1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/blkdev.h> 10 #include <linux/mm.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/task.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mman.h> 15 #include <linux/slab.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/swap.h> 18 #include <linux/vmalloc.h> 19 #include <linux/pagemap.h> 20 #include <linux/namei.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/blk-cgroup.h> 23 #include <linux/random.h> 24 #include <linux/writeback.h> 25 #include <linux/proc_fs.h> 26 #include <linux/seq_file.h> 27 #include <linux/init.h> 28 #include <linux/ksm.h> 29 #include <linux/rmap.h> 30 #include <linux/security.h> 31 #include <linux/backing-dev.h> 32 #include <linux/mutex.h> 33 #include <linux/capability.h> 34 #include <linux/syscalls.h> 35 #include <linux/memcontrol.h> 36 #include <linux/poll.h> 37 #include <linux/oom.h> 38 #include <linux/frontswap.h> 39 #include <linux/swapfile.h> 40 #include <linux/export.h> 41 #include <linux/swap_slots.h> 42 #include <linux/sort.h> 43 #include <linux/completion.h> 44 #include <linux/suspend.h> 45 46 #include <asm/tlbflush.h> 47 #include <linux/swapops.h> 48 #include <linux/swap_cgroup.h> 49 #include "swap.h" 50 51 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 52 unsigned char); 53 static void free_swap_count_continuations(struct swap_info_struct *); 54 55 static DEFINE_SPINLOCK(swap_lock); 56 static unsigned int nr_swapfiles; 57 atomic_long_t nr_swap_pages; 58 /* 59 * Some modules use swappable objects and may try to swap them out under 60 * memory pressure (via the shrinker). Before doing so, they may wish to 61 * check to see if any swap space is available. 62 */ 63 EXPORT_SYMBOL_GPL(nr_swap_pages); 64 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 65 long total_swap_pages; 66 static int least_priority = -1; 67 unsigned long swapfile_maximum_size; 68 #ifdef CONFIG_MIGRATION 69 bool swap_migration_ad_supported; 70 #endif /* CONFIG_MIGRATION */ 71 72 static const char Bad_file[] = "Bad swap file entry "; 73 static const char Unused_file[] = "Unused swap file entry "; 74 static const char Bad_offset[] = "Bad swap offset entry "; 75 static const char Unused_offset[] = "Unused swap offset entry "; 76 77 /* 78 * all active swap_info_structs 79 * protected with swap_lock, and ordered by priority. 80 */ 81 static PLIST_HEAD(swap_active_head); 82 83 /* 84 * all available (active, not full) swap_info_structs 85 * protected with swap_avail_lock, ordered by priority. 86 * This is used by folio_alloc_swap() instead of swap_active_head 87 * because swap_active_head includes all swap_info_structs, 88 * but folio_alloc_swap() doesn't need to look at full ones. 89 * This uses its own lock instead of swap_lock because when a 90 * swap_info_struct changes between not-full/full, it needs to 91 * add/remove itself to/from this list, but the swap_info_struct->lock 92 * is held and the locking order requires swap_lock to be taken 93 * before any swap_info_struct->lock. 94 */ 95 static struct plist_head *swap_avail_heads; 96 static DEFINE_SPINLOCK(swap_avail_lock); 97 98 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 99 100 static DEFINE_MUTEX(swapon_mutex); 101 102 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 103 /* Activity counter to indicate that a swapon or swapoff has occurred */ 104 static atomic_t proc_poll_event = ATOMIC_INIT(0); 105 106 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 107 108 static struct swap_info_struct *swap_type_to_swap_info(int type) 109 { 110 if (type >= MAX_SWAPFILES) 111 return NULL; 112 113 return READ_ONCE(swap_info[type]); /* rcu_dereference() */ 114 } 115 116 static inline unsigned char swap_count(unsigned char ent) 117 { 118 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 119 } 120 121 /* Reclaim the swap entry anyway if possible */ 122 #define TTRS_ANYWAY 0x1 123 /* 124 * Reclaim the swap entry if there are no more mappings of the 125 * corresponding page 126 */ 127 #define TTRS_UNMAPPED 0x2 128 /* Reclaim the swap entry if swap is getting full*/ 129 #define TTRS_FULL 0x4 130 131 /* returns 1 if swap entry is freed */ 132 static int __try_to_reclaim_swap(struct swap_info_struct *si, 133 unsigned long offset, unsigned long flags) 134 { 135 swp_entry_t entry = swp_entry(si->type, offset); 136 struct folio *folio; 137 int ret = 0; 138 139 folio = filemap_get_folio(swap_address_space(entry), offset); 140 if (IS_ERR(folio)) 141 return 0; 142 /* 143 * When this function is called from scan_swap_map_slots() and it's 144 * called by vmscan.c at reclaiming folios. So we hold a folio lock 145 * here. We have to use trylock for avoiding deadlock. This is a special 146 * case and you should use folio_free_swap() with explicit folio_lock() 147 * in usual operations. 148 */ 149 if (folio_trylock(folio)) { 150 if ((flags & TTRS_ANYWAY) || 151 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) || 152 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio))) 153 ret = folio_free_swap(folio); 154 folio_unlock(folio); 155 } 156 folio_put(folio); 157 return ret; 158 } 159 160 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 161 { 162 struct rb_node *rb = rb_first(&sis->swap_extent_root); 163 return rb_entry(rb, struct swap_extent, rb_node); 164 } 165 166 static inline struct swap_extent *next_se(struct swap_extent *se) 167 { 168 struct rb_node *rb = rb_next(&se->rb_node); 169 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 170 } 171 172 /* 173 * swapon tell device that all the old swap contents can be discarded, 174 * to allow the swap device to optimize its wear-levelling. 175 */ 176 static int discard_swap(struct swap_info_struct *si) 177 { 178 struct swap_extent *se; 179 sector_t start_block; 180 sector_t nr_blocks; 181 int err = 0; 182 183 /* Do not discard the swap header page! */ 184 se = first_se(si); 185 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 186 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 187 if (nr_blocks) { 188 err = blkdev_issue_discard(si->bdev, start_block, 189 nr_blocks, GFP_KERNEL); 190 if (err) 191 return err; 192 cond_resched(); 193 } 194 195 for (se = next_se(se); se; se = next_se(se)) { 196 start_block = se->start_block << (PAGE_SHIFT - 9); 197 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 198 199 err = blkdev_issue_discard(si->bdev, start_block, 200 nr_blocks, GFP_KERNEL); 201 if (err) 202 break; 203 204 cond_resched(); 205 } 206 return err; /* That will often be -EOPNOTSUPP */ 207 } 208 209 static struct swap_extent * 210 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 211 { 212 struct swap_extent *se; 213 struct rb_node *rb; 214 215 rb = sis->swap_extent_root.rb_node; 216 while (rb) { 217 se = rb_entry(rb, struct swap_extent, rb_node); 218 if (offset < se->start_page) 219 rb = rb->rb_left; 220 else if (offset >= se->start_page + se->nr_pages) 221 rb = rb->rb_right; 222 else 223 return se; 224 } 225 /* It *must* be present */ 226 BUG(); 227 } 228 229 sector_t swap_page_sector(struct page *page) 230 { 231 struct swap_info_struct *sis = page_swap_info(page); 232 struct swap_extent *se; 233 sector_t sector; 234 pgoff_t offset; 235 236 offset = __page_file_index(page); 237 se = offset_to_swap_extent(sis, offset); 238 sector = se->start_block + (offset - se->start_page); 239 return sector << (PAGE_SHIFT - 9); 240 } 241 242 /* 243 * swap allocation tell device that a cluster of swap can now be discarded, 244 * to allow the swap device to optimize its wear-levelling. 245 */ 246 static void discard_swap_cluster(struct swap_info_struct *si, 247 pgoff_t start_page, pgoff_t nr_pages) 248 { 249 struct swap_extent *se = offset_to_swap_extent(si, start_page); 250 251 while (nr_pages) { 252 pgoff_t offset = start_page - se->start_page; 253 sector_t start_block = se->start_block + offset; 254 sector_t nr_blocks = se->nr_pages - offset; 255 256 if (nr_blocks > nr_pages) 257 nr_blocks = nr_pages; 258 start_page += nr_blocks; 259 nr_pages -= nr_blocks; 260 261 start_block <<= PAGE_SHIFT - 9; 262 nr_blocks <<= PAGE_SHIFT - 9; 263 if (blkdev_issue_discard(si->bdev, start_block, 264 nr_blocks, GFP_NOIO)) 265 break; 266 267 se = next_se(se); 268 } 269 } 270 271 #ifdef CONFIG_THP_SWAP 272 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 273 274 #define swap_entry_size(size) (size) 275 #else 276 #define SWAPFILE_CLUSTER 256 277 278 /* 279 * Define swap_entry_size() as constant to let compiler to optimize 280 * out some code if !CONFIG_THP_SWAP 281 */ 282 #define swap_entry_size(size) 1 283 #endif 284 #define LATENCY_LIMIT 256 285 286 static inline void cluster_set_flag(struct swap_cluster_info *info, 287 unsigned int flag) 288 { 289 info->flags = flag; 290 } 291 292 static inline unsigned int cluster_count(struct swap_cluster_info *info) 293 { 294 return info->data; 295 } 296 297 static inline void cluster_set_count(struct swap_cluster_info *info, 298 unsigned int c) 299 { 300 info->data = c; 301 } 302 303 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 304 unsigned int c, unsigned int f) 305 { 306 info->flags = f; 307 info->data = c; 308 } 309 310 static inline unsigned int cluster_next(struct swap_cluster_info *info) 311 { 312 return info->data; 313 } 314 315 static inline void cluster_set_next(struct swap_cluster_info *info, 316 unsigned int n) 317 { 318 info->data = n; 319 } 320 321 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 322 unsigned int n, unsigned int f) 323 { 324 info->flags = f; 325 info->data = n; 326 } 327 328 static inline bool cluster_is_free(struct swap_cluster_info *info) 329 { 330 return info->flags & CLUSTER_FLAG_FREE; 331 } 332 333 static inline bool cluster_is_null(struct swap_cluster_info *info) 334 { 335 return info->flags & CLUSTER_FLAG_NEXT_NULL; 336 } 337 338 static inline void cluster_set_null(struct swap_cluster_info *info) 339 { 340 info->flags = CLUSTER_FLAG_NEXT_NULL; 341 info->data = 0; 342 } 343 344 static inline bool cluster_is_huge(struct swap_cluster_info *info) 345 { 346 if (IS_ENABLED(CONFIG_THP_SWAP)) 347 return info->flags & CLUSTER_FLAG_HUGE; 348 return false; 349 } 350 351 static inline void cluster_clear_huge(struct swap_cluster_info *info) 352 { 353 info->flags &= ~CLUSTER_FLAG_HUGE; 354 } 355 356 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 357 unsigned long offset) 358 { 359 struct swap_cluster_info *ci; 360 361 ci = si->cluster_info; 362 if (ci) { 363 ci += offset / SWAPFILE_CLUSTER; 364 spin_lock(&ci->lock); 365 } 366 return ci; 367 } 368 369 static inline void unlock_cluster(struct swap_cluster_info *ci) 370 { 371 if (ci) 372 spin_unlock(&ci->lock); 373 } 374 375 /* 376 * Determine the locking method in use for this device. Return 377 * swap_cluster_info if SSD-style cluster-based locking is in place. 378 */ 379 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 380 struct swap_info_struct *si, unsigned long offset) 381 { 382 struct swap_cluster_info *ci; 383 384 /* Try to use fine-grained SSD-style locking if available: */ 385 ci = lock_cluster(si, offset); 386 /* Otherwise, fall back to traditional, coarse locking: */ 387 if (!ci) 388 spin_lock(&si->lock); 389 390 return ci; 391 } 392 393 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 394 struct swap_cluster_info *ci) 395 { 396 if (ci) 397 unlock_cluster(ci); 398 else 399 spin_unlock(&si->lock); 400 } 401 402 static inline bool cluster_list_empty(struct swap_cluster_list *list) 403 { 404 return cluster_is_null(&list->head); 405 } 406 407 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 408 { 409 return cluster_next(&list->head); 410 } 411 412 static void cluster_list_init(struct swap_cluster_list *list) 413 { 414 cluster_set_null(&list->head); 415 cluster_set_null(&list->tail); 416 } 417 418 static void cluster_list_add_tail(struct swap_cluster_list *list, 419 struct swap_cluster_info *ci, 420 unsigned int idx) 421 { 422 if (cluster_list_empty(list)) { 423 cluster_set_next_flag(&list->head, idx, 0); 424 cluster_set_next_flag(&list->tail, idx, 0); 425 } else { 426 struct swap_cluster_info *ci_tail; 427 unsigned int tail = cluster_next(&list->tail); 428 429 /* 430 * Nested cluster lock, but both cluster locks are 431 * only acquired when we held swap_info_struct->lock 432 */ 433 ci_tail = ci + tail; 434 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 435 cluster_set_next(ci_tail, idx); 436 spin_unlock(&ci_tail->lock); 437 cluster_set_next_flag(&list->tail, idx, 0); 438 } 439 } 440 441 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 442 struct swap_cluster_info *ci) 443 { 444 unsigned int idx; 445 446 idx = cluster_next(&list->head); 447 if (cluster_next(&list->tail) == idx) { 448 cluster_set_null(&list->head); 449 cluster_set_null(&list->tail); 450 } else 451 cluster_set_next_flag(&list->head, 452 cluster_next(&ci[idx]), 0); 453 454 return idx; 455 } 456 457 /* Add a cluster to discard list and schedule it to do discard */ 458 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 459 unsigned int idx) 460 { 461 /* 462 * If scan_swap_map_slots() can't find a free cluster, it will check 463 * si->swap_map directly. To make sure the discarding cluster isn't 464 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied). 465 * It will be cleared after discard 466 */ 467 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 468 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 469 470 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 471 472 schedule_work(&si->discard_work); 473 } 474 475 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 476 { 477 struct swap_cluster_info *ci = si->cluster_info; 478 479 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 480 cluster_list_add_tail(&si->free_clusters, ci, idx); 481 } 482 483 /* 484 * Doing discard actually. After a cluster discard is finished, the cluster 485 * will be added to free cluster list. caller should hold si->lock. 486 */ 487 static void swap_do_scheduled_discard(struct swap_info_struct *si) 488 { 489 struct swap_cluster_info *info, *ci; 490 unsigned int idx; 491 492 info = si->cluster_info; 493 494 while (!cluster_list_empty(&si->discard_clusters)) { 495 idx = cluster_list_del_first(&si->discard_clusters, info); 496 spin_unlock(&si->lock); 497 498 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 499 SWAPFILE_CLUSTER); 500 501 spin_lock(&si->lock); 502 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 503 __free_cluster(si, idx); 504 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 505 0, SWAPFILE_CLUSTER); 506 unlock_cluster(ci); 507 } 508 } 509 510 static void swap_discard_work(struct work_struct *work) 511 { 512 struct swap_info_struct *si; 513 514 si = container_of(work, struct swap_info_struct, discard_work); 515 516 spin_lock(&si->lock); 517 swap_do_scheduled_discard(si); 518 spin_unlock(&si->lock); 519 } 520 521 static void swap_users_ref_free(struct percpu_ref *ref) 522 { 523 struct swap_info_struct *si; 524 525 si = container_of(ref, struct swap_info_struct, users); 526 complete(&si->comp); 527 } 528 529 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 530 { 531 struct swap_cluster_info *ci = si->cluster_info; 532 533 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 534 cluster_list_del_first(&si->free_clusters, ci); 535 cluster_set_count_flag(ci + idx, 0, 0); 536 } 537 538 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 539 { 540 struct swap_cluster_info *ci = si->cluster_info + idx; 541 542 VM_BUG_ON(cluster_count(ci) != 0); 543 /* 544 * If the swap is discardable, prepare discard the cluster 545 * instead of free it immediately. The cluster will be freed 546 * after discard. 547 */ 548 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 549 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 550 swap_cluster_schedule_discard(si, idx); 551 return; 552 } 553 554 __free_cluster(si, idx); 555 } 556 557 /* 558 * The cluster corresponding to page_nr will be used. The cluster will be 559 * removed from free cluster list and its usage counter will be increased. 560 */ 561 static void inc_cluster_info_page(struct swap_info_struct *p, 562 struct swap_cluster_info *cluster_info, unsigned long page_nr) 563 { 564 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 565 566 if (!cluster_info) 567 return; 568 if (cluster_is_free(&cluster_info[idx])) 569 alloc_cluster(p, idx); 570 571 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 572 cluster_set_count(&cluster_info[idx], 573 cluster_count(&cluster_info[idx]) + 1); 574 } 575 576 /* 577 * The cluster corresponding to page_nr decreases one usage. If the usage 578 * counter becomes 0, which means no page in the cluster is in using, we can 579 * optionally discard the cluster and add it to free cluster list. 580 */ 581 static void dec_cluster_info_page(struct swap_info_struct *p, 582 struct swap_cluster_info *cluster_info, unsigned long page_nr) 583 { 584 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 585 586 if (!cluster_info) 587 return; 588 589 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 590 cluster_set_count(&cluster_info[idx], 591 cluster_count(&cluster_info[idx]) - 1); 592 593 if (cluster_count(&cluster_info[idx]) == 0) 594 free_cluster(p, idx); 595 } 596 597 /* 598 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free 599 * cluster list. Avoiding such abuse to avoid list corruption. 600 */ 601 static bool 602 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 603 unsigned long offset) 604 { 605 struct percpu_cluster *percpu_cluster; 606 bool conflict; 607 608 offset /= SWAPFILE_CLUSTER; 609 conflict = !cluster_list_empty(&si->free_clusters) && 610 offset != cluster_list_first(&si->free_clusters) && 611 cluster_is_free(&si->cluster_info[offset]); 612 613 if (!conflict) 614 return false; 615 616 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 617 cluster_set_null(&percpu_cluster->index); 618 return true; 619 } 620 621 /* 622 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 623 * might involve allocating a new cluster for current CPU too. 624 */ 625 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 626 unsigned long *offset, unsigned long *scan_base) 627 { 628 struct percpu_cluster *cluster; 629 struct swap_cluster_info *ci; 630 unsigned long tmp, max; 631 632 new_cluster: 633 cluster = this_cpu_ptr(si->percpu_cluster); 634 if (cluster_is_null(&cluster->index)) { 635 if (!cluster_list_empty(&si->free_clusters)) { 636 cluster->index = si->free_clusters.head; 637 cluster->next = cluster_next(&cluster->index) * 638 SWAPFILE_CLUSTER; 639 } else if (!cluster_list_empty(&si->discard_clusters)) { 640 /* 641 * we don't have free cluster but have some clusters in 642 * discarding, do discard now and reclaim them, then 643 * reread cluster_next_cpu since we dropped si->lock 644 */ 645 swap_do_scheduled_discard(si); 646 *scan_base = this_cpu_read(*si->cluster_next_cpu); 647 *offset = *scan_base; 648 goto new_cluster; 649 } else 650 return false; 651 } 652 653 /* 654 * Other CPUs can use our cluster if they can't find a free cluster, 655 * check if there is still free entry in the cluster 656 */ 657 tmp = cluster->next; 658 max = min_t(unsigned long, si->max, 659 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 660 if (tmp < max) { 661 ci = lock_cluster(si, tmp); 662 while (tmp < max) { 663 if (!si->swap_map[tmp]) 664 break; 665 tmp++; 666 } 667 unlock_cluster(ci); 668 } 669 if (tmp >= max) { 670 cluster_set_null(&cluster->index); 671 goto new_cluster; 672 } 673 cluster->next = tmp + 1; 674 *offset = tmp; 675 *scan_base = tmp; 676 return true; 677 } 678 679 static void __del_from_avail_list(struct swap_info_struct *p) 680 { 681 int nid; 682 683 assert_spin_locked(&p->lock); 684 for_each_node(nid) 685 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 686 } 687 688 static void del_from_avail_list(struct swap_info_struct *p) 689 { 690 spin_lock(&swap_avail_lock); 691 __del_from_avail_list(p); 692 spin_unlock(&swap_avail_lock); 693 } 694 695 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 696 unsigned int nr_entries) 697 { 698 unsigned int end = offset + nr_entries - 1; 699 700 if (offset == si->lowest_bit) 701 si->lowest_bit += nr_entries; 702 if (end == si->highest_bit) 703 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries); 704 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries); 705 if (si->inuse_pages == si->pages) { 706 si->lowest_bit = si->max; 707 si->highest_bit = 0; 708 del_from_avail_list(si); 709 } 710 } 711 712 static void add_to_avail_list(struct swap_info_struct *p) 713 { 714 int nid; 715 716 spin_lock(&swap_avail_lock); 717 for_each_node(nid) { 718 WARN_ON(!plist_node_empty(&p->avail_lists[nid])); 719 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 720 } 721 spin_unlock(&swap_avail_lock); 722 } 723 724 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 725 unsigned int nr_entries) 726 { 727 unsigned long begin = offset; 728 unsigned long end = offset + nr_entries - 1; 729 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 730 731 if (offset < si->lowest_bit) 732 si->lowest_bit = offset; 733 if (end > si->highest_bit) { 734 bool was_full = !si->highest_bit; 735 736 WRITE_ONCE(si->highest_bit, end); 737 if (was_full && (si->flags & SWP_WRITEOK)) 738 add_to_avail_list(si); 739 } 740 atomic_long_add(nr_entries, &nr_swap_pages); 741 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries); 742 if (si->flags & SWP_BLKDEV) 743 swap_slot_free_notify = 744 si->bdev->bd_disk->fops->swap_slot_free_notify; 745 else 746 swap_slot_free_notify = NULL; 747 while (offset <= end) { 748 arch_swap_invalidate_page(si->type, offset); 749 frontswap_invalidate_page(si->type, offset); 750 if (swap_slot_free_notify) 751 swap_slot_free_notify(si->bdev, offset); 752 offset++; 753 } 754 clear_shadow_from_swap_cache(si->type, begin, end); 755 } 756 757 static void set_cluster_next(struct swap_info_struct *si, unsigned long next) 758 { 759 unsigned long prev; 760 761 if (!(si->flags & SWP_SOLIDSTATE)) { 762 si->cluster_next = next; 763 return; 764 } 765 766 prev = this_cpu_read(*si->cluster_next_cpu); 767 /* 768 * Cross the swap address space size aligned trunk, choose 769 * another trunk randomly to avoid lock contention on swap 770 * address space if possible. 771 */ 772 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) != 773 (next >> SWAP_ADDRESS_SPACE_SHIFT)) { 774 /* No free swap slots available */ 775 if (si->highest_bit <= si->lowest_bit) 776 return; 777 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit); 778 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES); 779 next = max_t(unsigned int, next, si->lowest_bit); 780 } 781 this_cpu_write(*si->cluster_next_cpu, next); 782 } 783 784 static bool swap_offset_available_and_locked(struct swap_info_struct *si, 785 unsigned long offset) 786 { 787 if (data_race(!si->swap_map[offset])) { 788 spin_lock(&si->lock); 789 return true; 790 } 791 792 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 793 spin_lock(&si->lock); 794 return true; 795 } 796 797 return false; 798 } 799 800 static int scan_swap_map_slots(struct swap_info_struct *si, 801 unsigned char usage, int nr, 802 swp_entry_t slots[]) 803 { 804 struct swap_cluster_info *ci; 805 unsigned long offset; 806 unsigned long scan_base; 807 unsigned long last_in_cluster = 0; 808 int latency_ration = LATENCY_LIMIT; 809 int n_ret = 0; 810 bool scanned_many = false; 811 812 /* 813 * We try to cluster swap pages by allocating them sequentially 814 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 815 * way, however, we resort to first-free allocation, starting 816 * a new cluster. This prevents us from scattering swap pages 817 * all over the entire swap partition, so that we reduce 818 * overall disk seek times between swap pages. -- sct 819 * But we do now try to find an empty cluster. -Andrea 820 * And we let swap pages go all over an SSD partition. Hugh 821 */ 822 823 si->flags += SWP_SCANNING; 824 /* 825 * Use percpu scan base for SSD to reduce lock contention on 826 * cluster and swap cache. For HDD, sequential access is more 827 * important. 828 */ 829 if (si->flags & SWP_SOLIDSTATE) 830 scan_base = this_cpu_read(*si->cluster_next_cpu); 831 else 832 scan_base = si->cluster_next; 833 offset = scan_base; 834 835 /* SSD algorithm */ 836 if (si->cluster_info) { 837 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 838 goto scan; 839 } else if (unlikely(!si->cluster_nr--)) { 840 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 841 si->cluster_nr = SWAPFILE_CLUSTER - 1; 842 goto checks; 843 } 844 845 spin_unlock(&si->lock); 846 847 /* 848 * If seek is expensive, start searching for new cluster from 849 * start of partition, to minimize the span of allocated swap. 850 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 851 * case, just handled by scan_swap_map_try_ssd_cluster() above. 852 */ 853 scan_base = offset = si->lowest_bit; 854 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 855 856 /* Locate the first empty (unaligned) cluster */ 857 for (; last_in_cluster <= si->highest_bit; offset++) { 858 if (si->swap_map[offset]) 859 last_in_cluster = offset + SWAPFILE_CLUSTER; 860 else if (offset == last_in_cluster) { 861 spin_lock(&si->lock); 862 offset -= SWAPFILE_CLUSTER - 1; 863 si->cluster_next = offset; 864 si->cluster_nr = SWAPFILE_CLUSTER - 1; 865 goto checks; 866 } 867 if (unlikely(--latency_ration < 0)) { 868 cond_resched(); 869 latency_ration = LATENCY_LIMIT; 870 } 871 } 872 873 offset = scan_base; 874 spin_lock(&si->lock); 875 si->cluster_nr = SWAPFILE_CLUSTER - 1; 876 } 877 878 checks: 879 if (si->cluster_info) { 880 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 881 /* take a break if we already got some slots */ 882 if (n_ret) 883 goto done; 884 if (!scan_swap_map_try_ssd_cluster(si, &offset, 885 &scan_base)) 886 goto scan; 887 } 888 } 889 if (!(si->flags & SWP_WRITEOK)) 890 goto no_page; 891 if (!si->highest_bit) 892 goto no_page; 893 if (offset > si->highest_bit) 894 scan_base = offset = si->lowest_bit; 895 896 ci = lock_cluster(si, offset); 897 /* reuse swap entry of cache-only swap if not busy. */ 898 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 899 int swap_was_freed; 900 unlock_cluster(ci); 901 spin_unlock(&si->lock); 902 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 903 spin_lock(&si->lock); 904 /* entry was freed successfully, try to use this again */ 905 if (swap_was_freed) 906 goto checks; 907 goto scan; /* check next one */ 908 } 909 910 if (si->swap_map[offset]) { 911 unlock_cluster(ci); 912 if (!n_ret) 913 goto scan; 914 else 915 goto done; 916 } 917 WRITE_ONCE(si->swap_map[offset], usage); 918 inc_cluster_info_page(si, si->cluster_info, offset); 919 unlock_cluster(ci); 920 921 swap_range_alloc(si, offset, 1); 922 slots[n_ret++] = swp_entry(si->type, offset); 923 924 /* got enough slots or reach max slots? */ 925 if ((n_ret == nr) || (offset >= si->highest_bit)) 926 goto done; 927 928 /* search for next available slot */ 929 930 /* time to take a break? */ 931 if (unlikely(--latency_ration < 0)) { 932 if (n_ret) 933 goto done; 934 spin_unlock(&si->lock); 935 cond_resched(); 936 spin_lock(&si->lock); 937 latency_ration = LATENCY_LIMIT; 938 } 939 940 /* try to get more slots in cluster */ 941 if (si->cluster_info) { 942 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 943 goto checks; 944 } else if (si->cluster_nr && !si->swap_map[++offset]) { 945 /* non-ssd case, still more slots in cluster? */ 946 --si->cluster_nr; 947 goto checks; 948 } 949 950 /* 951 * Even if there's no free clusters available (fragmented), 952 * try to scan a little more quickly with lock held unless we 953 * have scanned too many slots already. 954 */ 955 if (!scanned_many) { 956 unsigned long scan_limit; 957 958 if (offset < scan_base) 959 scan_limit = scan_base; 960 else 961 scan_limit = si->highest_bit; 962 for (; offset <= scan_limit && --latency_ration > 0; 963 offset++) { 964 if (!si->swap_map[offset]) 965 goto checks; 966 } 967 } 968 969 done: 970 set_cluster_next(si, offset + 1); 971 si->flags -= SWP_SCANNING; 972 return n_ret; 973 974 scan: 975 spin_unlock(&si->lock); 976 while (++offset <= READ_ONCE(si->highest_bit)) { 977 if (unlikely(--latency_ration < 0)) { 978 cond_resched(); 979 latency_ration = LATENCY_LIMIT; 980 scanned_many = true; 981 } 982 if (swap_offset_available_and_locked(si, offset)) 983 goto checks; 984 } 985 offset = si->lowest_bit; 986 while (offset < scan_base) { 987 if (unlikely(--latency_ration < 0)) { 988 cond_resched(); 989 latency_ration = LATENCY_LIMIT; 990 scanned_many = true; 991 } 992 if (swap_offset_available_and_locked(si, offset)) 993 goto checks; 994 offset++; 995 } 996 spin_lock(&si->lock); 997 998 no_page: 999 si->flags -= SWP_SCANNING; 1000 return n_ret; 1001 } 1002 1003 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 1004 { 1005 unsigned long idx; 1006 struct swap_cluster_info *ci; 1007 unsigned long offset; 1008 1009 /* 1010 * Should not even be attempting cluster allocations when huge 1011 * page swap is disabled. Warn and fail the allocation. 1012 */ 1013 if (!IS_ENABLED(CONFIG_THP_SWAP)) { 1014 VM_WARN_ON_ONCE(1); 1015 return 0; 1016 } 1017 1018 if (cluster_list_empty(&si->free_clusters)) 1019 return 0; 1020 1021 idx = cluster_list_first(&si->free_clusters); 1022 offset = idx * SWAPFILE_CLUSTER; 1023 ci = lock_cluster(si, offset); 1024 alloc_cluster(si, idx); 1025 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); 1026 1027 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER); 1028 unlock_cluster(ci); 1029 swap_range_alloc(si, offset, SWAPFILE_CLUSTER); 1030 *slot = swp_entry(si->type, offset); 1031 1032 return 1; 1033 } 1034 1035 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 1036 { 1037 unsigned long offset = idx * SWAPFILE_CLUSTER; 1038 struct swap_cluster_info *ci; 1039 1040 ci = lock_cluster(si, offset); 1041 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); 1042 cluster_set_count_flag(ci, 0, 0); 1043 free_cluster(si, idx); 1044 unlock_cluster(ci); 1045 swap_range_free(si, offset, SWAPFILE_CLUSTER); 1046 } 1047 1048 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) 1049 { 1050 unsigned long size = swap_entry_size(entry_size); 1051 struct swap_info_struct *si, *next; 1052 long avail_pgs; 1053 int n_ret = 0; 1054 int node; 1055 1056 /* Only single cluster request supported */ 1057 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); 1058 1059 spin_lock(&swap_avail_lock); 1060 1061 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 1062 if (avail_pgs <= 0) { 1063 spin_unlock(&swap_avail_lock); 1064 goto noswap; 1065 } 1066 1067 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs); 1068 1069 atomic_long_sub(n_goal * size, &nr_swap_pages); 1070 1071 start_over: 1072 node = numa_node_id(); 1073 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1074 /* requeue si to after same-priority siblings */ 1075 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1076 spin_unlock(&swap_avail_lock); 1077 spin_lock(&si->lock); 1078 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 1079 spin_lock(&swap_avail_lock); 1080 if (plist_node_empty(&si->avail_lists[node])) { 1081 spin_unlock(&si->lock); 1082 goto nextsi; 1083 } 1084 WARN(!si->highest_bit, 1085 "swap_info %d in list but !highest_bit\n", 1086 si->type); 1087 WARN(!(si->flags & SWP_WRITEOK), 1088 "swap_info %d in list but !SWP_WRITEOK\n", 1089 si->type); 1090 __del_from_avail_list(si); 1091 spin_unlock(&si->lock); 1092 goto nextsi; 1093 } 1094 if (size == SWAPFILE_CLUSTER) { 1095 if (si->flags & SWP_BLKDEV) 1096 n_ret = swap_alloc_cluster(si, swp_entries); 1097 } else 1098 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1099 n_goal, swp_entries); 1100 spin_unlock(&si->lock); 1101 if (n_ret || size == SWAPFILE_CLUSTER) 1102 goto check_out; 1103 cond_resched(); 1104 1105 spin_lock(&swap_avail_lock); 1106 nextsi: 1107 /* 1108 * if we got here, it's likely that si was almost full before, 1109 * and since scan_swap_map_slots() can drop the si->lock, 1110 * multiple callers probably all tried to get a page from the 1111 * same si and it filled up before we could get one; or, the si 1112 * filled up between us dropping swap_avail_lock and taking 1113 * si->lock. Since we dropped the swap_avail_lock, the 1114 * swap_avail_head list may have been modified; so if next is 1115 * still in the swap_avail_head list then try it, otherwise 1116 * start over if we have not gotten any slots. 1117 */ 1118 if (plist_node_empty(&next->avail_lists[node])) 1119 goto start_over; 1120 } 1121 1122 spin_unlock(&swap_avail_lock); 1123 1124 check_out: 1125 if (n_ret < n_goal) 1126 atomic_long_add((long)(n_goal - n_ret) * size, 1127 &nr_swap_pages); 1128 noswap: 1129 return n_ret; 1130 } 1131 1132 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1133 { 1134 struct swap_info_struct *p; 1135 unsigned long offset; 1136 1137 if (!entry.val) 1138 goto out; 1139 p = swp_swap_info(entry); 1140 if (!p) 1141 goto bad_nofile; 1142 if (data_race(!(p->flags & SWP_USED))) 1143 goto bad_device; 1144 offset = swp_offset(entry); 1145 if (offset >= p->max) 1146 goto bad_offset; 1147 if (data_race(!p->swap_map[swp_offset(entry)])) 1148 goto bad_free; 1149 return p; 1150 1151 bad_free: 1152 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1153 goto out; 1154 bad_offset: 1155 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1156 goto out; 1157 bad_device: 1158 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1159 goto out; 1160 bad_nofile: 1161 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1162 out: 1163 return NULL; 1164 } 1165 1166 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1167 struct swap_info_struct *q) 1168 { 1169 struct swap_info_struct *p; 1170 1171 p = _swap_info_get(entry); 1172 1173 if (p != q) { 1174 if (q != NULL) 1175 spin_unlock(&q->lock); 1176 if (p != NULL) 1177 spin_lock(&p->lock); 1178 } 1179 return p; 1180 } 1181 1182 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1183 unsigned long offset, 1184 unsigned char usage) 1185 { 1186 unsigned char count; 1187 unsigned char has_cache; 1188 1189 count = p->swap_map[offset]; 1190 1191 has_cache = count & SWAP_HAS_CACHE; 1192 count &= ~SWAP_HAS_CACHE; 1193 1194 if (usage == SWAP_HAS_CACHE) { 1195 VM_BUG_ON(!has_cache); 1196 has_cache = 0; 1197 } else if (count == SWAP_MAP_SHMEM) { 1198 /* 1199 * Or we could insist on shmem.c using a special 1200 * swap_shmem_free() and free_shmem_swap_and_cache()... 1201 */ 1202 count = 0; 1203 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1204 if (count == COUNT_CONTINUED) { 1205 if (swap_count_continued(p, offset, count)) 1206 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1207 else 1208 count = SWAP_MAP_MAX; 1209 } else 1210 count--; 1211 } 1212 1213 usage = count | has_cache; 1214 if (usage) 1215 WRITE_ONCE(p->swap_map[offset], usage); 1216 else 1217 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE); 1218 1219 return usage; 1220 } 1221 1222 /* 1223 * Check whether swap entry is valid in the swap device. If so, 1224 * return pointer to swap_info_struct, and keep the swap entry valid 1225 * via preventing the swap device from being swapoff, until 1226 * put_swap_device() is called. Otherwise return NULL. 1227 * 1228 * Notice that swapoff or swapoff+swapon can still happen before the 1229 * percpu_ref_tryget_live() in get_swap_device() or after the 1230 * percpu_ref_put() in put_swap_device() if there isn't any other way 1231 * to prevent swapoff, such as page lock, page table lock, etc. The 1232 * caller must be prepared for that. For example, the following 1233 * situation is possible. 1234 * 1235 * CPU1 CPU2 1236 * do_swap_page() 1237 * ... swapoff+swapon 1238 * __read_swap_cache_async() 1239 * swapcache_prepare() 1240 * __swap_duplicate() 1241 * // check swap_map 1242 * // verify PTE not changed 1243 * 1244 * In __swap_duplicate(), the swap_map need to be checked before 1245 * changing partly because the specified swap entry may be for another 1246 * swap device which has been swapoff. And in do_swap_page(), after 1247 * the page is read from the swap device, the PTE is verified not 1248 * changed with the page table locked to check whether the swap device 1249 * has been swapoff or swapoff+swapon. 1250 */ 1251 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1252 { 1253 struct swap_info_struct *si; 1254 unsigned long offset; 1255 1256 if (!entry.val) 1257 goto out; 1258 si = swp_swap_info(entry); 1259 if (!si) 1260 goto bad_nofile; 1261 if (!percpu_ref_tryget_live(&si->users)) 1262 goto out; 1263 /* 1264 * Guarantee the si->users are checked before accessing other 1265 * fields of swap_info_struct. 1266 * 1267 * Paired with the spin_unlock() after setup_swap_info() in 1268 * enable_swap_info(). 1269 */ 1270 smp_rmb(); 1271 offset = swp_offset(entry); 1272 if (offset >= si->max) 1273 goto put_out; 1274 1275 return si; 1276 bad_nofile: 1277 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1278 out: 1279 return NULL; 1280 put_out: 1281 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1282 percpu_ref_put(&si->users); 1283 return NULL; 1284 } 1285 1286 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1287 swp_entry_t entry) 1288 { 1289 struct swap_cluster_info *ci; 1290 unsigned long offset = swp_offset(entry); 1291 unsigned char usage; 1292 1293 ci = lock_cluster_or_swap_info(p, offset); 1294 usage = __swap_entry_free_locked(p, offset, 1); 1295 unlock_cluster_or_swap_info(p, ci); 1296 if (!usage) 1297 free_swap_slot(entry); 1298 1299 return usage; 1300 } 1301 1302 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1303 { 1304 struct swap_cluster_info *ci; 1305 unsigned long offset = swp_offset(entry); 1306 unsigned char count; 1307 1308 ci = lock_cluster(p, offset); 1309 count = p->swap_map[offset]; 1310 VM_BUG_ON(count != SWAP_HAS_CACHE); 1311 p->swap_map[offset] = 0; 1312 dec_cluster_info_page(p, p->cluster_info, offset); 1313 unlock_cluster(ci); 1314 1315 mem_cgroup_uncharge_swap(entry, 1); 1316 swap_range_free(p, offset, 1); 1317 } 1318 1319 /* 1320 * Caller has made sure that the swap device corresponding to entry 1321 * is still around or has not been recycled. 1322 */ 1323 void swap_free(swp_entry_t entry) 1324 { 1325 struct swap_info_struct *p; 1326 1327 p = _swap_info_get(entry); 1328 if (p) 1329 __swap_entry_free(p, entry); 1330 } 1331 1332 /* 1333 * Called after dropping swapcache to decrease refcnt to swap entries. 1334 */ 1335 void put_swap_folio(struct folio *folio, swp_entry_t entry) 1336 { 1337 unsigned long offset = swp_offset(entry); 1338 unsigned long idx = offset / SWAPFILE_CLUSTER; 1339 struct swap_cluster_info *ci; 1340 struct swap_info_struct *si; 1341 unsigned char *map; 1342 unsigned int i, free_entries = 0; 1343 unsigned char val; 1344 int size = swap_entry_size(folio_nr_pages(folio)); 1345 1346 si = _swap_info_get(entry); 1347 if (!si) 1348 return; 1349 1350 ci = lock_cluster_or_swap_info(si, offset); 1351 if (size == SWAPFILE_CLUSTER) { 1352 VM_BUG_ON(!cluster_is_huge(ci)); 1353 map = si->swap_map + offset; 1354 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1355 val = map[i]; 1356 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1357 if (val == SWAP_HAS_CACHE) 1358 free_entries++; 1359 } 1360 cluster_clear_huge(ci); 1361 if (free_entries == SWAPFILE_CLUSTER) { 1362 unlock_cluster_or_swap_info(si, ci); 1363 spin_lock(&si->lock); 1364 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1365 swap_free_cluster(si, idx); 1366 spin_unlock(&si->lock); 1367 return; 1368 } 1369 } 1370 for (i = 0; i < size; i++, entry.val++) { 1371 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1372 unlock_cluster_or_swap_info(si, ci); 1373 free_swap_slot(entry); 1374 if (i == size - 1) 1375 return; 1376 lock_cluster_or_swap_info(si, offset); 1377 } 1378 } 1379 unlock_cluster_or_swap_info(si, ci); 1380 } 1381 1382 #ifdef CONFIG_THP_SWAP 1383 int split_swap_cluster(swp_entry_t entry) 1384 { 1385 struct swap_info_struct *si; 1386 struct swap_cluster_info *ci; 1387 unsigned long offset = swp_offset(entry); 1388 1389 si = _swap_info_get(entry); 1390 if (!si) 1391 return -EBUSY; 1392 ci = lock_cluster(si, offset); 1393 cluster_clear_huge(ci); 1394 unlock_cluster(ci); 1395 return 0; 1396 } 1397 #endif 1398 1399 static int swp_entry_cmp(const void *ent1, const void *ent2) 1400 { 1401 const swp_entry_t *e1 = ent1, *e2 = ent2; 1402 1403 return (int)swp_type(*e1) - (int)swp_type(*e2); 1404 } 1405 1406 void swapcache_free_entries(swp_entry_t *entries, int n) 1407 { 1408 struct swap_info_struct *p, *prev; 1409 int i; 1410 1411 if (n <= 0) 1412 return; 1413 1414 prev = NULL; 1415 p = NULL; 1416 1417 /* 1418 * Sort swap entries by swap device, so each lock is only taken once. 1419 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1420 * so low that it isn't necessary to optimize further. 1421 */ 1422 if (nr_swapfiles > 1) 1423 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1424 for (i = 0; i < n; ++i) { 1425 p = swap_info_get_cont(entries[i], prev); 1426 if (p) 1427 swap_entry_free(p, entries[i]); 1428 prev = p; 1429 } 1430 if (p) 1431 spin_unlock(&p->lock); 1432 } 1433 1434 int __swap_count(swp_entry_t entry) 1435 { 1436 struct swap_info_struct *si = swp_swap_info(entry); 1437 pgoff_t offset = swp_offset(entry); 1438 1439 return swap_count(si->swap_map[offset]); 1440 } 1441 1442 /* 1443 * How many references to @entry are currently swapped out? 1444 * This does not give an exact answer when swap count is continued, 1445 * but does include the high COUNT_CONTINUED flag to allow for that. 1446 */ 1447 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1448 { 1449 pgoff_t offset = swp_offset(entry); 1450 struct swap_cluster_info *ci; 1451 int count; 1452 1453 ci = lock_cluster_or_swap_info(si, offset); 1454 count = swap_count(si->swap_map[offset]); 1455 unlock_cluster_or_swap_info(si, ci); 1456 return count; 1457 } 1458 1459 /* 1460 * How many references to @entry are currently swapped out? 1461 * This considers COUNT_CONTINUED so it returns exact answer. 1462 */ 1463 int swp_swapcount(swp_entry_t entry) 1464 { 1465 int count, tmp_count, n; 1466 struct swap_info_struct *p; 1467 struct swap_cluster_info *ci; 1468 struct page *page; 1469 pgoff_t offset; 1470 unsigned char *map; 1471 1472 p = _swap_info_get(entry); 1473 if (!p) 1474 return 0; 1475 1476 offset = swp_offset(entry); 1477 1478 ci = lock_cluster_or_swap_info(p, offset); 1479 1480 count = swap_count(p->swap_map[offset]); 1481 if (!(count & COUNT_CONTINUED)) 1482 goto out; 1483 1484 count &= ~COUNT_CONTINUED; 1485 n = SWAP_MAP_MAX + 1; 1486 1487 page = vmalloc_to_page(p->swap_map + offset); 1488 offset &= ~PAGE_MASK; 1489 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1490 1491 do { 1492 page = list_next_entry(page, lru); 1493 map = kmap_atomic(page); 1494 tmp_count = map[offset]; 1495 kunmap_atomic(map); 1496 1497 count += (tmp_count & ~COUNT_CONTINUED) * n; 1498 n *= (SWAP_CONT_MAX + 1); 1499 } while (tmp_count & COUNT_CONTINUED); 1500 out: 1501 unlock_cluster_or_swap_info(p, ci); 1502 return count; 1503 } 1504 1505 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1506 swp_entry_t entry) 1507 { 1508 struct swap_cluster_info *ci; 1509 unsigned char *map = si->swap_map; 1510 unsigned long roffset = swp_offset(entry); 1511 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); 1512 int i; 1513 bool ret = false; 1514 1515 ci = lock_cluster_or_swap_info(si, offset); 1516 if (!ci || !cluster_is_huge(ci)) { 1517 if (swap_count(map[roffset])) 1518 ret = true; 1519 goto unlock_out; 1520 } 1521 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1522 if (swap_count(map[offset + i])) { 1523 ret = true; 1524 break; 1525 } 1526 } 1527 unlock_out: 1528 unlock_cluster_or_swap_info(si, ci); 1529 return ret; 1530 } 1531 1532 static bool folio_swapped(struct folio *folio) 1533 { 1534 swp_entry_t entry = folio_swap_entry(folio); 1535 struct swap_info_struct *si = _swap_info_get(entry); 1536 1537 if (!si) 1538 return false; 1539 1540 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio))) 1541 return swap_swapcount(si, entry) != 0; 1542 1543 return swap_page_trans_huge_swapped(si, entry); 1544 } 1545 1546 /** 1547 * folio_free_swap() - Free the swap space used for this folio. 1548 * @folio: The folio to remove. 1549 * 1550 * If swap is getting full, or if there are no more mappings of this folio, 1551 * then call folio_free_swap to free its swap space. 1552 * 1553 * Return: true if we were able to release the swap space. 1554 */ 1555 bool folio_free_swap(struct folio *folio) 1556 { 1557 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1558 1559 if (!folio_test_swapcache(folio)) 1560 return false; 1561 if (folio_test_writeback(folio)) 1562 return false; 1563 if (folio_swapped(folio)) 1564 return false; 1565 1566 /* 1567 * Once hibernation has begun to create its image of memory, 1568 * there's a danger that one of the calls to folio_free_swap() 1569 * - most probably a call from __try_to_reclaim_swap() while 1570 * hibernation is allocating its own swap pages for the image, 1571 * but conceivably even a call from memory reclaim - will free 1572 * the swap from a folio which has already been recorded in the 1573 * image as a clean swapcache folio, and then reuse its swap for 1574 * another page of the image. On waking from hibernation, the 1575 * original folio might be freed under memory pressure, then 1576 * later read back in from swap, now with the wrong data. 1577 * 1578 * Hibernation suspends storage while it is writing the image 1579 * to disk so check that here. 1580 */ 1581 if (pm_suspended_storage()) 1582 return false; 1583 1584 delete_from_swap_cache(folio); 1585 folio_set_dirty(folio); 1586 return true; 1587 } 1588 1589 /* 1590 * Free the swap entry like above, but also try to 1591 * free the page cache entry if it is the last user. 1592 */ 1593 int free_swap_and_cache(swp_entry_t entry) 1594 { 1595 struct swap_info_struct *p; 1596 unsigned char count; 1597 1598 if (non_swap_entry(entry)) 1599 return 1; 1600 1601 p = _swap_info_get(entry); 1602 if (p) { 1603 count = __swap_entry_free(p, entry); 1604 if (count == SWAP_HAS_CACHE && 1605 !swap_page_trans_huge_swapped(p, entry)) 1606 __try_to_reclaim_swap(p, swp_offset(entry), 1607 TTRS_UNMAPPED | TTRS_FULL); 1608 } 1609 return p != NULL; 1610 } 1611 1612 #ifdef CONFIG_HIBERNATION 1613 1614 swp_entry_t get_swap_page_of_type(int type) 1615 { 1616 struct swap_info_struct *si = swap_type_to_swap_info(type); 1617 swp_entry_t entry = {0}; 1618 1619 if (!si) 1620 goto fail; 1621 1622 /* This is called for allocating swap entry, not cache */ 1623 spin_lock(&si->lock); 1624 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry)) 1625 atomic_long_dec(&nr_swap_pages); 1626 spin_unlock(&si->lock); 1627 fail: 1628 return entry; 1629 } 1630 1631 /* 1632 * Find the swap type that corresponds to given device (if any). 1633 * 1634 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1635 * from 0, in which the swap header is expected to be located. 1636 * 1637 * This is needed for the suspend to disk (aka swsusp). 1638 */ 1639 int swap_type_of(dev_t device, sector_t offset) 1640 { 1641 int type; 1642 1643 if (!device) 1644 return -1; 1645 1646 spin_lock(&swap_lock); 1647 for (type = 0; type < nr_swapfiles; type++) { 1648 struct swap_info_struct *sis = swap_info[type]; 1649 1650 if (!(sis->flags & SWP_WRITEOK)) 1651 continue; 1652 1653 if (device == sis->bdev->bd_dev) { 1654 struct swap_extent *se = first_se(sis); 1655 1656 if (se->start_block == offset) { 1657 spin_unlock(&swap_lock); 1658 return type; 1659 } 1660 } 1661 } 1662 spin_unlock(&swap_lock); 1663 return -ENODEV; 1664 } 1665 1666 int find_first_swap(dev_t *device) 1667 { 1668 int type; 1669 1670 spin_lock(&swap_lock); 1671 for (type = 0; type < nr_swapfiles; type++) { 1672 struct swap_info_struct *sis = swap_info[type]; 1673 1674 if (!(sis->flags & SWP_WRITEOK)) 1675 continue; 1676 *device = sis->bdev->bd_dev; 1677 spin_unlock(&swap_lock); 1678 return type; 1679 } 1680 spin_unlock(&swap_lock); 1681 return -ENODEV; 1682 } 1683 1684 /* 1685 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1686 * corresponding to given index in swap_info (swap type). 1687 */ 1688 sector_t swapdev_block(int type, pgoff_t offset) 1689 { 1690 struct swap_info_struct *si = swap_type_to_swap_info(type); 1691 struct swap_extent *se; 1692 1693 if (!si || !(si->flags & SWP_WRITEOK)) 1694 return 0; 1695 se = offset_to_swap_extent(si, offset); 1696 return se->start_block + (offset - se->start_page); 1697 } 1698 1699 /* 1700 * Return either the total number of swap pages of given type, or the number 1701 * of free pages of that type (depending on @free) 1702 * 1703 * This is needed for software suspend 1704 */ 1705 unsigned int count_swap_pages(int type, int free) 1706 { 1707 unsigned int n = 0; 1708 1709 spin_lock(&swap_lock); 1710 if ((unsigned int)type < nr_swapfiles) { 1711 struct swap_info_struct *sis = swap_info[type]; 1712 1713 spin_lock(&sis->lock); 1714 if (sis->flags & SWP_WRITEOK) { 1715 n = sis->pages; 1716 if (free) 1717 n -= sis->inuse_pages; 1718 } 1719 spin_unlock(&sis->lock); 1720 } 1721 spin_unlock(&swap_lock); 1722 return n; 1723 } 1724 #endif /* CONFIG_HIBERNATION */ 1725 1726 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1727 { 1728 return pte_same(pte_swp_clear_flags(pte), swp_pte); 1729 } 1730 1731 /* 1732 * No need to decide whether this PTE shares the swap entry with others, 1733 * just let do_wp_page work it out if a write is requested later - to 1734 * force COW, vm_page_prot omits write permission from any private vma. 1735 */ 1736 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1737 unsigned long addr, swp_entry_t entry, struct folio *folio) 1738 { 1739 struct page *page = folio_file_page(folio, swp_offset(entry)); 1740 struct page *swapcache; 1741 spinlock_t *ptl; 1742 pte_t *pte, new_pte; 1743 bool hwposioned = false; 1744 int ret = 1; 1745 1746 swapcache = page; 1747 page = ksm_might_need_to_copy(page, vma, addr); 1748 if (unlikely(!page)) 1749 return -ENOMEM; 1750 else if (unlikely(PTR_ERR(page) == -EHWPOISON)) 1751 hwposioned = true; 1752 1753 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1754 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1755 ret = 0; 1756 goto out; 1757 } 1758 1759 if (unlikely(hwposioned || !PageUptodate(page))) { 1760 swp_entry_t swp_entry; 1761 1762 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1763 if (hwposioned) { 1764 swp_entry = make_hwpoison_entry(swapcache); 1765 page = swapcache; 1766 } else { 1767 swp_entry = make_swapin_error_entry(); 1768 } 1769 new_pte = swp_entry_to_pte(swp_entry); 1770 ret = 0; 1771 goto setpte; 1772 } 1773 1774 /* See do_swap_page() */ 1775 BUG_ON(!PageAnon(page) && PageMappedToDisk(page)); 1776 BUG_ON(PageAnon(page) && PageAnonExclusive(page)); 1777 1778 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1779 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1780 get_page(page); 1781 if (page == swapcache) { 1782 rmap_t rmap_flags = RMAP_NONE; 1783 1784 /* 1785 * See do_swap_page(): PageWriteback() would be problematic. 1786 * However, we do a wait_on_page_writeback() just before this 1787 * call and have the page locked. 1788 */ 1789 VM_BUG_ON_PAGE(PageWriteback(page), page); 1790 if (pte_swp_exclusive(*pte)) 1791 rmap_flags |= RMAP_EXCLUSIVE; 1792 1793 page_add_anon_rmap(page, vma, addr, rmap_flags); 1794 } else { /* ksm created a completely new copy */ 1795 page_add_new_anon_rmap(page, vma, addr); 1796 lru_cache_add_inactive_or_unevictable(page, vma); 1797 } 1798 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot)); 1799 if (pte_swp_soft_dirty(*pte)) 1800 new_pte = pte_mksoft_dirty(new_pte); 1801 if (pte_swp_uffd_wp(*pte)) 1802 new_pte = pte_mkuffd_wp(new_pte); 1803 setpte: 1804 set_pte_at(vma->vm_mm, addr, pte, new_pte); 1805 swap_free(entry); 1806 out: 1807 pte_unmap_unlock(pte, ptl); 1808 if (page != swapcache) { 1809 unlock_page(page); 1810 put_page(page); 1811 } 1812 return ret; 1813 } 1814 1815 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1816 unsigned long addr, unsigned long end, 1817 unsigned int type) 1818 { 1819 swp_entry_t entry; 1820 pte_t *pte; 1821 struct swap_info_struct *si; 1822 int ret = 0; 1823 1824 si = swap_info[type]; 1825 pte = pte_offset_map(pmd, addr); 1826 do { 1827 struct folio *folio; 1828 unsigned long offset; 1829 unsigned char swp_count; 1830 1831 if (!is_swap_pte(*pte)) 1832 continue; 1833 1834 entry = pte_to_swp_entry(*pte); 1835 if (swp_type(entry) != type) 1836 continue; 1837 1838 offset = swp_offset(entry); 1839 pte_unmap(pte); 1840 folio = swap_cache_get_folio(entry, vma, addr); 1841 if (!folio) { 1842 struct page *page; 1843 struct vm_fault vmf = { 1844 .vma = vma, 1845 .address = addr, 1846 .real_address = addr, 1847 .pmd = pmd, 1848 }; 1849 1850 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 1851 &vmf); 1852 if (page) 1853 folio = page_folio(page); 1854 } 1855 if (!folio) { 1856 swp_count = READ_ONCE(si->swap_map[offset]); 1857 if (swp_count == 0 || swp_count == SWAP_MAP_BAD) 1858 goto try_next; 1859 1860 return -ENOMEM; 1861 } 1862 1863 folio_lock(folio); 1864 folio_wait_writeback(folio); 1865 ret = unuse_pte(vma, pmd, addr, entry, folio); 1866 if (ret < 0) { 1867 folio_unlock(folio); 1868 folio_put(folio); 1869 goto out; 1870 } 1871 1872 folio_free_swap(folio); 1873 folio_unlock(folio); 1874 folio_put(folio); 1875 try_next: 1876 pte = pte_offset_map(pmd, addr); 1877 } while (pte++, addr += PAGE_SIZE, addr != end); 1878 pte_unmap(pte - 1); 1879 1880 ret = 0; 1881 out: 1882 return ret; 1883 } 1884 1885 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1886 unsigned long addr, unsigned long end, 1887 unsigned int type) 1888 { 1889 pmd_t *pmd; 1890 unsigned long next; 1891 int ret; 1892 1893 pmd = pmd_offset(pud, addr); 1894 do { 1895 cond_resched(); 1896 next = pmd_addr_end(addr, end); 1897 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1898 continue; 1899 ret = unuse_pte_range(vma, pmd, addr, next, type); 1900 if (ret) 1901 return ret; 1902 } while (pmd++, addr = next, addr != end); 1903 return 0; 1904 } 1905 1906 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 1907 unsigned long addr, unsigned long end, 1908 unsigned int type) 1909 { 1910 pud_t *pud; 1911 unsigned long next; 1912 int ret; 1913 1914 pud = pud_offset(p4d, addr); 1915 do { 1916 next = pud_addr_end(addr, end); 1917 if (pud_none_or_clear_bad(pud)) 1918 continue; 1919 ret = unuse_pmd_range(vma, pud, addr, next, type); 1920 if (ret) 1921 return ret; 1922 } while (pud++, addr = next, addr != end); 1923 return 0; 1924 } 1925 1926 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 1927 unsigned long addr, unsigned long end, 1928 unsigned int type) 1929 { 1930 p4d_t *p4d; 1931 unsigned long next; 1932 int ret; 1933 1934 p4d = p4d_offset(pgd, addr); 1935 do { 1936 next = p4d_addr_end(addr, end); 1937 if (p4d_none_or_clear_bad(p4d)) 1938 continue; 1939 ret = unuse_pud_range(vma, p4d, addr, next, type); 1940 if (ret) 1941 return ret; 1942 } while (p4d++, addr = next, addr != end); 1943 return 0; 1944 } 1945 1946 static int unuse_vma(struct vm_area_struct *vma, unsigned int type) 1947 { 1948 pgd_t *pgd; 1949 unsigned long addr, end, next; 1950 int ret; 1951 1952 addr = vma->vm_start; 1953 end = vma->vm_end; 1954 1955 pgd = pgd_offset(vma->vm_mm, addr); 1956 do { 1957 next = pgd_addr_end(addr, end); 1958 if (pgd_none_or_clear_bad(pgd)) 1959 continue; 1960 ret = unuse_p4d_range(vma, pgd, addr, next, type); 1961 if (ret) 1962 return ret; 1963 } while (pgd++, addr = next, addr != end); 1964 return 0; 1965 } 1966 1967 static int unuse_mm(struct mm_struct *mm, unsigned int type) 1968 { 1969 struct vm_area_struct *vma; 1970 int ret = 0; 1971 VMA_ITERATOR(vmi, mm, 0); 1972 1973 mmap_read_lock(mm); 1974 for_each_vma(vmi, vma) { 1975 if (vma->anon_vma) { 1976 ret = unuse_vma(vma, type); 1977 if (ret) 1978 break; 1979 } 1980 1981 cond_resched(); 1982 } 1983 mmap_read_unlock(mm); 1984 return ret; 1985 } 1986 1987 /* 1988 * Scan swap_map from current position to next entry still in use. 1989 * Return 0 if there are no inuse entries after prev till end of 1990 * the map. 1991 */ 1992 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1993 unsigned int prev) 1994 { 1995 unsigned int i; 1996 unsigned char count; 1997 1998 /* 1999 * No need for swap_lock here: we're just looking 2000 * for whether an entry is in use, not modifying it; false 2001 * hits are okay, and sys_swapoff() has already prevented new 2002 * allocations from this area (while holding swap_lock). 2003 */ 2004 for (i = prev + 1; i < si->max; i++) { 2005 count = READ_ONCE(si->swap_map[i]); 2006 if (count && swap_count(count) != SWAP_MAP_BAD) 2007 break; 2008 if ((i % LATENCY_LIMIT) == 0) 2009 cond_resched(); 2010 } 2011 2012 if (i == si->max) 2013 i = 0; 2014 2015 return i; 2016 } 2017 2018 static int try_to_unuse(unsigned int type) 2019 { 2020 struct mm_struct *prev_mm; 2021 struct mm_struct *mm; 2022 struct list_head *p; 2023 int retval = 0; 2024 struct swap_info_struct *si = swap_info[type]; 2025 struct folio *folio; 2026 swp_entry_t entry; 2027 unsigned int i; 2028 2029 if (!READ_ONCE(si->inuse_pages)) 2030 return 0; 2031 2032 retry: 2033 retval = shmem_unuse(type); 2034 if (retval) 2035 return retval; 2036 2037 prev_mm = &init_mm; 2038 mmget(prev_mm); 2039 2040 spin_lock(&mmlist_lock); 2041 p = &init_mm.mmlist; 2042 while (READ_ONCE(si->inuse_pages) && 2043 !signal_pending(current) && 2044 (p = p->next) != &init_mm.mmlist) { 2045 2046 mm = list_entry(p, struct mm_struct, mmlist); 2047 if (!mmget_not_zero(mm)) 2048 continue; 2049 spin_unlock(&mmlist_lock); 2050 mmput(prev_mm); 2051 prev_mm = mm; 2052 retval = unuse_mm(mm, type); 2053 if (retval) { 2054 mmput(prev_mm); 2055 return retval; 2056 } 2057 2058 /* 2059 * Make sure that we aren't completely killing 2060 * interactive performance. 2061 */ 2062 cond_resched(); 2063 spin_lock(&mmlist_lock); 2064 } 2065 spin_unlock(&mmlist_lock); 2066 2067 mmput(prev_mm); 2068 2069 i = 0; 2070 while (READ_ONCE(si->inuse_pages) && 2071 !signal_pending(current) && 2072 (i = find_next_to_unuse(si, i)) != 0) { 2073 2074 entry = swp_entry(type, i); 2075 folio = filemap_get_folio(swap_address_space(entry), i); 2076 if (IS_ERR(folio)) 2077 continue; 2078 2079 /* 2080 * It is conceivable that a racing task removed this folio from 2081 * swap cache just before we acquired the page lock. The folio 2082 * might even be back in swap cache on another swap area. But 2083 * that is okay, folio_free_swap() only removes stale folios. 2084 */ 2085 folio_lock(folio); 2086 folio_wait_writeback(folio); 2087 folio_free_swap(folio); 2088 folio_unlock(folio); 2089 folio_put(folio); 2090 } 2091 2092 /* 2093 * Lets check again to see if there are still swap entries in the map. 2094 * If yes, we would need to do retry the unuse logic again. 2095 * Under global memory pressure, swap entries can be reinserted back 2096 * into process space after the mmlist loop above passes over them. 2097 * 2098 * Limit the number of retries? No: when mmget_not_zero() 2099 * above fails, that mm is likely to be freeing swap from 2100 * exit_mmap(), which proceeds at its own independent pace; 2101 * and even shmem_writepage() could have been preempted after 2102 * folio_alloc_swap(), temporarily hiding that swap. It's easy 2103 * and robust (though cpu-intensive) just to keep retrying. 2104 */ 2105 if (READ_ONCE(si->inuse_pages)) { 2106 if (!signal_pending(current)) 2107 goto retry; 2108 return -EINTR; 2109 } 2110 2111 return 0; 2112 } 2113 2114 /* 2115 * After a successful try_to_unuse, if no swap is now in use, we know 2116 * we can empty the mmlist. swap_lock must be held on entry and exit. 2117 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2118 * added to the mmlist just after page_duplicate - before would be racy. 2119 */ 2120 static void drain_mmlist(void) 2121 { 2122 struct list_head *p, *next; 2123 unsigned int type; 2124 2125 for (type = 0; type < nr_swapfiles; type++) 2126 if (swap_info[type]->inuse_pages) 2127 return; 2128 spin_lock(&mmlist_lock); 2129 list_for_each_safe(p, next, &init_mm.mmlist) 2130 list_del_init(p); 2131 spin_unlock(&mmlist_lock); 2132 } 2133 2134 /* 2135 * Free all of a swapdev's extent information 2136 */ 2137 static void destroy_swap_extents(struct swap_info_struct *sis) 2138 { 2139 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2140 struct rb_node *rb = sis->swap_extent_root.rb_node; 2141 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2142 2143 rb_erase(rb, &sis->swap_extent_root); 2144 kfree(se); 2145 } 2146 2147 if (sis->flags & SWP_ACTIVATED) { 2148 struct file *swap_file = sis->swap_file; 2149 struct address_space *mapping = swap_file->f_mapping; 2150 2151 sis->flags &= ~SWP_ACTIVATED; 2152 if (mapping->a_ops->swap_deactivate) 2153 mapping->a_ops->swap_deactivate(swap_file); 2154 } 2155 } 2156 2157 /* 2158 * Add a block range (and the corresponding page range) into this swapdev's 2159 * extent tree. 2160 * 2161 * This function rather assumes that it is called in ascending page order. 2162 */ 2163 int 2164 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2165 unsigned long nr_pages, sector_t start_block) 2166 { 2167 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2168 struct swap_extent *se; 2169 struct swap_extent *new_se; 2170 2171 /* 2172 * place the new node at the right most since the 2173 * function is called in ascending page order. 2174 */ 2175 while (*link) { 2176 parent = *link; 2177 link = &parent->rb_right; 2178 } 2179 2180 if (parent) { 2181 se = rb_entry(parent, struct swap_extent, rb_node); 2182 BUG_ON(se->start_page + se->nr_pages != start_page); 2183 if (se->start_block + se->nr_pages == start_block) { 2184 /* Merge it */ 2185 se->nr_pages += nr_pages; 2186 return 0; 2187 } 2188 } 2189 2190 /* No merge, insert a new extent. */ 2191 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2192 if (new_se == NULL) 2193 return -ENOMEM; 2194 new_se->start_page = start_page; 2195 new_se->nr_pages = nr_pages; 2196 new_se->start_block = start_block; 2197 2198 rb_link_node(&new_se->rb_node, parent, link); 2199 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2200 return 1; 2201 } 2202 EXPORT_SYMBOL_GPL(add_swap_extent); 2203 2204 /* 2205 * A `swap extent' is a simple thing which maps a contiguous range of pages 2206 * onto a contiguous range of disk blocks. A rbtree of swap extents is 2207 * built at swapon time and is then used at swap_writepage/swap_readpage 2208 * time for locating where on disk a page belongs. 2209 * 2210 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2211 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2212 * swap files identically. 2213 * 2214 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2215 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2216 * swapfiles are handled *identically* after swapon time. 2217 * 2218 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2219 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray 2220 * blocks are found which do not fall within the PAGE_SIZE alignment 2221 * requirements, they are simply tossed out - we will never use those blocks 2222 * for swapping. 2223 * 2224 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2225 * prevents users from writing to the swap device, which will corrupt memory. 2226 * 2227 * The amount of disk space which a single swap extent represents varies. 2228 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2229 * extents in the rbtree. - akpm. 2230 */ 2231 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2232 { 2233 struct file *swap_file = sis->swap_file; 2234 struct address_space *mapping = swap_file->f_mapping; 2235 struct inode *inode = mapping->host; 2236 int ret; 2237 2238 if (S_ISBLK(inode->i_mode)) { 2239 ret = add_swap_extent(sis, 0, sis->max, 0); 2240 *span = sis->pages; 2241 return ret; 2242 } 2243 2244 if (mapping->a_ops->swap_activate) { 2245 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2246 if (ret < 0) 2247 return ret; 2248 sis->flags |= SWP_ACTIVATED; 2249 if ((sis->flags & SWP_FS_OPS) && 2250 sio_pool_init() != 0) { 2251 destroy_swap_extents(sis); 2252 return -ENOMEM; 2253 } 2254 return ret; 2255 } 2256 2257 return generic_swapfile_activate(sis, swap_file, span); 2258 } 2259 2260 static int swap_node(struct swap_info_struct *p) 2261 { 2262 struct block_device *bdev; 2263 2264 if (p->bdev) 2265 bdev = p->bdev; 2266 else 2267 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2268 2269 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2270 } 2271 2272 static void setup_swap_info(struct swap_info_struct *p, int prio, 2273 unsigned char *swap_map, 2274 struct swap_cluster_info *cluster_info) 2275 { 2276 int i; 2277 2278 if (prio >= 0) 2279 p->prio = prio; 2280 else 2281 p->prio = --least_priority; 2282 /* 2283 * the plist prio is negated because plist ordering is 2284 * low-to-high, while swap ordering is high-to-low 2285 */ 2286 p->list.prio = -p->prio; 2287 for_each_node(i) { 2288 if (p->prio >= 0) 2289 p->avail_lists[i].prio = -p->prio; 2290 else { 2291 if (swap_node(p) == i) 2292 p->avail_lists[i].prio = 1; 2293 else 2294 p->avail_lists[i].prio = -p->prio; 2295 } 2296 } 2297 p->swap_map = swap_map; 2298 p->cluster_info = cluster_info; 2299 } 2300 2301 static void _enable_swap_info(struct swap_info_struct *p) 2302 { 2303 p->flags |= SWP_WRITEOK; 2304 atomic_long_add(p->pages, &nr_swap_pages); 2305 total_swap_pages += p->pages; 2306 2307 assert_spin_locked(&swap_lock); 2308 /* 2309 * both lists are plists, and thus priority ordered. 2310 * swap_active_head needs to be priority ordered for swapoff(), 2311 * which on removal of any swap_info_struct with an auto-assigned 2312 * (i.e. negative) priority increments the auto-assigned priority 2313 * of any lower-priority swap_info_structs. 2314 * swap_avail_head needs to be priority ordered for folio_alloc_swap(), 2315 * which allocates swap pages from the highest available priority 2316 * swap_info_struct. 2317 */ 2318 plist_add(&p->list, &swap_active_head); 2319 add_to_avail_list(p); 2320 } 2321 2322 static void enable_swap_info(struct swap_info_struct *p, int prio, 2323 unsigned char *swap_map, 2324 struct swap_cluster_info *cluster_info, 2325 unsigned long *frontswap_map) 2326 { 2327 if (IS_ENABLED(CONFIG_FRONTSWAP)) 2328 frontswap_init(p->type, frontswap_map); 2329 spin_lock(&swap_lock); 2330 spin_lock(&p->lock); 2331 setup_swap_info(p, prio, swap_map, cluster_info); 2332 spin_unlock(&p->lock); 2333 spin_unlock(&swap_lock); 2334 /* 2335 * Finished initializing swap device, now it's safe to reference it. 2336 */ 2337 percpu_ref_resurrect(&p->users); 2338 spin_lock(&swap_lock); 2339 spin_lock(&p->lock); 2340 _enable_swap_info(p); 2341 spin_unlock(&p->lock); 2342 spin_unlock(&swap_lock); 2343 } 2344 2345 static void reinsert_swap_info(struct swap_info_struct *p) 2346 { 2347 spin_lock(&swap_lock); 2348 spin_lock(&p->lock); 2349 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2350 _enable_swap_info(p); 2351 spin_unlock(&p->lock); 2352 spin_unlock(&swap_lock); 2353 } 2354 2355 bool has_usable_swap(void) 2356 { 2357 bool ret = true; 2358 2359 spin_lock(&swap_lock); 2360 if (plist_head_empty(&swap_active_head)) 2361 ret = false; 2362 spin_unlock(&swap_lock); 2363 return ret; 2364 } 2365 2366 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2367 { 2368 struct swap_info_struct *p = NULL; 2369 unsigned char *swap_map; 2370 struct swap_cluster_info *cluster_info; 2371 unsigned long *frontswap_map; 2372 struct file *swap_file, *victim; 2373 struct address_space *mapping; 2374 struct inode *inode; 2375 struct filename *pathname; 2376 int err, found = 0; 2377 unsigned int old_block_size; 2378 2379 if (!capable(CAP_SYS_ADMIN)) 2380 return -EPERM; 2381 2382 BUG_ON(!current->mm); 2383 2384 pathname = getname(specialfile); 2385 if (IS_ERR(pathname)) 2386 return PTR_ERR(pathname); 2387 2388 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2389 err = PTR_ERR(victim); 2390 if (IS_ERR(victim)) 2391 goto out; 2392 2393 mapping = victim->f_mapping; 2394 spin_lock(&swap_lock); 2395 plist_for_each_entry(p, &swap_active_head, list) { 2396 if (p->flags & SWP_WRITEOK) { 2397 if (p->swap_file->f_mapping == mapping) { 2398 found = 1; 2399 break; 2400 } 2401 } 2402 } 2403 if (!found) { 2404 err = -EINVAL; 2405 spin_unlock(&swap_lock); 2406 goto out_dput; 2407 } 2408 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2409 vm_unacct_memory(p->pages); 2410 else { 2411 err = -ENOMEM; 2412 spin_unlock(&swap_lock); 2413 goto out_dput; 2414 } 2415 spin_lock(&p->lock); 2416 del_from_avail_list(p); 2417 if (p->prio < 0) { 2418 struct swap_info_struct *si = p; 2419 int nid; 2420 2421 plist_for_each_entry_continue(si, &swap_active_head, list) { 2422 si->prio++; 2423 si->list.prio--; 2424 for_each_node(nid) { 2425 if (si->avail_lists[nid].prio != 1) 2426 si->avail_lists[nid].prio--; 2427 } 2428 } 2429 least_priority++; 2430 } 2431 plist_del(&p->list, &swap_active_head); 2432 atomic_long_sub(p->pages, &nr_swap_pages); 2433 total_swap_pages -= p->pages; 2434 p->flags &= ~SWP_WRITEOK; 2435 spin_unlock(&p->lock); 2436 spin_unlock(&swap_lock); 2437 2438 disable_swap_slots_cache_lock(); 2439 2440 set_current_oom_origin(); 2441 err = try_to_unuse(p->type); 2442 clear_current_oom_origin(); 2443 2444 if (err) { 2445 /* re-insert swap space back into swap_list */ 2446 reinsert_swap_info(p); 2447 reenable_swap_slots_cache_unlock(); 2448 goto out_dput; 2449 } 2450 2451 reenable_swap_slots_cache_unlock(); 2452 2453 /* 2454 * Wait for swap operations protected by get/put_swap_device() 2455 * to complete. 2456 * 2457 * We need synchronize_rcu() here to protect the accessing to 2458 * the swap cache data structure. 2459 */ 2460 percpu_ref_kill(&p->users); 2461 synchronize_rcu(); 2462 wait_for_completion(&p->comp); 2463 2464 flush_work(&p->discard_work); 2465 2466 destroy_swap_extents(p); 2467 if (p->flags & SWP_CONTINUED) 2468 free_swap_count_continuations(p); 2469 2470 if (!p->bdev || !bdev_nonrot(p->bdev)) 2471 atomic_dec(&nr_rotate_swap); 2472 2473 mutex_lock(&swapon_mutex); 2474 spin_lock(&swap_lock); 2475 spin_lock(&p->lock); 2476 drain_mmlist(); 2477 2478 /* wait for anyone still in scan_swap_map_slots */ 2479 p->highest_bit = 0; /* cuts scans short */ 2480 while (p->flags >= SWP_SCANNING) { 2481 spin_unlock(&p->lock); 2482 spin_unlock(&swap_lock); 2483 schedule_timeout_uninterruptible(1); 2484 spin_lock(&swap_lock); 2485 spin_lock(&p->lock); 2486 } 2487 2488 swap_file = p->swap_file; 2489 old_block_size = p->old_block_size; 2490 p->swap_file = NULL; 2491 p->max = 0; 2492 swap_map = p->swap_map; 2493 p->swap_map = NULL; 2494 cluster_info = p->cluster_info; 2495 p->cluster_info = NULL; 2496 frontswap_map = frontswap_map_get(p); 2497 spin_unlock(&p->lock); 2498 spin_unlock(&swap_lock); 2499 arch_swap_invalidate_area(p->type); 2500 frontswap_invalidate_area(p->type); 2501 frontswap_map_set(p, NULL); 2502 mutex_unlock(&swapon_mutex); 2503 free_percpu(p->percpu_cluster); 2504 p->percpu_cluster = NULL; 2505 free_percpu(p->cluster_next_cpu); 2506 p->cluster_next_cpu = NULL; 2507 vfree(swap_map); 2508 kvfree(cluster_info); 2509 kvfree(frontswap_map); 2510 /* Destroy swap account information */ 2511 swap_cgroup_swapoff(p->type); 2512 exit_swap_address_space(p->type); 2513 2514 inode = mapping->host; 2515 if (S_ISBLK(inode->i_mode)) { 2516 struct block_device *bdev = I_BDEV(inode); 2517 2518 set_blocksize(bdev, old_block_size); 2519 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2520 } 2521 2522 inode_lock(inode); 2523 inode->i_flags &= ~S_SWAPFILE; 2524 inode_unlock(inode); 2525 filp_close(swap_file, NULL); 2526 2527 /* 2528 * Clear the SWP_USED flag after all resources are freed so that swapon 2529 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2530 * not hold p->lock after we cleared its SWP_WRITEOK. 2531 */ 2532 spin_lock(&swap_lock); 2533 p->flags = 0; 2534 spin_unlock(&swap_lock); 2535 2536 err = 0; 2537 atomic_inc(&proc_poll_event); 2538 wake_up_interruptible(&proc_poll_wait); 2539 2540 out_dput: 2541 filp_close(victim, NULL); 2542 out: 2543 putname(pathname); 2544 return err; 2545 } 2546 2547 #ifdef CONFIG_PROC_FS 2548 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2549 { 2550 struct seq_file *seq = file->private_data; 2551 2552 poll_wait(file, &proc_poll_wait, wait); 2553 2554 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2555 seq->poll_event = atomic_read(&proc_poll_event); 2556 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2557 } 2558 2559 return EPOLLIN | EPOLLRDNORM; 2560 } 2561 2562 /* iterator */ 2563 static void *swap_start(struct seq_file *swap, loff_t *pos) 2564 { 2565 struct swap_info_struct *si; 2566 int type; 2567 loff_t l = *pos; 2568 2569 mutex_lock(&swapon_mutex); 2570 2571 if (!l) 2572 return SEQ_START_TOKEN; 2573 2574 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2575 if (!(si->flags & SWP_USED) || !si->swap_map) 2576 continue; 2577 if (!--l) 2578 return si; 2579 } 2580 2581 return NULL; 2582 } 2583 2584 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2585 { 2586 struct swap_info_struct *si = v; 2587 int type; 2588 2589 if (v == SEQ_START_TOKEN) 2590 type = 0; 2591 else 2592 type = si->type + 1; 2593 2594 ++(*pos); 2595 for (; (si = swap_type_to_swap_info(type)); type++) { 2596 if (!(si->flags & SWP_USED) || !si->swap_map) 2597 continue; 2598 return si; 2599 } 2600 2601 return NULL; 2602 } 2603 2604 static void swap_stop(struct seq_file *swap, void *v) 2605 { 2606 mutex_unlock(&swapon_mutex); 2607 } 2608 2609 static int swap_show(struct seq_file *swap, void *v) 2610 { 2611 struct swap_info_struct *si = v; 2612 struct file *file; 2613 int len; 2614 unsigned long bytes, inuse; 2615 2616 if (si == SEQ_START_TOKEN) { 2617 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2618 return 0; 2619 } 2620 2621 bytes = si->pages << (PAGE_SHIFT - 10); 2622 inuse = READ_ONCE(si->inuse_pages) << (PAGE_SHIFT - 10); 2623 2624 file = si->swap_file; 2625 len = seq_file_path(swap, file, " \t\n\\"); 2626 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n", 2627 len < 40 ? 40 - len : 1, " ", 2628 S_ISBLK(file_inode(file)->i_mode) ? 2629 "partition" : "file\t", 2630 bytes, bytes < 10000000 ? "\t" : "", 2631 inuse, inuse < 10000000 ? "\t" : "", 2632 si->prio); 2633 return 0; 2634 } 2635 2636 static const struct seq_operations swaps_op = { 2637 .start = swap_start, 2638 .next = swap_next, 2639 .stop = swap_stop, 2640 .show = swap_show 2641 }; 2642 2643 static int swaps_open(struct inode *inode, struct file *file) 2644 { 2645 struct seq_file *seq; 2646 int ret; 2647 2648 ret = seq_open(file, &swaps_op); 2649 if (ret) 2650 return ret; 2651 2652 seq = file->private_data; 2653 seq->poll_event = atomic_read(&proc_poll_event); 2654 return 0; 2655 } 2656 2657 static const struct proc_ops swaps_proc_ops = { 2658 .proc_flags = PROC_ENTRY_PERMANENT, 2659 .proc_open = swaps_open, 2660 .proc_read = seq_read, 2661 .proc_lseek = seq_lseek, 2662 .proc_release = seq_release, 2663 .proc_poll = swaps_poll, 2664 }; 2665 2666 static int __init procswaps_init(void) 2667 { 2668 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2669 return 0; 2670 } 2671 __initcall(procswaps_init); 2672 #endif /* CONFIG_PROC_FS */ 2673 2674 #ifdef MAX_SWAPFILES_CHECK 2675 static int __init max_swapfiles_check(void) 2676 { 2677 MAX_SWAPFILES_CHECK(); 2678 return 0; 2679 } 2680 late_initcall(max_swapfiles_check); 2681 #endif 2682 2683 static struct swap_info_struct *alloc_swap_info(void) 2684 { 2685 struct swap_info_struct *p; 2686 struct swap_info_struct *defer = NULL; 2687 unsigned int type; 2688 int i; 2689 2690 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2691 if (!p) 2692 return ERR_PTR(-ENOMEM); 2693 2694 if (percpu_ref_init(&p->users, swap_users_ref_free, 2695 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { 2696 kvfree(p); 2697 return ERR_PTR(-ENOMEM); 2698 } 2699 2700 spin_lock(&swap_lock); 2701 for (type = 0; type < nr_swapfiles; type++) { 2702 if (!(swap_info[type]->flags & SWP_USED)) 2703 break; 2704 } 2705 if (type >= MAX_SWAPFILES) { 2706 spin_unlock(&swap_lock); 2707 percpu_ref_exit(&p->users); 2708 kvfree(p); 2709 return ERR_PTR(-EPERM); 2710 } 2711 if (type >= nr_swapfiles) { 2712 p->type = type; 2713 /* 2714 * Publish the swap_info_struct after initializing it. 2715 * Note that kvzalloc() above zeroes all its fields. 2716 */ 2717 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ 2718 nr_swapfiles++; 2719 } else { 2720 defer = p; 2721 p = swap_info[type]; 2722 /* 2723 * Do not memset this entry: a racing procfs swap_next() 2724 * would be relying on p->type to remain valid. 2725 */ 2726 } 2727 p->swap_extent_root = RB_ROOT; 2728 plist_node_init(&p->list, 0); 2729 for_each_node(i) 2730 plist_node_init(&p->avail_lists[i], 0); 2731 p->flags = SWP_USED; 2732 spin_unlock(&swap_lock); 2733 if (defer) { 2734 percpu_ref_exit(&defer->users); 2735 kvfree(defer); 2736 } 2737 spin_lock_init(&p->lock); 2738 spin_lock_init(&p->cont_lock); 2739 init_completion(&p->comp); 2740 2741 return p; 2742 } 2743 2744 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2745 { 2746 int error; 2747 2748 if (S_ISBLK(inode->i_mode)) { 2749 p->bdev = blkdev_get_by_dev(inode->i_rdev, 2750 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2751 if (IS_ERR(p->bdev)) { 2752 error = PTR_ERR(p->bdev); 2753 p->bdev = NULL; 2754 return error; 2755 } 2756 p->old_block_size = block_size(p->bdev); 2757 error = set_blocksize(p->bdev, PAGE_SIZE); 2758 if (error < 0) 2759 return error; 2760 /* 2761 * Zoned block devices contain zones that have a sequential 2762 * write only restriction. Hence zoned block devices are not 2763 * suitable for swapping. Disallow them here. 2764 */ 2765 if (bdev_is_zoned(p->bdev)) 2766 return -EINVAL; 2767 p->flags |= SWP_BLKDEV; 2768 } else if (S_ISREG(inode->i_mode)) { 2769 p->bdev = inode->i_sb->s_bdev; 2770 } 2771 2772 return 0; 2773 } 2774 2775 2776 /* 2777 * Find out how many pages are allowed for a single swap device. There 2778 * are two limiting factors: 2779 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2780 * 2) the number of bits in the swap pte, as defined by the different 2781 * architectures. 2782 * 2783 * In order to find the largest possible bit mask, a swap entry with 2784 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2785 * decoded to a swp_entry_t again, and finally the swap offset is 2786 * extracted. 2787 * 2788 * This will mask all the bits from the initial ~0UL mask that can't 2789 * be encoded in either the swp_entry_t or the architecture definition 2790 * of a swap pte. 2791 */ 2792 unsigned long generic_max_swapfile_size(void) 2793 { 2794 return swp_offset(pte_to_swp_entry( 2795 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2796 } 2797 2798 /* Can be overridden by an architecture for additional checks. */ 2799 __weak unsigned long arch_max_swapfile_size(void) 2800 { 2801 return generic_max_swapfile_size(); 2802 } 2803 2804 static unsigned long read_swap_header(struct swap_info_struct *p, 2805 union swap_header *swap_header, 2806 struct inode *inode) 2807 { 2808 int i; 2809 unsigned long maxpages; 2810 unsigned long swapfilepages; 2811 unsigned long last_page; 2812 2813 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2814 pr_err("Unable to find swap-space signature\n"); 2815 return 0; 2816 } 2817 2818 /* swap partition endianness hack... */ 2819 if (swab32(swap_header->info.version) == 1) { 2820 swab32s(&swap_header->info.version); 2821 swab32s(&swap_header->info.last_page); 2822 swab32s(&swap_header->info.nr_badpages); 2823 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2824 return 0; 2825 for (i = 0; i < swap_header->info.nr_badpages; i++) 2826 swab32s(&swap_header->info.badpages[i]); 2827 } 2828 /* Check the swap header's sub-version */ 2829 if (swap_header->info.version != 1) { 2830 pr_warn("Unable to handle swap header version %d\n", 2831 swap_header->info.version); 2832 return 0; 2833 } 2834 2835 p->lowest_bit = 1; 2836 p->cluster_next = 1; 2837 p->cluster_nr = 0; 2838 2839 maxpages = swapfile_maximum_size; 2840 last_page = swap_header->info.last_page; 2841 if (!last_page) { 2842 pr_warn("Empty swap-file\n"); 2843 return 0; 2844 } 2845 if (last_page > maxpages) { 2846 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2847 maxpages << (PAGE_SHIFT - 10), 2848 last_page << (PAGE_SHIFT - 10)); 2849 } 2850 if (maxpages > last_page) { 2851 maxpages = last_page + 1; 2852 /* p->max is an unsigned int: don't overflow it */ 2853 if ((unsigned int)maxpages == 0) 2854 maxpages = UINT_MAX; 2855 } 2856 p->highest_bit = maxpages - 1; 2857 2858 if (!maxpages) 2859 return 0; 2860 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2861 if (swapfilepages && maxpages > swapfilepages) { 2862 pr_warn("Swap area shorter than signature indicates\n"); 2863 return 0; 2864 } 2865 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2866 return 0; 2867 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2868 return 0; 2869 2870 return maxpages; 2871 } 2872 2873 #define SWAP_CLUSTER_INFO_COLS \ 2874 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 2875 #define SWAP_CLUSTER_SPACE_COLS \ 2876 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 2877 #define SWAP_CLUSTER_COLS \ 2878 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 2879 2880 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2881 union swap_header *swap_header, 2882 unsigned char *swap_map, 2883 struct swap_cluster_info *cluster_info, 2884 unsigned long maxpages, 2885 sector_t *span) 2886 { 2887 unsigned int j, k; 2888 unsigned int nr_good_pages; 2889 int nr_extents; 2890 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2891 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 2892 unsigned long i, idx; 2893 2894 nr_good_pages = maxpages - 1; /* omit header page */ 2895 2896 cluster_list_init(&p->free_clusters); 2897 cluster_list_init(&p->discard_clusters); 2898 2899 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2900 unsigned int page_nr = swap_header->info.badpages[i]; 2901 if (page_nr == 0 || page_nr > swap_header->info.last_page) 2902 return -EINVAL; 2903 if (page_nr < maxpages) { 2904 swap_map[page_nr] = SWAP_MAP_BAD; 2905 nr_good_pages--; 2906 /* 2907 * Haven't marked the cluster free yet, no list 2908 * operation involved 2909 */ 2910 inc_cluster_info_page(p, cluster_info, page_nr); 2911 } 2912 } 2913 2914 /* Haven't marked the cluster free yet, no list operation involved */ 2915 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 2916 inc_cluster_info_page(p, cluster_info, i); 2917 2918 if (nr_good_pages) { 2919 swap_map[0] = SWAP_MAP_BAD; 2920 /* 2921 * Not mark the cluster free yet, no list 2922 * operation involved 2923 */ 2924 inc_cluster_info_page(p, cluster_info, 0); 2925 p->max = maxpages; 2926 p->pages = nr_good_pages; 2927 nr_extents = setup_swap_extents(p, span); 2928 if (nr_extents < 0) 2929 return nr_extents; 2930 nr_good_pages = p->pages; 2931 } 2932 if (!nr_good_pages) { 2933 pr_warn("Empty swap-file\n"); 2934 return -EINVAL; 2935 } 2936 2937 if (!cluster_info) 2938 return nr_extents; 2939 2940 2941 /* 2942 * Reduce false cache line sharing between cluster_info and 2943 * sharing same address space. 2944 */ 2945 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 2946 j = (k + col) % SWAP_CLUSTER_COLS; 2947 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 2948 idx = i * SWAP_CLUSTER_COLS + j; 2949 if (idx >= nr_clusters) 2950 continue; 2951 if (cluster_count(&cluster_info[idx])) 2952 continue; 2953 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 2954 cluster_list_add_tail(&p->free_clusters, cluster_info, 2955 idx); 2956 } 2957 } 2958 return nr_extents; 2959 } 2960 2961 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2962 { 2963 struct swap_info_struct *p; 2964 struct filename *name; 2965 struct file *swap_file = NULL; 2966 struct address_space *mapping; 2967 struct dentry *dentry; 2968 int prio; 2969 int error; 2970 union swap_header *swap_header; 2971 int nr_extents; 2972 sector_t span; 2973 unsigned long maxpages; 2974 unsigned char *swap_map = NULL; 2975 struct swap_cluster_info *cluster_info = NULL; 2976 unsigned long *frontswap_map = NULL; 2977 struct page *page = NULL; 2978 struct inode *inode = NULL; 2979 bool inced_nr_rotate_swap = false; 2980 2981 if (swap_flags & ~SWAP_FLAGS_VALID) 2982 return -EINVAL; 2983 2984 if (!capable(CAP_SYS_ADMIN)) 2985 return -EPERM; 2986 2987 if (!swap_avail_heads) 2988 return -ENOMEM; 2989 2990 p = alloc_swap_info(); 2991 if (IS_ERR(p)) 2992 return PTR_ERR(p); 2993 2994 INIT_WORK(&p->discard_work, swap_discard_work); 2995 2996 name = getname(specialfile); 2997 if (IS_ERR(name)) { 2998 error = PTR_ERR(name); 2999 name = NULL; 3000 goto bad_swap; 3001 } 3002 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3003 if (IS_ERR(swap_file)) { 3004 error = PTR_ERR(swap_file); 3005 swap_file = NULL; 3006 goto bad_swap; 3007 } 3008 3009 p->swap_file = swap_file; 3010 mapping = swap_file->f_mapping; 3011 dentry = swap_file->f_path.dentry; 3012 inode = mapping->host; 3013 3014 error = claim_swapfile(p, inode); 3015 if (unlikely(error)) 3016 goto bad_swap; 3017 3018 inode_lock(inode); 3019 if (d_unlinked(dentry) || cant_mount(dentry)) { 3020 error = -ENOENT; 3021 goto bad_swap_unlock_inode; 3022 } 3023 if (IS_SWAPFILE(inode)) { 3024 error = -EBUSY; 3025 goto bad_swap_unlock_inode; 3026 } 3027 3028 /* 3029 * Read the swap header. 3030 */ 3031 if (!mapping->a_ops->read_folio) { 3032 error = -EINVAL; 3033 goto bad_swap_unlock_inode; 3034 } 3035 page = read_mapping_page(mapping, 0, swap_file); 3036 if (IS_ERR(page)) { 3037 error = PTR_ERR(page); 3038 goto bad_swap_unlock_inode; 3039 } 3040 swap_header = kmap(page); 3041 3042 maxpages = read_swap_header(p, swap_header, inode); 3043 if (unlikely(!maxpages)) { 3044 error = -EINVAL; 3045 goto bad_swap_unlock_inode; 3046 } 3047 3048 /* OK, set up the swap map and apply the bad block list */ 3049 swap_map = vzalloc(maxpages); 3050 if (!swap_map) { 3051 error = -ENOMEM; 3052 goto bad_swap_unlock_inode; 3053 } 3054 3055 if (p->bdev && bdev_stable_writes(p->bdev)) 3056 p->flags |= SWP_STABLE_WRITES; 3057 3058 if (p->bdev && bdev_synchronous(p->bdev)) 3059 p->flags |= SWP_SYNCHRONOUS_IO; 3060 3061 if (p->bdev && bdev_nonrot(p->bdev)) { 3062 int cpu; 3063 unsigned long ci, nr_cluster; 3064 3065 p->flags |= SWP_SOLIDSTATE; 3066 p->cluster_next_cpu = alloc_percpu(unsigned int); 3067 if (!p->cluster_next_cpu) { 3068 error = -ENOMEM; 3069 goto bad_swap_unlock_inode; 3070 } 3071 /* 3072 * select a random position to start with to help wear leveling 3073 * SSD 3074 */ 3075 for_each_possible_cpu(cpu) { 3076 per_cpu(*p->cluster_next_cpu, cpu) = 3077 get_random_u32_inclusive(1, p->highest_bit); 3078 } 3079 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3080 3081 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3082 GFP_KERNEL); 3083 if (!cluster_info) { 3084 error = -ENOMEM; 3085 goto bad_swap_unlock_inode; 3086 } 3087 3088 for (ci = 0; ci < nr_cluster; ci++) 3089 spin_lock_init(&((cluster_info + ci)->lock)); 3090 3091 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3092 if (!p->percpu_cluster) { 3093 error = -ENOMEM; 3094 goto bad_swap_unlock_inode; 3095 } 3096 for_each_possible_cpu(cpu) { 3097 struct percpu_cluster *cluster; 3098 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3099 cluster_set_null(&cluster->index); 3100 } 3101 } else { 3102 atomic_inc(&nr_rotate_swap); 3103 inced_nr_rotate_swap = true; 3104 } 3105 3106 error = swap_cgroup_swapon(p->type, maxpages); 3107 if (error) 3108 goto bad_swap_unlock_inode; 3109 3110 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3111 cluster_info, maxpages, &span); 3112 if (unlikely(nr_extents < 0)) { 3113 error = nr_extents; 3114 goto bad_swap_unlock_inode; 3115 } 3116 /* frontswap enabled? set up bit-per-page map for frontswap */ 3117 if (IS_ENABLED(CONFIG_FRONTSWAP)) 3118 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages), 3119 sizeof(long), 3120 GFP_KERNEL); 3121 3122 if ((swap_flags & SWAP_FLAG_DISCARD) && 3123 p->bdev && bdev_max_discard_sectors(p->bdev)) { 3124 /* 3125 * When discard is enabled for swap with no particular 3126 * policy flagged, we set all swap discard flags here in 3127 * order to sustain backward compatibility with older 3128 * swapon(8) releases. 3129 */ 3130 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3131 SWP_PAGE_DISCARD); 3132 3133 /* 3134 * By flagging sys_swapon, a sysadmin can tell us to 3135 * either do single-time area discards only, or to just 3136 * perform discards for released swap page-clusters. 3137 * Now it's time to adjust the p->flags accordingly. 3138 */ 3139 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3140 p->flags &= ~SWP_PAGE_DISCARD; 3141 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3142 p->flags &= ~SWP_AREA_DISCARD; 3143 3144 /* issue a swapon-time discard if it's still required */ 3145 if (p->flags & SWP_AREA_DISCARD) { 3146 int err = discard_swap(p); 3147 if (unlikely(err)) 3148 pr_err("swapon: discard_swap(%p): %d\n", 3149 p, err); 3150 } 3151 } 3152 3153 error = init_swap_address_space(p->type, maxpages); 3154 if (error) 3155 goto bad_swap_unlock_inode; 3156 3157 /* 3158 * Flush any pending IO and dirty mappings before we start using this 3159 * swap device. 3160 */ 3161 inode->i_flags |= S_SWAPFILE; 3162 error = inode_drain_writes(inode); 3163 if (error) { 3164 inode->i_flags &= ~S_SWAPFILE; 3165 goto free_swap_address_space; 3166 } 3167 3168 mutex_lock(&swapon_mutex); 3169 prio = -1; 3170 if (swap_flags & SWAP_FLAG_PREFER) 3171 prio = 3172 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3173 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 3174 3175 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 3176 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 3177 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 3178 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3179 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3180 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3181 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 3182 (frontswap_map) ? "FS" : ""); 3183 3184 mutex_unlock(&swapon_mutex); 3185 atomic_inc(&proc_poll_event); 3186 wake_up_interruptible(&proc_poll_wait); 3187 3188 error = 0; 3189 goto out; 3190 free_swap_address_space: 3191 exit_swap_address_space(p->type); 3192 bad_swap_unlock_inode: 3193 inode_unlock(inode); 3194 bad_swap: 3195 free_percpu(p->percpu_cluster); 3196 p->percpu_cluster = NULL; 3197 free_percpu(p->cluster_next_cpu); 3198 p->cluster_next_cpu = NULL; 3199 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 3200 set_blocksize(p->bdev, p->old_block_size); 3201 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 3202 } 3203 inode = NULL; 3204 destroy_swap_extents(p); 3205 swap_cgroup_swapoff(p->type); 3206 spin_lock(&swap_lock); 3207 p->swap_file = NULL; 3208 p->flags = 0; 3209 spin_unlock(&swap_lock); 3210 vfree(swap_map); 3211 kvfree(cluster_info); 3212 kvfree(frontswap_map); 3213 if (inced_nr_rotate_swap) 3214 atomic_dec(&nr_rotate_swap); 3215 if (swap_file) 3216 filp_close(swap_file, NULL); 3217 out: 3218 if (page && !IS_ERR(page)) { 3219 kunmap(page); 3220 put_page(page); 3221 } 3222 if (name) 3223 putname(name); 3224 if (inode) 3225 inode_unlock(inode); 3226 if (!error) 3227 enable_swap_slots_cache(); 3228 return error; 3229 } 3230 3231 void si_swapinfo(struct sysinfo *val) 3232 { 3233 unsigned int type; 3234 unsigned long nr_to_be_unused = 0; 3235 3236 spin_lock(&swap_lock); 3237 for (type = 0; type < nr_swapfiles; type++) { 3238 struct swap_info_struct *si = swap_info[type]; 3239 3240 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3241 nr_to_be_unused += READ_ONCE(si->inuse_pages); 3242 } 3243 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3244 val->totalswap = total_swap_pages + nr_to_be_unused; 3245 spin_unlock(&swap_lock); 3246 } 3247 3248 /* 3249 * Verify that a swap entry is valid and increment its swap map count. 3250 * 3251 * Returns error code in following case. 3252 * - success -> 0 3253 * - swp_entry is invalid -> EINVAL 3254 * - swp_entry is migration entry -> EINVAL 3255 * - swap-cache reference is requested but there is already one. -> EEXIST 3256 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3257 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3258 */ 3259 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3260 { 3261 struct swap_info_struct *p; 3262 struct swap_cluster_info *ci; 3263 unsigned long offset; 3264 unsigned char count; 3265 unsigned char has_cache; 3266 int err; 3267 3268 p = get_swap_device(entry); 3269 if (!p) 3270 return -EINVAL; 3271 3272 offset = swp_offset(entry); 3273 ci = lock_cluster_or_swap_info(p, offset); 3274 3275 count = p->swap_map[offset]; 3276 3277 /* 3278 * swapin_readahead() doesn't check if a swap entry is valid, so the 3279 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3280 */ 3281 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3282 err = -ENOENT; 3283 goto unlock_out; 3284 } 3285 3286 has_cache = count & SWAP_HAS_CACHE; 3287 count &= ~SWAP_HAS_CACHE; 3288 err = 0; 3289 3290 if (usage == SWAP_HAS_CACHE) { 3291 3292 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3293 if (!has_cache && count) 3294 has_cache = SWAP_HAS_CACHE; 3295 else if (has_cache) /* someone else added cache */ 3296 err = -EEXIST; 3297 else /* no users remaining */ 3298 err = -ENOENT; 3299 3300 } else if (count || has_cache) { 3301 3302 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3303 count += usage; 3304 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3305 err = -EINVAL; 3306 else if (swap_count_continued(p, offset, count)) 3307 count = COUNT_CONTINUED; 3308 else 3309 err = -ENOMEM; 3310 } else 3311 err = -ENOENT; /* unused swap entry */ 3312 3313 WRITE_ONCE(p->swap_map[offset], count | has_cache); 3314 3315 unlock_out: 3316 unlock_cluster_or_swap_info(p, ci); 3317 put_swap_device(p); 3318 return err; 3319 } 3320 3321 /* 3322 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3323 * (in which case its reference count is never incremented). 3324 */ 3325 void swap_shmem_alloc(swp_entry_t entry) 3326 { 3327 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3328 } 3329 3330 /* 3331 * Increase reference count of swap entry by 1. 3332 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3333 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3334 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3335 * might occur if a page table entry has got corrupted. 3336 */ 3337 int swap_duplicate(swp_entry_t entry) 3338 { 3339 int err = 0; 3340 3341 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3342 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3343 return err; 3344 } 3345 3346 /* 3347 * @entry: swap entry for which we allocate swap cache. 3348 * 3349 * Called when allocating swap cache for existing swap entry, 3350 * This can return error codes. Returns 0 at success. 3351 * -EEXIST means there is a swap cache. 3352 * Note: return code is different from swap_duplicate(). 3353 */ 3354 int swapcache_prepare(swp_entry_t entry) 3355 { 3356 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3357 } 3358 3359 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3360 { 3361 return swap_type_to_swap_info(swp_type(entry)); 3362 } 3363 3364 struct swap_info_struct *page_swap_info(struct page *page) 3365 { 3366 swp_entry_t entry = { .val = page_private(page) }; 3367 return swp_swap_info(entry); 3368 } 3369 3370 /* 3371 * out-of-line methods to avoid include hell. 3372 */ 3373 struct address_space *swapcache_mapping(struct folio *folio) 3374 { 3375 return page_swap_info(&folio->page)->swap_file->f_mapping; 3376 } 3377 EXPORT_SYMBOL_GPL(swapcache_mapping); 3378 3379 pgoff_t __page_file_index(struct page *page) 3380 { 3381 swp_entry_t swap = { .val = page_private(page) }; 3382 return swp_offset(swap); 3383 } 3384 EXPORT_SYMBOL_GPL(__page_file_index); 3385 3386 /* 3387 * add_swap_count_continuation - called when a swap count is duplicated 3388 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3389 * page of the original vmalloc'ed swap_map, to hold the continuation count 3390 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3391 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3392 * 3393 * These continuation pages are seldom referenced: the common paths all work 3394 * on the original swap_map, only referring to a continuation page when the 3395 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3396 * 3397 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3398 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3399 * can be called after dropping locks. 3400 */ 3401 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3402 { 3403 struct swap_info_struct *si; 3404 struct swap_cluster_info *ci; 3405 struct page *head; 3406 struct page *page; 3407 struct page *list_page; 3408 pgoff_t offset; 3409 unsigned char count; 3410 int ret = 0; 3411 3412 /* 3413 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3414 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3415 */ 3416 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3417 3418 si = get_swap_device(entry); 3419 if (!si) { 3420 /* 3421 * An acceptable race has occurred since the failing 3422 * __swap_duplicate(): the swap device may be swapoff 3423 */ 3424 goto outer; 3425 } 3426 spin_lock(&si->lock); 3427 3428 offset = swp_offset(entry); 3429 3430 ci = lock_cluster(si, offset); 3431 3432 count = swap_count(si->swap_map[offset]); 3433 3434 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3435 /* 3436 * The higher the swap count, the more likely it is that tasks 3437 * will race to add swap count continuation: we need to avoid 3438 * over-provisioning. 3439 */ 3440 goto out; 3441 } 3442 3443 if (!page) { 3444 ret = -ENOMEM; 3445 goto out; 3446 } 3447 3448 /* 3449 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 3450 * no architecture is using highmem pages for kernel page tables: so it 3451 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 3452 */ 3453 head = vmalloc_to_page(si->swap_map + offset); 3454 offset &= ~PAGE_MASK; 3455 3456 spin_lock(&si->cont_lock); 3457 /* 3458 * Page allocation does not initialize the page's lru field, 3459 * but it does always reset its private field. 3460 */ 3461 if (!page_private(head)) { 3462 BUG_ON(count & COUNT_CONTINUED); 3463 INIT_LIST_HEAD(&head->lru); 3464 set_page_private(head, SWP_CONTINUED); 3465 si->flags |= SWP_CONTINUED; 3466 } 3467 3468 list_for_each_entry(list_page, &head->lru, lru) { 3469 unsigned char *map; 3470 3471 /* 3472 * If the previous map said no continuation, but we've found 3473 * a continuation page, free our allocation and use this one. 3474 */ 3475 if (!(count & COUNT_CONTINUED)) 3476 goto out_unlock_cont; 3477 3478 map = kmap_atomic(list_page) + offset; 3479 count = *map; 3480 kunmap_atomic(map); 3481 3482 /* 3483 * If this continuation count now has some space in it, 3484 * free our allocation and use this one. 3485 */ 3486 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3487 goto out_unlock_cont; 3488 } 3489 3490 list_add_tail(&page->lru, &head->lru); 3491 page = NULL; /* now it's attached, don't free it */ 3492 out_unlock_cont: 3493 spin_unlock(&si->cont_lock); 3494 out: 3495 unlock_cluster(ci); 3496 spin_unlock(&si->lock); 3497 put_swap_device(si); 3498 outer: 3499 if (page) 3500 __free_page(page); 3501 return ret; 3502 } 3503 3504 /* 3505 * swap_count_continued - when the original swap_map count is incremented 3506 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3507 * into, carry if so, or else fail until a new continuation page is allocated; 3508 * when the original swap_map count is decremented from 0 with continuation, 3509 * borrow from the continuation and report whether it still holds more. 3510 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3511 * lock. 3512 */ 3513 static bool swap_count_continued(struct swap_info_struct *si, 3514 pgoff_t offset, unsigned char count) 3515 { 3516 struct page *head; 3517 struct page *page; 3518 unsigned char *map; 3519 bool ret; 3520 3521 head = vmalloc_to_page(si->swap_map + offset); 3522 if (page_private(head) != SWP_CONTINUED) { 3523 BUG_ON(count & COUNT_CONTINUED); 3524 return false; /* need to add count continuation */ 3525 } 3526 3527 spin_lock(&si->cont_lock); 3528 offset &= ~PAGE_MASK; 3529 page = list_next_entry(head, lru); 3530 map = kmap_atomic(page) + offset; 3531 3532 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3533 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3534 3535 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3536 /* 3537 * Think of how you add 1 to 999 3538 */ 3539 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3540 kunmap_atomic(map); 3541 page = list_next_entry(page, lru); 3542 BUG_ON(page == head); 3543 map = kmap_atomic(page) + offset; 3544 } 3545 if (*map == SWAP_CONT_MAX) { 3546 kunmap_atomic(map); 3547 page = list_next_entry(page, lru); 3548 if (page == head) { 3549 ret = false; /* add count continuation */ 3550 goto out; 3551 } 3552 map = kmap_atomic(page) + offset; 3553 init_map: *map = 0; /* we didn't zero the page */ 3554 } 3555 *map += 1; 3556 kunmap_atomic(map); 3557 while ((page = list_prev_entry(page, lru)) != head) { 3558 map = kmap_atomic(page) + offset; 3559 *map = COUNT_CONTINUED; 3560 kunmap_atomic(map); 3561 } 3562 ret = true; /* incremented */ 3563 3564 } else { /* decrementing */ 3565 /* 3566 * Think of how you subtract 1 from 1000 3567 */ 3568 BUG_ON(count != COUNT_CONTINUED); 3569 while (*map == COUNT_CONTINUED) { 3570 kunmap_atomic(map); 3571 page = list_next_entry(page, lru); 3572 BUG_ON(page == head); 3573 map = kmap_atomic(page) + offset; 3574 } 3575 BUG_ON(*map == 0); 3576 *map -= 1; 3577 if (*map == 0) 3578 count = 0; 3579 kunmap_atomic(map); 3580 while ((page = list_prev_entry(page, lru)) != head) { 3581 map = kmap_atomic(page) + offset; 3582 *map = SWAP_CONT_MAX | count; 3583 count = COUNT_CONTINUED; 3584 kunmap_atomic(map); 3585 } 3586 ret = count == COUNT_CONTINUED; 3587 } 3588 out: 3589 spin_unlock(&si->cont_lock); 3590 return ret; 3591 } 3592 3593 /* 3594 * free_swap_count_continuations - swapoff free all the continuation pages 3595 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3596 */ 3597 static void free_swap_count_continuations(struct swap_info_struct *si) 3598 { 3599 pgoff_t offset; 3600 3601 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3602 struct page *head; 3603 head = vmalloc_to_page(si->swap_map + offset); 3604 if (page_private(head)) { 3605 struct page *page, *next; 3606 3607 list_for_each_entry_safe(page, next, &head->lru, lru) { 3608 list_del(&page->lru); 3609 __free_page(page); 3610 } 3611 } 3612 } 3613 } 3614 3615 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3616 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp) 3617 { 3618 struct swap_info_struct *si, *next; 3619 int nid = folio_nid(folio); 3620 3621 if (!(gfp & __GFP_IO)) 3622 return; 3623 3624 if (!blk_cgroup_congested()) 3625 return; 3626 3627 /* 3628 * We've already scheduled a throttle, avoid taking the global swap 3629 * lock. 3630 */ 3631 if (current->throttle_disk) 3632 return; 3633 3634 spin_lock(&swap_avail_lock); 3635 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 3636 avail_lists[nid]) { 3637 if (si->bdev) { 3638 blkcg_schedule_throttle(si->bdev->bd_disk, true); 3639 break; 3640 } 3641 } 3642 spin_unlock(&swap_avail_lock); 3643 } 3644 #endif 3645 3646 static int __init swapfile_init(void) 3647 { 3648 int nid; 3649 3650 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3651 GFP_KERNEL); 3652 if (!swap_avail_heads) { 3653 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3654 return -ENOMEM; 3655 } 3656 3657 for_each_node(nid) 3658 plist_head_init(&swap_avail_heads[nid]); 3659 3660 swapfile_maximum_size = arch_max_swapfile_size(); 3661 3662 #ifdef CONFIG_MIGRATION 3663 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS)) 3664 swap_migration_ad_supported = true; 3665 #endif /* CONFIG_MIGRATION */ 3666 3667 return 0; 3668 } 3669 subsys_initcall(swapfile_init); 3670