1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/blkdev.h> 10 #include <linux/mm.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/task.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mman.h> 15 #include <linux/slab.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/swap.h> 18 #include <linux/vmalloc.h> 19 #include <linux/pagemap.h> 20 #include <linux/namei.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/blk-cgroup.h> 23 #include <linux/random.h> 24 #include <linux/writeback.h> 25 #include <linux/proc_fs.h> 26 #include <linux/seq_file.h> 27 #include <linux/init.h> 28 #include <linux/ksm.h> 29 #include <linux/rmap.h> 30 #include <linux/security.h> 31 #include <linux/backing-dev.h> 32 #include <linux/mutex.h> 33 #include <linux/capability.h> 34 #include <linux/syscalls.h> 35 #include <linux/memcontrol.h> 36 #include <linux/poll.h> 37 #include <linux/oom.h> 38 #include <linux/frontswap.h> 39 #include <linux/swapfile.h> 40 #include <linux/export.h> 41 #include <linux/swap_slots.h> 42 #include <linux/sort.h> 43 #include <linux/completion.h> 44 45 #include <asm/tlbflush.h> 46 #include <linux/swapops.h> 47 #include <linux/swap_cgroup.h> 48 #include "swap.h" 49 50 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 51 unsigned char); 52 static void free_swap_count_continuations(struct swap_info_struct *); 53 54 static DEFINE_SPINLOCK(swap_lock); 55 static unsigned int nr_swapfiles; 56 atomic_long_t nr_swap_pages; 57 /* 58 * Some modules use swappable objects and may try to swap them out under 59 * memory pressure (via the shrinker). Before doing so, they may wish to 60 * check to see if any swap space is available. 61 */ 62 EXPORT_SYMBOL_GPL(nr_swap_pages); 63 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 64 long total_swap_pages; 65 static int least_priority = -1; 66 unsigned long swapfile_maximum_size; 67 #ifdef CONFIG_MIGRATION 68 bool swap_migration_ad_supported; 69 #endif /* CONFIG_MIGRATION */ 70 71 static const char Bad_file[] = "Bad swap file entry "; 72 static const char Unused_file[] = "Unused swap file entry "; 73 static const char Bad_offset[] = "Bad swap offset entry "; 74 static const char Unused_offset[] = "Unused swap offset entry "; 75 76 /* 77 * all active swap_info_structs 78 * protected with swap_lock, and ordered by priority. 79 */ 80 static PLIST_HEAD(swap_active_head); 81 82 /* 83 * all available (active, not full) swap_info_structs 84 * protected with swap_avail_lock, ordered by priority. 85 * This is used by folio_alloc_swap() instead of swap_active_head 86 * because swap_active_head includes all swap_info_structs, 87 * but folio_alloc_swap() doesn't need to look at full ones. 88 * This uses its own lock instead of swap_lock because when a 89 * swap_info_struct changes between not-full/full, it needs to 90 * add/remove itself to/from this list, but the swap_info_struct->lock 91 * is held and the locking order requires swap_lock to be taken 92 * before any swap_info_struct->lock. 93 */ 94 static struct plist_head *swap_avail_heads; 95 static DEFINE_SPINLOCK(swap_avail_lock); 96 97 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 98 99 static DEFINE_MUTEX(swapon_mutex); 100 101 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 102 /* Activity counter to indicate that a swapon or swapoff has occurred */ 103 static atomic_t proc_poll_event = ATOMIC_INIT(0); 104 105 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 106 107 static struct swap_info_struct *swap_type_to_swap_info(int type) 108 { 109 if (type >= MAX_SWAPFILES) 110 return NULL; 111 112 return READ_ONCE(swap_info[type]); /* rcu_dereference() */ 113 } 114 115 static inline unsigned char swap_count(unsigned char ent) 116 { 117 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 118 } 119 120 /* Reclaim the swap entry anyway if possible */ 121 #define TTRS_ANYWAY 0x1 122 /* 123 * Reclaim the swap entry if there are no more mappings of the 124 * corresponding page 125 */ 126 #define TTRS_UNMAPPED 0x2 127 /* Reclaim the swap entry if swap is getting full*/ 128 #define TTRS_FULL 0x4 129 130 /* returns 1 if swap entry is freed */ 131 static int __try_to_reclaim_swap(struct swap_info_struct *si, 132 unsigned long offset, unsigned long flags) 133 { 134 swp_entry_t entry = swp_entry(si->type, offset); 135 struct page *page; 136 int ret = 0; 137 138 page = find_get_page(swap_address_space(entry), offset); 139 if (!page) 140 return 0; 141 /* 142 * When this function is called from scan_swap_map_slots() and it's 143 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page, 144 * here. We have to use trylock for avoiding deadlock. This is a special 145 * case and you should use try_to_free_swap() with explicit lock_page() 146 * in usual operations. 147 */ 148 if (trylock_page(page)) { 149 if ((flags & TTRS_ANYWAY) || 150 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) || 151 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page))) 152 ret = try_to_free_swap(page); 153 unlock_page(page); 154 } 155 put_page(page); 156 return ret; 157 } 158 159 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 160 { 161 struct rb_node *rb = rb_first(&sis->swap_extent_root); 162 return rb_entry(rb, struct swap_extent, rb_node); 163 } 164 165 static inline struct swap_extent *next_se(struct swap_extent *se) 166 { 167 struct rb_node *rb = rb_next(&se->rb_node); 168 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 169 } 170 171 /* 172 * swapon tell device that all the old swap contents can be discarded, 173 * to allow the swap device to optimize its wear-levelling. 174 */ 175 static int discard_swap(struct swap_info_struct *si) 176 { 177 struct swap_extent *se; 178 sector_t start_block; 179 sector_t nr_blocks; 180 int err = 0; 181 182 /* Do not discard the swap header page! */ 183 se = first_se(si); 184 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 185 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 186 if (nr_blocks) { 187 err = blkdev_issue_discard(si->bdev, start_block, 188 nr_blocks, GFP_KERNEL); 189 if (err) 190 return err; 191 cond_resched(); 192 } 193 194 for (se = next_se(se); se; se = next_se(se)) { 195 start_block = se->start_block << (PAGE_SHIFT - 9); 196 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 197 198 err = blkdev_issue_discard(si->bdev, start_block, 199 nr_blocks, GFP_KERNEL); 200 if (err) 201 break; 202 203 cond_resched(); 204 } 205 return err; /* That will often be -EOPNOTSUPP */ 206 } 207 208 static struct swap_extent * 209 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 210 { 211 struct swap_extent *se; 212 struct rb_node *rb; 213 214 rb = sis->swap_extent_root.rb_node; 215 while (rb) { 216 se = rb_entry(rb, struct swap_extent, rb_node); 217 if (offset < se->start_page) 218 rb = rb->rb_left; 219 else if (offset >= se->start_page + se->nr_pages) 220 rb = rb->rb_right; 221 else 222 return se; 223 } 224 /* It *must* be present */ 225 BUG(); 226 } 227 228 sector_t swap_page_sector(struct page *page) 229 { 230 struct swap_info_struct *sis = page_swap_info(page); 231 struct swap_extent *se; 232 sector_t sector; 233 pgoff_t offset; 234 235 offset = __page_file_index(page); 236 se = offset_to_swap_extent(sis, offset); 237 sector = se->start_block + (offset - se->start_page); 238 return sector << (PAGE_SHIFT - 9); 239 } 240 241 /* 242 * swap allocation tell device that a cluster of swap can now be discarded, 243 * to allow the swap device to optimize its wear-levelling. 244 */ 245 static void discard_swap_cluster(struct swap_info_struct *si, 246 pgoff_t start_page, pgoff_t nr_pages) 247 { 248 struct swap_extent *se = offset_to_swap_extent(si, start_page); 249 250 while (nr_pages) { 251 pgoff_t offset = start_page - se->start_page; 252 sector_t start_block = se->start_block + offset; 253 sector_t nr_blocks = se->nr_pages - offset; 254 255 if (nr_blocks > nr_pages) 256 nr_blocks = nr_pages; 257 start_page += nr_blocks; 258 nr_pages -= nr_blocks; 259 260 start_block <<= PAGE_SHIFT - 9; 261 nr_blocks <<= PAGE_SHIFT - 9; 262 if (blkdev_issue_discard(si->bdev, start_block, 263 nr_blocks, GFP_NOIO)) 264 break; 265 266 se = next_se(se); 267 } 268 } 269 270 #ifdef CONFIG_THP_SWAP 271 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 272 273 #define swap_entry_size(size) (size) 274 #else 275 #define SWAPFILE_CLUSTER 256 276 277 /* 278 * Define swap_entry_size() as constant to let compiler to optimize 279 * out some code if !CONFIG_THP_SWAP 280 */ 281 #define swap_entry_size(size) 1 282 #endif 283 #define LATENCY_LIMIT 256 284 285 static inline void cluster_set_flag(struct swap_cluster_info *info, 286 unsigned int flag) 287 { 288 info->flags = flag; 289 } 290 291 static inline unsigned int cluster_count(struct swap_cluster_info *info) 292 { 293 return info->data; 294 } 295 296 static inline void cluster_set_count(struct swap_cluster_info *info, 297 unsigned int c) 298 { 299 info->data = c; 300 } 301 302 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 303 unsigned int c, unsigned int f) 304 { 305 info->flags = f; 306 info->data = c; 307 } 308 309 static inline unsigned int cluster_next(struct swap_cluster_info *info) 310 { 311 return info->data; 312 } 313 314 static inline void cluster_set_next(struct swap_cluster_info *info, 315 unsigned int n) 316 { 317 info->data = n; 318 } 319 320 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 321 unsigned int n, unsigned int f) 322 { 323 info->flags = f; 324 info->data = n; 325 } 326 327 static inline bool cluster_is_free(struct swap_cluster_info *info) 328 { 329 return info->flags & CLUSTER_FLAG_FREE; 330 } 331 332 static inline bool cluster_is_null(struct swap_cluster_info *info) 333 { 334 return info->flags & CLUSTER_FLAG_NEXT_NULL; 335 } 336 337 static inline void cluster_set_null(struct swap_cluster_info *info) 338 { 339 info->flags = CLUSTER_FLAG_NEXT_NULL; 340 info->data = 0; 341 } 342 343 static inline bool cluster_is_huge(struct swap_cluster_info *info) 344 { 345 if (IS_ENABLED(CONFIG_THP_SWAP)) 346 return info->flags & CLUSTER_FLAG_HUGE; 347 return false; 348 } 349 350 static inline void cluster_clear_huge(struct swap_cluster_info *info) 351 { 352 info->flags &= ~CLUSTER_FLAG_HUGE; 353 } 354 355 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 356 unsigned long offset) 357 { 358 struct swap_cluster_info *ci; 359 360 ci = si->cluster_info; 361 if (ci) { 362 ci += offset / SWAPFILE_CLUSTER; 363 spin_lock(&ci->lock); 364 } 365 return ci; 366 } 367 368 static inline void unlock_cluster(struct swap_cluster_info *ci) 369 { 370 if (ci) 371 spin_unlock(&ci->lock); 372 } 373 374 /* 375 * Determine the locking method in use for this device. Return 376 * swap_cluster_info if SSD-style cluster-based locking is in place. 377 */ 378 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 379 struct swap_info_struct *si, unsigned long offset) 380 { 381 struct swap_cluster_info *ci; 382 383 /* Try to use fine-grained SSD-style locking if available: */ 384 ci = lock_cluster(si, offset); 385 /* Otherwise, fall back to traditional, coarse locking: */ 386 if (!ci) 387 spin_lock(&si->lock); 388 389 return ci; 390 } 391 392 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 393 struct swap_cluster_info *ci) 394 { 395 if (ci) 396 unlock_cluster(ci); 397 else 398 spin_unlock(&si->lock); 399 } 400 401 static inline bool cluster_list_empty(struct swap_cluster_list *list) 402 { 403 return cluster_is_null(&list->head); 404 } 405 406 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 407 { 408 return cluster_next(&list->head); 409 } 410 411 static void cluster_list_init(struct swap_cluster_list *list) 412 { 413 cluster_set_null(&list->head); 414 cluster_set_null(&list->tail); 415 } 416 417 static void cluster_list_add_tail(struct swap_cluster_list *list, 418 struct swap_cluster_info *ci, 419 unsigned int idx) 420 { 421 if (cluster_list_empty(list)) { 422 cluster_set_next_flag(&list->head, idx, 0); 423 cluster_set_next_flag(&list->tail, idx, 0); 424 } else { 425 struct swap_cluster_info *ci_tail; 426 unsigned int tail = cluster_next(&list->tail); 427 428 /* 429 * Nested cluster lock, but both cluster locks are 430 * only acquired when we held swap_info_struct->lock 431 */ 432 ci_tail = ci + tail; 433 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 434 cluster_set_next(ci_tail, idx); 435 spin_unlock(&ci_tail->lock); 436 cluster_set_next_flag(&list->tail, idx, 0); 437 } 438 } 439 440 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 441 struct swap_cluster_info *ci) 442 { 443 unsigned int idx; 444 445 idx = cluster_next(&list->head); 446 if (cluster_next(&list->tail) == idx) { 447 cluster_set_null(&list->head); 448 cluster_set_null(&list->tail); 449 } else 450 cluster_set_next_flag(&list->head, 451 cluster_next(&ci[idx]), 0); 452 453 return idx; 454 } 455 456 /* Add a cluster to discard list and schedule it to do discard */ 457 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 458 unsigned int idx) 459 { 460 /* 461 * If scan_swap_map_slots() can't find a free cluster, it will check 462 * si->swap_map directly. To make sure the discarding cluster isn't 463 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied). 464 * It will be cleared after discard 465 */ 466 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 467 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 468 469 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 470 471 schedule_work(&si->discard_work); 472 } 473 474 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 475 { 476 struct swap_cluster_info *ci = si->cluster_info; 477 478 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 479 cluster_list_add_tail(&si->free_clusters, ci, idx); 480 } 481 482 /* 483 * Doing discard actually. After a cluster discard is finished, the cluster 484 * will be added to free cluster list. caller should hold si->lock. 485 */ 486 static void swap_do_scheduled_discard(struct swap_info_struct *si) 487 { 488 struct swap_cluster_info *info, *ci; 489 unsigned int idx; 490 491 info = si->cluster_info; 492 493 while (!cluster_list_empty(&si->discard_clusters)) { 494 idx = cluster_list_del_first(&si->discard_clusters, info); 495 spin_unlock(&si->lock); 496 497 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 498 SWAPFILE_CLUSTER); 499 500 spin_lock(&si->lock); 501 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 502 __free_cluster(si, idx); 503 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 504 0, SWAPFILE_CLUSTER); 505 unlock_cluster(ci); 506 } 507 } 508 509 static void swap_discard_work(struct work_struct *work) 510 { 511 struct swap_info_struct *si; 512 513 si = container_of(work, struct swap_info_struct, discard_work); 514 515 spin_lock(&si->lock); 516 swap_do_scheduled_discard(si); 517 spin_unlock(&si->lock); 518 } 519 520 static void swap_users_ref_free(struct percpu_ref *ref) 521 { 522 struct swap_info_struct *si; 523 524 si = container_of(ref, struct swap_info_struct, users); 525 complete(&si->comp); 526 } 527 528 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 529 { 530 struct swap_cluster_info *ci = si->cluster_info; 531 532 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 533 cluster_list_del_first(&si->free_clusters, ci); 534 cluster_set_count_flag(ci + idx, 0, 0); 535 } 536 537 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 538 { 539 struct swap_cluster_info *ci = si->cluster_info + idx; 540 541 VM_BUG_ON(cluster_count(ci) != 0); 542 /* 543 * If the swap is discardable, prepare discard the cluster 544 * instead of free it immediately. The cluster will be freed 545 * after discard. 546 */ 547 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 548 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 549 swap_cluster_schedule_discard(si, idx); 550 return; 551 } 552 553 __free_cluster(si, idx); 554 } 555 556 /* 557 * The cluster corresponding to page_nr will be used. The cluster will be 558 * removed from free cluster list and its usage counter will be increased. 559 */ 560 static void inc_cluster_info_page(struct swap_info_struct *p, 561 struct swap_cluster_info *cluster_info, unsigned long page_nr) 562 { 563 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 564 565 if (!cluster_info) 566 return; 567 if (cluster_is_free(&cluster_info[idx])) 568 alloc_cluster(p, idx); 569 570 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 571 cluster_set_count(&cluster_info[idx], 572 cluster_count(&cluster_info[idx]) + 1); 573 } 574 575 /* 576 * The cluster corresponding to page_nr decreases one usage. If the usage 577 * counter becomes 0, which means no page in the cluster is in using, we can 578 * optionally discard the cluster and add it to free cluster list. 579 */ 580 static void dec_cluster_info_page(struct swap_info_struct *p, 581 struct swap_cluster_info *cluster_info, unsigned long page_nr) 582 { 583 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 584 585 if (!cluster_info) 586 return; 587 588 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 589 cluster_set_count(&cluster_info[idx], 590 cluster_count(&cluster_info[idx]) - 1); 591 592 if (cluster_count(&cluster_info[idx]) == 0) 593 free_cluster(p, idx); 594 } 595 596 /* 597 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free 598 * cluster list. Avoiding such abuse to avoid list corruption. 599 */ 600 static bool 601 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 602 unsigned long offset) 603 { 604 struct percpu_cluster *percpu_cluster; 605 bool conflict; 606 607 offset /= SWAPFILE_CLUSTER; 608 conflict = !cluster_list_empty(&si->free_clusters) && 609 offset != cluster_list_first(&si->free_clusters) && 610 cluster_is_free(&si->cluster_info[offset]); 611 612 if (!conflict) 613 return false; 614 615 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 616 cluster_set_null(&percpu_cluster->index); 617 return true; 618 } 619 620 /* 621 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 622 * might involve allocating a new cluster for current CPU too. 623 */ 624 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 625 unsigned long *offset, unsigned long *scan_base) 626 { 627 struct percpu_cluster *cluster; 628 struct swap_cluster_info *ci; 629 unsigned long tmp, max; 630 631 new_cluster: 632 cluster = this_cpu_ptr(si->percpu_cluster); 633 if (cluster_is_null(&cluster->index)) { 634 if (!cluster_list_empty(&si->free_clusters)) { 635 cluster->index = si->free_clusters.head; 636 cluster->next = cluster_next(&cluster->index) * 637 SWAPFILE_CLUSTER; 638 } else if (!cluster_list_empty(&si->discard_clusters)) { 639 /* 640 * we don't have free cluster but have some clusters in 641 * discarding, do discard now and reclaim them, then 642 * reread cluster_next_cpu since we dropped si->lock 643 */ 644 swap_do_scheduled_discard(si); 645 *scan_base = this_cpu_read(*si->cluster_next_cpu); 646 *offset = *scan_base; 647 goto new_cluster; 648 } else 649 return false; 650 } 651 652 /* 653 * Other CPUs can use our cluster if they can't find a free cluster, 654 * check if there is still free entry in the cluster 655 */ 656 tmp = cluster->next; 657 max = min_t(unsigned long, si->max, 658 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 659 if (tmp < max) { 660 ci = lock_cluster(si, tmp); 661 while (tmp < max) { 662 if (!si->swap_map[tmp]) 663 break; 664 tmp++; 665 } 666 unlock_cluster(ci); 667 } 668 if (tmp >= max) { 669 cluster_set_null(&cluster->index); 670 goto new_cluster; 671 } 672 cluster->next = tmp + 1; 673 *offset = tmp; 674 *scan_base = tmp; 675 return true; 676 } 677 678 static void __del_from_avail_list(struct swap_info_struct *p) 679 { 680 int nid; 681 682 for_each_node(nid) 683 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 684 } 685 686 static void del_from_avail_list(struct swap_info_struct *p) 687 { 688 spin_lock(&swap_avail_lock); 689 __del_from_avail_list(p); 690 spin_unlock(&swap_avail_lock); 691 } 692 693 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 694 unsigned int nr_entries) 695 { 696 unsigned int end = offset + nr_entries - 1; 697 698 if (offset == si->lowest_bit) 699 si->lowest_bit += nr_entries; 700 if (end == si->highest_bit) 701 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries); 702 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries); 703 if (si->inuse_pages == si->pages) { 704 si->lowest_bit = si->max; 705 si->highest_bit = 0; 706 del_from_avail_list(si); 707 } 708 } 709 710 static void add_to_avail_list(struct swap_info_struct *p) 711 { 712 int nid; 713 714 spin_lock(&swap_avail_lock); 715 for_each_node(nid) { 716 WARN_ON(!plist_node_empty(&p->avail_lists[nid])); 717 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 718 } 719 spin_unlock(&swap_avail_lock); 720 } 721 722 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 723 unsigned int nr_entries) 724 { 725 unsigned long begin = offset; 726 unsigned long end = offset + nr_entries - 1; 727 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 728 729 if (offset < si->lowest_bit) 730 si->lowest_bit = offset; 731 if (end > si->highest_bit) { 732 bool was_full = !si->highest_bit; 733 734 WRITE_ONCE(si->highest_bit, end); 735 if (was_full && (si->flags & SWP_WRITEOK)) 736 add_to_avail_list(si); 737 } 738 atomic_long_add(nr_entries, &nr_swap_pages); 739 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries); 740 if (si->flags & SWP_BLKDEV) 741 swap_slot_free_notify = 742 si->bdev->bd_disk->fops->swap_slot_free_notify; 743 else 744 swap_slot_free_notify = NULL; 745 while (offset <= end) { 746 arch_swap_invalidate_page(si->type, offset); 747 frontswap_invalidate_page(si->type, offset); 748 if (swap_slot_free_notify) 749 swap_slot_free_notify(si->bdev, offset); 750 offset++; 751 } 752 clear_shadow_from_swap_cache(si->type, begin, end); 753 } 754 755 static void set_cluster_next(struct swap_info_struct *si, unsigned long next) 756 { 757 unsigned long prev; 758 759 if (!(si->flags & SWP_SOLIDSTATE)) { 760 si->cluster_next = next; 761 return; 762 } 763 764 prev = this_cpu_read(*si->cluster_next_cpu); 765 /* 766 * Cross the swap address space size aligned trunk, choose 767 * another trunk randomly to avoid lock contention on swap 768 * address space if possible. 769 */ 770 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) != 771 (next >> SWAP_ADDRESS_SPACE_SHIFT)) { 772 /* No free swap slots available */ 773 if (si->highest_bit <= si->lowest_bit) 774 return; 775 next = si->lowest_bit + 776 prandom_u32_max(si->highest_bit - si->lowest_bit + 1); 777 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES); 778 next = max_t(unsigned int, next, si->lowest_bit); 779 } 780 this_cpu_write(*si->cluster_next_cpu, next); 781 } 782 783 static bool swap_offset_available_and_locked(struct swap_info_struct *si, 784 unsigned long offset) 785 { 786 if (data_race(!si->swap_map[offset])) { 787 spin_lock(&si->lock); 788 return true; 789 } 790 791 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 792 spin_lock(&si->lock); 793 return true; 794 } 795 796 return false; 797 } 798 799 static int scan_swap_map_slots(struct swap_info_struct *si, 800 unsigned char usage, int nr, 801 swp_entry_t slots[]) 802 { 803 struct swap_cluster_info *ci; 804 unsigned long offset; 805 unsigned long scan_base; 806 unsigned long last_in_cluster = 0; 807 int latency_ration = LATENCY_LIMIT; 808 int n_ret = 0; 809 bool scanned_many = false; 810 811 /* 812 * We try to cluster swap pages by allocating them sequentially 813 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 814 * way, however, we resort to first-free allocation, starting 815 * a new cluster. This prevents us from scattering swap pages 816 * all over the entire swap partition, so that we reduce 817 * overall disk seek times between swap pages. -- sct 818 * But we do now try to find an empty cluster. -Andrea 819 * And we let swap pages go all over an SSD partition. Hugh 820 */ 821 822 si->flags += SWP_SCANNING; 823 /* 824 * Use percpu scan base for SSD to reduce lock contention on 825 * cluster and swap cache. For HDD, sequential access is more 826 * important. 827 */ 828 if (si->flags & SWP_SOLIDSTATE) 829 scan_base = this_cpu_read(*si->cluster_next_cpu); 830 else 831 scan_base = si->cluster_next; 832 offset = scan_base; 833 834 /* SSD algorithm */ 835 if (si->cluster_info) { 836 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 837 goto scan; 838 } else if (unlikely(!si->cluster_nr--)) { 839 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 840 si->cluster_nr = SWAPFILE_CLUSTER - 1; 841 goto checks; 842 } 843 844 spin_unlock(&si->lock); 845 846 /* 847 * If seek is expensive, start searching for new cluster from 848 * start of partition, to minimize the span of allocated swap. 849 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 850 * case, just handled by scan_swap_map_try_ssd_cluster() above. 851 */ 852 scan_base = offset = si->lowest_bit; 853 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 854 855 /* Locate the first empty (unaligned) cluster */ 856 for (; last_in_cluster <= si->highest_bit; offset++) { 857 if (si->swap_map[offset]) 858 last_in_cluster = offset + SWAPFILE_CLUSTER; 859 else if (offset == last_in_cluster) { 860 spin_lock(&si->lock); 861 offset -= SWAPFILE_CLUSTER - 1; 862 si->cluster_next = offset; 863 si->cluster_nr = SWAPFILE_CLUSTER - 1; 864 goto checks; 865 } 866 if (unlikely(--latency_ration < 0)) { 867 cond_resched(); 868 latency_ration = LATENCY_LIMIT; 869 } 870 } 871 872 offset = scan_base; 873 spin_lock(&si->lock); 874 si->cluster_nr = SWAPFILE_CLUSTER - 1; 875 } 876 877 checks: 878 if (si->cluster_info) { 879 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 880 /* take a break if we already got some slots */ 881 if (n_ret) 882 goto done; 883 if (!scan_swap_map_try_ssd_cluster(si, &offset, 884 &scan_base)) 885 goto scan; 886 } 887 } 888 if (!(si->flags & SWP_WRITEOK)) 889 goto no_page; 890 if (!si->highest_bit) 891 goto no_page; 892 if (offset > si->highest_bit) 893 scan_base = offset = si->lowest_bit; 894 895 ci = lock_cluster(si, offset); 896 /* reuse swap entry of cache-only swap if not busy. */ 897 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 898 int swap_was_freed; 899 unlock_cluster(ci); 900 spin_unlock(&si->lock); 901 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 902 spin_lock(&si->lock); 903 /* entry was freed successfully, try to use this again */ 904 if (swap_was_freed) 905 goto checks; 906 goto scan; /* check next one */ 907 } 908 909 if (si->swap_map[offset]) { 910 unlock_cluster(ci); 911 if (!n_ret) 912 goto scan; 913 else 914 goto done; 915 } 916 WRITE_ONCE(si->swap_map[offset], usage); 917 inc_cluster_info_page(si, si->cluster_info, offset); 918 unlock_cluster(ci); 919 920 swap_range_alloc(si, offset, 1); 921 slots[n_ret++] = swp_entry(si->type, offset); 922 923 /* got enough slots or reach max slots? */ 924 if ((n_ret == nr) || (offset >= si->highest_bit)) 925 goto done; 926 927 /* search for next available slot */ 928 929 /* time to take a break? */ 930 if (unlikely(--latency_ration < 0)) { 931 if (n_ret) 932 goto done; 933 spin_unlock(&si->lock); 934 cond_resched(); 935 spin_lock(&si->lock); 936 latency_ration = LATENCY_LIMIT; 937 } 938 939 /* try to get more slots in cluster */ 940 if (si->cluster_info) { 941 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 942 goto checks; 943 } else if (si->cluster_nr && !si->swap_map[++offset]) { 944 /* non-ssd case, still more slots in cluster? */ 945 --si->cluster_nr; 946 goto checks; 947 } 948 949 /* 950 * Even if there's no free clusters available (fragmented), 951 * try to scan a little more quickly with lock held unless we 952 * have scanned too many slots already. 953 */ 954 if (!scanned_many) { 955 unsigned long scan_limit; 956 957 if (offset < scan_base) 958 scan_limit = scan_base; 959 else 960 scan_limit = si->highest_bit; 961 for (; offset <= scan_limit && --latency_ration > 0; 962 offset++) { 963 if (!si->swap_map[offset]) 964 goto checks; 965 } 966 } 967 968 done: 969 set_cluster_next(si, offset + 1); 970 si->flags -= SWP_SCANNING; 971 return n_ret; 972 973 scan: 974 spin_unlock(&si->lock); 975 while (++offset <= READ_ONCE(si->highest_bit)) { 976 if (swap_offset_available_and_locked(si, offset)) 977 goto checks; 978 if (unlikely(--latency_ration < 0)) { 979 cond_resched(); 980 latency_ration = LATENCY_LIMIT; 981 scanned_many = true; 982 } 983 } 984 offset = si->lowest_bit; 985 while (offset < scan_base) { 986 if (swap_offset_available_and_locked(si, offset)) 987 goto checks; 988 if (unlikely(--latency_ration < 0)) { 989 cond_resched(); 990 latency_ration = LATENCY_LIMIT; 991 scanned_many = true; 992 } 993 offset++; 994 } 995 spin_lock(&si->lock); 996 997 no_page: 998 si->flags -= SWP_SCANNING; 999 return n_ret; 1000 } 1001 1002 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 1003 { 1004 unsigned long idx; 1005 struct swap_cluster_info *ci; 1006 unsigned long offset; 1007 1008 /* 1009 * Should not even be attempting cluster allocations when huge 1010 * page swap is disabled. Warn and fail the allocation. 1011 */ 1012 if (!IS_ENABLED(CONFIG_THP_SWAP)) { 1013 VM_WARN_ON_ONCE(1); 1014 return 0; 1015 } 1016 1017 if (cluster_list_empty(&si->free_clusters)) 1018 return 0; 1019 1020 idx = cluster_list_first(&si->free_clusters); 1021 offset = idx * SWAPFILE_CLUSTER; 1022 ci = lock_cluster(si, offset); 1023 alloc_cluster(si, idx); 1024 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); 1025 1026 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER); 1027 unlock_cluster(ci); 1028 swap_range_alloc(si, offset, SWAPFILE_CLUSTER); 1029 *slot = swp_entry(si->type, offset); 1030 1031 return 1; 1032 } 1033 1034 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 1035 { 1036 unsigned long offset = idx * SWAPFILE_CLUSTER; 1037 struct swap_cluster_info *ci; 1038 1039 ci = lock_cluster(si, offset); 1040 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); 1041 cluster_set_count_flag(ci, 0, 0); 1042 free_cluster(si, idx); 1043 unlock_cluster(ci); 1044 swap_range_free(si, offset, SWAPFILE_CLUSTER); 1045 } 1046 1047 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) 1048 { 1049 unsigned long size = swap_entry_size(entry_size); 1050 struct swap_info_struct *si, *next; 1051 long avail_pgs; 1052 int n_ret = 0; 1053 int node; 1054 1055 /* Only single cluster request supported */ 1056 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); 1057 1058 spin_lock(&swap_avail_lock); 1059 1060 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 1061 if (avail_pgs <= 0) { 1062 spin_unlock(&swap_avail_lock); 1063 goto noswap; 1064 } 1065 1066 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs); 1067 1068 atomic_long_sub(n_goal * size, &nr_swap_pages); 1069 1070 start_over: 1071 node = numa_node_id(); 1072 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1073 /* requeue si to after same-priority siblings */ 1074 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1075 spin_unlock(&swap_avail_lock); 1076 spin_lock(&si->lock); 1077 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 1078 spin_lock(&swap_avail_lock); 1079 if (plist_node_empty(&si->avail_lists[node])) { 1080 spin_unlock(&si->lock); 1081 goto nextsi; 1082 } 1083 WARN(!si->highest_bit, 1084 "swap_info %d in list but !highest_bit\n", 1085 si->type); 1086 WARN(!(si->flags & SWP_WRITEOK), 1087 "swap_info %d in list but !SWP_WRITEOK\n", 1088 si->type); 1089 __del_from_avail_list(si); 1090 spin_unlock(&si->lock); 1091 goto nextsi; 1092 } 1093 if (size == SWAPFILE_CLUSTER) { 1094 if (si->flags & SWP_BLKDEV) 1095 n_ret = swap_alloc_cluster(si, swp_entries); 1096 } else 1097 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1098 n_goal, swp_entries); 1099 spin_unlock(&si->lock); 1100 if (n_ret || size == SWAPFILE_CLUSTER) 1101 goto check_out; 1102 pr_debug("scan_swap_map of si %d failed to find offset\n", 1103 si->type); 1104 1105 spin_lock(&swap_avail_lock); 1106 nextsi: 1107 /* 1108 * if we got here, it's likely that si was almost full before, 1109 * and since scan_swap_map_slots() can drop the si->lock, 1110 * multiple callers probably all tried to get a page from the 1111 * same si and it filled up before we could get one; or, the si 1112 * filled up between us dropping swap_avail_lock and taking 1113 * si->lock. Since we dropped the swap_avail_lock, the 1114 * swap_avail_head list may have been modified; so if next is 1115 * still in the swap_avail_head list then try it, otherwise 1116 * start over if we have not gotten any slots. 1117 */ 1118 if (plist_node_empty(&next->avail_lists[node])) 1119 goto start_over; 1120 } 1121 1122 spin_unlock(&swap_avail_lock); 1123 1124 check_out: 1125 if (n_ret < n_goal) 1126 atomic_long_add((long)(n_goal - n_ret) * size, 1127 &nr_swap_pages); 1128 noswap: 1129 return n_ret; 1130 } 1131 1132 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1133 { 1134 struct swap_info_struct *p; 1135 unsigned long offset; 1136 1137 if (!entry.val) 1138 goto out; 1139 p = swp_swap_info(entry); 1140 if (!p) 1141 goto bad_nofile; 1142 if (data_race(!(p->flags & SWP_USED))) 1143 goto bad_device; 1144 offset = swp_offset(entry); 1145 if (offset >= p->max) 1146 goto bad_offset; 1147 if (data_race(!p->swap_map[swp_offset(entry)])) 1148 goto bad_free; 1149 return p; 1150 1151 bad_free: 1152 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1153 goto out; 1154 bad_offset: 1155 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1156 goto out; 1157 bad_device: 1158 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1159 goto out; 1160 bad_nofile: 1161 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1162 out: 1163 return NULL; 1164 } 1165 1166 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1167 struct swap_info_struct *q) 1168 { 1169 struct swap_info_struct *p; 1170 1171 p = _swap_info_get(entry); 1172 1173 if (p != q) { 1174 if (q != NULL) 1175 spin_unlock(&q->lock); 1176 if (p != NULL) 1177 spin_lock(&p->lock); 1178 } 1179 return p; 1180 } 1181 1182 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1183 unsigned long offset, 1184 unsigned char usage) 1185 { 1186 unsigned char count; 1187 unsigned char has_cache; 1188 1189 count = p->swap_map[offset]; 1190 1191 has_cache = count & SWAP_HAS_CACHE; 1192 count &= ~SWAP_HAS_CACHE; 1193 1194 if (usage == SWAP_HAS_CACHE) { 1195 VM_BUG_ON(!has_cache); 1196 has_cache = 0; 1197 } else if (count == SWAP_MAP_SHMEM) { 1198 /* 1199 * Or we could insist on shmem.c using a special 1200 * swap_shmem_free() and free_shmem_swap_and_cache()... 1201 */ 1202 count = 0; 1203 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1204 if (count == COUNT_CONTINUED) { 1205 if (swap_count_continued(p, offset, count)) 1206 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1207 else 1208 count = SWAP_MAP_MAX; 1209 } else 1210 count--; 1211 } 1212 1213 usage = count | has_cache; 1214 if (usage) 1215 WRITE_ONCE(p->swap_map[offset], usage); 1216 else 1217 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE); 1218 1219 return usage; 1220 } 1221 1222 /* 1223 * Check whether swap entry is valid in the swap device. If so, 1224 * return pointer to swap_info_struct, and keep the swap entry valid 1225 * via preventing the swap device from being swapoff, until 1226 * put_swap_device() is called. Otherwise return NULL. 1227 * 1228 * Notice that swapoff or swapoff+swapon can still happen before the 1229 * percpu_ref_tryget_live() in get_swap_device() or after the 1230 * percpu_ref_put() in put_swap_device() if there isn't any other way 1231 * to prevent swapoff, such as page lock, page table lock, etc. The 1232 * caller must be prepared for that. For example, the following 1233 * situation is possible. 1234 * 1235 * CPU1 CPU2 1236 * do_swap_page() 1237 * ... swapoff+swapon 1238 * __read_swap_cache_async() 1239 * swapcache_prepare() 1240 * __swap_duplicate() 1241 * // check swap_map 1242 * // verify PTE not changed 1243 * 1244 * In __swap_duplicate(), the swap_map need to be checked before 1245 * changing partly because the specified swap entry may be for another 1246 * swap device which has been swapoff. And in do_swap_page(), after 1247 * the page is read from the swap device, the PTE is verified not 1248 * changed with the page table locked to check whether the swap device 1249 * has been swapoff or swapoff+swapon. 1250 */ 1251 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1252 { 1253 struct swap_info_struct *si; 1254 unsigned long offset; 1255 1256 if (!entry.val) 1257 goto out; 1258 si = swp_swap_info(entry); 1259 if (!si) 1260 goto bad_nofile; 1261 if (!percpu_ref_tryget_live(&si->users)) 1262 goto out; 1263 /* 1264 * Guarantee the si->users are checked before accessing other 1265 * fields of swap_info_struct. 1266 * 1267 * Paired with the spin_unlock() after setup_swap_info() in 1268 * enable_swap_info(). 1269 */ 1270 smp_rmb(); 1271 offset = swp_offset(entry); 1272 if (offset >= si->max) 1273 goto put_out; 1274 1275 return si; 1276 bad_nofile: 1277 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1278 out: 1279 return NULL; 1280 put_out: 1281 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1282 percpu_ref_put(&si->users); 1283 return NULL; 1284 } 1285 1286 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1287 swp_entry_t entry) 1288 { 1289 struct swap_cluster_info *ci; 1290 unsigned long offset = swp_offset(entry); 1291 unsigned char usage; 1292 1293 ci = lock_cluster_or_swap_info(p, offset); 1294 usage = __swap_entry_free_locked(p, offset, 1); 1295 unlock_cluster_or_swap_info(p, ci); 1296 if (!usage) 1297 free_swap_slot(entry); 1298 1299 return usage; 1300 } 1301 1302 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1303 { 1304 struct swap_cluster_info *ci; 1305 unsigned long offset = swp_offset(entry); 1306 unsigned char count; 1307 1308 ci = lock_cluster(p, offset); 1309 count = p->swap_map[offset]; 1310 VM_BUG_ON(count != SWAP_HAS_CACHE); 1311 p->swap_map[offset] = 0; 1312 dec_cluster_info_page(p, p->cluster_info, offset); 1313 unlock_cluster(ci); 1314 1315 mem_cgroup_uncharge_swap(entry, 1); 1316 swap_range_free(p, offset, 1); 1317 } 1318 1319 /* 1320 * Caller has made sure that the swap device corresponding to entry 1321 * is still around or has not been recycled. 1322 */ 1323 void swap_free(swp_entry_t entry) 1324 { 1325 struct swap_info_struct *p; 1326 1327 p = _swap_info_get(entry); 1328 if (p) 1329 __swap_entry_free(p, entry); 1330 } 1331 1332 /* 1333 * Called after dropping swapcache to decrease refcnt to swap entries. 1334 */ 1335 void put_swap_page(struct page *page, swp_entry_t entry) 1336 { 1337 unsigned long offset = swp_offset(entry); 1338 unsigned long idx = offset / SWAPFILE_CLUSTER; 1339 struct swap_cluster_info *ci; 1340 struct swap_info_struct *si; 1341 unsigned char *map; 1342 unsigned int i, free_entries = 0; 1343 unsigned char val; 1344 int size = swap_entry_size(thp_nr_pages(page)); 1345 1346 si = _swap_info_get(entry); 1347 if (!si) 1348 return; 1349 1350 ci = lock_cluster_or_swap_info(si, offset); 1351 if (size == SWAPFILE_CLUSTER) { 1352 VM_BUG_ON(!cluster_is_huge(ci)); 1353 map = si->swap_map + offset; 1354 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1355 val = map[i]; 1356 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1357 if (val == SWAP_HAS_CACHE) 1358 free_entries++; 1359 } 1360 cluster_clear_huge(ci); 1361 if (free_entries == SWAPFILE_CLUSTER) { 1362 unlock_cluster_or_swap_info(si, ci); 1363 spin_lock(&si->lock); 1364 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1365 swap_free_cluster(si, idx); 1366 spin_unlock(&si->lock); 1367 return; 1368 } 1369 } 1370 for (i = 0; i < size; i++, entry.val++) { 1371 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1372 unlock_cluster_or_swap_info(si, ci); 1373 free_swap_slot(entry); 1374 if (i == size - 1) 1375 return; 1376 lock_cluster_or_swap_info(si, offset); 1377 } 1378 } 1379 unlock_cluster_or_swap_info(si, ci); 1380 } 1381 1382 #ifdef CONFIG_THP_SWAP 1383 int split_swap_cluster(swp_entry_t entry) 1384 { 1385 struct swap_info_struct *si; 1386 struct swap_cluster_info *ci; 1387 unsigned long offset = swp_offset(entry); 1388 1389 si = _swap_info_get(entry); 1390 if (!si) 1391 return -EBUSY; 1392 ci = lock_cluster(si, offset); 1393 cluster_clear_huge(ci); 1394 unlock_cluster(ci); 1395 return 0; 1396 } 1397 #endif 1398 1399 static int swp_entry_cmp(const void *ent1, const void *ent2) 1400 { 1401 const swp_entry_t *e1 = ent1, *e2 = ent2; 1402 1403 return (int)swp_type(*e1) - (int)swp_type(*e2); 1404 } 1405 1406 void swapcache_free_entries(swp_entry_t *entries, int n) 1407 { 1408 struct swap_info_struct *p, *prev; 1409 int i; 1410 1411 if (n <= 0) 1412 return; 1413 1414 prev = NULL; 1415 p = NULL; 1416 1417 /* 1418 * Sort swap entries by swap device, so each lock is only taken once. 1419 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1420 * so low that it isn't necessary to optimize further. 1421 */ 1422 if (nr_swapfiles > 1) 1423 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1424 for (i = 0; i < n; ++i) { 1425 p = swap_info_get_cont(entries[i], prev); 1426 if (p) 1427 swap_entry_free(p, entries[i]); 1428 prev = p; 1429 } 1430 if (p) 1431 spin_unlock(&p->lock); 1432 } 1433 1434 int __swap_count(swp_entry_t entry) 1435 { 1436 struct swap_info_struct *si; 1437 pgoff_t offset = swp_offset(entry); 1438 int count = 0; 1439 1440 si = get_swap_device(entry); 1441 if (si) { 1442 count = swap_count(si->swap_map[offset]); 1443 put_swap_device(si); 1444 } 1445 return count; 1446 } 1447 1448 /* 1449 * How many references to @entry are currently swapped out? 1450 * This does not give an exact answer when swap count is continued, 1451 * but does include the high COUNT_CONTINUED flag to allow for that. 1452 */ 1453 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1454 { 1455 pgoff_t offset = swp_offset(entry); 1456 struct swap_cluster_info *ci; 1457 int count; 1458 1459 ci = lock_cluster_or_swap_info(si, offset); 1460 count = swap_count(si->swap_map[offset]); 1461 unlock_cluster_or_swap_info(si, ci); 1462 return count; 1463 } 1464 1465 /* 1466 * How many references to @entry are currently swapped out? 1467 * This does not give an exact answer when swap count is continued, 1468 * but does include the high COUNT_CONTINUED flag to allow for that. 1469 */ 1470 int __swp_swapcount(swp_entry_t entry) 1471 { 1472 int count = 0; 1473 struct swap_info_struct *si; 1474 1475 si = get_swap_device(entry); 1476 if (si) { 1477 count = swap_swapcount(si, entry); 1478 put_swap_device(si); 1479 } 1480 return count; 1481 } 1482 1483 /* 1484 * How many references to @entry are currently swapped out? 1485 * This considers COUNT_CONTINUED so it returns exact answer. 1486 */ 1487 int swp_swapcount(swp_entry_t entry) 1488 { 1489 int count, tmp_count, n; 1490 struct swap_info_struct *p; 1491 struct swap_cluster_info *ci; 1492 struct page *page; 1493 pgoff_t offset; 1494 unsigned char *map; 1495 1496 p = _swap_info_get(entry); 1497 if (!p) 1498 return 0; 1499 1500 offset = swp_offset(entry); 1501 1502 ci = lock_cluster_or_swap_info(p, offset); 1503 1504 count = swap_count(p->swap_map[offset]); 1505 if (!(count & COUNT_CONTINUED)) 1506 goto out; 1507 1508 count &= ~COUNT_CONTINUED; 1509 n = SWAP_MAP_MAX + 1; 1510 1511 page = vmalloc_to_page(p->swap_map + offset); 1512 offset &= ~PAGE_MASK; 1513 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1514 1515 do { 1516 page = list_next_entry(page, lru); 1517 map = kmap_atomic(page); 1518 tmp_count = map[offset]; 1519 kunmap_atomic(map); 1520 1521 count += (tmp_count & ~COUNT_CONTINUED) * n; 1522 n *= (SWAP_CONT_MAX + 1); 1523 } while (tmp_count & COUNT_CONTINUED); 1524 out: 1525 unlock_cluster_or_swap_info(p, ci); 1526 return count; 1527 } 1528 1529 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1530 swp_entry_t entry) 1531 { 1532 struct swap_cluster_info *ci; 1533 unsigned char *map = si->swap_map; 1534 unsigned long roffset = swp_offset(entry); 1535 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); 1536 int i; 1537 bool ret = false; 1538 1539 ci = lock_cluster_or_swap_info(si, offset); 1540 if (!ci || !cluster_is_huge(ci)) { 1541 if (swap_count(map[roffset])) 1542 ret = true; 1543 goto unlock_out; 1544 } 1545 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1546 if (swap_count(map[offset + i])) { 1547 ret = true; 1548 break; 1549 } 1550 } 1551 unlock_out: 1552 unlock_cluster_or_swap_info(si, ci); 1553 return ret; 1554 } 1555 1556 static bool folio_swapped(struct folio *folio) 1557 { 1558 swp_entry_t entry = folio_swap_entry(folio); 1559 struct swap_info_struct *si = _swap_info_get(entry); 1560 1561 if (!si) 1562 return false; 1563 1564 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio))) 1565 return swap_swapcount(si, entry) != 0; 1566 1567 return swap_page_trans_huge_swapped(si, entry); 1568 } 1569 1570 /* 1571 * If swap is getting full, or if there are no more mappings of this page, 1572 * then try_to_free_swap is called to free its swap space. 1573 */ 1574 int try_to_free_swap(struct page *page) 1575 { 1576 struct folio *folio = page_folio(page); 1577 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1578 1579 if (!folio_test_swapcache(folio)) 1580 return 0; 1581 if (folio_test_writeback(folio)) 1582 return 0; 1583 if (folio_swapped(folio)) 1584 return 0; 1585 1586 /* 1587 * Once hibernation has begun to create its image of memory, 1588 * there's a danger that one of the calls to try_to_free_swap() 1589 * - most probably a call from __try_to_reclaim_swap() while 1590 * hibernation is allocating its own swap pages for the image, 1591 * but conceivably even a call from memory reclaim - will free 1592 * the swap from a page which has already been recorded in the 1593 * image as a clean swapcache page, and then reuse its swap for 1594 * another page of the image. On waking from hibernation, the 1595 * original page might be freed under memory pressure, then 1596 * later read back in from swap, now with the wrong data. 1597 * 1598 * Hibernation suspends storage while it is writing the image 1599 * to disk so check that here. 1600 */ 1601 if (pm_suspended_storage()) 1602 return 0; 1603 1604 delete_from_swap_cache(folio); 1605 folio_set_dirty(folio); 1606 return 1; 1607 } 1608 1609 /* 1610 * Free the swap entry like above, but also try to 1611 * free the page cache entry if it is the last user. 1612 */ 1613 int free_swap_and_cache(swp_entry_t entry) 1614 { 1615 struct swap_info_struct *p; 1616 unsigned char count; 1617 1618 if (non_swap_entry(entry)) 1619 return 1; 1620 1621 p = _swap_info_get(entry); 1622 if (p) { 1623 count = __swap_entry_free(p, entry); 1624 if (count == SWAP_HAS_CACHE && 1625 !swap_page_trans_huge_swapped(p, entry)) 1626 __try_to_reclaim_swap(p, swp_offset(entry), 1627 TTRS_UNMAPPED | TTRS_FULL); 1628 } 1629 return p != NULL; 1630 } 1631 1632 #ifdef CONFIG_HIBERNATION 1633 1634 swp_entry_t get_swap_page_of_type(int type) 1635 { 1636 struct swap_info_struct *si = swap_type_to_swap_info(type); 1637 swp_entry_t entry = {0}; 1638 1639 if (!si) 1640 goto fail; 1641 1642 /* This is called for allocating swap entry, not cache */ 1643 spin_lock(&si->lock); 1644 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry)) 1645 atomic_long_dec(&nr_swap_pages); 1646 spin_unlock(&si->lock); 1647 fail: 1648 return entry; 1649 } 1650 1651 /* 1652 * Find the swap type that corresponds to given device (if any). 1653 * 1654 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1655 * from 0, in which the swap header is expected to be located. 1656 * 1657 * This is needed for the suspend to disk (aka swsusp). 1658 */ 1659 int swap_type_of(dev_t device, sector_t offset) 1660 { 1661 int type; 1662 1663 if (!device) 1664 return -1; 1665 1666 spin_lock(&swap_lock); 1667 for (type = 0; type < nr_swapfiles; type++) { 1668 struct swap_info_struct *sis = swap_info[type]; 1669 1670 if (!(sis->flags & SWP_WRITEOK)) 1671 continue; 1672 1673 if (device == sis->bdev->bd_dev) { 1674 struct swap_extent *se = first_se(sis); 1675 1676 if (se->start_block == offset) { 1677 spin_unlock(&swap_lock); 1678 return type; 1679 } 1680 } 1681 } 1682 spin_unlock(&swap_lock); 1683 return -ENODEV; 1684 } 1685 1686 int find_first_swap(dev_t *device) 1687 { 1688 int type; 1689 1690 spin_lock(&swap_lock); 1691 for (type = 0; type < nr_swapfiles; type++) { 1692 struct swap_info_struct *sis = swap_info[type]; 1693 1694 if (!(sis->flags & SWP_WRITEOK)) 1695 continue; 1696 *device = sis->bdev->bd_dev; 1697 spin_unlock(&swap_lock); 1698 return type; 1699 } 1700 spin_unlock(&swap_lock); 1701 return -ENODEV; 1702 } 1703 1704 /* 1705 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1706 * corresponding to given index in swap_info (swap type). 1707 */ 1708 sector_t swapdev_block(int type, pgoff_t offset) 1709 { 1710 struct swap_info_struct *si = swap_type_to_swap_info(type); 1711 struct swap_extent *se; 1712 1713 if (!si || !(si->flags & SWP_WRITEOK)) 1714 return 0; 1715 se = offset_to_swap_extent(si, offset); 1716 return se->start_block + (offset - se->start_page); 1717 } 1718 1719 /* 1720 * Return either the total number of swap pages of given type, or the number 1721 * of free pages of that type (depending on @free) 1722 * 1723 * This is needed for software suspend 1724 */ 1725 unsigned int count_swap_pages(int type, int free) 1726 { 1727 unsigned int n = 0; 1728 1729 spin_lock(&swap_lock); 1730 if ((unsigned int)type < nr_swapfiles) { 1731 struct swap_info_struct *sis = swap_info[type]; 1732 1733 spin_lock(&sis->lock); 1734 if (sis->flags & SWP_WRITEOK) { 1735 n = sis->pages; 1736 if (free) 1737 n -= sis->inuse_pages; 1738 } 1739 spin_unlock(&sis->lock); 1740 } 1741 spin_unlock(&swap_lock); 1742 return n; 1743 } 1744 #endif /* CONFIG_HIBERNATION */ 1745 1746 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1747 { 1748 return pte_same(pte_swp_clear_flags(pte), swp_pte); 1749 } 1750 1751 /* 1752 * No need to decide whether this PTE shares the swap entry with others, 1753 * just let do_wp_page work it out if a write is requested later - to 1754 * force COW, vm_page_prot omits write permission from any private vma. 1755 */ 1756 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1757 unsigned long addr, swp_entry_t entry, struct page *page) 1758 { 1759 struct page *swapcache; 1760 spinlock_t *ptl; 1761 pte_t *pte, new_pte; 1762 int ret = 1; 1763 1764 swapcache = page; 1765 page = ksm_might_need_to_copy(page, vma, addr); 1766 if (unlikely(!page)) 1767 return -ENOMEM; 1768 1769 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1770 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1771 ret = 0; 1772 goto out; 1773 } 1774 1775 if (unlikely(!PageUptodate(page))) { 1776 pte_t pteval; 1777 1778 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1779 pteval = swp_entry_to_pte(make_swapin_error_entry(page)); 1780 set_pte_at(vma->vm_mm, addr, pte, pteval); 1781 swap_free(entry); 1782 ret = 0; 1783 goto out; 1784 } 1785 1786 /* See do_swap_page() */ 1787 BUG_ON(!PageAnon(page) && PageMappedToDisk(page)); 1788 BUG_ON(PageAnon(page) && PageAnonExclusive(page)); 1789 1790 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1791 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1792 get_page(page); 1793 if (page == swapcache) { 1794 rmap_t rmap_flags = RMAP_NONE; 1795 1796 /* 1797 * See do_swap_page(): PageWriteback() would be problematic. 1798 * However, we do a wait_on_page_writeback() just before this 1799 * call and have the page locked. 1800 */ 1801 VM_BUG_ON_PAGE(PageWriteback(page), page); 1802 if (pte_swp_exclusive(*pte)) 1803 rmap_flags |= RMAP_EXCLUSIVE; 1804 1805 page_add_anon_rmap(page, vma, addr, rmap_flags); 1806 } else { /* ksm created a completely new copy */ 1807 page_add_new_anon_rmap(page, vma, addr); 1808 lru_cache_add_inactive_or_unevictable(page, vma); 1809 } 1810 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot)); 1811 if (pte_swp_soft_dirty(*pte)) 1812 new_pte = pte_mksoft_dirty(new_pte); 1813 if (pte_swp_uffd_wp(*pte)) 1814 new_pte = pte_mkuffd_wp(new_pte); 1815 set_pte_at(vma->vm_mm, addr, pte, new_pte); 1816 swap_free(entry); 1817 out: 1818 pte_unmap_unlock(pte, ptl); 1819 if (page != swapcache) { 1820 unlock_page(page); 1821 put_page(page); 1822 } 1823 return ret; 1824 } 1825 1826 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1827 unsigned long addr, unsigned long end, 1828 unsigned int type) 1829 { 1830 struct page *page; 1831 swp_entry_t entry; 1832 pte_t *pte; 1833 struct swap_info_struct *si; 1834 unsigned long offset; 1835 int ret = 0; 1836 volatile unsigned char *swap_map; 1837 1838 si = swap_info[type]; 1839 pte = pte_offset_map(pmd, addr); 1840 do { 1841 if (!is_swap_pte(*pte)) 1842 continue; 1843 1844 entry = pte_to_swp_entry(*pte); 1845 if (swp_type(entry) != type) 1846 continue; 1847 1848 offset = swp_offset(entry); 1849 pte_unmap(pte); 1850 swap_map = &si->swap_map[offset]; 1851 page = lookup_swap_cache(entry, vma, addr); 1852 if (!page) { 1853 struct vm_fault vmf = { 1854 .vma = vma, 1855 .address = addr, 1856 .real_address = addr, 1857 .pmd = pmd, 1858 }; 1859 1860 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 1861 &vmf); 1862 } 1863 if (!page) { 1864 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD) 1865 goto try_next; 1866 return -ENOMEM; 1867 } 1868 1869 lock_page(page); 1870 wait_on_page_writeback(page); 1871 ret = unuse_pte(vma, pmd, addr, entry, page); 1872 if (ret < 0) { 1873 unlock_page(page); 1874 put_page(page); 1875 goto out; 1876 } 1877 1878 try_to_free_swap(page); 1879 unlock_page(page); 1880 put_page(page); 1881 try_next: 1882 pte = pte_offset_map(pmd, addr); 1883 } while (pte++, addr += PAGE_SIZE, addr != end); 1884 pte_unmap(pte - 1); 1885 1886 ret = 0; 1887 out: 1888 return ret; 1889 } 1890 1891 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1892 unsigned long addr, unsigned long end, 1893 unsigned int type) 1894 { 1895 pmd_t *pmd; 1896 unsigned long next; 1897 int ret; 1898 1899 pmd = pmd_offset(pud, addr); 1900 do { 1901 cond_resched(); 1902 next = pmd_addr_end(addr, end); 1903 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1904 continue; 1905 ret = unuse_pte_range(vma, pmd, addr, next, type); 1906 if (ret) 1907 return ret; 1908 } while (pmd++, addr = next, addr != end); 1909 return 0; 1910 } 1911 1912 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 1913 unsigned long addr, unsigned long end, 1914 unsigned int type) 1915 { 1916 pud_t *pud; 1917 unsigned long next; 1918 int ret; 1919 1920 pud = pud_offset(p4d, addr); 1921 do { 1922 next = pud_addr_end(addr, end); 1923 if (pud_none_or_clear_bad(pud)) 1924 continue; 1925 ret = unuse_pmd_range(vma, pud, addr, next, type); 1926 if (ret) 1927 return ret; 1928 } while (pud++, addr = next, addr != end); 1929 return 0; 1930 } 1931 1932 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 1933 unsigned long addr, unsigned long end, 1934 unsigned int type) 1935 { 1936 p4d_t *p4d; 1937 unsigned long next; 1938 int ret; 1939 1940 p4d = p4d_offset(pgd, addr); 1941 do { 1942 next = p4d_addr_end(addr, end); 1943 if (p4d_none_or_clear_bad(p4d)) 1944 continue; 1945 ret = unuse_pud_range(vma, p4d, addr, next, type); 1946 if (ret) 1947 return ret; 1948 } while (p4d++, addr = next, addr != end); 1949 return 0; 1950 } 1951 1952 static int unuse_vma(struct vm_area_struct *vma, unsigned int type) 1953 { 1954 pgd_t *pgd; 1955 unsigned long addr, end, next; 1956 int ret; 1957 1958 addr = vma->vm_start; 1959 end = vma->vm_end; 1960 1961 pgd = pgd_offset(vma->vm_mm, addr); 1962 do { 1963 next = pgd_addr_end(addr, end); 1964 if (pgd_none_or_clear_bad(pgd)) 1965 continue; 1966 ret = unuse_p4d_range(vma, pgd, addr, next, type); 1967 if (ret) 1968 return ret; 1969 } while (pgd++, addr = next, addr != end); 1970 return 0; 1971 } 1972 1973 static int unuse_mm(struct mm_struct *mm, unsigned int type) 1974 { 1975 struct vm_area_struct *vma; 1976 int ret = 0; 1977 VMA_ITERATOR(vmi, mm, 0); 1978 1979 mmap_read_lock(mm); 1980 for_each_vma(vmi, vma) { 1981 if (vma->anon_vma) { 1982 ret = unuse_vma(vma, type); 1983 if (ret) 1984 break; 1985 } 1986 1987 cond_resched(); 1988 } 1989 mmap_read_unlock(mm); 1990 return ret; 1991 } 1992 1993 /* 1994 * Scan swap_map from current position to next entry still in use. 1995 * Return 0 if there are no inuse entries after prev till end of 1996 * the map. 1997 */ 1998 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1999 unsigned int prev) 2000 { 2001 unsigned int i; 2002 unsigned char count; 2003 2004 /* 2005 * No need for swap_lock here: we're just looking 2006 * for whether an entry is in use, not modifying it; false 2007 * hits are okay, and sys_swapoff() has already prevented new 2008 * allocations from this area (while holding swap_lock). 2009 */ 2010 for (i = prev + 1; i < si->max; i++) { 2011 count = READ_ONCE(si->swap_map[i]); 2012 if (count && swap_count(count) != SWAP_MAP_BAD) 2013 break; 2014 if ((i % LATENCY_LIMIT) == 0) 2015 cond_resched(); 2016 } 2017 2018 if (i == si->max) 2019 i = 0; 2020 2021 return i; 2022 } 2023 2024 static int try_to_unuse(unsigned int type) 2025 { 2026 struct mm_struct *prev_mm; 2027 struct mm_struct *mm; 2028 struct list_head *p; 2029 int retval = 0; 2030 struct swap_info_struct *si = swap_info[type]; 2031 struct page *page; 2032 swp_entry_t entry; 2033 unsigned int i; 2034 2035 if (!READ_ONCE(si->inuse_pages)) 2036 return 0; 2037 2038 retry: 2039 retval = shmem_unuse(type); 2040 if (retval) 2041 return retval; 2042 2043 prev_mm = &init_mm; 2044 mmget(prev_mm); 2045 2046 spin_lock(&mmlist_lock); 2047 p = &init_mm.mmlist; 2048 while (READ_ONCE(si->inuse_pages) && 2049 !signal_pending(current) && 2050 (p = p->next) != &init_mm.mmlist) { 2051 2052 mm = list_entry(p, struct mm_struct, mmlist); 2053 if (!mmget_not_zero(mm)) 2054 continue; 2055 spin_unlock(&mmlist_lock); 2056 mmput(prev_mm); 2057 prev_mm = mm; 2058 retval = unuse_mm(mm, type); 2059 if (retval) { 2060 mmput(prev_mm); 2061 return retval; 2062 } 2063 2064 /* 2065 * Make sure that we aren't completely killing 2066 * interactive performance. 2067 */ 2068 cond_resched(); 2069 spin_lock(&mmlist_lock); 2070 } 2071 spin_unlock(&mmlist_lock); 2072 2073 mmput(prev_mm); 2074 2075 i = 0; 2076 while (READ_ONCE(si->inuse_pages) && 2077 !signal_pending(current) && 2078 (i = find_next_to_unuse(si, i)) != 0) { 2079 2080 entry = swp_entry(type, i); 2081 page = find_get_page(swap_address_space(entry), i); 2082 if (!page) 2083 continue; 2084 2085 /* 2086 * It is conceivable that a racing task removed this page from 2087 * swap cache just before we acquired the page lock. The page 2088 * might even be back in swap cache on another swap area. But 2089 * that is okay, try_to_free_swap() only removes stale pages. 2090 */ 2091 lock_page(page); 2092 wait_on_page_writeback(page); 2093 try_to_free_swap(page); 2094 unlock_page(page); 2095 put_page(page); 2096 } 2097 2098 /* 2099 * Lets check again to see if there are still swap entries in the map. 2100 * If yes, we would need to do retry the unuse logic again. 2101 * Under global memory pressure, swap entries can be reinserted back 2102 * into process space after the mmlist loop above passes over them. 2103 * 2104 * Limit the number of retries? No: when mmget_not_zero() 2105 * above fails, that mm is likely to be freeing swap from 2106 * exit_mmap(), which proceeds at its own independent pace; 2107 * and even shmem_writepage() could have been preempted after 2108 * folio_alloc_swap(), temporarily hiding that swap. It's easy 2109 * and robust (though cpu-intensive) just to keep retrying. 2110 */ 2111 if (READ_ONCE(si->inuse_pages)) { 2112 if (!signal_pending(current)) 2113 goto retry; 2114 return -EINTR; 2115 } 2116 2117 return 0; 2118 } 2119 2120 /* 2121 * After a successful try_to_unuse, if no swap is now in use, we know 2122 * we can empty the mmlist. swap_lock must be held on entry and exit. 2123 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2124 * added to the mmlist just after page_duplicate - before would be racy. 2125 */ 2126 static void drain_mmlist(void) 2127 { 2128 struct list_head *p, *next; 2129 unsigned int type; 2130 2131 for (type = 0; type < nr_swapfiles; type++) 2132 if (swap_info[type]->inuse_pages) 2133 return; 2134 spin_lock(&mmlist_lock); 2135 list_for_each_safe(p, next, &init_mm.mmlist) 2136 list_del_init(p); 2137 spin_unlock(&mmlist_lock); 2138 } 2139 2140 /* 2141 * Free all of a swapdev's extent information 2142 */ 2143 static void destroy_swap_extents(struct swap_info_struct *sis) 2144 { 2145 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2146 struct rb_node *rb = sis->swap_extent_root.rb_node; 2147 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2148 2149 rb_erase(rb, &sis->swap_extent_root); 2150 kfree(se); 2151 } 2152 2153 if (sis->flags & SWP_ACTIVATED) { 2154 struct file *swap_file = sis->swap_file; 2155 struct address_space *mapping = swap_file->f_mapping; 2156 2157 sis->flags &= ~SWP_ACTIVATED; 2158 if (mapping->a_ops->swap_deactivate) 2159 mapping->a_ops->swap_deactivate(swap_file); 2160 } 2161 } 2162 2163 /* 2164 * Add a block range (and the corresponding page range) into this swapdev's 2165 * extent tree. 2166 * 2167 * This function rather assumes that it is called in ascending page order. 2168 */ 2169 int 2170 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2171 unsigned long nr_pages, sector_t start_block) 2172 { 2173 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2174 struct swap_extent *se; 2175 struct swap_extent *new_se; 2176 2177 /* 2178 * place the new node at the right most since the 2179 * function is called in ascending page order. 2180 */ 2181 while (*link) { 2182 parent = *link; 2183 link = &parent->rb_right; 2184 } 2185 2186 if (parent) { 2187 se = rb_entry(parent, struct swap_extent, rb_node); 2188 BUG_ON(se->start_page + se->nr_pages != start_page); 2189 if (se->start_block + se->nr_pages == start_block) { 2190 /* Merge it */ 2191 se->nr_pages += nr_pages; 2192 return 0; 2193 } 2194 } 2195 2196 /* No merge, insert a new extent. */ 2197 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2198 if (new_se == NULL) 2199 return -ENOMEM; 2200 new_se->start_page = start_page; 2201 new_se->nr_pages = nr_pages; 2202 new_se->start_block = start_block; 2203 2204 rb_link_node(&new_se->rb_node, parent, link); 2205 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2206 return 1; 2207 } 2208 EXPORT_SYMBOL_GPL(add_swap_extent); 2209 2210 /* 2211 * A `swap extent' is a simple thing which maps a contiguous range of pages 2212 * onto a contiguous range of disk blocks. A rbtree of swap extents is 2213 * built at swapon time and is then used at swap_writepage/swap_readpage 2214 * time for locating where on disk a page belongs. 2215 * 2216 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2217 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2218 * swap files identically. 2219 * 2220 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2221 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2222 * swapfiles are handled *identically* after swapon time. 2223 * 2224 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2225 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray 2226 * blocks are found which do not fall within the PAGE_SIZE alignment 2227 * requirements, they are simply tossed out - we will never use those blocks 2228 * for swapping. 2229 * 2230 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2231 * prevents users from writing to the swap device, which will corrupt memory. 2232 * 2233 * The amount of disk space which a single swap extent represents varies. 2234 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2235 * extents in the rbtree. - akpm. 2236 */ 2237 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2238 { 2239 struct file *swap_file = sis->swap_file; 2240 struct address_space *mapping = swap_file->f_mapping; 2241 struct inode *inode = mapping->host; 2242 int ret; 2243 2244 if (S_ISBLK(inode->i_mode)) { 2245 ret = add_swap_extent(sis, 0, sis->max, 0); 2246 *span = sis->pages; 2247 return ret; 2248 } 2249 2250 if (mapping->a_ops->swap_activate) { 2251 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2252 if (ret < 0) 2253 return ret; 2254 sis->flags |= SWP_ACTIVATED; 2255 if ((sis->flags & SWP_FS_OPS) && 2256 sio_pool_init() != 0) { 2257 destroy_swap_extents(sis); 2258 return -ENOMEM; 2259 } 2260 return ret; 2261 } 2262 2263 return generic_swapfile_activate(sis, swap_file, span); 2264 } 2265 2266 static int swap_node(struct swap_info_struct *p) 2267 { 2268 struct block_device *bdev; 2269 2270 if (p->bdev) 2271 bdev = p->bdev; 2272 else 2273 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2274 2275 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2276 } 2277 2278 static void setup_swap_info(struct swap_info_struct *p, int prio, 2279 unsigned char *swap_map, 2280 struct swap_cluster_info *cluster_info) 2281 { 2282 int i; 2283 2284 if (prio >= 0) 2285 p->prio = prio; 2286 else 2287 p->prio = --least_priority; 2288 /* 2289 * the plist prio is negated because plist ordering is 2290 * low-to-high, while swap ordering is high-to-low 2291 */ 2292 p->list.prio = -p->prio; 2293 for_each_node(i) { 2294 if (p->prio >= 0) 2295 p->avail_lists[i].prio = -p->prio; 2296 else { 2297 if (swap_node(p) == i) 2298 p->avail_lists[i].prio = 1; 2299 else 2300 p->avail_lists[i].prio = -p->prio; 2301 } 2302 } 2303 p->swap_map = swap_map; 2304 p->cluster_info = cluster_info; 2305 } 2306 2307 static void _enable_swap_info(struct swap_info_struct *p) 2308 { 2309 p->flags |= SWP_WRITEOK; 2310 atomic_long_add(p->pages, &nr_swap_pages); 2311 total_swap_pages += p->pages; 2312 2313 assert_spin_locked(&swap_lock); 2314 /* 2315 * both lists are plists, and thus priority ordered. 2316 * swap_active_head needs to be priority ordered for swapoff(), 2317 * which on removal of any swap_info_struct with an auto-assigned 2318 * (i.e. negative) priority increments the auto-assigned priority 2319 * of any lower-priority swap_info_structs. 2320 * swap_avail_head needs to be priority ordered for folio_alloc_swap(), 2321 * which allocates swap pages from the highest available priority 2322 * swap_info_struct. 2323 */ 2324 plist_add(&p->list, &swap_active_head); 2325 add_to_avail_list(p); 2326 } 2327 2328 static void enable_swap_info(struct swap_info_struct *p, int prio, 2329 unsigned char *swap_map, 2330 struct swap_cluster_info *cluster_info, 2331 unsigned long *frontswap_map) 2332 { 2333 if (IS_ENABLED(CONFIG_FRONTSWAP)) 2334 frontswap_init(p->type, frontswap_map); 2335 spin_lock(&swap_lock); 2336 spin_lock(&p->lock); 2337 setup_swap_info(p, prio, swap_map, cluster_info); 2338 spin_unlock(&p->lock); 2339 spin_unlock(&swap_lock); 2340 /* 2341 * Finished initializing swap device, now it's safe to reference it. 2342 */ 2343 percpu_ref_resurrect(&p->users); 2344 spin_lock(&swap_lock); 2345 spin_lock(&p->lock); 2346 _enable_swap_info(p); 2347 spin_unlock(&p->lock); 2348 spin_unlock(&swap_lock); 2349 } 2350 2351 static void reinsert_swap_info(struct swap_info_struct *p) 2352 { 2353 spin_lock(&swap_lock); 2354 spin_lock(&p->lock); 2355 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2356 _enable_swap_info(p); 2357 spin_unlock(&p->lock); 2358 spin_unlock(&swap_lock); 2359 } 2360 2361 bool has_usable_swap(void) 2362 { 2363 bool ret = true; 2364 2365 spin_lock(&swap_lock); 2366 if (plist_head_empty(&swap_active_head)) 2367 ret = false; 2368 spin_unlock(&swap_lock); 2369 return ret; 2370 } 2371 2372 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2373 { 2374 struct swap_info_struct *p = NULL; 2375 unsigned char *swap_map; 2376 struct swap_cluster_info *cluster_info; 2377 unsigned long *frontswap_map; 2378 struct file *swap_file, *victim; 2379 struct address_space *mapping; 2380 struct inode *inode; 2381 struct filename *pathname; 2382 int err, found = 0; 2383 unsigned int old_block_size; 2384 2385 if (!capable(CAP_SYS_ADMIN)) 2386 return -EPERM; 2387 2388 BUG_ON(!current->mm); 2389 2390 pathname = getname(specialfile); 2391 if (IS_ERR(pathname)) 2392 return PTR_ERR(pathname); 2393 2394 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2395 err = PTR_ERR(victim); 2396 if (IS_ERR(victim)) 2397 goto out; 2398 2399 mapping = victim->f_mapping; 2400 spin_lock(&swap_lock); 2401 plist_for_each_entry(p, &swap_active_head, list) { 2402 if (p->flags & SWP_WRITEOK) { 2403 if (p->swap_file->f_mapping == mapping) { 2404 found = 1; 2405 break; 2406 } 2407 } 2408 } 2409 if (!found) { 2410 err = -EINVAL; 2411 spin_unlock(&swap_lock); 2412 goto out_dput; 2413 } 2414 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2415 vm_unacct_memory(p->pages); 2416 else { 2417 err = -ENOMEM; 2418 spin_unlock(&swap_lock); 2419 goto out_dput; 2420 } 2421 del_from_avail_list(p); 2422 spin_lock(&p->lock); 2423 if (p->prio < 0) { 2424 struct swap_info_struct *si = p; 2425 int nid; 2426 2427 plist_for_each_entry_continue(si, &swap_active_head, list) { 2428 si->prio++; 2429 si->list.prio--; 2430 for_each_node(nid) { 2431 if (si->avail_lists[nid].prio != 1) 2432 si->avail_lists[nid].prio--; 2433 } 2434 } 2435 least_priority++; 2436 } 2437 plist_del(&p->list, &swap_active_head); 2438 atomic_long_sub(p->pages, &nr_swap_pages); 2439 total_swap_pages -= p->pages; 2440 p->flags &= ~SWP_WRITEOK; 2441 spin_unlock(&p->lock); 2442 spin_unlock(&swap_lock); 2443 2444 disable_swap_slots_cache_lock(); 2445 2446 set_current_oom_origin(); 2447 err = try_to_unuse(p->type); 2448 clear_current_oom_origin(); 2449 2450 if (err) { 2451 /* re-insert swap space back into swap_list */ 2452 reinsert_swap_info(p); 2453 reenable_swap_slots_cache_unlock(); 2454 goto out_dput; 2455 } 2456 2457 reenable_swap_slots_cache_unlock(); 2458 2459 /* 2460 * Wait for swap operations protected by get/put_swap_device() 2461 * to complete. 2462 * 2463 * We need synchronize_rcu() here to protect the accessing to 2464 * the swap cache data structure. 2465 */ 2466 percpu_ref_kill(&p->users); 2467 synchronize_rcu(); 2468 wait_for_completion(&p->comp); 2469 2470 flush_work(&p->discard_work); 2471 2472 destroy_swap_extents(p); 2473 if (p->flags & SWP_CONTINUED) 2474 free_swap_count_continuations(p); 2475 2476 if (!p->bdev || !bdev_nonrot(p->bdev)) 2477 atomic_dec(&nr_rotate_swap); 2478 2479 mutex_lock(&swapon_mutex); 2480 spin_lock(&swap_lock); 2481 spin_lock(&p->lock); 2482 drain_mmlist(); 2483 2484 /* wait for anyone still in scan_swap_map_slots */ 2485 p->highest_bit = 0; /* cuts scans short */ 2486 while (p->flags >= SWP_SCANNING) { 2487 spin_unlock(&p->lock); 2488 spin_unlock(&swap_lock); 2489 schedule_timeout_uninterruptible(1); 2490 spin_lock(&swap_lock); 2491 spin_lock(&p->lock); 2492 } 2493 2494 swap_file = p->swap_file; 2495 old_block_size = p->old_block_size; 2496 p->swap_file = NULL; 2497 p->max = 0; 2498 swap_map = p->swap_map; 2499 p->swap_map = NULL; 2500 cluster_info = p->cluster_info; 2501 p->cluster_info = NULL; 2502 frontswap_map = frontswap_map_get(p); 2503 spin_unlock(&p->lock); 2504 spin_unlock(&swap_lock); 2505 arch_swap_invalidate_area(p->type); 2506 frontswap_invalidate_area(p->type); 2507 frontswap_map_set(p, NULL); 2508 mutex_unlock(&swapon_mutex); 2509 free_percpu(p->percpu_cluster); 2510 p->percpu_cluster = NULL; 2511 free_percpu(p->cluster_next_cpu); 2512 p->cluster_next_cpu = NULL; 2513 vfree(swap_map); 2514 kvfree(cluster_info); 2515 kvfree(frontswap_map); 2516 /* Destroy swap account information */ 2517 swap_cgroup_swapoff(p->type); 2518 exit_swap_address_space(p->type); 2519 2520 inode = mapping->host; 2521 if (S_ISBLK(inode->i_mode)) { 2522 struct block_device *bdev = I_BDEV(inode); 2523 2524 set_blocksize(bdev, old_block_size); 2525 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2526 } 2527 2528 inode_lock(inode); 2529 inode->i_flags &= ~S_SWAPFILE; 2530 inode_unlock(inode); 2531 filp_close(swap_file, NULL); 2532 2533 /* 2534 * Clear the SWP_USED flag after all resources are freed so that swapon 2535 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2536 * not hold p->lock after we cleared its SWP_WRITEOK. 2537 */ 2538 spin_lock(&swap_lock); 2539 p->flags = 0; 2540 spin_unlock(&swap_lock); 2541 2542 err = 0; 2543 atomic_inc(&proc_poll_event); 2544 wake_up_interruptible(&proc_poll_wait); 2545 2546 out_dput: 2547 filp_close(victim, NULL); 2548 out: 2549 putname(pathname); 2550 return err; 2551 } 2552 2553 #ifdef CONFIG_PROC_FS 2554 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2555 { 2556 struct seq_file *seq = file->private_data; 2557 2558 poll_wait(file, &proc_poll_wait, wait); 2559 2560 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2561 seq->poll_event = atomic_read(&proc_poll_event); 2562 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2563 } 2564 2565 return EPOLLIN | EPOLLRDNORM; 2566 } 2567 2568 /* iterator */ 2569 static void *swap_start(struct seq_file *swap, loff_t *pos) 2570 { 2571 struct swap_info_struct *si; 2572 int type; 2573 loff_t l = *pos; 2574 2575 mutex_lock(&swapon_mutex); 2576 2577 if (!l) 2578 return SEQ_START_TOKEN; 2579 2580 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2581 if (!(si->flags & SWP_USED) || !si->swap_map) 2582 continue; 2583 if (!--l) 2584 return si; 2585 } 2586 2587 return NULL; 2588 } 2589 2590 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2591 { 2592 struct swap_info_struct *si = v; 2593 int type; 2594 2595 if (v == SEQ_START_TOKEN) 2596 type = 0; 2597 else 2598 type = si->type + 1; 2599 2600 ++(*pos); 2601 for (; (si = swap_type_to_swap_info(type)); type++) { 2602 if (!(si->flags & SWP_USED) || !si->swap_map) 2603 continue; 2604 return si; 2605 } 2606 2607 return NULL; 2608 } 2609 2610 static void swap_stop(struct seq_file *swap, void *v) 2611 { 2612 mutex_unlock(&swapon_mutex); 2613 } 2614 2615 static int swap_show(struct seq_file *swap, void *v) 2616 { 2617 struct swap_info_struct *si = v; 2618 struct file *file; 2619 int len; 2620 unsigned long bytes, inuse; 2621 2622 if (si == SEQ_START_TOKEN) { 2623 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2624 return 0; 2625 } 2626 2627 bytes = si->pages << (PAGE_SHIFT - 10); 2628 inuse = READ_ONCE(si->inuse_pages) << (PAGE_SHIFT - 10); 2629 2630 file = si->swap_file; 2631 len = seq_file_path(swap, file, " \t\n\\"); 2632 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n", 2633 len < 40 ? 40 - len : 1, " ", 2634 S_ISBLK(file_inode(file)->i_mode) ? 2635 "partition" : "file\t", 2636 bytes, bytes < 10000000 ? "\t" : "", 2637 inuse, inuse < 10000000 ? "\t" : "", 2638 si->prio); 2639 return 0; 2640 } 2641 2642 static const struct seq_operations swaps_op = { 2643 .start = swap_start, 2644 .next = swap_next, 2645 .stop = swap_stop, 2646 .show = swap_show 2647 }; 2648 2649 static int swaps_open(struct inode *inode, struct file *file) 2650 { 2651 struct seq_file *seq; 2652 int ret; 2653 2654 ret = seq_open(file, &swaps_op); 2655 if (ret) 2656 return ret; 2657 2658 seq = file->private_data; 2659 seq->poll_event = atomic_read(&proc_poll_event); 2660 return 0; 2661 } 2662 2663 static const struct proc_ops swaps_proc_ops = { 2664 .proc_flags = PROC_ENTRY_PERMANENT, 2665 .proc_open = swaps_open, 2666 .proc_read = seq_read, 2667 .proc_lseek = seq_lseek, 2668 .proc_release = seq_release, 2669 .proc_poll = swaps_poll, 2670 }; 2671 2672 static int __init procswaps_init(void) 2673 { 2674 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2675 return 0; 2676 } 2677 __initcall(procswaps_init); 2678 #endif /* CONFIG_PROC_FS */ 2679 2680 #ifdef MAX_SWAPFILES_CHECK 2681 static int __init max_swapfiles_check(void) 2682 { 2683 MAX_SWAPFILES_CHECK(); 2684 return 0; 2685 } 2686 late_initcall(max_swapfiles_check); 2687 #endif 2688 2689 static struct swap_info_struct *alloc_swap_info(void) 2690 { 2691 struct swap_info_struct *p; 2692 struct swap_info_struct *defer = NULL; 2693 unsigned int type; 2694 int i; 2695 2696 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2697 if (!p) 2698 return ERR_PTR(-ENOMEM); 2699 2700 if (percpu_ref_init(&p->users, swap_users_ref_free, 2701 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { 2702 kvfree(p); 2703 return ERR_PTR(-ENOMEM); 2704 } 2705 2706 spin_lock(&swap_lock); 2707 for (type = 0; type < nr_swapfiles; type++) { 2708 if (!(swap_info[type]->flags & SWP_USED)) 2709 break; 2710 } 2711 if (type >= MAX_SWAPFILES) { 2712 spin_unlock(&swap_lock); 2713 percpu_ref_exit(&p->users); 2714 kvfree(p); 2715 return ERR_PTR(-EPERM); 2716 } 2717 if (type >= nr_swapfiles) { 2718 p->type = type; 2719 /* 2720 * Publish the swap_info_struct after initializing it. 2721 * Note that kvzalloc() above zeroes all its fields. 2722 */ 2723 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ 2724 nr_swapfiles++; 2725 } else { 2726 defer = p; 2727 p = swap_info[type]; 2728 /* 2729 * Do not memset this entry: a racing procfs swap_next() 2730 * would be relying on p->type to remain valid. 2731 */ 2732 } 2733 p->swap_extent_root = RB_ROOT; 2734 plist_node_init(&p->list, 0); 2735 for_each_node(i) 2736 plist_node_init(&p->avail_lists[i], 0); 2737 p->flags = SWP_USED; 2738 spin_unlock(&swap_lock); 2739 if (defer) { 2740 percpu_ref_exit(&defer->users); 2741 kvfree(defer); 2742 } 2743 spin_lock_init(&p->lock); 2744 spin_lock_init(&p->cont_lock); 2745 init_completion(&p->comp); 2746 2747 return p; 2748 } 2749 2750 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2751 { 2752 int error; 2753 2754 if (S_ISBLK(inode->i_mode)) { 2755 p->bdev = blkdev_get_by_dev(inode->i_rdev, 2756 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2757 if (IS_ERR(p->bdev)) { 2758 error = PTR_ERR(p->bdev); 2759 p->bdev = NULL; 2760 return error; 2761 } 2762 p->old_block_size = block_size(p->bdev); 2763 error = set_blocksize(p->bdev, PAGE_SIZE); 2764 if (error < 0) 2765 return error; 2766 /* 2767 * Zoned block devices contain zones that have a sequential 2768 * write only restriction. Hence zoned block devices are not 2769 * suitable for swapping. Disallow them here. 2770 */ 2771 if (bdev_is_zoned(p->bdev)) 2772 return -EINVAL; 2773 p->flags |= SWP_BLKDEV; 2774 } else if (S_ISREG(inode->i_mode)) { 2775 p->bdev = inode->i_sb->s_bdev; 2776 } 2777 2778 return 0; 2779 } 2780 2781 2782 /* 2783 * Find out how many pages are allowed for a single swap device. There 2784 * are two limiting factors: 2785 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2786 * 2) the number of bits in the swap pte, as defined by the different 2787 * architectures. 2788 * 2789 * In order to find the largest possible bit mask, a swap entry with 2790 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2791 * decoded to a swp_entry_t again, and finally the swap offset is 2792 * extracted. 2793 * 2794 * This will mask all the bits from the initial ~0UL mask that can't 2795 * be encoded in either the swp_entry_t or the architecture definition 2796 * of a swap pte. 2797 */ 2798 unsigned long generic_max_swapfile_size(void) 2799 { 2800 return swp_offset(pte_to_swp_entry( 2801 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2802 } 2803 2804 /* Can be overridden by an architecture for additional checks. */ 2805 __weak unsigned long arch_max_swapfile_size(void) 2806 { 2807 return generic_max_swapfile_size(); 2808 } 2809 2810 static unsigned long read_swap_header(struct swap_info_struct *p, 2811 union swap_header *swap_header, 2812 struct inode *inode) 2813 { 2814 int i; 2815 unsigned long maxpages; 2816 unsigned long swapfilepages; 2817 unsigned long last_page; 2818 2819 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2820 pr_err("Unable to find swap-space signature\n"); 2821 return 0; 2822 } 2823 2824 /* swap partition endianness hack... */ 2825 if (swab32(swap_header->info.version) == 1) { 2826 swab32s(&swap_header->info.version); 2827 swab32s(&swap_header->info.last_page); 2828 swab32s(&swap_header->info.nr_badpages); 2829 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2830 return 0; 2831 for (i = 0; i < swap_header->info.nr_badpages; i++) 2832 swab32s(&swap_header->info.badpages[i]); 2833 } 2834 /* Check the swap header's sub-version */ 2835 if (swap_header->info.version != 1) { 2836 pr_warn("Unable to handle swap header version %d\n", 2837 swap_header->info.version); 2838 return 0; 2839 } 2840 2841 p->lowest_bit = 1; 2842 p->cluster_next = 1; 2843 p->cluster_nr = 0; 2844 2845 maxpages = swapfile_maximum_size; 2846 last_page = swap_header->info.last_page; 2847 if (!last_page) { 2848 pr_warn("Empty swap-file\n"); 2849 return 0; 2850 } 2851 if (last_page > maxpages) { 2852 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2853 maxpages << (PAGE_SHIFT - 10), 2854 last_page << (PAGE_SHIFT - 10)); 2855 } 2856 if (maxpages > last_page) { 2857 maxpages = last_page + 1; 2858 /* p->max is an unsigned int: don't overflow it */ 2859 if ((unsigned int)maxpages == 0) 2860 maxpages = UINT_MAX; 2861 } 2862 p->highest_bit = maxpages - 1; 2863 2864 if (!maxpages) 2865 return 0; 2866 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2867 if (swapfilepages && maxpages > swapfilepages) { 2868 pr_warn("Swap area shorter than signature indicates\n"); 2869 return 0; 2870 } 2871 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2872 return 0; 2873 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2874 return 0; 2875 2876 return maxpages; 2877 } 2878 2879 #define SWAP_CLUSTER_INFO_COLS \ 2880 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 2881 #define SWAP_CLUSTER_SPACE_COLS \ 2882 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 2883 #define SWAP_CLUSTER_COLS \ 2884 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 2885 2886 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2887 union swap_header *swap_header, 2888 unsigned char *swap_map, 2889 struct swap_cluster_info *cluster_info, 2890 unsigned long maxpages, 2891 sector_t *span) 2892 { 2893 unsigned int j, k; 2894 unsigned int nr_good_pages; 2895 int nr_extents; 2896 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2897 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 2898 unsigned long i, idx; 2899 2900 nr_good_pages = maxpages - 1; /* omit header page */ 2901 2902 cluster_list_init(&p->free_clusters); 2903 cluster_list_init(&p->discard_clusters); 2904 2905 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2906 unsigned int page_nr = swap_header->info.badpages[i]; 2907 if (page_nr == 0 || page_nr > swap_header->info.last_page) 2908 return -EINVAL; 2909 if (page_nr < maxpages) { 2910 swap_map[page_nr] = SWAP_MAP_BAD; 2911 nr_good_pages--; 2912 /* 2913 * Haven't marked the cluster free yet, no list 2914 * operation involved 2915 */ 2916 inc_cluster_info_page(p, cluster_info, page_nr); 2917 } 2918 } 2919 2920 /* Haven't marked the cluster free yet, no list operation involved */ 2921 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 2922 inc_cluster_info_page(p, cluster_info, i); 2923 2924 if (nr_good_pages) { 2925 swap_map[0] = SWAP_MAP_BAD; 2926 /* 2927 * Not mark the cluster free yet, no list 2928 * operation involved 2929 */ 2930 inc_cluster_info_page(p, cluster_info, 0); 2931 p->max = maxpages; 2932 p->pages = nr_good_pages; 2933 nr_extents = setup_swap_extents(p, span); 2934 if (nr_extents < 0) 2935 return nr_extents; 2936 nr_good_pages = p->pages; 2937 } 2938 if (!nr_good_pages) { 2939 pr_warn("Empty swap-file\n"); 2940 return -EINVAL; 2941 } 2942 2943 if (!cluster_info) 2944 return nr_extents; 2945 2946 2947 /* 2948 * Reduce false cache line sharing between cluster_info and 2949 * sharing same address space. 2950 */ 2951 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 2952 j = (k + col) % SWAP_CLUSTER_COLS; 2953 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 2954 idx = i * SWAP_CLUSTER_COLS + j; 2955 if (idx >= nr_clusters) 2956 continue; 2957 if (cluster_count(&cluster_info[idx])) 2958 continue; 2959 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 2960 cluster_list_add_tail(&p->free_clusters, cluster_info, 2961 idx); 2962 } 2963 } 2964 return nr_extents; 2965 } 2966 2967 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2968 { 2969 struct swap_info_struct *p; 2970 struct filename *name; 2971 struct file *swap_file = NULL; 2972 struct address_space *mapping; 2973 struct dentry *dentry; 2974 int prio; 2975 int error; 2976 union swap_header *swap_header; 2977 int nr_extents; 2978 sector_t span; 2979 unsigned long maxpages; 2980 unsigned char *swap_map = NULL; 2981 struct swap_cluster_info *cluster_info = NULL; 2982 unsigned long *frontswap_map = NULL; 2983 struct page *page = NULL; 2984 struct inode *inode = NULL; 2985 bool inced_nr_rotate_swap = false; 2986 2987 if (swap_flags & ~SWAP_FLAGS_VALID) 2988 return -EINVAL; 2989 2990 if (!capable(CAP_SYS_ADMIN)) 2991 return -EPERM; 2992 2993 if (!swap_avail_heads) 2994 return -ENOMEM; 2995 2996 p = alloc_swap_info(); 2997 if (IS_ERR(p)) 2998 return PTR_ERR(p); 2999 3000 INIT_WORK(&p->discard_work, swap_discard_work); 3001 3002 name = getname(specialfile); 3003 if (IS_ERR(name)) { 3004 error = PTR_ERR(name); 3005 name = NULL; 3006 goto bad_swap; 3007 } 3008 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3009 if (IS_ERR(swap_file)) { 3010 error = PTR_ERR(swap_file); 3011 swap_file = NULL; 3012 goto bad_swap; 3013 } 3014 3015 p->swap_file = swap_file; 3016 mapping = swap_file->f_mapping; 3017 dentry = swap_file->f_path.dentry; 3018 inode = mapping->host; 3019 3020 error = claim_swapfile(p, inode); 3021 if (unlikely(error)) 3022 goto bad_swap; 3023 3024 inode_lock(inode); 3025 if (d_unlinked(dentry) || cant_mount(dentry)) { 3026 error = -ENOENT; 3027 goto bad_swap_unlock_inode; 3028 } 3029 if (IS_SWAPFILE(inode)) { 3030 error = -EBUSY; 3031 goto bad_swap_unlock_inode; 3032 } 3033 3034 /* 3035 * Read the swap header. 3036 */ 3037 if (!mapping->a_ops->read_folio) { 3038 error = -EINVAL; 3039 goto bad_swap_unlock_inode; 3040 } 3041 page = read_mapping_page(mapping, 0, swap_file); 3042 if (IS_ERR(page)) { 3043 error = PTR_ERR(page); 3044 goto bad_swap_unlock_inode; 3045 } 3046 swap_header = kmap(page); 3047 3048 maxpages = read_swap_header(p, swap_header, inode); 3049 if (unlikely(!maxpages)) { 3050 error = -EINVAL; 3051 goto bad_swap_unlock_inode; 3052 } 3053 3054 /* OK, set up the swap map and apply the bad block list */ 3055 swap_map = vzalloc(maxpages); 3056 if (!swap_map) { 3057 error = -ENOMEM; 3058 goto bad_swap_unlock_inode; 3059 } 3060 3061 if (p->bdev && bdev_stable_writes(p->bdev)) 3062 p->flags |= SWP_STABLE_WRITES; 3063 3064 if (p->bdev && p->bdev->bd_disk->fops->rw_page) 3065 p->flags |= SWP_SYNCHRONOUS_IO; 3066 3067 if (p->bdev && bdev_nonrot(p->bdev)) { 3068 int cpu; 3069 unsigned long ci, nr_cluster; 3070 3071 p->flags |= SWP_SOLIDSTATE; 3072 p->cluster_next_cpu = alloc_percpu(unsigned int); 3073 if (!p->cluster_next_cpu) { 3074 error = -ENOMEM; 3075 goto bad_swap_unlock_inode; 3076 } 3077 /* 3078 * select a random position to start with to help wear leveling 3079 * SSD 3080 */ 3081 for_each_possible_cpu(cpu) { 3082 per_cpu(*p->cluster_next_cpu, cpu) = 3083 1 + prandom_u32_max(p->highest_bit); 3084 } 3085 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3086 3087 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3088 GFP_KERNEL); 3089 if (!cluster_info) { 3090 error = -ENOMEM; 3091 goto bad_swap_unlock_inode; 3092 } 3093 3094 for (ci = 0; ci < nr_cluster; ci++) 3095 spin_lock_init(&((cluster_info + ci)->lock)); 3096 3097 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3098 if (!p->percpu_cluster) { 3099 error = -ENOMEM; 3100 goto bad_swap_unlock_inode; 3101 } 3102 for_each_possible_cpu(cpu) { 3103 struct percpu_cluster *cluster; 3104 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3105 cluster_set_null(&cluster->index); 3106 } 3107 } else { 3108 atomic_inc(&nr_rotate_swap); 3109 inced_nr_rotate_swap = true; 3110 } 3111 3112 error = swap_cgroup_swapon(p->type, maxpages); 3113 if (error) 3114 goto bad_swap_unlock_inode; 3115 3116 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3117 cluster_info, maxpages, &span); 3118 if (unlikely(nr_extents < 0)) { 3119 error = nr_extents; 3120 goto bad_swap_unlock_inode; 3121 } 3122 /* frontswap enabled? set up bit-per-page map for frontswap */ 3123 if (IS_ENABLED(CONFIG_FRONTSWAP)) 3124 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages), 3125 sizeof(long), 3126 GFP_KERNEL); 3127 3128 if ((swap_flags & SWAP_FLAG_DISCARD) && 3129 p->bdev && bdev_max_discard_sectors(p->bdev)) { 3130 /* 3131 * When discard is enabled for swap with no particular 3132 * policy flagged, we set all swap discard flags here in 3133 * order to sustain backward compatibility with older 3134 * swapon(8) releases. 3135 */ 3136 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3137 SWP_PAGE_DISCARD); 3138 3139 /* 3140 * By flagging sys_swapon, a sysadmin can tell us to 3141 * either do single-time area discards only, or to just 3142 * perform discards for released swap page-clusters. 3143 * Now it's time to adjust the p->flags accordingly. 3144 */ 3145 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3146 p->flags &= ~SWP_PAGE_DISCARD; 3147 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3148 p->flags &= ~SWP_AREA_DISCARD; 3149 3150 /* issue a swapon-time discard if it's still required */ 3151 if (p->flags & SWP_AREA_DISCARD) { 3152 int err = discard_swap(p); 3153 if (unlikely(err)) 3154 pr_err("swapon: discard_swap(%p): %d\n", 3155 p, err); 3156 } 3157 } 3158 3159 error = init_swap_address_space(p->type, maxpages); 3160 if (error) 3161 goto bad_swap_unlock_inode; 3162 3163 /* 3164 * Flush any pending IO and dirty mappings before we start using this 3165 * swap device. 3166 */ 3167 inode->i_flags |= S_SWAPFILE; 3168 error = inode_drain_writes(inode); 3169 if (error) { 3170 inode->i_flags &= ~S_SWAPFILE; 3171 goto free_swap_address_space; 3172 } 3173 3174 mutex_lock(&swapon_mutex); 3175 prio = -1; 3176 if (swap_flags & SWAP_FLAG_PREFER) 3177 prio = 3178 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3179 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 3180 3181 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 3182 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 3183 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 3184 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3185 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3186 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3187 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 3188 (frontswap_map) ? "FS" : ""); 3189 3190 mutex_unlock(&swapon_mutex); 3191 atomic_inc(&proc_poll_event); 3192 wake_up_interruptible(&proc_poll_wait); 3193 3194 error = 0; 3195 goto out; 3196 free_swap_address_space: 3197 exit_swap_address_space(p->type); 3198 bad_swap_unlock_inode: 3199 inode_unlock(inode); 3200 bad_swap: 3201 free_percpu(p->percpu_cluster); 3202 p->percpu_cluster = NULL; 3203 free_percpu(p->cluster_next_cpu); 3204 p->cluster_next_cpu = NULL; 3205 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 3206 set_blocksize(p->bdev, p->old_block_size); 3207 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 3208 } 3209 inode = NULL; 3210 destroy_swap_extents(p); 3211 swap_cgroup_swapoff(p->type); 3212 spin_lock(&swap_lock); 3213 p->swap_file = NULL; 3214 p->flags = 0; 3215 spin_unlock(&swap_lock); 3216 vfree(swap_map); 3217 kvfree(cluster_info); 3218 kvfree(frontswap_map); 3219 if (inced_nr_rotate_swap) 3220 atomic_dec(&nr_rotate_swap); 3221 if (swap_file) 3222 filp_close(swap_file, NULL); 3223 out: 3224 if (page && !IS_ERR(page)) { 3225 kunmap(page); 3226 put_page(page); 3227 } 3228 if (name) 3229 putname(name); 3230 if (inode) 3231 inode_unlock(inode); 3232 if (!error) 3233 enable_swap_slots_cache(); 3234 return error; 3235 } 3236 3237 void si_swapinfo(struct sysinfo *val) 3238 { 3239 unsigned int type; 3240 unsigned long nr_to_be_unused = 0; 3241 3242 spin_lock(&swap_lock); 3243 for (type = 0; type < nr_swapfiles; type++) { 3244 struct swap_info_struct *si = swap_info[type]; 3245 3246 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3247 nr_to_be_unused += READ_ONCE(si->inuse_pages); 3248 } 3249 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3250 val->totalswap = total_swap_pages + nr_to_be_unused; 3251 spin_unlock(&swap_lock); 3252 } 3253 3254 /* 3255 * Verify that a swap entry is valid and increment its swap map count. 3256 * 3257 * Returns error code in following case. 3258 * - success -> 0 3259 * - swp_entry is invalid -> EINVAL 3260 * - swp_entry is migration entry -> EINVAL 3261 * - swap-cache reference is requested but there is already one. -> EEXIST 3262 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3263 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3264 */ 3265 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3266 { 3267 struct swap_info_struct *p; 3268 struct swap_cluster_info *ci; 3269 unsigned long offset; 3270 unsigned char count; 3271 unsigned char has_cache; 3272 int err; 3273 3274 p = get_swap_device(entry); 3275 if (!p) 3276 return -EINVAL; 3277 3278 offset = swp_offset(entry); 3279 ci = lock_cluster_or_swap_info(p, offset); 3280 3281 count = p->swap_map[offset]; 3282 3283 /* 3284 * swapin_readahead() doesn't check if a swap entry is valid, so the 3285 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3286 */ 3287 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3288 err = -ENOENT; 3289 goto unlock_out; 3290 } 3291 3292 has_cache = count & SWAP_HAS_CACHE; 3293 count &= ~SWAP_HAS_CACHE; 3294 err = 0; 3295 3296 if (usage == SWAP_HAS_CACHE) { 3297 3298 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3299 if (!has_cache && count) 3300 has_cache = SWAP_HAS_CACHE; 3301 else if (has_cache) /* someone else added cache */ 3302 err = -EEXIST; 3303 else /* no users remaining */ 3304 err = -ENOENT; 3305 3306 } else if (count || has_cache) { 3307 3308 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3309 count += usage; 3310 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3311 err = -EINVAL; 3312 else if (swap_count_continued(p, offset, count)) 3313 count = COUNT_CONTINUED; 3314 else 3315 err = -ENOMEM; 3316 } else 3317 err = -ENOENT; /* unused swap entry */ 3318 3319 WRITE_ONCE(p->swap_map[offset], count | has_cache); 3320 3321 unlock_out: 3322 unlock_cluster_or_swap_info(p, ci); 3323 put_swap_device(p); 3324 return err; 3325 } 3326 3327 /* 3328 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3329 * (in which case its reference count is never incremented). 3330 */ 3331 void swap_shmem_alloc(swp_entry_t entry) 3332 { 3333 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3334 } 3335 3336 /* 3337 * Increase reference count of swap entry by 1. 3338 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3339 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3340 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3341 * might occur if a page table entry has got corrupted. 3342 */ 3343 int swap_duplicate(swp_entry_t entry) 3344 { 3345 int err = 0; 3346 3347 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3348 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3349 return err; 3350 } 3351 3352 /* 3353 * @entry: swap entry for which we allocate swap cache. 3354 * 3355 * Called when allocating swap cache for existing swap entry, 3356 * This can return error codes. Returns 0 at success. 3357 * -EEXIST means there is a swap cache. 3358 * Note: return code is different from swap_duplicate(). 3359 */ 3360 int swapcache_prepare(swp_entry_t entry) 3361 { 3362 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3363 } 3364 3365 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3366 { 3367 return swap_type_to_swap_info(swp_type(entry)); 3368 } 3369 3370 struct swap_info_struct *page_swap_info(struct page *page) 3371 { 3372 swp_entry_t entry = { .val = page_private(page) }; 3373 return swp_swap_info(entry); 3374 } 3375 3376 /* 3377 * out-of-line methods to avoid include hell. 3378 */ 3379 struct address_space *swapcache_mapping(struct folio *folio) 3380 { 3381 return page_swap_info(&folio->page)->swap_file->f_mapping; 3382 } 3383 EXPORT_SYMBOL_GPL(swapcache_mapping); 3384 3385 pgoff_t __page_file_index(struct page *page) 3386 { 3387 swp_entry_t swap = { .val = page_private(page) }; 3388 return swp_offset(swap); 3389 } 3390 EXPORT_SYMBOL_GPL(__page_file_index); 3391 3392 /* 3393 * add_swap_count_continuation - called when a swap count is duplicated 3394 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3395 * page of the original vmalloc'ed swap_map, to hold the continuation count 3396 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3397 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3398 * 3399 * These continuation pages are seldom referenced: the common paths all work 3400 * on the original swap_map, only referring to a continuation page when the 3401 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3402 * 3403 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3404 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3405 * can be called after dropping locks. 3406 */ 3407 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3408 { 3409 struct swap_info_struct *si; 3410 struct swap_cluster_info *ci; 3411 struct page *head; 3412 struct page *page; 3413 struct page *list_page; 3414 pgoff_t offset; 3415 unsigned char count; 3416 int ret = 0; 3417 3418 /* 3419 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3420 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3421 */ 3422 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3423 3424 si = get_swap_device(entry); 3425 if (!si) { 3426 /* 3427 * An acceptable race has occurred since the failing 3428 * __swap_duplicate(): the swap device may be swapoff 3429 */ 3430 goto outer; 3431 } 3432 spin_lock(&si->lock); 3433 3434 offset = swp_offset(entry); 3435 3436 ci = lock_cluster(si, offset); 3437 3438 count = swap_count(si->swap_map[offset]); 3439 3440 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3441 /* 3442 * The higher the swap count, the more likely it is that tasks 3443 * will race to add swap count continuation: we need to avoid 3444 * over-provisioning. 3445 */ 3446 goto out; 3447 } 3448 3449 if (!page) { 3450 ret = -ENOMEM; 3451 goto out; 3452 } 3453 3454 /* 3455 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 3456 * no architecture is using highmem pages for kernel page tables: so it 3457 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 3458 */ 3459 head = vmalloc_to_page(si->swap_map + offset); 3460 offset &= ~PAGE_MASK; 3461 3462 spin_lock(&si->cont_lock); 3463 /* 3464 * Page allocation does not initialize the page's lru field, 3465 * but it does always reset its private field. 3466 */ 3467 if (!page_private(head)) { 3468 BUG_ON(count & COUNT_CONTINUED); 3469 INIT_LIST_HEAD(&head->lru); 3470 set_page_private(head, SWP_CONTINUED); 3471 si->flags |= SWP_CONTINUED; 3472 } 3473 3474 list_for_each_entry(list_page, &head->lru, lru) { 3475 unsigned char *map; 3476 3477 /* 3478 * If the previous map said no continuation, but we've found 3479 * a continuation page, free our allocation and use this one. 3480 */ 3481 if (!(count & COUNT_CONTINUED)) 3482 goto out_unlock_cont; 3483 3484 map = kmap_atomic(list_page) + offset; 3485 count = *map; 3486 kunmap_atomic(map); 3487 3488 /* 3489 * If this continuation count now has some space in it, 3490 * free our allocation and use this one. 3491 */ 3492 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3493 goto out_unlock_cont; 3494 } 3495 3496 list_add_tail(&page->lru, &head->lru); 3497 page = NULL; /* now it's attached, don't free it */ 3498 out_unlock_cont: 3499 spin_unlock(&si->cont_lock); 3500 out: 3501 unlock_cluster(ci); 3502 spin_unlock(&si->lock); 3503 put_swap_device(si); 3504 outer: 3505 if (page) 3506 __free_page(page); 3507 return ret; 3508 } 3509 3510 /* 3511 * swap_count_continued - when the original swap_map count is incremented 3512 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3513 * into, carry if so, or else fail until a new continuation page is allocated; 3514 * when the original swap_map count is decremented from 0 with continuation, 3515 * borrow from the continuation and report whether it still holds more. 3516 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3517 * lock. 3518 */ 3519 static bool swap_count_continued(struct swap_info_struct *si, 3520 pgoff_t offset, unsigned char count) 3521 { 3522 struct page *head; 3523 struct page *page; 3524 unsigned char *map; 3525 bool ret; 3526 3527 head = vmalloc_to_page(si->swap_map + offset); 3528 if (page_private(head) != SWP_CONTINUED) { 3529 BUG_ON(count & COUNT_CONTINUED); 3530 return false; /* need to add count continuation */ 3531 } 3532 3533 spin_lock(&si->cont_lock); 3534 offset &= ~PAGE_MASK; 3535 page = list_next_entry(head, lru); 3536 map = kmap_atomic(page) + offset; 3537 3538 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3539 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3540 3541 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3542 /* 3543 * Think of how you add 1 to 999 3544 */ 3545 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3546 kunmap_atomic(map); 3547 page = list_next_entry(page, lru); 3548 BUG_ON(page == head); 3549 map = kmap_atomic(page) + offset; 3550 } 3551 if (*map == SWAP_CONT_MAX) { 3552 kunmap_atomic(map); 3553 page = list_next_entry(page, lru); 3554 if (page == head) { 3555 ret = false; /* add count continuation */ 3556 goto out; 3557 } 3558 map = kmap_atomic(page) + offset; 3559 init_map: *map = 0; /* we didn't zero the page */ 3560 } 3561 *map += 1; 3562 kunmap_atomic(map); 3563 while ((page = list_prev_entry(page, lru)) != head) { 3564 map = kmap_atomic(page) + offset; 3565 *map = COUNT_CONTINUED; 3566 kunmap_atomic(map); 3567 } 3568 ret = true; /* incremented */ 3569 3570 } else { /* decrementing */ 3571 /* 3572 * Think of how you subtract 1 from 1000 3573 */ 3574 BUG_ON(count != COUNT_CONTINUED); 3575 while (*map == COUNT_CONTINUED) { 3576 kunmap_atomic(map); 3577 page = list_next_entry(page, lru); 3578 BUG_ON(page == head); 3579 map = kmap_atomic(page) + offset; 3580 } 3581 BUG_ON(*map == 0); 3582 *map -= 1; 3583 if (*map == 0) 3584 count = 0; 3585 kunmap_atomic(map); 3586 while ((page = list_prev_entry(page, lru)) != head) { 3587 map = kmap_atomic(page) + offset; 3588 *map = SWAP_CONT_MAX | count; 3589 count = COUNT_CONTINUED; 3590 kunmap_atomic(map); 3591 } 3592 ret = count == COUNT_CONTINUED; 3593 } 3594 out: 3595 spin_unlock(&si->cont_lock); 3596 return ret; 3597 } 3598 3599 /* 3600 * free_swap_count_continuations - swapoff free all the continuation pages 3601 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3602 */ 3603 static void free_swap_count_continuations(struct swap_info_struct *si) 3604 { 3605 pgoff_t offset; 3606 3607 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3608 struct page *head; 3609 head = vmalloc_to_page(si->swap_map + offset); 3610 if (page_private(head)) { 3611 struct page *page, *next; 3612 3613 list_for_each_entry_safe(page, next, &head->lru, lru) { 3614 list_del(&page->lru); 3615 __free_page(page); 3616 } 3617 } 3618 } 3619 } 3620 3621 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3622 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask) 3623 { 3624 struct swap_info_struct *si, *next; 3625 int nid = page_to_nid(page); 3626 3627 if (!(gfp_mask & __GFP_IO)) 3628 return; 3629 3630 if (!blk_cgroup_congested()) 3631 return; 3632 3633 /* 3634 * We've already scheduled a throttle, avoid taking the global swap 3635 * lock. 3636 */ 3637 if (current->throttle_queue) 3638 return; 3639 3640 spin_lock(&swap_avail_lock); 3641 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 3642 avail_lists[nid]) { 3643 if (si->bdev) { 3644 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true); 3645 break; 3646 } 3647 } 3648 spin_unlock(&swap_avail_lock); 3649 } 3650 #endif 3651 3652 static int __init swapfile_init(void) 3653 { 3654 int nid; 3655 3656 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3657 GFP_KERNEL); 3658 if (!swap_avail_heads) { 3659 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3660 return -ENOMEM; 3661 } 3662 3663 for_each_node(nid) 3664 plist_head_init(&swap_avail_heads[nid]); 3665 3666 swapfile_maximum_size = arch_max_swapfile_size(); 3667 3668 #ifdef CONFIG_MIGRATION 3669 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS)) 3670 swap_migration_ad_supported = true; 3671 #endif /* CONFIG_MIGRATION */ 3672 3673 return 0; 3674 } 3675 subsys_initcall(swapfile_init); 3676