1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/config.h> 9 #include <linux/mm.h> 10 #include <linux/hugetlb.h> 11 #include <linux/mman.h> 12 #include <linux/slab.h> 13 #include <linux/kernel_stat.h> 14 #include <linux/swap.h> 15 #include <linux/vmalloc.h> 16 #include <linux/pagemap.h> 17 #include <linux/namei.h> 18 #include <linux/shm.h> 19 #include <linux/blkdev.h> 20 #include <linux/writeback.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/init.h> 24 #include <linux/module.h> 25 #include <linux/rmap.h> 26 #include <linux/security.h> 27 #include <linux/backing-dev.h> 28 #include <linux/syscalls.h> 29 30 #include <asm/pgtable.h> 31 #include <asm/tlbflush.h> 32 #include <linux/swapops.h> 33 34 DEFINE_SPINLOCK(swaplock); 35 unsigned int nr_swapfiles; 36 long total_swap_pages; 37 static int swap_overflow; 38 39 EXPORT_SYMBOL(total_swap_pages); 40 41 static const char Bad_file[] = "Bad swap file entry "; 42 static const char Unused_file[] = "Unused swap file entry "; 43 static const char Bad_offset[] = "Bad swap offset entry "; 44 static const char Unused_offset[] = "Unused swap offset entry "; 45 46 struct swap_list_t swap_list = {-1, -1}; 47 48 struct swap_info_struct swap_info[MAX_SWAPFILES]; 49 50 static DECLARE_MUTEX(swapon_sem); 51 52 /* 53 * We need this because the bdev->unplug_fn can sleep and we cannot 54 * hold swap_list_lock while calling the unplug_fn. And swap_list_lock 55 * cannot be turned into a semaphore. 56 */ 57 static DECLARE_RWSEM(swap_unplug_sem); 58 59 #define SWAPFILE_CLUSTER 256 60 61 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page) 62 { 63 swp_entry_t entry; 64 65 down_read(&swap_unplug_sem); 66 entry.val = page->private; 67 if (PageSwapCache(page)) { 68 struct block_device *bdev = swap_info[swp_type(entry)].bdev; 69 struct backing_dev_info *bdi; 70 71 /* 72 * If the page is removed from swapcache from under us (with a 73 * racy try_to_unuse/swapoff) we need an additional reference 74 * count to avoid reading garbage from page->private above. If 75 * the WARN_ON triggers during a swapoff it maybe the race 76 * condition and it's harmless. However if it triggers without 77 * swapoff it signals a problem. 78 */ 79 WARN_ON(page_count(page) <= 1); 80 81 bdi = bdev->bd_inode->i_mapping->backing_dev_info; 82 bdi->unplug_io_fn(bdi, page); 83 } 84 up_read(&swap_unplug_sem); 85 } 86 87 static inline int scan_swap_map(struct swap_info_struct *si) 88 { 89 unsigned long offset; 90 /* 91 * We try to cluster swap pages by allocating them 92 * sequentially in swap. Once we've allocated 93 * SWAPFILE_CLUSTER pages this way, however, we resort to 94 * first-free allocation, starting a new cluster. This 95 * prevents us from scattering swap pages all over the entire 96 * swap partition, so that we reduce overall disk seek times 97 * between swap pages. -- sct */ 98 if (si->cluster_nr) { 99 while (si->cluster_next <= si->highest_bit) { 100 offset = si->cluster_next++; 101 if (si->swap_map[offset]) 102 continue; 103 si->cluster_nr--; 104 goto got_page; 105 } 106 } 107 si->cluster_nr = SWAPFILE_CLUSTER; 108 109 /* try to find an empty (even not aligned) cluster. */ 110 offset = si->lowest_bit; 111 check_next_cluster: 112 if (offset+SWAPFILE_CLUSTER-1 <= si->highest_bit) 113 { 114 unsigned long nr; 115 for (nr = offset; nr < offset+SWAPFILE_CLUSTER; nr++) 116 if (si->swap_map[nr]) 117 { 118 offset = nr+1; 119 goto check_next_cluster; 120 } 121 /* We found a completly empty cluster, so start 122 * using it. 123 */ 124 goto got_page; 125 } 126 /* No luck, so now go finegrined as usual. -Andrea */ 127 for (offset = si->lowest_bit; offset <= si->highest_bit ; offset++) { 128 if (si->swap_map[offset]) 129 continue; 130 si->lowest_bit = offset+1; 131 got_page: 132 if (offset == si->lowest_bit) 133 si->lowest_bit++; 134 if (offset == si->highest_bit) 135 si->highest_bit--; 136 if (si->lowest_bit > si->highest_bit) { 137 si->lowest_bit = si->max; 138 si->highest_bit = 0; 139 } 140 si->swap_map[offset] = 1; 141 si->inuse_pages++; 142 nr_swap_pages--; 143 si->cluster_next = offset+1; 144 return offset; 145 } 146 si->lowest_bit = si->max; 147 si->highest_bit = 0; 148 return 0; 149 } 150 151 swp_entry_t get_swap_page(void) 152 { 153 struct swap_info_struct * p; 154 unsigned long offset; 155 swp_entry_t entry; 156 int type, wrapped = 0; 157 158 entry.val = 0; /* Out of memory */ 159 swap_list_lock(); 160 type = swap_list.next; 161 if (type < 0) 162 goto out; 163 if (nr_swap_pages <= 0) 164 goto out; 165 166 while (1) { 167 p = &swap_info[type]; 168 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) { 169 swap_device_lock(p); 170 offset = scan_swap_map(p); 171 swap_device_unlock(p); 172 if (offset) { 173 entry = swp_entry(type,offset); 174 type = swap_info[type].next; 175 if (type < 0 || 176 p->prio != swap_info[type].prio) { 177 swap_list.next = swap_list.head; 178 } else { 179 swap_list.next = type; 180 } 181 goto out; 182 } 183 } 184 type = p->next; 185 if (!wrapped) { 186 if (type < 0 || p->prio != swap_info[type].prio) { 187 type = swap_list.head; 188 wrapped = 1; 189 } 190 } else 191 if (type < 0) 192 goto out; /* out of swap space */ 193 } 194 out: 195 swap_list_unlock(); 196 return entry; 197 } 198 199 static struct swap_info_struct * swap_info_get(swp_entry_t entry) 200 { 201 struct swap_info_struct * p; 202 unsigned long offset, type; 203 204 if (!entry.val) 205 goto out; 206 type = swp_type(entry); 207 if (type >= nr_swapfiles) 208 goto bad_nofile; 209 p = & swap_info[type]; 210 if (!(p->flags & SWP_USED)) 211 goto bad_device; 212 offset = swp_offset(entry); 213 if (offset >= p->max) 214 goto bad_offset; 215 if (!p->swap_map[offset]) 216 goto bad_free; 217 swap_list_lock(); 218 if (p->prio > swap_info[swap_list.next].prio) 219 swap_list.next = type; 220 swap_device_lock(p); 221 return p; 222 223 bad_free: 224 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); 225 goto out; 226 bad_offset: 227 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); 228 goto out; 229 bad_device: 230 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); 231 goto out; 232 bad_nofile: 233 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); 234 out: 235 return NULL; 236 } 237 238 static void swap_info_put(struct swap_info_struct * p) 239 { 240 swap_device_unlock(p); 241 swap_list_unlock(); 242 } 243 244 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset) 245 { 246 int count = p->swap_map[offset]; 247 248 if (count < SWAP_MAP_MAX) { 249 count--; 250 p->swap_map[offset] = count; 251 if (!count) { 252 if (offset < p->lowest_bit) 253 p->lowest_bit = offset; 254 if (offset > p->highest_bit) 255 p->highest_bit = offset; 256 nr_swap_pages++; 257 p->inuse_pages--; 258 } 259 } 260 return count; 261 } 262 263 /* 264 * Caller has made sure that the swapdevice corresponding to entry 265 * is still around or has not been recycled. 266 */ 267 void swap_free(swp_entry_t entry) 268 { 269 struct swap_info_struct * p; 270 271 p = swap_info_get(entry); 272 if (p) { 273 swap_entry_free(p, swp_offset(entry)); 274 swap_info_put(p); 275 } 276 } 277 278 /* 279 * Check if we're the only user of a swap page, 280 * when the page is locked. 281 */ 282 static int exclusive_swap_page(struct page *page) 283 { 284 int retval = 0; 285 struct swap_info_struct * p; 286 swp_entry_t entry; 287 288 entry.val = page->private; 289 p = swap_info_get(entry); 290 if (p) { 291 /* Is the only swap cache user the cache itself? */ 292 if (p->swap_map[swp_offset(entry)] == 1) { 293 /* Recheck the page count with the swapcache lock held.. */ 294 write_lock_irq(&swapper_space.tree_lock); 295 if (page_count(page) == 2) 296 retval = 1; 297 write_unlock_irq(&swapper_space.tree_lock); 298 } 299 swap_info_put(p); 300 } 301 return retval; 302 } 303 304 /* 305 * We can use this swap cache entry directly 306 * if there are no other references to it. 307 * 308 * Here "exclusive_swap_page()" does the real 309 * work, but we opportunistically check whether 310 * we need to get all the locks first.. 311 */ 312 int can_share_swap_page(struct page *page) 313 { 314 int retval = 0; 315 316 if (!PageLocked(page)) 317 BUG(); 318 switch (page_count(page)) { 319 case 3: 320 if (!PagePrivate(page)) 321 break; 322 /* Fallthrough */ 323 case 2: 324 if (!PageSwapCache(page)) 325 break; 326 retval = exclusive_swap_page(page); 327 break; 328 case 1: 329 if (PageReserved(page)) 330 break; 331 retval = 1; 332 } 333 return retval; 334 } 335 336 /* 337 * Work out if there are any other processes sharing this 338 * swap cache page. Free it if you can. Return success. 339 */ 340 int remove_exclusive_swap_page(struct page *page) 341 { 342 int retval; 343 struct swap_info_struct * p; 344 swp_entry_t entry; 345 346 BUG_ON(PagePrivate(page)); 347 BUG_ON(!PageLocked(page)); 348 349 if (!PageSwapCache(page)) 350 return 0; 351 if (PageWriteback(page)) 352 return 0; 353 if (page_count(page) != 2) /* 2: us + cache */ 354 return 0; 355 356 entry.val = page->private; 357 p = swap_info_get(entry); 358 if (!p) 359 return 0; 360 361 /* Is the only swap cache user the cache itself? */ 362 retval = 0; 363 if (p->swap_map[swp_offset(entry)] == 1) { 364 /* Recheck the page count with the swapcache lock held.. */ 365 write_lock_irq(&swapper_space.tree_lock); 366 if ((page_count(page) == 2) && !PageWriteback(page)) { 367 __delete_from_swap_cache(page); 368 SetPageDirty(page); 369 retval = 1; 370 } 371 write_unlock_irq(&swapper_space.tree_lock); 372 } 373 swap_info_put(p); 374 375 if (retval) { 376 swap_free(entry); 377 page_cache_release(page); 378 } 379 380 return retval; 381 } 382 383 /* 384 * Free the swap entry like above, but also try to 385 * free the page cache entry if it is the last user. 386 */ 387 void free_swap_and_cache(swp_entry_t entry) 388 { 389 struct swap_info_struct * p; 390 struct page *page = NULL; 391 392 p = swap_info_get(entry); 393 if (p) { 394 if (swap_entry_free(p, swp_offset(entry)) == 1) 395 page = find_trylock_page(&swapper_space, entry.val); 396 swap_info_put(p); 397 } 398 if (page) { 399 int one_user; 400 401 BUG_ON(PagePrivate(page)); 402 page_cache_get(page); 403 one_user = (page_count(page) == 2); 404 /* Only cache user (+us), or swap space full? Free it! */ 405 if (!PageWriteback(page) && (one_user || vm_swap_full())) { 406 delete_from_swap_cache(page); 407 SetPageDirty(page); 408 } 409 unlock_page(page); 410 page_cache_release(page); 411 } 412 } 413 414 /* 415 * Always set the resulting pte to be nowrite (the same as COW pages 416 * after one process has exited). We don't know just how many PTEs will 417 * share this swap entry, so be cautious and let do_wp_page work out 418 * what to do if a write is requested later. 419 * 420 * vma->vm_mm->page_table_lock is held. 421 */ 422 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte, 423 unsigned long addr, swp_entry_t entry, struct page *page) 424 { 425 inc_mm_counter(vma->vm_mm, rss); 426 get_page(page); 427 set_pte_at(vma->vm_mm, addr, pte, 428 pte_mkold(mk_pte(page, vma->vm_page_prot))); 429 page_add_anon_rmap(page, vma, addr); 430 swap_free(entry); 431 /* 432 * Move the page to the active list so it is not 433 * immediately swapped out again after swapon. 434 */ 435 activate_page(page); 436 } 437 438 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 439 unsigned long addr, unsigned long end, 440 swp_entry_t entry, struct page *page) 441 { 442 pte_t *pte; 443 pte_t swp_pte = swp_entry_to_pte(entry); 444 445 pte = pte_offset_map(pmd, addr); 446 do { 447 /* 448 * swapoff spends a _lot_ of time in this loop! 449 * Test inline before going to call unuse_pte. 450 */ 451 if (unlikely(pte_same(*pte, swp_pte))) { 452 unuse_pte(vma, pte, addr, entry, page); 453 pte_unmap(pte); 454 return 1; 455 } 456 } while (pte++, addr += PAGE_SIZE, addr != end); 457 pte_unmap(pte - 1); 458 return 0; 459 } 460 461 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 462 unsigned long addr, unsigned long end, 463 swp_entry_t entry, struct page *page) 464 { 465 pmd_t *pmd; 466 unsigned long next; 467 468 pmd = pmd_offset(pud, addr); 469 do { 470 next = pmd_addr_end(addr, end); 471 if (pmd_none_or_clear_bad(pmd)) 472 continue; 473 if (unuse_pte_range(vma, pmd, addr, next, entry, page)) 474 return 1; 475 } while (pmd++, addr = next, addr != end); 476 return 0; 477 } 478 479 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 480 unsigned long addr, unsigned long end, 481 swp_entry_t entry, struct page *page) 482 { 483 pud_t *pud; 484 unsigned long next; 485 486 pud = pud_offset(pgd, addr); 487 do { 488 next = pud_addr_end(addr, end); 489 if (pud_none_or_clear_bad(pud)) 490 continue; 491 if (unuse_pmd_range(vma, pud, addr, next, entry, page)) 492 return 1; 493 } while (pud++, addr = next, addr != end); 494 return 0; 495 } 496 497 static int unuse_vma(struct vm_area_struct *vma, 498 swp_entry_t entry, struct page *page) 499 { 500 pgd_t *pgd; 501 unsigned long addr, end, next; 502 503 if (page->mapping) { 504 addr = page_address_in_vma(page, vma); 505 if (addr == -EFAULT) 506 return 0; 507 else 508 end = addr + PAGE_SIZE; 509 } else { 510 addr = vma->vm_start; 511 end = vma->vm_end; 512 } 513 514 pgd = pgd_offset(vma->vm_mm, addr); 515 do { 516 next = pgd_addr_end(addr, end); 517 if (pgd_none_or_clear_bad(pgd)) 518 continue; 519 if (unuse_pud_range(vma, pgd, addr, next, entry, page)) 520 return 1; 521 } while (pgd++, addr = next, addr != end); 522 return 0; 523 } 524 525 static int unuse_mm(struct mm_struct *mm, 526 swp_entry_t entry, struct page *page) 527 { 528 struct vm_area_struct *vma; 529 530 if (!down_read_trylock(&mm->mmap_sem)) { 531 /* 532 * Our reference to the page stops try_to_unmap_one from 533 * unmapping its ptes, so swapoff can make progress. 534 */ 535 unlock_page(page); 536 down_read(&mm->mmap_sem); 537 lock_page(page); 538 } 539 spin_lock(&mm->page_table_lock); 540 for (vma = mm->mmap; vma; vma = vma->vm_next) { 541 if (vma->anon_vma && unuse_vma(vma, entry, page)) 542 break; 543 } 544 spin_unlock(&mm->page_table_lock); 545 up_read(&mm->mmap_sem); 546 /* 547 * Currently unuse_mm cannot fail, but leave error handling 548 * at call sites for now, since we change it from time to time. 549 */ 550 return 0; 551 } 552 553 /* 554 * Scan swap_map from current position to next entry still in use. 555 * Recycle to start on reaching the end, returning 0 when empty. 556 */ 557 static int find_next_to_unuse(struct swap_info_struct *si, int prev) 558 { 559 int max = si->max; 560 int i = prev; 561 int count; 562 563 /* 564 * No need for swap_device_lock(si) here: we're just looking 565 * for whether an entry is in use, not modifying it; false 566 * hits are okay, and sys_swapoff() has already prevented new 567 * allocations from this area (while holding swap_list_lock()). 568 */ 569 for (;;) { 570 if (++i >= max) { 571 if (!prev) { 572 i = 0; 573 break; 574 } 575 /* 576 * No entries in use at top of swap_map, 577 * loop back to start and recheck there. 578 */ 579 max = prev + 1; 580 prev = 0; 581 i = 1; 582 } 583 count = si->swap_map[i]; 584 if (count && count != SWAP_MAP_BAD) 585 break; 586 } 587 return i; 588 } 589 590 /* 591 * We completely avoid races by reading each swap page in advance, 592 * and then search for the process using it. All the necessary 593 * page table adjustments can then be made atomically. 594 */ 595 static int try_to_unuse(unsigned int type) 596 { 597 struct swap_info_struct * si = &swap_info[type]; 598 struct mm_struct *start_mm; 599 unsigned short *swap_map; 600 unsigned short swcount; 601 struct page *page; 602 swp_entry_t entry; 603 int i = 0; 604 int retval = 0; 605 int reset_overflow = 0; 606 int shmem; 607 608 /* 609 * When searching mms for an entry, a good strategy is to 610 * start at the first mm we freed the previous entry from 611 * (though actually we don't notice whether we or coincidence 612 * freed the entry). Initialize this start_mm with a hold. 613 * 614 * A simpler strategy would be to start at the last mm we 615 * freed the previous entry from; but that would take less 616 * advantage of mmlist ordering, which clusters forked mms 617 * together, child after parent. If we race with dup_mmap(), we 618 * prefer to resolve parent before child, lest we miss entries 619 * duplicated after we scanned child: using last mm would invert 620 * that. Though it's only a serious concern when an overflowed 621 * swap count is reset from SWAP_MAP_MAX, preventing a rescan. 622 */ 623 start_mm = &init_mm; 624 atomic_inc(&init_mm.mm_users); 625 626 /* 627 * Keep on scanning until all entries have gone. Usually, 628 * one pass through swap_map is enough, but not necessarily: 629 * there are races when an instance of an entry might be missed. 630 */ 631 while ((i = find_next_to_unuse(si, i)) != 0) { 632 if (signal_pending(current)) { 633 retval = -EINTR; 634 break; 635 } 636 637 /* 638 * Get a page for the entry, using the existing swap 639 * cache page if there is one. Otherwise, get a clean 640 * page and read the swap into it. 641 */ 642 swap_map = &si->swap_map[i]; 643 entry = swp_entry(type, i); 644 page = read_swap_cache_async(entry, NULL, 0); 645 if (!page) { 646 /* 647 * Either swap_duplicate() failed because entry 648 * has been freed independently, and will not be 649 * reused since sys_swapoff() already disabled 650 * allocation from here, or alloc_page() failed. 651 */ 652 if (!*swap_map) 653 continue; 654 retval = -ENOMEM; 655 break; 656 } 657 658 /* 659 * Don't hold on to start_mm if it looks like exiting. 660 */ 661 if (atomic_read(&start_mm->mm_users) == 1) { 662 mmput(start_mm); 663 start_mm = &init_mm; 664 atomic_inc(&init_mm.mm_users); 665 } 666 667 /* 668 * Wait for and lock page. When do_swap_page races with 669 * try_to_unuse, do_swap_page can handle the fault much 670 * faster than try_to_unuse can locate the entry. This 671 * apparently redundant "wait_on_page_locked" lets try_to_unuse 672 * defer to do_swap_page in such a case - in some tests, 673 * do_swap_page and try_to_unuse repeatedly compete. 674 */ 675 wait_on_page_locked(page); 676 wait_on_page_writeback(page); 677 lock_page(page); 678 wait_on_page_writeback(page); 679 680 /* 681 * Remove all references to entry. 682 * Whenever we reach init_mm, there's no address space 683 * to search, but use it as a reminder to search shmem. 684 */ 685 shmem = 0; 686 swcount = *swap_map; 687 if (swcount > 1) { 688 if (start_mm == &init_mm) 689 shmem = shmem_unuse(entry, page); 690 else 691 retval = unuse_mm(start_mm, entry, page); 692 } 693 if (*swap_map > 1) { 694 int set_start_mm = (*swap_map >= swcount); 695 struct list_head *p = &start_mm->mmlist; 696 struct mm_struct *new_start_mm = start_mm; 697 struct mm_struct *prev_mm = start_mm; 698 struct mm_struct *mm; 699 700 atomic_inc(&new_start_mm->mm_users); 701 atomic_inc(&prev_mm->mm_users); 702 spin_lock(&mmlist_lock); 703 while (*swap_map > 1 && !retval && 704 (p = p->next) != &start_mm->mmlist) { 705 mm = list_entry(p, struct mm_struct, mmlist); 706 if (atomic_inc_return(&mm->mm_users) == 1) { 707 atomic_dec(&mm->mm_users); 708 continue; 709 } 710 spin_unlock(&mmlist_lock); 711 mmput(prev_mm); 712 prev_mm = mm; 713 714 cond_resched(); 715 716 swcount = *swap_map; 717 if (swcount <= 1) 718 ; 719 else if (mm == &init_mm) { 720 set_start_mm = 1; 721 shmem = shmem_unuse(entry, page); 722 } else 723 retval = unuse_mm(mm, entry, page); 724 if (set_start_mm && *swap_map < swcount) { 725 mmput(new_start_mm); 726 atomic_inc(&mm->mm_users); 727 new_start_mm = mm; 728 set_start_mm = 0; 729 } 730 spin_lock(&mmlist_lock); 731 } 732 spin_unlock(&mmlist_lock); 733 mmput(prev_mm); 734 mmput(start_mm); 735 start_mm = new_start_mm; 736 } 737 if (retval) { 738 unlock_page(page); 739 page_cache_release(page); 740 break; 741 } 742 743 /* 744 * How could swap count reach 0x7fff when the maximum 745 * pid is 0x7fff, and there's no way to repeat a swap 746 * page within an mm (except in shmem, where it's the 747 * shared object which takes the reference count)? 748 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4. 749 * 750 * If that's wrong, then we should worry more about 751 * exit_mmap() and do_munmap() cases described above: 752 * we might be resetting SWAP_MAP_MAX too early here. 753 * We know "Undead"s can happen, they're okay, so don't 754 * report them; but do report if we reset SWAP_MAP_MAX. 755 */ 756 if (*swap_map == SWAP_MAP_MAX) { 757 swap_device_lock(si); 758 *swap_map = 1; 759 swap_device_unlock(si); 760 reset_overflow = 1; 761 } 762 763 /* 764 * If a reference remains (rare), we would like to leave 765 * the page in the swap cache; but try_to_unmap could 766 * then re-duplicate the entry once we drop page lock, 767 * so we might loop indefinitely; also, that page could 768 * not be swapped out to other storage meanwhile. So: 769 * delete from cache even if there's another reference, 770 * after ensuring that the data has been saved to disk - 771 * since if the reference remains (rarer), it will be 772 * read from disk into another page. Splitting into two 773 * pages would be incorrect if swap supported "shared 774 * private" pages, but they are handled by tmpfs files. 775 * 776 * Note shmem_unuse already deleted a swappage from 777 * the swap cache, unless the move to filepage failed: 778 * in which case it left swappage in cache, lowered its 779 * swap count to pass quickly through the loops above, 780 * and now we must reincrement count to try again later. 781 */ 782 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) { 783 struct writeback_control wbc = { 784 .sync_mode = WB_SYNC_NONE, 785 }; 786 787 swap_writepage(page, &wbc); 788 lock_page(page); 789 wait_on_page_writeback(page); 790 } 791 if (PageSwapCache(page)) { 792 if (shmem) 793 swap_duplicate(entry); 794 else 795 delete_from_swap_cache(page); 796 } 797 798 /* 799 * So we could skip searching mms once swap count went 800 * to 1, we did not mark any present ptes as dirty: must 801 * mark page dirty so shrink_list will preserve it. 802 */ 803 SetPageDirty(page); 804 unlock_page(page); 805 page_cache_release(page); 806 807 /* 808 * Make sure that we aren't completely killing 809 * interactive performance. 810 */ 811 cond_resched(); 812 } 813 814 mmput(start_mm); 815 if (reset_overflow) { 816 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n"); 817 swap_overflow = 0; 818 } 819 return retval; 820 } 821 822 /* 823 * After a successful try_to_unuse, if no swap is now in use, we know we 824 * can empty the mmlist. swap_list_lock must be held on entry and exit. 825 * Note that mmlist_lock nests inside swap_list_lock, and an mm must be 826 * added to the mmlist just after page_duplicate - before would be racy. 827 */ 828 static void drain_mmlist(void) 829 { 830 struct list_head *p, *next; 831 unsigned int i; 832 833 for (i = 0; i < nr_swapfiles; i++) 834 if (swap_info[i].inuse_pages) 835 return; 836 spin_lock(&mmlist_lock); 837 list_for_each_safe(p, next, &init_mm.mmlist) 838 list_del_init(p); 839 spin_unlock(&mmlist_lock); 840 } 841 842 /* 843 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 844 * corresponds to page offset `offset'. 845 */ 846 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset) 847 { 848 struct swap_extent *se = sis->curr_swap_extent; 849 struct swap_extent *start_se = se; 850 851 for ( ; ; ) { 852 struct list_head *lh; 853 854 if (se->start_page <= offset && 855 offset < (se->start_page + se->nr_pages)) { 856 return se->start_block + (offset - se->start_page); 857 } 858 lh = se->list.prev; 859 if (lh == &sis->extent_list) 860 lh = lh->prev; 861 se = list_entry(lh, struct swap_extent, list); 862 sis->curr_swap_extent = se; 863 BUG_ON(se == start_se); /* It *must* be present */ 864 } 865 } 866 867 /* 868 * Free all of a swapdev's extent information 869 */ 870 static void destroy_swap_extents(struct swap_info_struct *sis) 871 { 872 while (!list_empty(&sis->extent_list)) { 873 struct swap_extent *se; 874 875 se = list_entry(sis->extent_list.next, 876 struct swap_extent, list); 877 list_del(&se->list); 878 kfree(se); 879 } 880 sis->nr_extents = 0; 881 } 882 883 /* 884 * Add a block range (and the corresponding page range) into this swapdev's 885 * extent list. The extent list is kept sorted in block order. 886 * 887 * This function rather assumes that it is called in ascending sector_t order. 888 * It doesn't look for extent coalescing opportunities. 889 */ 890 static int 891 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 892 unsigned long nr_pages, sector_t start_block) 893 { 894 struct swap_extent *se; 895 struct swap_extent *new_se; 896 struct list_head *lh; 897 898 lh = sis->extent_list.next; /* The highest-addressed block */ 899 while (lh != &sis->extent_list) { 900 se = list_entry(lh, struct swap_extent, list); 901 if (se->start_block + se->nr_pages == start_block && 902 se->start_page + se->nr_pages == start_page) { 903 /* Merge it */ 904 se->nr_pages += nr_pages; 905 return 0; 906 } 907 lh = lh->next; 908 } 909 910 /* 911 * No merge. Insert a new extent, preserving ordering. 912 */ 913 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 914 if (new_se == NULL) 915 return -ENOMEM; 916 new_se->start_page = start_page; 917 new_se->nr_pages = nr_pages; 918 new_se->start_block = start_block; 919 920 lh = sis->extent_list.prev; /* The lowest block */ 921 while (lh != &sis->extent_list) { 922 se = list_entry(lh, struct swap_extent, list); 923 if (se->start_block > start_block) 924 break; 925 lh = lh->prev; 926 } 927 list_add_tail(&new_se->list, lh); 928 sis->nr_extents++; 929 return 0; 930 } 931 932 /* 933 * A `swap extent' is a simple thing which maps a contiguous range of pages 934 * onto a contiguous range of disk blocks. An ordered list of swap extents 935 * is built at swapon time and is then used at swap_writepage/swap_readpage 936 * time for locating where on disk a page belongs. 937 * 938 * If the swapfile is an S_ISBLK block device, a single extent is installed. 939 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 940 * swap files identically. 941 * 942 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 943 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 944 * swapfiles are handled *identically* after swapon time. 945 * 946 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 947 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 948 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 949 * requirements, they are simply tossed out - we will never use those blocks 950 * for swapping. 951 * 952 * For S_ISREG swapfiles we hold i_sem across the life of the swapon. This 953 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 954 * which will scribble on the fs. 955 * 956 * The amount of disk space which a single swap extent represents varies. 957 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 958 * extents in the list. To avoid much list walking, we cache the previous 959 * search location in `curr_swap_extent', and start new searches from there. 960 * This is extremely effective. The average number of iterations in 961 * map_swap_page() has been measured at about 0.3 per page. - akpm. 962 */ 963 static int setup_swap_extents(struct swap_info_struct *sis) 964 { 965 struct inode *inode; 966 unsigned blocks_per_page; 967 unsigned long page_no; 968 unsigned blkbits; 969 sector_t probe_block; 970 sector_t last_block; 971 int ret; 972 973 inode = sis->swap_file->f_mapping->host; 974 if (S_ISBLK(inode->i_mode)) { 975 ret = add_swap_extent(sis, 0, sis->max, 0); 976 goto done; 977 } 978 979 blkbits = inode->i_blkbits; 980 blocks_per_page = PAGE_SIZE >> blkbits; 981 982 /* 983 * Map all the blocks into the extent list. This code doesn't try 984 * to be very smart. 985 */ 986 probe_block = 0; 987 page_no = 0; 988 last_block = i_size_read(inode) >> blkbits; 989 while ((probe_block + blocks_per_page) <= last_block && 990 page_no < sis->max) { 991 unsigned block_in_page; 992 sector_t first_block; 993 994 first_block = bmap(inode, probe_block); 995 if (first_block == 0) 996 goto bad_bmap; 997 998 /* 999 * It must be PAGE_SIZE aligned on-disk 1000 */ 1001 if (first_block & (blocks_per_page - 1)) { 1002 probe_block++; 1003 goto reprobe; 1004 } 1005 1006 for (block_in_page = 1; block_in_page < blocks_per_page; 1007 block_in_page++) { 1008 sector_t block; 1009 1010 block = bmap(inode, probe_block + block_in_page); 1011 if (block == 0) 1012 goto bad_bmap; 1013 if (block != first_block + block_in_page) { 1014 /* Discontiguity */ 1015 probe_block++; 1016 goto reprobe; 1017 } 1018 } 1019 1020 /* 1021 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 1022 */ 1023 ret = add_swap_extent(sis, page_no, 1, 1024 first_block >> (PAGE_SHIFT - blkbits)); 1025 if (ret) 1026 goto out; 1027 page_no++; 1028 probe_block += blocks_per_page; 1029 reprobe: 1030 continue; 1031 } 1032 ret = 0; 1033 if (page_no == 0) 1034 ret = -EINVAL; 1035 sis->max = page_no; 1036 sis->highest_bit = page_no - 1; 1037 done: 1038 sis->curr_swap_extent = list_entry(sis->extent_list.prev, 1039 struct swap_extent, list); 1040 goto out; 1041 bad_bmap: 1042 printk(KERN_ERR "swapon: swapfile has holes\n"); 1043 ret = -EINVAL; 1044 out: 1045 return ret; 1046 } 1047 1048 #if 0 /* We don't need this yet */ 1049 #include <linux/backing-dev.h> 1050 int page_queue_congested(struct page *page) 1051 { 1052 struct backing_dev_info *bdi; 1053 1054 BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */ 1055 1056 if (PageSwapCache(page)) { 1057 swp_entry_t entry = { .val = page->private }; 1058 struct swap_info_struct *sis; 1059 1060 sis = get_swap_info_struct(swp_type(entry)); 1061 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info; 1062 } else 1063 bdi = page->mapping->backing_dev_info; 1064 return bdi_write_congested(bdi); 1065 } 1066 #endif 1067 1068 asmlinkage long sys_swapoff(const char __user * specialfile) 1069 { 1070 struct swap_info_struct * p = NULL; 1071 unsigned short *swap_map; 1072 struct file *swap_file, *victim; 1073 struct address_space *mapping; 1074 struct inode *inode; 1075 char * pathname; 1076 int i, type, prev; 1077 int err; 1078 1079 if (!capable(CAP_SYS_ADMIN)) 1080 return -EPERM; 1081 1082 pathname = getname(specialfile); 1083 err = PTR_ERR(pathname); 1084 if (IS_ERR(pathname)) 1085 goto out; 1086 1087 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0); 1088 putname(pathname); 1089 err = PTR_ERR(victim); 1090 if (IS_ERR(victim)) 1091 goto out; 1092 1093 mapping = victim->f_mapping; 1094 prev = -1; 1095 swap_list_lock(); 1096 for (type = swap_list.head; type >= 0; type = swap_info[type].next) { 1097 p = swap_info + type; 1098 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) { 1099 if (p->swap_file->f_mapping == mapping) 1100 break; 1101 } 1102 prev = type; 1103 } 1104 if (type < 0) { 1105 err = -EINVAL; 1106 swap_list_unlock(); 1107 goto out_dput; 1108 } 1109 if (!security_vm_enough_memory(p->pages)) 1110 vm_unacct_memory(p->pages); 1111 else { 1112 err = -ENOMEM; 1113 swap_list_unlock(); 1114 goto out_dput; 1115 } 1116 if (prev < 0) { 1117 swap_list.head = p->next; 1118 } else { 1119 swap_info[prev].next = p->next; 1120 } 1121 if (type == swap_list.next) { 1122 /* just pick something that's safe... */ 1123 swap_list.next = swap_list.head; 1124 } 1125 nr_swap_pages -= p->pages; 1126 total_swap_pages -= p->pages; 1127 p->flags &= ~SWP_WRITEOK; 1128 swap_list_unlock(); 1129 current->flags |= PF_SWAPOFF; 1130 err = try_to_unuse(type); 1131 current->flags &= ~PF_SWAPOFF; 1132 1133 /* wait for any unplug function to finish */ 1134 down_write(&swap_unplug_sem); 1135 up_write(&swap_unplug_sem); 1136 1137 if (err) { 1138 /* re-insert swap space back into swap_list */ 1139 swap_list_lock(); 1140 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next) 1141 if (p->prio >= swap_info[i].prio) 1142 break; 1143 p->next = i; 1144 if (prev < 0) 1145 swap_list.head = swap_list.next = p - swap_info; 1146 else 1147 swap_info[prev].next = p - swap_info; 1148 nr_swap_pages += p->pages; 1149 total_swap_pages += p->pages; 1150 p->flags |= SWP_WRITEOK; 1151 swap_list_unlock(); 1152 goto out_dput; 1153 } 1154 down(&swapon_sem); 1155 swap_list_lock(); 1156 drain_mmlist(); 1157 swap_device_lock(p); 1158 swap_file = p->swap_file; 1159 p->swap_file = NULL; 1160 p->max = 0; 1161 swap_map = p->swap_map; 1162 p->swap_map = NULL; 1163 p->flags = 0; 1164 destroy_swap_extents(p); 1165 swap_device_unlock(p); 1166 swap_list_unlock(); 1167 up(&swapon_sem); 1168 vfree(swap_map); 1169 inode = mapping->host; 1170 if (S_ISBLK(inode->i_mode)) { 1171 struct block_device *bdev = I_BDEV(inode); 1172 set_blocksize(bdev, p->old_block_size); 1173 bd_release(bdev); 1174 } else { 1175 down(&inode->i_sem); 1176 inode->i_flags &= ~S_SWAPFILE; 1177 up(&inode->i_sem); 1178 } 1179 filp_close(swap_file, NULL); 1180 err = 0; 1181 1182 out_dput: 1183 filp_close(victim, NULL); 1184 out: 1185 return err; 1186 } 1187 1188 #ifdef CONFIG_PROC_FS 1189 /* iterator */ 1190 static void *swap_start(struct seq_file *swap, loff_t *pos) 1191 { 1192 struct swap_info_struct *ptr = swap_info; 1193 int i; 1194 loff_t l = *pos; 1195 1196 down(&swapon_sem); 1197 1198 for (i = 0; i < nr_swapfiles; i++, ptr++) { 1199 if (!(ptr->flags & SWP_USED) || !ptr->swap_map) 1200 continue; 1201 if (!l--) 1202 return ptr; 1203 } 1204 1205 return NULL; 1206 } 1207 1208 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 1209 { 1210 struct swap_info_struct *ptr = v; 1211 struct swap_info_struct *endptr = swap_info + nr_swapfiles; 1212 1213 for (++ptr; ptr < endptr; ptr++) { 1214 if (!(ptr->flags & SWP_USED) || !ptr->swap_map) 1215 continue; 1216 ++*pos; 1217 return ptr; 1218 } 1219 1220 return NULL; 1221 } 1222 1223 static void swap_stop(struct seq_file *swap, void *v) 1224 { 1225 up(&swapon_sem); 1226 } 1227 1228 static int swap_show(struct seq_file *swap, void *v) 1229 { 1230 struct swap_info_struct *ptr = v; 1231 struct file *file; 1232 int len; 1233 1234 if (v == swap_info) 1235 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 1236 1237 file = ptr->swap_file; 1238 len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\"); 1239 seq_printf(swap, "%*s%s\t%d\t%ld\t%d\n", 1240 len < 40 ? 40 - len : 1, " ", 1241 S_ISBLK(file->f_dentry->d_inode->i_mode) ? 1242 "partition" : "file\t", 1243 ptr->pages << (PAGE_SHIFT - 10), 1244 ptr->inuse_pages << (PAGE_SHIFT - 10), 1245 ptr->prio); 1246 return 0; 1247 } 1248 1249 static struct seq_operations swaps_op = { 1250 .start = swap_start, 1251 .next = swap_next, 1252 .stop = swap_stop, 1253 .show = swap_show 1254 }; 1255 1256 static int swaps_open(struct inode *inode, struct file *file) 1257 { 1258 return seq_open(file, &swaps_op); 1259 } 1260 1261 static struct file_operations proc_swaps_operations = { 1262 .open = swaps_open, 1263 .read = seq_read, 1264 .llseek = seq_lseek, 1265 .release = seq_release, 1266 }; 1267 1268 static int __init procswaps_init(void) 1269 { 1270 struct proc_dir_entry *entry; 1271 1272 entry = create_proc_entry("swaps", 0, NULL); 1273 if (entry) 1274 entry->proc_fops = &proc_swaps_operations; 1275 return 0; 1276 } 1277 __initcall(procswaps_init); 1278 #endif /* CONFIG_PROC_FS */ 1279 1280 /* 1281 * Written 01/25/92 by Simmule Turner, heavily changed by Linus. 1282 * 1283 * The swapon system call 1284 */ 1285 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) 1286 { 1287 struct swap_info_struct * p; 1288 char *name = NULL; 1289 struct block_device *bdev = NULL; 1290 struct file *swap_file = NULL; 1291 struct address_space *mapping; 1292 unsigned int type; 1293 int i, prev; 1294 int error; 1295 static int least_priority; 1296 union swap_header *swap_header = NULL; 1297 int swap_header_version; 1298 int nr_good_pages = 0; 1299 unsigned long maxpages = 1; 1300 int swapfilesize; 1301 unsigned short *swap_map; 1302 struct page *page = NULL; 1303 struct inode *inode = NULL; 1304 int did_down = 0; 1305 1306 if (!capable(CAP_SYS_ADMIN)) 1307 return -EPERM; 1308 swap_list_lock(); 1309 p = swap_info; 1310 for (type = 0 ; type < nr_swapfiles ; type++,p++) 1311 if (!(p->flags & SWP_USED)) 1312 break; 1313 error = -EPERM; 1314 /* 1315 * Test if adding another swap device is possible. There are 1316 * two limiting factors: 1) the number of bits for the swap 1317 * type swp_entry_t definition and 2) the number of bits for 1318 * the swap type in the swap ptes as defined by the different 1319 * architectures. To honor both limitations a swap entry 1320 * with swap offset 0 and swap type ~0UL is created, encoded 1321 * to a swap pte, decoded to a swp_entry_t again and finally 1322 * the swap type part is extracted. This will mask all bits 1323 * from the initial ~0UL that can't be encoded in either the 1324 * swp_entry_t or the architecture definition of a swap pte. 1325 */ 1326 if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) { 1327 swap_list_unlock(); 1328 goto out; 1329 } 1330 if (type >= nr_swapfiles) 1331 nr_swapfiles = type+1; 1332 INIT_LIST_HEAD(&p->extent_list); 1333 p->flags = SWP_USED; 1334 p->nr_extents = 0; 1335 p->swap_file = NULL; 1336 p->old_block_size = 0; 1337 p->swap_map = NULL; 1338 p->lowest_bit = 0; 1339 p->highest_bit = 0; 1340 p->cluster_nr = 0; 1341 p->inuse_pages = 0; 1342 spin_lock_init(&p->sdev_lock); 1343 p->next = -1; 1344 if (swap_flags & SWAP_FLAG_PREFER) { 1345 p->prio = 1346 (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT; 1347 } else { 1348 p->prio = --least_priority; 1349 } 1350 swap_list_unlock(); 1351 name = getname(specialfile); 1352 error = PTR_ERR(name); 1353 if (IS_ERR(name)) { 1354 name = NULL; 1355 goto bad_swap_2; 1356 } 1357 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); 1358 error = PTR_ERR(swap_file); 1359 if (IS_ERR(swap_file)) { 1360 swap_file = NULL; 1361 goto bad_swap_2; 1362 } 1363 1364 p->swap_file = swap_file; 1365 mapping = swap_file->f_mapping; 1366 inode = mapping->host; 1367 1368 error = -EBUSY; 1369 for (i = 0; i < nr_swapfiles; i++) { 1370 struct swap_info_struct *q = &swap_info[i]; 1371 1372 if (i == type || !q->swap_file) 1373 continue; 1374 if (mapping == q->swap_file->f_mapping) 1375 goto bad_swap; 1376 } 1377 1378 error = -EINVAL; 1379 if (S_ISBLK(inode->i_mode)) { 1380 bdev = I_BDEV(inode); 1381 error = bd_claim(bdev, sys_swapon); 1382 if (error < 0) { 1383 bdev = NULL; 1384 goto bad_swap; 1385 } 1386 p->old_block_size = block_size(bdev); 1387 error = set_blocksize(bdev, PAGE_SIZE); 1388 if (error < 0) 1389 goto bad_swap; 1390 p->bdev = bdev; 1391 } else if (S_ISREG(inode->i_mode)) { 1392 p->bdev = inode->i_sb->s_bdev; 1393 down(&inode->i_sem); 1394 did_down = 1; 1395 if (IS_SWAPFILE(inode)) { 1396 error = -EBUSY; 1397 goto bad_swap; 1398 } 1399 } else { 1400 goto bad_swap; 1401 } 1402 1403 swapfilesize = i_size_read(inode) >> PAGE_SHIFT; 1404 1405 /* 1406 * Read the swap header. 1407 */ 1408 if (!mapping->a_ops->readpage) { 1409 error = -EINVAL; 1410 goto bad_swap; 1411 } 1412 page = read_cache_page(mapping, 0, 1413 (filler_t *)mapping->a_ops->readpage, swap_file); 1414 if (IS_ERR(page)) { 1415 error = PTR_ERR(page); 1416 goto bad_swap; 1417 } 1418 wait_on_page_locked(page); 1419 if (!PageUptodate(page)) 1420 goto bad_swap; 1421 kmap(page); 1422 swap_header = page_address(page); 1423 1424 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10)) 1425 swap_header_version = 1; 1426 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10)) 1427 swap_header_version = 2; 1428 else { 1429 printk("Unable to find swap-space signature\n"); 1430 error = -EINVAL; 1431 goto bad_swap; 1432 } 1433 1434 switch (swap_header_version) { 1435 case 1: 1436 printk(KERN_ERR "version 0 swap is no longer supported. " 1437 "Use mkswap -v1 %s\n", name); 1438 error = -EINVAL; 1439 goto bad_swap; 1440 case 2: 1441 /* Check the swap header's sub-version and the size of 1442 the swap file and bad block lists */ 1443 if (swap_header->info.version != 1) { 1444 printk(KERN_WARNING 1445 "Unable to handle swap header version %d\n", 1446 swap_header->info.version); 1447 error = -EINVAL; 1448 goto bad_swap; 1449 } 1450 1451 p->lowest_bit = 1; 1452 /* 1453 * Find out how many pages are allowed for a single swap 1454 * device. There are two limiting factors: 1) the number of 1455 * bits for the swap offset in the swp_entry_t type and 1456 * 2) the number of bits in the a swap pte as defined by 1457 * the different architectures. In order to find the 1458 * largest possible bit mask a swap entry with swap type 0 1459 * and swap offset ~0UL is created, encoded to a swap pte, 1460 * decoded to a swp_entry_t again and finally the swap 1461 * offset is extracted. This will mask all the bits from 1462 * the initial ~0UL mask that can't be encoded in either 1463 * the swp_entry_t or the architecture definition of a 1464 * swap pte. 1465 */ 1466 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1; 1467 if (maxpages > swap_header->info.last_page) 1468 maxpages = swap_header->info.last_page; 1469 p->highest_bit = maxpages - 1; 1470 1471 error = -EINVAL; 1472 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 1473 goto bad_swap; 1474 1475 /* OK, set up the swap map and apply the bad block list */ 1476 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) { 1477 error = -ENOMEM; 1478 goto bad_swap; 1479 } 1480 1481 error = 0; 1482 memset(p->swap_map, 0, maxpages * sizeof(short)); 1483 for (i=0; i<swap_header->info.nr_badpages; i++) { 1484 int page = swap_header->info.badpages[i]; 1485 if (page <= 0 || page >= swap_header->info.last_page) 1486 error = -EINVAL; 1487 else 1488 p->swap_map[page] = SWAP_MAP_BAD; 1489 } 1490 nr_good_pages = swap_header->info.last_page - 1491 swap_header->info.nr_badpages - 1492 1 /* header page */; 1493 if (error) 1494 goto bad_swap; 1495 } 1496 1497 if (swapfilesize && maxpages > swapfilesize) { 1498 printk(KERN_WARNING 1499 "Swap area shorter than signature indicates\n"); 1500 error = -EINVAL; 1501 goto bad_swap; 1502 } 1503 if (!nr_good_pages) { 1504 printk(KERN_WARNING "Empty swap-file\n"); 1505 error = -EINVAL; 1506 goto bad_swap; 1507 } 1508 p->swap_map[0] = SWAP_MAP_BAD; 1509 p->max = maxpages; 1510 p->pages = nr_good_pages; 1511 1512 error = setup_swap_extents(p); 1513 if (error) 1514 goto bad_swap; 1515 1516 down(&swapon_sem); 1517 swap_list_lock(); 1518 swap_device_lock(p); 1519 p->flags = SWP_ACTIVE; 1520 nr_swap_pages += nr_good_pages; 1521 total_swap_pages += nr_good_pages; 1522 printk(KERN_INFO "Adding %dk swap on %s. Priority:%d extents:%d\n", 1523 nr_good_pages<<(PAGE_SHIFT-10), name, 1524 p->prio, p->nr_extents); 1525 1526 /* insert swap space into swap_list: */ 1527 prev = -1; 1528 for (i = swap_list.head; i >= 0; i = swap_info[i].next) { 1529 if (p->prio >= swap_info[i].prio) { 1530 break; 1531 } 1532 prev = i; 1533 } 1534 p->next = i; 1535 if (prev < 0) { 1536 swap_list.head = swap_list.next = p - swap_info; 1537 } else { 1538 swap_info[prev].next = p - swap_info; 1539 } 1540 swap_device_unlock(p); 1541 swap_list_unlock(); 1542 up(&swapon_sem); 1543 error = 0; 1544 goto out; 1545 bad_swap: 1546 if (bdev) { 1547 set_blocksize(bdev, p->old_block_size); 1548 bd_release(bdev); 1549 } 1550 bad_swap_2: 1551 swap_list_lock(); 1552 swap_map = p->swap_map; 1553 p->swap_file = NULL; 1554 p->swap_map = NULL; 1555 p->flags = 0; 1556 if (!(swap_flags & SWAP_FLAG_PREFER)) 1557 ++least_priority; 1558 swap_list_unlock(); 1559 destroy_swap_extents(p); 1560 vfree(swap_map); 1561 if (swap_file) 1562 filp_close(swap_file, NULL); 1563 out: 1564 if (page && !IS_ERR(page)) { 1565 kunmap(page); 1566 page_cache_release(page); 1567 } 1568 if (name) 1569 putname(name); 1570 if (did_down) { 1571 if (!error) 1572 inode->i_flags |= S_SWAPFILE; 1573 up(&inode->i_sem); 1574 } 1575 return error; 1576 } 1577 1578 void si_swapinfo(struct sysinfo *val) 1579 { 1580 unsigned int i; 1581 unsigned long nr_to_be_unused = 0; 1582 1583 swap_list_lock(); 1584 for (i = 0; i < nr_swapfiles; i++) { 1585 if (!(swap_info[i].flags & SWP_USED) || 1586 (swap_info[i].flags & SWP_WRITEOK)) 1587 continue; 1588 nr_to_be_unused += swap_info[i].inuse_pages; 1589 } 1590 val->freeswap = nr_swap_pages + nr_to_be_unused; 1591 val->totalswap = total_swap_pages + nr_to_be_unused; 1592 swap_list_unlock(); 1593 } 1594 1595 /* 1596 * Verify that a swap entry is valid and increment its swap map count. 1597 * 1598 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as 1599 * "permanent", but will be reclaimed by the next swapoff. 1600 */ 1601 int swap_duplicate(swp_entry_t entry) 1602 { 1603 struct swap_info_struct * p; 1604 unsigned long offset, type; 1605 int result = 0; 1606 1607 type = swp_type(entry); 1608 if (type >= nr_swapfiles) 1609 goto bad_file; 1610 p = type + swap_info; 1611 offset = swp_offset(entry); 1612 1613 swap_device_lock(p); 1614 if (offset < p->max && p->swap_map[offset]) { 1615 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) { 1616 p->swap_map[offset]++; 1617 result = 1; 1618 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) { 1619 if (swap_overflow++ < 5) 1620 printk(KERN_WARNING "swap_dup: swap entry overflow\n"); 1621 p->swap_map[offset] = SWAP_MAP_MAX; 1622 result = 1; 1623 } 1624 } 1625 swap_device_unlock(p); 1626 out: 1627 return result; 1628 1629 bad_file: 1630 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); 1631 goto out; 1632 } 1633 1634 struct swap_info_struct * 1635 get_swap_info_struct(unsigned type) 1636 { 1637 return &swap_info[type]; 1638 } 1639 1640 /* 1641 * swap_device_lock prevents swap_map being freed. Don't grab an extra 1642 * reference on the swaphandle, it doesn't matter if it becomes unused. 1643 */ 1644 int valid_swaphandles(swp_entry_t entry, unsigned long *offset) 1645 { 1646 int ret = 0, i = 1 << page_cluster; 1647 unsigned long toff; 1648 struct swap_info_struct *swapdev = swp_type(entry) + swap_info; 1649 1650 if (!page_cluster) /* no readahead */ 1651 return 0; 1652 toff = (swp_offset(entry) >> page_cluster) << page_cluster; 1653 if (!toff) /* first page is swap header */ 1654 toff++, i--; 1655 *offset = toff; 1656 1657 swap_device_lock(swapdev); 1658 do { 1659 /* Don't read-ahead past the end of the swap area */ 1660 if (toff >= swapdev->max) 1661 break; 1662 /* Don't read in free or bad pages */ 1663 if (!swapdev->swap_map[toff]) 1664 break; 1665 if (swapdev->swap_map[toff] == SWAP_MAP_BAD) 1666 break; 1667 toff++; 1668 ret++; 1669 } while (--i); 1670 swap_device_unlock(swapdev); 1671 return ret; 1672 } 1673