1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/mm.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/task.h> 12 #include <linux/hugetlb.h> 13 #include <linux/mman.h> 14 #include <linux/slab.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/swap.h> 17 #include <linux/vmalloc.h> 18 #include <linux/pagemap.h> 19 #include <linux/namei.h> 20 #include <linux/shmem_fs.h> 21 #include <linux/blkdev.h> 22 #include <linux/random.h> 23 #include <linux/writeback.h> 24 #include <linux/proc_fs.h> 25 #include <linux/seq_file.h> 26 #include <linux/init.h> 27 #include <linux/ksm.h> 28 #include <linux/rmap.h> 29 #include <linux/security.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mutex.h> 32 #include <linux/capability.h> 33 #include <linux/syscalls.h> 34 #include <linux/memcontrol.h> 35 #include <linux/poll.h> 36 #include <linux/oom.h> 37 #include <linux/frontswap.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/swap_slots.h> 41 #include <linux/sort.h> 42 43 #include <asm/pgtable.h> 44 #include <asm/tlbflush.h> 45 #include <linux/swapops.h> 46 #include <linux/swap_cgroup.h> 47 48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 49 unsigned char); 50 static void free_swap_count_continuations(struct swap_info_struct *); 51 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 52 53 DEFINE_SPINLOCK(swap_lock); 54 static unsigned int nr_swapfiles; 55 atomic_long_t nr_swap_pages; 56 /* 57 * Some modules use swappable objects and may try to swap them out under 58 * memory pressure (via the shrinker). Before doing so, they may wish to 59 * check to see if any swap space is available. 60 */ 61 EXPORT_SYMBOL_GPL(nr_swap_pages); 62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 63 long total_swap_pages; 64 static int least_priority = -1; 65 66 static const char Bad_file[] = "Bad swap file entry "; 67 static const char Unused_file[] = "Unused swap file entry "; 68 static const char Bad_offset[] = "Bad swap offset entry "; 69 static const char Unused_offset[] = "Unused swap offset entry "; 70 71 /* 72 * all active swap_info_structs 73 * protected with swap_lock, and ordered by priority. 74 */ 75 PLIST_HEAD(swap_active_head); 76 77 /* 78 * all available (active, not full) swap_info_structs 79 * protected with swap_avail_lock, ordered by priority. 80 * This is used by get_swap_page() instead of swap_active_head 81 * because swap_active_head includes all swap_info_structs, 82 * but get_swap_page() doesn't need to look at full ones. 83 * This uses its own lock instead of swap_lock because when a 84 * swap_info_struct changes between not-full/full, it needs to 85 * add/remove itself to/from this list, but the swap_info_struct->lock 86 * is held and the locking order requires swap_lock to be taken 87 * before any swap_info_struct->lock. 88 */ 89 static struct plist_head *swap_avail_heads; 90 static DEFINE_SPINLOCK(swap_avail_lock); 91 92 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 93 94 static DEFINE_MUTEX(swapon_mutex); 95 96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 97 /* Activity counter to indicate that a swapon or swapoff has occurred */ 98 static atomic_t proc_poll_event = ATOMIC_INIT(0); 99 100 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 101 102 static struct swap_info_struct *swap_type_to_swap_info(int type) 103 { 104 if (type >= READ_ONCE(nr_swapfiles)) 105 return NULL; 106 107 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */ 108 return READ_ONCE(swap_info[type]); 109 } 110 111 static inline unsigned char swap_count(unsigned char ent) 112 { 113 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 114 } 115 116 /* Reclaim the swap entry anyway if possible */ 117 #define TTRS_ANYWAY 0x1 118 /* 119 * Reclaim the swap entry if there are no more mappings of the 120 * corresponding page 121 */ 122 #define TTRS_UNMAPPED 0x2 123 /* Reclaim the swap entry if swap is getting full*/ 124 #define TTRS_FULL 0x4 125 126 /* returns 1 if swap entry is freed */ 127 static int __try_to_reclaim_swap(struct swap_info_struct *si, 128 unsigned long offset, unsigned long flags) 129 { 130 swp_entry_t entry = swp_entry(si->type, offset); 131 struct page *page; 132 int ret = 0; 133 134 page = find_get_page(swap_address_space(entry), offset); 135 if (!page) 136 return 0; 137 /* 138 * When this function is called from scan_swap_map_slots() and it's 139 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page, 140 * here. We have to use trylock for avoiding deadlock. This is a special 141 * case and you should use try_to_free_swap() with explicit lock_page() 142 * in usual operations. 143 */ 144 if (trylock_page(page)) { 145 if ((flags & TTRS_ANYWAY) || 146 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) || 147 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page))) 148 ret = try_to_free_swap(page); 149 unlock_page(page); 150 } 151 put_page(page); 152 return ret; 153 } 154 155 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 156 { 157 struct rb_node *rb = rb_first(&sis->swap_extent_root); 158 return rb_entry(rb, struct swap_extent, rb_node); 159 } 160 161 static inline struct swap_extent *next_se(struct swap_extent *se) 162 { 163 struct rb_node *rb = rb_next(&se->rb_node); 164 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 165 } 166 167 /* 168 * swapon tell device that all the old swap contents can be discarded, 169 * to allow the swap device to optimize its wear-levelling. 170 */ 171 static int discard_swap(struct swap_info_struct *si) 172 { 173 struct swap_extent *se; 174 sector_t start_block; 175 sector_t nr_blocks; 176 int err = 0; 177 178 /* Do not discard the swap header page! */ 179 se = first_se(si); 180 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 181 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 182 if (nr_blocks) { 183 err = blkdev_issue_discard(si->bdev, start_block, 184 nr_blocks, GFP_KERNEL, 0); 185 if (err) 186 return err; 187 cond_resched(); 188 } 189 190 for (se = next_se(se); se; se = next_se(se)) { 191 start_block = se->start_block << (PAGE_SHIFT - 9); 192 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 193 194 err = blkdev_issue_discard(si->bdev, start_block, 195 nr_blocks, GFP_KERNEL, 0); 196 if (err) 197 break; 198 199 cond_resched(); 200 } 201 return err; /* That will often be -EOPNOTSUPP */ 202 } 203 204 static struct swap_extent * 205 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 206 { 207 struct swap_extent *se; 208 struct rb_node *rb; 209 210 rb = sis->swap_extent_root.rb_node; 211 while (rb) { 212 se = rb_entry(rb, struct swap_extent, rb_node); 213 if (offset < se->start_page) 214 rb = rb->rb_left; 215 else if (offset >= se->start_page + se->nr_pages) 216 rb = rb->rb_right; 217 else 218 return se; 219 } 220 /* It *must* be present */ 221 BUG(); 222 } 223 224 /* 225 * swap allocation tell device that a cluster of swap can now be discarded, 226 * to allow the swap device to optimize its wear-levelling. 227 */ 228 static void discard_swap_cluster(struct swap_info_struct *si, 229 pgoff_t start_page, pgoff_t nr_pages) 230 { 231 struct swap_extent *se = offset_to_swap_extent(si, start_page); 232 233 while (nr_pages) { 234 pgoff_t offset = start_page - se->start_page; 235 sector_t start_block = se->start_block + offset; 236 sector_t nr_blocks = se->nr_pages - offset; 237 238 if (nr_blocks > nr_pages) 239 nr_blocks = nr_pages; 240 start_page += nr_blocks; 241 nr_pages -= nr_blocks; 242 243 start_block <<= PAGE_SHIFT - 9; 244 nr_blocks <<= PAGE_SHIFT - 9; 245 if (blkdev_issue_discard(si->bdev, start_block, 246 nr_blocks, GFP_NOIO, 0)) 247 break; 248 249 se = next_se(se); 250 } 251 } 252 253 #ifdef CONFIG_THP_SWAP 254 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 255 256 #define swap_entry_size(size) (size) 257 #else 258 #define SWAPFILE_CLUSTER 256 259 260 /* 261 * Define swap_entry_size() as constant to let compiler to optimize 262 * out some code if !CONFIG_THP_SWAP 263 */ 264 #define swap_entry_size(size) 1 265 #endif 266 #define LATENCY_LIMIT 256 267 268 static inline void cluster_set_flag(struct swap_cluster_info *info, 269 unsigned int flag) 270 { 271 info->flags = flag; 272 } 273 274 static inline unsigned int cluster_count(struct swap_cluster_info *info) 275 { 276 return info->data; 277 } 278 279 static inline void cluster_set_count(struct swap_cluster_info *info, 280 unsigned int c) 281 { 282 info->data = c; 283 } 284 285 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 286 unsigned int c, unsigned int f) 287 { 288 info->flags = f; 289 info->data = c; 290 } 291 292 static inline unsigned int cluster_next(struct swap_cluster_info *info) 293 { 294 return info->data; 295 } 296 297 static inline void cluster_set_next(struct swap_cluster_info *info, 298 unsigned int n) 299 { 300 info->data = n; 301 } 302 303 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 304 unsigned int n, unsigned int f) 305 { 306 info->flags = f; 307 info->data = n; 308 } 309 310 static inline bool cluster_is_free(struct swap_cluster_info *info) 311 { 312 return info->flags & CLUSTER_FLAG_FREE; 313 } 314 315 static inline bool cluster_is_null(struct swap_cluster_info *info) 316 { 317 return info->flags & CLUSTER_FLAG_NEXT_NULL; 318 } 319 320 static inline void cluster_set_null(struct swap_cluster_info *info) 321 { 322 info->flags = CLUSTER_FLAG_NEXT_NULL; 323 info->data = 0; 324 } 325 326 static inline bool cluster_is_huge(struct swap_cluster_info *info) 327 { 328 if (IS_ENABLED(CONFIG_THP_SWAP)) 329 return info->flags & CLUSTER_FLAG_HUGE; 330 return false; 331 } 332 333 static inline void cluster_clear_huge(struct swap_cluster_info *info) 334 { 335 info->flags &= ~CLUSTER_FLAG_HUGE; 336 } 337 338 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 339 unsigned long offset) 340 { 341 struct swap_cluster_info *ci; 342 343 ci = si->cluster_info; 344 if (ci) { 345 ci += offset / SWAPFILE_CLUSTER; 346 spin_lock(&ci->lock); 347 } 348 return ci; 349 } 350 351 static inline void unlock_cluster(struct swap_cluster_info *ci) 352 { 353 if (ci) 354 spin_unlock(&ci->lock); 355 } 356 357 /* 358 * Determine the locking method in use for this device. Return 359 * swap_cluster_info if SSD-style cluster-based locking is in place. 360 */ 361 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 362 struct swap_info_struct *si, unsigned long offset) 363 { 364 struct swap_cluster_info *ci; 365 366 /* Try to use fine-grained SSD-style locking if available: */ 367 ci = lock_cluster(si, offset); 368 /* Otherwise, fall back to traditional, coarse locking: */ 369 if (!ci) 370 spin_lock(&si->lock); 371 372 return ci; 373 } 374 375 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 376 struct swap_cluster_info *ci) 377 { 378 if (ci) 379 unlock_cluster(ci); 380 else 381 spin_unlock(&si->lock); 382 } 383 384 static inline bool cluster_list_empty(struct swap_cluster_list *list) 385 { 386 return cluster_is_null(&list->head); 387 } 388 389 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 390 { 391 return cluster_next(&list->head); 392 } 393 394 static void cluster_list_init(struct swap_cluster_list *list) 395 { 396 cluster_set_null(&list->head); 397 cluster_set_null(&list->tail); 398 } 399 400 static void cluster_list_add_tail(struct swap_cluster_list *list, 401 struct swap_cluster_info *ci, 402 unsigned int idx) 403 { 404 if (cluster_list_empty(list)) { 405 cluster_set_next_flag(&list->head, idx, 0); 406 cluster_set_next_flag(&list->tail, idx, 0); 407 } else { 408 struct swap_cluster_info *ci_tail; 409 unsigned int tail = cluster_next(&list->tail); 410 411 /* 412 * Nested cluster lock, but both cluster locks are 413 * only acquired when we held swap_info_struct->lock 414 */ 415 ci_tail = ci + tail; 416 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 417 cluster_set_next(ci_tail, idx); 418 spin_unlock(&ci_tail->lock); 419 cluster_set_next_flag(&list->tail, idx, 0); 420 } 421 } 422 423 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 424 struct swap_cluster_info *ci) 425 { 426 unsigned int idx; 427 428 idx = cluster_next(&list->head); 429 if (cluster_next(&list->tail) == idx) { 430 cluster_set_null(&list->head); 431 cluster_set_null(&list->tail); 432 } else 433 cluster_set_next_flag(&list->head, 434 cluster_next(&ci[idx]), 0); 435 436 return idx; 437 } 438 439 /* Add a cluster to discard list and schedule it to do discard */ 440 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 441 unsigned int idx) 442 { 443 /* 444 * If scan_swap_map() can't find a free cluster, it will check 445 * si->swap_map directly. To make sure the discarding cluster isn't 446 * taken by scan_swap_map(), mark the swap entries bad (occupied). It 447 * will be cleared after discard 448 */ 449 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 450 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 451 452 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 453 454 schedule_work(&si->discard_work); 455 } 456 457 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 458 { 459 struct swap_cluster_info *ci = si->cluster_info; 460 461 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 462 cluster_list_add_tail(&si->free_clusters, ci, idx); 463 } 464 465 /* 466 * Doing discard actually. After a cluster discard is finished, the cluster 467 * will be added to free cluster list. caller should hold si->lock. 468 */ 469 static void swap_do_scheduled_discard(struct swap_info_struct *si) 470 { 471 struct swap_cluster_info *info, *ci; 472 unsigned int idx; 473 474 info = si->cluster_info; 475 476 while (!cluster_list_empty(&si->discard_clusters)) { 477 idx = cluster_list_del_first(&si->discard_clusters, info); 478 spin_unlock(&si->lock); 479 480 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 481 SWAPFILE_CLUSTER); 482 483 spin_lock(&si->lock); 484 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 485 __free_cluster(si, idx); 486 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 487 0, SWAPFILE_CLUSTER); 488 unlock_cluster(ci); 489 } 490 } 491 492 static void swap_discard_work(struct work_struct *work) 493 { 494 struct swap_info_struct *si; 495 496 si = container_of(work, struct swap_info_struct, discard_work); 497 498 spin_lock(&si->lock); 499 swap_do_scheduled_discard(si); 500 spin_unlock(&si->lock); 501 } 502 503 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 504 { 505 struct swap_cluster_info *ci = si->cluster_info; 506 507 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 508 cluster_list_del_first(&si->free_clusters, ci); 509 cluster_set_count_flag(ci + idx, 0, 0); 510 } 511 512 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 513 { 514 struct swap_cluster_info *ci = si->cluster_info + idx; 515 516 VM_BUG_ON(cluster_count(ci) != 0); 517 /* 518 * If the swap is discardable, prepare discard the cluster 519 * instead of free it immediately. The cluster will be freed 520 * after discard. 521 */ 522 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 523 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 524 swap_cluster_schedule_discard(si, idx); 525 return; 526 } 527 528 __free_cluster(si, idx); 529 } 530 531 /* 532 * The cluster corresponding to page_nr will be used. The cluster will be 533 * removed from free cluster list and its usage counter will be increased. 534 */ 535 static void inc_cluster_info_page(struct swap_info_struct *p, 536 struct swap_cluster_info *cluster_info, unsigned long page_nr) 537 { 538 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 539 540 if (!cluster_info) 541 return; 542 if (cluster_is_free(&cluster_info[idx])) 543 alloc_cluster(p, idx); 544 545 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 546 cluster_set_count(&cluster_info[idx], 547 cluster_count(&cluster_info[idx]) + 1); 548 } 549 550 /* 551 * The cluster corresponding to page_nr decreases one usage. If the usage 552 * counter becomes 0, which means no page in the cluster is in using, we can 553 * optionally discard the cluster and add it to free cluster list. 554 */ 555 static void dec_cluster_info_page(struct swap_info_struct *p, 556 struct swap_cluster_info *cluster_info, unsigned long page_nr) 557 { 558 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 559 560 if (!cluster_info) 561 return; 562 563 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 564 cluster_set_count(&cluster_info[idx], 565 cluster_count(&cluster_info[idx]) - 1); 566 567 if (cluster_count(&cluster_info[idx]) == 0) 568 free_cluster(p, idx); 569 } 570 571 /* 572 * It's possible scan_swap_map() uses a free cluster in the middle of free 573 * cluster list. Avoiding such abuse to avoid list corruption. 574 */ 575 static bool 576 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 577 unsigned long offset) 578 { 579 struct percpu_cluster *percpu_cluster; 580 bool conflict; 581 582 offset /= SWAPFILE_CLUSTER; 583 conflict = !cluster_list_empty(&si->free_clusters) && 584 offset != cluster_list_first(&si->free_clusters) && 585 cluster_is_free(&si->cluster_info[offset]); 586 587 if (!conflict) 588 return false; 589 590 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 591 cluster_set_null(&percpu_cluster->index); 592 return true; 593 } 594 595 /* 596 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 597 * might involve allocating a new cluster for current CPU too. 598 */ 599 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 600 unsigned long *offset, unsigned long *scan_base) 601 { 602 struct percpu_cluster *cluster; 603 struct swap_cluster_info *ci; 604 unsigned long tmp, max; 605 606 new_cluster: 607 cluster = this_cpu_ptr(si->percpu_cluster); 608 if (cluster_is_null(&cluster->index)) { 609 if (!cluster_list_empty(&si->free_clusters)) { 610 cluster->index = si->free_clusters.head; 611 cluster->next = cluster_next(&cluster->index) * 612 SWAPFILE_CLUSTER; 613 } else if (!cluster_list_empty(&si->discard_clusters)) { 614 /* 615 * we don't have free cluster but have some clusters in 616 * discarding, do discard now and reclaim them 617 */ 618 swap_do_scheduled_discard(si); 619 *scan_base = *offset = si->cluster_next; 620 goto new_cluster; 621 } else 622 return false; 623 } 624 625 /* 626 * Other CPUs can use our cluster if they can't find a free cluster, 627 * check if there is still free entry in the cluster 628 */ 629 tmp = cluster->next; 630 max = min_t(unsigned long, si->max, 631 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 632 if (tmp < max) { 633 ci = lock_cluster(si, tmp); 634 while (tmp < max) { 635 if (!si->swap_map[tmp]) 636 break; 637 tmp++; 638 } 639 unlock_cluster(ci); 640 } 641 if (tmp >= max) { 642 cluster_set_null(&cluster->index); 643 goto new_cluster; 644 } 645 cluster->next = tmp + 1; 646 *offset = tmp; 647 *scan_base = tmp; 648 return true; 649 } 650 651 static void __del_from_avail_list(struct swap_info_struct *p) 652 { 653 int nid; 654 655 for_each_node(nid) 656 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 657 } 658 659 static void del_from_avail_list(struct swap_info_struct *p) 660 { 661 spin_lock(&swap_avail_lock); 662 __del_from_avail_list(p); 663 spin_unlock(&swap_avail_lock); 664 } 665 666 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 667 unsigned int nr_entries) 668 { 669 unsigned int end = offset + nr_entries - 1; 670 671 if (offset == si->lowest_bit) 672 si->lowest_bit += nr_entries; 673 if (end == si->highest_bit) 674 si->highest_bit -= nr_entries; 675 si->inuse_pages += nr_entries; 676 if (si->inuse_pages == si->pages) { 677 si->lowest_bit = si->max; 678 si->highest_bit = 0; 679 del_from_avail_list(si); 680 } 681 } 682 683 static void add_to_avail_list(struct swap_info_struct *p) 684 { 685 int nid; 686 687 spin_lock(&swap_avail_lock); 688 for_each_node(nid) { 689 WARN_ON(!plist_node_empty(&p->avail_lists[nid])); 690 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 691 } 692 spin_unlock(&swap_avail_lock); 693 } 694 695 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 696 unsigned int nr_entries) 697 { 698 unsigned long end = offset + nr_entries - 1; 699 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 700 701 if (offset < si->lowest_bit) 702 si->lowest_bit = offset; 703 if (end > si->highest_bit) { 704 bool was_full = !si->highest_bit; 705 706 si->highest_bit = end; 707 if (was_full && (si->flags & SWP_WRITEOK)) 708 add_to_avail_list(si); 709 } 710 atomic_long_add(nr_entries, &nr_swap_pages); 711 si->inuse_pages -= nr_entries; 712 if (si->flags & SWP_BLKDEV) 713 swap_slot_free_notify = 714 si->bdev->bd_disk->fops->swap_slot_free_notify; 715 else 716 swap_slot_free_notify = NULL; 717 while (offset <= end) { 718 frontswap_invalidate_page(si->type, offset); 719 if (swap_slot_free_notify) 720 swap_slot_free_notify(si->bdev, offset); 721 offset++; 722 } 723 } 724 725 static int scan_swap_map_slots(struct swap_info_struct *si, 726 unsigned char usage, int nr, 727 swp_entry_t slots[]) 728 { 729 struct swap_cluster_info *ci; 730 unsigned long offset; 731 unsigned long scan_base; 732 unsigned long last_in_cluster = 0; 733 int latency_ration = LATENCY_LIMIT; 734 int n_ret = 0; 735 bool scanned_many = false; 736 737 /* 738 * We try to cluster swap pages by allocating them sequentially 739 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 740 * way, however, we resort to first-free allocation, starting 741 * a new cluster. This prevents us from scattering swap pages 742 * all over the entire swap partition, so that we reduce 743 * overall disk seek times between swap pages. -- sct 744 * But we do now try to find an empty cluster. -Andrea 745 * And we let swap pages go all over an SSD partition. Hugh 746 */ 747 748 si->flags += SWP_SCANNING; 749 scan_base = offset = si->cluster_next; 750 751 /* SSD algorithm */ 752 if (si->cluster_info) { 753 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 754 goto scan; 755 } else if (unlikely(!si->cluster_nr--)) { 756 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 757 si->cluster_nr = SWAPFILE_CLUSTER - 1; 758 goto checks; 759 } 760 761 spin_unlock(&si->lock); 762 763 /* 764 * If seek is expensive, start searching for new cluster from 765 * start of partition, to minimize the span of allocated swap. 766 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 767 * case, just handled by scan_swap_map_try_ssd_cluster() above. 768 */ 769 scan_base = offset = si->lowest_bit; 770 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 771 772 /* Locate the first empty (unaligned) cluster */ 773 for (; last_in_cluster <= si->highest_bit; offset++) { 774 if (si->swap_map[offset]) 775 last_in_cluster = offset + SWAPFILE_CLUSTER; 776 else if (offset == last_in_cluster) { 777 spin_lock(&si->lock); 778 offset -= SWAPFILE_CLUSTER - 1; 779 si->cluster_next = offset; 780 si->cluster_nr = SWAPFILE_CLUSTER - 1; 781 goto checks; 782 } 783 if (unlikely(--latency_ration < 0)) { 784 cond_resched(); 785 latency_ration = LATENCY_LIMIT; 786 } 787 } 788 789 offset = scan_base; 790 spin_lock(&si->lock); 791 si->cluster_nr = SWAPFILE_CLUSTER - 1; 792 } 793 794 checks: 795 if (si->cluster_info) { 796 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 797 /* take a break if we already got some slots */ 798 if (n_ret) 799 goto done; 800 if (!scan_swap_map_try_ssd_cluster(si, &offset, 801 &scan_base)) 802 goto scan; 803 } 804 } 805 if (!(si->flags & SWP_WRITEOK)) 806 goto no_page; 807 if (!si->highest_bit) 808 goto no_page; 809 if (offset > si->highest_bit) 810 scan_base = offset = si->lowest_bit; 811 812 ci = lock_cluster(si, offset); 813 /* reuse swap entry of cache-only swap if not busy. */ 814 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 815 int swap_was_freed; 816 unlock_cluster(ci); 817 spin_unlock(&si->lock); 818 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 819 spin_lock(&si->lock); 820 /* entry was freed successfully, try to use this again */ 821 if (swap_was_freed) 822 goto checks; 823 goto scan; /* check next one */ 824 } 825 826 if (si->swap_map[offset]) { 827 unlock_cluster(ci); 828 if (!n_ret) 829 goto scan; 830 else 831 goto done; 832 } 833 si->swap_map[offset] = usage; 834 inc_cluster_info_page(si, si->cluster_info, offset); 835 unlock_cluster(ci); 836 837 swap_range_alloc(si, offset, 1); 838 si->cluster_next = offset + 1; 839 slots[n_ret++] = swp_entry(si->type, offset); 840 841 /* got enough slots or reach max slots? */ 842 if ((n_ret == nr) || (offset >= si->highest_bit)) 843 goto done; 844 845 /* search for next available slot */ 846 847 /* time to take a break? */ 848 if (unlikely(--latency_ration < 0)) { 849 if (n_ret) 850 goto done; 851 spin_unlock(&si->lock); 852 cond_resched(); 853 spin_lock(&si->lock); 854 latency_ration = LATENCY_LIMIT; 855 } 856 857 /* try to get more slots in cluster */ 858 if (si->cluster_info) { 859 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 860 goto checks; 861 } else if (si->cluster_nr && !si->swap_map[++offset]) { 862 /* non-ssd case, still more slots in cluster? */ 863 --si->cluster_nr; 864 goto checks; 865 } 866 867 /* 868 * Even if there's no free clusters available (fragmented), 869 * try to scan a little more quickly with lock held unless we 870 * have scanned too many slots already. 871 */ 872 if (!scanned_many) { 873 unsigned long scan_limit; 874 875 if (offset < scan_base) 876 scan_limit = scan_base; 877 else 878 scan_limit = si->highest_bit; 879 for (; offset <= scan_limit && --latency_ration > 0; 880 offset++) { 881 if (!si->swap_map[offset]) 882 goto checks; 883 } 884 } 885 886 done: 887 si->flags -= SWP_SCANNING; 888 return n_ret; 889 890 scan: 891 spin_unlock(&si->lock); 892 while (++offset <= si->highest_bit) { 893 if (!si->swap_map[offset]) { 894 spin_lock(&si->lock); 895 goto checks; 896 } 897 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 898 spin_lock(&si->lock); 899 goto checks; 900 } 901 if (unlikely(--latency_ration < 0)) { 902 cond_resched(); 903 latency_ration = LATENCY_LIMIT; 904 scanned_many = true; 905 } 906 } 907 offset = si->lowest_bit; 908 while (offset < scan_base) { 909 if (!si->swap_map[offset]) { 910 spin_lock(&si->lock); 911 goto checks; 912 } 913 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 914 spin_lock(&si->lock); 915 goto checks; 916 } 917 if (unlikely(--latency_ration < 0)) { 918 cond_resched(); 919 latency_ration = LATENCY_LIMIT; 920 scanned_many = true; 921 } 922 offset++; 923 } 924 spin_lock(&si->lock); 925 926 no_page: 927 si->flags -= SWP_SCANNING; 928 return n_ret; 929 } 930 931 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 932 { 933 unsigned long idx; 934 struct swap_cluster_info *ci; 935 unsigned long offset, i; 936 unsigned char *map; 937 938 /* 939 * Should not even be attempting cluster allocations when huge 940 * page swap is disabled. Warn and fail the allocation. 941 */ 942 if (!IS_ENABLED(CONFIG_THP_SWAP)) { 943 VM_WARN_ON_ONCE(1); 944 return 0; 945 } 946 947 if (cluster_list_empty(&si->free_clusters)) 948 return 0; 949 950 idx = cluster_list_first(&si->free_clusters); 951 offset = idx * SWAPFILE_CLUSTER; 952 ci = lock_cluster(si, offset); 953 alloc_cluster(si, idx); 954 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); 955 956 map = si->swap_map + offset; 957 for (i = 0; i < SWAPFILE_CLUSTER; i++) 958 map[i] = SWAP_HAS_CACHE; 959 unlock_cluster(ci); 960 swap_range_alloc(si, offset, SWAPFILE_CLUSTER); 961 *slot = swp_entry(si->type, offset); 962 963 return 1; 964 } 965 966 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 967 { 968 unsigned long offset = idx * SWAPFILE_CLUSTER; 969 struct swap_cluster_info *ci; 970 971 ci = lock_cluster(si, offset); 972 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); 973 cluster_set_count_flag(ci, 0, 0); 974 free_cluster(si, idx); 975 unlock_cluster(ci); 976 swap_range_free(si, offset, SWAPFILE_CLUSTER); 977 } 978 979 static unsigned long scan_swap_map(struct swap_info_struct *si, 980 unsigned char usage) 981 { 982 swp_entry_t entry; 983 int n_ret; 984 985 n_ret = scan_swap_map_slots(si, usage, 1, &entry); 986 987 if (n_ret) 988 return swp_offset(entry); 989 else 990 return 0; 991 992 } 993 994 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) 995 { 996 unsigned long size = swap_entry_size(entry_size); 997 struct swap_info_struct *si, *next; 998 long avail_pgs; 999 int n_ret = 0; 1000 int node; 1001 1002 /* Only single cluster request supported */ 1003 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); 1004 1005 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 1006 if (avail_pgs <= 0) 1007 goto noswap; 1008 1009 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs); 1010 1011 atomic_long_sub(n_goal * size, &nr_swap_pages); 1012 1013 spin_lock(&swap_avail_lock); 1014 1015 start_over: 1016 node = numa_node_id(); 1017 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1018 /* requeue si to after same-priority siblings */ 1019 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1020 spin_unlock(&swap_avail_lock); 1021 spin_lock(&si->lock); 1022 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 1023 spin_lock(&swap_avail_lock); 1024 if (plist_node_empty(&si->avail_lists[node])) { 1025 spin_unlock(&si->lock); 1026 goto nextsi; 1027 } 1028 WARN(!si->highest_bit, 1029 "swap_info %d in list but !highest_bit\n", 1030 si->type); 1031 WARN(!(si->flags & SWP_WRITEOK), 1032 "swap_info %d in list but !SWP_WRITEOK\n", 1033 si->type); 1034 __del_from_avail_list(si); 1035 spin_unlock(&si->lock); 1036 goto nextsi; 1037 } 1038 if (size == SWAPFILE_CLUSTER) { 1039 if (!(si->flags & SWP_FS)) 1040 n_ret = swap_alloc_cluster(si, swp_entries); 1041 } else 1042 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1043 n_goal, swp_entries); 1044 spin_unlock(&si->lock); 1045 if (n_ret || size == SWAPFILE_CLUSTER) 1046 goto check_out; 1047 pr_debug("scan_swap_map of si %d failed to find offset\n", 1048 si->type); 1049 1050 spin_lock(&swap_avail_lock); 1051 nextsi: 1052 /* 1053 * if we got here, it's likely that si was almost full before, 1054 * and since scan_swap_map() can drop the si->lock, multiple 1055 * callers probably all tried to get a page from the same si 1056 * and it filled up before we could get one; or, the si filled 1057 * up between us dropping swap_avail_lock and taking si->lock. 1058 * Since we dropped the swap_avail_lock, the swap_avail_head 1059 * list may have been modified; so if next is still in the 1060 * swap_avail_head list then try it, otherwise start over 1061 * if we have not gotten any slots. 1062 */ 1063 if (plist_node_empty(&next->avail_lists[node])) 1064 goto start_over; 1065 } 1066 1067 spin_unlock(&swap_avail_lock); 1068 1069 check_out: 1070 if (n_ret < n_goal) 1071 atomic_long_add((long)(n_goal - n_ret) * size, 1072 &nr_swap_pages); 1073 noswap: 1074 return n_ret; 1075 } 1076 1077 /* The only caller of this function is now suspend routine */ 1078 swp_entry_t get_swap_page_of_type(int type) 1079 { 1080 struct swap_info_struct *si = swap_type_to_swap_info(type); 1081 pgoff_t offset; 1082 1083 if (!si) 1084 goto fail; 1085 1086 spin_lock(&si->lock); 1087 if (si->flags & SWP_WRITEOK) { 1088 atomic_long_dec(&nr_swap_pages); 1089 /* This is called for allocating swap entry, not cache */ 1090 offset = scan_swap_map(si, 1); 1091 if (offset) { 1092 spin_unlock(&si->lock); 1093 return swp_entry(type, offset); 1094 } 1095 atomic_long_inc(&nr_swap_pages); 1096 } 1097 spin_unlock(&si->lock); 1098 fail: 1099 return (swp_entry_t) {0}; 1100 } 1101 1102 static struct swap_info_struct *__swap_info_get(swp_entry_t entry) 1103 { 1104 struct swap_info_struct *p; 1105 unsigned long offset; 1106 1107 if (!entry.val) 1108 goto out; 1109 p = swp_swap_info(entry); 1110 if (!p) 1111 goto bad_nofile; 1112 if (!(p->flags & SWP_USED)) 1113 goto bad_device; 1114 offset = swp_offset(entry); 1115 if (offset >= p->max) 1116 goto bad_offset; 1117 return p; 1118 1119 bad_offset: 1120 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val); 1121 goto out; 1122 bad_device: 1123 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val); 1124 goto out; 1125 bad_nofile: 1126 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val); 1127 out: 1128 return NULL; 1129 } 1130 1131 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1132 { 1133 struct swap_info_struct *p; 1134 1135 p = __swap_info_get(entry); 1136 if (!p) 1137 goto out; 1138 if (!p->swap_map[swp_offset(entry)]) 1139 goto bad_free; 1140 return p; 1141 1142 bad_free: 1143 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val); 1144 goto out; 1145 out: 1146 return NULL; 1147 } 1148 1149 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 1150 { 1151 struct swap_info_struct *p; 1152 1153 p = _swap_info_get(entry); 1154 if (p) 1155 spin_lock(&p->lock); 1156 return p; 1157 } 1158 1159 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1160 struct swap_info_struct *q) 1161 { 1162 struct swap_info_struct *p; 1163 1164 p = _swap_info_get(entry); 1165 1166 if (p != q) { 1167 if (q != NULL) 1168 spin_unlock(&q->lock); 1169 if (p != NULL) 1170 spin_lock(&p->lock); 1171 } 1172 return p; 1173 } 1174 1175 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1176 unsigned long offset, 1177 unsigned char usage) 1178 { 1179 unsigned char count; 1180 unsigned char has_cache; 1181 1182 count = p->swap_map[offset]; 1183 1184 has_cache = count & SWAP_HAS_CACHE; 1185 count &= ~SWAP_HAS_CACHE; 1186 1187 if (usage == SWAP_HAS_CACHE) { 1188 VM_BUG_ON(!has_cache); 1189 has_cache = 0; 1190 } else if (count == SWAP_MAP_SHMEM) { 1191 /* 1192 * Or we could insist on shmem.c using a special 1193 * swap_shmem_free() and free_shmem_swap_and_cache()... 1194 */ 1195 count = 0; 1196 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1197 if (count == COUNT_CONTINUED) { 1198 if (swap_count_continued(p, offset, count)) 1199 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1200 else 1201 count = SWAP_MAP_MAX; 1202 } else 1203 count--; 1204 } 1205 1206 usage = count | has_cache; 1207 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE; 1208 1209 return usage; 1210 } 1211 1212 /* 1213 * Check whether swap entry is valid in the swap device. If so, 1214 * return pointer to swap_info_struct, and keep the swap entry valid 1215 * via preventing the swap device from being swapoff, until 1216 * put_swap_device() is called. Otherwise return NULL. 1217 * 1218 * The entirety of the RCU read critical section must come before the 1219 * return from or after the call to synchronize_rcu() in 1220 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is 1221 * true, the si->map, si->cluster_info, etc. must be valid in the 1222 * critical section. 1223 * 1224 * Notice that swapoff or swapoff+swapon can still happen before the 1225 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock() 1226 * in put_swap_device() if there isn't any other way to prevent 1227 * swapoff, such as page lock, page table lock, etc. The caller must 1228 * be prepared for that. For example, the following situation is 1229 * possible. 1230 * 1231 * CPU1 CPU2 1232 * do_swap_page() 1233 * ... swapoff+swapon 1234 * __read_swap_cache_async() 1235 * swapcache_prepare() 1236 * __swap_duplicate() 1237 * // check swap_map 1238 * // verify PTE not changed 1239 * 1240 * In __swap_duplicate(), the swap_map need to be checked before 1241 * changing partly because the specified swap entry may be for another 1242 * swap device which has been swapoff. And in do_swap_page(), after 1243 * the page is read from the swap device, the PTE is verified not 1244 * changed with the page table locked to check whether the swap device 1245 * has been swapoff or swapoff+swapon. 1246 */ 1247 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1248 { 1249 struct swap_info_struct *si; 1250 unsigned long offset; 1251 1252 if (!entry.val) 1253 goto out; 1254 si = swp_swap_info(entry); 1255 if (!si) 1256 goto bad_nofile; 1257 1258 rcu_read_lock(); 1259 if (!(si->flags & SWP_VALID)) 1260 goto unlock_out; 1261 offset = swp_offset(entry); 1262 if (offset >= si->max) 1263 goto unlock_out; 1264 1265 return si; 1266 bad_nofile: 1267 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1268 out: 1269 return NULL; 1270 unlock_out: 1271 rcu_read_unlock(); 1272 return NULL; 1273 } 1274 1275 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1276 swp_entry_t entry) 1277 { 1278 struct swap_cluster_info *ci; 1279 unsigned long offset = swp_offset(entry); 1280 unsigned char usage; 1281 1282 ci = lock_cluster_or_swap_info(p, offset); 1283 usage = __swap_entry_free_locked(p, offset, 1); 1284 unlock_cluster_or_swap_info(p, ci); 1285 if (!usage) 1286 free_swap_slot(entry); 1287 1288 return usage; 1289 } 1290 1291 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1292 { 1293 struct swap_cluster_info *ci; 1294 unsigned long offset = swp_offset(entry); 1295 unsigned char count; 1296 1297 ci = lock_cluster(p, offset); 1298 count = p->swap_map[offset]; 1299 VM_BUG_ON(count != SWAP_HAS_CACHE); 1300 p->swap_map[offset] = 0; 1301 dec_cluster_info_page(p, p->cluster_info, offset); 1302 unlock_cluster(ci); 1303 1304 mem_cgroup_uncharge_swap(entry, 1); 1305 swap_range_free(p, offset, 1); 1306 } 1307 1308 /* 1309 * Caller has made sure that the swap device corresponding to entry 1310 * is still around or has not been recycled. 1311 */ 1312 void swap_free(swp_entry_t entry) 1313 { 1314 struct swap_info_struct *p; 1315 1316 p = _swap_info_get(entry); 1317 if (p) 1318 __swap_entry_free(p, entry); 1319 } 1320 1321 /* 1322 * Called after dropping swapcache to decrease refcnt to swap entries. 1323 */ 1324 void put_swap_page(struct page *page, swp_entry_t entry) 1325 { 1326 unsigned long offset = swp_offset(entry); 1327 unsigned long idx = offset / SWAPFILE_CLUSTER; 1328 struct swap_cluster_info *ci; 1329 struct swap_info_struct *si; 1330 unsigned char *map; 1331 unsigned int i, free_entries = 0; 1332 unsigned char val; 1333 int size = swap_entry_size(hpage_nr_pages(page)); 1334 1335 si = _swap_info_get(entry); 1336 if (!si) 1337 return; 1338 1339 ci = lock_cluster_or_swap_info(si, offset); 1340 if (size == SWAPFILE_CLUSTER) { 1341 VM_BUG_ON(!cluster_is_huge(ci)); 1342 map = si->swap_map + offset; 1343 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1344 val = map[i]; 1345 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1346 if (val == SWAP_HAS_CACHE) 1347 free_entries++; 1348 } 1349 cluster_clear_huge(ci); 1350 if (free_entries == SWAPFILE_CLUSTER) { 1351 unlock_cluster_or_swap_info(si, ci); 1352 spin_lock(&si->lock); 1353 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1354 swap_free_cluster(si, idx); 1355 spin_unlock(&si->lock); 1356 return; 1357 } 1358 } 1359 for (i = 0; i < size; i++, entry.val++) { 1360 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1361 unlock_cluster_or_swap_info(si, ci); 1362 free_swap_slot(entry); 1363 if (i == size - 1) 1364 return; 1365 lock_cluster_or_swap_info(si, offset); 1366 } 1367 } 1368 unlock_cluster_or_swap_info(si, ci); 1369 } 1370 1371 #ifdef CONFIG_THP_SWAP 1372 int split_swap_cluster(swp_entry_t entry) 1373 { 1374 struct swap_info_struct *si; 1375 struct swap_cluster_info *ci; 1376 unsigned long offset = swp_offset(entry); 1377 1378 si = _swap_info_get(entry); 1379 if (!si) 1380 return -EBUSY; 1381 ci = lock_cluster(si, offset); 1382 cluster_clear_huge(ci); 1383 unlock_cluster(ci); 1384 return 0; 1385 } 1386 #endif 1387 1388 static int swp_entry_cmp(const void *ent1, const void *ent2) 1389 { 1390 const swp_entry_t *e1 = ent1, *e2 = ent2; 1391 1392 return (int)swp_type(*e1) - (int)swp_type(*e2); 1393 } 1394 1395 void swapcache_free_entries(swp_entry_t *entries, int n) 1396 { 1397 struct swap_info_struct *p, *prev; 1398 int i; 1399 1400 if (n <= 0) 1401 return; 1402 1403 prev = NULL; 1404 p = NULL; 1405 1406 /* 1407 * Sort swap entries by swap device, so each lock is only taken once. 1408 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1409 * so low that it isn't necessary to optimize further. 1410 */ 1411 if (nr_swapfiles > 1) 1412 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1413 for (i = 0; i < n; ++i) { 1414 p = swap_info_get_cont(entries[i], prev); 1415 if (p) 1416 swap_entry_free(p, entries[i]); 1417 prev = p; 1418 } 1419 if (p) 1420 spin_unlock(&p->lock); 1421 } 1422 1423 /* 1424 * How many references to page are currently swapped out? 1425 * This does not give an exact answer when swap count is continued, 1426 * but does include the high COUNT_CONTINUED flag to allow for that. 1427 */ 1428 int page_swapcount(struct page *page) 1429 { 1430 int count = 0; 1431 struct swap_info_struct *p; 1432 struct swap_cluster_info *ci; 1433 swp_entry_t entry; 1434 unsigned long offset; 1435 1436 entry.val = page_private(page); 1437 p = _swap_info_get(entry); 1438 if (p) { 1439 offset = swp_offset(entry); 1440 ci = lock_cluster_or_swap_info(p, offset); 1441 count = swap_count(p->swap_map[offset]); 1442 unlock_cluster_or_swap_info(p, ci); 1443 } 1444 return count; 1445 } 1446 1447 int __swap_count(swp_entry_t entry) 1448 { 1449 struct swap_info_struct *si; 1450 pgoff_t offset = swp_offset(entry); 1451 int count = 0; 1452 1453 si = get_swap_device(entry); 1454 if (si) { 1455 count = swap_count(si->swap_map[offset]); 1456 put_swap_device(si); 1457 } 1458 return count; 1459 } 1460 1461 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1462 { 1463 int count = 0; 1464 pgoff_t offset = swp_offset(entry); 1465 struct swap_cluster_info *ci; 1466 1467 ci = lock_cluster_or_swap_info(si, offset); 1468 count = swap_count(si->swap_map[offset]); 1469 unlock_cluster_or_swap_info(si, ci); 1470 return count; 1471 } 1472 1473 /* 1474 * How many references to @entry are currently swapped out? 1475 * This does not give an exact answer when swap count is continued, 1476 * but does include the high COUNT_CONTINUED flag to allow for that. 1477 */ 1478 int __swp_swapcount(swp_entry_t entry) 1479 { 1480 int count = 0; 1481 struct swap_info_struct *si; 1482 1483 si = get_swap_device(entry); 1484 if (si) { 1485 count = swap_swapcount(si, entry); 1486 put_swap_device(si); 1487 } 1488 return count; 1489 } 1490 1491 /* 1492 * How many references to @entry are currently swapped out? 1493 * This considers COUNT_CONTINUED so it returns exact answer. 1494 */ 1495 int swp_swapcount(swp_entry_t entry) 1496 { 1497 int count, tmp_count, n; 1498 struct swap_info_struct *p; 1499 struct swap_cluster_info *ci; 1500 struct page *page; 1501 pgoff_t offset; 1502 unsigned char *map; 1503 1504 p = _swap_info_get(entry); 1505 if (!p) 1506 return 0; 1507 1508 offset = swp_offset(entry); 1509 1510 ci = lock_cluster_or_swap_info(p, offset); 1511 1512 count = swap_count(p->swap_map[offset]); 1513 if (!(count & COUNT_CONTINUED)) 1514 goto out; 1515 1516 count &= ~COUNT_CONTINUED; 1517 n = SWAP_MAP_MAX + 1; 1518 1519 page = vmalloc_to_page(p->swap_map + offset); 1520 offset &= ~PAGE_MASK; 1521 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1522 1523 do { 1524 page = list_next_entry(page, lru); 1525 map = kmap_atomic(page); 1526 tmp_count = map[offset]; 1527 kunmap_atomic(map); 1528 1529 count += (tmp_count & ~COUNT_CONTINUED) * n; 1530 n *= (SWAP_CONT_MAX + 1); 1531 } while (tmp_count & COUNT_CONTINUED); 1532 out: 1533 unlock_cluster_or_swap_info(p, ci); 1534 return count; 1535 } 1536 1537 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1538 swp_entry_t entry) 1539 { 1540 struct swap_cluster_info *ci; 1541 unsigned char *map = si->swap_map; 1542 unsigned long roffset = swp_offset(entry); 1543 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); 1544 int i; 1545 bool ret = false; 1546 1547 ci = lock_cluster_or_swap_info(si, offset); 1548 if (!ci || !cluster_is_huge(ci)) { 1549 if (swap_count(map[roffset])) 1550 ret = true; 1551 goto unlock_out; 1552 } 1553 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1554 if (swap_count(map[offset + i])) { 1555 ret = true; 1556 break; 1557 } 1558 } 1559 unlock_out: 1560 unlock_cluster_or_swap_info(si, ci); 1561 return ret; 1562 } 1563 1564 static bool page_swapped(struct page *page) 1565 { 1566 swp_entry_t entry; 1567 struct swap_info_struct *si; 1568 1569 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) 1570 return page_swapcount(page) != 0; 1571 1572 page = compound_head(page); 1573 entry.val = page_private(page); 1574 si = _swap_info_get(entry); 1575 if (si) 1576 return swap_page_trans_huge_swapped(si, entry); 1577 return false; 1578 } 1579 1580 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount, 1581 int *total_swapcount) 1582 { 1583 int i, map_swapcount, _total_mapcount, _total_swapcount; 1584 unsigned long offset = 0; 1585 struct swap_info_struct *si; 1586 struct swap_cluster_info *ci = NULL; 1587 unsigned char *map = NULL; 1588 int mapcount, swapcount = 0; 1589 1590 /* hugetlbfs shouldn't call it */ 1591 VM_BUG_ON_PAGE(PageHuge(page), page); 1592 1593 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) { 1594 mapcount = page_trans_huge_mapcount(page, total_mapcount); 1595 if (PageSwapCache(page)) 1596 swapcount = page_swapcount(page); 1597 if (total_swapcount) 1598 *total_swapcount = swapcount; 1599 return mapcount + swapcount; 1600 } 1601 1602 page = compound_head(page); 1603 1604 _total_mapcount = _total_swapcount = map_swapcount = 0; 1605 if (PageSwapCache(page)) { 1606 swp_entry_t entry; 1607 1608 entry.val = page_private(page); 1609 si = _swap_info_get(entry); 1610 if (si) { 1611 map = si->swap_map; 1612 offset = swp_offset(entry); 1613 } 1614 } 1615 if (map) 1616 ci = lock_cluster(si, offset); 1617 for (i = 0; i < HPAGE_PMD_NR; i++) { 1618 mapcount = atomic_read(&page[i]._mapcount) + 1; 1619 _total_mapcount += mapcount; 1620 if (map) { 1621 swapcount = swap_count(map[offset + i]); 1622 _total_swapcount += swapcount; 1623 } 1624 map_swapcount = max(map_swapcount, mapcount + swapcount); 1625 } 1626 unlock_cluster(ci); 1627 if (PageDoubleMap(page)) { 1628 map_swapcount -= 1; 1629 _total_mapcount -= HPAGE_PMD_NR; 1630 } 1631 mapcount = compound_mapcount(page); 1632 map_swapcount += mapcount; 1633 _total_mapcount += mapcount; 1634 if (total_mapcount) 1635 *total_mapcount = _total_mapcount; 1636 if (total_swapcount) 1637 *total_swapcount = _total_swapcount; 1638 1639 return map_swapcount; 1640 } 1641 1642 /* 1643 * We can write to an anon page without COW if there are no other references 1644 * to it. And as a side-effect, free up its swap: because the old content 1645 * on disk will never be read, and seeking back there to write new content 1646 * later would only waste time away from clustering. 1647 * 1648 * NOTE: total_map_swapcount should not be relied upon by the caller if 1649 * reuse_swap_page() returns false, but it may be always overwritten 1650 * (see the other implementation for CONFIG_SWAP=n). 1651 */ 1652 bool reuse_swap_page(struct page *page, int *total_map_swapcount) 1653 { 1654 int count, total_mapcount, total_swapcount; 1655 1656 VM_BUG_ON_PAGE(!PageLocked(page), page); 1657 if (unlikely(PageKsm(page))) 1658 return false; 1659 count = page_trans_huge_map_swapcount(page, &total_mapcount, 1660 &total_swapcount); 1661 if (total_map_swapcount) 1662 *total_map_swapcount = total_mapcount + total_swapcount; 1663 if (count == 1 && PageSwapCache(page) && 1664 (likely(!PageTransCompound(page)) || 1665 /* The remaining swap count will be freed soon */ 1666 total_swapcount == page_swapcount(page))) { 1667 if (!PageWriteback(page)) { 1668 page = compound_head(page); 1669 delete_from_swap_cache(page); 1670 SetPageDirty(page); 1671 } else { 1672 swp_entry_t entry; 1673 struct swap_info_struct *p; 1674 1675 entry.val = page_private(page); 1676 p = swap_info_get(entry); 1677 if (p->flags & SWP_STABLE_WRITES) { 1678 spin_unlock(&p->lock); 1679 return false; 1680 } 1681 spin_unlock(&p->lock); 1682 } 1683 } 1684 1685 return count <= 1; 1686 } 1687 1688 /* 1689 * If swap is getting full, or if there are no more mappings of this page, 1690 * then try_to_free_swap is called to free its swap space. 1691 */ 1692 int try_to_free_swap(struct page *page) 1693 { 1694 VM_BUG_ON_PAGE(!PageLocked(page), page); 1695 1696 if (!PageSwapCache(page)) 1697 return 0; 1698 if (PageWriteback(page)) 1699 return 0; 1700 if (page_swapped(page)) 1701 return 0; 1702 1703 /* 1704 * Once hibernation has begun to create its image of memory, 1705 * there's a danger that one of the calls to try_to_free_swap() 1706 * - most probably a call from __try_to_reclaim_swap() while 1707 * hibernation is allocating its own swap pages for the image, 1708 * but conceivably even a call from memory reclaim - will free 1709 * the swap from a page which has already been recorded in the 1710 * image as a clean swapcache page, and then reuse its swap for 1711 * another page of the image. On waking from hibernation, the 1712 * original page might be freed under memory pressure, then 1713 * later read back in from swap, now with the wrong data. 1714 * 1715 * Hibernation suspends storage while it is writing the image 1716 * to disk so check that here. 1717 */ 1718 if (pm_suspended_storage()) 1719 return 0; 1720 1721 page = compound_head(page); 1722 delete_from_swap_cache(page); 1723 SetPageDirty(page); 1724 return 1; 1725 } 1726 1727 /* 1728 * Free the swap entry like above, but also try to 1729 * free the page cache entry if it is the last user. 1730 */ 1731 int free_swap_and_cache(swp_entry_t entry) 1732 { 1733 struct swap_info_struct *p; 1734 unsigned char count; 1735 1736 if (non_swap_entry(entry)) 1737 return 1; 1738 1739 p = _swap_info_get(entry); 1740 if (p) { 1741 count = __swap_entry_free(p, entry); 1742 if (count == SWAP_HAS_CACHE && 1743 !swap_page_trans_huge_swapped(p, entry)) 1744 __try_to_reclaim_swap(p, swp_offset(entry), 1745 TTRS_UNMAPPED | TTRS_FULL); 1746 } 1747 return p != NULL; 1748 } 1749 1750 #ifdef CONFIG_HIBERNATION 1751 /* 1752 * Find the swap type that corresponds to given device (if any). 1753 * 1754 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1755 * from 0, in which the swap header is expected to be located. 1756 * 1757 * This is needed for the suspend to disk (aka swsusp). 1758 */ 1759 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 1760 { 1761 struct block_device *bdev = NULL; 1762 int type; 1763 1764 if (device) 1765 bdev = bdget(device); 1766 1767 spin_lock(&swap_lock); 1768 for (type = 0; type < nr_swapfiles; type++) { 1769 struct swap_info_struct *sis = swap_info[type]; 1770 1771 if (!(sis->flags & SWP_WRITEOK)) 1772 continue; 1773 1774 if (!bdev) { 1775 if (bdev_p) 1776 *bdev_p = bdgrab(sis->bdev); 1777 1778 spin_unlock(&swap_lock); 1779 return type; 1780 } 1781 if (bdev == sis->bdev) { 1782 struct swap_extent *se = first_se(sis); 1783 1784 if (se->start_block == offset) { 1785 if (bdev_p) 1786 *bdev_p = bdgrab(sis->bdev); 1787 1788 spin_unlock(&swap_lock); 1789 bdput(bdev); 1790 return type; 1791 } 1792 } 1793 } 1794 spin_unlock(&swap_lock); 1795 if (bdev) 1796 bdput(bdev); 1797 1798 return -ENODEV; 1799 } 1800 1801 /* 1802 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1803 * corresponding to given index in swap_info (swap type). 1804 */ 1805 sector_t swapdev_block(int type, pgoff_t offset) 1806 { 1807 struct block_device *bdev; 1808 struct swap_info_struct *si = swap_type_to_swap_info(type); 1809 1810 if (!si || !(si->flags & SWP_WRITEOK)) 1811 return 0; 1812 return map_swap_entry(swp_entry(type, offset), &bdev); 1813 } 1814 1815 /* 1816 * Return either the total number of swap pages of given type, or the number 1817 * of free pages of that type (depending on @free) 1818 * 1819 * This is needed for software suspend 1820 */ 1821 unsigned int count_swap_pages(int type, int free) 1822 { 1823 unsigned int n = 0; 1824 1825 spin_lock(&swap_lock); 1826 if ((unsigned int)type < nr_swapfiles) { 1827 struct swap_info_struct *sis = swap_info[type]; 1828 1829 spin_lock(&sis->lock); 1830 if (sis->flags & SWP_WRITEOK) { 1831 n = sis->pages; 1832 if (free) 1833 n -= sis->inuse_pages; 1834 } 1835 spin_unlock(&sis->lock); 1836 } 1837 spin_unlock(&swap_lock); 1838 return n; 1839 } 1840 #endif /* CONFIG_HIBERNATION */ 1841 1842 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1843 { 1844 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte); 1845 } 1846 1847 /* 1848 * No need to decide whether this PTE shares the swap entry with others, 1849 * just let do_wp_page work it out if a write is requested later - to 1850 * force COW, vm_page_prot omits write permission from any private vma. 1851 */ 1852 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1853 unsigned long addr, swp_entry_t entry, struct page *page) 1854 { 1855 struct page *swapcache; 1856 struct mem_cgroup *memcg; 1857 spinlock_t *ptl; 1858 pte_t *pte; 1859 int ret = 1; 1860 1861 swapcache = page; 1862 page = ksm_might_need_to_copy(page, vma, addr); 1863 if (unlikely(!page)) 1864 return -ENOMEM; 1865 1866 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, 1867 &memcg, false)) { 1868 ret = -ENOMEM; 1869 goto out_nolock; 1870 } 1871 1872 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1873 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1874 mem_cgroup_cancel_charge(page, memcg, false); 1875 ret = 0; 1876 goto out; 1877 } 1878 1879 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1880 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1881 get_page(page); 1882 set_pte_at(vma->vm_mm, addr, pte, 1883 pte_mkold(mk_pte(page, vma->vm_page_prot))); 1884 if (page == swapcache) { 1885 page_add_anon_rmap(page, vma, addr, false); 1886 mem_cgroup_commit_charge(page, memcg, true, false); 1887 } else { /* ksm created a completely new copy */ 1888 page_add_new_anon_rmap(page, vma, addr, false); 1889 mem_cgroup_commit_charge(page, memcg, false, false); 1890 lru_cache_add_active_or_unevictable(page, vma); 1891 } 1892 swap_free(entry); 1893 /* 1894 * Move the page to the active list so it is not 1895 * immediately swapped out again after swapon. 1896 */ 1897 activate_page(page); 1898 out: 1899 pte_unmap_unlock(pte, ptl); 1900 out_nolock: 1901 if (page != swapcache) { 1902 unlock_page(page); 1903 put_page(page); 1904 } 1905 return ret; 1906 } 1907 1908 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1909 unsigned long addr, unsigned long end, 1910 unsigned int type, bool frontswap, 1911 unsigned long *fs_pages_to_unuse) 1912 { 1913 struct page *page; 1914 swp_entry_t entry; 1915 pte_t *pte; 1916 struct swap_info_struct *si; 1917 unsigned long offset; 1918 int ret = 0; 1919 volatile unsigned char *swap_map; 1920 1921 si = swap_info[type]; 1922 pte = pte_offset_map(pmd, addr); 1923 do { 1924 struct vm_fault vmf; 1925 1926 if (!is_swap_pte(*pte)) 1927 continue; 1928 1929 entry = pte_to_swp_entry(*pte); 1930 if (swp_type(entry) != type) 1931 continue; 1932 1933 offset = swp_offset(entry); 1934 if (frontswap && !frontswap_test(si, offset)) 1935 continue; 1936 1937 pte_unmap(pte); 1938 swap_map = &si->swap_map[offset]; 1939 page = lookup_swap_cache(entry, vma, addr); 1940 if (!page) { 1941 vmf.vma = vma; 1942 vmf.address = addr; 1943 vmf.pmd = pmd; 1944 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 1945 &vmf); 1946 } 1947 if (!page) { 1948 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD) 1949 goto try_next; 1950 return -ENOMEM; 1951 } 1952 1953 lock_page(page); 1954 wait_on_page_writeback(page); 1955 ret = unuse_pte(vma, pmd, addr, entry, page); 1956 if (ret < 0) { 1957 unlock_page(page); 1958 put_page(page); 1959 goto out; 1960 } 1961 1962 try_to_free_swap(page); 1963 unlock_page(page); 1964 put_page(page); 1965 1966 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) { 1967 ret = FRONTSWAP_PAGES_UNUSED; 1968 goto out; 1969 } 1970 try_next: 1971 pte = pte_offset_map(pmd, addr); 1972 } while (pte++, addr += PAGE_SIZE, addr != end); 1973 pte_unmap(pte - 1); 1974 1975 ret = 0; 1976 out: 1977 return ret; 1978 } 1979 1980 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1981 unsigned long addr, unsigned long end, 1982 unsigned int type, bool frontswap, 1983 unsigned long *fs_pages_to_unuse) 1984 { 1985 pmd_t *pmd; 1986 unsigned long next; 1987 int ret; 1988 1989 pmd = pmd_offset(pud, addr); 1990 do { 1991 cond_resched(); 1992 next = pmd_addr_end(addr, end); 1993 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1994 continue; 1995 ret = unuse_pte_range(vma, pmd, addr, next, type, 1996 frontswap, fs_pages_to_unuse); 1997 if (ret) 1998 return ret; 1999 } while (pmd++, addr = next, addr != end); 2000 return 0; 2001 } 2002 2003 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 2004 unsigned long addr, unsigned long end, 2005 unsigned int type, bool frontswap, 2006 unsigned long *fs_pages_to_unuse) 2007 { 2008 pud_t *pud; 2009 unsigned long next; 2010 int ret; 2011 2012 pud = pud_offset(p4d, addr); 2013 do { 2014 next = pud_addr_end(addr, end); 2015 if (pud_none_or_clear_bad(pud)) 2016 continue; 2017 ret = unuse_pmd_range(vma, pud, addr, next, type, 2018 frontswap, fs_pages_to_unuse); 2019 if (ret) 2020 return ret; 2021 } while (pud++, addr = next, addr != end); 2022 return 0; 2023 } 2024 2025 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 2026 unsigned long addr, unsigned long end, 2027 unsigned int type, bool frontswap, 2028 unsigned long *fs_pages_to_unuse) 2029 { 2030 p4d_t *p4d; 2031 unsigned long next; 2032 int ret; 2033 2034 p4d = p4d_offset(pgd, addr); 2035 do { 2036 next = p4d_addr_end(addr, end); 2037 if (p4d_none_or_clear_bad(p4d)) 2038 continue; 2039 ret = unuse_pud_range(vma, p4d, addr, next, type, 2040 frontswap, fs_pages_to_unuse); 2041 if (ret) 2042 return ret; 2043 } while (p4d++, addr = next, addr != end); 2044 return 0; 2045 } 2046 2047 static int unuse_vma(struct vm_area_struct *vma, unsigned int type, 2048 bool frontswap, unsigned long *fs_pages_to_unuse) 2049 { 2050 pgd_t *pgd; 2051 unsigned long addr, end, next; 2052 int ret; 2053 2054 addr = vma->vm_start; 2055 end = vma->vm_end; 2056 2057 pgd = pgd_offset(vma->vm_mm, addr); 2058 do { 2059 next = pgd_addr_end(addr, end); 2060 if (pgd_none_or_clear_bad(pgd)) 2061 continue; 2062 ret = unuse_p4d_range(vma, pgd, addr, next, type, 2063 frontswap, fs_pages_to_unuse); 2064 if (ret) 2065 return ret; 2066 } while (pgd++, addr = next, addr != end); 2067 return 0; 2068 } 2069 2070 static int unuse_mm(struct mm_struct *mm, unsigned int type, 2071 bool frontswap, unsigned long *fs_pages_to_unuse) 2072 { 2073 struct vm_area_struct *vma; 2074 int ret = 0; 2075 2076 down_read(&mm->mmap_sem); 2077 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2078 if (vma->anon_vma) { 2079 ret = unuse_vma(vma, type, frontswap, 2080 fs_pages_to_unuse); 2081 if (ret) 2082 break; 2083 } 2084 cond_resched(); 2085 } 2086 up_read(&mm->mmap_sem); 2087 return ret; 2088 } 2089 2090 /* 2091 * Scan swap_map (or frontswap_map if frontswap parameter is true) 2092 * from current position to next entry still in use. Return 0 2093 * if there are no inuse entries after prev till end of the map. 2094 */ 2095 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2096 unsigned int prev, bool frontswap) 2097 { 2098 unsigned int i; 2099 unsigned char count; 2100 2101 /* 2102 * No need for swap_lock here: we're just looking 2103 * for whether an entry is in use, not modifying it; false 2104 * hits are okay, and sys_swapoff() has already prevented new 2105 * allocations from this area (while holding swap_lock). 2106 */ 2107 for (i = prev + 1; i < si->max; i++) { 2108 count = READ_ONCE(si->swap_map[i]); 2109 if (count && swap_count(count) != SWAP_MAP_BAD) 2110 if (!frontswap || frontswap_test(si, i)) 2111 break; 2112 if ((i % LATENCY_LIMIT) == 0) 2113 cond_resched(); 2114 } 2115 2116 if (i == si->max) 2117 i = 0; 2118 2119 return i; 2120 } 2121 2122 /* 2123 * If the boolean frontswap is true, only unuse pages_to_unuse pages; 2124 * pages_to_unuse==0 means all pages; ignored if frontswap is false 2125 */ 2126 int try_to_unuse(unsigned int type, bool frontswap, 2127 unsigned long pages_to_unuse) 2128 { 2129 struct mm_struct *prev_mm; 2130 struct mm_struct *mm; 2131 struct list_head *p; 2132 int retval = 0; 2133 struct swap_info_struct *si = swap_info[type]; 2134 struct page *page; 2135 swp_entry_t entry; 2136 unsigned int i; 2137 2138 if (!READ_ONCE(si->inuse_pages)) 2139 return 0; 2140 2141 if (!frontswap) 2142 pages_to_unuse = 0; 2143 2144 retry: 2145 retval = shmem_unuse(type, frontswap, &pages_to_unuse); 2146 if (retval) 2147 goto out; 2148 2149 prev_mm = &init_mm; 2150 mmget(prev_mm); 2151 2152 spin_lock(&mmlist_lock); 2153 p = &init_mm.mmlist; 2154 while (READ_ONCE(si->inuse_pages) && 2155 !signal_pending(current) && 2156 (p = p->next) != &init_mm.mmlist) { 2157 2158 mm = list_entry(p, struct mm_struct, mmlist); 2159 if (!mmget_not_zero(mm)) 2160 continue; 2161 spin_unlock(&mmlist_lock); 2162 mmput(prev_mm); 2163 prev_mm = mm; 2164 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse); 2165 2166 if (retval) { 2167 mmput(prev_mm); 2168 goto out; 2169 } 2170 2171 /* 2172 * Make sure that we aren't completely killing 2173 * interactive performance. 2174 */ 2175 cond_resched(); 2176 spin_lock(&mmlist_lock); 2177 } 2178 spin_unlock(&mmlist_lock); 2179 2180 mmput(prev_mm); 2181 2182 i = 0; 2183 while (READ_ONCE(si->inuse_pages) && 2184 !signal_pending(current) && 2185 (i = find_next_to_unuse(si, i, frontswap)) != 0) { 2186 2187 entry = swp_entry(type, i); 2188 page = find_get_page(swap_address_space(entry), i); 2189 if (!page) 2190 continue; 2191 2192 /* 2193 * It is conceivable that a racing task removed this page from 2194 * swap cache just before we acquired the page lock. The page 2195 * might even be back in swap cache on another swap area. But 2196 * that is okay, try_to_free_swap() only removes stale pages. 2197 */ 2198 lock_page(page); 2199 wait_on_page_writeback(page); 2200 try_to_free_swap(page); 2201 unlock_page(page); 2202 put_page(page); 2203 2204 /* 2205 * For frontswap, we just need to unuse pages_to_unuse, if 2206 * it was specified. Need not check frontswap again here as 2207 * we already zeroed out pages_to_unuse if not frontswap. 2208 */ 2209 if (pages_to_unuse && --pages_to_unuse == 0) 2210 goto out; 2211 } 2212 2213 /* 2214 * Lets check again to see if there are still swap entries in the map. 2215 * If yes, we would need to do retry the unuse logic again. 2216 * Under global memory pressure, swap entries can be reinserted back 2217 * into process space after the mmlist loop above passes over them. 2218 * 2219 * Limit the number of retries? No: when mmget_not_zero() above fails, 2220 * that mm is likely to be freeing swap from exit_mmap(), which proceeds 2221 * at its own independent pace; and even shmem_writepage() could have 2222 * been preempted after get_swap_page(), temporarily hiding that swap. 2223 * It's easy and robust (though cpu-intensive) just to keep retrying. 2224 */ 2225 if (READ_ONCE(si->inuse_pages)) { 2226 if (!signal_pending(current)) 2227 goto retry; 2228 retval = -EINTR; 2229 } 2230 out: 2231 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval; 2232 } 2233 2234 /* 2235 * After a successful try_to_unuse, if no swap is now in use, we know 2236 * we can empty the mmlist. swap_lock must be held on entry and exit. 2237 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2238 * added to the mmlist just after page_duplicate - before would be racy. 2239 */ 2240 static void drain_mmlist(void) 2241 { 2242 struct list_head *p, *next; 2243 unsigned int type; 2244 2245 for (type = 0; type < nr_swapfiles; type++) 2246 if (swap_info[type]->inuse_pages) 2247 return; 2248 spin_lock(&mmlist_lock); 2249 list_for_each_safe(p, next, &init_mm.mmlist) 2250 list_del_init(p); 2251 spin_unlock(&mmlist_lock); 2252 } 2253 2254 /* 2255 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 2256 * corresponds to page offset for the specified swap entry. 2257 * Note that the type of this function is sector_t, but it returns page offset 2258 * into the bdev, not sector offset. 2259 */ 2260 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 2261 { 2262 struct swap_info_struct *sis; 2263 struct swap_extent *se; 2264 pgoff_t offset; 2265 2266 sis = swp_swap_info(entry); 2267 *bdev = sis->bdev; 2268 2269 offset = swp_offset(entry); 2270 se = offset_to_swap_extent(sis, offset); 2271 return se->start_block + (offset - se->start_page); 2272 } 2273 2274 /* 2275 * Returns the page offset into bdev for the specified page's swap entry. 2276 */ 2277 sector_t map_swap_page(struct page *page, struct block_device **bdev) 2278 { 2279 swp_entry_t entry; 2280 entry.val = page_private(page); 2281 return map_swap_entry(entry, bdev); 2282 } 2283 2284 /* 2285 * Free all of a swapdev's extent information 2286 */ 2287 static void destroy_swap_extents(struct swap_info_struct *sis) 2288 { 2289 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2290 struct rb_node *rb = sis->swap_extent_root.rb_node; 2291 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2292 2293 rb_erase(rb, &sis->swap_extent_root); 2294 kfree(se); 2295 } 2296 2297 if (sis->flags & SWP_ACTIVATED) { 2298 struct file *swap_file = sis->swap_file; 2299 struct address_space *mapping = swap_file->f_mapping; 2300 2301 sis->flags &= ~SWP_ACTIVATED; 2302 if (mapping->a_ops->swap_deactivate) 2303 mapping->a_ops->swap_deactivate(swap_file); 2304 } 2305 } 2306 2307 /* 2308 * Add a block range (and the corresponding page range) into this swapdev's 2309 * extent tree. 2310 * 2311 * This function rather assumes that it is called in ascending page order. 2312 */ 2313 int 2314 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2315 unsigned long nr_pages, sector_t start_block) 2316 { 2317 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2318 struct swap_extent *se; 2319 struct swap_extent *new_se; 2320 2321 /* 2322 * place the new node at the right most since the 2323 * function is called in ascending page order. 2324 */ 2325 while (*link) { 2326 parent = *link; 2327 link = &parent->rb_right; 2328 } 2329 2330 if (parent) { 2331 se = rb_entry(parent, struct swap_extent, rb_node); 2332 BUG_ON(se->start_page + se->nr_pages != start_page); 2333 if (se->start_block + se->nr_pages == start_block) { 2334 /* Merge it */ 2335 se->nr_pages += nr_pages; 2336 return 0; 2337 } 2338 } 2339 2340 /* No merge, insert a new extent. */ 2341 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2342 if (new_se == NULL) 2343 return -ENOMEM; 2344 new_se->start_page = start_page; 2345 new_se->nr_pages = nr_pages; 2346 new_se->start_block = start_block; 2347 2348 rb_link_node(&new_se->rb_node, parent, link); 2349 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2350 return 1; 2351 } 2352 EXPORT_SYMBOL_GPL(add_swap_extent); 2353 2354 /* 2355 * A `swap extent' is a simple thing which maps a contiguous range of pages 2356 * onto a contiguous range of disk blocks. An ordered list of swap extents 2357 * is built at swapon time and is then used at swap_writepage/swap_readpage 2358 * time for locating where on disk a page belongs. 2359 * 2360 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2361 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2362 * swap files identically. 2363 * 2364 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2365 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2366 * swapfiles are handled *identically* after swapon time. 2367 * 2368 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2369 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 2370 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 2371 * requirements, they are simply tossed out - we will never use those blocks 2372 * for swapping. 2373 * 2374 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2375 * prevents users from writing to the swap device, which will corrupt memory. 2376 * 2377 * The amount of disk space which a single swap extent represents varies. 2378 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2379 * extents in the list. To avoid much list walking, we cache the previous 2380 * search location in `curr_swap_extent', and start new searches from there. 2381 * This is extremely effective. The average number of iterations in 2382 * map_swap_page() has been measured at about 0.3 per page. - akpm. 2383 */ 2384 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2385 { 2386 struct file *swap_file = sis->swap_file; 2387 struct address_space *mapping = swap_file->f_mapping; 2388 struct inode *inode = mapping->host; 2389 int ret; 2390 2391 if (S_ISBLK(inode->i_mode)) { 2392 ret = add_swap_extent(sis, 0, sis->max, 0); 2393 *span = sis->pages; 2394 return ret; 2395 } 2396 2397 if (mapping->a_ops->swap_activate) { 2398 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2399 if (ret >= 0) 2400 sis->flags |= SWP_ACTIVATED; 2401 if (!ret) { 2402 sis->flags |= SWP_FS; 2403 ret = add_swap_extent(sis, 0, sis->max, 0); 2404 *span = sis->pages; 2405 } 2406 return ret; 2407 } 2408 2409 return generic_swapfile_activate(sis, swap_file, span); 2410 } 2411 2412 static int swap_node(struct swap_info_struct *p) 2413 { 2414 struct block_device *bdev; 2415 2416 if (p->bdev) 2417 bdev = p->bdev; 2418 else 2419 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2420 2421 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2422 } 2423 2424 static void setup_swap_info(struct swap_info_struct *p, int prio, 2425 unsigned char *swap_map, 2426 struct swap_cluster_info *cluster_info) 2427 { 2428 int i; 2429 2430 if (prio >= 0) 2431 p->prio = prio; 2432 else 2433 p->prio = --least_priority; 2434 /* 2435 * the plist prio is negated because plist ordering is 2436 * low-to-high, while swap ordering is high-to-low 2437 */ 2438 p->list.prio = -p->prio; 2439 for_each_node(i) { 2440 if (p->prio >= 0) 2441 p->avail_lists[i].prio = -p->prio; 2442 else { 2443 if (swap_node(p) == i) 2444 p->avail_lists[i].prio = 1; 2445 else 2446 p->avail_lists[i].prio = -p->prio; 2447 } 2448 } 2449 p->swap_map = swap_map; 2450 p->cluster_info = cluster_info; 2451 } 2452 2453 static void _enable_swap_info(struct swap_info_struct *p) 2454 { 2455 p->flags |= SWP_WRITEOK | SWP_VALID; 2456 atomic_long_add(p->pages, &nr_swap_pages); 2457 total_swap_pages += p->pages; 2458 2459 assert_spin_locked(&swap_lock); 2460 /* 2461 * both lists are plists, and thus priority ordered. 2462 * swap_active_head needs to be priority ordered for swapoff(), 2463 * which on removal of any swap_info_struct with an auto-assigned 2464 * (i.e. negative) priority increments the auto-assigned priority 2465 * of any lower-priority swap_info_structs. 2466 * swap_avail_head needs to be priority ordered for get_swap_page(), 2467 * which allocates swap pages from the highest available priority 2468 * swap_info_struct. 2469 */ 2470 plist_add(&p->list, &swap_active_head); 2471 add_to_avail_list(p); 2472 } 2473 2474 static void enable_swap_info(struct swap_info_struct *p, int prio, 2475 unsigned char *swap_map, 2476 struct swap_cluster_info *cluster_info, 2477 unsigned long *frontswap_map) 2478 { 2479 frontswap_init(p->type, frontswap_map); 2480 spin_lock(&swap_lock); 2481 spin_lock(&p->lock); 2482 setup_swap_info(p, prio, swap_map, cluster_info); 2483 spin_unlock(&p->lock); 2484 spin_unlock(&swap_lock); 2485 /* 2486 * Guarantee swap_map, cluster_info, etc. fields are valid 2487 * between get/put_swap_device() if SWP_VALID bit is set 2488 */ 2489 synchronize_rcu(); 2490 spin_lock(&swap_lock); 2491 spin_lock(&p->lock); 2492 _enable_swap_info(p); 2493 spin_unlock(&p->lock); 2494 spin_unlock(&swap_lock); 2495 } 2496 2497 static void reinsert_swap_info(struct swap_info_struct *p) 2498 { 2499 spin_lock(&swap_lock); 2500 spin_lock(&p->lock); 2501 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2502 _enable_swap_info(p); 2503 spin_unlock(&p->lock); 2504 spin_unlock(&swap_lock); 2505 } 2506 2507 bool has_usable_swap(void) 2508 { 2509 bool ret = true; 2510 2511 spin_lock(&swap_lock); 2512 if (plist_head_empty(&swap_active_head)) 2513 ret = false; 2514 spin_unlock(&swap_lock); 2515 return ret; 2516 } 2517 2518 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2519 { 2520 struct swap_info_struct *p = NULL; 2521 unsigned char *swap_map; 2522 struct swap_cluster_info *cluster_info; 2523 unsigned long *frontswap_map; 2524 struct file *swap_file, *victim; 2525 struct address_space *mapping; 2526 struct inode *inode; 2527 struct filename *pathname; 2528 int err, found = 0; 2529 unsigned int old_block_size; 2530 2531 if (!capable(CAP_SYS_ADMIN)) 2532 return -EPERM; 2533 2534 BUG_ON(!current->mm); 2535 2536 pathname = getname(specialfile); 2537 if (IS_ERR(pathname)) 2538 return PTR_ERR(pathname); 2539 2540 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2541 err = PTR_ERR(victim); 2542 if (IS_ERR(victim)) 2543 goto out; 2544 2545 mapping = victim->f_mapping; 2546 spin_lock(&swap_lock); 2547 plist_for_each_entry(p, &swap_active_head, list) { 2548 if (p->flags & SWP_WRITEOK) { 2549 if (p->swap_file->f_mapping == mapping) { 2550 found = 1; 2551 break; 2552 } 2553 } 2554 } 2555 if (!found) { 2556 err = -EINVAL; 2557 spin_unlock(&swap_lock); 2558 goto out_dput; 2559 } 2560 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2561 vm_unacct_memory(p->pages); 2562 else { 2563 err = -ENOMEM; 2564 spin_unlock(&swap_lock); 2565 goto out_dput; 2566 } 2567 del_from_avail_list(p); 2568 spin_lock(&p->lock); 2569 if (p->prio < 0) { 2570 struct swap_info_struct *si = p; 2571 int nid; 2572 2573 plist_for_each_entry_continue(si, &swap_active_head, list) { 2574 si->prio++; 2575 si->list.prio--; 2576 for_each_node(nid) { 2577 if (si->avail_lists[nid].prio != 1) 2578 si->avail_lists[nid].prio--; 2579 } 2580 } 2581 least_priority++; 2582 } 2583 plist_del(&p->list, &swap_active_head); 2584 atomic_long_sub(p->pages, &nr_swap_pages); 2585 total_swap_pages -= p->pages; 2586 p->flags &= ~SWP_WRITEOK; 2587 spin_unlock(&p->lock); 2588 spin_unlock(&swap_lock); 2589 2590 disable_swap_slots_cache_lock(); 2591 2592 set_current_oom_origin(); 2593 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */ 2594 clear_current_oom_origin(); 2595 2596 if (err) { 2597 /* re-insert swap space back into swap_list */ 2598 reinsert_swap_info(p); 2599 reenable_swap_slots_cache_unlock(); 2600 goto out_dput; 2601 } 2602 2603 reenable_swap_slots_cache_unlock(); 2604 2605 spin_lock(&swap_lock); 2606 spin_lock(&p->lock); 2607 p->flags &= ~SWP_VALID; /* mark swap device as invalid */ 2608 spin_unlock(&p->lock); 2609 spin_unlock(&swap_lock); 2610 /* 2611 * wait for swap operations protected by get/put_swap_device() 2612 * to complete 2613 */ 2614 synchronize_rcu(); 2615 2616 flush_work(&p->discard_work); 2617 2618 destroy_swap_extents(p); 2619 if (p->flags & SWP_CONTINUED) 2620 free_swap_count_continuations(p); 2621 2622 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev))) 2623 atomic_dec(&nr_rotate_swap); 2624 2625 mutex_lock(&swapon_mutex); 2626 spin_lock(&swap_lock); 2627 spin_lock(&p->lock); 2628 drain_mmlist(); 2629 2630 /* wait for anyone still in scan_swap_map */ 2631 p->highest_bit = 0; /* cuts scans short */ 2632 while (p->flags >= SWP_SCANNING) { 2633 spin_unlock(&p->lock); 2634 spin_unlock(&swap_lock); 2635 schedule_timeout_uninterruptible(1); 2636 spin_lock(&swap_lock); 2637 spin_lock(&p->lock); 2638 } 2639 2640 swap_file = p->swap_file; 2641 old_block_size = p->old_block_size; 2642 p->swap_file = NULL; 2643 p->max = 0; 2644 swap_map = p->swap_map; 2645 p->swap_map = NULL; 2646 cluster_info = p->cluster_info; 2647 p->cluster_info = NULL; 2648 frontswap_map = frontswap_map_get(p); 2649 spin_unlock(&p->lock); 2650 spin_unlock(&swap_lock); 2651 frontswap_invalidate_area(p->type); 2652 frontswap_map_set(p, NULL); 2653 mutex_unlock(&swapon_mutex); 2654 free_percpu(p->percpu_cluster); 2655 p->percpu_cluster = NULL; 2656 vfree(swap_map); 2657 kvfree(cluster_info); 2658 kvfree(frontswap_map); 2659 /* Destroy swap account information */ 2660 swap_cgroup_swapoff(p->type); 2661 exit_swap_address_space(p->type); 2662 2663 inode = mapping->host; 2664 if (S_ISBLK(inode->i_mode)) { 2665 struct block_device *bdev = I_BDEV(inode); 2666 2667 set_blocksize(bdev, old_block_size); 2668 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2669 } 2670 2671 inode_lock(inode); 2672 inode->i_flags &= ~S_SWAPFILE; 2673 inode_unlock(inode); 2674 filp_close(swap_file, NULL); 2675 2676 /* 2677 * Clear the SWP_USED flag after all resources are freed so that swapon 2678 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2679 * not hold p->lock after we cleared its SWP_WRITEOK. 2680 */ 2681 spin_lock(&swap_lock); 2682 p->flags = 0; 2683 spin_unlock(&swap_lock); 2684 2685 err = 0; 2686 atomic_inc(&proc_poll_event); 2687 wake_up_interruptible(&proc_poll_wait); 2688 2689 out_dput: 2690 filp_close(victim, NULL); 2691 out: 2692 putname(pathname); 2693 return err; 2694 } 2695 2696 #ifdef CONFIG_PROC_FS 2697 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2698 { 2699 struct seq_file *seq = file->private_data; 2700 2701 poll_wait(file, &proc_poll_wait, wait); 2702 2703 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2704 seq->poll_event = atomic_read(&proc_poll_event); 2705 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2706 } 2707 2708 return EPOLLIN | EPOLLRDNORM; 2709 } 2710 2711 /* iterator */ 2712 static void *swap_start(struct seq_file *swap, loff_t *pos) 2713 { 2714 struct swap_info_struct *si; 2715 int type; 2716 loff_t l = *pos; 2717 2718 mutex_lock(&swapon_mutex); 2719 2720 if (!l) 2721 return SEQ_START_TOKEN; 2722 2723 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2724 if (!(si->flags & SWP_USED) || !si->swap_map) 2725 continue; 2726 if (!--l) 2727 return si; 2728 } 2729 2730 return NULL; 2731 } 2732 2733 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2734 { 2735 struct swap_info_struct *si = v; 2736 int type; 2737 2738 if (v == SEQ_START_TOKEN) 2739 type = 0; 2740 else 2741 type = si->type + 1; 2742 2743 ++(*pos); 2744 for (; (si = swap_type_to_swap_info(type)); type++) { 2745 if (!(si->flags & SWP_USED) || !si->swap_map) 2746 continue; 2747 return si; 2748 } 2749 2750 return NULL; 2751 } 2752 2753 static void swap_stop(struct seq_file *swap, void *v) 2754 { 2755 mutex_unlock(&swapon_mutex); 2756 } 2757 2758 static int swap_show(struct seq_file *swap, void *v) 2759 { 2760 struct swap_info_struct *si = v; 2761 struct file *file; 2762 int len; 2763 2764 if (si == SEQ_START_TOKEN) { 2765 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 2766 return 0; 2767 } 2768 2769 file = si->swap_file; 2770 len = seq_file_path(swap, file, " \t\n\\"); 2771 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 2772 len < 40 ? 40 - len : 1, " ", 2773 S_ISBLK(file_inode(file)->i_mode) ? 2774 "partition" : "file\t", 2775 si->pages << (PAGE_SHIFT - 10), 2776 si->inuse_pages << (PAGE_SHIFT - 10), 2777 si->prio); 2778 return 0; 2779 } 2780 2781 static const struct seq_operations swaps_op = { 2782 .start = swap_start, 2783 .next = swap_next, 2784 .stop = swap_stop, 2785 .show = swap_show 2786 }; 2787 2788 static int swaps_open(struct inode *inode, struct file *file) 2789 { 2790 struct seq_file *seq; 2791 int ret; 2792 2793 ret = seq_open(file, &swaps_op); 2794 if (ret) 2795 return ret; 2796 2797 seq = file->private_data; 2798 seq->poll_event = atomic_read(&proc_poll_event); 2799 return 0; 2800 } 2801 2802 static const struct proc_ops swaps_proc_ops = { 2803 .proc_flags = PROC_ENTRY_PERMANENT, 2804 .proc_open = swaps_open, 2805 .proc_read = seq_read, 2806 .proc_lseek = seq_lseek, 2807 .proc_release = seq_release, 2808 .proc_poll = swaps_poll, 2809 }; 2810 2811 static int __init procswaps_init(void) 2812 { 2813 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2814 return 0; 2815 } 2816 __initcall(procswaps_init); 2817 #endif /* CONFIG_PROC_FS */ 2818 2819 #ifdef MAX_SWAPFILES_CHECK 2820 static int __init max_swapfiles_check(void) 2821 { 2822 MAX_SWAPFILES_CHECK(); 2823 return 0; 2824 } 2825 late_initcall(max_swapfiles_check); 2826 #endif 2827 2828 static struct swap_info_struct *alloc_swap_info(void) 2829 { 2830 struct swap_info_struct *p; 2831 unsigned int type; 2832 int i; 2833 2834 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2835 if (!p) 2836 return ERR_PTR(-ENOMEM); 2837 2838 spin_lock(&swap_lock); 2839 for (type = 0; type < nr_swapfiles; type++) { 2840 if (!(swap_info[type]->flags & SWP_USED)) 2841 break; 2842 } 2843 if (type >= MAX_SWAPFILES) { 2844 spin_unlock(&swap_lock); 2845 kvfree(p); 2846 return ERR_PTR(-EPERM); 2847 } 2848 if (type >= nr_swapfiles) { 2849 p->type = type; 2850 WRITE_ONCE(swap_info[type], p); 2851 /* 2852 * Write swap_info[type] before nr_swapfiles, in case a 2853 * racing procfs swap_start() or swap_next() is reading them. 2854 * (We never shrink nr_swapfiles, we never free this entry.) 2855 */ 2856 smp_wmb(); 2857 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1); 2858 } else { 2859 kvfree(p); 2860 p = swap_info[type]; 2861 /* 2862 * Do not memset this entry: a racing procfs swap_next() 2863 * would be relying on p->type to remain valid. 2864 */ 2865 } 2866 p->swap_extent_root = RB_ROOT; 2867 plist_node_init(&p->list, 0); 2868 for_each_node(i) 2869 plist_node_init(&p->avail_lists[i], 0); 2870 p->flags = SWP_USED; 2871 spin_unlock(&swap_lock); 2872 spin_lock_init(&p->lock); 2873 spin_lock_init(&p->cont_lock); 2874 2875 return p; 2876 } 2877 2878 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2879 { 2880 int error; 2881 2882 if (S_ISBLK(inode->i_mode)) { 2883 p->bdev = bdgrab(I_BDEV(inode)); 2884 error = blkdev_get(p->bdev, 2885 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2886 if (error < 0) { 2887 p->bdev = NULL; 2888 return error; 2889 } 2890 p->old_block_size = block_size(p->bdev); 2891 error = set_blocksize(p->bdev, PAGE_SIZE); 2892 if (error < 0) 2893 return error; 2894 /* 2895 * Zoned block devices contain zones that have a sequential 2896 * write only restriction. Hence zoned block devices are not 2897 * suitable for swapping. Disallow them here. 2898 */ 2899 if (blk_queue_is_zoned(p->bdev->bd_queue)) 2900 return -EINVAL; 2901 p->flags |= SWP_BLKDEV; 2902 } else if (S_ISREG(inode->i_mode)) { 2903 p->bdev = inode->i_sb->s_bdev; 2904 } 2905 2906 return 0; 2907 } 2908 2909 2910 /* 2911 * Find out how many pages are allowed for a single swap device. There 2912 * are two limiting factors: 2913 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2914 * 2) the number of bits in the swap pte, as defined by the different 2915 * architectures. 2916 * 2917 * In order to find the largest possible bit mask, a swap entry with 2918 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2919 * decoded to a swp_entry_t again, and finally the swap offset is 2920 * extracted. 2921 * 2922 * This will mask all the bits from the initial ~0UL mask that can't 2923 * be encoded in either the swp_entry_t or the architecture definition 2924 * of a swap pte. 2925 */ 2926 unsigned long generic_max_swapfile_size(void) 2927 { 2928 return swp_offset(pte_to_swp_entry( 2929 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2930 } 2931 2932 /* Can be overridden by an architecture for additional checks. */ 2933 __weak unsigned long max_swapfile_size(void) 2934 { 2935 return generic_max_swapfile_size(); 2936 } 2937 2938 static unsigned long read_swap_header(struct swap_info_struct *p, 2939 union swap_header *swap_header, 2940 struct inode *inode) 2941 { 2942 int i; 2943 unsigned long maxpages; 2944 unsigned long swapfilepages; 2945 unsigned long last_page; 2946 2947 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2948 pr_err("Unable to find swap-space signature\n"); 2949 return 0; 2950 } 2951 2952 /* swap partition endianess hack... */ 2953 if (swab32(swap_header->info.version) == 1) { 2954 swab32s(&swap_header->info.version); 2955 swab32s(&swap_header->info.last_page); 2956 swab32s(&swap_header->info.nr_badpages); 2957 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2958 return 0; 2959 for (i = 0; i < swap_header->info.nr_badpages; i++) 2960 swab32s(&swap_header->info.badpages[i]); 2961 } 2962 /* Check the swap header's sub-version */ 2963 if (swap_header->info.version != 1) { 2964 pr_warn("Unable to handle swap header version %d\n", 2965 swap_header->info.version); 2966 return 0; 2967 } 2968 2969 p->lowest_bit = 1; 2970 p->cluster_next = 1; 2971 p->cluster_nr = 0; 2972 2973 maxpages = max_swapfile_size(); 2974 last_page = swap_header->info.last_page; 2975 if (!last_page) { 2976 pr_warn("Empty swap-file\n"); 2977 return 0; 2978 } 2979 if (last_page > maxpages) { 2980 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2981 maxpages << (PAGE_SHIFT - 10), 2982 last_page << (PAGE_SHIFT - 10)); 2983 } 2984 if (maxpages > last_page) { 2985 maxpages = last_page + 1; 2986 /* p->max is an unsigned int: don't overflow it */ 2987 if ((unsigned int)maxpages == 0) 2988 maxpages = UINT_MAX; 2989 } 2990 p->highest_bit = maxpages - 1; 2991 2992 if (!maxpages) 2993 return 0; 2994 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2995 if (swapfilepages && maxpages > swapfilepages) { 2996 pr_warn("Swap area shorter than signature indicates\n"); 2997 return 0; 2998 } 2999 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 3000 return 0; 3001 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 3002 return 0; 3003 3004 return maxpages; 3005 } 3006 3007 #define SWAP_CLUSTER_INFO_COLS \ 3008 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 3009 #define SWAP_CLUSTER_SPACE_COLS \ 3010 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 3011 #define SWAP_CLUSTER_COLS \ 3012 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 3013 3014 static int setup_swap_map_and_extents(struct swap_info_struct *p, 3015 union swap_header *swap_header, 3016 unsigned char *swap_map, 3017 struct swap_cluster_info *cluster_info, 3018 unsigned long maxpages, 3019 sector_t *span) 3020 { 3021 unsigned int j, k; 3022 unsigned int nr_good_pages; 3023 int nr_extents; 3024 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3025 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 3026 unsigned long i, idx; 3027 3028 nr_good_pages = maxpages - 1; /* omit header page */ 3029 3030 cluster_list_init(&p->free_clusters); 3031 cluster_list_init(&p->discard_clusters); 3032 3033 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3034 unsigned int page_nr = swap_header->info.badpages[i]; 3035 if (page_nr == 0 || page_nr > swap_header->info.last_page) 3036 return -EINVAL; 3037 if (page_nr < maxpages) { 3038 swap_map[page_nr] = SWAP_MAP_BAD; 3039 nr_good_pages--; 3040 /* 3041 * Haven't marked the cluster free yet, no list 3042 * operation involved 3043 */ 3044 inc_cluster_info_page(p, cluster_info, page_nr); 3045 } 3046 } 3047 3048 /* Haven't marked the cluster free yet, no list operation involved */ 3049 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 3050 inc_cluster_info_page(p, cluster_info, i); 3051 3052 if (nr_good_pages) { 3053 swap_map[0] = SWAP_MAP_BAD; 3054 /* 3055 * Not mark the cluster free yet, no list 3056 * operation involved 3057 */ 3058 inc_cluster_info_page(p, cluster_info, 0); 3059 p->max = maxpages; 3060 p->pages = nr_good_pages; 3061 nr_extents = setup_swap_extents(p, span); 3062 if (nr_extents < 0) 3063 return nr_extents; 3064 nr_good_pages = p->pages; 3065 } 3066 if (!nr_good_pages) { 3067 pr_warn("Empty swap-file\n"); 3068 return -EINVAL; 3069 } 3070 3071 if (!cluster_info) 3072 return nr_extents; 3073 3074 3075 /* 3076 * Reduce false cache line sharing between cluster_info and 3077 * sharing same address space. 3078 */ 3079 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 3080 j = (k + col) % SWAP_CLUSTER_COLS; 3081 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 3082 idx = i * SWAP_CLUSTER_COLS + j; 3083 if (idx >= nr_clusters) 3084 continue; 3085 if (cluster_count(&cluster_info[idx])) 3086 continue; 3087 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 3088 cluster_list_add_tail(&p->free_clusters, cluster_info, 3089 idx); 3090 } 3091 } 3092 return nr_extents; 3093 } 3094 3095 /* 3096 * Helper to sys_swapon determining if a given swap 3097 * backing device queue supports DISCARD operations. 3098 */ 3099 static bool swap_discardable(struct swap_info_struct *si) 3100 { 3101 struct request_queue *q = bdev_get_queue(si->bdev); 3102 3103 if (!q || !blk_queue_discard(q)) 3104 return false; 3105 3106 return true; 3107 } 3108 3109 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 3110 { 3111 struct swap_info_struct *p; 3112 struct filename *name; 3113 struct file *swap_file = NULL; 3114 struct address_space *mapping; 3115 int prio; 3116 int error; 3117 union swap_header *swap_header; 3118 int nr_extents; 3119 sector_t span; 3120 unsigned long maxpages; 3121 unsigned char *swap_map = NULL; 3122 struct swap_cluster_info *cluster_info = NULL; 3123 unsigned long *frontswap_map = NULL; 3124 struct page *page = NULL; 3125 struct inode *inode = NULL; 3126 bool inced_nr_rotate_swap = false; 3127 3128 if (swap_flags & ~SWAP_FLAGS_VALID) 3129 return -EINVAL; 3130 3131 if (!capable(CAP_SYS_ADMIN)) 3132 return -EPERM; 3133 3134 if (!swap_avail_heads) 3135 return -ENOMEM; 3136 3137 p = alloc_swap_info(); 3138 if (IS_ERR(p)) 3139 return PTR_ERR(p); 3140 3141 INIT_WORK(&p->discard_work, swap_discard_work); 3142 3143 name = getname(specialfile); 3144 if (IS_ERR(name)) { 3145 error = PTR_ERR(name); 3146 name = NULL; 3147 goto bad_swap; 3148 } 3149 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3150 if (IS_ERR(swap_file)) { 3151 error = PTR_ERR(swap_file); 3152 swap_file = NULL; 3153 goto bad_swap; 3154 } 3155 3156 p->swap_file = swap_file; 3157 mapping = swap_file->f_mapping; 3158 inode = mapping->host; 3159 3160 error = claim_swapfile(p, inode); 3161 if (unlikely(error)) 3162 goto bad_swap; 3163 3164 inode_lock(inode); 3165 if (IS_SWAPFILE(inode)) { 3166 error = -EBUSY; 3167 goto bad_swap_unlock_inode; 3168 } 3169 3170 /* 3171 * Read the swap header. 3172 */ 3173 if (!mapping->a_ops->readpage) { 3174 error = -EINVAL; 3175 goto bad_swap_unlock_inode; 3176 } 3177 page = read_mapping_page(mapping, 0, swap_file); 3178 if (IS_ERR(page)) { 3179 error = PTR_ERR(page); 3180 goto bad_swap_unlock_inode; 3181 } 3182 swap_header = kmap(page); 3183 3184 maxpages = read_swap_header(p, swap_header, inode); 3185 if (unlikely(!maxpages)) { 3186 error = -EINVAL; 3187 goto bad_swap_unlock_inode; 3188 } 3189 3190 /* OK, set up the swap map and apply the bad block list */ 3191 swap_map = vzalloc(maxpages); 3192 if (!swap_map) { 3193 error = -ENOMEM; 3194 goto bad_swap_unlock_inode; 3195 } 3196 3197 if (bdi_cap_stable_pages_required(inode_to_bdi(inode))) 3198 p->flags |= SWP_STABLE_WRITES; 3199 3200 if (bdi_cap_synchronous_io(inode_to_bdi(inode))) 3201 p->flags |= SWP_SYNCHRONOUS_IO; 3202 3203 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { 3204 int cpu; 3205 unsigned long ci, nr_cluster; 3206 3207 p->flags |= SWP_SOLIDSTATE; 3208 /* 3209 * select a random position to start with to help wear leveling 3210 * SSD 3211 */ 3212 p->cluster_next = 1 + prandom_u32_max(p->highest_bit); 3213 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3214 3215 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3216 GFP_KERNEL); 3217 if (!cluster_info) { 3218 error = -ENOMEM; 3219 goto bad_swap_unlock_inode; 3220 } 3221 3222 for (ci = 0; ci < nr_cluster; ci++) 3223 spin_lock_init(&((cluster_info + ci)->lock)); 3224 3225 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3226 if (!p->percpu_cluster) { 3227 error = -ENOMEM; 3228 goto bad_swap_unlock_inode; 3229 } 3230 for_each_possible_cpu(cpu) { 3231 struct percpu_cluster *cluster; 3232 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3233 cluster_set_null(&cluster->index); 3234 } 3235 } else { 3236 atomic_inc(&nr_rotate_swap); 3237 inced_nr_rotate_swap = true; 3238 } 3239 3240 error = swap_cgroup_swapon(p->type, maxpages); 3241 if (error) 3242 goto bad_swap_unlock_inode; 3243 3244 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3245 cluster_info, maxpages, &span); 3246 if (unlikely(nr_extents < 0)) { 3247 error = nr_extents; 3248 goto bad_swap_unlock_inode; 3249 } 3250 /* frontswap enabled? set up bit-per-page map for frontswap */ 3251 if (IS_ENABLED(CONFIG_FRONTSWAP)) 3252 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages), 3253 sizeof(long), 3254 GFP_KERNEL); 3255 3256 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 3257 /* 3258 * When discard is enabled for swap with no particular 3259 * policy flagged, we set all swap discard flags here in 3260 * order to sustain backward compatibility with older 3261 * swapon(8) releases. 3262 */ 3263 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3264 SWP_PAGE_DISCARD); 3265 3266 /* 3267 * By flagging sys_swapon, a sysadmin can tell us to 3268 * either do single-time area discards only, or to just 3269 * perform discards for released swap page-clusters. 3270 * Now it's time to adjust the p->flags accordingly. 3271 */ 3272 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3273 p->flags &= ~SWP_PAGE_DISCARD; 3274 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3275 p->flags &= ~SWP_AREA_DISCARD; 3276 3277 /* issue a swapon-time discard if it's still required */ 3278 if (p->flags & SWP_AREA_DISCARD) { 3279 int err = discard_swap(p); 3280 if (unlikely(err)) 3281 pr_err("swapon: discard_swap(%p): %d\n", 3282 p, err); 3283 } 3284 } 3285 3286 error = init_swap_address_space(p->type, maxpages); 3287 if (error) 3288 goto bad_swap_unlock_inode; 3289 3290 /* 3291 * Flush any pending IO and dirty mappings before we start using this 3292 * swap device. 3293 */ 3294 inode->i_flags |= S_SWAPFILE; 3295 error = inode_drain_writes(inode); 3296 if (error) { 3297 inode->i_flags &= ~S_SWAPFILE; 3298 goto bad_swap_unlock_inode; 3299 } 3300 3301 mutex_lock(&swapon_mutex); 3302 prio = -1; 3303 if (swap_flags & SWAP_FLAG_PREFER) 3304 prio = 3305 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3306 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 3307 3308 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 3309 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 3310 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 3311 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3312 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3313 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3314 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 3315 (frontswap_map) ? "FS" : ""); 3316 3317 mutex_unlock(&swapon_mutex); 3318 atomic_inc(&proc_poll_event); 3319 wake_up_interruptible(&proc_poll_wait); 3320 3321 error = 0; 3322 goto out; 3323 bad_swap_unlock_inode: 3324 inode_unlock(inode); 3325 bad_swap: 3326 free_percpu(p->percpu_cluster); 3327 p->percpu_cluster = NULL; 3328 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 3329 set_blocksize(p->bdev, p->old_block_size); 3330 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 3331 } 3332 inode = NULL; 3333 destroy_swap_extents(p); 3334 swap_cgroup_swapoff(p->type); 3335 spin_lock(&swap_lock); 3336 p->swap_file = NULL; 3337 p->flags = 0; 3338 spin_unlock(&swap_lock); 3339 vfree(swap_map); 3340 kvfree(cluster_info); 3341 kvfree(frontswap_map); 3342 if (inced_nr_rotate_swap) 3343 atomic_dec(&nr_rotate_swap); 3344 if (swap_file) 3345 filp_close(swap_file, NULL); 3346 out: 3347 if (page && !IS_ERR(page)) { 3348 kunmap(page); 3349 put_page(page); 3350 } 3351 if (name) 3352 putname(name); 3353 if (inode) 3354 inode_unlock(inode); 3355 if (!error) 3356 enable_swap_slots_cache(); 3357 return error; 3358 } 3359 3360 void si_swapinfo(struct sysinfo *val) 3361 { 3362 unsigned int type; 3363 unsigned long nr_to_be_unused = 0; 3364 3365 spin_lock(&swap_lock); 3366 for (type = 0; type < nr_swapfiles; type++) { 3367 struct swap_info_struct *si = swap_info[type]; 3368 3369 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3370 nr_to_be_unused += si->inuse_pages; 3371 } 3372 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3373 val->totalswap = total_swap_pages + nr_to_be_unused; 3374 spin_unlock(&swap_lock); 3375 } 3376 3377 /* 3378 * Verify that a swap entry is valid and increment its swap map count. 3379 * 3380 * Returns error code in following case. 3381 * - success -> 0 3382 * - swp_entry is invalid -> EINVAL 3383 * - swp_entry is migration entry -> EINVAL 3384 * - swap-cache reference is requested but there is already one. -> EEXIST 3385 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3386 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3387 */ 3388 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3389 { 3390 struct swap_info_struct *p; 3391 struct swap_cluster_info *ci; 3392 unsigned long offset; 3393 unsigned char count; 3394 unsigned char has_cache; 3395 int err = -EINVAL; 3396 3397 p = get_swap_device(entry); 3398 if (!p) 3399 goto out; 3400 3401 offset = swp_offset(entry); 3402 ci = lock_cluster_or_swap_info(p, offset); 3403 3404 count = p->swap_map[offset]; 3405 3406 /* 3407 * swapin_readahead() doesn't check if a swap entry is valid, so the 3408 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3409 */ 3410 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3411 err = -ENOENT; 3412 goto unlock_out; 3413 } 3414 3415 has_cache = count & SWAP_HAS_CACHE; 3416 count &= ~SWAP_HAS_CACHE; 3417 err = 0; 3418 3419 if (usage == SWAP_HAS_CACHE) { 3420 3421 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3422 if (!has_cache && count) 3423 has_cache = SWAP_HAS_CACHE; 3424 else if (has_cache) /* someone else added cache */ 3425 err = -EEXIST; 3426 else /* no users remaining */ 3427 err = -ENOENT; 3428 3429 } else if (count || has_cache) { 3430 3431 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3432 count += usage; 3433 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3434 err = -EINVAL; 3435 else if (swap_count_continued(p, offset, count)) 3436 count = COUNT_CONTINUED; 3437 else 3438 err = -ENOMEM; 3439 } else 3440 err = -ENOENT; /* unused swap entry */ 3441 3442 p->swap_map[offset] = count | has_cache; 3443 3444 unlock_out: 3445 unlock_cluster_or_swap_info(p, ci); 3446 out: 3447 if (p) 3448 put_swap_device(p); 3449 return err; 3450 } 3451 3452 /* 3453 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3454 * (in which case its reference count is never incremented). 3455 */ 3456 void swap_shmem_alloc(swp_entry_t entry) 3457 { 3458 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3459 } 3460 3461 /* 3462 * Increase reference count of swap entry by 1. 3463 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3464 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3465 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3466 * might occur if a page table entry has got corrupted. 3467 */ 3468 int swap_duplicate(swp_entry_t entry) 3469 { 3470 int err = 0; 3471 3472 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3473 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3474 return err; 3475 } 3476 3477 /* 3478 * @entry: swap entry for which we allocate swap cache. 3479 * 3480 * Called when allocating swap cache for existing swap entry, 3481 * This can return error codes. Returns 0 at success. 3482 * -EEXIST means there is a swap cache. 3483 * Note: return code is different from swap_duplicate(). 3484 */ 3485 int swapcache_prepare(swp_entry_t entry) 3486 { 3487 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3488 } 3489 3490 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3491 { 3492 return swap_type_to_swap_info(swp_type(entry)); 3493 } 3494 3495 struct swap_info_struct *page_swap_info(struct page *page) 3496 { 3497 swp_entry_t entry = { .val = page_private(page) }; 3498 return swp_swap_info(entry); 3499 } 3500 3501 /* 3502 * out-of-line __page_file_ methods to avoid include hell. 3503 */ 3504 struct address_space *__page_file_mapping(struct page *page) 3505 { 3506 return page_swap_info(page)->swap_file->f_mapping; 3507 } 3508 EXPORT_SYMBOL_GPL(__page_file_mapping); 3509 3510 pgoff_t __page_file_index(struct page *page) 3511 { 3512 swp_entry_t swap = { .val = page_private(page) }; 3513 return swp_offset(swap); 3514 } 3515 EXPORT_SYMBOL_GPL(__page_file_index); 3516 3517 /* 3518 * add_swap_count_continuation - called when a swap count is duplicated 3519 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3520 * page of the original vmalloc'ed swap_map, to hold the continuation count 3521 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3522 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3523 * 3524 * These continuation pages are seldom referenced: the common paths all work 3525 * on the original swap_map, only referring to a continuation page when the 3526 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3527 * 3528 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3529 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3530 * can be called after dropping locks. 3531 */ 3532 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3533 { 3534 struct swap_info_struct *si; 3535 struct swap_cluster_info *ci; 3536 struct page *head; 3537 struct page *page; 3538 struct page *list_page; 3539 pgoff_t offset; 3540 unsigned char count; 3541 int ret = 0; 3542 3543 /* 3544 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3545 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3546 */ 3547 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3548 3549 si = get_swap_device(entry); 3550 if (!si) { 3551 /* 3552 * An acceptable race has occurred since the failing 3553 * __swap_duplicate(): the swap device may be swapoff 3554 */ 3555 goto outer; 3556 } 3557 spin_lock(&si->lock); 3558 3559 offset = swp_offset(entry); 3560 3561 ci = lock_cluster(si, offset); 3562 3563 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 3564 3565 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3566 /* 3567 * The higher the swap count, the more likely it is that tasks 3568 * will race to add swap count continuation: we need to avoid 3569 * over-provisioning. 3570 */ 3571 goto out; 3572 } 3573 3574 if (!page) { 3575 ret = -ENOMEM; 3576 goto out; 3577 } 3578 3579 /* 3580 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 3581 * no architecture is using highmem pages for kernel page tables: so it 3582 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 3583 */ 3584 head = vmalloc_to_page(si->swap_map + offset); 3585 offset &= ~PAGE_MASK; 3586 3587 spin_lock(&si->cont_lock); 3588 /* 3589 * Page allocation does not initialize the page's lru field, 3590 * but it does always reset its private field. 3591 */ 3592 if (!page_private(head)) { 3593 BUG_ON(count & COUNT_CONTINUED); 3594 INIT_LIST_HEAD(&head->lru); 3595 set_page_private(head, SWP_CONTINUED); 3596 si->flags |= SWP_CONTINUED; 3597 } 3598 3599 list_for_each_entry(list_page, &head->lru, lru) { 3600 unsigned char *map; 3601 3602 /* 3603 * If the previous map said no continuation, but we've found 3604 * a continuation page, free our allocation and use this one. 3605 */ 3606 if (!(count & COUNT_CONTINUED)) 3607 goto out_unlock_cont; 3608 3609 map = kmap_atomic(list_page) + offset; 3610 count = *map; 3611 kunmap_atomic(map); 3612 3613 /* 3614 * If this continuation count now has some space in it, 3615 * free our allocation and use this one. 3616 */ 3617 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3618 goto out_unlock_cont; 3619 } 3620 3621 list_add_tail(&page->lru, &head->lru); 3622 page = NULL; /* now it's attached, don't free it */ 3623 out_unlock_cont: 3624 spin_unlock(&si->cont_lock); 3625 out: 3626 unlock_cluster(ci); 3627 spin_unlock(&si->lock); 3628 put_swap_device(si); 3629 outer: 3630 if (page) 3631 __free_page(page); 3632 return ret; 3633 } 3634 3635 /* 3636 * swap_count_continued - when the original swap_map count is incremented 3637 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3638 * into, carry if so, or else fail until a new continuation page is allocated; 3639 * when the original swap_map count is decremented from 0 with continuation, 3640 * borrow from the continuation and report whether it still holds more. 3641 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3642 * lock. 3643 */ 3644 static bool swap_count_continued(struct swap_info_struct *si, 3645 pgoff_t offset, unsigned char count) 3646 { 3647 struct page *head; 3648 struct page *page; 3649 unsigned char *map; 3650 bool ret; 3651 3652 head = vmalloc_to_page(si->swap_map + offset); 3653 if (page_private(head) != SWP_CONTINUED) { 3654 BUG_ON(count & COUNT_CONTINUED); 3655 return false; /* need to add count continuation */ 3656 } 3657 3658 spin_lock(&si->cont_lock); 3659 offset &= ~PAGE_MASK; 3660 page = list_next_entry(head, lru); 3661 map = kmap_atomic(page) + offset; 3662 3663 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3664 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3665 3666 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3667 /* 3668 * Think of how you add 1 to 999 3669 */ 3670 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3671 kunmap_atomic(map); 3672 page = list_next_entry(page, lru); 3673 BUG_ON(page == head); 3674 map = kmap_atomic(page) + offset; 3675 } 3676 if (*map == SWAP_CONT_MAX) { 3677 kunmap_atomic(map); 3678 page = list_next_entry(page, lru); 3679 if (page == head) { 3680 ret = false; /* add count continuation */ 3681 goto out; 3682 } 3683 map = kmap_atomic(page) + offset; 3684 init_map: *map = 0; /* we didn't zero the page */ 3685 } 3686 *map += 1; 3687 kunmap_atomic(map); 3688 while ((page = list_prev_entry(page, lru)) != head) { 3689 map = kmap_atomic(page) + offset; 3690 *map = COUNT_CONTINUED; 3691 kunmap_atomic(map); 3692 } 3693 ret = true; /* incremented */ 3694 3695 } else { /* decrementing */ 3696 /* 3697 * Think of how you subtract 1 from 1000 3698 */ 3699 BUG_ON(count != COUNT_CONTINUED); 3700 while (*map == COUNT_CONTINUED) { 3701 kunmap_atomic(map); 3702 page = list_next_entry(page, lru); 3703 BUG_ON(page == head); 3704 map = kmap_atomic(page) + offset; 3705 } 3706 BUG_ON(*map == 0); 3707 *map -= 1; 3708 if (*map == 0) 3709 count = 0; 3710 kunmap_atomic(map); 3711 while ((page = list_prev_entry(page, lru)) != head) { 3712 map = kmap_atomic(page) + offset; 3713 *map = SWAP_CONT_MAX | count; 3714 count = COUNT_CONTINUED; 3715 kunmap_atomic(map); 3716 } 3717 ret = count == COUNT_CONTINUED; 3718 } 3719 out: 3720 spin_unlock(&si->cont_lock); 3721 return ret; 3722 } 3723 3724 /* 3725 * free_swap_count_continuations - swapoff free all the continuation pages 3726 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3727 */ 3728 static void free_swap_count_continuations(struct swap_info_struct *si) 3729 { 3730 pgoff_t offset; 3731 3732 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3733 struct page *head; 3734 head = vmalloc_to_page(si->swap_map + offset); 3735 if (page_private(head)) { 3736 struct page *page, *next; 3737 3738 list_for_each_entry_safe(page, next, &head->lru, lru) { 3739 list_del(&page->lru); 3740 __free_page(page); 3741 } 3742 } 3743 } 3744 } 3745 3746 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3747 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node, 3748 gfp_t gfp_mask) 3749 { 3750 struct swap_info_struct *si, *next; 3751 if (!(gfp_mask & __GFP_IO) || !memcg) 3752 return; 3753 3754 if (!blk_cgroup_congested()) 3755 return; 3756 3757 /* 3758 * We've already scheduled a throttle, avoid taking the global swap 3759 * lock. 3760 */ 3761 if (current->throttle_queue) 3762 return; 3763 3764 spin_lock(&swap_avail_lock); 3765 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], 3766 avail_lists[node]) { 3767 if (si->bdev) { 3768 blkcg_schedule_throttle(bdev_get_queue(si->bdev), 3769 true); 3770 break; 3771 } 3772 } 3773 spin_unlock(&swap_avail_lock); 3774 } 3775 #endif 3776 3777 static int __init swapfile_init(void) 3778 { 3779 int nid; 3780 3781 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3782 GFP_KERNEL); 3783 if (!swap_avail_heads) { 3784 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3785 return -ENOMEM; 3786 } 3787 3788 for_each_node(nid) 3789 plist_head_init(&swap_avail_heads[nid]); 3790 3791 return 0; 3792 } 3793 subsys_initcall(swapfile_init); 3794