xref: /openbmc/linux/mm/swapfile.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/config.h>
9 #include <linux/mm.h>
10 #include <linux/hugetlb.h>
11 #include <linux/mman.h>
12 #include <linux/slab.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/swap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/shm.h>
19 #include <linux/blkdev.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/syscalls.h>
29 
30 #include <asm/pgtable.h>
31 #include <asm/tlbflush.h>
32 #include <linux/swapops.h>
33 
34 DEFINE_SPINLOCK(swaplock);
35 unsigned int nr_swapfiles;
36 long total_swap_pages;
37 static int swap_overflow;
38 
39 EXPORT_SYMBOL(total_swap_pages);
40 
41 static const char Bad_file[] = "Bad swap file entry ";
42 static const char Unused_file[] = "Unused swap file entry ";
43 static const char Bad_offset[] = "Bad swap offset entry ";
44 static const char Unused_offset[] = "Unused swap offset entry ";
45 
46 struct swap_list_t swap_list = {-1, -1};
47 
48 struct swap_info_struct swap_info[MAX_SWAPFILES];
49 
50 static DECLARE_MUTEX(swapon_sem);
51 
52 /*
53  * We need this because the bdev->unplug_fn can sleep and we cannot
54  * hold swap_list_lock while calling the unplug_fn. And swap_list_lock
55  * cannot be turned into a semaphore.
56  */
57 static DECLARE_RWSEM(swap_unplug_sem);
58 
59 #define SWAPFILE_CLUSTER 256
60 
61 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
62 {
63 	swp_entry_t entry;
64 
65 	down_read(&swap_unplug_sem);
66 	entry.val = page->private;
67 	if (PageSwapCache(page)) {
68 		struct block_device *bdev = swap_info[swp_type(entry)].bdev;
69 		struct backing_dev_info *bdi;
70 
71 		/*
72 		 * If the page is removed from swapcache from under us (with a
73 		 * racy try_to_unuse/swapoff) we need an additional reference
74 		 * count to avoid reading garbage from page->private above. If
75 		 * the WARN_ON triggers during a swapoff it maybe the race
76 		 * condition and it's harmless. However if it triggers without
77 		 * swapoff it signals a problem.
78 		 */
79 		WARN_ON(page_count(page) <= 1);
80 
81 		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
82 		bdi->unplug_io_fn(bdi, page);
83 	}
84 	up_read(&swap_unplug_sem);
85 }
86 
87 static inline int scan_swap_map(struct swap_info_struct *si)
88 {
89 	unsigned long offset;
90 	/*
91 	 * We try to cluster swap pages by allocating them
92 	 * sequentially in swap.  Once we've allocated
93 	 * SWAPFILE_CLUSTER pages this way, however, we resort to
94 	 * first-free allocation, starting a new cluster.  This
95 	 * prevents us from scattering swap pages all over the entire
96 	 * swap partition, so that we reduce overall disk seek times
97 	 * between swap pages.  -- sct */
98 	if (si->cluster_nr) {
99 		while (si->cluster_next <= si->highest_bit) {
100 			offset = si->cluster_next++;
101 			if (si->swap_map[offset])
102 				continue;
103 			si->cluster_nr--;
104 			goto got_page;
105 		}
106 	}
107 	si->cluster_nr = SWAPFILE_CLUSTER;
108 
109 	/* try to find an empty (even not aligned) cluster. */
110 	offset = si->lowest_bit;
111  check_next_cluster:
112 	if (offset+SWAPFILE_CLUSTER-1 <= si->highest_bit)
113 	{
114 		unsigned long nr;
115 		for (nr = offset; nr < offset+SWAPFILE_CLUSTER; nr++)
116 			if (si->swap_map[nr])
117 			{
118 				offset = nr+1;
119 				goto check_next_cluster;
120 			}
121 		/* We found a completly empty cluster, so start
122 		 * using it.
123 		 */
124 		goto got_page;
125 	}
126 	/* No luck, so now go finegrined as usual. -Andrea */
127 	for (offset = si->lowest_bit; offset <= si->highest_bit ; offset++) {
128 		if (si->swap_map[offset])
129 			continue;
130 		si->lowest_bit = offset+1;
131 	got_page:
132 		if (offset == si->lowest_bit)
133 			si->lowest_bit++;
134 		if (offset == si->highest_bit)
135 			si->highest_bit--;
136 		if (si->lowest_bit > si->highest_bit) {
137 			si->lowest_bit = si->max;
138 			si->highest_bit = 0;
139 		}
140 		si->swap_map[offset] = 1;
141 		si->inuse_pages++;
142 		nr_swap_pages--;
143 		si->cluster_next = offset+1;
144 		return offset;
145 	}
146 	si->lowest_bit = si->max;
147 	si->highest_bit = 0;
148 	return 0;
149 }
150 
151 swp_entry_t get_swap_page(void)
152 {
153 	struct swap_info_struct * p;
154 	unsigned long offset;
155 	swp_entry_t entry;
156 	int type, wrapped = 0;
157 
158 	entry.val = 0;	/* Out of memory */
159 	swap_list_lock();
160 	type = swap_list.next;
161 	if (type < 0)
162 		goto out;
163 	if (nr_swap_pages <= 0)
164 		goto out;
165 
166 	while (1) {
167 		p = &swap_info[type];
168 		if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
169 			swap_device_lock(p);
170 			offset = scan_swap_map(p);
171 			swap_device_unlock(p);
172 			if (offset) {
173 				entry = swp_entry(type,offset);
174 				type = swap_info[type].next;
175 				if (type < 0 ||
176 					p->prio != swap_info[type].prio) {
177 						swap_list.next = swap_list.head;
178 				} else {
179 					swap_list.next = type;
180 				}
181 				goto out;
182 			}
183 		}
184 		type = p->next;
185 		if (!wrapped) {
186 			if (type < 0 || p->prio != swap_info[type].prio) {
187 				type = swap_list.head;
188 				wrapped = 1;
189 			}
190 		} else
191 			if (type < 0)
192 				goto out;	/* out of swap space */
193 	}
194 out:
195 	swap_list_unlock();
196 	return entry;
197 }
198 
199 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
200 {
201 	struct swap_info_struct * p;
202 	unsigned long offset, type;
203 
204 	if (!entry.val)
205 		goto out;
206 	type = swp_type(entry);
207 	if (type >= nr_swapfiles)
208 		goto bad_nofile;
209 	p = & swap_info[type];
210 	if (!(p->flags & SWP_USED))
211 		goto bad_device;
212 	offset = swp_offset(entry);
213 	if (offset >= p->max)
214 		goto bad_offset;
215 	if (!p->swap_map[offset])
216 		goto bad_free;
217 	swap_list_lock();
218 	if (p->prio > swap_info[swap_list.next].prio)
219 		swap_list.next = type;
220 	swap_device_lock(p);
221 	return p;
222 
223 bad_free:
224 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
225 	goto out;
226 bad_offset:
227 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
228 	goto out;
229 bad_device:
230 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
231 	goto out;
232 bad_nofile:
233 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
234 out:
235 	return NULL;
236 }
237 
238 static void swap_info_put(struct swap_info_struct * p)
239 {
240 	swap_device_unlock(p);
241 	swap_list_unlock();
242 }
243 
244 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
245 {
246 	int count = p->swap_map[offset];
247 
248 	if (count < SWAP_MAP_MAX) {
249 		count--;
250 		p->swap_map[offset] = count;
251 		if (!count) {
252 			if (offset < p->lowest_bit)
253 				p->lowest_bit = offset;
254 			if (offset > p->highest_bit)
255 				p->highest_bit = offset;
256 			nr_swap_pages++;
257 			p->inuse_pages--;
258 		}
259 	}
260 	return count;
261 }
262 
263 /*
264  * Caller has made sure that the swapdevice corresponding to entry
265  * is still around or has not been recycled.
266  */
267 void swap_free(swp_entry_t entry)
268 {
269 	struct swap_info_struct * p;
270 
271 	p = swap_info_get(entry);
272 	if (p) {
273 		swap_entry_free(p, swp_offset(entry));
274 		swap_info_put(p);
275 	}
276 }
277 
278 /*
279  * Check if we're the only user of a swap page,
280  * when the page is locked.
281  */
282 static int exclusive_swap_page(struct page *page)
283 {
284 	int retval = 0;
285 	struct swap_info_struct * p;
286 	swp_entry_t entry;
287 
288 	entry.val = page->private;
289 	p = swap_info_get(entry);
290 	if (p) {
291 		/* Is the only swap cache user the cache itself? */
292 		if (p->swap_map[swp_offset(entry)] == 1) {
293 			/* Recheck the page count with the swapcache lock held.. */
294 			write_lock_irq(&swapper_space.tree_lock);
295 			if (page_count(page) == 2)
296 				retval = 1;
297 			write_unlock_irq(&swapper_space.tree_lock);
298 		}
299 		swap_info_put(p);
300 	}
301 	return retval;
302 }
303 
304 /*
305  * We can use this swap cache entry directly
306  * if there are no other references to it.
307  *
308  * Here "exclusive_swap_page()" does the real
309  * work, but we opportunistically check whether
310  * we need to get all the locks first..
311  */
312 int can_share_swap_page(struct page *page)
313 {
314 	int retval = 0;
315 
316 	if (!PageLocked(page))
317 		BUG();
318 	switch (page_count(page)) {
319 	case 3:
320 		if (!PagePrivate(page))
321 			break;
322 		/* Fallthrough */
323 	case 2:
324 		if (!PageSwapCache(page))
325 			break;
326 		retval = exclusive_swap_page(page);
327 		break;
328 	case 1:
329 		if (PageReserved(page))
330 			break;
331 		retval = 1;
332 	}
333 	return retval;
334 }
335 
336 /*
337  * Work out if there are any other processes sharing this
338  * swap cache page. Free it if you can. Return success.
339  */
340 int remove_exclusive_swap_page(struct page *page)
341 {
342 	int retval;
343 	struct swap_info_struct * p;
344 	swp_entry_t entry;
345 
346 	BUG_ON(PagePrivate(page));
347 	BUG_ON(!PageLocked(page));
348 
349 	if (!PageSwapCache(page))
350 		return 0;
351 	if (PageWriteback(page))
352 		return 0;
353 	if (page_count(page) != 2) /* 2: us + cache */
354 		return 0;
355 
356 	entry.val = page->private;
357 	p = swap_info_get(entry);
358 	if (!p)
359 		return 0;
360 
361 	/* Is the only swap cache user the cache itself? */
362 	retval = 0;
363 	if (p->swap_map[swp_offset(entry)] == 1) {
364 		/* Recheck the page count with the swapcache lock held.. */
365 		write_lock_irq(&swapper_space.tree_lock);
366 		if ((page_count(page) == 2) && !PageWriteback(page)) {
367 			__delete_from_swap_cache(page);
368 			SetPageDirty(page);
369 			retval = 1;
370 		}
371 		write_unlock_irq(&swapper_space.tree_lock);
372 	}
373 	swap_info_put(p);
374 
375 	if (retval) {
376 		swap_free(entry);
377 		page_cache_release(page);
378 	}
379 
380 	return retval;
381 }
382 
383 /*
384  * Free the swap entry like above, but also try to
385  * free the page cache entry if it is the last user.
386  */
387 void free_swap_and_cache(swp_entry_t entry)
388 {
389 	struct swap_info_struct * p;
390 	struct page *page = NULL;
391 
392 	p = swap_info_get(entry);
393 	if (p) {
394 		if (swap_entry_free(p, swp_offset(entry)) == 1)
395 			page = find_trylock_page(&swapper_space, entry.val);
396 		swap_info_put(p);
397 	}
398 	if (page) {
399 		int one_user;
400 
401 		BUG_ON(PagePrivate(page));
402 		page_cache_get(page);
403 		one_user = (page_count(page) == 2);
404 		/* Only cache user (+us), or swap space full? Free it! */
405 		if (!PageWriteback(page) && (one_user || vm_swap_full())) {
406 			delete_from_swap_cache(page);
407 			SetPageDirty(page);
408 		}
409 		unlock_page(page);
410 		page_cache_release(page);
411 	}
412 }
413 
414 /*
415  * Always set the resulting pte to be nowrite (the same as COW pages
416  * after one process has exited).  We don't know just how many PTEs will
417  * share this swap entry, so be cautious and let do_wp_page work out
418  * what to do if a write is requested later.
419  *
420  * vma->vm_mm->page_table_lock is held.
421  */
422 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
423 		unsigned long addr, swp_entry_t entry, struct page *page)
424 {
425 	inc_mm_counter(vma->vm_mm, rss);
426 	get_page(page);
427 	set_pte_at(vma->vm_mm, addr, pte,
428 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
429 	page_add_anon_rmap(page, vma, addr);
430 	swap_free(entry);
431 	/*
432 	 * Move the page to the active list so it is not
433 	 * immediately swapped out again after swapon.
434 	 */
435 	activate_page(page);
436 }
437 
438 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
439 				unsigned long addr, unsigned long end,
440 				swp_entry_t entry, struct page *page)
441 {
442 	pte_t *pte;
443 	pte_t swp_pte = swp_entry_to_pte(entry);
444 
445 	pte = pte_offset_map(pmd, addr);
446 	do {
447 		/*
448 		 * swapoff spends a _lot_ of time in this loop!
449 		 * Test inline before going to call unuse_pte.
450 		 */
451 		if (unlikely(pte_same(*pte, swp_pte))) {
452 			unuse_pte(vma, pte, addr, entry, page);
453 			pte_unmap(pte);
454 			return 1;
455 		}
456 	} while (pte++, addr += PAGE_SIZE, addr != end);
457 	pte_unmap(pte - 1);
458 	return 0;
459 }
460 
461 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
462 				unsigned long addr, unsigned long end,
463 				swp_entry_t entry, struct page *page)
464 {
465 	pmd_t *pmd;
466 	unsigned long next;
467 
468 	pmd = pmd_offset(pud, addr);
469 	do {
470 		next = pmd_addr_end(addr, end);
471 		if (pmd_none_or_clear_bad(pmd))
472 			continue;
473 		if (unuse_pte_range(vma, pmd, addr, next, entry, page))
474 			return 1;
475 	} while (pmd++, addr = next, addr != end);
476 	return 0;
477 }
478 
479 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
480 				unsigned long addr, unsigned long end,
481 				swp_entry_t entry, struct page *page)
482 {
483 	pud_t *pud;
484 	unsigned long next;
485 
486 	pud = pud_offset(pgd, addr);
487 	do {
488 		next = pud_addr_end(addr, end);
489 		if (pud_none_or_clear_bad(pud))
490 			continue;
491 		if (unuse_pmd_range(vma, pud, addr, next, entry, page))
492 			return 1;
493 	} while (pud++, addr = next, addr != end);
494 	return 0;
495 }
496 
497 static int unuse_vma(struct vm_area_struct *vma,
498 				swp_entry_t entry, struct page *page)
499 {
500 	pgd_t *pgd;
501 	unsigned long addr, end, next;
502 
503 	if (page->mapping) {
504 		addr = page_address_in_vma(page, vma);
505 		if (addr == -EFAULT)
506 			return 0;
507 		else
508 			end = addr + PAGE_SIZE;
509 	} else {
510 		addr = vma->vm_start;
511 		end = vma->vm_end;
512 	}
513 
514 	pgd = pgd_offset(vma->vm_mm, addr);
515 	do {
516 		next = pgd_addr_end(addr, end);
517 		if (pgd_none_or_clear_bad(pgd))
518 			continue;
519 		if (unuse_pud_range(vma, pgd, addr, next, entry, page))
520 			return 1;
521 	} while (pgd++, addr = next, addr != end);
522 	return 0;
523 }
524 
525 static int unuse_mm(struct mm_struct *mm,
526 				swp_entry_t entry, struct page *page)
527 {
528 	struct vm_area_struct *vma;
529 
530 	if (!down_read_trylock(&mm->mmap_sem)) {
531 		/*
532 		 * Our reference to the page stops try_to_unmap_one from
533 		 * unmapping its ptes, so swapoff can make progress.
534 		 */
535 		unlock_page(page);
536 		down_read(&mm->mmap_sem);
537 		lock_page(page);
538 	}
539 	spin_lock(&mm->page_table_lock);
540 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
541 		if (vma->anon_vma && unuse_vma(vma, entry, page))
542 			break;
543 	}
544 	spin_unlock(&mm->page_table_lock);
545 	up_read(&mm->mmap_sem);
546 	/*
547 	 * Currently unuse_mm cannot fail, but leave error handling
548 	 * at call sites for now, since we change it from time to time.
549 	 */
550 	return 0;
551 }
552 
553 /*
554  * Scan swap_map from current position to next entry still in use.
555  * Recycle to start on reaching the end, returning 0 when empty.
556  */
557 static int find_next_to_unuse(struct swap_info_struct *si, int prev)
558 {
559 	int max = si->max;
560 	int i = prev;
561 	int count;
562 
563 	/*
564 	 * No need for swap_device_lock(si) here: we're just looking
565 	 * for whether an entry is in use, not modifying it; false
566 	 * hits are okay, and sys_swapoff() has already prevented new
567 	 * allocations from this area (while holding swap_list_lock()).
568 	 */
569 	for (;;) {
570 		if (++i >= max) {
571 			if (!prev) {
572 				i = 0;
573 				break;
574 			}
575 			/*
576 			 * No entries in use at top of swap_map,
577 			 * loop back to start and recheck there.
578 			 */
579 			max = prev + 1;
580 			prev = 0;
581 			i = 1;
582 		}
583 		count = si->swap_map[i];
584 		if (count && count != SWAP_MAP_BAD)
585 			break;
586 	}
587 	return i;
588 }
589 
590 /*
591  * We completely avoid races by reading each swap page in advance,
592  * and then search for the process using it.  All the necessary
593  * page table adjustments can then be made atomically.
594  */
595 static int try_to_unuse(unsigned int type)
596 {
597 	struct swap_info_struct * si = &swap_info[type];
598 	struct mm_struct *start_mm;
599 	unsigned short *swap_map;
600 	unsigned short swcount;
601 	struct page *page;
602 	swp_entry_t entry;
603 	int i = 0;
604 	int retval = 0;
605 	int reset_overflow = 0;
606 	int shmem;
607 
608 	/*
609 	 * When searching mms for an entry, a good strategy is to
610 	 * start at the first mm we freed the previous entry from
611 	 * (though actually we don't notice whether we or coincidence
612 	 * freed the entry).  Initialize this start_mm with a hold.
613 	 *
614 	 * A simpler strategy would be to start at the last mm we
615 	 * freed the previous entry from; but that would take less
616 	 * advantage of mmlist ordering, which clusters forked mms
617 	 * together, child after parent.  If we race with dup_mmap(), we
618 	 * prefer to resolve parent before child, lest we miss entries
619 	 * duplicated after we scanned child: using last mm would invert
620 	 * that.  Though it's only a serious concern when an overflowed
621 	 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
622 	 */
623 	start_mm = &init_mm;
624 	atomic_inc(&init_mm.mm_users);
625 
626 	/*
627 	 * Keep on scanning until all entries have gone.  Usually,
628 	 * one pass through swap_map is enough, but not necessarily:
629 	 * there are races when an instance of an entry might be missed.
630 	 */
631 	while ((i = find_next_to_unuse(si, i)) != 0) {
632 		if (signal_pending(current)) {
633 			retval = -EINTR;
634 			break;
635 		}
636 
637 		/*
638 		 * Get a page for the entry, using the existing swap
639 		 * cache page if there is one.  Otherwise, get a clean
640 		 * page and read the swap into it.
641 		 */
642 		swap_map = &si->swap_map[i];
643 		entry = swp_entry(type, i);
644 		page = read_swap_cache_async(entry, NULL, 0);
645 		if (!page) {
646 			/*
647 			 * Either swap_duplicate() failed because entry
648 			 * has been freed independently, and will not be
649 			 * reused since sys_swapoff() already disabled
650 			 * allocation from here, or alloc_page() failed.
651 			 */
652 			if (!*swap_map)
653 				continue;
654 			retval = -ENOMEM;
655 			break;
656 		}
657 
658 		/*
659 		 * Don't hold on to start_mm if it looks like exiting.
660 		 */
661 		if (atomic_read(&start_mm->mm_users) == 1) {
662 			mmput(start_mm);
663 			start_mm = &init_mm;
664 			atomic_inc(&init_mm.mm_users);
665 		}
666 
667 		/*
668 		 * Wait for and lock page.  When do_swap_page races with
669 		 * try_to_unuse, do_swap_page can handle the fault much
670 		 * faster than try_to_unuse can locate the entry.  This
671 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
672 		 * defer to do_swap_page in such a case - in some tests,
673 		 * do_swap_page and try_to_unuse repeatedly compete.
674 		 */
675 		wait_on_page_locked(page);
676 		wait_on_page_writeback(page);
677 		lock_page(page);
678 		wait_on_page_writeback(page);
679 
680 		/*
681 		 * Remove all references to entry.
682 		 * Whenever we reach init_mm, there's no address space
683 		 * to search, but use it as a reminder to search shmem.
684 		 */
685 		shmem = 0;
686 		swcount = *swap_map;
687 		if (swcount > 1) {
688 			if (start_mm == &init_mm)
689 				shmem = shmem_unuse(entry, page);
690 			else
691 				retval = unuse_mm(start_mm, entry, page);
692 		}
693 		if (*swap_map > 1) {
694 			int set_start_mm = (*swap_map >= swcount);
695 			struct list_head *p = &start_mm->mmlist;
696 			struct mm_struct *new_start_mm = start_mm;
697 			struct mm_struct *prev_mm = start_mm;
698 			struct mm_struct *mm;
699 
700 			atomic_inc(&new_start_mm->mm_users);
701 			atomic_inc(&prev_mm->mm_users);
702 			spin_lock(&mmlist_lock);
703 			while (*swap_map > 1 && !retval &&
704 					(p = p->next) != &start_mm->mmlist) {
705 				mm = list_entry(p, struct mm_struct, mmlist);
706 				if (atomic_inc_return(&mm->mm_users) == 1) {
707 					atomic_dec(&mm->mm_users);
708 					continue;
709 				}
710 				spin_unlock(&mmlist_lock);
711 				mmput(prev_mm);
712 				prev_mm = mm;
713 
714 				cond_resched();
715 
716 				swcount = *swap_map;
717 				if (swcount <= 1)
718 					;
719 				else if (mm == &init_mm) {
720 					set_start_mm = 1;
721 					shmem = shmem_unuse(entry, page);
722 				} else
723 					retval = unuse_mm(mm, entry, page);
724 				if (set_start_mm && *swap_map < swcount) {
725 					mmput(new_start_mm);
726 					atomic_inc(&mm->mm_users);
727 					new_start_mm = mm;
728 					set_start_mm = 0;
729 				}
730 				spin_lock(&mmlist_lock);
731 			}
732 			spin_unlock(&mmlist_lock);
733 			mmput(prev_mm);
734 			mmput(start_mm);
735 			start_mm = new_start_mm;
736 		}
737 		if (retval) {
738 			unlock_page(page);
739 			page_cache_release(page);
740 			break;
741 		}
742 
743 		/*
744 		 * How could swap count reach 0x7fff when the maximum
745 		 * pid is 0x7fff, and there's no way to repeat a swap
746 		 * page within an mm (except in shmem, where it's the
747 		 * shared object which takes the reference count)?
748 		 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
749 		 *
750 		 * If that's wrong, then we should worry more about
751 		 * exit_mmap() and do_munmap() cases described above:
752 		 * we might be resetting SWAP_MAP_MAX too early here.
753 		 * We know "Undead"s can happen, they're okay, so don't
754 		 * report them; but do report if we reset SWAP_MAP_MAX.
755 		 */
756 		if (*swap_map == SWAP_MAP_MAX) {
757 			swap_device_lock(si);
758 			*swap_map = 1;
759 			swap_device_unlock(si);
760 			reset_overflow = 1;
761 		}
762 
763 		/*
764 		 * If a reference remains (rare), we would like to leave
765 		 * the page in the swap cache; but try_to_unmap could
766 		 * then re-duplicate the entry once we drop page lock,
767 		 * so we might loop indefinitely; also, that page could
768 		 * not be swapped out to other storage meanwhile.  So:
769 		 * delete from cache even if there's another reference,
770 		 * after ensuring that the data has been saved to disk -
771 		 * since if the reference remains (rarer), it will be
772 		 * read from disk into another page.  Splitting into two
773 		 * pages would be incorrect if swap supported "shared
774 		 * private" pages, but they are handled by tmpfs files.
775 		 *
776 		 * Note shmem_unuse already deleted a swappage from
777 		 * the swap cache, unless the move to filepage failed:
778 		 * in which case it left swappage in cache, lowered its
779 		 * swap count to pass quickly through the loops above,
780 		 * and now we must reincrement count to try again later.
781 		 */
782 		if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
783 			struct writeback_control wbc = {
784 				.sync_mode = WB_SYNC_NONE,
785 			};
786 
787 			swap_writepage(page, &wbc);
788 			lock_page(page);
789 			wait_on_page_writeback(page);
790 		}
791 		if (PageSwapCache(page)) {
792 			if (shmem)
793 				swap_duplicate(entry);
794 			else
795 				delete_from_swap_cache(page);
796 		}
797 
798 		/*
799 		 * So we could skip searching mms once swap count went
800 		 * to 1, we did not mark any present ptes as dirty: must
801 		 * mark page dirty so shrink_list will preserve it.
802 		 */
803 		SetPageDirty(page);
804 		unlock_page(page);
805 		page_cache_release(page);
806 
807 		/*
808 		 * Make sure that we aren't completely killing
809 		 * interactive performance.
810 		 */
811 		cond_resched();
812 	}
813 
814 	mmput(start_mm);
815 	if (reset_overflow) {
816 		printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
817 		swap_overflow = 0;
818 	}
819 	return retval;
820 }
821 
822 /*
823  * After a successful try_to_unuse, if no swap is now in use, we know we
824  * can empty the mmlist.  swap_list_lock must be held on entry and exit.
825  * Note that mmlist_lock nests inside swap_list_lock, and an mm must be
826  * added to the mmlist just after page_duplicate - before would be racy.
827  */
828 static void drain_mmlist(void)
829 {
830 	struct list_head *p, *next;
831 	unsigned int i;
832 
833 	for (i = 0; i < nr_swapfiles; i++)
834 		if (swap_info[i].inuse_pages)
835 			return;
836 	spin_lock(&mmlist_lock);
837 	list_for_each_safe(p, next, &init_mm.mmlist)
838 		list_del_init(p);
839 	spin_unlock(&mmlist_lock);
840 }
841 
842 /*
843  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
844  * corresponds to page offset `offset'.
845  */
846 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
847 {
848 	struct swap_extent *se = sis->curr_swap_extent;
849 	struct swap_extent *start_se = se;
850 
851 	for ( ; ; ) {
852 		struct list_head *lh;
853 
854 		if (se->start_page <= offset &&
855 				offset < (se->start_page + se->nr_pages)) {
856 			return se->start_block + (offset - se->start_page);
857 		}
858 		lh = se->list.prev;
859 		if (lh == &sis->extent_list)
860 			lh = lh->prev;
861 		se = list_entry(lh, struct swap_extent, list);
862 		sis->curr_swap_extent = se;
863 		BUG_ON(se == start_se);		/* It *must* be present */
864 	}
865 }
866 
867 /*
868  * Free all of a swapdev's extent information
869  */
870 static void destroy_swap_extents(struct swap_info_struct *sis)
871 {
872 	while (!list_empty(&sis->extent_list)) {
873 		struct swap_extent *se;
874 
875 		se = list_entry(sis->extent_list.next,
876 				struct swap_extent, list);
877 		list_del(&se->list);
878 		kfree(se);
879 	}
880 	sis->nr_extents = 0;
881 }
882 
883 /*
884  * Add a block range (and the corresponding page range) into this swapdev's
885  * extent list.  The extent list is kept sorted in block order.
886  *
887  * This function rather assumes that it is called in ascending sector_t order.
888  * It doesn't look for extent coalescing opportunities.
889  */
890 static int
891 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
892 		unsigned long nr_pages, sector_t start_block)
893 {
894 	struct swap_extent *se;
895 	struct swap_extent *new_se;
896 	struct list_head *lh;
897 
898 	lh = sis->extent_list.next;	/* The highest-addressed block */
899 	while (lh != &sis->extent_list) {
900 		se = list_entry(lh, struct swap_extent, list);
901 		if (se->start_block + se->nr_pages == start_block &&
902 		    se->start_page  + se->nr_pages == start_page) {
903 			/* Merge it */
904 			se->nr_pages += nr_pages;
905 			return 0;
906 		}
907 		lh = lh->next;
908 	}
909 
910 	/*
911 	 * No merge.  Insert a new extent, preserving ordering.
912 	 */
913 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
914 	if (new_se == NULL)
915 		return -ENOMEM;
916 	new_se->start_page = start_page;
917 	new_se->nr_pages = nr_pages;
918 	new_se->start_block = start_block;
919 
920 	lh = sis->extent_list.prev;	/* The lowest block */
921 	while (lh != &sis->extent_list) {
922 		se = list_entry(lh, struct swap_extent, list);
923 		if (se->start_block > start_block)
924 			break;
925 		lh = lh->prev;
926 	}
927 	list_add_tail(&new_se->list, lh);
928 	sis->nr_extents++;
929 	return 0;
930 }
931 
932 /*
933  * A `swap extent' is a simple thing which maps a contiguous range of pages
934  * onto a contiguous range of disk blocks.  An ordered list of swap extents
935  * is built at swapon time and is then used at swap_writepage/swap_readpage
936  * time for locating where on disk a page belongs.
937  *
938  * If the swapfile is an S_ISBLK block device, a single extent is installed.
939  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
940  * swap files identically.
941  *
942  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
943  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
944  * swapfiles are handled *identically* after swapon time.
945  *
946  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
947  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
948  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
949  * requirements, they are simply tossed out - we will never use those blocks
950  * for swapping.
951  *
952  * For S_ISREG swapfiles we hold i_sem across the life of the swapon.  This
953  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
954  * which will scribble on the fs.
955  *
956  * The amount of disk space which a single swap extent represents varies.
957  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
958  * extents in the list.  To avoid much list walking, we cache the previous
959  * search location in `curr_swap_extent', and start new searches from there.
960  * This is extremely effective.  The average number of iterations in
961  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
962  */
963 static int setup_swap_extents(struct swap_info_struct *sis)
964 {
965 	struct inode *inode;
966 	unsigned blocks_per_page;
967 	unsigned long page_no;
968 	unsigned blkbits;
969 	sector_t probe_block;
970 	sector_t last_block;
971 	int ret;
972 
973 	inode = sis->swap_file->f_mapping->host;
974 	if (S_ISBLK(inode->i_mode)) {
975 		ret = add_swap_extent(sis, 0, sis->max, 0);
976 		goto done;
977 	}
978 
979 	blkbits = inode->i_blkbits;
980 	blocks_per_page = PAGE_SIZE >> blkbits;
981 
982 	/*
983 	 * Map all the blocks into the extent list.  This code doesn't try
984 	 * to be very smart.
985 	 */
986 	probe_block = 0;
987 	page_no = 0;
988 	last_block = i_size_read(inode) >> blkbits;
989 	while ((probe_block + blocks_per_page) <= last_block &&
990 			page_no < sis->max) {
991 		unsigned block_in_page;
992 		sector_t first_block;
993 
994 		first_block = bmap(inode, probe_block);
995 		if (first_block == 0)
996 			goto bad_bmap;
997 
998 		/*
999 		 * It must be PAGE_SIZE aligned on-disk
1000 		 */
1001 		if (first_block & (blocks_per_page - 1)) {
1002 			probe_block++;
1003 			goto reprobe;
1004 		}
1005 
1006 		for (block_in_page = 1; block_in_page < blocks_per_page;
1007 					block_in_page++) {
1008 			sector_t block;
1009 
1010 			block = bmap(inode, probe_block + block_in_page);
1011 			if (block == 0)
1012 				goto bad_bmap;
1013 			if (block != first_block + block_in_page) {
1014 				/* Discontiguity */
1015 				probe_block++;
1016 				goto reprobe;
1017 			}
1018 		}
1019 
1020 		/*
1021 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1022 		 */
1023 		ret = add_swap_extent(sis, page_no, 1,
1024 				first_block >> (PAGE_SHIFT - blkbits));
1025 		if (ret)
1026 			goto out;
1027 		page_no++;
1028 		probe_block += blocks_per_page;
1029 reprobe:
1030 		continue;
1031 	}
1032 	ret = 0;
1033 	if (page_no == 0)
1034 		ret = -EINVAL;
1035 	sis->max = page_no;
1036 	sis->highest_bit = page_no - 1;
1037 done:
1038 	sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1039 					struct swap_extent, list);
1040 	goto out;
1041 bad_bmap:
1042 	printk(KERN_ERR "swapon: swapfile has holes\n");
1043 	ret = -EINVAL;
1044 out:
1045 	return ret;
1046 }
1047 
1048 #if 0	/* We don't need this yet */
1049 #include <linux/backing-dev.h>
1050 int page_queue_congested(struct page *page)
1051 {
1052 	struct backing_dev_info *bdi;
1053 
1054 	BUG_ON(!PageLocked(page));	/* It pins the swap_info_struct */
1055 
1056 	if (PageSwapCache(page)) {
1057 		swp_entry_t entry = { .val = page->private };
1058 		struct swap_info_struct *sis;
1059 
1060 		sis = get_swap_info_struct(swp_type(entry));
1061 		bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1062 	} else
1063 		bdi = page->mapping->backing_dev_info;
1064 	return bdi_write_congested(bdi);
1065 }
1066 #endif
1067 
1068 asmlinkage long sys_swapoff(const char __user * specialfile)
1069 {
1070 	struct swap_info_struct * p = NULL;
1071 	unsigned short *swap_map;
1072 	struct file *swap_file, *victim;
1073 	struct address_space *mapping;
1074 	struct inode *inode;
1075 	char * pathname;
1076 	int i, type, prev;
1077 	int err;
1078 
1079 	if (!capable(CAP_SYS_ADMIN))
1080 		return -EPERM;
1081 
1082 	pathname = getname(specialfile);
1083 	err = PTR_ERR(pathname);
1084 	if (IS_ERR(pathname))
1085 		goto out;
1086 
1087 	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1088 	putname(pathname);
1089 	err = PTR_ERR(victim);
1090 	if (IS_ERR(victim))
1091 		goto out;
1092 
1093 	mapping = victim->f_mapping;
1094 	prev = -1;
1095 	swap_list_lock();
1096 	for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1097 		p = swap_info + type;
1098 		if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1099 			if (p->swap_file->f_mapping == mapping)
1100 				break;
1101 		}
1102 		prev = type;
1103 	}
1104 	if (type < 0) {
1105 		err = -EINVAL;
1106 		swap_list_unlock();
1107 		goto out_dput;
1108 	}
1109 	if (!security_vm_enough_memory(p->pages))
1110 		vm_unacct_memory(p->pages);
1111 	else {
1112 		err = -ENOMEM;
1113 		swap_list_unlock();
1114 		goto out_dput;
1115 	}
1116 	if (prev < 0) {
1117 		swap_list.head = p->next;
1118 	} else {
1119 		swap_info[prev].next = p->next;
1120 	}
1121 	if (type == swap_list.next) {
1122 		/* just pick something that's safe... */
1123 		swap_list.next = swap_list.head;
1124 	}
1125 	nr_swap_pages -= p->pages;
1126 	total_swap_pages -= p->pages;
1127 	p->flags &= ~SWP_WRITEOK;
1128 	swap_list_unlock();
1129 	current->flags |= PF_SWAPOFF;
1130 	err = try_to_unuse(type);
1131 	current->flags &= ~PF_SWAPOFF;
1132 
1133 	/* wait for any unplug function to finish */
1134 	down_write(&swap_unplug_sem);
1135 	up_write(&swap_unplug_sem);
1136 
1137 	if (err) {
1138 		/* re-insert swap space back into swap_list */
1139 		swap_list_lock();
1140 		for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1141 			if (p->prio >= swap_info[i].prio)
1142 				break;
1143 		p->next = i;
1144 		if (prev < 0)
1145 			swap_list.head = swap_list.next = p - swap_info;
1146 		else
1147 			swap_info[prev].next = p - swap_info;
1148 		nr_swap_pages += p->pages;
1149 		total_swap_pages += p->pages;
1150 		p->flags |= SWP_WRITEOK;
1151 		swap_list_unlock();
1152 		goto out_dput;
1153 	}
1154 	down(&swapon_sem);
1155 	swap_list_lock();
1156 	drain_mmlist();
1157 	swap_device_lock(p);
1158 	swap_file = p->swap_file;
1159 	p->swap_file = NULL;
1160 	p->max = 0;
1161 	swap_map = p->swap_map;
1162 	p->swap_map = NULL;
1163 	p->flags = 0;
1164 	destroy_swap_extents(p);
1165 	swap_device_unlock(p);
1166 	swap_list_unlock();
1167 	up(&swapon_sem);
1168 	vfree(swap_map);
1169 	inode = mapping->host;
1170 	if (S_ISBLK(inode->i_mode)) {
1171 		struct block_device *bdev = I_BDEV(inode);
1172 		set_blocksize(bdev, p->old_block_size);
1173 		bd_release(bdev);
1174 	} else {
1175 		down(&inode->i_sem);
1176 		inode->i_flags &= ~S_SWAPFILE;
1177 		up(&inode->i_sem);
1178 	}
1179 	filp_close(swap_file, NULL);
1180 	err = 0;
1181 
1182 out_dput:
1183 	filp_close(victim, NULL);
1184 out:
1185 	return err;
1186 }
1187 
1188 #ifdef CONFIG_PROC_FS
1189 /* iterator */
1190 static void *swap_start(struct seq_file *swap, loff_t *pos)
1191 {
1192 	struct swap_info_struct *ptr = swap_info;
1193 	int i;
1194 	loff_t l = *pos;
1195 
1196 	down(&swapon_sem);
1197 
1198 	for (i = 0; i < nr_swapfiles; i++, ptr++) {
1199 		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1200 			continue;
1201 		if (!l--)
1202 			return ptr;
1203 	}
1204 
1205 	return NULL;
1206 }
1207 
1208 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1209 {
1210 	struct swap_info_struct *ptr = v;
1211 	struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1212 
1213 	for (++ptr; ptr < endptr; ptr++) {
1214 		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1215 			continue;
1216 		++*pos;
1217 		return ptr;
1218 	}
1219 
1220 	return NULL;
1221 }
1222 
1223 static void swap_stop(struct seq_file *swap, void *v)
1224 {
1225 	up(&swapon_sem);
1226 }
1227 
1228 static int swap_show(struct seq_file *swap, void *v)
1229 {
1230 	struct swap_info_struct *ptr = v;
1231 	struct file *file;
1232 	int len;
1233 
1234 	if (v == swap_info)
1235 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1236 
1237 	file = ptr->swap_file;
1238 	len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
1239 	seq_printf(swap, "%*s%s\t%d\t%ld\t%d\n",
1240 		       len < 40 ? 40 - len : 1, " ",
1241 		       S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1242 				"partition" : "file\t",
1243 		       ptr->pages << (PAGE_SHIFT - 10),
1244 		       ptr->inuse_pages << (PAGE_SHIFT - 10),
1245 		       ptr->prio);
1246 	return 0;
1247 }
1248 
1249 static struct seq_operations swaps_op = {
1250 	.start =	swap_start,
1251 	.next =		swap_next,
1252 	.stop =		swap_stop,
1253 	.show =		swap_show
1254 };
1255 
1256 static int swaps_open(struct inode *inode, struct file *file)
1257 {
1258 	return seq_open(file, &swaps_op);
1259 }
1260 
1261 static struct file_operations proc_swaps_operations = {
1262 	.open		= swaps_open,
1263 	.read		= seq_read,
1264 	.llseek		= seq_lseek,
1265 	.release	= seq_release,
1266 };
1267 
1268 static int __init procswaps_init(void)
1269 {
1270 	struct proc_dir_entry *entry;
1271 
1272 	entry = create_proc_entry("swaps", 0, NULL);
1273 	if (entry)
1274 		entry->proc_fops = &proc_swaps_operations;
1275 	return 0;
1276 }
1277 __initcall(procswaps_init);
1278 #endif /* CONFIG_PROC_FS */
1279 
1280 /*
1281  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1282  *
1283  * The swapon system call
1284  */
1285 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1286 {
1287 	struct swap_info_struct * p;
1288 	char *name = NULL;
1289 	struct block_device *bdev = NULL;
1290 	struct file *swap_file = NULL;
1291 	struct address_space *mapping;
1292 	unsigned int type;
1293 	int i, prev;
1294 	int error;
1295 	static int least_priority;
1296 	union swap_header *swap_header = NULL;
1297 	int swap_header_version;
1298 	int nr_good_pages = 0;
1299 	unsigned long maxpages = 1;
1300 	int swapfilesize;
1301 	unsigned short *swap_map;
1302 	struct page *page = NULL;
1303 	struct inode *inode = NULL;
1304 	int did_down = 0;
1305 
1306 	if (!capable(CAP_SYS_ADMIN))
1307 		return -EPERM;
1308 	swap_list_lock();
1309 	p = swap_info;
1310 	for (type = 0 ; type < nr_swapfiles ; type++,p++)
1311 		if (!(p->flags & SWP_USED))
1312 			break;
1313 	error = -EPERM;
1314 	/*
1315 	 * Test if adding another swap device is possible. There are
1316 	 * two limiting factors: 1) the number of bits for the swap
1317 	 * type swp_entry_t definition and 2) the number of bits for
1318 	 * the swap type in the swap ptes as defined by the different
1319 	 * architectures. To honor both limitations a swap entry
1320 	 * with swap offset 0 and swap type ~0UL is created, encoded
1321 	 * to a swap pte, decoded to a swp_entry_t again and finally
1322 	 * the swap type part is extracted. This will mask all bits
1323 	 * from the initial ~0UL that can't be encoded in either the
1324 	 * swp_entry_t or the architecture definition of a swap pte.
1325 	 */
1326 	if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
1327 		swap_list_unlock();
1328 		goto out;
1329 	}
1330 	if (type >= nr_swapfiles)
1331 		nr_swapfiles = type+1;
1332 	INIT_LIST_HEAD(&p->extent_list);
1333 	p->flags = SWP_USED;
1334 	p->nr_extents = 0;
1335 	p->swap_file = NULL;
1336 	p->old_block_size = 0;
1337 	p->swap_map = NULL;
1338 	p->lowest_bit = 0;
1339 	p->highest_bit = 0;
1340 	p->cluster_nr = 0;
1341 	p->inuse_pages = 0;
1342 	spin_lock_init(&p->sdev_lock);
1343 	p->next = -1;
1344 	if (swap_flags & SWAP_FLAG_PREFER) {
1345 		p->prio =
1346 		  (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1347 	} else {
1348 		p->prio = --least_priority;
1349 	}
1350 	swap_list_unlock();
1351 	name = getname(specialfile);
1352 	error = PTR_ERR(name);
1353 	if (IS_ERR(name)) {
1354 		name = NULL;
1355 		goto bad_swap_2;
1356 	}
1357 	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1358 	error = PTR_ERR(swap_file);
1359 	if (IS_ERR(swap_file)) {
1360 		swap_file = NULL;
1361 		goto bad_swap_2;
1362 	}
1363 
1364 	p->swap_file = swap_file;
1365 	mapping = swap_file->f_mapping;
1366 	inode = mapping->host;
1367 
1368 	error = -EBUSY;
1369 	for (i = 0; i < nr_swapfiles; i++) {
1370 		struct swap_info_struct *q = &swap_info[i];
1371 
1372 		if (i == type || !q->swap_file)
1373 			continue;
1374 		if (mapping == q->swap_file->f_mapping)
1375 			goto bad_swap;
1376 	}
1377 
1378 	error = -EINVAL;
1379 	if (S_ISBLK(inode->i_mode)) {
1380 		bdev = I_BDEV(inode);
1381 		error = bd_claim(bdev, sys_swapon);
1382 		if (error < 0) {
1383 			bdev = NULL;
1384 			goto bad_swap;
1385 		}
1386 		p->old_block_size = block_size(bdev);
1387 		error = set_blocksize(bdev, PAGE_SIZE);
1388 		if (error < 0)
1389 			goto bad_swap;
1390 		p->bdev = bdev;
1391 	} else if (S_ISREG(inode->i_mode)) {
1392 		p->bdev = inode->i_sb->s_bdev;
1393 		down(&inode->i_sem);
1394 		did_down = 1;
1395 		if (IS_SWAPFILE(inode)) {
1396 			error = -EBUSY;
1397 			goto bad_swap;
1398 		}
1399 	} else {
1400 		goto bad_swap;
1401 	}
1402 
1403 	swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1404 
1405 	/*
1406 	 * Read the swap header.
1407 	 */
1408 	if (!mapping->a_ops->readpage) {
1409 		error = -EINVAL;
1410 		goto bad_swap;
1411 	}
1412 	page = read_cache_page(mapping, 0,
1413 			(filler_t *)mapping->a_ops->readpage, swap_file);
1414 	if (IS_ERR(page)) {
1415 		error = PTR_ERR(page);
1416 		goto bad_swap;
1417 	}
1418 	wait_on_page_locked(page);
1419 	if (!PageUptodate(page))
1420 		goto bad_swap;
1421 	kmap(page);
1422 	swap_header = page_address(page);
1423 
1424 	if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1425 		swap_header_version = 1;
1426 	else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1427 		swap_header_version = 2;
1428 	else {
1429 		printk("Unable to find swap-space signature\n");
1430 		error = -EINVAL;
1431 		goto bad_swap;
1432 	}
1433 
1434 	switch (swap_header_version) {
1435 	case 1:
1436 		printk(KERN_ERR "version 0 swap is no longer supported. "
1437 			"Use mkswap -v1 %s\n", name);
1438 		error = -EINVAL;
1439 		goto bad_swap;
1440 	case 2:
1441 		/* Check the swap header's sub-version and the size of
1442                    the swap file and bad block lists */
1443 		if (swap_header->info.version != 1) {
1444 			printk(KERN_WARNING
1445 			       "Unable to handle swap header version %d\n",
1446 			       swap_header->info.version);
1447 			error = -EINVAL;
1448 			goto bad_swap;
1449 		}
1450 
1451 		p->lowest_bit  = 1;
1452 		/*
1453 		 * Find out how many pages are allowed for a single swap
1454 		 * device. There are two limiting factors: 1) the number of
1455 		 * bits for the swap offset in the swp_entry_t type and
1456 		 * 2) the number of bits in the a swap pte as defined by
1457 		 * the different architectures. In order to find the
1458 		 * largest possible bit mask a swap entry with swap type 0
1459 		 * and swap offset ~0UL is created, encoded to a swap pte,
1460 		 * decoded to a swp_entry_t again and finally the swap
1461 		 * offset is extracted. This will mask all the bits from
1462 		 * the initial ~0UL mask that can't be encoded in either
1463 		 * the swp_entry_t or the architecture definition of a
1464 		 * swap pte.
1465 		 */
1466 		maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1467 		if (maxpages > swap_header->info.last_page)
1468 			maxpages = swap_header->info.last_page;
1469 		p->highest_bit = maxpages - 1;
1470 
1471 		error = -EINVAL;
1472 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1473 			goto bad_swap;
1474 
1475 		/* OK, set up the swap map and apply the bad block list */
1476 		if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1477 			error = -ENOMEM;
1478 			goto bad_swap;
1479 		}
1480 
1481 		error = 0;
1482 		memset(p->swap_map, 0, maxpages * sizeof(short));
1483 		for (i=0; i<swap_header->info.nr_badpages; i++) {
1484 			int page = swap_header->info.badpages[i];
1485 			if (page <= 0 || page >= swap_header->info.last_page)
1486 				error = -EINVAL;
1487 			else
1488 				p->swap_map[page] = SWAP_MAP_BAD;
1489 		}
1490 		nr_good_pages = swap_header->info.last_page -
1491 				swap_header->info.nr_badpages -
1492 				1 /* header page */;
1493 		if (error)
1494 			goto bad_swap;
1495 	}
1496 
1497 	if (swapfilesize && maxpages > swapfilesize) {
1498 		printk(KERN_WARNING
1499 		       "Swap area shorter than signature indicates\n");
1500 		error = -EINVAL;
1501 		goto bad_swap;
1502 	}
1503 	if (!nr_good_pages) {
1504 		printk(KERN_WARNING "Empty swap-file\n");
1505 		error = -EINVAL;
1506 		goto bad_swap;
1507 	}
1508 	p->swap_map[0] = SWAP_MAP_BAD;
1509 	p->max = maxpages;
1510 	p->pages = nr_good_pages;
1511 
1512 	error = setup_swap_extents(p);
1513 	if (error)
1514 		goto bad_swap;
1515 
1516 	down(&swapon_sem);
1517 	swap_list_lock();
1518 	swap_device_lock(p);
1519 	p->flags = SWP_ACTIVE;
1520 	nr_swap_pages += nr_good_pages;
1521 	total_swap_pages += nr_good_pages;
1522 	printk(KERN_INFO "Adding %dk swap on %s.  Priority:%d extents:%d\n",
1523 		nr_good_pages<<(PAGE_SHIFT-10), name,
1524 		p->prio, p->nr_extents);
1525 
1526 	/* insert swap space into swap_list: */
1527 	prev = -1;
1528 	for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1529 		if (p->prio >= swap_info[i].prio) {
1530 			break;
1531 		}
1532 		prev = i;
1533 	}
1534 	p->next = i;
1535 	if (prev < 0) {
1536 		swap_list.head = swap_list.next = p - swap_info;
1537 	} else {
1538 		swap_info[prev].next = p - swap_info;
1539 	}
1540 	swap_device_unlock(p);
1541 	swap_list_unlock();
1542 	up(&swapon_sem);
1543 	error = 0;
1544 	goto out;
1545 bad_swap:
1546 	if (bdev) {
1547 		set_blocksize(bdev, p->old_block_size);
1548 		bd_release(bdev);
1549 	}
1550 bad_swap_2:
1551 	swap_list_lock();
1552 	swap_map = p->swap_map;
1553 	p->swap_file = NULL;
1554 	p->swap_map = NULL;
1555 	p->flags = 0;
1556 	if (!(swap_flags & SWAP_FLAG_PREFER))
1557 		++least_priority;
1558 	swap_list_unlock();
1559 	destroy_swap_extents(p);
1560 	vfree(swap_map);
1561 	if (swap_file)
1562 		filp_close(swap_file, NULL);
1563 out:
1564 	if (page && !IS_ERR(page)) {
1565 		kunmap(page);
1566 		page_cache_release(page);
1567 	}
1568 	if (name)
1569 		putname(name);
1570 	if (did_down) {
1571 		if (!error)
1572 			inode->i_flags |= S_SWAPFILE;
1573 		up(&inode->i_sem);
1574 	}
1575 	return error;
1576 }
1577 
1578 void si_swapinfo(struct sysinfo *val)
1579 {
1580 	unsigned int i;
1581 	unsigned long nr_to_be_unused = 0;
1582 
1583 	swap_list_lock();
1584 	for (i = 0; i < nr_swapfiles; i++) {
1585 		if (!(swap_info[i].flags & SWP_USED) ||
1586 		     (swap_info[i].flags & SWP_WRITEOK))
1587 			continue;
1588 		nr_to_be_unused += swap_info[i].inuse_pages;
1589 	}
1590 	val->freeswap = nr_swap_pages + nr_to_be_unused;
1591 	val->totalswap = total_swap_pages + nr_to_be_unused;
1592 	swap_list_unlock();
1593 }
1594 
1595 /*
1596  * Verify that a swap entry is valid and increment its swap map count.
1597  *
1598  * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1599  * "permanent", but will be reclaimed by the next swapoff.
1600  */
1601 int swap_duplicate(swp_entry_t entry)
1602 {
1603 	struct swap_info_struct * p;
1604 	unsigned long offset, type;
1605 	int result = 0;
1606 
1607 	type = swp_type(entry);
1608 	if (type >= nr_swapfiles)
1609 		goto bad_file;
1610 	p = type + swap_info;
1611 	offset = swp_offset(entry);
1612 
1613 	swap_device_lock(p);
1614 	if (offset < p->max && p->swap_map[offset]) {
1615 		if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1616 			p->swap_map[offset]++;
1617 			result = 1;
1618 		} else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1619 			if (swap_overflow++ < 5)
1620 				printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1621 			p->swap_map[offset] = SWAP_MAP_MAX;
1622 			result = 1;
1623 		}
1624 	}
1625 	swap_device_unlock(p);
1626 out:
1627 	return result;
1628 
1629 bad_file:
1630 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1631 	goto out;
1632 }
1633 
1634 struct swap_info_struct *
1635 get_swap_info_struct(unsigned type)
1636 {
1637 	return &swap_info[type];
1638 }
1639 
1640 /*
1641  * swap_device_lock prevents swap_map being freed. Don't grab an extra
1642  * reference on the swaphandle, it doesn't matter if it becomes unused.
1643  */
1644 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1645 {
1646 	int ret = 0, i = 1 << page_cluster;
1647 	unsigned long toff;
1648 	struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1649 
1650 	if (!page_cluster)	/* no readahead */
1651 		return 0;
1652 	toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1653 	if (!toff)		/* first page is swap header */
1654 		toff++, i--;
1655 	*offset = toff;
1656 
1657 	swap_device_lock(swapdev);
1658 	do {
1659 		/* Don't read-ahead past the end of the swap area */
1660 		if (toff >= swapdev->max)
1661 			break;
1662 		/* Don't read in free or bad pages */
1663 		if (!swapdev->swap_map[toff])
1664 			break;
1665 		if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1666 			break;
1667 		toff++;
1668 		ret++;
1669 	} while (--i);
1670 	swap_device_unlock(swapdev);
1671 	return ret;
1672 }
1673