xref: /openbmc/linux/mm/swapfile.c (revision 09fe06ce0bf5abe53b77a9515d7fb7579edec9c0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 
43 #include <asm/pgtable.h>
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47 
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 				 unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52 
53 DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57  * Some modules use swappable objects and may try to swap them out under
58  * memory pressure (via the shrinker). Before doing so, they may wish to
59  * check to see if any swap space is available.
60  */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65 
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70 
71 /*
72  * all active swap_info_structs
73  * protected with swap_lock, and ordered by priority.
74  */
75 PLIST_HEAD(swap_active_head);
76 
77 /*
78  * all available (active, not full) swap_info_structs
79  * protected with swap_avail_lock, ordered by priority.
80  * This is used by get_swap_page() instead of swap_active_head
81  * because swap_active_head includes all swap_info_structs,
82  * but get_swap_page() doesn't need to look at full ones.
83  * This uses its own lock instead of swap_lock because when a
84  * swap_info_struct changes between not-full/full, it needs to
85  * add/remove itself to/from this list, but the swap_info_struct->lock
86  * is held and the locking order requires swap_lock to be taken
87  * before any swap_info_struct->lock.
88  */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91 
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93 
94 static DEFINE_MUTEX(swapon_mutex);
95 
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99 
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101 
102 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104 	if (type >= READ_ONCE(nr_swapfiles))
105 		return NULL;
106 
107 	smp_rmb();	/* Pairs with smp_wmb in alloc_swap_info. */
108 	return READ_ONCE(swap_info[type]);
109 }
110 
111 static inline unsigned char swap_count(unsigned char ent)
112 {
113 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
114 }
115 
116 /* Reclaim the swap entry anyway if possible */
117 #define TTRS_ANYWAY		0x1
118 /*
119  * Reclaim the swap entry if there are no more mappings of the
120  * corresponding page
121  */
122 #define TTRS_UNMAPPED		0x2
123 /* Reclaim the swap entry if swap is getting full*/
124 #define TTRS_FULL		0x4
125 
126 /* returns 1 if swap entry is freed */
127 static int __try_to_reclaim_swap(struct swap_info_struct *si,
128 				 unsigned long offset, unsigned long flags)
129 {
130 	swp_entry_t entry = swp_entry(si->type, offset);
131 	struct page *page;
132 	int ret = 0;
133 
134 	page = find_get_page(swap_address_space(entry), offset);
135 	if (!page)
136 		return 0;
137 	/*
138 	 * When this function is called from scan_swap_map_slots() and it's
139 	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140 	 * here. We have to use trylock for avoiding deadlock. This is a special
141 	 * case and you should use try_to_free_swap() with explicit lock_page()
142 	 * in usual operations.
143 	 */
144 	if (trylock_page(page)) {
145 		if ((flags & TTRS_ANYWAY) ||
146 		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148 			ret = try_to_free_swap(page);
149 		unlock_page(page);
150 	}
151 	put_page(page);
152 	return ret;
153 }
154 
155 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156 {
157 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
158 	return rb_entry(rb, struct swap_extent, rb_node);
159 }
160 
161 static inline struct swap_extent *next_se(struct swap_extent *se)
162 {
163 	struct rb_node *rb = rb_next(&se->rb_node);
164 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165 }
166 
167 /*
168  * swapon tell device that all the old swap contents can be discarded,
169  * to allow the swap device to optimize its wear-levelling.
170  */
171 static int discard_swap(struct swap_info_struct *si)
172 {
173 	struct swap_extent *se;
174 	sector_t start_block;
175 	sector_t nr_blocks;
176 	int err = 0;
177 
178 	/* Do not discard the swap header page! */
179 	se = first_se(si);
180 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182 	if (nr_blocks) {
183 		err = blkdev_issue_discard(si->bdev, start_block,
184 				nr_blocks, GFP_KERNEL, 0);
185 		if (err)
186 			return err;
187 		cond_resched();
188 	}
189 
190 	for (se = next_se(se); se; se = next_se(se)) {
191 		start_block = se->start_block << (PAGE_SHIFT - 9);
192 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
193 
194 		err = blkdev_issue_discard(si->bdev, start_block,
195 				nr_blocks, GFP_KERNEL, 0);
196 		if (err)
197 			break;
198 
199 		cond_resched();
200 	}
201 	return err;		/* That will often be -EOPNOTSUPP */
202 }
203 
204 static struct swap_extent *
205 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206 {
207 	struct swap_extent *se;
208 	struct rb_node *rb;
209 
210 	rb = sis->swap_extent_root.rb_node;
211 	while (rb) {
212 		se = rb_entry(rb, struct swap_extent, rb_node);
213 		if (offset < se->start_page)
214 			rb = rb->rb_left;
215 		else if (offset >= se->start_page + se->nr_pages)
216 			rb = rb->rb_right;
217 		else
218 			return se;
219 	}
220 	/* It *must* be present */
221 	BUG();
222 }
223 
224 /*
225  * swap allocation tell device that a cluster of swap can now be discarded,
226  * to allow the swap device to optimize its wear-levelling.
227  */
228 static void discard_swap_cluster(struct swap_info_struct *si,
229 				 pgoff_t start_page, pgoff_t nr_pages)
230 {
231 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
232 
233 	while (nr_pages) {
234 		pgoff_t offset = start_page - se->start_page;
235 		sector_t start_block = se->start_block + offset;
236 		sector_t nr_blocks = se->nr_pages - offset;
237 
238 		if (nr_blocks > nr_pages)
239 			nr_blocks = nr_pages;
240 		start_page += nr_blocks;
241 		nr_pages -= nr_blocks;
242 
243 		start_block <<= PAGE_SHIFT - 9;
244 		nr_blocks <<= PAGE_SHIFT - 9;
245 		if (blkdev_issue_discard(si->bdev, start_block,
246 					nr_blocks, GFP_NOIO, 0))
247 			break;
248 
249 		se = next_se(se);
250 	}
251 }
252 
253 #ifdef CONFIG_THP_SWAP
254 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
255 
256 #define swap_entry_size(size)	(size)
257 #else
258 #define SWAPFILE_CLUSTER	256
259 
260 /*
261  * Define swap_entry_size() as constant to let compiler to optimize
262  * out some code if !CONFIG_THP_SWAP
263  */
264 #define swap_entry_size(size)	1
265 #endif
266 #define LATENCY_LIMIT		256
267 
268 static inline void cluster_set_flag(struct swap_cluster_info *info,
269 	unsigned int flag)
270 {
271 	info->flags = flag;
272 }
273 
274 static inline unsigned int cluster_count(struct swap_cluster_info *info)
275 {
276 	return info->data;
277 }
278 
279 static inline void cluster_set_count(struct swap_cluster_info *info,
280 				     unsigned int c)
281 {
282 	info->data = c;
283 }
284 
285 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
286 					 unsigned int c, unsigned int f)
287 {
288 	info->flags = f;
289 	info->data = c;
290 }
291 
292 static inline unsigned int cluster_next(struct swap_cluster_info *info)
293 {
294 	return info->data;
295 }
296 
297 static inline void cluster_set_next(struct swap_cluster_info *info,
298 				    unsigned int n)
299 {
300 	info->data = n;
301 }
302 
303 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
304 					 unsigned int n, unsigned int f)
305 {
306 	info->flags = f;
307 	info->data = n;
308 }
309 
310 static inline bool cluster_is_free(struct swap_cluster_info *info)
311 {
312 	return info->flags & CLUSTER_FLAG_FREE;
313 }
314 
315 static inline bool cluster_is_null(struct swap_cluster_info *info)
316 {
317 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
318 }
319 
320 static inline void cluster_set_null(struct swap_cluster_info *info)
321 {
322 	info->flags = CLUSTER_FLAG_NEXT_NULL;
323 	info->data = 0;
324 }
325 
326 static inline bool cluster_is_huge(struct swap_cluster_info *info)
327 {
328 	if (IS_ENABLED(CONFIG_THP_SWAP))
329 		return info->flags & CLUSTER_FLAG_HUGE;
330 	return false;
331 }
332 
333 static inline void cluster_clear_huge(struct swap_cluster_info *info)
334 {
335 	info->flags &= ~CLUSTER_FLAG_HUGE;
336 }
337 
338 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
339 						     unsigned long offset)
340 {
341 	struct swap_cluster_info *ci;
342 
343 	ci = si->cluster_info;
344 	if (ci) {
345 		ci += offset / SWAPFILE_CLUSTER;
346 		spin_lock(&ci->lock);
347 	}
348 	return ci;
349 }
350 
351 static inline void unlock_cluster(struct swap_cluster_info *ci)
352 {
353 	if (ci)
354 		spin_unlock(&ci->lock);
355 }
356 
357 /*
358  * Determine the locking method in use for this device.  Return
359  * swap_cluster_info if SSD-style cluster-based locking is in place.
360  */
361 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
362 		struct swap_info_struct *si, unsigned long offset)
363 {
364 	struct swap_cluster_info *ci;
365 
366 	/* Try to use fine-grained SSD-style locking if available: */
367 	ci = lock_cluster(si, offset);
368 	/* Otherwise, fall back to traditional, coarse locking: */
369 	if (!ci)
370 		spin_lock(&si->lock);
371 
372 	return ci;
373 }
374 
375 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
376 					       struct swap_cluster_info *ci)
377 {
378 	if (ci)
379 		unlock_cluster(ci);
380 	else
381 		spin_unlock(&si->lock);
382 }
383 
384 static inline bool cluster_list_empty(struct swap_cluster_list *list)
385 {
386 	return cluster_is_null(&list->head);
387 }
388 
389 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
390 {
391 	return cluster_next(&list->head);
392 }
393 
394 static void cluster_list_init(struct swap_cluster_list *list)
395 {
396 	cluster_set_null(&list->head);
397 	cluster_set_null(&list->tail);
398 }
399 
400 static void cluster_list_add_tail(struct swap_cluster_list *list,
401 				  struct swap_cluster_info *ci,
402 				  unsigned int idx)
403 {
404 	if (cluster_list_empty(list)) {
405 		cluster_set_next_flag(&list->head, idx, 0);
406 		cluster_set_next_flag(&list->tail, idx, 0);
407 	} else {
408 		struct swap_cluster_info *ci_tail;
409 		unsigned int tail = cluster_next(&list->tail);
410 
411 		/*
412 		 * Nested cluster lock, but both cluster locks are
413 		 * only acquired when we held swap_info_struct->lock
414 		 */
415 		ci_tail = ci + tail;
416 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
417 		cluster_set_next(ci_tail, idx);
418 		spin_unlock(&ci_tail->lock);
419 		cluster_set_next_flag(&list->tail, idx, 0);
420 	}
421 }
422 
423 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
424 					   struct swap_cluster_info *ci)
425 {
426 	unsigned int idx;
427 
428 	idx = cluster_next(&list->head);
429 	if (cluster_next(&list->tail) == idx) {
430 		cluster_set_null(&list->head);
431 		cluster_set_null(&list->tail);
432 	} else
433 		cluster_set_next_flag(&list->head,
434 				      cluster_next(&ci[idx]), 0);
435 
436 	return idx;
437 }
438 
439 /* Add a cluster to discard list and schedule it to do discard */
440 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
441 		unsigned int idx)
442 {
443 	/*
444 	 * If scan_swap_map() can't find a free cluster, it will check
445 	 * si->swap_map directly. To make sure the discarding cluster isn't
446 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
447 	 * will be cleared after discard
448 	 */
449 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
450 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
451 
452 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
453 
454 	schedule_work(&si->discard_work);
455 }
456 
457 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
458 {
459 	struct swap_cluster_info *ci = si->cluster_info;
460 
461 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
462 	cluster_list_add_tail(&si->free_clusters, ci, idx);
463 }
464 
465 /*
466  * Doing discard actually. After a cluster discard is finished, the cluster
467  * will be added to free cluster list. caller should hold si->lock.
468 */
469 static void swap_do_scheduled_discard(struct swap_info_struct *si)
470 {
471 	struct swap_cluster_info *info, *ci;
472 	unsigned int idx;
473 
474 	info = si->cluster_info;
475 
476 	while (!cluster_list_empty(&si->discard_clusters)) {
477 		idx = cluster_list_del_first(&si->discard_clusters, info);
478 		spin_unlock(&si->lock);
479 
480 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
481 				SWAPFILE_CLUSTER);
482 
483 		spin_lock(&si->lock);
484 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
485 		__free_cluster(si, idx);
486 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
487 				0, SWAPFILE_CLUSTER);
488 		unlock_cluster(ci);
489 	}
490 }
491 
492 static void swap_discard_work(struct work_struct *work)
493 {
494 	struct swap_info_struct *si;
495 
496 	si = container_of(work, struct swap_info_struct, discard_work);
497 
498 	spin_lock(&si->lock);
499 	swap_do_scheduled_discard(si);
500 	spin_unlock(&si->lock);
501 }
502 
503 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
504 {
505 	struct swap_cluster_info *ci = si->cluster_info;
506 
507 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
508 	cluster_list_del_first(&si->free_clusters, ci);
509 	cluster_set_count_flag(ci + idx, 0, 0);
510 }
511 
512 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
513 {
514 	struct swap_cluster_info *ci = si->cluster_info + idx;
515 
516 	VM_BUG_ON(cluster_count(ci) != 0);
517 	/*
518 	 * If the swap is discardable, prepare discard the cluster
519 	 * instead of free it immediately. The cluster will be freed
520 	 * after discard.
521 	 */
522 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
523 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
524 		swap_cluster_schedule_discard(si, idx);
525 		return;
526 	}
527 
528 	__free_cluster(si, idx);
529 }
530 
531 /*
532  * The cluster corresponding to page_nr will be used. The cluster will be
533  * removed from free cluster list and its usage counter will be increased.
534  */
535 static void inc_cluster_info_page(struct swap_info_struct *p,
536 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
537 {
538 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
539 
540 	if (!cluster_info)
541 		return;
542 	if (cluster_is_free(&cluster_info[idx]))
543 		alloc_cluster(p, idx);
544 
545 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
546 	cluster_set_count(&cluster_info[idx],
547 		cluster_count(&cluster_info[idx]) + 1);
548 }
549 
550 /*
551  * The cluster corresponding to page_nr decreases one usage. If the usage
552  * counter becomes 0, which means no page in the cluster is in using, we can
553  * optionally discard the cluster and add it to free cluster list.
554  */
555 static void dec_cluster_info_page(struct swap_info_struct *p,
556 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
557 {
558 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559 
560 	if (!cluster_info)
561 		return;
562 
563 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
564 	cluster_set_count(&cluster_info[idx],
565 		cluster_count(&cluster_info[idx]) - 1);
566 
567 	if (cluster_count(&cluster_info[idx]) == 0)
568 		free_cluster(p, idx);
569 }
570 
571 /*
572  * It's possible scan_swap_map() uses a free cluster in the middle of free
573  * cluster list. Avoiding such abuse to avoid list corruption.
574  */
575 static bool
576 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
577 	unsigned long offset)
578 {
579 	struct percpu_cluster *percpu_cluster;
580 	bool conflict;
581 
582 	offset /= SWAPFILE_CLUSTER;
583 	conflict = !cluster_list_empty(&si->free_clusters) &&
584 		offset != cluster_list_first(&si->free_clusters) &&
585 		cluster_is_free(&si->cluster_info[offset]);
586 
587 	if (!conflict)
588 		return false;
589 
590 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
591 	cluster_set_null(&percpu_cluster->index);
592 	return true;
593 }
594 
595 /*
596  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
597  * might involve allocating a new cluster for current CPU too.
598  */
599 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
600 	unsigned long *offset, unsigned long *scan_base)
601 {
602 	struct percpu_cluster *cluster;
603 	struct swap_cluster_info *ci;
604 	unsigned long tmp, max;
605 
606 new_cluster:
607 	cluster = this_cpu_ptr(si->percpu_cluster);
608 	if (cluster_is_null(&cluster->index)) {
609 		if (!cluster_list_empty(&si->free_clusters)) {
610 			cluster->index = si->free_clusters.head;
611 			cluster->next = cluster_next(&cluster->index) *
612 					SWAPFILE_CLUSTER;
613 		} else if (!cluster_list_empty(&si->discard_clusters)) {
614 			/*
615 			 * we don't have free cluster but have some clusters in
616 			 * discarding, do discard now and reclaim them
617 			 */
618 			swap_do_scheduled_discard(si);
619 			*scan_base = *offset = si->cluster_next;
620 			goto new_cluster;
621 		} else
622 			return false;
623 	}
624 
625 	/*
626 	 * Other CPUs can use our cluster if they can't find a free cluster,
627 	 * check if there is still free entry in the cluster
628 	 */
629 	tmp = cluster->next;
630 	max = min_t(unsigned long, si->max,
631 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
632 	if (tmp < max) {
633 		ci = lock_cluster(si, tmp);
634 		while (tmp < max) {
635 			if (!si->swap_map[tmp])
636 				break;
637 			tmp++;
638 		}
639 		unlock_cluster(ci);
640 	}
641 	if (tmp >= max) {
642 		cluster_set_null(&cluster->index);
643 		goto new_cluster;
644 	}
645 	cluster->next = tmp + 1;
646 	*offset = tmp;
647 	*scan_base = tmp;
648 	return true;
649 }
650 
651 static void __del_from_avail_list(struct swap_info_struct *p)
652 {
653 	int nid;
654 
655 	for_each_node(nid)
656 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
657 }
658 
659 static void del_from_avail_list(struct swap_info_struct *p)
660 {
661 	spin_lock(&swap_avail_lock);
662 	__del_from_avail_list(p);
663 	spin_unlock(&swap_avail_lock);
664 }
665 
666 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
667 			     unsigned int nr_entries)
668 {
669 	unsigned int end = offset + nr_entries - 1;
670 
671 	if (offset == si->lowest_bit)
672 		si->lowest_bit += nr_entries;
673 	if (end == si->highest_bit)
674 		si->highest_bit -= nr_entries;
675 	si->inuse_pages += nr_entries;
676 	if (si->inuse_pages == si->pages) {
677 		si->lowest_bit = si->max;
678 		si->highest_bit = 0;
679 		del_from_avail_list(si);
680 	}
681 }
682 
683 static void add_to_avail_list(struct swap_info_struct *p)
684 {
685 	int nid;
686 
687 	spin_lock(&swap_avail_lock);
688 	for_each_node(nid) {
689 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
690 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
691 	}
692 	spin_unlock(&swap_avail_lock);
693 }
694 
695 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
696 			    unsigned int nr_entries)
697 {
698 	unsigned long end = offset + nr_entries - 1;
699 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
700 
701 	if (offset < si->lowest_bit)
702 		si->lowest_bit = offset;
703 	if (end > si->highest_bit) {
704 		bool was_full = !si->highest_bit;
705 
706 		si->highest_bit = end;
707 		if (was_full && (si->flags & SWP_WRITEOK))
708 			add_to_avail_list(si);
709 	}
710 	atomic_long_add(nr_entries, &nr_swap_pages);
711 	si->inuse_pages -= nr_entries;
712 	if (si->flags & SWP_BLKDEV)
713 		swap_slot_free_notify =
714 			si->bdev->bd_disk->fops->swap_slot_free_notify;
715 	else
716 		swap_slot_free_notify = NULL;
717 	while (offset <= end) {
718 		frontswap_invalidate_page(si->type, offset);
719 		if (swap_slot_free_notify)
720 			swap_slot_free_notify(si->bdev, offset);
721 		offset++;
722 	}
723 }
724 
725 static int scan_swap_map_slots(struct swap_info_struct *si,
726 			       unsigned char usage, int nr,
727 			       swp_entry_t slots[])
728 {
729 	struct swap_cluster_info *ci;
730 	unsigned long offset;
731 	unsigned long scan_base;
732 	unsigned long last_in_cluster = 0;
733 	int latency_ration = LATENCY_LIMIT;
734 	int n_ret = 0;
735 	bool scanned_many = false;
736 
737 	/*
738 	 * We try to cluster swap pages by allocating them sequentially
739 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
740 	 * way, however, we resort to first-free allocation, starting
741 	 * a new cluster.  This prevents us from scattering swap pages
742 	 * all over the entire swap partition, so that we reduce
743 	 * overall disk seek times between swap pages.  -- sct
744 	 * But we do now try to find an empty cluster.  -Andrea
745 	 * And we let swap pages go all over an SSD partition.  Hugh
746 	 */
747 
748 	si->flags += SWP_SCANNING;
749 	scan_base = offset = si->cluster_next;
750 
751 	/* SSD algorithm */
752 	if (si->cluster_info) {
753 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
754 			goto scan;
755 	} else if (unlikely(!si->cluster_nr--)) {
756 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
757 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
758 			goto checks;
759 		}
760 
761 		spin_unlock(&si->lock);
762 
763 		/*
764 		 * If seek is expensive, start searching for new cluster from
765 		 * start of partition, to minimize the span of allocated swap.
766 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
767 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
768 		 */
769 		scan_base = offset = si->lowest_bit;
770 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
771 
772 		/* Locate the first empty (unaligned) cluster */
773 		for (; last_in_cluster <= si->highest_bit; offset++) {
774 			if (si->swap_map[offset])
775 				last_in_cluster = offset + SWAPFILE_CLUSTER;
776 			else if (offset == last_in_cluster) {
777 				spin_lock(&si->lock);
778 				offset -= SWAPFILE_CLUSTER - 1;
779 				si->cluster_next = offset;
780 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
781 				goto checks;
782 			}
783 			if (unlikely(--latency_ration < 0)) {
784 				cond_resched();
785 				latency_ration = LATENCY_LIMIT;
786 			}
787 		}
788 
789 		offset = scan_base;
790 		spin_lock(&si->lock);
791 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
792 	}
793 
794 checks:
795 	if (si->cluster_info) {
796 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
797 		/* take a break if we already got some slots */
798 			if (n_ret)
799 				goto done;
800 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
801 							&scan_base))
802 				goto scan;
803 		}
804 	}
805 	if (!(si->flags & SWP_WRITEOK))
806 		goto no_page;
807 	if (!si->highest_bit)
808 		goto no_page;
809 	if (offset > si->highest_bit)
810 		scan_base = offset = si->lowest_bit;
811 
812 	ci = lock_cluster(si, offset);
813 	/* reuse swap entry of cache-only swap if not busy. */
814 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
815 		int swap_was_freed;
816 		unlock_cluster(ci);
817 		spin_unlock(&si->lock);
818 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
819 		spin_lock(&si->lock);
820 		/* entry was freed successfully, try to use this again */
821 		if (swap_was_freed)
822 			goto checks;
823 		goto scan; /* check next one */
824 	}
825 
826 	if (si->swap_map[offset]) {
827 		unlock_cluster(ci);
828 		if (!n_ret)
829 			goto scan;
830 		else
831 			goto done;
832 	}
833 	si->swap_map[offset] = usage;
834 	inc_cluster_info_page(si, si->cluster_info, offset);
835 	unlock_cluster(ci);
836 
837 	swap_range_alloc(si, offset, 1);
838 	si->cluster_next = offset + 1;
839 	slots[n_ret++] = swp_entry(si->type, offset);
840 
841 	/* got enough slots or reach max slots? */
842 	if ((n_ret == nr) || (offset >= si->highest_bit))
843 		goto done;
844 
845 	/* search for next available slot */
846 
847 	/* time to take a break? */
848 	if (unlikely(--latency_ration < 0)) {
849 		if (n_ret)
850 			goto done;
851 		spin_unlock(&si->lock);
852 		cond_resched();
853 		spin_lock(&si->lock);
854 		latency_ration = LATENCY_LIMIT;
855 	}
856 
857 	/* try to get more slots in cluster */
858 	if (si->cluster_info) {
859 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
860 			goto checks;
861 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
862 		/* non-ssd case, still more slots in cluster? */
863 		--si->cluster_nr;
864 		goto checks;
865 	}
866 
867 	/*
868 	 * Even if there's no free clusters available (fragmented),
869 	 * try to scan a little more quickly with lock held unless we
870 	 * have scanned too many slots already.
871 	 */
872 	if (!scanned_many) {
873 		unsigned long scan_limit;
874 
875 		if (offset < scan_base)
876 			scan_limit = scan_base;
877 		else
878 			scan_limit = si->highest_bit;
879 		for (; offset <= scan_limit && --latency_ration > 0;
880 		     offset++) {
881 			if (!si->swap_map[offset])
882 				goto checks;
883 		}
884 	}
885 
886 done:
887 	si->flags -= SWP_SCANNING;
888 	return n_ret;
889 
890 scan:
891 	spin_unlock(&si->lock);
892 	while (++offset <= si->highest_bit) {
893 		if (!si->swap_map[offset]) {
894 			spin_lock(&si->lock);
895 			goto checks;
896 		}
897 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
898 			spin_lock(&si->lock);
899 			goto checks;
900 		}
901 		if (unlikely(--latency_ration < 0)) {
902 			cond_resched();
903 			latency_ration = LATENCY_LIMIT;
904 			scanned_many = true;
905 		}
906 	}
907 	offset = si->lowest_bit;
908 	while (offset < scan_base) {
909 		if (!si->swap_map[offset]) {
910 			spin_lock(&si->lock);
911 			goto checks;
912 		}
913 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
914 			spin_lock(&si->lock);
915 			goto checks;
916 		}
917 		if (unlikely(--latency_ration < 0)) {
918 			cond_resched();
919 			latency_ration = LATENCY_LIMIT;
920 			scanned_many = true;
921 		}
922 		offset++;
923 	}
924 	spin_lock(&si->lock);
925 
926 no_page:
927 	si->flags -= SWP_SCANNING;
928 	return n_ret;
929 }
930 
931 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
932 {
933 	unsigned long idx;
934 	struct swap_cluster_info *ci;
935 	unsigned long offset, i;
936 	unsigned char *map;
937 
938 	/*
939 	 * Should not even be attempting cluster allocations when huge
940 	 * page swap is disabled.  Warn and fail the allocation.
941 	 */
942 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
943 		VM_WARN_ON_ONCE(1);
944 		return 0;
945 	}
946 
947 	if (cluster_list_empty(&si->free_clusters))
948 		return 0;
949 
950 	idx = cluster_list_first(&si->free_clusters);
951 	offset = idx * SWAPFILE_CLUSTER;
952 	ci = lock_cluster(si, offset);
953 	alloc_cluster(si, idx);
954 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
955 
956 	map = si->swap_map + offset;
957 	for (i = 0; i < SWAPFILE_CLUSTER; i++)
958 		map[i] = SWAP_HAS_CACHE;
959 	unlock_cluster(ci);
960 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
961 	*slot = swp_entry(si->type, offset);
962 
963 	return 1;
964 }
965 
966 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
967 {
968 	unsigned long offset = idx * SWAPFILE_CLUSTER;
969 	struct swap_cluster_info *ci;
970 
971 	ci = lock_cluster(si, offset);
972 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
973 	cluster_set_count_flag(ci, 0, 0);
974 	free_cluster(si, idx);
975 	unlock_cluster(ci);
976 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
977 }
978 
979 static unsigned long scan_swap_map(struct swap_info_struct *si,
980 				   unsigned char usage)
981 {
982 	swp_entry_t entry;
983 	int n_ret;
984 
985 	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
986 
987 	if (n_ret)
988 		return swp_offset(entry);
989 	else
990 		return 0;
991 
992 }
993 
994 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
995 {
996 	unsigned long size = swap_entry_size(entry_size);
997 	struct swap_info_struct *si, *next;
998 	long avail_pgs;
999 	int n_ret = 0;
1000 	int node;
1001 
1002 	/* Only single cluster request supported */
1003 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1004 
1005 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1006 	if (avail_pgs <= 0)
1007 		goto noswap;
1008 
1009 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1010 
1011 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1012 
1013 	spin_lock(&swap_avail_lock);
1014 
1015 start_over:
1016 	node = numa_node_id();
1017 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1018 		/* requeue si to after same-priority siblings */
1019 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1020 		spin_unlock(&swap_avail_lock);
1021 		spin_lock(&si->lock);
1022 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1023 			spin_lock(&swap_avail_lock);
1024 			if (plist_node_empty(&si->avail_lists[node])) {
1025 				spin_unlock(&si->lock);
1026 				goto nextsi;
1027 			}
1028 			WARN(!si->highest_bit,
1029 			     "swap_info %d in list but !highest_bit\n",
1030 			     si->type);
1031 			WARN(!(si->flags & SWP_WRITEOK),
1032 			     "swap_info %d in list but !SWP_WRITEOK\n",
1033 			     si->type);
1034 			__del_from_avail_list(si);
1035 			spin_unlock(&si->lock);
1036 			goto nextsi;
1037 		}
1038 		if (size == SWAPFILE_CLUSTER) {
1039 			if (!(si->flags & SWP_FS))
1040 				n_ret = swap_alloc_cluster(si, swp_entries);
1041 		} else
1042 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1043 						    n_goal, swp_entries);
1044 		spin_unlock(&si->lock);
1045 		if (n_ret || size == SWAPFILE_CLUSTER)
1046 			goto check_out;
1047 		pr_debug("scan_swap_map of si %d failed to find offset\n",
1048 			si->type);
1049 
1050 		spin_lock(&swap_avail_lock);
1051 nextsi:
1052 		/*
1053 		 * if we got here, it's likely that si was almost full before,
1054 		 * and since scan_swap_map() can drop the si->lock, multiple
1055 		 * callers probably all tried to get a page from the same si
1056 		 * and it filled up before we could get one; or, the si filled
1057 		 * up between us dropping swap_avail_lock and taking si->lock.
1058 		 * Since we dropped the swap_avail_lock, the swap_avail_head
1059 		 * list may have been modified; so if next is still in the
1060 		 * swap_avail_head list then try it, otherwise start over
1061 		 * if we have not gotten any slots.
1062 		 */
1063 		if (plist_node_empty(&next->avail_lists[node]))
1064 			goto start_over;
1065 	}
1066 
1067 	spin_unlock(&swap_avail_lock);
1068 
1069 check_out:
1070 	if (n_ret < n_goal)
1071 		atomic_long_add((long)(n_goal - n_ret) * size,
1072 				&nr_swap_pages);
1073 noswap:
1074 	return n_ret;
1075 }
1076 
1077 /* The only caller of this function is now suspend routine */
1078 swp_entry_t get_swap_page_of_type(int type)
1079 {
1080 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1081 	pgoff_t offset;
1082 
1083 	if (!si)
1084 		goto fail;
1085 
1086 	spin_lock(&si->lock);
1087 	if (si->flags & SWP_WRITEOK) {
1088 		atomic_long_dec(&nr_swap_pages);
1089 		/* This is called for allocating swap entry, not cache */
1090 		offset = scan_swap_map(si, 1);
1091 		if (offset) {
1092 			spin_unlock(&si->lock);
1093 			return swp_entry(type, offset);
1094 		}
1095 		atomic_long_inc(&nr_swap_pages);
1096 	}
1097 	spin_unlock(&si->lock);
1098 fail:
1099 	return (swp_entry_t) {0};
1100 }
1101 
1102 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1103 {
1104 	struct swap_info_struct *p;
1105 	unsigned long offset;
1106 
1107 	if (!entry.val)
1108 		goto out;
1109 	p = swp_swap_info(entry);
1110 	if (!p)
1111 		goto bad_nofile;
1112 	if (!(p->flags & SWP_USED))
1113 		goto bad_device;
1114 	offset = swp_offset(entry);
1115 	if (offset >= p->max)
1116 		goto bad_offset;
1117 	return p;
1118 
1119 bad_offset:
1120 	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1121 	goto out;
1122 bad_device:
1123 	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1124 	goto out;
1125 bad_nofile:
1126 	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1127 out:
1128 	return NULL;
1129 }
1130 
1131 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1132 {
1133 	struct swap_info_struct *p;
1134 
1135 	p = __swap_info_get(entry);
1136 	if (!p)
1137 		goto out;
1138 	if (!p->swap_map[swp_offset(entry)])
1139 		goto bad_free;
1140 	return p;
1141 
1142 bad_free:
1143 	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1144 	goto out;
1145 out:
1146 	return NULL;
1147 }
1148 
1149 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1150 {
1151 	struct swap_info_struct *p;
1152 
1153 	p = _swap_info_get(entry);
1154 	if (p)
1155 		spin_lock(&p->lock);
1156 	return p;
1157 }
1158 
1159 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1160 					struct swap_info_struct *q)
1161 {
1162 	struct swap_info_struct *p;
1163 
1164 	p = _swap_info_get(entry);
1165 
1166 	if (p != q) {
1167 		if (q != NULL)
1168 			spin_unlock(&q->lock);
1169 		if (p != NULL)
1170 			spin_lock(&p->lock);
1171 	}
1172 	return p;
1173 }
1174 
1175 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1176 					      unsigned long offset,
1177 					      unsigned char usage)
1178 {
1179 	unsigned char count;
1180 	unsigned char has_cache;
1181 
1182 	count = p->swap_map[offset];
1183 
1184 	has_cache = count & SWAP_HAS_CACHE;
1185 	count &= ~SWAP_HAS_CACHE;
1186 
1187 	if (usage == SWAP_HAS_CACHE) {
1188 		VM_BUG_ON(!has_cache);
1189 		has_cache = 0;
1190 	} else if (count == SWAP_MAP_SHMEM) {
1191 		/*
1192 		 * Or we could insist on shmem.c using a special
1193 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1194 		 */
1195 		count = 0;
1196 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1197 		if (count == COUNT_CONTINUED) {
1198 			if (swap_count_continued(p, offset, count))
1199 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1200 			else
1201 				count = SWAP_MAP_MAX;
1202 		} else
1203 			count--;
1204 	}
1205 
1206 	usage = count | has_cache;
1207 	p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1208 
1209 	return usage;
1210 }
1211 
1212 /*
1213  * Check whether swap entry is valid in the swap device.  If so,
1214  * return pointer to swap_info_struct, and keep the swap entry valid
1215  * via preventing the swap device from being swapoff, until
1216  * put_swap_device() is called.  Otherwise return NULL.
1217  *
1218  * The entirety of the RCU read critical section must come before the
1219  * return from or after the call to synchronize_rcu() in
1220  * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1221  * true, the si->map, si->cluster_info, etc. must be valid in the
1222  * critical section.
1223  *
1224  * Notice that swapoff or swapoff+swapon can still happen before the
1225  * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1226  * in put_swap_device() if there isn't any other way to prevent
1227  * swapoff, such as page lock, page table lock, etc.  The caller must
1228  * be prepared for that.  For example, the following situation is
1229  * possible.
1230  *
1231  *   CPU1				CPU2
1232  *   do_swap_page()
1233  *     ...				swapoff+swapon
1234  *     __read_swap_cache_async()
1235  *       swapcache_prepare()
1236  *         __swap_duplicate()
1237  *           // check swap_map
1238  *     // verify PTE not changed
1239  *
1240  * In __swap_duplicate(), the swap_map need to be checked before
1241  * changing partly because the specified swap entry may be for another
1242  * swap device which has been swapoff.  And in do_swap_page(), after
1243  * the page is read from the swap device, the PTE is verified not
1244  * changed with the page table locked to check whether the swap device
1245  * has been swapoff or swapoff+swapon.
1246  */
1247 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1248 {
1249 	struct swap_info_struct *si;
1250 	unsigned long offset;
1251 
1252 	if (!entry.val)
1253 		goto out;
1254 	si = swp_swap_info(entry);
1255 	if (!si)
1256 		goto bad_nofile;
1257 
1258 	rcu_read_lock();
1259 	if (!(si->flags & SWP_VALID))
1260 		goto unlock_out;
1261 	offset = swp_offset(entry);
1262 	if (offset >= si->max)
1263 		goto unlock_out;
1264 
1265 	return si;
1266 bad_nofile:
1267 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1268 out:
1269 	return NULL;
1270 unlock_out:
1271 	rcu_read_unlock();
1272 	return NULL;
1273 }
1274 
1275 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1276 				       swp_entry_t entry)
1277 {
1278 	struct swap_cluster_info *ci;
1279 	unsigned long offset = swp_offset(entry);
1280 	unsigned char usage;
1281 
1282 	ci = lock_cluster_or_swap_info(p, offset);
1283 	usage = __swap_entry_free_locked(p, offset, 1);
1284 	unlock_cluster_or_swap_info(p, ci);
1285 	if (!usage)
1286 		free_swap_slot(entry);
1287 
1288 	return usage;
1289 }
1290 
1291 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1292 {
1293 	struct swap_cluster_info *ci;
1294 	unsigned long offset = swp_offset(entry);
1295 	unsigned char count;
1296 
1297 	ci = lock_cluster(p, offset);
1298 	count = p->swap_map[offset];
1299 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1300 	p->swap_map[offset] = 0;
1301 	dec_cluster_info_page(p, p->cluster_info, offset);
1302 	unlock_cluster(ci);
1303 
1304 	mem_cgroup_uncharge_swap(entry, 1);
1305 	swap_range_free(p, offset, 1);
1306 }
1307 
1308 /*
1309  * Caller has made sure that the swap device corresponding to entry
1310  * is still around or has not been recycled.
1311  */
1312 void swap_free(swp_entry_t entry)
1313 {
1314 	struct swap_info_struct *p;
1315 
1316 	p = _swap_info_get(entry);
1317 	if (p)
1318 		__swap_entry_free(p, entry);
1319 }
1320 
1321 /*
1322  * Called after dropping swapcache to decrease refcnt to swap entries.
1323  */
1324 void put_swap_page(struct page *page, swp_entry_t entry)
1325 {
1326 	unsigned long offset = swp_offset(entry);
1327 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1328 	struct swap_cluster_info *ci;
1329 	struct swap_info_struct *si;
1330 	unsigned char *map;
1331 	unsigned int i, free_entries = 0;
1332 	unsigned char val;
1333 	int size = swap_entry_size(hpage_nr_pages(page));
1334 
1335 	si = _swap_info_get(entry);
1336 	if (!si)
1337 		return;
1338 
1339 	ci = lock_cluster_or_swap_info(si, offset);
1340 	if (size == SWAPFILE_CLUSTER) {
1341 		VM_BUG_ON(!cluster_is_huge(ci));
1342 		map = si->swap_map + offset;
1343 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1344 			val = map[i];
1345 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1346 			if (val == SWAP_HAS_CACHE)
1347 				free_entries++;
1348 		}
1349 		cluster_clear_huge(ci);
1350 		if (free_entries == SWAPFILE_CLUSTER) {
1351 			unlock_cluster_or_swap_info(si, ci);
1352 			spin_lock(&si->lock);
1353 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1354 			swap_free_cluster(si, idx);
1355 			spin_unlock(&si->lock);
1356 			return;
1357 		}
1358 	}
1359 	for (i = 0; i < size; i++, entry.val++) {
1360 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1361 			unlock_cluster_or_swap_info(si, ci);
1362 			free_swap_slot(entry);
1363 			if (i == size - 1)
1364 				return;
1365 			lock_cluster_or_swap_info(si, offset);
1366 		}
1367 	}
1368 	unlock_cluster_or_swap_info(si, ci);
1369 }
1370 
1371 #ifdef CONFIG_THP_SWAP
1372 int split_swap_cluster(swp_entry_t entry)
1373 {
1374 	struct swap_info_struct *si;
1375 	struct swap_cluster_info *ci;
1376 	unsigned long offset = swp_offset(entry);
1377 
1378 	si = _swap_info_get(entry);
1379 	if (!si)
1380 		return -EBUSY;
1381 	ci = lock_cluster(si, offset);
1382 	cluster_clear_huge(ci);
1383 	unlock_cluster(ci);
1384 	return 0;
1385 }
1386 #endif
1387 
1388 static int swp_entry_cmp(const void *ent1, const void *ent2)
1389 {
1390 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1391 
1392 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1393 }
1394 
1395 void swapcache_free_entries(swp_entry_t *entries, int n)
1396 {
1397 	struct swap_info_struct *p, *prev;
1398 	int i;
1399 
1400 	if (n <= 0)
1401 		return;
1402 
1403 	prev = NULL;
1404 	p = NULL;
1405 
1406 	/*
1407 	 * Sort swap entries by swap device, so each lock is only taken once.
1408 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1409 	 * so low that it isn't necessary to optimize further.
1410 	 */
1411 	if (nr_swapfiles > 1)
1412 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1413 	for (i = 0; i < n; ++i) {
1414 		p = swap_info_get_cont(entries[i], prev);
1415 		if (p)
1416 			swap_entry_free(p, entries[i]);
1417 		prev = p;
1418 	}
1419 	if (p)
1420 		spin_unlock(&p->lock);
1421 }
1422 
1423 /*
1424  * How many references to page are currently swapped out?
1425  * This does not give an exact answer when swap count is continued,
1426  * but does include the high COUNT_CONTINUED flag to allow for that.
1427  */
1428 int page_swapcount(struct page *page)
1429 {
1430 	int count = 0;
1431 	struct swap_info_struct *p;
1432 	struct swap_cluster_info *ci;
1433 	swp_entry_t entry;
1434 	unsigned long offset;
1435 
1436 	entry.val = page_private(page);
1437 	p = _swap_info_get(entry);
1438 	if (p) {
1439 		offset = swp_offset(entry);
1440 		ci = lock_cluster_or_swap_info(p, offset);
1441 		count = swap_count(p->swap_map[offset]);
1442 		unlock_cluster_or_swap_info(p, ci);
1443 	}
1444 	return count;
1445 }
1446 
1447 int __swap_count(swp_entry_t entry)
1448 {
1449 	struct swap_info_struct *si;
1450 	pgoff_t offset = swp_offset(entry);
1451 	int count = 0;
1452 
1453 	si = get_swap_device(entry);
1454 	if (si) {
1455 		count = swap_count(si->swap_map[offset]);
1456 		put_swap_device(si);
1457 	}
1458 	return count;
1459 }
1460 
1461 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1462 {
1463 	int count = 0;
1464 	pgoff_t offset = swp_offset(entry);
1465 	struct swap_cluster_info *ci;
1466 
1467 	ci = lock_cluster_or_swap_info(si, offset);
1468 	count = swap_count(si->swap_map[offset]);
1469 	unlock_cluster_or_swap_info(si, ci);
1470 	return count;
1471 }
1472 
1473 /*
1474  * How many references to @entry are currently swapped out?
1475  * This does not give an exact answer when swap count is continued,
1476  * but does include the high COUNT_CONTINUED flag to allow for that.
1477  */
1478 int __swp_swapcount(swp_entry_t entry)
1479 {
1480 	int count = 0;
1481 	struct swap_info_struct *si;
1482 
1483 	si = get_swap_device(entry);
1484 	if (si) {
1485 		count = swap_swapcount(si, entry);
1486 		put_swap_device(si);
1487 	}
1488 	return count;
1489 }
1490 
1491 /*
1492  * How many references to @entry are currently swapped out?
1493  * This considers COUNT_CONTINUED so it returns exact answer.
1494  */
1495 int swp_swapcount(swp_entry_t entry)
1496 {
1497 	int count, tmp_count, n;
1498 	struct swap_info_struct *p;
1499 	struct swap_cluster_info *ci;
1500 	struct page *page;
1501 	pgoff_t offset;
1502 	unsigned char *map;
1503 
1504 	p = _swap_info_get(entry);
1505 	if (!p)
1506 		return 0;
1507 
1508 	offset = swp_offset(entry);
1509 
1510 	ci = lock_cluster_or_swap_info(p, offset);
1511 
1512 	count = swap_count(p->swap_map[offset]);
1513 	if (!(count & COUNT_CONTINUED))
1514 		goto out;
1515 
1516 	count &= ~COUNT_CONTINUED;
1517 	n = SWAP_MAP_MAX + 1;
1518 
1519 	page = vmalloc_to_page(p->swap_map + offset);
1520 	offset &= ~PAGE_MASK;
1521 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1522 
1523 	do {
1524 		page = list_next_entry(page, lru);
1525 		map = kmap_atomic(page);
1526 		tmp_count = map[offset];
1527 		kunmap_atomic(map);
1528 
1529 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1530 		n *= (SWAP_CONT_MAX + 1);
1531 	} while (tmp_count & COUNT_CONTINUED);
1532 out:
1533 	unlock_cluster_or_swap_info(p, ci);
1534 	return count;
1535 }
1536 
1537 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1538 					 swp_entry_t entry)
1539 {
1540 	struct swap_cluster_info *ci;
1541 	unsigned char *map = si->swap_map;
1542 	unsigned long roffset = swp_offset(entry);
1543 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1544 	int i;
1545 	bool ret = false;
1546 
1547 	ci = lock_cluster_or_swap_info(si, offset);
1548 	if (!ci || !cluster_is_huge(ci)) {
1549 		if (swap_count(map[roffset]))
1550 			ret = true;
1551 		goto unlock_out;
1552 	}
1553 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1554 		if (swap_count(map[offset + i])) {
1555 			ret = true;
1556 			break;
1557 		}
1558 	}
1559 unlock_out:
1560 	unlock_cluster_or_swap_info(si, ci);
1561 	return ret;
1562 }
1563 
1564 static bool page_swapped(struct page *page)
1565 {
1566 	swp_entry_t entry;
1567 	struct swap_info_struct *si;
1568 
1569 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1570 		return page_swapcount(page) != 0;
1571 
1572 	page = compound_head(page);
1573 	entry.val = page_private(page);
1574 	si = _swap_info_get(entry);
1575 	if (si)
1576 		return swap_page_trans_huge_swapped(si, entry);
1577 	return false;
1578 }
1579 
1580 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1581 					 int *total_swapcount)
1582 {
1583 	int i, map_swapcount, _total_mapcount, _total_swapcount;
1584 	unsigned long offset = 0;
1585 	struct swap_info_struct *si;
1586 	struct swap_cluster_info *ci = NULL;
1587 	unsigned char *map = NULL;
1588 	int mapcount, swapcount = 0;
1589 
1590 	/* hugetlbfs shouldn't call it */
1591 	VM_BUG_ON_PAGE(PageHuge(page), page);
1592 
1593 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1594 		mapcount = page_trans_huge_mapcount(page, total_mapcount);
1595 		if (PageSwapCache(page))
1596 			swapcount = page_swapcount(page);
1597 		if (total_swapcount)
1598 			*total_swapcount = swapcount;
1599 		return mapcount + swapcount;
1600 	}
1601 
1602 	page = compound_head(page);
1603 
1604 	_total_mapcount = _total_swapcount = map_swapcount = 0;
1605 	if (PageSwapCache(page)) {
1606 		swp_entry_t entry;
1607 
1608 		entry.val = page_private(page);
1609 		si = _swap_info_get(entry);
1610 		if (si) {
1611 			map = si->swap_map;
1612 			offset = swp_offset(entry);
1613 		}
1614 	}
1615 	if (map)
1616 		ci = lock_cluster(si, offset);
1617 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1618 		mapcount = atomic_read(&page[i]._mapcount) + 1;
1619 		_total_mapcount += mapcount;
1620 		if (map) {
1621 			swapcount = swap_count(map[offset + i]);
1622 			_total_swapcount += swapcount;
1623 		}
1624 		map_swapcount = max(map_swapcount, mapcount + swapcount);
1625 	}
1626 	unlock_cluster(ci);
1627 	if (PageDoubleMap(page)) {
1628 		map_swapcount -= 1;
1629 		_total_mapcount -= HPAGE_PMD_NR;
1630 	}
1631 	mapcount = compound_mapcount(page);
1632 	map_swapcount += mapcount;
1633 	_total_mapcount += mapcount;
1634 	if (total_mapcount)
1635 		*total_mapcount = _total_mapcount;
1636 	if (total_swapcount)
1637 		*total_swapcount = _total_swapcount;
1638 
1639 	return map_swapcount;
1640 }
1641 
1642 /*
1643  * We can write to an anon page without COW if there are no other references
1644  * to it.  And as a side-effect, free up its swap: because the old content
1645  * on disk will never be read, and seeking back there to write new content
1646  * later would only waste time away from clustering.
1647  *
1648  * NOTE: total_map_swapcount should not be relied upon by the caller if
1649  * reuse_swap_page() returns false, but it may be always overwritten
1650  * (see the other implementation for CONFIG_SWAP=n).
1651  */
1652 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1653 {
1654 	int count, total_mapcount, total_swapcount;
1655 
1656 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1657 	if (unlikely(PageKsm(page)))
1658 		return false;
1659 	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1660 					      &total_swapcount);
1661 	if (total_map_swapcount)
1662 		*total_map_swapcount = total_mapcount + total_swapcount;
1663 	if (count == 1 && PageSwapCache(page) &&
1664 	    (likely(!PageTransCompound(page)) ||
1665 	     /* The remaining swap count will be freed soon */
1666 	     total_swapcount == page_swapcount(page))) {
1667 		if (!PageWriteback(page)) {
1668 			page = compound_head(page);
1669 			delete_from_swap_cache(page);
1670 			SetPageDirty(page);
1671 		} else {
1672 			swp_entry_t entry;
1673 			struct swap_info_struct *p;
1674 
1675 			entry.val = page_private(page);
1676 			p = swap_info_get(entry);
1677 			if (p->flags & SWP_STABLE_WRITES) {
1678 				spin_unlock(&p->lock);
1679 				return false;
1680 			}
1681 			spin_unlock(&p->lock);
1682 		}
1683 	}
1684 
1685 	return count <= 1;
1686 }
1687 
1688 /*
1689  * If swap is getting full, or if there are no more mappings of this page,
1690  * then try_to_free_swap is called to free its swap space.
1691  */
1692 int try_to_free_swap(struct page *page)
1693 {
1694 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1695 
1696 	if (!PageSwapCache(page))
1697 		return 0;
1698 	if (PageWriteback(page))
1699 		return 0;
1700 	if (page_swapped(page))
1701 		return 0;
1702 
1703 	/*
1704 	 * Once hibernation has begun to create its image of memory,
1705 	 * there's a danger that one of the calls to try_to_free_swap()
1706 	 * - most probably a call from __try_to_reclaim_swap() while
1707 	 * hibernation is allocating its own swap pages for the image,
1708 	 * but conceivably even a call from memory reclaim - will free
1709 	 * the swap from a page which has already been recorded in the
1710 	 * image as a clean swapcache page, and then reuse its swap for
1711 	 * another page of the image.  On waking from hibernation, the
1712 	 * original page might be freed under memory pressure, then
1713 	 * later read back in from swap, now with the wrong data.
1714 	 *
1715 	 * Hibernation suspends storage while it is writing the image
1716 	 * to disk so check that here.
1717 	 */
1718 	if (pm_suspended_storage())
1719 		return 0;
1720 
1721 	page = compound_head(page);
1722 	delete_from_swap_cache(page);
1723 	SetPageDirty(page);
1724 	return 1;
1725 }
1726 
1727 /*
1728  * Free the swap entry like above, but also try to
1729  * free the page cache entry if it is the last user.
1730  */
1731 int free_swap_and_cache(swp_entry_t entry)
1732 {
1733 	struct swap_info_struct *p;
1734 	unsigned char count;
1735 
1736 	if (non_swap_entry(entry))
1737 		return 1;
1738 
1739 	p = _swap_info_get(entry);
1740 	if (p) {
1741 		count = __swap_entry_free(p, entry);
1742 		if (count == SWAP_HAS_CACHE &&
1743 		    !swap_page_trans_huge_swapped(p, entry))
1744 			__try_to_reclaim_swap(p, swp_offset(entry),
1745 					      TTRS_UNMAPPED | TTRS_FULL);
1746 	}
1747 	return p != NULL;
1748 }
1749 
1750 #ifdef CONFIG_HIBERNATION
1751 /*
1752  * Find the swap type that corresponds to given device (if any).
1753  *
1754  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1755  * from 0, in which the swap header is expected to be located.
1756  *
1757  * This is needed for the suspend to disk (aka swsusp).
1758  */
1759 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1760 {
1761 	struct block_device *bdev = NULL;
1762 	int type;
1763 
1764 	if (device)
1765 		bdev = bdget(device);
1766 
1767 	spin_lock(&swap_lock);
1768 	for (type = 0; type < nr_swapfiles; type++) {
1769 		struct swap_info_struct *sis = swap_info[type];
1770 
1771 		if (!(sis->flags & SWP_WRITEOK))
1772 			continue;
1773 
1774 		if (!bdev) {
1775 			if (bdev_p)
1776 				*bdev_p = bdgrab(sis->bdev);
1777 
1778 			spin_unlock(&swap_lock);
1779 			return type;
1780 		}
1781 		if (bdev == sis->bdev) {
1782 			struct swap_extent *se = first_se(sis);
1783 
1784 			if (se->start_block == offset) {
1785 				if (bdev_p)
1786 					*bdev_p = bdgrab(sis->bdev);
1787 
1788 				spin_unlock(&swap_lock);
1789 				bdput(bdev);
1790 				return type;
1791 			}
1792 		}
1793 	}
1794 	spin_unlock(&swap_lock);
1795 	if (bdev)
1796 		bdput(bdev);
1797 
1798 	return -ENODEV;
1799 }
1800 
1801 /*
1802  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1803  * corresponding to given index in swap_info (swap type).
1804  */
1805 sector_t swapdev_block(int type, pgoff_t offset)
1806 {
1807 	struct block_device *bdev;
1808 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1809 
1810 	if (!si || !(si->flags & SWP_WRITEOK))
1811 		return 0;
1812 	return map_swap_entry(swp_entry(type, offset), &bdev);
1813 }
1814 
1815 /*
1816  * Return either the total number of swap pages of given type, or the number
1817  * of free pages of that type (depending on @free)
1818  *
1819  * This is needed for software suspend
1820  */
1821 unsigned int count_swap_pages(int type, int free)
1822 {
1823 	unsigned int n = 0;
1824 
1825 	spin_lock(&swap_lock);
1826 	if ((unsigned int)type < nr_swapfiles) {
1827 		struct swap_info_struct *sis = swap_info[type];
1828 
1829 		spin_lock(&sis->lock);
1830 		if (sis->flags & SWP_WRITEOK) {
1831 			n = sis->pages;
1832 			if (free)
1833 				n -= sis->inuse_pages;
1834 		}
1835 		spin_unlock(&sis->lock);
1836 	}
1837 	spin_unlock(&swap_lock);
1838 	return n;
1839 }
1840 #endif /* CONFIG_HIBERNATION */
1841 
1842 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1843 {
1844 	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1845 }
1846 
1847 /*
1848  * No need to decide whether this PTE shares the swap entry with others,
1849  * just let do_wp_page work it out if a write is requested later - to
1850  * force COW, vm_page_prot omits write permission from any private vma.
1851  */
1852 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1853 		unsigned long addr, swp_entry_t entry, struct page *page)
1854 {
1855 	struct page *swapcache;
1856 	struct mem_cgroup *memcg;
1857 	spinlock_t *ptl;
1858 	pte_t *pte;
1859 	int ret = 1;
1860 
1861 	swapcache = page;
1862 	page = ksm_might_need_to_copy(page, vma, addr);
1863 	if (unlikely(!page))
1864 		return -ENOMEM;
1865 
1866 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1867 				&memcg, false)) {
1868 		ret = -ENOMEM;
1869 		goto out_nolock;
1870 	}
1871 
1872 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1873 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1874 		mem_cgroup_cancel_charge(page, memcg, false);
1875 		ret = 0;
1876 		goto out;
1877 	}
1878 
1879 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1880 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1881 	get_page(page);
1882 	set_pte_at(vma->vm_mm, addr, pte,
1883 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1884 	if (page == swapcache) {
1885 		page_add_anon_rmap(page, vma, addr, false);
1886 		mem_cgroup_commit_charge(page, memcg, true, false);
1887 	} else { /* ksm created a completely new copy */
1888 		page_add_new_anon_rmap(page, vma, addr, false);
1889 		mem_cgroup_commit_charge(page, memcg, false, false);
1890 		lru_cache_add_active_or_unevictable(page, vma);
1891 	}
1892 	swap_free(entry);
1893 	/*
1894 	 * Move the page to the active list so it is not
1895 	 * immediately swapped out again after swapon.
1896 	 */
1897 	activate_page(page);
1898 out:
1899 	pte_unmap_unlock(pte, ptl);
1900 out_nolock:
1901 	if (page != swapcache) {
1902 		unlock_page(page);
1903 		put_page(page);
1904 	}
1905 	return ret;
1906 }
1907 
1908 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1909 			unsigned long addr, unsigned long end,
1910 			unsigned int type, bool frontswap,
1911 			unsigned long *fs_pages_to_unuse)
1912 {
1913 	struct page *page;
1914 	swp_entry_t entry;
1915 	pte_t *pte;
1916 	struct swap_info_struct *si;
1917 	unsigned long offset;
1918 	int ret = 0;
1919 	volatile unsigned char *swap_map;
1920 
1921 	si = swap_info[type];
1922 	pte = pte_offset_map(pmd, addr);
1923 	do {
1924 		struct vm_fault vmf;
1925 
1926 		if (!is_swap_pte(*pte))
1927 			continue;
1928 
1929 		entry = pte_to_swp_entry(*pte);
1930 		if (swp_type(entry) != type)
1931 			continue;
1932 
1933 		offset = swp_offset(entry);
1934 		if (frontswap && !frontswap_test(si, offset))
1935 			continue;
1936 
1937 		pte_unmap(pte);
1938 		swap_map = &si->swap_map[offset];
1939 		page = lookup_swap_cache(entry, vma, addr);
1940 		if (!page) {
1941 			vmf.vma = vma;
1942 			vmf.address = addr;
1943 			vmf.pmd = pmd;
1944 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1945 						&vmf);
1946 		}
1947 		if (!page) {
1948 			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1949 				goto try_next;
1950 			return -ENOMEM;
1951 		}
1952 
1953 		lock_page(page);
1954 		wait_on_page_writeback(page);
1955 		ret = unuse_pte(vma, pmd, addr, entry, page);
1956 		if (ret < 0) {
1957 			unlock_page(page);
1958 			put_page(page);
1959 			goto out;
1960 		}
1961 
1962 		try_to_free_swap(page);
1963 		unlock_page(page);
1964 		put_page(page);
1965 
1966 		if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1967 			ret = FRONTSWAP_PAGES_UNUSED;
1968 			goto out;
1969 		}
1970 try_next:
1971 		pte = pte_offset_map(pmd, addr);
1972 	} while (pte++, addr += PAGE_SIZE, addr != end);
1973 	pte_unmap(pte - 1);
1974 
1975 	ret = 0;
1976 out:
1977 	return ret;
1978 }
1979 
1980 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1981 				unsigned long addr, unsigned long end,
1982 				unsigned int type, bool frontswap,
1983 				unsigned long *fs_pages_to_unuse)
1984 {
1985 	pmd_t *pmd;
1986 	unsigned long next;
1987 	int ret;
1988 
1989 	pmd = pmd_offset(pud, addr);
1990 	do {
1991 		cond_resched();
1992 		next = pmd_addr_end(addr, end);
1993 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1994 			continue;
1995 		ret = unuse_pte_range(vma, pmd, addr, next, type,
1996 				      frontswap, fs_pages_to_unuse);
1997 		if (ret)
1998 			return ret;
1999 	} while (pmd++, addr = next, addr != end);
2000 	return 0;
2001 }
2002 
2003 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2004 				unsigned long addr, unsigned long end,
2005 				unsigned int type, bool frontswap,
2006 				unsigned long *fs_pages_to_unuse)
2007 {
2008 	pud_t *pud;
2009 	unsigned long next;
2010 	int ret;
2011 
2012 	pud = pud_offset(p4d, addr);
2013 	do {
2014 		next = pud_addr_end(addr, end);
2015 		if (pud_none_or_clear_bad(pud))
2016 			continue;
2017 		ret = unuse_pmd_range(vma, pud, addr, next, type,
2018 				      frontswap, fs_pages_to_unuse);
2019 		if (ret)
2020 			return ret;
2021 	} while (pud++, addr = next, addr != end);
2022 	return 0;
2023 }
2024 
2025 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2026 				unsigned long addr, unsigned long end,
2027 				unsigned int type, bool frontswap,
2028 				unsigned long *fs_pages_to_unuse)
2029 {
2030 	p4d_t *p4d;
2031 	unsigned long next;
2032 	int ret;
2033 
2034 	p4d = p4d_offset(pgd, addr);
2035 	do {
2036 		next = p4d_addr_end(addr, end);
2037 		if (p4d_none_or_clear_bad(p4d))
2038 			continue;
2039 		ret = unuse_pud_range(vma, p4d, addr, next, type,
2040 				      frontswap, fs_pages_to_unuse);
2041 		if (ret)
2042 			return ret;
2043 	} while (p4d++, addr = next, addr != end);
2044 	return 0;
2045 }
2046 
2047 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2048 		     bool frontswap, unsigned long *fs_pages_to_unuse)
2049 {
2050 	pgd_t *pgd;
2051 	unsigned long addr, end, next;
2052 	int ret;
2053 
2054 	addr = vma->vm_start;
2055 	end = vma->vm_end;
2056 
2057 	pgd = pgd_offset(vma->vm_mm, addr);
2058 	do {
2059 		next = pgd_addr_end(addr, end);
2060 		if (pgd_none_or_clear_bad(pgd))
2061 			continue;
2062 		ret = unuse_p4d_range(vma, pgd, addr, next, type,
2063 				      frontswap, fs_pages_to_unuse);
2064 		if (ret)
2065 			return ret;
2066 	} while (pgd++, addr = next, addr != end);
2067 	return 0;
2068 }
2069 
2070 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2071 		    bool frontswap, unsigned long *fs_pages_to_unuse)
2072 {
2073 	struct vm_area_struct *vma;
2074 	int ret = 0;
2075 
2076 	down_read(&mm->mmap_sem);
2077 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2078 		if (vma->anon_vma) {
2079 			ret = unuse_vma(vma, type, frontswap,
2080 					fs_pages_to_unuse);
2081 			if (ret)
2082 				break;
2083 		}
2084 		cond_resched();
2085 	}
2086 	up_read(&mm->mmap_sem);
2087 	return ret;
2088 }
2089 
2090 /*
2091  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2092  * from current position to next entry still in use. Return 0
2093  * if there are no inuse entries after prev till end of the map.
2094  */
2095 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2096 					unsigned int prev, bool frontswap)
2097 {
2098 	unsigned int i;
2099 	unsigned char count;
2100 
2101 	/*
2102 	 * No need for swap_lock here: we're just looking
2103 	 * for whether an entry is in use, not modifying it; false
2104 	 * hits are okay, and sys_swapoff() has already prevented new
2105 	 * allocations from this area (while holding swap_lock).
2106 	 */
2107 	for (i = prev + 1; i < si->max; i++) {
2108 		count = READ_ONCE(si->swap_map[i]);
2109 		if (count && swap_count(count) != SWAP_MAP_BAD)
2110 			if (!frontswap || frontswap_test(si, i))
2111 				break;
2112 		if ((i % LATENCY_LIMIT) == 0)
2113 			cond_resched();
2114 	}
2115 
2116 	if (i == si->max)
2117 		i = 0;
2118 
2119 	return i;
2120 }
2121 
2122 /*
2123  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2124  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2125  */
2126 int try_to_unuse(unsigned int type, bool frontswap,
2127 		 unsigned long pages_to_unuse)
2128 {
2129 	struct mm_struct *prev_mm;
2130 	struct mm_struct *mm;
2131 	struct list_head *p;
2132 	int retval = 0;
2133 	struct swap_info_struct *si = swap_info[type];
2134 	struct page *page;
2135 	swp_entry_t entry;
2136 	unsigned int i;
2137 
2138 	if (!READ_ONCE(si->inuse_pages))
2139 		return 0;
2140 
2141 	if (!frontswap)
2142 		pages_to_unuse = 0;
2143 
2144 retry:
2145 	retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2146 	if (retval)
2147 		goto out;
2148 
2149 	prev_mm = &init_mm;
2150 	mmget(prev_mm);
2151 
2152 	spin_lock(&mmlist_lock);
2153 	p = &init_mm.mmlist;
2154 	while (READ_ONCE(si->inuse_pages) &&
2155 	       !signal_pending(current) &&
2156 	       (p = p->next) != &init_mm.mmlist) {
2157 
2158 		mm = list_entry(p, struct mm_struct, mmlist);
2159 		if (!mmget_not_zero(mm))
2160 			continue;
2161 		spin_unlock(&mmlist_lock);
2162 		mmput(prev_mm);
2163 		prev_mm = mm;
2164 		retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2165 
2166 		if (retval) {
2167 			mmput(prev_mm);
2168 			goto out;
2169 		}
2170 
2171 		/*
2172 		 * Make sure that we aren't completely killing
2173 		 * interactive performance.
2174 		 */
2175 		cond_resched();
2176 		spin_lock(&mmlist_lock);
2177 	}
2178 	spin_unlock(&mmlist_lock);
2179 
2180 	mmput(prev_mm);
2181 
2182 	i = 0;
2183 	while (READ_ONCE(si->inuse_pages) &&
2184 	       !signal_pending(current) &&
2185 	       (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2186 
2187 		entry = swp_entry(type, i);
2188 		page = find_get_page(swap_address_space(entry), i);
2189 		if (!page)
2190 			continue;
2191 
2192 		/*
2193 		 * It is conceivable that a racing task removed this page from
2194 		 * swap cache just before we acquired the page lock. The page
2195 		 * might even be back in swap cache on another swap area. But
2196 		 * that is okay, try_to_free_swap() only removes stale pages.
2197 		 */
2198 		lock_page(page);
2199 		wait_on_page_writeback(page);
2200 		try_to_free_swap(page);
2201 		unlock_page(page);
2202 		put_page(page);
2203 
2204 		/*
2205 		 * For frontswap, we just need to unuse pages_to_unuse, if
2206 		 * it was specified. Need not check frontswap again here as
2207 		 * we already zeroed out pages_to_unuse if not frontswap.
2208 		 */
2209 		if (pages_to_unuse && --pages_to_unuse == 0)
2210 			goto out;
2211 	}
2212 
2213 	/*
2214 	 * Lets check again to see if there are still swap entries in the map.
2215 	 * If yes, we would need to do retry the unuse logic again.
2216 	 * Under global memory pressure, swap entries can be reinserted back
2217 	 * into process space after the mmlist loop above passes over them.
2218 	 *
2219 	 * Limit the number of retries? No: when mmget_not_zero() above fails,
2220 	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2221 	 * at its own independent pace; and even shmem_writepage() could have
2222 	 * been preempted after get_swap_page(), temporarily hiding that swap.
2223 	 * It's easy and robust (though cpu-intensive) just to keep retrying.
2224 	 */
2225 	if (READ_ONCE(si->inuse_pages)) {
2226 		if (!signal_pending(current))
2227 			goto retry;
2228 		retval = -EINTR;
2229 	}
2230 out:
2231 	return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2232 }
2233 
2234 /*
2235  * After a successful try_to_unuse, if no swap is now in use, we know
2236  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2237  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2238  * added to the mmlist just after page_duplicate - before would be racy.
2239  */
2240 static void drain_mmlist(void)
2241 {
2242 	struct list_head *p, *next;
2243 	unsigned int type;
2244 
2245 	for (type = 0; type < nr_swapfiles; type++)
2246 		if (swap_info[type]->inuse_pages)
2247 			return;
2248 	spin_lock(&mmlist_lock);
2249 	list_for_each_safe(p, next, &init_mm.mmlist)
2250 		list_del_init(p);
2251 	spin_unlock(&mmlist_lock);
2252 }
2253 
2254 /*
2255  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2256  * corresponds to page offset for the specified swap entry.
2257  * Note that the type of this function is sector_t, but it returns page offset
2258  * into the bdev, not sector offset.
2259  */
2260 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2261 {
2262 	struct swap_info_struct *sis;
2263 	struct swap_extent *se;
2264 	pgoff_t offset;
2265 
2266 	sis = swp_swap_info(entry);
2267 	*bdev = sis->bdev;
2268 
2269 	offset = swp_offset(entry);
2270 	se = offset_to_swap_extent(sis, offset);
2271 	return se->start_block + (offset - se->start_page);
2272 }
2273 
2274 /*
2275  * Returns the page offset into bdev for the specified page's swap entry.
2276  */
2277 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2278 {
2279 	swp_entry_t entry;
2280 	entry.val = page_private(page);
2281 	return map_swap_entry(entry, bdev);
2282 }
2283 
2284 /*
2285  * Free all of a swapdev's extent information
2286  */
2287 static void destroy_swap_extents(struct swap_info_struct *sis)
2288 {
2289 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2290 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2291 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2292 
2293 		rb_erase(rb, &sis->swap_extent_root);
2294 		kfree(se);
2295 	}
2296 
2297 	if (sis->flags & SWP_ACTIVATED) {
2298 		struct file *swap_file = sis->swap_file;
2299 		struct address_space *mapping = swap_file->f_mapping;
2300 
2301 		sis->flags &= ~SWP_ACTIVATED;
2302 		if (mapping->a_ops->swap_deactivate)
2303 			mapping->a_ops->swap_deactivate(swap_file);
2304 	}
2305 }
2306 
2307 /*
2308  * Add a block range (and the corresponding page range) into this swapdev's
2309  * extent tree.
2310  *
2311  * This function rather assumes that it is called in ascending page order.
2312  */
2313 int
2314 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2315 		unsigned long nr_pages, sector_t start_block)
2316 {
2317 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2318 	struct swap_extent *se;
2319 	struct swap_extent *new_se;
2320 
2321 	/*
2322 	 * place the new node at the right most since the
2323 	 * function is called in ascending page order.
2324 	 */
2325 	while (*link) {
2326 		parent = *link;
2327 		link = &parent->rb_right;
2328 	}
2329 
2330 	if (parent) {
2331 		se = rb_entry(parent, struct swap_extent, rb_node);
2332 		BUG_ON(se->start_page + se->nr_pages != start_page);
2333 		if (se->start_block + se->nr_pages == start_block) {
2334 			/* Merge it */
2335 			se->nr_pages += nr_pages;
2336 			return 0;
2337 		}
2338 	}
2339 
2340 	/* No merge, insert a new extent. */
2341 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2342 	if (new_se == NULL)
2343 		return -ENOMEM;
2344 	new_se->start_page = start_page;
2345 	new_se->nr_pages = nr_pages;
2346 	new_se->start_block = start_block;
2347 
2348 	rb_link_node(&new_se->rb_node, parent, link);
2349 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2350 	return 1;
2351 }
2352 EXPORT_SYMBOL_GPL(add_swap_extent);
2353 
2354 /*
2355  * A `swap extent' is a simple thing which maps a contiguous range of pages
2356  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2357  * is built at swapon time and is then used at swap_writepage/swap_readpage
2358  * time for locating where on disk a page belongs.
2359  *
2360  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2361  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2362  * swap files identically.
2363  *
2364  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2365  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2366  * swapfiles are handled *identically* after swapon time.
2367  *
2368  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2369  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2370  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2371  * requirements, they are simply tossed out - we will never use those blocks
2372  * for swapping.
2373  *
2374  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2375  * prevents users from writing to the swap device, which will corrupt memory.
2376  *
2377  * The amount of disk space which a single swap extent represents varies.
2378  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2379  * extents in the list.  To avoid much list walking, we cache the previous
2380  * search location in `curr_swap_extent', and start new searches from there.
2381  * This is extremely effective.  The average number of iterations in
2382  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2383  */
2384 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2385 {
2386 	struct file *swap_file = sis->swap_file;
2387 	struct address_space *mapping = swap_file->f_mapping;
2388 	struct inode *inode = mapping->host;
2389 	int ret;
2390 
2391 	if (S_ISBLK(inode->i_mode)) {
2392 		ret = add_swap_extent(sis, 0, sis->max, 0);
2393 		*span = sis->pages;
2394 		return ret;
2395 	}
2396 
2397 	if (mapping->a_ops->swap_activate) {
2398 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2399 		if (ret >= 0)
2400 			sis->flags |= SWP_ACTIVATED;
2401 		if (!ret) {
2402 			sis->flags |= SWP_FS;
2403 			ret = add_swap_extent(sis, 0, sis->max, 0);
2404 			*span = sis->pages;
2405 		}
2406 		return ret;
2407 	}
2408 
2409 	return generic_swapfile_activate(sis, swap_file, span);
2410 }
2411 
2412 static int swap_node(struct swap_info_struct *p)
2413 {
2414 	struct block_device *bdev;
2415 
2416 	if (p->bdev)
2417 		bdev = p->bdev;
2418 	else
2419 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2420 
2421 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2422 }
2423 
2424 static void setup_swap_info(struct swap_info_struct *p, int prio,
2425 			    unsigned char *swap_map,
2426 			    struct swap_cluster_info *cluster_info)
2427 {
2428 	int i;
2429 
2430 	if (prio >= 0)
2431 		p->prio = prio;
2432 	else
2433 		p->prio = --least_priority;
2434 	/*
2435 	 * the plist prio is negated because plist ordering is
2436 	 * low-to-high, while swap ordering is high-to-low
2437 	 */
2438 	p->list.prio = -p->prio;
2439 	for_each_node(i) {
2440 		if (p->prio >= 0)
2441 			p->avail_lists[i].prio = -p->prio;
2442 		else {
2443 			if (swap_node(p) == i)
2444 				p->avail_lists[i].prio = 1;
2445 			else
2446 				p->avail_lists[i].prio = -p->prio;
2447 		}
2448 	}
2449 	p->swap_map = swap_map;
2450 	p->cluster_info = cluster_info;
2451 }
2452 
2453 static void _enable_swap_info(struct swap_info_struct *p)
2454 {
2455 	p->flags |= SWP_WRITEOK | SWP_VALID;
2456 	atomic_long_add(p->pages, &nr_swap_pages);
2457 	total_swap_pages += p->pages;
2458 
2459 	assert_spin_locked(&swap_lock);
2460 	/*
2461 	 * both lists are plists, and thus priority ordered.
2462 	 * swap_active_head needs to be priority ordered for swapoff(),
2463 	 * which on removal of any swap_info_struct with an auto-assigned
2464 	 * (i.e. negative) priority increments the auto-assigned priority
2465 	 * of any lower-priority swap_info_structs.
2466 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2467 	 * which allocates swap pages from the highest available priority
2468 	 * swap_info_struct.
2469 	 */
2470 	plist_add(&p->list, &swap_active_head);
2471 	add_to_avail_list(p);
2472 }
2473 
2474 static void enable_swap_info(struct swap_info_struct *p, int prio,
2475 				unsigned char *swap_map,
2476 				struct swap_cluster_info *cluster_info,
2477 				unsigned long *frontswap_map)
2478 {
2479 	frontswap_init(p->type, frontswap_map);
2480 	spin_lock(&swap_lock);
2481 	spin_lock(&p->lock);
2482 	setup_swap_info(p, prio, swap_map, cluster_info);
2483 	spin_unlock(&p->lock);
2484 	spin_unlock(&swap_lock);
2485 	/*
2486 	 * Guarantee swap_map, cluster_info, etc. fields are valid
2487 	 * between get/put_swap_device() if SWP_VALID bit is set
2488 	 */
2489 	synchronize_rcu();
2490 	spin_lock(&swap_lock);
2491 	spin_lock(&p->lock);
2492 	_enable_swap_info(p);
2493 	spin_unlock(&p->lock);
2494 	spin_unlock(&swap_lock);
2495 }
2496 
2497 static void reinsert_swap_info(struct swap_info_struct *p)
2498 {
2499 	spin_lock(&swap_lock);
2500 	spin_lock(&p->lock);
2501 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2502 	_enable_swap_info(p);
2503 	spin_unlock(&p->lock);
2504 	spin_unlock(&swap_lock);
2505 }
2506 
2507 bool has_usable_swap(void)
2508 {
2509 	bool ret = true;
2510 
2511 	spin_lock(&swap_lock);
2512 	if (plist_head_empty(&swap_active_head))
2513 		ret = false;
2514 	spin_unlock(&swap_lock);
2515 	return ret;
2516 }
2517 
2518 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2519 {
2520 	struct swap_info_struct *p = NULL;
2521 	unsigned char *swap_map;
2522 	struct swap_cluster_info *cluster_info;
2523 	unsigned long *frontswap_map;
2524 	struct file *swap_file, *victim;
2525 	struct address_space *mapping;
2526 	struct inode *inode;
2527 	struct filename *pathname;
2528 	int err, found = 0;
2529 	unsigned int old_block_size;
2530 
2531 	if (!capable(CAP_SYS_ADMIN))
2532 		return -EPERM;
2533 
2534 	BUG_ON(!current->mm);
2535 
2536 	pathname = getname(specialfile);
2537 	if (IS_ERR(pathname))
2538 		return PTR_ERR(pathname);
2539 
2540 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2541 	err = PTR_ERR(victim);
2542 	if (IS_ERR(victim))
2543 		goto out;
2544 
2545 	mapping = victim->f_mapping;
2546 	spin_lock(&swap_lock);
2547 	plist_for_each_entry(p, &swap_active_head, list) {
2548 		if (p->flags & SWP_WRITEOK) {
2549 			if (p->swap_file->f_mapping == mapping) {
2550 				found = 1;
2551 				break;
2552 			}
2553 		}
2554 	}
2555 	if (!found) {
2556 		err = -EINVAL;
2557 		spin_unlock(&swap_lock);
2558 		goto out_dput;
2559 	}
2560 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2561 		vm_unacct_memory(p->pages);
2562 	else {
2563 		err = -ENOMEM;
2564 		spin_unlock(&swap_lock);
2565 		goto out_dput;
2566 	}
2567 	del_from_avail_list(p);
2568 	spin_lock(&p->lock);
2569 	if (p->prio < 0) {
2570 		struct swap_info_struct *si = p;
2571 		int nid;
2572 
2573 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2574 			si->prio++;
2575 			si->list.prio--;
2576 			for_each_node(nid) {
2577 				if (si->avail_lists[nid].prio != 1)
2578 					si->avail_lists[nid].prio--;
2579 			}
2580 		}
2581 		least_priority++;
2582 	}
2583 	plist_del(&p->list, &swap_active_head);
2584 	atomic_long_sub(p->pages, &nr_swap_pages);
2585 	total_swap_pages -= p->pages;
2586 	p->flags &= ~SWP_WRITEOK;
2587 	spin_unlock(&p->lock);
2588 	spin_unlock(&swap_lock);
2589 
2590 	disable_swap_slots_cache_lock();
2591 
2592 	set_current_oom_origin();
2593 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2594 	clear_current_oom_origin();
2595 
2596 	if (err) {
2597 		/* re-insert swap space back into swap_list */
2598 		reinsert_swap_info(p);
2599 		reenable_swap_slots_cache_unlock();
2600 		goto out_dput;
2601 	}
2602 
2603 	reenable_swap_slots_cache_unlock();
2604 
2605 	spin_lock(&swap_lock);
2606 	spin_lock(&p->lock);
2607 	p->flags &= ~SWP_VALID;		/* mark swap device as invalid */
2608 	spin_unlock(&p->lock);
2609 	spin_unlock(&swap_lock);
2610 	/*
2611 	 * wait for swap operations protected by get/put_swap_device()
2612 	 * to complete
2613 	 */
2614 	synchronize_rcu();
2615 
2616 	flush_work(&p->discard_work);
2617 
2618 	destroy_swap_extents(p);
2619 	if (p->flags & SWP_CONTINUED)
2620 		free_swap_count_continuations(p);
2621 
2622 	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2623 		atomic_dec(&nr_rotate_swap);
2624 
2625 	mutex_lock(&swapon_mutex);
2626 	spin_lock(&swap_lock);
2627 	spin_lock(&p->lock);
2628 	drain_mmlist();
2629 
2630 	/* wait for anyone still in scan_swap_map */
2631 	p->highest_bit = 0;		/* cuts scans short */
2632 	while (p->flags >= SWP_SCANNING) {
2633 		spin_unlock(&p->lock);
2634 		spin_unlock(&swap_lock);
2635 		schedule_timeout_uninterruptible(1);
2636 		spin_lock(&swap_lock);
2637 		spin_lock(&p->lock);
2638 	}
2639 
2640 	swap_file = p->swap_file;
2641 	old_block_size = p->old_block_size;
2642 	p->swap_file = NULL;
2643 	p->max = 0;
2644 	swap_map = p->swap_map;
2645 	p->swap_map = NULL;
2646 	cluster_info = p->cluster_info;
2647 	p->cluster_info = NULL;
2648 	frontswap_map = frontswap_map_get(p);
2649 	spin_unlock(&p->lock);
2650 	spin_unlock(&swap_lock);
2651 	frontswap_invalidate_area(p->type);
2652 	frontswap_map_set(p, NULL);
2653 	mutex_unlock(&swapon_mutex);
2654 	free_percpu(p->percpu_cluster);
2655 	p->percpu_cluster = NULL;
2656 	vfree(swap_map);
2657 	kvfree(cluster_info);
2658 	kvfree(frontswap_map);
2659 	/* Destroy swap account information */
2660 	swap_cgroup_swapoff(p->type);
2661 	exit_swap_address_space(p->type);
2662 
2663 	inode = mapping->host;
2664 	if (S_ISBLK(inode->i_mode)) {
2665 		struct block_device *bdev = I_BDEV(inode);
2666 
2667 		set_blocksize(bdev, old_block_size);
2668 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2669 	}
2670 
2671 	inode_lock(inode);
2672 	inode->i_flags &= ~S_SWAPFILE;
2673 	inode_unlock(inode);
2674 	filp_close(swap_file, NULL);
2675 
2676 	/*
2677 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2678 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2679 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2680 	 */
2681 	spin_lock(&swap_lock);
2682 	p->flags = 0;
2683 	spin_unlock(&swap_lock);
2684 
2685 	err = 0;
2686 	atomic_inc(&proc_poll_event);
2687 	wake_up_interruptible(&proc_poll_wait);
2688 
2689 out_dput:
2690 	filp_close(victim, NULL);
2691 out:
2692 	putname(pathname);
2693 	return err;
2694 }
2695 
2696 #ifdef CONFIG_PROC_FS
2697 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2698 {
2699 	struct seq_file *seq = file->private_data;
2700 
2701 	poll_wait(file, &proc_poll_wait, wait);
2702 
2703 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2704 		seq->poll_event = atomic_read(&proc_poll_event);
2705 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2706 	}
2707 
2708 	return EPOLLIN | EPOLLRDNORM;
2709 }
2710 
2711 /* iterator */
2712 static void *swap_start(struct seq_file *swap, loff_t *pos)
2713 {
2714 	struct swap_info_struct *si;
2715 	int type;
2716 	loff_t l = *pos;
2717 
2718 	mutex_lock(&swapon_mutex);
2719 
2720 	if (!l)
2721 		return SEQ_START_TOKEN;
2722 
2723 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2724 		if (!(si->flags & SWP_USED) || !si->swap_map)
2725 			continue;
2726 		if (!--l)
2727 			return si;
2728 	}
2729 
2730 	return NULL;
2731 }
2732 
2733 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2734 {
2735 	struct swap_info_struct *si = v;
2736 	int type;
2737 
2738 	if (v == SEQ_START_TOKEN)
2739 		type = 0;
2740 	else
2741 		type = si->type + 1;
2742 
2743 	++(*pos);
2744 	for (; (si = swap_type_to_swap_info(type)); type++) {
2745 		if (!(si->flags & SWP_USED) || !si->swap_map)
2746 			continue;
2747 		return si;
2748 	}
2749 
2750 	return NULL;
2751 }
2752 
2753 static void swap_stop(struct seq_file *swap, void *v)
2754 {
2755 	mutex_unlock(&swapon_mutex);
2756 }
2757 
2758 static int swap_show(struct seq_file *swap, void *v)
2759 {
2760 	struct swap_info_struct *si = v;
2761 	struct file *file;
2762 	int len;
2763 
2764 	if (si == SEQ_START_TOKEN) {
2765 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2766 		return 0;
2767 	}
2768 
2769 	file = si->swap_file;
2770 	len = seq_file_path(swap, file, " \t\n\\");
2771 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2772 			len < 40 ? 40 - len : 1, " ",
2773 			S_ISBLK(file_inode(file)->i_mode) ?
2774 				"partition" : "file\t",
2775 			si->pages << (PAGE_SHIFT - 10),
2776 			si->inuse_pages << (PAGE_SHIFT - 10),
2777 			si->prio);
2778 	return 0;
2779 }
2780 
2781 static const struct seq_operations swaps_op = {
2782 	.start =	swap_start,
2783 	.next =		swap_next,
2784 	.stop =		swap_stop,
2785 	.show =		swap_show
2786 };
2787 
2788 static int swaps_open(struct inode *inode, struct file *file)
2789 {
2790 	struct seq_file *seq;
2791 	int ret;
2792 
2793 	ret = seq_open(file, &swaps_op);
2794 	if (ret)
2795 		return ret;
2796 
2797 	seq = file->private_data;
2798 	seq->poll_event = atomic_read(&proc_poll_event);
2799 	return 0;
2800 }
2801 
2802 static const struct proc_ops swaps_proc_ops = {
2803 	.proc_flags	= PROC_ENTRY_PERMANENT,
2804 	.proc_open	= swaps_open,
2805 	.proc_read	= seq_read,
2806 	.proc_lseek	= seq_lseek,
2807 	.proc_release	= seq_release,
2808 	.proc_poll	= swaps_poll,
2809 };
2810 
2811 static int __init procswaps_init(void)
2812 {
2813 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2814 	return 0;
2815 }
2816 __initcall(procswaps_init);
2817 #endif /* CONFIG_PROC_FS */
2818 
2819 #ifdef MAX_SWAPFILES_CHECK
2820 static int __init max_swapfiles_check(void)
2821 {
2822 	MAX_SWAPFILES_CHECK();
2823 	return 0;
2824 }
2825 late_initcall(max_swapfiles_check);
2826 #endif
2827 
2828 static struct swap_info_struct *alloc_swap_info(void)
2829 {
2830 	struct swap_info_struct *p;
2831 	unsigned int type;
2832 	int i;
2833 
2834 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2835 	if (!p)
2836 		return ERR_PTR(-ENOMEM);
2837 
2838 	spin_lock(&swap_lock);
2839 	for (type = 0; type < nr_swapfiles; type++) {
2840 		if (!(swap_info[type]->flags & SWP_USED))
2841 			break;
2842 	}
2843 	if (type >= MAX_SWAPFILES) {
2844 		spin_unlock(&swap_lock);
2845 		kvfree(p);
2846 		return ERR_PTR(-EPERM);
2847 	}
2848 	if (type >= nr_swapfiles) {
2849 		p->type = type;
2850 		WRITE_ONCE(swap_info[type], p);
2851 		/*
2852 		 * Write swap_info[type] before nr_swapfiles, in case a
2853 		 * racing procfs swap_start() or swap_next() is reading them.
2854 		 * (We never shrink nr_swapfiles, we never free this entry.)
2855 		 */
2856 		smp_wmb();
2857 		WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2858 	} else {
2859 		kvfree(p);
2860 		p = swap_info[type];
2861 		/*
2862 		 * Do not memset this entry: a racing procfs swap_next()
2863 		 * would be relying on p->type to remain valid.
2864 		 */
2865 	}
2866 	p->swap_extent_root = RB_ROOT;
2867 	plist_node_init(&p->list, 0);
2868 	for_each_node(i)
2869 		plist_node_init(&p->avail_lists[i], 0);
2870 	p->flags = SWP_USED;
2871 	spin_unlock(&swap_lock);
2872 	spin_lock_init(&p->lock);
2873 	spin_lock_init(&p->cont_lock);
2874 
2875 	return p;
2876 }
2877 
2878 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2879 {
2880 	int error;
2881 
2882 	if (S_ISBLK(inode->i_mode)) {
2883 		p->bdev = bdgrab(I_BDEV(inode));
2884 		error = blkdev_get(p->bdev,
2885 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2886 		if (error < 0) {
2887 			p->bdev = NULL;
2888 			return error;
2889 		}
2890 		p->old_block_size = block_size(p->bdev);
2891 		error = set_blocksize(p->bdev, PAGE_SIZE);
2892 		if (error < 0)
2893 			return error;
2894 		/*
2895 		 * Zoned block devices contain zones that have a sequential
2896 		 * write only restriction.  Hence zoned block devices are not
2897 		 * suitable for swapping.  Disallow them here.
2898 		 */
2899 		if (blk_queue_is_zoned(p->bdev->bd_queue))
2900 			return -EINVAL;
2901 		p->flags |= SWP_BLKDEV;
2902 	} else if (S_ISREG(inode->i_mode)) {
2903 		p->bdev = inode->i_sb->s_bdev;
2904 	}
2905 
2906 	return 0;
2907 }
2908 
2909 
2910 /*
2911  * Find out how many pages are allowed for a single swap device. There
2912  * are two limiting factors:
2913  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2914  * 2) the number of bits in the swap pte, as defined by the different
2915  * architectures.
2916  *
2917  * In order to find the largest possible bit mask, a swap entry with
2918  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2919  * decoded to a swp_entry_t again, and finally the swap offset is
2920  * extracted.
2921  *
2922  * This will mask all the bits from the initial ~0UL mask that can't
2923  * be encoded in either the swp_entry_t or the architecture definition
2924  * of a swap pte.
2925  */
2926 unsigned long generic_max_swapfile_size(void)
2927 {
2928 	return swp_offset(pte_to_swp_entry(
2929 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2930 }
2931 
2932 /* Can be overridden by an architecture for additional checks. */
2933 __weak unsigned long max_swapfile_size(void)
2934 {
2935 	return generic_max_swapfile_size();
2936 }
2937 
2938 static unsigned long read_swap_header(struct swap_info_struct *p,
2939 					union swap_header *swap_header,
2940 					struct inode *inode)
2941 {
2942 	int i;
2943 	unsigned long maxpages;
2944 	unsigned long swapfilepages;
2945 	unsigned long last_page;
2946 
2947 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2948 		pr_err("Unable to find swap-space signature\n");
2949 		return 0;
2950 	}
2951 
2952 	/* swap partition endianess hack... */
2953 	if (swab32(swap_header->info.version) == 1) {
2954 		swab32s(&swap_header->info.version);
2955 		swab32s(&swap_header->info.last_page);
2956 		swab32s(&swap_header->info.nr_badpages);
2957 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2958 			return 0;
2959 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2960 			swab32s(&swap_header->info.badpages[i]);
2961 	}
2962 	/* Check the swap header's sub-version */
2963 	if (swap_header->info.version != 1) {
2964 		pr_warn("Unable to handle swap header version %d\n",
2965 			swap_header->info.version);
2966 		return 0;
2967 	}
2968 
2969 	p->lowest_bit  = 1;
2970 	p->cluster_next = 1;
2971 	p->cluster_nr = 0;
2972 
2973 	maxpages = max_swapfile_size();
2974 	last_page = swap_header->info.last_page;
2975 	if (!last_page) {
2976 		pr_warn("Empty swap-file\n");
2977 		return 0;
2978 	}
2979 	if (last_page > maxpages) {
2980 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2981 			maxpages << (PAGE_SHIFT - 10),
2982 			last_page << (PAGE_SHIFT - 10));
2983 	}
2984 	if (maxpages > last_page) {
2985 		maxpages = last_page + 1;
2986 		/* p->max is an unsigned int: don't overflow it */
2987 		if ((unsigned int)maxpages == 0)
2988 			maxpages = UINT_MAX;
2989 	}
2990 	p->highest_bit = maxpages - 1;
2991 
2992 	if (!maxpages)
2993 		return 0;
2994 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2995 	if (swapfilepages && maxpages > swapfilepages) {
2996 		pr_warn("Swap area shorter than signature indicates\n");
2997 		return 0;
2998 	}
2999 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3000 		return 0;
3001 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3002 		return 0;
3003 
3004 	return maxpages;
3005 }
3006 
3007 #define SWAP_CLUSTER_INFO_COLS						\
3008 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3009 #define SWAP_CLUSTER_SPACE_COLS						\
3010 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3011 #define SWAP_CLUSTER_COLS						\
3012 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3013 
3014 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3015 					union swap_header *swap_header,
3016 					unsigned char *swap_map,
3017 					struct swap_cluster_info *cluster_info,
3018 					unsigned long maxpages,
3019 					sector_t *span)
3020 {
3021 	unsigned int j, k;
3022 	unsigned int nr_good_pages;
3023 	int nr_extents;
3024 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3025 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3026 	unsigned long i, idx;
3027 
3028 	nr_good_pages = maxpages - 1;	/* omit header page */
3029 
3030 	cluster_list_init(&p->free_clusters);
3031 	cluster_list_init(&p->discard_clusters);
3032 
3033 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3034 		unsigned int page_nr = swap_header->info.badpages[i];
3035 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3036 			return -EINVAL;
3037 		if (page_nr < maxpages) {
3038 			swap_map[page_nr] = SWAP_MAP_BAD;
3039 			nr_good_pages--;
3040 			/*
3041 			 * Haven't marked the cluster free yet, no list
3042 			 * operation involved
3043 			 */
3044 			inc_cluster_info_page(p, cluster_info, page_nr);
3045 		}
3046 	}
3047 
3048 	/* Haven't marked the cluster free yet, no list operation involved */
3049 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3050 		inc_cluster_info_page(p, cluster_info, i);
3051 
3052 	if (nr_good_pages) {
3053 		swap_map[0] = SWAP_MAP_BAD;
3054 		/*
3055 		 * Not mark the cluster free yet, no list
3056 		 * operation involved
3057 		 */
3058 		inc_cluster_info_page(p, cluster_info, 0);
3059 		p->max = maxpages;
3060 		p->pages = nr_good_pages;
3061 		nr_extents = setup_swap_extents(p, span);
3062 		if (nr_extents < 0)
3063 			return nr_extents;
3064 		nr_good_pages = p->pages;
3065 	}
3066 	if (!nr_good_pages) {
3067 		pr_warn("Empty swap-file\n");
3068 		return -EINVAL;
3069 	}
3070 
3071 	if (!cluster_info)
3072 		return nr_extents;
3073 
3074 
3075 	/*
3076 	 * Reduce false cache line sharing between cluster_info and
3077 	 * sharing same address space.
3078 	 */
3079 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3080 		j = (k + col) % SWAP_CLUSTER_COLS;
3081 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3082 			idx = i * SWAP_CLUSTER_COLS + j;
3083 			if (idx >= nr_clusters)
3084 				continue;
3085 			if (cluster_count(&cluster_info[idx]))
3086 				continue;
3087 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3088 			cluster_list_add_tail(&p->free_clusters, cluster_info,
3089 					      idx);
3090 		}
3091 	}
3092 	return nr_extents;
3093 }
3094 
3095 /*
3096  * Helper to sys_swapon determining if a given swap
3097  * backing device queue supports DISCARD operations.
3098  */
3099 static bool swap_discardable(struct swap_info_struct *si)
3100 {
3101 	struct request_queue *q = bdev_get_queue(si->bdev);
3102 
3103 	if (!q || !blk_queue_discard(q))
3104 		return false;
3105 
3106 	return true;
3107 }
3108 
3109 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3110 {
3111 	struct swap_info_struct *p;
3112 	struct filename *name;
3113 	struct file *swap_file = NULL;
3114 	struct address_space *mapping;
3115 	int prio;
3116 	int error;
3117 	union swap_header *swap_header;
3118 	int nr_extents;
3119 	sector_t span;
3120 	unsigned long maxpages;
3121 	unsigned char *swap_map = NULL;
3122 	struct swap_cluster_info *cluster_info = NULL;
3123 	unsigned long *frontswap_map = NULL;
3124 	struct page *page = NULL;
3125 	struct inode *inode = NULL;
3126 	bool inced_nr_rotate_swap = false;
3127 
3128 	if (swap_flags & ~SWAP_FLAGS_VALID)
3129 		return -EINVAL;
3130 
3131 	if (!capable(CAP_SYS_ADMIN))
3132 		return -EPERM;
3133 
3134 	if (!swap_avail_heads)
3135 		return -ENOMEM;
3136 
3137 	p = alloc_swap_info();
3138 	if (IS_ERR(p))
3139 		return PTR_ERR(p);
3140 
3141 	INIT_WORK(&p->discard_work, swap_discard_work);
3142 
3143 	name = getname(specialfile);
3144 	if (IS_ERR(name)) {
3145 		error = PTR_ERR(name);
3146 		name = NULL;
3147 		goto bad_swap;
3148 	}
3149 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3150 	if (IS_ERR(swap_file)) {
3151 		error = PTR_ERR(swap_file);
3152 		swap_file = NULL;
3153 		goto bad_swap;
3154 	}
3155 
3156 	p->swap_file = swap_file;
3157 	mapping = swap_file->f_mapping;
3158 	inode = mapping->host;
3159 
3160 	error = claim_swapfile(p, inode);
3161 	if (unlikely(error))
3162 		goto bad_swap;
3163 
3164 	inode_lock(inode);
3165 	if (IS_SWAPFILE(inode)) {
3166 		error = -EBUSY;
3167 		goto bad_swap_unlock_inode;
3168 	}
3169 
3170 	/*
3171 	 * Read the swap header.
3172 	 */
3173 	if (!mapping->a_ops->readpage) {
3174 		error = -EINVAL;
3175 		goto bad_swap_unlock_inode;
3176 	}
3177 	page = read_mapping_page(mapping, 0, swap_file);
3178 	if (IS_ERR(page)) {
3179 		error = PTR_ERR(page);
3180 		goto bad_swap_unlock_inode;
3181 	}
3182 	swap_header = kmap(page);
3183 
3184 	maxpages = read_swap_header(p, swap_header, inode);
3185 	if (unlikely(!maxpages)) {
3186 		error = -EINVAL;
3187 		goto bad_swap_unlock_inode;
3188 	}
3189 
3190 	/* OK, set up the swap map and apply the bad block list */
3191 	swap_map = vzalloc(maxpages);
3192 	if (!swap_map) {
3193 		error = -ENOMEM;
3194 		goto bad_swap_unlock_inode;
3195 	}
3196 
3197 	if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3198 		p->flags |= SWP_STABLE_WRITES;
3199 
3200 	if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3201 		p->flags |= SWP_SYNCHRONOUS_IO;
3202 
3203 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3204 		int cpu;
3205 		unsigned long ci, nr_cluster;
3206 
3207 		p->flags |= SWP_SOLIDSTATE;
3208 		/*
3209 		 * select a random position to start with to help wear leveling
3210 		 * SSD
3211 		 */
3212 		p->cluster_next = 1 + prandom_u32_max(p->highest_bit);
3213 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3214 
3215 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3216 					GFP_KERNEL);
3217 		if (!cluster_info) {
3218 			error = -ENOMEM;
3219 			goto bad_swap_unlock_inode;
3220 		}
3221 
3222 		for (ci = 0; ci < nr_cluster; ci++)
3223 			spin_lock_init(&((cluster_info + ci)->lock));
3224 
3225 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3226 		if (!p->percpu_cluster) {
3227 			error = -ENOMEM;
3228 			goto bad_swap_unlock_inode;
3229 		}
3230 		for_each_possible_cpu(cpu) {
3231 			struct percpu_cluster *cluster;
3232 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3233 			cluster_set_null(&cluster->index);
3234 		}
3235 	} else {
3236 		atomic_inc(&nr_rotate_swap);
3237 		inced_nr_rotate_swap = true;
3238 	}
3239 
3240 	error = swap_cgroup_swapon(p->type, maxpages);
3241 	if (error)
3242 		goto bad_swap_unlock_inode;
3243 
3244 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3245 		cluster_info, maxpages, &span);
3246 	if (unlikely(nr_extents < 0)) {
3247 		error = nr_extents;
3248 		goto bad_swap_unlock_inode;
3249 	}
3250 	/* frontswap enabled? set up bit-per-page map for frontswap */
3251 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3252 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3253 					 sizeof(long),
3254 					 GFP_KERNEL);
3255 
3256 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3257 		/*
3258 		 * When discard is enabled for swap with no particular
3259 		 * policy flagged, we set all swap discard flags here in
3260 		 * order to sustain backward compatibility with older
3261 		 * swapon(8) releases.
3262 		 */
3263 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3264 			     SWP_PAGE_DISCARD);
3265 
3266 		/*
3267 		 * By flagging sys_swapon, a sysadmin can tell us to
3268 		 * either do single-time area discards only, or to just
3269 		 * perform discards for released swap page-clusters.
3270 		 * Now it's time to adjust the p->flags accordingly.
3271 		 */
3272 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3273 			p->flags &= ~SWP_PAGE_DISCARD;
3274 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3275 			p->flags &= ~SWP_AREA_DISCARD;
3276 
3277 		/* issue a swapon-time discard if it's still required */
3278 		if (p->flags & SWP_AREA_DISCARD) {
3279 			int err = discard_swap(p);
3280 			if (unlikely(err))
3281 				pr_err("swapon: discard_swap(%p): %d\n",
3282 					p, err);
3283 		}
3284 	}
3285 
3286 	error = init_swap_address_space(p->type, maxpages);
3287 	if (error)
3288 		goto bad_swap_unlock_inode;
3289 
3290 	/*
3291 	 * Flush any pending IO and dirty mappings before we start using this
3292 	 * swap device.
3293 	 */
3294 	inode->i_flags |= S_SWAPFILE;
3295 	error = inode_drain_writes(inode);
3296 	if (error) {
3297 		inode->i_flags &= ~S_SWAPFILE;
3298 		goto bad_swap_unlock_inode;
3299 	}
3300 
3301 	mutex_lock(&swapon_mutex);
3302 	prio = -1;
3303 	if (swap_flags & SWAP_FLAG_PREFER)
3304 		prio =
3305 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3306 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3307 
3308 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3309 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3310 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3311 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3312 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3313 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3314 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3315 		(frontswap_map) ? "FS" : "");
3316 
3317 	mutex_unlock(&swapon_mutex);
3318 	atomic_inc(&proc_poll_event);
3319 	wake_up_interruptible(&proc_poll_wait);
3320 
3321 	error = 0;
3322 	goto out;
3323 bad_swap_unlock_inode:
3324 	inode_unlock(inode);
3325 bad_swap:
3326 	free_percpu(p->percpu_cluster);
3327 	p->percpu_cluster = NULL;
3328 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3329 		set_blocksize(p->bdev, p->old_block_size);
3330 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3331 	}
3332 	inode = NULL;
3333 	destroy_swap_extents(p);
3334 	swap_cgroup_swapoff(p->type);
3335 	spin_lock(&swap_lock);
3336 	p->swap_file = NULL;
3337 	p->flags = 0;
3338 	spin_unlock(&swap_lock);
3339 	vfree(swap_map);
3340 	kvfree(cluster_info);
3341 	kvfree(frontswap_map);
3342 	if (inced_nr_rotate_swap)
3343 		atomic_dec(&nr_rotate_swap);
3344 	if (swap_file)
3345 		filp_close(swap_file, NULL);
3346 out:
3347 	if (page && !IS_ERR(page)) {
3348 		kunmap(page);
3349 		put_page(page);
3350 	}
3351 	if (name)
3352 		putname(name);
3353 	if (inode)
3354 		inode_unlock(inode);
3355 	if (!error)
3356 		enable_swap_slots_cache();
3357 	return error;
3358 }
3359 
3360 void si_swapinfo(struct sysinfo *val)
3361 {
3362 	unsigned int type;
3363 	unsigned long nr_to_be_unused = 0;
3364 
3365 	spin_lock(&swap_lock);
3366 	for (type = 0; type < nr_swapfiles; type++) {
3367 		struct swap_info_struct *si = swap_info[type];
3368 
3369 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3370 			nr_to_be_unused += si->inuse_pages;
3371 	}
3372 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3373 	val->totalswap = total_swap_pages + nr_to_be_unused;
3374 	spin_unlock(&swap_lock);
3375 }
3376 
3377 /*
3378  * Verify that a swap entry is valid and increment its swap map count.
3379  *
3380  * Returns error code in following case.
3381  * - success -> 0
3382  * - swp_entry is invalid -> EINVAL
3383  * - swp_entry is migration entry -> EINVAL
3384  * - swap-cache reference is requested but there is already one. -> EEXIST
3385  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3386  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3387  */
3388 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3389 {
3390 	struct swap_info_struct *p;
3391 	struct swap_cluster_info *ci;
3392 	unsigned long offset;
3393 	unsigned char count;
3394 	unsigned char has_cache;
3395 	int err = -EINVAL;
3396 
3397 	p = get_swap_device(entry);
3398 	if (!p)
3399 		goto out;
3400 
3401 	offset = swp_offset(entry);
3402 	ci = lock_cluster_or_swap_info(p, offset);
3403 
3404 	count = p->swap_map[offset];
3405 
3406 	/*
3407 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3408 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3409 	 */
3410 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3411 		err = -ENOENT;
3412 		goto unlock_out;
3413 	}
3414 
3415 	has_cache = count & SWAP_HAS_CACHE;
3416 	count &= ~SWAP_HAS_CACHE;
3417 	err = 0;
3418 
3419 	if (usage == SWAP_HAS_CACHE) {
3420 
3421 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3422 		if (!has_cache && count)
3423 			has_cache = SWAP_HAS_CACHE;
3424 		else if (has_cache)		/* someone else added cache */
3425 			err = -EEXIST;
3426 		else				/* no users remaining */
3427 			err = -ENOENT;
3428 
3429 	} else if (count || has_cache) {
3430 
3431 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3432 			count += usage;
3433 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3434 			err = -EINVAL;
3435 		else if (swap_count_continued(p, offset, count))
3436 			count = COUNT_CONTINUED;
3437 		else
3438 			err = -ENOMEM;
3439 	} else
3440 		err = -ENOENT;			/* unused swap entry */
3441 
3442 	p->swap_map[offset] = count | has_cache;
3443 
3444 unlock_out:
3445 	unlock_cluster_or_swap_info(p, ci);
3446 out:
3447 	if (p)
3448 		put_swap_device(p);
3449 	return err;
3450 }
3451 
3452 /*
3453  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3454  * (in which case its reference count is never incremented).
3455  */
3456 void swap_shmem_alloc(swp_entry_t entry)
3457 {
3458 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3459 }
3460 
3461 /*
3462  * Increase reference count of swap entry by 1.
3463  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3464  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3465  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3466  * might occur if a page table entry has got corrupted.
3467  */
3468 int swap_duplicate(swp_entry_t entry)
3469 {
3470 	int err = 0;
3471 
3472 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3473 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3474 	return err;
3475 }
3476 
3477 /*
3478  * @entry: swap entry for which we allocate swap cache.
3479  *
3480  * Called when allocating swap cache for existing swap entry,
3481  * This can return error codes. Returns 0 at success.
3482  * -EEXIST means there is a swap cache.
3483  * Note: return code is different from swap_duplicate().
3484  */
3485 int swapcache_prepare(swp_entry_t entry)
3486 {
3487 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3488 }
3489 
3490 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3491 {
3492 	return swap_type_to_swap_info(swp_type(entry));
3493 }
3494 
3495 struct swap_info_struct *page_swap_info(struct page *page)
3496 {
3497 	swp_entry_t entry = { .val = page_private(page) };
3498 	return swp_swap_info(entry);
3499 }
3500 
3501 /*
3502  * out-of-line __page_file_ methods to avoid include hell.
3503  */
3504 struct address_space *__page_file_mapping(struct page *page)
3505 {
3506 	return page_swap_info(page)->swap_file->f_mapping;
3507 }
3508 EXPORT_SYMBOL_GPL(__page_file_mapping);
3509 
3510 pgoff_t __page_file_index(struct page *page)
3511 {
3512 	swp_entry_t swap = { .val = page_private(page) };
3513 	return swp_offset(swap);
3514 }
3515 EXPORT_SYMBOL_GPL(__page_file_index);
3516 
3517 /*
3518  * add_swap_count_continuation - called when a swap count is duplicated
3519  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3520  * page of the original vmalloc'ed swap_map, to hold the continuation count
3521  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3522  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3523  *
3524  * These continuation pages are seldom referenced: the common paths all work
3525  * on the original swap_map, only referring to a continuation page when the
3526  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3527  *
3528  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3529  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3530  * can be called after dropping locks.
3531  */
3532 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3533 {
3534 	struct swap_info_struct *si;
3535 	struct swap_cluster_info *ci;
3536 	struct page *head;
3537 	struct page *page;
3538 	struct page *list_page;
3539 	pgoff_t offset;
3540 	unsigned char count;
3541 	int ret = 0;
3542 
3543 	/*
3544 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3545 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3546 	 */
3547 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3548 
3549 	si = get_swap_device(entry);
3550 	if (!si) {
3551 		/*
3552 		 * An acceptable race has occurred since the failing
3553 		 * __swap_duplicate(): the swap device may be swapoff
3554 		 */
3555 		goto outer;
3556 	}
3557 	spin_lock(&si->lock);
3558 
3559 	offset = swp_offset(entry);
3560 
3561 	ci = lock_cluster(si, offset);
3562 
3563 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3564 
3565 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3566 		/*
3567 		 * The higher the swap count, the more likely it is that tasks
3568 		 * will race to add swap count continuation: we need to avoid
3569 		 * over-provisioning.
3570 		 */
3571 		goto out;
3572 	}
3573 
3574 	if (!page) {
3575 		ret = -ENOMEM;
3576 		goto out;
3577 	}
3578 
3579 	/*
3580 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3581 	 * no architecture is using highmem pages for kernel page tables: so it
3582 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3583 	 */
3584 	head = vmalloc_to_page(si->swap_map + offset);
3585 	offset &= ~PAGE_MASK;
3586 
3587 	spin_lock(&si->cont_lock);
3588 	/*
3589 	 * Page allocation does not initialize the page's lru field,
3590 	 * but it does always reset its private field.
3591 	 */
3592 	if (!page_private(head)) {
3593 		BUG_ON(count & COUNT_CONTINUED);
3594 		INIT_LIST_HEAD(&head->lru);
3595 		set_page_private(head, SWP_CONTINUED);
3596 		si->flags |= SWP_CONTINUED;
3597 	}
3598 
3599 	list_for_each_entry(list_page, &head->lru, lru) {
3600 		unsigned char *map;
3601 
3602 		/*
3603 		 * If the previous map said no continuation, but we've found
3604 		 * a continuation page, free our allocation and use this one.
3605 		 */
3606 		if (!(count & COUNT_CONTINUED))
3607 			goto out_unlock_cont;
3608 
3609 		map = kmap_atomic(list_page) + offset;
3610 		count = *map;
3611 		kunmap_atomic(map);
3612 
3613 		/*
3614 		 * If this continuation count now has some space in it,
3615 		 * free our allocation and use this one.
3616 		 */
3617 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3618 			goto out_unlock_cont;
3619 	}
3620 
3621 	list_add_tail(&page->lru, &head->lru);
3622 	page = NULL;			/* now it's attached, don't free it */
3623 out_unlock_cont:
3624 	spin_unlock(&si->cont_lock);
3625 out:
3626 	unlock_cluster(ci);
3627 	spin_unlock(&si->lock);
3628 	put_swap_device(si);
3629 outer:
3630 	if (page)
3631 		__free_page(page);
3632 	return ret;
3633 }
3634 
3635 /*
3636  * swap_count_continued - when the original swap_map count is incremented
3637  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3638  * into, carry if so, or else fail until a new continuation page is allocated;
3639  * when the original swap_map count is decremented from 0 with continuation,
3640  * borrow from the continuation and report whether it still holds more.
3641  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3642  * lock.
3643  */
3644 static bool swap_count_continued(struct swap_info_struct *si,
3645 				 pgoff_t offset, unsigned char count)
3646 {
3647 	struct page *head;
3648 	struct page *page;
3649 	unsigned char *map;
3650 	bool ret;
3651 
3652 	head = vmalloc_to_page(si->swap_map + offset);
3653 	if (page_private(head) != SWP_CONTINUED) {
3654 		BUG_ON(count & COUNT_CONTINUED);
3655 		return false;		/* need to add count continuation */
3656 	}
3657 
3658 	spin_lock(&si->cont_lock);
3659 	offset &= ~PAGE_MASK;
3660 	page = list_next_entry(head, lru);
3661 	map = kmap_atomic(page) + offset;
3662 
3663 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3664 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3665 
3666 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3667 		/*
3668 		 * Think of how you add 1 to 999
3669 		 */
3670 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3671 			kunmap_atomic(map);
3672 			page = list_next_entry(page, lru);
3673 			BUG_ON(page == head);
3674 			map = kmap_atomic(page) + offset;
3675 		}
3676 		if (*map == SWAP_CONT_MAX) {
3677 			kunmap_atomic(map);
3678 			page = list_next_entry(page, lru);
3679 			if (page == head) {
3680 				ret = false;	/* add count continuation */
3681 				goto out;
3682 			}
3683 			map = kmap_atomic(page) + offset;
3684 init_map:		*map = 0;		/* we didn't zero the page */
3685 		}
3686 		*map += 1;
3687 		kunmap_atomic(map);
3688 		while ((page = list_prev_entry(page, lru)) != head) {
3689 			map = kmap_atomic(page) + offset;
3690 			*map = COUNT_CONTINUED;
3691 			kunmap_atomic(map);
3692 		}
3693 		ret = true;			/* incremented */
3694 
3695 	} else {				/* decrementing */
3696 		/*
3697 		 * Think of how you subtract 1 from 1000
3698 		 */
3699 		BUG_ON(count != COUNT_CONTINUED);
3700 		while (*map == COUNT_CONTINUED) {
3701 			kunmap_atomic(map);
3702 			page = list_next_entry(page, lru);
3703 			BUG_ON(page == head);
3704 			map = kmap_atomic(page) + offset;
3705 		}
3706 		BUG_ON(*map == 0);
3707 		*map -= 1;
3708 		if (*map == 0)
3709 			count = 0;
3710 		kunmap_atomic(map);
3711 		while ((page = list_prev_entry(page, lru)) != head) {
3712 			map = kmap_atomic(page) + offset;
3713 			*map = SWAP_CONT_MAX | count;
3714 			count = COUNT_CONTINUED;
3715 			kunmap_atomic(map);
3716 		}
3717 		ret = count == COUNT_CONTINUED;
3718 	}
3719 out:
3720 	spin_unlock(&si->cont_lock);
3721 	return ret;
3722 }
3723 
3724 /*
3725  * free_swap_count_continuations - swapoff free all the continuation pages
3726  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3727  */
3728 static void free_swap_count_continuations(struct swap_info_struct *si)
3729 {
3730 	pgoff_t offset;
3731 
3732 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3733 		struct page *head;
3734 		head = vmalloc_to_page(si->swap_map + offset);
3735 		if (page_private(head)) {
3736 			struct page *page, *next;
3737 
3738 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3739 				list_del(&page->lru);
3740 				__free_page(page);
3741 			}
3742 		}
3743 	}
3744 }
3745 
3746 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3747 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3748 				  gfp_t gfp_mask)
3749 {
3750 	struct swap_info_struct *si, *next;
3751 	if (!(gfp_mask & __GFP_IO) || !memcg)
3752 		return;
3753 
3754 	if (!blk_cgroup_congested())
3755 		return;
3756 
3757 	/*
3758 	 * We've already scheduled a throttle, avoid taking the global swap
3759 	 * lock.
3760 	 */
3761 	if (current->throttle_queue)
3762 		return;
3763 
3764 	spin_lock(&swap_avail_lock);
3765 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3766 				  avail_lists[node]) {
3767 		if (si->bdev) {
3768 			blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3769 						true);
3770 			break;
3771 		}
3772 	}
3773 	spin_unlock(&swap_avail_lock);
3774 }
3775 #endif
3776 
3777 static int __init swapfile_init(void)
3778 {
3779 	int nid;
3780 
3781 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3782 					 GFP_KERNEL);
3783 	if (!swap_avail_heads) {
3784 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3785 		return -ENOMEM;
3786 	}
3787 
3788 	for_each_node(nid)
3789 		plist_head_init(&swap_avail_heads[nid]);
3790 
3791 	return 0;
3792 }
3793 subsys_initcall(swapfile_init);
3794