1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/sched/mm.h> 10 #include <linux/sched/task.h> 11 #include <linux/hugetlb.h> 12 #include <linux/mman.h> 13 #include <linux/slab.h> 14 #include <linux/kernel_stat.h> 15 #include <linux/swap.h> 16 #include <linux/vmalloc.h> 17 #include <linux/pagemap.h> 18 #include <linux/namei.h> 19 #include <linux/shmem_fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/random.h> 22 #include <linux/writeback.h> 23 #include <linux/proc_fs.h> 24 #include <linux/seq_file.h> 25 #include <linux/init.h> 26 #include <linux/ksm.h> 27 #include <linux/rmap.h> 28 #include <linux/security.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mutex.h> 31 #include <linux/capability.h> 32 #include <linux/syscalls.h> 33 #include <linux/memcontrol.h> 34 #include <linux/poll.h> 35 #include <linux/oom.h> 36 #include <linux/frontswap.h> 37 #include <linux/swapfile.h> 38 #include <linux/export.h> 39 #include <linux/swap_slots.h> 40 #include <linux/sort.h> 41 42 #include <asm/pgtable.h> 43 #include <asm/tlbflush.h> 44 #include <linux/swapops.h> 45 #include <linux/swap_cgroup.h> 46 47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 48 unsigned char); 49 static void free_swap_count_continuations(struct swap_info_struct *); 50 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 51 52 DEFINE_SPINLOCK(swap_lock); 53 static unsigned int nr_swapfiles; 54 atomic_long_t nr_swap_pages; 55 /* 56 * Some modules use swappable objects and may try to swap them out under 57 * memory pressure (via the shrinker). Before doing so, they may wish to 58 * check to see if any swap space is available. 59 */ 60 EXPORT_SYMBOL_GPL(nr_swap_pages); 61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 62 long total_swap_pages; 63 static int least_priority = -1; 64 65 static const char Bad_file[] = "Bad swap file entry "; 66 static const char Unused_file[] = "Unused swap file entry "; 67 static const char Bad_offset[] = "Bad swap offset entry "; 68 static const char Unused_offset[] = "Unused swap offset entry "; 69 70 /* 71 * all active swap_info_structs 72 * protected with swap_lock, and ordered by priority. 73 */ 74 PLIST_HEAD(swap_active_head); 75 76 /* 77 * all available (active, not full) swap_info_structs 78 * protected with swap_avail_lock, ordered by priority. 79 * This is used by get_swap_page() instead of swap_active_head 80 * because swap_active_head includes all swap_info_structs, 81 * but get_swap_page() doesn't need to look at full ones. 82 * This uses its own lock instead of swap_lock because when a 83 * swap_info_struct changes between not-full/full, it needs to 84 * add/remove itself to/from this list, but the swap_info_struct->lock 85 * is held and the locking order requires swap_lock to be taken 86 * before any swap_info_struct->lock. 87 */ 88 static struct plist_head *swap_avail_heads; 89 static DEFINE_SPINLOCK(swap_avail_lock); 90 91 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 92 93 static DEFINE_MUTEX(swapon_mutex); 94 95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 96 /* Activity counter to indicate that a swapon or swapoff has occurred */ 97 static atomic_t proc_poll_event = ATOMIC_INIT(0); 98 99 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 100 101 static struct swap_info_struct *swap_type_to_swap_info(int type) 102 { 103 if (type >= READ_ONCE(nr_swapfiles)) 104 return NULL; 105 106 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */ 107 return READ_ONCE(swap_info[type]); 108 } 109 110 static inline unsigned char swap_count(unsigned char ent) 111 { 112 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 113 } 114 115 /* Reclaim the swap entry anyway if possible */ 116 #define TTRS_ANYWAY 0x1 117 /* 118 * Reclaim the swap entry if there are no more mappings of the 119 * corresponding page 120 */ 121 #define TTRS_UNMAPPED 0x2 122 /* Reclaim the swap entry if swap is getting full*/ 123 #define TTRS_FULL 0x4 124 125 /* returns 1 if swap entry is freed */ 126 static int __try_to_reclaim_swap(struct swap_info_struct *si, 127 unsigned long offset, unsigned long flags) 128 { 129 swp_entry_t entry = swp_entry(si->type, offset); 130 struct page *page; 131 int ret = 0; 132 133 page = find_get_page(swap_address_space(entry), offset); 134 if (!page) 135 return 0; 136 /* 137 * When this function is called from scan_swap_map_slots() and it's 138 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page, 139 * here. We have to use trylock for avoiding deadlock. This is a special 140 * case and you should use try_to_free_swap() with explicit lock_page() 141 * in usual operations. 142 */ 143 if (trylock_page(page)) { 144 if ((flags & TTRS_ANYWAY) || 145 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) || 146 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page))) 147 ret = try_to_free_swap(page); 148 unlock_page(page); 149 } 150 put_page(page); 151 return ret; 152 } 153 154 /* 155 * swapon tell device that all the old swap contents can be discarded, 156 * to allow the swap device to optimize its wear-levelling. 157 */ 158 static int discard_swap(struct swap_info_struct *si) 159 { 160 struct swap_extent *se; 161 sector_t start_block; 162 sector_t nr_blocks; 163 int err = 0; 164 165 /* Do not discard the swap header page! */ 166 se = &si->first_swap_extent; 167 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 168 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 169 if (nr_blocks) { 170 err = blkdev_issue_discard(si->bdev, start_block, 171 nr_blocks, GFP_KERNEL, 0); 172 if (err) 173 return err; 174 cond_resched(); 175 } 176 177 list_for_each_entry(se, &si->first_swap_extent.list, list) { 178 start_block = se->start_block << (PAGE_SHIFT - 9); 179 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 180 181 err = blkdev_issue_discard(si->bdev, start_block, 182 nr_blocks, GFP_KERNEL, 0); 183 if (err) 184 break; 185 186 cond_resched(); 187 } 188 return err; /* That will often be -EOPNOTSUPP */ 189 } 190 191 /* 192 * swap allocation tell device that a cluster of swap can now be discarded, 193 * to allow the swap device to optimize its wear-levelling. 194 */ 195 static void discard_swap_cluster(struct swap_info_struct *si, 196 pgoff_t start_page, pgoff_t nr_pages) 197 { 198 struct swap_extent *se = si->curr_swap_extent; 199 int found_extent = 0; 200 201 while (nr_pages) { 202 if (se->start_page <= start_page && 203 start_page < se->start_page + se->nr_pages) { 204 pgoff_t offset = start_page - se->start_page; 205 sector_t start_block = se->start_block + offset; 206 sector_t nr_blocks = se->nr_pages - offset; 207 208 if (nr_blocks > nr_pages) 209 nr_blocks = nr_pages; 210 start_page += nr_blocks; 211 nr_pages -= nr_blocks; 212 213 if (!found_extent++) 214 si->curr_swap_extent = se; 215 216 start_block <<= PAGE_SHIFT - 9; 217 nr_blocks <<= PAGE_SHIFT - 9; 218 if (blkdev_issue_discard(si->bdev, start_block, 219 nr_blocks, GFP_NOIO, 0)) 220 break; 221 } 222 223 se = list_next_entry(se, list); 224 } 225 } 226 227 #ifdef CONFIG_THP_SWAP 228 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 229 230 #define swap_entry_size(size) (size) 231 #else 232 #define SWAPFILE_CLUSTER 256 233 234 /* 235 * Define swap_entry_size() as constant to let compiler to optimize 236 * out some code if !CONFIG_THP_SWAP 237 */ 238 #define swap_entry_size(size) 1 239 #endif 240 #define LATENCY_LIMIT 256 241 242 static inline void cluster_set_flag(struct swap_cluster_info *info, 243 unsigned int flag) 244 { 245 info->flags = flag; 246 } 247 248 static inline unsigned int cluster_count(struct swap_cluster_info *info) 249 { 250 return info->data; 251 } 252 253 static inline void cluster_set_count(struct swap_cluster_info *info, 254 unsigned int c) 255 { 256 info->data = c; 257 } 258 259 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 260 unsigned int c, unsigned int f) 261 { 262 info->flags = f; 263 info->data = c; 264 } 265 266 static inline unsigned int cluster_next(struct swap_cluster_info *info) 267 { 268 return info->data; 269 } 270 271 static inline void cluster_set_next(struct swap_cluster_info *info, 272 unsigned int n) 273 { 274 info->data = n; 275 } 276 277 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 278 unsigned int n, unsigned int f) 279 { 280 info->flags = f; 281 info->data = n; 282 } 283 284 static inline bool cluster_is_free(struct swap_cluster_info *info) 285 { 286 return info->flags & CLUSTER_FLAG_FREE; 287 } 288 289 static inline bool cluster_is_null(struct swap_cluster_info *info) 290 { 291 return info->flags & CLUSTER_FLAG_NEXT_NULL; 292 } 293 294 static inline void cluster_set_null(struct swap_cluster_info *info) 295 { 296 info->flags = CLUSTER_FLAG_NEXT_NULL; 297 info->data = 0; 298 } 299 300 static inline bool cluster_is_huge(struct swap_cluster_info *info) 301 { 302 if (IS_ENABLED(CONFIG_THP_SWAP)) 303 return info->flags & CLUSTER_FLAG_HUGE; 304 return false; 305 } 306 307 static inline void cluster_clear_huge(struct swap_cluster_info *info) 308 { 309 info->flags &= ~CLUSTER_FLAG_HUGE; 310 } 311 312 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 313 unsigned long offset) 314 { 315 struct swap_cluster_info *ci; 316 317 ci = si->cluster_info; 318 if (ci) { 319 ci += offset / SWAPFILE_CLUSTER; 320 spin_lock(&ci->lock); 321 } 322 return ci; 323 } 324 325 static inline void unlock_cluster(struct swap_cluster_info *ci) 326 { 327 if (ci) 328 spin_unlock(&ci->lock); 329 } 330 331 /* 332 * Determine the locking method in use for this device. Return 333 * swap_cluster_info if SSD-style cluster-based locking is in place. 334 */ 335 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 336 struct swap_info_struct *si, unsigned long offset) 337 { 338 struct swap_cluster_info *ci; 339 340 /* Try to use fine-grained SSD-style locking if available: */ 341 ci = lock_cluster(si, offset); 342 /* Otherwise, fall back to traditional, coarse locking: */ 343 if (!ci) 344 spin_lock(&si->lock); 345 346 return ci; 347 } 348 349 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 350 struct swap_cluster_info *ci) 351 { 352 if (ci) 353 unlock_cluster(ci); 354 else 355 spin_unlock(&si->lock); 356 } 357 358 static inline bool cluster_list_empty(struct swap_cluster_list *list) 359 { 360 return cluster_is_null(&list->head); 361 } 362 363 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 364 { 365 return cluster_next(&list->head); 366 } 367 368 static void cluster_list_init(struct swap_cluster_list *list) 369 { 370 cluster_set_null(&list->head); 371 cluster_set_null(&list->tail); 372 } 373 374 static void cluster_list_add_tail(struct swap_cluster_list *list, 375 struct swap_cluster_info *ci, 376 unsigned int idx) 377 { 378 if (cluster_list_empty(list)) { 379 cluster_set_next_flag(&list->head, idx, 0); 380 cluster_set_next_flag(&list->tail, idx, 0); 381 } else { 382 struct swap_cluster_info *ci_tail; 383 unsigned int tail = cluster_next(&list->tail); 384 385 /* 386 * Nested cluster lock, but both cluster locks are 387 * only acquired when we held swap_info_struct->lock 388 */ 389 ci_tail = ci + tail; 390 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 391 cluster_set_next(ci_tail, idx); 392 spin_unlock(&ci_tail->lock); 393 cluster_set_next_flag(&list->tail, idx, 0); 394 } 395 } 396 397 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 398 struct swap_cluster_info *ci) 399 { 400 unsigned int idx; 401 402 idx = cluster_next(&list->head); 403 if (cluster_next(&list->tail) == idx) { 404 cluster_set_null(&list->head); 405 cluster_set_null(&list->tail); 406 } else 407 cluster_set_next_flag(&list->head, 408 cluster_next(&ci[idx]), 0); 409 410 return idx; 411 } 412 413 /* Add a cluster to discard list and schedule it to do discard */ 414 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 415 unsigned int idx) 416 { 417 /* 418 * If scan_swap_map() can't find a free cluster, it will check 419 * si->swap_map directly. To make sure the discarding cluster isn't 420 * taken by scan_swap_map(), mark the swap entries bad (occupied). It 421 * will be cleared after discard 422 */ 423 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 424 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 425 426 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 427 428 schedule_work(&si->discard_work); 429 } 430 431 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 432 { 433 struct swap_cluster_info *ci = si->cluster_info; 434 435 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 436 cluster_list_add_tail(&si->free_clusters, ci, idx); 437 } 438 439 /* 440 * Doing discard actually. After a cluster discard is finished, the cluster 441 * will be added to free cluster list. caller should hold si->lock. 442 */ 443 static void swap_do_scheduled_discard(struct swap_info_struct *si) 444 { 445 struct swap_cluster_info *info, *ci; 446 unsigned int idx; 447 448 info = si->cluster_info; 449 450 while (!cluster_list_empty(&si->discard_clusters)) { 451 idx = cluster_list_del_first(&si->discard_clusters, info); 452 spin_unlock(&si->lock); 453 454 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 455 SWAPFILE_CLUSTER); 456 457 spin_lock(&si->lock); 458 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 459 __free_cluster(si, idx); 460 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 461 0, SWAPFILE_CLUSTER); 462 unlock_cluster(ci); 463 } 464 } 465 466 static void swap_discard_work(struct work_struct *work) 467 { 468 struct swap_info_struct *si; 469 470 si = container_of(work, struct swap_info_struct, discard_work); 471 472 spin_lock(&si->lock); 473 swap_do_scheduled_discard(si); 474 spin_unlock(&si->lock); 475 } 476 477 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 478 { 479 struct swap_cluster_info *ci = si->cluster_info; 480 481 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 482 cluster_list_del_first(&si->free_clusters, ci); 483 cluster_set_count_flag(ci + idx, 0, 0); 484 } 485 486 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 487 { 488 struct swap_cluster_info *ci = si->cluster_info + idx; 489 490 VM_BUG_ON(cluster_count(ci) != 0); 491 /* 492 * If the swap is discardable, prepare discard the cluster 493 * instead of free it immediately. The cluster will be freed 494 * after discard. 495 */ 496 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 497 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 498 swap_cluster_schedule_discard(si, idx); 499 return; 500 } 501 502 __free_cluster(si, idx); 503 } 504 505 /* 506 * The cluster corresponding to page_nr will be used. The cluster will be 507 * removed from free cluster list and its usage counter will be increased. 508 */ 509 static void inc_cluster_info_page(struct swap_info_struct *p, 510 struct swap_cluster_info *cluster_info, unsigned long page_nr) 511 { 512 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 513 514 if (!cluster_info) 515 return; 516 if (cluster_is_free(&cluster_info[idx])) 517 alloc_cluster(p, idx); 518 519 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 520 cluster_set_count(&cluster_info[idx], 521 cluster_count(&cluster_info[idx]) + 1); 522 } 523 524 /* 525 * The cluster corresponding to page_nr decreases one usage. If the usage 526 * counter becomes 0, which means no page in the cluster is in using, we can 527 * optionally discard the cluster and add it to free cluster list. 528 */ 529 static void dec_cluster_info_page(struct swap_info_struct *p, 530 struct swap_cluster_info *cluster_info, unsigned long page_nr) 531 { 532 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 533 534 if (!cluster_info) 535 return; 536 537 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 538 cluster_set_count(&cluster_info[idx], 539 cluster_count(&cluster_info[idx]) - 1); 540 541 if (cluster_count(&cluster_info[idx]) == 0) 542 free_cluster(p, idx); 543 } 544 545 /* 546 * It's possible scan_swap_map() uses a free cluster in the middle of free 547 * cluster list. Avoiding such abuse to avoid list corruption. 548 */ 549 static bool 550 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 551 unsigned long offset) 552 { 553 struct percpu_cluster *percpu_cluster; 554 bool conflict; 555 556 offset /= SWAPFILE_CLUSTER; 557 conflict = !cluster_list_empty(&si->free_clusters) && 558 offset != cluster_list_first(&si->free_clusters) && 559 cluster_is_free(&si->cluster_info[offset]); 560 561 if (!conflict) 562 return false; 563 564 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 565 cluster_set_null(&percpu_cluster->index); 566 return true; 567 } 568 569 /* 570 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 571 * might involve allocating a new cluster for current CPU too. 572 */ 573 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 574 unsigned long *offset, unsigned long *scan_base) 575 { 576 struct percpu_cluster *cluster; 577 struct swap_cluster_info *ci; 578 bool found_free; 579 unsigned long tmp, max; 580 581 new_cluster: 582 cluster = this_cpu_ptr(si->percpu_cluster); 583 if (cluster_is_null(&cluster->index)) { 584 if (!cluster_list_empty(&si->free_clusters)) { 585 cluster->index = si->free_clusters.head; 586 cluster->next = cluster_next(&cluster->index) * 587 SWAPFILE_CLUSTER; 588 } else if (!cluster_list_empty(&si->discard_clusters)) { 589 /* 590 * we don't have free cluster but have some clusters in 591 * discarding, do discard now and reclaim them 592 */ 593 swap_do_scheduled_discard(si); 594 *scan_base = *offset = si->cluster_next; 595 goto new_cluster; 596 } else 597 return false; 598 } 599 600 found_free = false; 601 602 /* 603 * Other CPUs can use our cluster if they can't find a free cluster, 604 * check if there is still free entry in the cluster 605 */ 606 tmp = cluster->next; 607 max = min_t(unsigned long, si->max, 608 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 609 if (tmp >= max) { 610 cluster_set_null(&cluster->index); 611 goto new_cluster; 612 } 613 ci = lock_cluster(si, tmp); 614 while (tmp < max) { 615 if (!si->swap_map[tmp]) { 616 found_free = true; 617 break; 618 } 619 tmp++; 620 } 621 unlock_cluster(ci); 622 if (!found_free) { 623 cluster_set_null(&cluster->index); 624 goto new_cluster; 625 } 626 cluster->next = tmp + 1; 627 *offset = tmp; 628 *scan_base = tmp; 629 return found_free; 630 } 631 632 static void __del_from_avail_list(struct swap_info_struct *p) 633 { 634 int nid; 635 636 for_each_node(nid) 637 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 638 } 639 640 static void del_from_avail_list(struct swap_info_struct *p) 641 { 642 spin_lock(&swap_avail_lock); 643 __del_from_avail_list(p); 644 spin_unlock(&swap_avail_lock); 645 } 646 647 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 648 unsigned int nr_entries) 649 { 650 unsigned int end = offset + nr_entries - 1; 651 652 if (offset == si->lowest_bit) 653 si->lowest_bit += nr_entries; 654 if (end == si->highest_bit) 655 si->highest_bit -= nr_entries; 656 si->inuse_pages += nr_entries; 657 if (si->inuse_pages == si->pages) { 658 si->lowest_bit = si->max; 659 si->highest_bit = 0; 660 del_from_avail_list(si); 661 } 662 } 663 664 static void add_to_avail_list(struct swap_info_struct *p) 665 { 666 int nid; 667 668 spin_lock(&swap_avail_lock); 669 for_each_node(nid) { 670 WARN_ON(!plist_node_empty(&p->avail_lists[nid])); 671 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 672 } 673 spin_unlock(&swap_avail_lock); 674 } 675 676 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 677 unsigned int nr_entries) 678 { 679 unsigned long end = offset + nr_entries - 1; 680 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 681 682 if (offset < si->lowest_bit) 683 si->lowest_bit = offset; 684 if (end > si->highest_bit) { 685 bool was_full = !si->highest_bit; 686 687 si->highest_bit = end; 688 if (was_full && (si->flags & SWP_WRITEOK)) 689 add_to_avail_list(si); 690 } 691 atomic_long_add(nr_entries, &nr_swap_pages); 692 si->inuse_pages -= nr_entries; 693 if (si->flags & SWP_BLKDEV) 694 swap_slot_free_notify = 695 si->bdev->bd_disk->fops->swap_slot_free_notify; 696 else 697 swap_slot_free_notify = NULL; 698 while (offset <= end) { 699 frontswap_invalidate_page(si->type, offset); 700 if (swap_slot_free_notify) 701 swap_slot_free_notify(si->bdev, offset); 702 offset++; 703 } 704 } 705 706 static int scan_swap_map_slots(struct swap_info_struct *si, 707 unsigned char usage, int nr, 708 swp_entry_t slots[]) 709 { 710 struct swap_cluster_info *ci; 711 unsigned long offset; 712 unsigned long scan_base; 713 unsigned long last_in_cluster = 0; 714 int latency_ration = LATENCY_LIMIT; 715 int n_ret = 0; 716 717 if (nr > SWAP_BATCH) 718 nr = SWAP_BATCH; 719 720 /* 721 * We try to cluster swap pages by allocating them sequentially 722 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 723 * way, however, we resort to first-free allocation, starting 724 * a new cluster. This prevents us from scattering swap pages 725 * all over the entire swap partition, so that we reduce 726 * overall disk seek times between swap pages. -- sct 727 * But we do now try to find an empty cluster. -Andrea 728 * And we let swap pages go all over an SSD partition. Hugh 729 */ 730 731 si->flags += SWP_SCANNING; 732 scan_base = offset = si->cluster_next; 733 734 /* SSD algorithm */ 735 if (si->cluster_info) { 736 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 737 goto checks; 738 else 739 goto scan; 740 } 741 742 if (unlikely(!si->cluster_nr--)) { 743 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 744 si->cluster_nr = SWAPFILE_CLUSTER - 1; 745 goto checks; 746 } 747 748 spin_unlock(&si->lock); 749 750 /* 751 * If seek is expensive, start searching for new cluster from 752 * start of partition, to minimize the span of allocated swap. 753 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 754 * case, just handled by scan_swap_map_try_ssd_cluster() above. 755 */ 756 scan_base = offset = si->lowest_bit; 757 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 758 759 /* Locate the first empty (unaligned) cluster */ 760 for (; last_in_cluster <= si->highest_bit; offset++) { 761 if (si->swap_map[offset]) 762 last_in_cluster = offset + SWAPFILE_CLUSTER; 763 else if (offset == last_in_cluster) { 764 spin_lock(&si->lock); 765 offset -= SWAPFILE_CLUSTER - 1; 766 si->cluster_next = offset; 767 si->cluster_nr = SWAPFILE_CLUSTER - 1; 768 goto checks; 769 } 770 if (unlikely(--latency_ration < 0)) { 771 cond_resched(); 772 latency_ration = LATENCY_LIMIT; 773 } 774 } 775 776 offset = scan_base; 777 spin_lock(&si->lock); 778 si->cluster_nr = SWAPFILE_CLUSTER - 1; 779 } 780 781 checks: 782 if (si->cluster_info) { 783 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 784 /* take a break if we already got some slots */ 785 if (n_ret) 786 goto done; 787 if (!scan_swap_map_try_ssd_cluster(si, &offset, 788 &scan_base)) 789 goto scan; 790 } 791 } 792 if (!(si->flags & SWP_WRITEOK)) 793 goto no_page; 794 if (!si->highest_bit) 795 goto no_page; 796 if (offset > si->highest_bit) 797 scan_base = offset = si->lowest_bit; 798 799 ci = lock_cluster(si, offset); 800 /* reuse swap entry of cache-only swap if not busy. */ 801 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 802 int swap_was_freed; 803 unlock_cluster(ci); 804 spin_unlock(&si->lock); 805 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 806 spin_lock(&si->lock); 807 /* entry was freed successfully, try to use this again */ 808 if (swap_was_freed) 809 goto checks; 810 goto scan; /* check next one */ 811 } 812 813 if (si->swap_map[offset]) { 814 unlock_cluster(ci); 815 if (!n_ret) 816 goto scan; 817 else 818 goto done; 819 } 820 si->swap_map[offset] = usage; 821 inc_cluster_info_page(si, si->cluster_info, offset); 822 unlock_cluster(ci); 823 824 swap_range_alloc(si, offset, 1); 825 si->cluster_next = offset + 1; 826 slots[n_ret++] = swp_entry(si->type, offset); 827 828 /* got enough slots or reach max slots? */ 829 if ((n_ret == nr) || (offset >= si->highest_bit)) 830 goto done; 831 832 /* search for next available slot */ 833 834 /* time to take a break? */ 835 if (unlikely(--latency_ration < 0)) { 836 if (n_ret) 837 goto done; 838 spin_unlock(&si->lock); 839 cond_resched(); 840 spin_lock(&si->lock); 841 latency_ration = LATENCY_LIMIT; 842 } 843 844 /* try to get more slots in cluster */ 845 if (si->cluster_info) { 846 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 847 goto checks; 848 else 849 goto done; 850 } 851 /* non-ssd case */ 852 ++offset; 853 854 /* non-ssd case, still more slots in cluster? */ 855 if (si->cluster_nr && !si->swap_map[offset]) { 856 --si->cluster_nr; 857 goto checks; 858 } 859 860 done: 861 si->flags -= SWP_SCANNING; 862 return n_ret; 863 864 scan: 865 spin_unlock(&si->lock); 866 while (++offset <= si->highest_bit) { 867 if (!si->swap_map[offset]) { 868 spin_lock(&si->lock); 869 goto checks; 870 } 871 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 872 spin_lock(&si->lock); 873 goto checks; 874 } 875 if (unlikely(--latency_ration < 0)) { 876 cond_resched(); 877 latency_ration = LATENCY_LIMIT; 878 } 879 } 880 offset = si->lowest_bit; 881 while (offset < scan_base) { 882 if (!si->swap_map[offset]) { 883 spin_lock(&si->lock); 884 goto checks; 885 } 886 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 887 spin_lock(&si->lock); 888 goto checks; 889 } 890 if (unlikely(--latency_ration < 0)) { 891 cond_resched(); 892 latency_ration = LATENCY_LIMIT; 893 } 894 offset++; 895 } 896 spin_lock(&si->lock); 897 898 no_page: 899 si->flags -= SWP_SCANNING; 900 return n_ret; 901 } 902 903 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 904 { 905 unsigned long idx; 906 struct swap_cluster_info *ci; 907 unsigned long offset, i; 908 unsigned char *map; 909 910 /* 911 * Should not even be attempting cluster allocations when huge 912 * page swap is disabled. Warn and fail the allocation. 913 */ 914 if (!IS_ENABLED(CONFIG_THP_SWAP)) { 915 VM_WARN_ON_ONCE(1); 916 return 0; 917 } 918 919 if (cluster_list_empty(&si->free_clusters)) 920 return 0; 921 922 idx = cluster_list_first(&si->free_clusters); 923 offset = idx * SWAPFILE_CLUSTER; 924 ci = lock_cluster(si, offset); 925 alloc_cluster(si, idx); 926 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); 927 928 map = si->swap_map + offset; 929 for (i = 0; i < SWAPFILE_CLUSTER; i++) 930 map[i] = SWAP_HAS_CACHE; 931 unlock_cluster(ci); 932 swap_range_alloc(si, offset, SWAPFILE_CLUSTER); 933 *slot = swp_entry(si->type, offset); 934 935 return 1; 936 } 937 938 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 939 { 940 unsigned long offset = idx * SWAPFILE_CLUSTER; 941 struct swap_cluster_info *ci; 942 943 ci = lock_cluster(si, offset); 944 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); 945 cluster_set_count_flag(ci, 0, 0); 946 free_cluster(si, idx); 947 unlock_cluster(ci); 948 swap_range_free(si, offset, SWAPFILE_CLUSTER); 949 } 950 951 static unsigned long scan_swap_map(struct swap_info_struct *si, 952 unsigned char usage) 953 { 954 swp_entry_t entry; 955 int n_ret; 956 957 n_ret = scan_swap_map_slots(si, usage, 1, &entry); 958 959 if (n_ret) 960 return swp_offset(entry); 961 else 962 return 0; 963 964 } 965 966 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) 967 { 968 unsigned long size = swap_entry_size(entry_size); 969 struct swap_info_struct *si, *next; 970 long avail_pgs; 971 int n_ret = 0; 972 int node; 973 974 /* Only single cluster request supported */ 975 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); 976 977 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 978 if (avail_pgs <= 0) 979 goto noswap; 980 981 if (n_goal > SWAP_BATCH) 982 n_goal = SWAP_BATCH; 983 984 if (n_goal > avail_pgs) 985 n_goal = avail_pgs; 986 987 atomic_long_sub(n_goal * size, &nr_swap_pages); 988 989 spin_lock(&swap_avail_lock); 990 991 start_over: 992 node = numa_node_id(); 993 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 994 /* requeue si to after same-priority siblings */ 995 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 996 spin_unlock(&swap_avail_lock); 997 spin_lock(&si->lock); 998 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 999 spin_lock(&swap_avail_lock); 1000 if (plist_node_empty(&si->avail_lists[node])) { 1001 spin_unlock(&si->lock); 1002 goto nextsi; 1003 } 1004 WARN(!si->highest_bit, 1005 "swap_info %d in list but !highest_bit\n", 1006 si->type); 1007 WARN(!(si->flags & SWP_WRITEOK), 1008 "swap_info %d in list but !SWP_WRITEOK\n", 1009 si->type); 1010 __del_from_avail_list(si); 1011 spin_unlock(&si->lock); 1012 goto nextsi; 1013 } 1014 if (size == SWAPFILE_CLUSTER) { 1015 if (!(si->flags & SWP_FS)) 1016 n_ret = swap_alloc_cluster(si, swp_entries); 1017 } else 1018 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1019 n_goal, swp_entries); 1020 spin_unlock(&si->lock); 1021 if (n_ret || size == SWAPFILE_CLUSTER) 1022 goto check_out; 1023 pr_debug("scan_swap_map of si %d failed to find offset\n", 1024 si->type); 1025 1026 spin_lock(&swap_avail_lock); 1027 nextsi: 1028 /* 1029 * if we got here, it's likely that si was almost full before, 1030 * and since scan_swap_map() can drop the si->lock, multiple 1031 * callers probably all tried to get a page from the same si 1032 * and it filled up before we could get one; or, the si filled 1033 * up between us dropping swap_avail_lock and taking si->lock. 1034 * Since we dropped the swap_avail_lock, the swap_avail_head 1035 * list may have been modified; so if next is still in the 1036 * swap_avail_head list then try it, otherwise start over 1037 * if we have not gotten any slots. 1038 */ 1039 if (plist_node_empty(&next->avail_lists[node])) 1040 goto start_over; 1041 } 1042 1043 spin_unlock(&swap_avail_lock); 1044 1045 check_out: 1046 if (n_ret < n_goal) 1047 atomic_long_add((long)(n_goal - n_ret) * size, 1048 &nr_swap_pages); 1049 noswap: 1050 return n_ret; 1051 } 1052 1053 /* The only caller of this function is now suspend routine */ 1054 swp_entry_t get_swap_page_of_type(int type) 1055 { 1056 struct swap_info_struct *si = swap_type_to_swap_info(type); 1057 pgoff_t offset; 1058 1059 if (!si) 1060 goto fail; 1061 1062 spin_lock(&si->lock); 1063 if (si->flags & SWP_WRITEOK) { 1064 atomic_long_dec(&nr_swap_pages); 1065 /* This is called for allocating swap entry, not cache */ 1066 offset = scan_swap_map(si, 1); 1067 if (offset) { 1068 spin_unlock(&si->lock); 1069 return swp_entry(type, offset); 1070 } 1071 atomic_long_inc(&nr_swap_pages); 1072 } 1073 spin_unlock(&si->lock); 1074 fail: 1075 return (swp_entry_t) {0}; 1076 } 1077 1078 static struct swap_info_struct *__swap_info_get(swp_entry_t entry) 1079 { 1080 struct swap_info_struct *p; 1081 unsigned long offset, type; 1082 1083 if (!entry.val) 1084 goto out; 1085 type = swp_type(entry); 1086 p = swap_type_to_swap_info(type); 1087 if (!p) 1088 goto bad_nofile; 1089 if (!(p->flags & SWP_USED)) 1090 goto bad_device; 1091 offset = swp_offset(entry); 1092 if (offset >= p->max) 1093 goto bad_offset; 1094 return p; 1095 1096 bad_offset: 1097 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val); 1098 goto out; 1099 bad_device: 1100 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val); 1101 goto out; 1102 bad_nofile: 1103 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val); 1104 out: 1105 return NULL; 1106 } 1107 1108 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1109 { 1110 struct swap_info_struct *p; 1111 1112 p = __swap_info_get(entry); 1113 if (!p) 1114 goto out; 1115 if (!p->swap_map[swp_offset(entry)]) 1116 goto bad_free; 1117 return p; 1118 1119 bad_free: 1120 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val); 1121 goto out; 1122 out: 1123 return NULL; 1124 } 1125 1126 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 1127 { 1128 struct swap_info_struct *p; 1129 1130 p = _swap_info_get(entry); 1131 if (p) 1132 spin_lock(&p->lock); 1133 return p; 1134 } 1135 1136 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1137 struct swap_info_struct *q) 1138 { 1139 struct swap_info_struct *p; 1140 1141 p = _swap_info_get(entry); 1142 1143 if (p != q) { 1144 if (q != NULL) 1145 spin_unlock(&q->lock); 1146 if (p != NULL) 1147 spin_lock(&p->lock); 1148 } 1149 return p; 1150 } 1151 1152 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1153 unsigned long offset, 1154 unsigned char usage) 1155 { 1156 unsigned char count; 1157 unsigned char has_cache; 1158 1159 count = p->swap_map[offset]; 1160 1161 has_cache = count & SWAP_HAS_CACHE; 1162 count &= ~SWAP_HAS_CACHE; 1163 1164 if (usage == SWAP_HAS_CACHE) { 1165 VM_BUG_ON(!has_cache); 1166 has_cache = 0; 1167 } else if (count == SWAP_MAP_SHMEM) { 1168 /* 1169 * Or we could insist on shmem.c using a special 1170 * swap_shmem_free() and free_shmem_swap_and_cache()... 1171 */ 1172 count = 0; 1173 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1174 if (count == COUNT_CONTINUED) { 1175 if (swap_count_continued(p, offset, count)) 1176 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1177 else 1178 count = SWAP_MAP_MAX; 1179 } else 1180 count--; 1181 } 1182 1183 usage = count | has_cache; 1184 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE; 1185 1186 return usage; 1187 } 1188 1189 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1190 swp_entry_t entry, unsigned char usage) 1191 { 1192 struct swap_cluster_info *ci; 1193 unsigned long offset = swp_offset(entry); 1194 1195 ci = lock_cluster_or_swap_info(p, offset); 1196 usage = __swap_entry_free_locked(p, offset, usage); 1197 unlock_cluster_or_swap_info(p, ci); 1198 if (!usage) 1199 free_swap_slot(entry); 1200 1201 return usage; 1202 } 1203 1204 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1205 { 1206 struct swap_cluster_info *ci; 1207 unsigned long offset = swp_offset(entry); 1208 unsigned char count; 1209 1210 ci = lock_cluster(p, offset); 1211 count = p->swap_map[offset]; 1212 VM_BUG_ON(count != SWAP_HAS_CACHE); 1213 p->swap_map[offset] = 0; 1214 dec_cluster_info_page(p, p->cluster_info, offset); 1215 unlock_cluster(ci); 1216 1217 mem_cgroup_uncharge_swap(entry, 1); 1218 swap_range_free(p, offset, 1); 1219 } 1220 1221 /* 1222 * Caller has made sure that the swap device corresponding to entry 1223 * is still around or has not been recycled. 1224 */ 1225 void swap_free(swp_entry_t entry) 1226 { 1227 struct swap_info_struct *p; 1228 1229 p = _swap_info_get(entry); 1230 if (p) 1231 __swap_entry_free(p, entry, 1); 1232 } 1233 1234 /* 1235 * Called after dropping swapcache to decrease refcnt to swap entries. 1236 */ 1237 void put_swap_page(struct page *page, swp_entry_t entry) 1238 { 1239 unsigned long offset = swp_offset(entry); 1240 unsigned long idx = offset / SWAPFILE_CLUSTER; 1241 struct swap_cluster_info *ci; 1242 struct swap_info_struct *si; 1243 unsigned char *map; 1244 unsigned int i, free_entries = 0; 1245 unsigned char val; 1246 int size = swap_entry_size(hpage_nr_pages(page)); 1247 1248 si = _swap_info_get(entry); 1249 if (!si) 1250 return; 1251 1252 ci = lock_cluster_or_swap_info(si, offset); 1253 if (size == SWAPFILE_CLUSTER) { 1254 VM_BUG_ON(!cluster_is_huge(ci)); 1255 map = si->swap_map + offset; 1256 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1257 val = map[i]; 1258 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1259 if (val == SWAP_HAS_CACHE) 1260 free_entries++; 1261 } 1262 cluster_clear_huge(ci); 1263 if (free_entries == SWAPFILE_CLUSTER) { 1264 unlock_cluster_or_swap_info(si, ci); 1265 spin_lock(&si->lock); 1266 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1267 swap_free_cluster(si, idx); 1268 spin_unlock(&si->lock); 1269 return; 1270 } 1271 } 1272 for (i = 0; i < size; i++, entry.val++) { 1273 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1274 unlock_cluster_or_swap_info(si, ci); 1275 free_swap_slot(entry); 1276 if (i == size - 1) 1277 return; 1278 lock_cluster_or_swap_info(si, offset); 1279 } 1280 } 1281 unlock_cluster_or_swap_info(si, ci); 1282 } 1283 1284 #ifdef CONFIG_THP_SWAP 1285 int split_swap_cluster(swp_entry_t entry) 1286 { 1287 struct swap_info_struct *si; 1288 struct swap_cluster_info *ci; 1289 unsigned long offset = swp_offset(entry); 1290 1291 si = _swap_info_get(entry); 1292 if (!si) 1293 return -EBUSY; 1294 ci = lock_cluster(si, offset); 1295 cluster_clear_huge(ci); 1296 unlock_cluster(ci); 1297 return 0; 1298 } 1299 #endif 1300 1301 static int swp_entry_cmp(const void *ent1, const void *ent2) 1302 { 1303 const swp_entry_t *e1 = ent1, *e2 = ent2; 1304 1305 return (int)swp_type(*e1) - (int)swp_type(*e2); 1306 } 1307 1308 void swapcache_free_entries(swp_entry_t *entries, int n) 1309 { 1310 struct swap_info_struct *p, *prev; 1311 int i; 1312 1313 if (n <= 0) 1314 return; 1315 1316 prev = NULL; 1317 p = NULL; 1318 1319 /* 1320 * Sort swap entries by swap device, so each lock is only taken once. 1321 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1322 * so low that it isn't necessary to optimize further. 1323 */ 1324 if (nr_swapfiles > 1) 1325 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1326 for (i = 0; i < n; ++i) { 1327 p = swap_info_get_cont(entries[i], prev); 1328 if (p) 1329 swap_entry_free(p, entries[i]); 1330 prev = p; 1331 } 1332 if (p) 1333 spin_unlock(&p->lock); 1334 } 1335 1336 /* 1337 * How many references to page are currently swapped out? 1338 * This does not give an exact answer when swap count is continued, 1339 * but does include the high COUNT_CONTINUED flag to allow for that. 1340 */ 1341 int page_swapcount(struct page *page) 1342 { 1343 int count = 0; 1344 struct swap_info_struct *p; 1345 struct swap_cluster_info *ci; 1346 swp_entry_t entry; 1347 unsigned long offset; 1348 1349 entry.val = page_private(page); 1350 p = _swap_info_get(entry); 1351 if (p) { 1352 offset = swp_offset(entry); 1353 ci = lock_cluster_or_swap_info(p, offset); 1354 count = swap_count(p->swap_map[offset]); 1355 unlock_cluster_or_swap_info(p, ci); 1356 } 1357 return count; 1358 } 1359 1360 int __swap_count(struct swap_info_struct *si, swp_entry_t entry) 1361 { 1362 pgoff_t offset = swp_offset(entry); 1363 1364 return swap_count(si->swap_map[offset]); 1365 } 1366 1367 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1368 { 1369 int count = 0; 1370 pgoff_t offset = swp_offset(entry); 1371 struct swap_cluster_info *ci; 1372 1373 ci = lock_cluster_or_swap_info(si, offset); 1374 count = swap_count(si->swap_map[offset]); 1375 unlock_cluster_or_swap_info(si, ci); 1376 return count; 1377 } 1378 1379 /* 1380 * How many references to @entry are currently swapped out? 1381 * This does not give an exact answer when swap count is continued, 1382 * but does include the high COUNT_CONTINUED flag to allow for that. 1383 */ 1384 int __swp_swapcount(swp_entry_t entry) 1385 { 1386 int count = 0; 1387 struct swap_info_struct *si; 1388 1389 si = __swap_info_get(entry); 1390 if (si) 1391 count = swap_swapcount(si, entry); 1392 return count; 1393 } 1394 1395 /* 1396 * How many references to @entry are currently swapped out? 1397 * This considers COUNT_CONTINUED so it returns exact answer. 1398 */ 1399 int swp_swapcount(swp_entry_t entry) 1400 { 1401 int count, tmp_count, n; 1402 struct swap_info_struct *p; 1403 struct swap_cluster_info *ci; 1404 struct page *page; 1405 pgoff_t offset; 1406 unsigned char *map; 1407 1408 p = _swap_info_get(entry); 1409 if (!p) 1410 return 0; 1411 1412 offset = swp_offset(entry); 1413 1414 ci = lock_cluster_or_swap_info(p, offset); 1415 1416 count = swap_count(p->swap_map[offset]); 1417 if (!(count & COUNT_CONTINUED)) 1418 goto out; 1419 1420 count &= ~COUNT_CONTINUED; 1421 n = SWAP_MAP_MAX + 1; 1422 1423 page = vmalloc_to_page(p->swap_map + offset); 1424 offset &= ~PAGE_MASK; 1425 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1426 1427 do { 1428 page = list_next_entry(page, lru); 1429 map = kmap_atomic(page); 1430 tmp_count = map[offset]; 1431 kunmap_atomic(map); 1432 1433 count += (tmp_count & ~COUNT_CONTINUED) * n; 1434 n *= (SWAP_CONT_MAX + 1); 1435 } while (tmp_count & COUNT_CONTINUED); 1436 out: 1437 unlock_cluster_or_swap_info(p, ci); 1438 return count; 1439 } 1440 1441 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1442 swp_entry_t entry) 1443 { 1444 struct swap_cluster_info *ci; 1445 unsigned char *map = si->swap_map; 1446 unsigned long roffset = swp_offset(entry); 1447 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); 1448 int i; 1449 bool ret = false; 1450 1451 ci = lock_cluster_or_swap_info(si, offset); 1452 if (!ci || !cluster_is_huge(ci)) { 1453 if (swap_count(map[roffset])) 1454 ret = true; 1455 goto unlock_out; 1456 } 1457 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1458 if (swap_count(map[offset + i])) { 1459 ret = true; 1460 break; 1461 } 1462 } 1463 unlock_out: 1464 unlock_cluster_or_swap_info(si, ci); 1465 return ret; 1466 } 1467 1468 static bool page_swapped(struct page *page) 1469 { 1470 swp_entry_t entry; 1471 struct swap_info_struct *si; 1472 1473 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) 1474 return page_swapcount(page) != 0; 1475 1476 page = compound_head(page); 1477 entry.val = page_private(page); 1478 si = _swap_info_get(entry); 1479 if (si) 1480 return swap_page_trans_huge_swapped(si, entry); 1481 return false; 1482 } 1483 1484 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount, 1485 int *total_swapcount) 1486 { 1487 int i, map_swapcount, _total_mapcount, _total_swapcount; 1488 unsigned long offset = 0; 1489 struct swap_info_struct *si; 1490 struct swap_cluster_info *ci = NULL; 1491 unsigned char *map = NULL; 1492 int mapcount, swapcount = 0; 1493 1494 /* hugetlbfs shouldn't call it */ 1495 VM_BUG_ON_PAGE(PageHuge(page), page); 1496 1497 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) { 1498 mapcount = page_trans_huge_mapcount(page, total_mapcount); 1499 if (PageSwapCache(page)) 1500 swapcount = page_swapcount(page); 1501 if (total_swapcount) 1502 *total_swapcount = swapcount; 1503 return mapcount + swapcount; 1504 } 1505 1506 page = compound_head(page); 1507 1508 _total_mapcount = _total_swapcount = map_swapcount = 0; 1509 if (PageSwapCache(page)) { 1510 swp_entry_t entry; 1511 1512 entry.val = page_private(page); 1513 si = _swap_info_get(entry); 1514 if (si) { 1515 map = si->swap_map; 1516 offset = swp_offset(entry); 1517 } 1518 } 1519 if (map) 1520 ci = lock_cluster(si, offset); 1521 for (i = 0; i < HPAGE_PMD_NR; i++) { 1522 mapcount = atomic_read(&page[i]._mapcount) + 1; 1523 _total_mapcount += mapcount; 1524 if (map) { 1525 swapcount = swap_count(map[offset + i]); 1526 _total_swapcount += swapcount; 1527 } 1528 map_swapcount = max(map_swapcount, mapcount + swapcount); 1529 } 1530 unlock_cluster(ci); 1531 if (PageDoubleMap(page)) { 1532 map_swapcount -= 1; 1533 _total_mapcount -= HPAGE_PMD_NR; 1534 } 1535 mapcount = compound_mapcount(page); 1536 map_swapcount += mapcount; 1537 _total_mapcount += mapcount; 1538 if (total_mapcount) 1539 *total_mapcount = _total_mapcount; 1540 if (total_swapcount) 1541 *total_swapcount = _total_swapcount; 1542 1543 return map_swapcount; 1544 } 1545 1546 /* 1547 * We can write to an anon page without COW if there are no other references 1548 * to it. And as a side-effect, free up its swap: because the old content 1549 * on disk will never be read, and seeking back there to write new content 1550 * later would only waste time away from clustering. 1551 * 1552 * NOTE: total_map_swapcount should not be relied upon by the caller if 1553 * reuse_swap_page() returns false, but it may be always overwritten 1554 * (see the other implementation for CONFIG_SWAP=n). 1555 */ 1556 bool reuse_swap_page(struct page *page, int *total_map_swapcount) 1557 { 1558 int count, total_mapcount, total_swapcount; 1559 1560 VM_BUG_ON_PAGE(!PageLocked(page), page); 1561 if (unlikely(PageKsm(page))) 1562 return false; 1563 count = page_trans_huge_map_swapcount(page, &total_mapcount, 1564 &total_swapcount); 1565 if (total_map_swapcount) 1566 *total_map_swapcount = total_mapcount + total_swapcount; 1567 if (count == 1 && PageSwapCache(page) && 1568 (likely(!PageTransCompound(page)) || 1569 /* The remaining swap count will be freed soon */ 1570 total_swapcount == page_swapcount(page))) { 1571 if (!PageWriteback(page)) { 1572 page = compound_head(page); 1573 delete_from_swap_cache(page); 1574 SetPageDirty(page); 1575 } else { 1576 swp_entry_t entry; 1577 struct swap_info_struct *p; 1578 1579 entry.val = page_private(page); 1580 p = swap_info_get(entry); 1581 if (p->flags & SWP_STABLE_WRITES) { 1582 spin_unlock(&p->lock); 1583 return false; 1584 } 1585 spin_unlock(&p->lock); 1586 } 1587 } 1588 1589 return count <= 1; 1590 } 1591 1592 /* 1593 * If swap is getting full, or if there are no more mappings of this page, 1594 * then try_to_free_swap is called to free its swap space. 1595 */ 1596 int try_to_free_swap(struct page *page) 1597 { 1598 VM_BUG_ON_PAGE(!PageLocked(page), page); 1599 1600 if (!PageSwapCache(page)) 1601 return 0; 1602 if (PageWriteback(page)) 1603 return 0; 1604 if (page_swapped(page)) 1605 return 0; 1606 1607 /* 1608 * Once hibernation has begun to create its image of memory, 1609 * there's a danger that one of the calls to try_to_free_swap() 1610 * - most probably a call from __try_to_reclaim_swap() while 1611 * hibernation is allocating its own swap pages for the image, 1612 * but conceivably even a call from memory reclaim - will free 1613 * the swap from a page which has already been recorded in the 1614 * image as a clean swapcache page, and then reuse its swap for 1615 * another page of the image. On waking from hibernation, the 1616 * original page might be freed under memory pressure, then 1617 * later read back in from swap, now with the wrong data. 1618 * 1619 * Hibernation suspends storage while it is writing the image 1620 * to disk so check that here. 1621 */ 1622 if (pm_suspended_storage()) 1623 return 0; 1624 1625 page = compound_head(page); 1626 delete_from_swap_cache(page); 1627 SetPageDirty(page); 1628 return 1; 1629 } 1630 1631 /* 1632 * Free the swap entry like above, but also try to 1633 * free the page cache entry if it is the last user. 1634 */ 1635 int free_swap_and_cache(swp_entry_t entry) 1636 { 1637 struct swap_info_struct *p; 1638 unsigned char count; 1639 1640 if (non_swap_entry(entry)) 1641 return 1; 1642 1643 p = _swap_info_get(entry); 1644 if (p) { 1645 count = __swap_entry_free(p, entry, 1); 1646 if (count == SWAP_HAS_CACHE && 1647 !swap_page_trans_huge_swapped(p, entry)) 1648 __try_to_reclaim_swap(p, swp_offset(entry), 1649 TTRS_UNMAPPED | TTRS_FULL); 1650 } 1651 return p != NULL; 1652 } 1653 1654 #ifdef CONFIG_HIBERNATION 1655 /* 1656 * Find the swap type that corresponds to given device (if any). 1657 * 1658 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1659 * from 0, in which the swap header is expected to be located. 1660 * 1661 * This is needed for the suspend to disk (aka swsusp). 1662 */ 1663 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 1664 { 1665 struct block_device *bdev = NULL; 1666 int type; 1667 1668 if (device) 1669 bdev = bdget(device); 1670 1671 spin_lock(&swap_lock); 1672 for (type = 0; type < nr_swapfiles; type++) { 1673 struct swap_info_struct *sis = swap_info[type]; 1674 1675 if (!(sis->flags & SWP_WRITEOK)) 1676 continue; 1677 1678 if (!bdev) { 1679 if (bdev_p) 1680 *bdev_p = bdgrab(sis->bdev); 1681 1682 spin_unlock(&swap_lock); 1683 return type; 1684 } 1685 if (bdev == sis->bdev) { 1686 struct swap_extent *se = &sis->first_swap_extent; 1687 1688 if (se->start_block == offset) { 1689 if (bdev_p) 1690 *bdev_p = bdgrab(sis->bdev); 1691 1692 spin_unlock(&swap_lock); 1693 bdput(bdev); 1694 return type; 1695 } 1696 } 1697 } 1698 spin_unlock(&swap_lock); 1699 if (bdev) 1700 bdput(bdev); 1701 1702 return -ENODEV; 1703 } 1704 1705 /* 1706 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1707 * corresponding to given index in swap_info (swap type). 1708 */ 1709 sector_t swapdev_block(int type, pgoff_t offset) 1710 { 1711 struct block_device *bdev; 1712 struct swap_info_struct *si = swap_type_to_swap_info(type); 1713 1714 if (!si || !(si->flags & SWP_WRITEOK)) 1715 return 0; 1716 return map_swap_entry(swp_entry(type, offset), &bdev); 1717 } 1718 1719 /* 1720 * Return either the total number of swap pages of given type, or the number 1721 * of free pages of that type (depending on @free) 1722 * 1723 * This is needed for software suspend 1724 */ 1725 unsigned int count_swap_pages(int type, int free) 1726 { 1727 unsigned int n = 0; 1728 1729 spin_lock(&swap_lock); 1730 if ((unsigned int)type < nr_swapfiles) { 1731 struct swap_info_struct *sis = swap_info[type]; 1732 1733 spin_lock(&sis->lock); 1734 if (sis->flags & SWP_WRITEOK) { 1735 n = sis->pages; 1736 if (free) 1737 n -= sis->inuse_pages; 1738 } 1739 spin_unlock(&sis->lock); 1740 } 1741 spin_unlock(&swap_lock); 1742 return n; 1743 } 1744 #endif /* CONFIG_HIBERNATION */ 1745 1746 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1747 { 1748 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte); 1749 } 1750 1751 /* 1752 * No need to decide whether this PTE shares the swap entry with others, 1753 * just let do_wp_page work it out if a write is requested later - to 1754 * force COW, vm_page_prot omits write permission from any private vma. 1755 */ 1756 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1757 unsigned long addr, swp_entry_t entry, struct page *page) 1758 { 1759 struct page *swapcache; 1760 struct mem_cgroup *memcg; 1761 spinlock_t *ptl; 1762 pte_t *pte; 1763 int ret = 1; 1764 1765 swapcache = page; 1766 page = ksm_might_need_to_copy(page, vma, addr); 1767 if (unlikely(!page)) 1768 return -ENOMEM; 1769 1770 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, 1771 &memcg, false)) { 1772 ret = -ENOMEM; 1773 goto out_nolock; 1774 } 1775 1776 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1777 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1778 mem_cgroup_cancel_charge(page, memcg, false); 1779 ret = 0; 1780 goto out; 1781 } 1782 1783 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1784 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1785 get_page(page); 1786 set_pte_at(vma->vm_mm, addr, pte, 1787 pte_mkold(mk_pte(page, vma->vm_page_prot))); 1788 if (page == swapcache) { 1789 page_add_anon_rmap(page, vma, addr, false); 1790 mem_cgroup_commit_charge(page, memcg, true, false); 1791 } else { /* ksm created a completely new copy */ 1792 page_add_new_anon_rmap(page, vma, addr, false); 1793 mem_cgroup_commit_charge(page, memcg, false, false); 1794 lru_cache_add_active_or_unevictable(page, vma); 1795 } 1796 swap_free(entry); 1797 /* 1798 * Move the page to the active list so it is not 1799 * immediately swapped out again after swapon. 1800 */ 1801 activate_page(page); 1802 out: 1803 pte_unmap_unlock(pte, ptl); 1804 out_nolock: 1805 if (page != swapcache) { 1806 unlock_page(page); 1807 put_page(page); 1808 } 1809 return ret; 1810 } 1811 1812 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1813 unsigned long addr, unsigned long end, 1814 unsigned int type, bool frontswap, 1815 unsigned long *fs_pages_to_unuse) 1816 { 1817 struct page *page; 1818 swp_entry_t entry; 1819 pte_t *pte; 1820 struct swap_info_struct *si; 1821 unsigned long offset; 1822 int ret = 0; 1823 volatile unsigned char *swap_map; 1824 1825 si = swap_info[type]; 1826 pte = pte_offset_map(pmd, addr); 1827 do { 1828 struct vm_fault vmf; 1829 1830 if (!is_swap_pte(*pte)) 1831 continue; 1832 1833 entry = pte_to_swp_entry(*pte); 1834 if (swp_type(entry) != type) 1835 continue; 1836 1837 offset = swp_offset(entry); 1838 if (frontswap && !frontswap_test(si, offset)) 1839 continue; 1840 1841 pte_unmap(pte); 1842 swap_map = &si->swap_map[offset]; 1843 vmf.vma = vma; 1844 vmf.address = addr; 1845 vmf.pmd = pmd; 1846 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, &vmf); 1847 if (!page) { 1848 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD) 1849 goto try_next; 1850 return -ENOMEM; 1851 } 1852 1853 lock_page(page); 1854 wait_on_page_writeback(page); 1855 ret = unuse_pte(vma, pmd, addr, entry, page); 1856 if (ret < 0) { 1857 unlock_page(page); 1858 put_page(page); 1859 goto out; 1860 } 1861 1862 try_to_free_swap(page); 1863 unlock_page(page); 1864 put_page(page); 1865 1866 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) { 1867 ret = FRONTSWAP_PAGES_UNUSED; 1868 goto out; 1869 } 1870 try_next: 1871 pte = pte_offset_map(pmd, addr); 1872 } while (pte++, addr += PAGE_SIZE, addr != end); 1873 pte_unmap(pte - 1); 1874 1875 ret = 0; 1876 out: 1877 return ret; 1878 } 1879 1880 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1881 unsigned long addr, unsigned long end, 1882 unsigned int type, bool frontswap, 1883 unsigned long *fs_pages_to_unuse) 1884 { 1885 pmd_t *pmd; 1886 unsigned long next; 1887 int ret; 1888 1889 pmd = pmd_offset(pud, addr); 1890 do { 1891 cond_resched(); 1892 next = pmd_addr_end(addr, end); 1893 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1894 continue; 1895 ret = unuse_pte_range(vma, pmd, addr, next, type, 1896 frontswap, fs_pages_to_unuse); 1897 if (ret) 1898 return ret; 1899 } while (pmd++, addr = next, addr != end); 1900 return 0; 1901 } 1902 1903 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 1904 unsigned long addr, unsigned long end, 1905 unsigned int type, bool frontswap, 1906 unsigned long *fs_pages_to_unuse) 1907 { 1908 pud_t *pud; 1909 unsigned long next; 1910 int ret; 1911 1912 pud = pud_offset(p4d, addr); 1913 do { 1914 next = pud_addr_end(addr, end); 1915 if (pud_none_or_clear_bad(pud)) 1916 continue; 1917 ret = unuse_pmd_range(vma, pud, addr, next, type, 1918 frontswap, fs_pages_to_unuse); 1919 if (ret) 1920 return ret; 1921 } while (pud++, addr = next, addr != end); 1922 return 0; 1923 } 1924 1925 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 1926 unsigned long addr, unsigned long end, 1927 unsigned int type, bool frontswap, 1928 unsigned long *fs_pages_to_unuse) 1929 { 1930 p4d_t *p4d; 1931 unsigned long next; 1932 int ret; 1933 1934 p4d = p4d_offset(pgd, addr); 1935 do { 1936 next = p4d_addr_end(addr, end); 1937 if (p4d_none_or_clear_bad(p4d)) 1938 continue; 1939 ret = unuse_pud_range(vma, p4d, addr, next, type, 1940 frontswap, fs_pages_to_unuse); 1941 if (ret) 1942 return ret; 1943 } while (p4d++, addr = next, addr != end); 1944 return 0; 1945 } 1946 1947 static int unuse_vma(struct vm_area_struct *vma, unsigned int type, 1948 bool frontswap, unsigned long *fs_pages_to_unuse) 1949 { 1950 pgd_t *pgd; 1951 unsigned long addr, end, next; 1952 int ret; 1953 1954 addr = vma->vm_start; 1955 end = vma->vm_end; 1956 1957 pgd = pgd_offset(vma->vm_mm, addr); 1958 do { 1959 next = pgd_addr_end(addr, end); 1960 if (pgd_none_or_clear_bad(pgd)) 1961 continue; 1962 ret = unuse_p4d_range(vma, pgd, addr, next, type, 1963 frontswap, fs_pages_to_unuse); 1964 if (ret) 1965 return ret; 1966 } while (pgd++, addr = next, addr != end); 1967 return 0; 1968 } 1969 1970 static int unuse_mm(struct mm_struct *mm, unsigned int type, 1971 bool frontswap, unsigned long *fs_pages_to_unuse) 1972 { 1973 struct vm_area_struct *vma; 1974 int ret = 0; 1975 1976 down_read(&mm->mmap_sem); 1977 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1978 if (vma->anon_vma) { 1979 ret = unuse_vma(vma, type, frontswap, 1980 fs_pages_to_unuse); 1981 if (ret) 1982 break; 1983 } 1984 cond_resched(); 1985 } 1986 up_read(&mm->mmap_sem); 1987 return ret; 1988 } 1989 1990 /* 1991 * Scan swap_map (or frontswap_map if frontswap parameter is true) 1992 * from current position to next entry still in use. Return 0 1993 * if there are no inuse entries after prev till end of the map. 1994 */ 1995 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1996 unsigned int prev, bool frontswap) 1997 { 1998 unsigned int i; 1999 unsigned char count; 2000 2001 /* 2002 * No need for swap_lock here: we're just looking 2003 * for whether an entry is in use, not modifying it; false 2004 * hits are okay, and sys_swapoff() has already prevented new 2005 * allocations from this area (while holding swap_lock). 2006 */ 2007 for (i = prev + 1; i < si->max; i++) { 2008 count = READ_ONCE(si->swap_map[i]); 2009 if (count && swap_count(count) != SWAP_MAP_BAD) 2010 if (!frontswap || frontswap_test(si, i)) 2011 break; 2012 if ((i % LATENCY_LIMIT) == 0) 2013 cond_resched(); 2014 } 2015 2016 if (i == si->max) 2017 i = 0; 2018 2019 return i; 2020 } 2021 2022 /* 2023 * If the boolean frontswap is true, only unuse pages_to_unuse pages; 2024 * pages_to_unuse==0 means all pages; ignored if frontswap is false 2025 */ 2026 int try_to_unuse(unsigned int type, bool frontswap, 2027 unsigned long pages_to_unuse) 2028 { 2029 struct mm_struct *prev_mm; 2030 struct mm_struct *mm; 2031 struct list_head *p; 2032 int retval = 0; 2033 struct swap_info_struct *si = swap_info[type]; 2034 struct page *page; 2035 swp_entry_t entry; 2036 unsigned int i; 2037 2038 if (!si->inuse_pages) 2039 return 0; 2040 2041 if (!frontswap) 2042 pages_to_unuse = 0; 2043 2044 retry: 2045 retval = shmem_unuse(type, frontswap, &pages_to_unuse); 2046 if (retval) 2047 goto out; 2048 2049 prev_mm = &init_mm; 2050 mmget(prev_mm); 2051 2052 spin_lock(&mmlist_lock); 2053 p = &init_mm.mmlist; 2054 while (si->inuse_pages && 2055 !signal_pending(current) && 2056 (p = p->next) != &init_mm.mmlist) { 2057 2058 mm = list_entry(p, struct mm_struct, mmlist); 2059 if (!mmget_not_zero(mm)) 2060 continue; 2061 spin_unlock(&mmlist_lock); 2062 mmput(prev_mm); 2063 prev_mm = mm; 2064 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse); 2065 2066 if (retval) { 2067 mmput(prev_mm); 2068 goto out; 2069 } 2070 2071 /* 2072 * Make sure that we aren't completely killing 2073 * interactive performance. 2074 */ 2075 cond_resched(); 2076 spin_lock(&mmlist_lock); 2077 } 2078 spin_unlock(&mmlist_lock); 2079 2080 mmput(prev_mm); 2081 2082 i = 0; 2083 while (si->inuse_pages && 2084 !signal_pending(current) && 2085 (i = find_next_to_unuse(si, i, frontswap)) != 0) { 2086 2087 entry = swp_entry(type, i); 2088 page = find_get_page(swap_address_space(entry), i); 2089 if (!page) 2090 continue; 2091 2092 /* 2093 * It is conceivable that a racing task removed this page from 2094 * swap cache just before we acquired the page lock. The page 2095 * might even be back in swap cache on another swap area. But 2096 * that is okay, try_to_free_swap() only removes stale pages. 2097 */ 2098 lock_page(page); 2099 wait_on_page_writeback(page); 2100 try_to_free_swap(page); 2101 unlock_page(page); 2102 put_page(page); 2103 2104 /* 2105 * For frontswap, we just need to unuse pages_to_unuse, if 2106 * it was specified. Need not check frontswap again here as 2107 * we already zeroed out pages_to_unuse if not frontswap. 2108 */ 2109 if (pages_to_unuse && --pages_to_unuse == 0) 2110 goto out; 2111 } 2112 2113 /* 2114 * Lets check again to see if there are still swap entries in the map. 2115 * If yes, we would need to do retry the unuse logic again. 2116 * Under global memory pressure, swap entries can be reinserted back 2117 * into process space after the mmlist loop above passes over them. 2118 * 2119 * Limit the number of retries? No: when shmem_unuse()'s igrab() fails, 2120 * a shmem inode using swap is being evicted; and when mmget_not_zero() 2121 * above fails, that mm is likely to be freeing swap from exit_mmap(). 2122 * Both proceed at their own independent pace: we could move them to 2123 * separate lists, and wait for those lists to be emptied; but it's 2124 * easier and more robust (though cpu-intensive) just to keep retrying. 2125 */ 2126 if (si->inuse_pages) { 2127 if (!signal_pending(current)) 2128 goto retry; 2129 retval = -EINTR; 2130 } 2131 out: 2132 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval; 2133 } 2134 2135 /* 2136 * After a successful try_to_unuse, if no swap is now in use, we know 2137 * we can empty the mmlist. swap_lock must be held on entry and exit. 2138 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2139 * added to the mmlist just after page_duplicate - before would be racy. 2140 */ 2141 static void drain_mmlist(void) 2142 { 2143 struct list_head *p, *next; 2144 unsigned int type; 2145 2146 for (type = 0; type < nr_swapfiles; type++) 2147 if (swap_info[type]->inuse_pages) 2148 return; 2149 spin_lock(&mmlist_lock); 2150 list_for_each_safe(p, next, &init_mm.mmlist) 2151 list_del_init(p); 2152 spin_unlock(&mmlist_lock); 2153 } 2154 2155 /* 2156 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 2157 * corresponds to page offset for the specified swap entry. 2158 * Note that the type of this function is sector_t, but it returns page offset 2159 * into the bdev, not sector offset. 2160 */ 2161 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 2162 { 2163 struct swap_info_struct *sis; 2164 struct swap_extent *start_se; 2165 struct swap_extent *se; 2166 pgoff_t offset; 2167 2168 sis = swp_swap_info(entry); 2169 *bdev = sis->bdev; 2170 2171 offset = swp_offset(entry); 2172 start_se = sis->curr_swap_extent; 2173 se = start_se; 2174 2175 for ( ; ; ) { 2176 if (se->start_page <= offset && 2177 offset < (se->start_page + se->nr_pages)) { 2178 return se->start_block + (offset - se->start_page); 2179 } 2180 se = list_next_entry(se, list); 2181 sis->curr_swap_extent = se; 2182 BUG_ON(se == start_se); /* It *must* be present */ 2183 } 2184 } 2185 2186 /* 2187 * Returns the page offset into bdev for the specified page's swap entry. 2188 */ 2189 sector_t map_swap_page(struct page *page, struct block_device **bdev) 2190 { 2191 swp_entry_t entry; 2192 entry.val = page_private(page); 2193 return map_swap_entry(entry, bdev); 2194 } 2195 2196 /* 2197 * Free all of a swapdev's extent information 2198 */ 2199 static void destroy_swap_extents(struct swap_info_struct *sis) 2200 { 2201 while (!list_empty(&sis->first_swap_extent.list)) { 2202 struct swap_extent *se; 2203 2204 se = list_first_entry(&sis->first_swap_extent.list, 2205 struct swap_extent, list); 2206 list_del(&se->list); 2207 kfree(se); 2208 } 2209 2210 if (sis->flags & SWP_ACTIVATED) { 2211 struct file *swap_file = sis->swap_file; 2212 struct address_space *mapping = swap_file->f_mapping; 2213 2214 sis->flags &= ~SWP_ACTIVATED; 2215 if (mapping->a_ops->swap_deactivate) 2216 mapping->a_ops->swap_deactivate(swap_file); 2217 } 2218 } 2219 2220 /* 2221 * Add a block range (and the corresponding page range) into this swapdev's 2222 * extent list. The extent list is kept sorted in page order. 2223 * 2224 * This function rather assumes that it is called in ascending page order. 2225 */ 2226 int 2227 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2228 unsigned long nr_pages, sector_t start_block) 2229 { 2230 struct swap_extent *se; 2231 struct swap_extent *new_se; 2232 struct list_head *lh; 2233 2234 if (start_page == 0) { 2235 se = &sis->first_swap_extent; 2236 sis->curr_swap_extent = se; 2237 se->start_page = 0; 2238 se->nr_pages = nr_pages; 2239 se->start_block = start_block; 2240 return 1; 2241 } else { 2242 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 2243 se = list_entry(lh, struct swap_extent, list); 2244 BUG_ON(se->start_page + se->nr_pages != start_page); 2245 if (se->start_block + se->nr_pages == start_block) { 2246 /* Merge it */ 2247 se->nr_pages += nr_pages; 2248 return 0; 2249 } 2250 } 2251 2252 /* 2253 * No merge. Insert a new extent, preserving ordering. 2254 */ 2255 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2256 if (new_se == NULL) 2257 return -ENOMEM; 2258 new_se->start_page = start_page; 2259 new_se->nr_pages = nr_pages; 2260 new_se->start_block = start_block; 2261 2262 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 2263 return 1; 2264 } 2265 EXPORT_SYMBOL_GPL(add_swap_extent); 2266 2267 /* 2268 * A `swap extent' is a simple thing which maps a contiguous range of pages 2269 * onto a contiguous range of disk blocks. An ordered list of swap extents 2270 * is built at swapon time and is then used at swap_writepage/swap_readpage 2271 * time for locating where on disk a page belongs. 2272 * 2273 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2274 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2275 * swap files identically. 2276 * 2277 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2278 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2279 * swapfiles are handled *identically* after swapon time. 2280 * 2281 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2282 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 2283 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 2284 * requirements, they are simply tossed out - we will never use those blocks 2285 * for swapping. 2286 * 2287 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 2288 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 2289 * which will scribble on the fs. 2290 * 2291 * The amount of disk space which a single swap extent represents varies. 2292 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2293 * extents in the list. To avoid much list walking, we cache the previous 2294 * search location in `curr_swap_extent', and start new searches from there. 2295 * This is extremely effective. The average number of iterations in 2296 * map_swap_page() has been measured at about 0.3 per page. - akpm. 2297 */ 2298 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2299 { 2300 struct file *swap_file = sis->swap_file; 2301 struct address_space *mapping = swap_file->f_mapping; 2302 struct inode *inode = mapping->host; 2303 int ret; 2304 2305 if (S_ISBLK(inode->i_mode)) { 2306 ret = add_swap_extent(sis, 0, sis->max, 0); 2307 *span = sis->pages; 2308 return ret; 2309 } 2310 2311 if (mapping->a_ops->swap_activate) { 2312 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2313 if (ret >= 0) 2314 sis->flags |= SWP_ACTIVATED; 2315 if (!ret) { 2316 sis->flags |= SWP_FS; 2317 ret = add_swap_extent(sis, 0, sis->max, 0); 2318 *span = sis->pages; 2319 } 2320 return ret; 2321 } 2322 2323 return generic_swapfile_activate(sis, swap_file, span); 2324 } 2325 2326 static int swap_node(struct swap_info_struct *p) 2327 { 2328 struct block_device *bdev; 2329 2330 if (p->bdev) 2331 bdev = p->bdev; 2332 else 2333 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2334 2335 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2336 } 2337 2338 static void _enable_swap_info(struct swap_info_struct *p, int prio, 2339 unsigned char *swap_map, 2340 struct swap_cluster_info *cluster_info) 2341 { 2342 int i; 2343 2344 if (prio >= 0) 2345 p->prio = prio; 2346 else 2347 p->prio = --least_priority; 2348 /* 2349 * the plist prio is negated because plist ordering is 2350 * low-to-high, while swap ordering is high-to-low 2351 */ 2352 p->list.prio = -p->prio; 2353 for_each_node(i) { 2354 if (p->prio >= 0) 2355 p->avail_lists[i].prio = -p->prio; 2356 else { 2357 if (swap_node(p) == i) 2358 p->avail_lists[i].prio = 1; 2359 else 2360 p->avail_lists[i].prio = -p->prio; 2361 } 2362 } 2363 p->swap_map = swap_map; 2364 p->cluster_info = cluster_info; 2365 p->flags |= SWP_WRITEOK; 2366 atomic_long_add(p->pages, &nr_swap_pages); 2367 total_swap_pages += p->pages; 2368 2369 assert_spin_locked(&swap_lock); 2370 /* 2371 * both lists are plists, and thus priority ordered. 2372 * swap_active_head needs to be priority ordered for swapoff(), 2373 * which on removal of any swap_info_struct with an auto-assigned 2374 * (i.e. negative) priority increments the auto-assigned priority 2375 * of any lower-priority swap_info_structs. 2376 * swap_avail_head needs to be priority ordered for get_swap_page(), 2377 * which allocates swap pages from the highest available priority 2378 * swap_info_struct. 2379 */ 2380 plist_add(&p->list, &swap_active_head); 2381 add_to_avail_list(p); 2382 } 2383 2384 static void enable_swap_info(struct swap_info_struct *p, int prio, 2385 unsigned char *swap_map, 2386 struct swap_cluster_info *cluster_info, 2387 unsigned long *frontswap_map) 2388 { 2389 frontswap_init(p->type, frontswap_map); 2390 spin_lock(&swap_lock); 2391 spin_lock(&p->lock); 2392 _enable_swap_info(p, prio, swap_map, cluster_info); 2393 spin_unlock(&p->lock); 2394 spin_unlock(&swap_lock); 2395 } 2396 2397 static void reinsert_swap_info(struct swap_info_struct *p) 2398 { 2399 spin_lock(&swap_lock); 2400 spin_lock(&p->lock); 2401 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2402 spin_unlock(&p->lock); 2403 spin_unlock(&swap_lock); 2404 } 2405 2406 bool has_usable_swap(void) 2407 { 2408 bool ret = true; 2409 2410 spin_lock(&swap_lock); 2411 if (plist_head_empty(&swap_active_head)) 2412 ret = false; 2413 spin_unlock(&swap_lock); 2414 return ret; 2415 } 2416 2417 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2418 { 2419 struct swap_info_struct *p = NULL; 2420 unsigned char *swap_map; 2421 struct swap_cluster_info *cluster_info; 2422 unsigned long *frontswap_map; 2423 struct file *swap_file, *victim; 2424 struct address_space *mapping; 2425 struct inode *inode; 2426 struct filename *pathname; 2427 int err, found = 0; 2428 unsigned int old_block_size; 2429 2430 if (!capable(CAP_SYS_ADMIN)) 2431 return -EPERM; 2432 2433 BUG_ON(!current->mm); 2434 2435 pathname = getname(specialfile); 2436 if (IS_ERR(pathname)) 2437 return PTR_ERR(pathname); 2438 2439 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2440 err = PTR_ERR(victim); 2441 if (IS_ERR(victim)) 2442 goto out; 2443 2444 mapping = victim->f_mapping; 2445 spin_lock(&swap_lock); 2446 plist_for_each_entry(p, &swap_active_head, list) { 2447 if (p->flags & SWP_WRITEOK) { 2448 if (p->swap_file->f_mapping == mapping) { 2449 found = 1; 2450 break; 2451 } 2452 } 2453 } 2454 if (!found) { 2455 err = -EINVAL; 2456 spin_unlock(&swap_lock); 2457 goto out_dput; 2458 } 2459 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2460 vm_unacct_memory(p->pages); 2461 else { 2462 err = -ENOMEM; 2463 spin_unlock(&swap_lock); 2464 goto out_dput; 2465 } 2466 del_from_avail_list(p); 2467 spin_lock(&p->lock); 2468 if (p->prio < 0) { 2469 struct swap_info_struct *si = p; 2470 int nid; 2471 2472 plist_for_each_entry_continue(si, &swap_active_head, list) { 2473 si->prio++; 2474 si->list.prio--; 2475 for_each_node(nid) { 2476 if (si->avail_lists[nid].prio != 1) 2477 si->avail_lists[nid].prio--; 2478 } 2479 } 2480 least_priority++; 2481 } 2482 plist_del(&p->list, &swap_active_head); 2483 atomic_long_sub(p->pages, &nr_swap_pages); 2484 total_swap_pages -= p->pages; 2485 p->flags &= ~SWP_WRITEOK; 2486 spin_unlock(&p->lock); 2487 spin_unlock(&swap_lock); 2488 2489 disable_swap_slots_cache_lock(); 2490 2491 set_current_oom_origin(); 2492 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */ 2493 clear_current_oom_origin(); 2494 2495 if (err) { 2496 /* re-insert swap space back into swap_list */ 2497 reinsert_swap_info(p); 2498 reenable_swap_slots_cache_unlock(); 2499 goto out_dput; 2500 } 2501 2502 reenable_swap_slots_cache_unlock(); 2503 2504 flush_work(&p->discard_work); 2505 2506 destroy_swap_extents(p); 2507 if (p->flags & SWP_CONTINUED) 2508 free_swap_count_continuations(p); 2509 2510 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev))) 2511 atomic_dec(&nr_rotate_swap); 2512 2513 mutex_lock(&swapon_mutex); 2514 spin_lock(&swap_lock); 2515 spin_lock(&p->lock); 2516 drain_mmlist(); 2517 2518 /* wait for anyone still in scan_swap_map */ 2519 p->highest_bit = 0; /* cuts scans short */ 2520 while (p->flags >= SWP_SCANNING) { 2521 spin_unlock(&p->lock); 2522 spin_unlock(&swap_lock); 2523 schedule_timeout_uninterruptible(1); 2524 spin_lock(&swap_lock); 2525 spin_lock(&p->lock); 2526 } 2527 2528 swap_file = p->swap_file; 2529 old_block_size = p->old_block_size; 2530 p->swap_file = NULL; 2531 p->max = 0; 2532 swap_map = p->swap_map; 2533 p->swap_map = NULL; 2534 cluster_info = p->cluster_info; 2535 p->cluster_info = NULL; 2536 frontswap_map = frontswap_map_get(p); 2537 spin_unlock(&p->lock); 2538 spin_unlock(&swap_lock); 2539 frontswap_invalidate_area(p->type); 2540 frontswap_map_set(p, NULL); 2541 mutex_unlock(&swapon_mutex); 2542 free_percpu(p->percpu_cluster); 2543 p->percpu_cluster = NULL; 2544 vfree(swap_map); 2545 kvfree(cluster_info); 2546 kvfree(frontswap_map); 2547 /* Destroy swap account information */ 2548 swap_cgroup_swapoff(p->type); 2549 exit_swap_address_space(p->type); 2550 2551 inode = mapping->host; 2552 if (S_ISBLK(inode->i_mode)) { 2553 struct block_device *bdev = I_BDEV(inode); 2554 set_blocksize(bdev, old_block_size); 2555 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2556 } else { 2557 inode_lock(inode); 2558 inode->i_flags &= ~S_SWAPFILE; 2559 inode_unlock(inode); 2560 } 2561 filp_close(swap_file, NULL); 2562 2563 /* 2564 * Clear the SWP_USED flag after all resources are freed so that swapon 2565 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2566 * not hold p->lock after we cleared its SWP_WRITEOK. 2567 */ 2568 spin_lock(&swap_lock); 2569 p->flags = 0; 2570 spin_unlock(&swap_lock); 2571 2572 err = 0; 2573 atomic_inc(&proc_poll_event); 2574 wake_up_interruptible(&proc_poll_wait); 2575 2576 out_dput: 2577 filp_close(victim, NULL); 2578 out: 2579 putname(pathname); 2580 return err; 2581 } 2582 2583 #ifdef CONFIG_PROC_FS 2584 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2585 { 2586 struct seq_file *seq = file->private_data; 2587 2588 poll_wait(file, &proc_poll_wait, wait); 2589 2590 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2591 seq->poll_event = atomic_read(&proc_poll_event); 2592 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2593 } 2594 2595 return EPOLLIN | EPOLLRDNORM; 2596 } 2597 2598 /* iterator */ 2599 static void *swap_start(struct seq_file *swap, loff_t *pos) 2600 { 2601 struct swap_info_struct *si; 2602 int type; 2603 loff_t l = *pos; 2604 2605 mutex_lock(&swapon_mutex); 2606 2607 if (!l) 2608 return SEQ_START_TOKEN; 2609 2610 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2611 if (!(si->flags & SWP_USED) || !si->swap_map) 2612 continue; 2613 if (!--l) 2614 return si; 2615 } 2616 2617 return NULL; 2618 } 2619 2620 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2621 { 2622 struct swap_info_struct *si = v; 2623 int type; 2624 2625 if (v == SEQ_START_TOKEN) 2626 type = 0; 2627 else 2628 type = si->type + 1; 2629 2630 for (; (si = swap_type_to_swap_info(type)); type++) { 2631 if (!(si->flags & SWP_USED) || !si->swap_map) 2632 continue; 2633 ++*pos; 2634 return si; 2635 } 2636 2637 return NULL; 2638 } 2639 2640 static void swap_stop(struct seq_file *swap, void *v) 2641 { 2642 mutex_unlock(&swapon_mutex); 2643 } 2644 2645 static int swap_show(struct seq_file *swap, void *v) 2646 { 2647 struct swap_info_struct *si = v; 2648 struct file *file; 2649 int len; 2650 2651 if (si == SEQ_START_TOKEN) { 2652 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 2653 return 0; 2654 } 2655 2656 file = si->swap_file; 2657 len = seq_file_path(swap, file, " \t\n\\"); 2658 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 2659 len < 40 ? 40 - len : 1, " ", 2660 S_ISBLK(file_inode(file)->i_mode) ? 2661 "partition" : "file\t", 2662 si->pages << (PAGE_SHIFT - 10), 2663 si->inuse_pages << (PAGE_SHIFT - 10), 2664 si->prio); 2665 return 0; 2666 } 2667 2668 static const struct seq_operations swaps_op = { 2669 .start = swap_start, 2670 .next = swap_next, 2671 .stop = swap_stop, 2672 .show = swap_show 2673 }; 2674 2675 static int swaps_open(struct inode *inode, struct file *file) 2676 { 2677 struct seq_file *seq; 2678 int ret; 2679 2680 ret = seq_open(file, &swaps_op); 2681 if (ret) 2682 return ret; 2683 2684 seq = file->private_data; 2685 seq->poll_event = atomic_read(&proc_poll_event); 2686 return 0; 2687 } 2688 2689 static const struct file_operations proc_swaps_operations = { 2690 .open = swaps_open, 2691 .read = seq_read, 2692 .llseek = seq_lseek, 2693 .release = seq_release, 2694 .poll = swaps_poll, 2695 }; 2696 2697 static int __init procswaps_init(void) 2698 { 2699 proc_create("swaps", 0, NULL, &proc_swaps_operations); 2700 return 0; 2701 } 2702 __initcall(procswaps_init); 2703 #endif /* CONFIG_PROC_FS */ 2704 2705 #ifdef MAX_SWAPFILES_CHECK 2706 static int __init max_swapfiles_check(void) 2707 { 2708 MAX_SWAPFILES_CHECK(); 2709 return 0; 2710 } 2711 late_initcall(max_swapfiles_check); 2712 #endif 2713 2714 static struct swap_info_struct *alloc_swap_info(void) 2715 { 2716 struct swap_info_struct *p; 2717 unsigned int type; 2718 int i; 2719 2720 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2721 if (!p) 2722 return ERR_PTR(-ENOMEM); 2723 2724 spin_lock(&swap_lock); 2725 for (type = 0; type < nr_swapfiles; type++) { 2726 if (!(swap_info[type]->flags & SWP_USED)) 2727 break; 2728 } 2729 if (type >= MAX_SWAPFILES) { 2730 spin_unlock(&swap_lock); 2731 kvfree(p); 2732 return ERR_PTR(-EPERM); 2733 } 2734 if (type >= nr_swapfiles) { 2735 p->type = type; 2736 WRITE_ONCE(swap_info[type], p); 2737 /* 2738 * Write swap_info[type] before nr_swapfiles, in case a 2739 * racing procfs swap_start() or swap_next() is reading them. 2740 * (We never shrink nr_swapfiles, we never free this entry.) 2741 */ 2742 smp_wmb(); 2743 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1); 2744 } else { 2745 kvfree(p); 2746 p = swap_info[type]; 2747 /* 2748 * Do not memset this entry: a racing procfs swap_next() 2749 * would be relying on p->type to remain valid. 2750 */ 2751 } 2752 INIT_LIST_HEAD(&p->first_swap_extent.list); 2753 plist_node_init(&p->list, 0); 2754 for_each_node(i) 2755 plist_node_init(&p->avail_lists[i], 0); 2756 p->flags = SWP_USED; 2757 spin_unlock(&swap_lock); 2758 spin_lock_init(&p->lock); 2759 spin_lock_init(&p->cont_lock); 2760 2761 return p; 2762 } 2763 2764 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2765 { 2766 int error; 2767 2768 if (S_ISBLK(inode->i_mode)) { 2769 p->bdev = bdgrab(I_BDEV(inode)); 2770 error = blkdev_get(p->bdev, 2771 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2772 if (error < 0) { 2773 p->bdev = NULL; 2774 return error; 2775 } 2776 p->old_block_size = block_size(p->bdev); 2777 error = set_blocksize(p->bdev, PAGE_SIZE); 2778 if (error < 0) 2779 return error; 2780 p->flags |= SWP_BLKDEV; 2781 } else if (S_ISREG(inode->i_mode)) { 2782 p->bdev = inode->i_sb->s_bdev; 2783 inode_lock(inode); 2784 if (IS_SWAPFILE(inode)) 2785 return -EBUSY; 2786 } else 2787 return -EINVAL; 2788 2789 return 0; 2790 } 2791 2792 2793 /* 2794 * Find out how many pages are allowed for a single swap device. There 2795 * are two limiting factors: 2796 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2797 * 2) the number of bits in the swap pte, as defined by the different 2798 * architectures. 2799 * 2800 * In order to find the largest possible bit mask, a swap entry with 2801 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2802 * decoded to a swp_entry_t again, and finally the swap offset is 2803 * extracted. 2804 * 2805 * This will mask all the bits from the initial ~0UL mask that can't 2806 * be encoded in either the swp_entry_t or the architecture definition 2807 * of a swap pte. 2808 */ 2809 unsigned long generic_max_swapfile_size(void) 2810 { 2811 return swp_offset(pte_to_swp_entry( 2812 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2813 } 2814 2815 /* Can be overridden by an architecture for additional checks. */ 2816 __weak unsigned long max_swapfile_size(void) 2817 { 2818 return generic_max_swapfile_size(); 2819 } 2820 2821 static unsigned long read_swap_header(struct swap_info_struct *p, 2822 union swap_header *swap_header, 2823 struct inode *inode) 2824 { 2825 int i; 2826 unsigned long maxpages; 2827 unsigned long swapfilepages; 2828 unsigned long last_page; 2829 2830 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2831 pr_err("Unable to find swap-space signature\n"); 2832 return 0; 2833 } 2834 2835 /* swap partition endianess hack... */ 2836 if (swab32(swap_header->info.version) == 1) { 2837 swab32s(&swap_header->info.version); 2838 swab32s(&swap_header->info.last_page); 2839 swab32s(&swap_header->info.nr_badpages); 2840 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2841 return 0; 2842 for (i = 0; i < swap_header->info.nr_badpages; i++) 2843 swab32s(&swap_header->info.badpages[i]); 2844 } 2845 /* Check the swap header's sub-version */ 2846 if (swap_header->info.version != 1) { 2847 pr_warn("Unable to handle swap header version %d\n", 2848 swap_header->info.version); 2849 return 0; 2850 } 2851 2852 p->lowest_bit = 1; 2853 p->cluster_next = 1; 2854 p->cluster_nr = 0; 2855 2856 maxpages = max_swapfile_size(); 2857 last_page = swap_header->info.last_page; 2858 if (!last_page) { 2859 pr_warn("Empty swap-file\n"); 2860 return 0; 2861 } 2862 if (last_page > maxpages) { 2863 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2864 maxpages << (PAGE_SHIFT - 10), 2865 last_page << (PAGE_SHIFT - 10)); 2866 } 2867 if (maxpages > last_page) { 2868 maxpages = last_page + 1; 2869 /* p->max is an unsigned int: don't overflow it */ 2870 if ((unsigned int)maxpages == 0) 2871 maxpages = UINT_MAX; 2872 } 2873 p->highest_bit = maxpages - 1; 2874 2875 if (!maxpages) 2876 return 0; 2877 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2878 if (swapfilepages && maxpages > swapfilepages) { 2879 pr_warn("Swap area shorter than signature indicates\n"); 2880 return 0; 2881 } 2882 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2883 return 0; 2884 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2885 return 0; 2886 2887 return maxpages; 2888 } 2889 2890 #define SWAP_CLUSTER_INFO_COLS \ 2891 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 2892 #define SWAP_CLUSTER_SPACE_COLS \ 2893 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 2894 #define SWAP_CLUSTER_COLS \ 2895 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 2896 2897 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2898 union swap_header *swap_header, 2899 unsigned char *swap_map, 2900 struct swap_cluster_info *cluster_info, 2901 unsigned long maxpages, 2902 sector_t *span) 2903 { 2904 unsigned int j, k; 2905 unsigned int nr_good_pages; 2906 int nr_extents; 2907 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2908 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 2909 unsigned long i, idx; 2910 2911 nr_good_pages = maxpages - 1; /* omit header page */ 2912 2913 cluster_list_init(&p->free_clusters); 2914 cluster_list_init(&p->discard_clusters); 2915 2916 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2917 unsigned int page_nr = swap_header->info.badpages[i]; 2918 if (page_nr == 0 || page_nr > swap_header->info.last_page) 2919 return -EINVAL; 2920 if (page_nr < maxpages) { 2921 swap_map[page_nr] = SWAP_MAP_BAD; 2922 nr_good_pages--; 2923 /* 2924 * Haven't marked the cluster free yet, no list 2925 * operation involved 2926 */ 2927 inc_cluster_info_page(p, cluster_info, page_nr); 2928 } 2929 } 2930 2931 /* Haven't marked the cluster free yet, no list operation involved */ 2932 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 2933 inc_cluster_info_page(p, cluster_info, i); 2934 2935 if (nr_good_pages) { 2936 swap_map[0] = SWAP_MAP_BAD; 2937 /* 2938 * Not mark the cluster free yet, no list 2939 * operation involved 2940 */ 2941 inc_cluster_info_page(p, cluster_info, 0); 2942 p->max = maxpages; 2943 p->pages = nr_good_pages; 2944 nr_extents = setup_swap_extents(p, span); 2945 if (nr_extents < 0) 2946 return nr_extents; 2947 nr_good_pages = p->pages; 2948 } 2949 if (!nr_good_pages) { 2950 pr_warn("Empty swap-file\n"); 2951 return -EINVAL; 2952 } 2953 2954 if (!cluster_info) 2955 return nr_extents; 2956 2957 2958 /* 2959 * Reduce false cache line sharing between cluster_info and 2960 * sharing same address space. 2961 */ 2962 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 2963 j = (k + col) % SWAP_CLUSTER_COLS; 2964 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 2965 idx = i * SWAP_CLUSTER_COLS + j; 2966 if (idx >= nr_clusters) 2967 continue; 2968 if (cluster_count(&cluster_info[idx])) 2969 continue; 2970 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 2971 cluster_list_add_tail(&p->free_clusters, cluster_info, 2972 idx); 2973 } 2974 } 2975 return nr_extents; 2976 } 2977 2978 /* 2979 * Helper to sys_swapon determining if a given swap 2980 * backing device queue supports DISCARD operations. 2981 */ 2982 static bool swap_discardable(struct swap_info_struct *si) 2983 { 2984 struct request_queue *q = bdev_get_queue(si->bdev); 2985 2986 if (!q || !blk_queue_discard(q)) 2987 return false; 2988 2989 return true; 2990 } 2991 2992 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2993 { 2994 struct swap_info_struct *p; 2995 struct filename *name; 2996 struct file *swap_file = NULL; 2997 struct address_space *mapping; 2998 int prio; 2999 int error; 3000 union swap_header *swap_header; 3001 int nr_extents; 3002 sector_t span; 3003 unsigned long maxpages; 3004 unsigned char *swap_map = NULL; 3005 struct swap_cluster_info *cluster_info = NULL; 3006 unsigned long *frontswap_map = NULL; 3007 struct page *page = NULL; 3008 struct inode *inode = NULL; 3009 bool inced_nr_rotate_swap = false; 3010 3011 if (swap_flags & ~SWAP_FLAGS_VALID) 3012 return -EINVAL; 3013 3014 if (!capable(CAP_SYS_ADMIN)) 3015 return -EPERM; 3016 3017 if (!swap_avail_heads) 3018 return -ENOMEM; 3019 3020 p = alloc_swap_info(); 3021 if (IS_ERR(p)) 3022 return PTR_ERR(p); 3023 3024 INIT_WORK(&p->discard_work, swap_discard_work); 3025 3026 name = getname(specialfile); 3027 if (IS_ERR(name)) { 3028 error = PTR_ERR(name); 3029 name = NULL; 3030 goto bad_swap; 3031 } 3032 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3033 if (IS_ERR(swap_file)) { 3034 error = PTR_ERR(swap_file); 3035 swap_file = NULL; 3036 goto bad_swap; 3037 } 3038 3039 p->swap_file = swap_file; 3040 mapping = swap_file->f_mapping; 3041 inode = mapping->host; 3042 3043 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */ 3044 error = claim_swapfile(p, inode); 3045 if (unlikely(error)) 3046 goto bad_swap; 3047 3048 /* 3049 * Read the swap header. 3050 */ 3051 if (!mapping->a_ops->readpage) { 3052 error = -EINVAL; 3053 goto bad_swap; 3054 } 3055 page = read_mapping_page(mapping, 0, swap_file); 3056 if (IS_ERR(page)) { 3057 error = PTR_ERR(page); 3058 goto bad_swap; 3059 } 3060 swap_header = kmap(page); 3061 3062 maxpages = read_swap_header(p, swap_header, inode); 3063 if (unlikely(!maxpages)) { 3064 error = -EINVAL; 3065 goto bad_swap; 3066 } 3067 3068 /* OK, set up the swap map and apply the bad block list */ 3069 swap_map = vzalloc(maxpages); 3070 if (!swap_map) { 3071 error = -ENOMEM; 3072 goto bad_swap; 3073 } 3074 3075 if (bdi_cap_stable_pages_required(inode_to_bdi(inode))) 3076 p->flags |= SWP_STABLE_WRITES; 3077 3078 if (bdi_cap_synchronous_io(inode_to_bdi(inode))) 3079 p->flags |= SWP_SYNCHRONOUS_IO; 3080 3081 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { 3082 int cpu; 3083 unsigned long ci, nr_cluster; 3084 3085 p->flags |= SWP_SOLIDSTATE; 3086 /* 3087 * select a random position to start with to help wear leveling 3088 * SSD 3089 */ 3090 p->cluster_next = 1 + (prandom_u32() % p->highest_bit); 3091 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3092 3093 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3094 GFP_KERNEL); 3095 if (!cluster_info) { 3096 error = -ENOMEM; 3097 goto bad_swap; 3098 } 3099 3100 for (ci = 0; ci < nr_cluster; ci++) 3101 spin_lock_init(&((cluster_info + ci)->lock)); 3102 3103 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3104 if (!p->percpu_cluster) { 3105 error = -ENOMEM; 3106 goto bad_swap; 3107 } 3108 for_each_possible_cpu(cpu) { 3109 struct percpu_cluster *cluster; 3110 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3111 cluster_set_null(&cluster->index); 3112 } 3113 } else { 3114 atomic_inc(&nr_rotate_swap); 3115 inced_nr_rotate_swap = true; 3116 } 3117 3118 error = swap_cgroup_swapon(p->type, maxpages); 3119 if (error) 3120 goto bad_swap; 3121 3122 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3123 cluster_info, maxpages, &span); 3124 if (unlikely(nr_extents < 0)) { 3125 error = nr_extents; 3126 goto bad_swap; 3127 } 3128 /* frontswap enabled? set up bit-per-page map for frontswap */ 3129 if (IS_ENABLED(CONFIG_FRONTSWAP)) 3130 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages), 3131 sizeof(long), 3132 GFP_KERNEL); 3133 3134 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 3135 /* 3136 * When discard is enabled for swap with no particular 3137 * policy flagged, we set all swap discard flags here in 3138 * order to sustain backward compatibility with older 3139 * swapon(8) releases. 3140 */ 3141 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3142 SWP_PAGE_DISCARD); 3143 3144 /* 3145 * By flagging sys_swapon, a sysadmin can tell us to 3146 * either do single-time area discards only, or to just 3147 * perform discards for released swap page-clusters. 3148 * Now it's time to adjust the p->flags accordingly. 3149 */ 3150 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3151 p->flags &= ~SWP_PAGE_DISCARD; 3152 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3153 p->flags &= ~SWP_AREA_DISCARD; 3154 3155 /* issue a swapon-time discard if it's still required */ 3156 if (p->flags & SWP_AREA_DISCARD) { 3157 int err = discard_swap(p); 3158 if (unlikely(err)) 3159 pr_err("swapon: discard_swap(%p): %d\n", 3160 p, err); 3161 } 3162 } 3163 3164 error = init_swap_address_space(p->type, maxpages); 3165 if (error) 3166 goto bad_swap; 3167 3168 mutex_lock(&swapon_mutex); 3169 prio = -1; 3170 if (swap_flags & SWAP_FLAG_PREFER) 3171 prio = 3172 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3173 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 3174 3175 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 3176 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 3177 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 3178 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3179 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3180 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3181 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 3182 (frontswap_map) ? "FS" : ""); 3183 3184 mutex_unlock(&swapon_mutex); 3185 atomic_inc(&proc_poll_event); 3186 wake_up_interruptible(&proc_poll_wait); 3187 3188 if (S_ISREG(inode->i_mode)) 3189 inode->i_flags |= S_SWAPFILE; 3190 error = 0; 3191 goto out; 3192 bad_swap: 3193 free_percpu(p->percpu_cluster); 3194 p->percpu_cluster = NULL; 3195 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 3196 set_blocksize(p->bdev, p->old_block_size); 3197 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 3198 } 3199 destroy_swap_extents(p); 3200 swap_cgroup_swapoff(p->type); 3201 spin_lock(&swap_lock); 3202 p->swap_file = NULL; 3203 p->flags = 0; 3204 spin_unlock(&swap_lock); 3205 vfree(swap_map); 3206 kvfree(cluster_info); 3207 kvfree(frontswap_map); 3208 if (inced_nr_rotate_swap) 3209 atomic_dec(&nr_rotate_swap); 3210 if (swap_file) { 3211 if (inode && S_ISREG(inode->i_mode)) { 3212 inode_unlock(inode); 3213 inode = NULL; 3214 } 3215 filp_close(swap_file, NULL); 3216 } 3217 out: 3218 if (page && !IS_ERR(page)) { 3219 kunmap(page); 3220 put_page(page); 3221 } 3222 if (name) 3223 putname(name); 3224 if (inode && S_ISREG(inode->i_mode)) 3225 inode_unlock(inode); 3226 if (!error) 3227 enable_swap_slots_cache(); 3228 return error; 3229 } 3230 3231 void si_swapinfo(struct sysinfo *val) 3232 { 3233 unsigned int type; 3234 unsigned long nr_to_be_unused = 0; 3235 3236 spin_lock(&swap_lock); 3237 for (type = 0; type < nr_swapfiles; type++) { 3238 struct swap_info_struct *si = swap_info[type]; 3239 3240 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3241 nr_to_be_unused += si->inuse_pages; 3242 } 3243 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3244 val->totalswap = total_swap_pages + nr_to_be_unused; 3245 spin_unlock(&swap_lock); 3246 } 3247 3248 /* 3249 * Verify that a swap entry is valid and increment its swap map count. 3250 * 3251 * Returns error code in following case. 3252 * - success -> 0 3253 * - swp_entry is invalid -> EINVAL 3254 * - swp_entry is migration entry -> EINVAL 3255 * - swap-cache reference is requested but there is already one. -> EEXIST 3256 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3257 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3258 */ 3259 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3260 { 3261 struct swap_info_struct *p; 3262 struct swap_cluster_info *ci; 3263 unsigned long offset; 3264 unsigned char count; 3265 unsigned char has_cache; 3266 int err = -EINVAL; 3267 3268 if (non_swap_entry(entry)) 3269 goto out; 3270 3271 p = swp_swap_info(entry); 3272 if (!p) 3273 goto bad_file; 3274 3275 offset = swp_offset(entry); 3276 if (unlikely(offset >= p->max)) 3277 goto out; 3278 3279 ci = lock_cluster_or_swap_info(p, offset); 3280 3281 count = p->swap_map[offset]; 3282 3283 /* 3284 * swapin_readahead() doesn't check if a swap entry is valid, so the 3285 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3286 */ 3287 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3288 err = -ENOENT; 3289 goto unlock_out; 3290 } 3291 3292 has_cache = count & SWAP_HAS_CACHE; 3293 count &= ~SWAP_HAS_CACHE; 3294 err = 0; 3295 3296 if (usage == SWAP_HAS_CACHE) { 3297 3298 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3299 if (!has_cache && count) 3300 has_cache = SWAP_HAS_CACHE; 3301 else if (has_cache) /* someone else added cache */ 3302 err = -EEXIST; 3303 else /* no users remaining */ 3304 err = -ENOENT; 3305 3306 } else if (count || has_cache) { 3307 3308 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3309 count += usage; 3310 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3311 err = -EINVAL; 3312 else if (swap_count_continued(p, offset, count)) 3313 count = COUNT_CONTINUED; 3314 else 3315 err = -ENOMEM; 3316 } else 3317 err = -ENOENT; /* unused swap entry */ 3318 3319 p->swap_map[offset] = count | has_cache; 3320 3321 unlock_out: 3322 unlock_cluster_or_swap_info(p, ci); 3323 out: 3324 return err; 3325 3326 bad_file: 3327 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val); 3328 goto out; 3329 } 3330 3331 /* 3332 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3333 * (in which case its reference count is never incremented). 3334 */ 3335 void swap_shmem_alloc(swp_entry_t entry) 3336 { 3337 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3338 } 3339 3340 /* 3341 * Increase reference count of swap entry by 1. 3342 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3343 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3344 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3345 * might occur if a page table entry has got corrupted. 3346 */ 3347 int swap_duplicate(swp_entry_t entry) 3348 { 3349 int err = 0; 3350 3351 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3352 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3353 return err; 3354 } 3355 3356 /* 3357 * @entry: swap entry for which we allocate swap cache. 3358 * 3359 * Called when allocating swap cache for existing swap entry, 3360 * This can return error codes. Returns 0 at success. 3361 * -EBUSY means there is a swap cache. 3362 * Note: return code is different from swap_duplicate(). 3363 */ 3364 int swapcache_prepare(swp_entry_t entry) 3365 { 3366 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3367 } 3368 3369 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3370 { 3371 return swap_type_to_swap_info(swp_type(entry)); 3372 } 3373 3374 struct swap_info_struct *page_swap_info(struct page *page) 3375 { 3376 swp_entry_t entry = { .val = page_private(page) }; 3377 return swp_swap_info(entry); 3378 } 3379 3380 /* 3381 * out-of-line __page_file_ methods to avoid include hell. 3382 */ 3383 struct address_space *__page_file_mapping(struct page *page) 3384 { 3385 return page_swap_info(page)->swap_file->f_mapping; 3386 } 3387 EXPORT_SYMBOL_GPL(__page_file_mapping); 3388 3389 pgoff_t __page_file_index(struct page *page) 3390 { 3391 swp_entry_t swap = { .val = page_private(page) }; 3392 return swp_offset(swap); 3393 } 3394 EXPORT_SYMBOL_GPL(__page_file_index); 3395 3396 /* 3397 * add_swap_count_continuation - called when a swap count is duplicated 3398 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3399 * page of the original vmalloc'ed swap_map, to hold the continuation count 3400 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3401 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3402 * 3403 * These continuation pages are seldom referenced: the common paths all work 3404 * on the original swap_map, only referring to a continuation page when the 3405 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3406 * 3407 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3408 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3409 * can be called after dropping locks. 3410 */ 3411 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3412 { 3413 struct swap_info_struct *si; 3414 struct swap_cluster_info *ci; 3415 struct page *head; 3416 struct page *page; 3417 struct page *list_page; 3418 pgoff_t offset; 3419 unsigned char count; 3420 3421 /* 3422 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3423 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3424 */ 3425 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3426 3427 si = swap_info_get(entry); 3428 if (!si) { 3429 /* 3430 * An acceptable race has occurred since the failing 3431 * __swap_duplicate(): the swap entry has been freed, 3432 * perhaps even the whole swap_map cleared for swapoff. 3433 */ 3434 goto outer; 3435 } 3436 3437 offset = swp_offset(entry); 3438 3439 ci = lock_cluster(si, offset); 3440 3441 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 3442 3443 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3444 /* 3445 * The higher the swap count, the more likely it is that tasks 3446 * will race to add swap count continuation: we need to avoid 3447 * over-provisioning. 3448 */ 3449 goto out; 3450 } 3451 3452 if (!page) { 3453 unlock_cluster(ci); 3454 spin_unlock(&si->lock); 3455 return -ENOMEM; 3456 } 3457 3458 /* 3459 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 3460 * no architecture is using highmem pages for kernel page tables: so it 3461 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 3462 */ 3463 head = vmalloc_to_page(si->swap_map + offset); 3464 offset &= ~PAGE_MASK; 3465 3466 spin_lock(&si->cont_lock); 3467 /* 3468 * Page allocation does not initialize the page's lru field, 3469 * but it does always reset its private field. 3470 */ 3471 if (!page_private(head)) { 3472 BUG_ON(count & COUNT_CONTINUED); 3473 INIT_LIST_HEAD(&head->lru); 3474 set_page_private(head, SWP_CONTINUED); 3475 si->flags |= SWP_CONTINUED; 3476 } 3477 3478 list_for_each_entry(list_page, &head->lru, lru) { 3479 unsigned char *map; 3480 3481 /* 3482 * If the previous map said no continuation, but we've found 3483 * a continuation page, free our allocation and use this one. 3484 */ 3485 if (!(count & COUNT_CONTINUED)) 3486 goto out_unlock_cont; 3487 3488 map = kmap_atomic(list_page) + offset; 3489 count = *map; 3490 kunmap_atomic(map); 3491 3492 /* 3493 * If this continuation count now has some space in it, 3494 * free our allocation and use this one. 3495 */ 3496 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3497 goto out_unlock_cont; 3498 } 3499 3500 list_add_tail(&page->lru, &head->lru); 3501 page = NULL; /* now it's attached, don't free it */ 3502 out_unlock_cont: 3503 spin_unlock(&si->cont_lock); 3504 out: 3505 unlock_cluster(ci); 3506 spin_unlock(&si->lock); 3507 outer: 3508 if (page) 3509 __free_page(page); 3510 return 0; 3511 } 3512 3513 /* 3514 * swap_count_continued - when the original swap_map count is incremented 3515 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3516 * into, carry if so, or else fail until a new continuation page is allocated; 3517 * when the original swap_map count is decremented from 0 with continuation, 3518 * borrow from the continuation and report whether it still holds more. 3519 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3520 * lock. 3521 */ 3522 static bool swap_count_continued(struct swap_info_struct *si, 3523 pgoff_t offset, unsigned char count) 3524 { 3525 struct page *head; 3526 struct page *page; 3527 unsigned char *map; 3528 bool ret; 3529 3530 head = vmalloc_to_page(si->swap_map + offset); 3531 if (page_private(head) != SWP_CONTINUED) { 3532 BUG_ON(count & COUNT_CONTINUED); 3533 return false; /* need to add count continuation */ 3534 } 3535 3536 spin_lock(&si->cont_lock); 3537 offset &= ~PAGE_MASK; 3538 page = list_entry(head->lru.next, struct page, lru); 3539 map = kmap_atomic(page) + offset; 3540 3541 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3542 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3543 3544 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3545 /* 3546 * Think of how you add 1 to 999 3547 */ 3548 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3549 kunmap_atomic(map); 3550 page = list_entry(page->lru.next, struct page, lru); 3551 BUG_ON(page == head); 3552 map = kmap_atomic(page) + offset; 3553 } 3554 if (*map == SWAP_CONT_MAX) { 3555 kunmap_atomic(map); 3556 page = list_entry(page->lru.next, struct page, lru); 3557 if (page == head) { 3558 ret = false; /* add count continuation */ 3559 goto out; 3560 } 3561 map = kmap_atomic(page) + offset; 3562 init_map: *map = 0; /* we didn't zero the page */ 3563 } 3564 *map += 1; 3565 kunmap_atomic(map); 3566 page = list_entry(page->lru.prev, struct page, lru); 3567 while (page != head) { 3568 map = kmap_atomic(page) + offset; 3569 *map = COUNT_CONTINUED; 3570 kunmap_atomic(map); 3571 page = list_entry(page->lru.prev, struct page, lru); 3572 } 3573 ret = true; /* incremented */ 3574 3575 } else { /* decrementing */ 3576 /* 3577 * Think of how you subtract 1 from 1000 3578 */ 3579 BUG_ON(count != COUNT_CONTINUED); 3580 while (*map == COUNT_CONTINUED) { 3581 kunmap_atomic(map); 3582 page = list_entry(page->lru.next, struct page, lru); 3583 BUG_ON(page == head); 3584 map = kmap_atomic(page) + offset; 3585 } 3586 BUG_ON(*map == 0); 3587 *map -= 1; 3588 if (*map == 0) 3589 count = 0; 3590 kunmap_atomic(map); 3591 page = list_entry(page->lru.prev, struct page, lru); 3592 while (page != head) { 3593 map = kmap_atomic(page) + offset; 3594 *map = SWAP_CONT_MAX | count; 3595 count = COUNT_CONTINUED; 3596 kunmap_atomic(map); 3597 page = list_entry(page->lru.prev, struct page, lru); 3598 } 3599 ret = count == COUNT_CONTINUED; 3600 } 3601 out: 3602 spin_unlock(&si->cont_lock); 3603 return ret; 3604 } 3605 3606 /* 3607 * free_swap_count_continuations - swapoff free all the continuation pages 3608 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3609 */ 3610 static void free_swap_count_continuations(struct swap_info_struct *si) 3611 { 3612 pgoff_t offset; 3613 3614 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3615 struct page *head; 3616 head = vmalloc_to_page(si->swap_map + offset); 3617 if (page_private(head)) { 3618 struct page *page, *next; 3619 3620 list_for_each_entry_safe(page, next, &head->lru, lru) { 3621 list_del(&page->lru); 3622 __free_page(page); 3623 } 3624 } 3625 } 3626 } 3627 3628 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3629 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node, 3630 gfp_t gfp_mask) 3631 { 3632 struct swap_info_struct *si, *next; 3633 if (!(gfp_mask & __GFP_IO) || !memcg) 3634 return; 3635 3636 if (!blk_cgroup_congested()) 3637 return; 3638 3639 /* 3640 * We've already scheduled a throttle, avoid taking the global swap 3641 * lock. 3642 */ 3643 if (current->throttle_queue) 3644 return; 3645 3646 spin_lock(&swap_avail_lock); 3647 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], 3648 avail_lists[node]) { 3649 if (si->bdev) { 3650 blkcg_schedule_throttle(bdev_get_queue(si->bdev), 3651 true); 3652 break; 3653 } 3654 } 3655 spin_unlock(&swap_avail_lock); 3656 } 3657 #endif 3658 3659 static int __init swapfile_init(void) 3660 { 3661 int nid; 3662 3663 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3664 GFP_KERNEL); 3665 if (!swap_avail_heads) { 3666 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3667 return -ENOMEM; 3668 } 3669 3670 for_each_node(nid) 3671 plist_head_init(&swap_avail_heads[nid]); 3672 3673 return 0; 3674 } 3675 subsys_initcall(swapfile_init); 3676