */ 1118 sis->max = page_no; 1119 sis->pages = page_no - 1; 1120 sis->highest_bit = page_no - 1; 1121 done: 1122 sis->curr_swap_extent = list_entry(sis->extent_list.prev, 1123 struct swap_extent, list); 1124 goto out; 1125 bad_bmap: 1126 printk(KERN_ERR "swapon: swapfile has holes\n"); 1127 ret = -EINVAL; 1128 out: 1129 return ret; 1130 } 1131 1132 #if 0 /* We don't need this yet */ 1133 #include <linux/backing-dev.h> 1134 int page_queue_congested(struct page *page) 1135 { 1136 struct backing_dev_info *bdi; 1137 1138 BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */ 1139 1140 if (PageSwapCache(page)) { 1141 swp_entry_t entry = { .val = page_private(page) }; 1142 struct swap_info_struct *sis; 1143 1144 sis = get_swap_info_struct(swp_type(entry)); 1145 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info; 1146 } else 1147 bdi = page->mapping->backing_dev_info; 1148 return bdi_write_congested(bdi); 1149 } 1150 #endif 1151 1152 asmlinkage long sys_swapoff(const char __user * specialfile) 1153 { 1154 struct swap_info_struct * p = NULL; 1155 unsigned short *swap_map; 1156 struct file *swap_file, *victim; 1157 struct address_space *mapping; 1158 struct inode *inode; 1159 char * pathname; 1160 int i, type, prev; 1161 int err; 1162 1163 if (!capable(CAP_SYS_ADMIN)) 1164 return -EPERM; 1165 1166 pathname = getname(specialfile); 1167 err = PTR_ERR(pathname); 1168 if (IS_ERR(pathname)) 1169 goto out; 1170 1171 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0); 1172 putname(pathname); 1173 err = PTR_ERR(victim); 1174 if (IS_ERR(victim)) 1175 goto out; 1176 1177 mapping = victim->f_mapping; 1178 prev = -1; 1179 spin_lock(&swap_lock); 1180 for (type = swap_list.head; type >= 0; type = swap_info[type].next) { 1181 p = swap_info + type; 1182 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) { 1183 if (p->swap_file->f_mapping == mapping) 1184 break; 1185 } 1186 prev = type; 1187 } 1188 if (type < 0) { 1189 err = -EINVAL; 1190 spin_unlock(&swap_lock); 1191 goto out_dput; 1192 } 1193 if (!security_vm_enough_memory(p->pages)) 1194 vm_unacct_memory(p->pages); 1195 else { 1196 err = -ENOMEM; 1197 spin_unlock(&swap_lock); 1198 goto out_dput; 1199 } 1200 if (prev < 0) { 1201 swap_list.head = p->next; 1202 } else { 1203 swap_info[prev].next = p->next; 1204 } 1205 if (type == swap_list.next) { 1206 /* just pick something that's safe... */ 1207 swap_list.next = swap_list.head; 1208 } 1209 nr_swap_pages -= p->pages; 1210 total_swap_pages -= p->pages; 1211 p->flags &= ~SWP_WRITEOK; 1212 spin_unlock(&swap_lock); 1213 1214 current->flags |= PF_SWAPOFF; 1215 err = try_to_unuse(type); 1216 current->flags &= ~PF_SWAPOFF; 1217 1218 if (err) { 1219 /* re-insert swap space back into swap_list */ 1220 spin_lock(&swap_lock); 1221 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next) 1222 if (p->prio >= swap_info[i].prio) 1223 break; 1224 p->next = i; 1225 if (prev < 0) 1226 swap_list.head = swap_list.next = p - swap_info; 1227 else 1228 swap_info[prev].next = p - swap_info; 1229 nr_swap_pages += p->pages; 1230 total_swap_pages += p->pages; 1231 p->flags |= SWP_WRITEOK; 1232 spin_unlock(&swap_lock); 1233 goto out_dput; 1234 } 1235 1236 /* wait for any unplug function to finish */ 1237 down_write(&swap_unplug_sem); 1238 up_write(&swap_unplug_sem); 1239 1240 destroy_swap_extents(p); 1241 mutex_lock(&swapon_mutex); 1242 spin_lock(&swap_lock); 1243 drain_mmlist(); 1244 1245 /* wait for anyone still in scan_swap_map */ 1246 p->highest_bit = 0; /* cuts scans short */ 1247 while (p->flags >= SWP_SCANNING) { 1248 spin_unlock(&swap_lock); 1249 schedule_timeout_uninterruptible(1); 1250 spin_lock(&swap_lock); 1251 } 1252 1253 swap_file = p->swap_file; 1254 p->swap_file = NULL; 1255 p->max = 0; 1256 swap_map = p->swap_map; 1257 p->swap_map = NULL; 1258 p->flags = 0; 1259 spin_unlock(&swap_lock); 1260 mutex_unlock(&swapon_mutex); 1261 vfree(swap_map); 1262 inode = mapping->host; 1263 if (S_ISBLK(inode->i_mode)) { 1264 struct block_device *bdev = I_BDEV(inode); 1265 set_blocksize(bdev, p->old_block_size); 1266 bd_release(bdev); 1267 } else { 1268 mutex_lock(&inode->i_mutex); 1269 inode->i_flags &= ~S_SWAPFILE; 1270 mutex_unlock(&inode->i_mutex); 1271 } 1272 filp_close(swap_file, NULL); 1273 err = 0; 1274 1275 out_dput: 1276 filp_close(victim, NULL); 1277 out: 1278 return err; 1279 } 1280 1281 #ifdef CONFIG_PROC_FS 1282 /* iterator */ 1283 static void *swap_start(struct seq_file *swap, loff_t *pos) 1284 { 1285 struct swap_info_struct *ptr = swap_info; 1286 int i; 1287 loff_t l = *pos; 1288 1289 mutex_lock(&swapon_mutex); 1290 1291 if (!l) 1292 return SEQ_START_TOKEN; 1293 1294 for (i = 0; i < nr_swapfiles; i++, ptr++) { 1295 if (!(ptr->flags & SWP_USED) || !ptr->swap_map) 1296 continue; 1297 if (!--l) 1298 return ptr; 1299 } 1300 1301 return NULL; 1302 } 1303 1304 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 1305 { 1306 struct swap_info_struct *ptr; 1307 struct swap_info_struct *endptr = swap_info + nr_swapfiles; 1308 1309 if (v == SEQ_START_TOKEN) 1310 ptr = swap_info; 1311 else { 1312 ptr = v; 1313 ptr++; 1314 } 1315 1316 for (; ptr < endptr; ptr++) { 1317 if (!(ptr->flags & SWP_USED) || !ptr->swap_map) 1318 continue; 1319 ++*pos; 1320 return ptr; 1321 } 1322 1323 return NULL; 1324 } 1325 1326 static void swap_stop(struct seq_file *swap, void *v) 1327 { 1328 mutex_unlock(&swapon_mutex); 1329 } 1330 1331 static int swap_show(struct seq_file *swap, void *v) 1332 { 1333 struct swap_info_struct *ptr = v; 1334 struct file *file; 1335 int len; 1336 1337 if (ptr == SEQ_START_TOKEN) { 1338 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 1339 return 0; 1340 } 1341 1342 file = ptr->swap_file; 1343 len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\"); 1344 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 1345 len < 40 ? 40 - len : 1, " ", 1346 S_ISBLK(file->f_dentry->d_inode->i_mode) ? 1347 "partition" : "file\t", 1348 ptr->pages << (PAGE_SHIFT - 10), 1349 ptr->inuse_pages << (PAGE_SHIFT - 10), 1350 ptr->prio); 1351 return 0; 1352 } 1353 1354 static struct seq_operations swaps_op = { 1355 .start = swap_start, 1356 .next = swap_next, 1357 .stop = swap_stop, 1358 .show = swap_show 1359 }; 1360 1361 static int swaps_open(struct inode *inode, struct file *file) 1362 { 1363 return seq_open(file, &swaps_op); 1364 } 1365 1366 static struct file_operations proc_swaps_operations = { 1367 .open = swaps_open, 1368 .read = seq_read, 1369 .llseek = seq_lseek, 1370 .release = seq_release, 1371 }; 1372 1373 static int __init procswaps_init(void) 1374 { 1375 struct proc_dir_entry *entry; 1376 1377 entry = create_proc_entry("swaps", 0, NULL); 1378 if (entry) 1379 entry->proc_fops = &proc_swaps_operations; 1380 return 0; 1381 } 1382 __initcall(procswaps_init); 1383 #endif /* CONFIG_PROC_FS */ 1384 1385 /* 1386 * Written 01/25/92 by Simmule Turner, heavily changed by Linus. 1387 * 1388 * The swapon system call 1389 */ 1390 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) 1391 { 1392 struct swap_info_struct * p; 1393 char *name = NULL; 1394 struct block_device *bdev = NULL; 1395 struct file *swap_file = NULL; 1396 struct address_space *mapping; 1397 unsigned int type; 1398 int i, prev; 1399 int error; 1400 static int least_priority; 1401 union swap_header *swap_header = NULL; 1402 int swap_header_version; 1403 unsigned int nr_good_pages = 0; 1404 int nr_extents = 0; 1405 sector_t span; 1406 unsigned long maxpages = 1; 1407 int swapfilesize; 1408 unsigned short *swap_map; 1409 struct page *page = NULL; 1410 struct inode *inode = NULL; 1411 int did_down = 0; 1412 1413 if (!capable(CAP_SYS_ADMIN)) 1414 return -EPERM; 1415 spin_lock(&swap_lock); 1416 p = swap_info; 1417 for (type = 0 ; type < nr_swapfiles ; type++,p++) 1418 if (!(p->flags & SWP_USED)) 1419 break; 1420 error = -EPERM; 1421 if (type >= MAX_SWAPFILES) { 1422 spin_unlock(&swap_lock); 1423 goto out; 1424 } 1425 if (type >= nr_swapfiles) 1426 nr_swapfiles = type+1; 1427 INIT_LIST_HEAD(&p->extent_list); 1428 p->flags = SWP_USED; 1429 p->swap_file = NULL; 1430 p->old_block_size = 0; 1431 p->swap_map = NULL; 1432 p->lowest_bit = 0; 1433 p->highest_bit = 0; 1434 p->cluster_nr = 0; 1435 p->inuse_pages = 0; 1436 p->next = -1; 1437 if (swap_flags & SWAP_FLAG_PREFER) { 1438 p->prio = 1439 (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT; 1440 } else { 1441 p->prio = --least_priority; 1442 } 1443 spin_unlock(&swap_lock); 1444 name = getname(specialfile); 1445 error = PTR_ERR(name); 1446 if (IS_ERR(name)) { 1447 name = NULL; 1448 goto bad_swap_2; 1449 } 1450 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); 1451 error = PTR_ERR(swap_file); 1452 if (IS_ERR(swap_file)) { 1453 swap_file = NULL; 1454 goto bad_swap_2; 1455 } 1456 1457 p->swap_file = swap_file; 1458 mapping = swap_file->f_mapping; 1459 inode = mapping->host; 1460 1461 error = -EBUSY; 1462 for (i = 0; i < nr_swapfiles; i++) { 1463 struct swap_info_struct *q = &swap_info[i]; 1464 1465 if (i == type || !q->swap_file) 1466 continue; 1467 if (mapping == q->swap_file->f_mapping) 1468 goto bad_swap; 1469 } 1470 1471 error = -EINVAL; 1472 if (S_ISBLK(inode->i_mode)) { 1473 bdev = I_BDEV(inode); 1474 error = bd_claim(bdev, sys_swapon); 1475 if (error < 0) { 1476 bdev = NULL; 1477 error = -EINVAL; 1478 goto bad_swap; 1479 } 1480 p->old_block_size = block_size(bdev); 1481 error = set_blocksize(bdev, PAGE_SIZE); 1482 if (error < 0) 1483 goto bad_swap; 1484 p->bdev = bdev; 1485 } else if (S_ISREG(inode->i_mode)) { 1486 p->bdev = inode->i_sb->s_bdev; 1487 mutex_lock(&inode->i_mutex); 1488 did_down = 1; 1489 if (IS_SWAPFILE(inode)) { 1490 error = -EBUSY; 1491 goto bad_swap; 1492 } 1493 } else { 1494 goto bad_swap; 1495 } 1496 1497 swapfilesize = i_size_read(inode) >> PAGE_SHIFT; 1498 1499 /* 1500 * Read the swap header. 1501 */ 1502 if (!mapping->a_ops->readpage) { 1503 error = -EINVAL; 1504 goto bad_swap; 1505 } 1506 page = read_mapping_page(mapping, 0, swap_file); 1507 if (IS_ERR(page)) { 1508 error = PTR_ERR(page); 1509 goto bad_swap; 1510 } 1511 wait_on_page_locked(page); 1512 if (!PageUptodate(page)) 1513 goto bad_swap; 1514 kmap(page); 1515 swap_header = page_address(page); 1516 1517 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10)) 1518 swap_header_version = 1; 1519 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10)) 1520 swap_header_version = 2; 1521 else { 1522 printk(KERN_ERR "Unable to find swap-space signature\n"); 1523 error = -EINVAL; 1524 goto bad_swap; 1525 } 1526 1527 switch (swap_header_version) { 1528 case 1: 1529 printk(KERN_ERR "version 0 swap is no longer supported. " 1530 "Use mkswap -v1 %s\n", name); 1531 error = -EINVAL; 1532 goto bad_swap; 1533 case 2: 1534 /* Check the swap header's sub-version and the size of 1535 the swap file and bad block lists */ 1536 if (swap_header->info.version != 1) { 1537 printk(KERN_WARNING 1538 "Unable to handle swap header version %d\n", 1539 swap_header->info.version); 1540 error = -EINVAL; 1541 goto bad_swap; 1542 } 1543 1544 p->lowest_bit = 1; 1545 p->cluster_next = 1; 1546 1547 /* 1548 * Find out how many pages are allowed for a single swap 1549 * device. There are two limiting factors: 1) the number of 1550 * bits for the swap offset in the swp_entry_t type and 1551 * 2) the number of bits in the a swap pte as defined by 1552 * the different architectures. In order to find the 1553 * largest possible bit mask a swap entry with swap type 0 1554 * and swap offset ~0UL is created, encoded to a swap pte, 1555 * decoded to a swp_entry_t again and finally the swap 1556 * offset is extracted. This will mask all the bits from 1557 * the initial ~0UL mask that can't be encoded in either 1558 * the swp_entry_t or the architecture definition of a 1559 * swap pte. 1560 */ 1561 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1; 1562 if (maxpages > swap_header->info.last_page) 1563 maxpages = swap_header->info.last_page; 1564 p->highest_bit = maxpages - 1; 1565 1566 error = -EINVAL; 1567 if (!maxpages) 1568 goto bad_swap; 1569 if (swapfilesize && maxpages > swapfilesize) { 1570 printk(KERN_WARNING 1571 "Swap area shorter than signature indicates\n"); 1572 goto bad_swap; 1573 } 1574 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 1575 goto bad_swap; 1576 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 1577 goto bad_swap; 1578 1579 /* OK, set up the swap map and apply the bad block list */ 1580 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) { 1581 error = -ENOMEM; 1582 goto bad_swap; 1583 } 1584 1585 error = 0; 1586 memset(p->swap_map, 0, maxpages * sizeof(short)); 1587 for (i = 0; i < swap_header->info.nr_badpages; i++) { 1588 int page_nr = swap_header->info.badpages[i]; 1589 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) 1590 error = -EINVAL; 1591 else 1592 p->swap_map[page_nr] = SWAP_MAP_BAD; 1593 } 1594 nr_good_pages = swap_header->info.last_page - 1595 swap_header->info.nr_badpages - 1596 1 /* header page */; 1597 if (error) 1598 goto bad_swap; 1599 } 1600 1601 if (nr_good_pages) { 1602 p->swap_map[0] = SWAP_MAP_BAD; 1603 p->max = maxpages; 1604 p->pages = nr_good_pages; 1605 nr_extents = setup_swap_extents(p, &span); 1606 if (nr_extents < 0) { 1607 error = nr_extents; 1608 goto bad_swap; 1609 } 1610 nr_good_pages = p->pages; 1611 } 1612 if (!nr_good_pages) { 1613 printk(KERN_WARNING "Empty swap-file\n"); 1614 error = -EINVAL; 1615 goto bad_swap; 1616 } 1617 1618 mutex_lock(&swapon_mutex); 1619 spin_lock(&swap_lock); 1620 p->flags = SWP_ACTIVE; 1621 nr_swap_pages += nr_good_pages; 1622 total_swap_pages += nr_good_pages; 1623 1624 printk(KERN_INFO "Adding %uk swap on %s. " 1625 "Priority:%d extents:%d across:%lluk\n", 1626 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio, 1627 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10)); 1628 1629 /* insert swap space into swap_list: */ 1630 prev = -1; 1631 for (i = swap_list.head; i >= 0; i = swap_info[i].next) { 1632 if (p->prio >= swap_info[i].prio) { 1633 break; 1634 } 1635 prev = i; 1636 } 1637 p->next = i; 1638 if (prev < 0) { 1639 swap_list.head = swap_list.next = p - swap_info; 1640 } else { 1641 swap_info[prev].next = p - swap_info; 1642 } 1643 spin_unlock(&swap_lock); 1644 mutex_unlock(&swapon_mutex); 1645 error = 0; 1646 goto out; 1647 bad_swap: 1648 if (bdev) { 1649 set_blocksize(bdev, p->old_block_size); 1650 bd_release(bdev); 1651 } 1652 destroy_swap_extents(p); 1653 bad_swap_2: 1654 spin_lock(&swap_lock); 1655 swap_map = p->swap_map; 1656 p->swap_file = NULL; 1657 p->swap_map = NULL; 1658 p->flags = 0; 1659 if (!(swap_flags & SWAP_FLAG_PREFER)) 1660 ++least_priority; 1661 spin_unlock(&swap_lock); 1662 vfree(swap_map); 1663 if (swap_file) 1664 filp_close(swap_file, NULL); 1665 out: 1666 if (page && !IS_ERR(page)) { 1667 kunmap(page); 1668 page_cache_release(page); 1669 } 1670 if (name) 1671 putname(name); 1672 if (did_down) { 1673 if (!error) 1674 inode->i_flags |= S_SWAPFILE; 1675 mutex_unlock(&inode->i_mutex); 1676 } 1677 return error; 1678 } 1679 1680 void si_swapinfo(struct sysinfo *val) 1681 { 1682 unsigned int i; 1683 unsigned long nr_to_be_unused = 0; 1684 1685 spin_lock(&swap_lock); 1686 for (i = 0; i < nr_swapfiles; i++) { 1687 if (!(swap_info[i].flags & SWP_USED) || 1688 (swap_info[i].flags & SWP_WRITEOK)) 1689 continue; 1690 nr_to_be_unused += swap_info[i].inuse_pages; 1691 } 1692 val->freeswap = nr_swap_pages + nr_to_be_unused; 1693 val->totalswap = total_swap_pages + nr_to_be_unused; 1694 spin_unlock(&swap_lock); 1695 } 1696 1697 /* 1698 * Verify that a swap entry is valid and increment its swap map count. 1699 * 1700 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as 1701 * "permanent", but will be reclaimed by the next swapoff. 1702 */ 1703 int swap_duplicate(swp_entry_t entry) 1704 { 1705 struct swap_info_struct * p; 1706 unsigned long offset, type; 1707 int result = 0; 1708 1709 if (is_migration_entry(entry)) 1710 return 1; 1711 1712 type = swp_type(entry); 1713 if (type >= nr_swapfiles) 1714 goto bad_file; 1715 p = type + swap_info; 1716 offset = swp_offset(entry); 1717 1718 spin_lock(&swap_lock); 1719 if (offset < p->max && p->swap_map[offset]) { 1720 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) { 1721 p->swap_map[offset]++; 1722 result = 1; 1723 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) { 1724 if (swap_overflow++ < 5) 1725 printk(KERN_WARNING "swap_dup: swap entry overflow\n"); 1726 p->swap_map[offset] = SWAP_MAP_MAX; 1727 result = 1; 1728 } 1729 } 1730 spin_unlock(&swap_lock); 1731 out: 1732 return result; 1733 1734 bad_file: 1735 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); 1736 goto out; 1737 } 1738 1739 struct swap_info_struct * 1740 get_swap_info_struct(unsigned type) 1741 { 1742 return &swap_info[type]; 1743 } 1744 1745 /* 1746 * swap_lock prevents swap_map being freed. Don't grab an extra 1747 * reference on the swaphandle, it doesn't matter if it becomes unused. 1748 */ 1749 int valid_swaphandles(swp_entry_t entry, unsigned long *offset) 1750 { 1751 int our_page_cluster = page_cluster; 1752 int ret = 0, i = 1 << our_page_cluster; 1753 unsigned long toff; 1754 struct swap_info_struct *swapdev = swp_type(entry) + swap_info; 1755 1756 if (!our_page_cluster) /* no readahead */ 1757 return 0; 1758 toff = (swp_offset(entry) >> our_page_cluster) << our_page_cluster; 1759 if (!toff) /* first page is swap header */ 1760 toff++, i--; 1761 *offset = toff; 1762 1763 spin_lock(&swap_lock); 1764 do { 1765 /* Don't read-ahead past the end of the swap area */ 1766 if (toff >= swapdev->max) 1767 break; 1768 /* Don't read in free or bad pages */ 1769 if (!swapdev->swap_map[toff]) 1770 break; 1771 if (swapdev->swap_map[toff] == SWAP_MAP_BAD) 1772 break; 1773 toff++; 1774 ret++; 1775 } while (--i); 1776 spin_unlock(&swap_lock); 1777 return ret; 1778 } 1779