1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swap.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * This file contains the default values for the operation of the 10 * Linux VM subsystem. Fine-tuning documentation can be found in 11 * Documentation/admin-guide/sysctl/vm.rst. 12 * Started 18.12.91 13 * Swap aging added 23.2.95, Stephen Tweedie. 14 * Buffermem limits added 12.3.98, Rik van Riel. 15 */ 16 17 #include <linux/mm.h> 18 #include <linux/sched.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/mman.h> 22 #include <linux/pagemap.h> 23 #include <linux/pagevec.h> 24 #include <linux/init.h> 25 #include <linux/export.h> 26 #include <linux/mm_inline.h> 27 #include <linux/percpu_counter.h> 28 #include <linux/memremap.h> 29 #include <linux/percpu.h> 30 #include <linux/cpu.h> 31 #include <linux/notifier.h> 32 #include <linux/backing-dev.h> 33 #include <linux/memcontrol.h> 34 #include <linux/gfp.h> 35 #include <linux/uio.h> 36 #include <linux/hugetlb.h> 37 #include <linux/page_idle.h> 38 #include <linux/local_lock.h> 39 #include <linux/buffer_head.h> 40 41 #include "internal.h" 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/pagemap.h> 45 46 /* How many pages do we try to swap or page in/out together? */ 47 int page_cluster; 48 49 /* Protecting only lru_rotate.fbatch which requires disabling interrupts */ 50 struct lru_rotate { 51 local_lock_t lock; 52 struct folio_batch fbatch; 53 }; 54 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = { 55 .lock = INIT_LOCAL_LOCK(lock), 56 }; 57 58 /* 59 * The following folio batches are grouped together because they are protected 60 * by disabling preemption (and interrupts remain enabled). 61 */ 62 struct cpu_fbatches { 63 local_lock_t lock; 64 struct folio_batch lru_add; 65 struct folio_batch lru_deactivate_file; 66 struct folio_batch lru_deactivate; 67 struct folio_batch lru_lazyfree; 68 #ifdef CONFIG_SMP 69 struct folio_batch activate; 70 #endif 71 }; 72 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = { 73 .lock = INIT_LOCAL_LOCK(lock), 74 }; 75 76 /* 77 * This path almost never happens for VM activity - pages are normally freed 78 * via pagevecs. But it gets used by networking - and for compound pages. 79 */ 80 static void __page_cache_release(struct folio *folio) 81 { 82 if (folio_test_lru(folio)) { 83 struct lruvec *lruvec; 84 unsigned long flags; 85 86 lruvec = folio_lruvec_lock_irqsave(folio, &flags); 87 lruvec_del_folio(lruvec, folio); 88 __folio_clear_lru_flags(folio); 89 unlock_page_lruvec_irqrestore(lruvec, flags); 90 } 91 /* See comment on folio_test_mlocked in release_pages() */ 92 if (unlikely(folio_test_mlocked(folio))) { 93 long nr_pages = folio_nr_pages(folio); 94 95 __folio_clear_mlocked(folio); 96 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); 97 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); 98 } 99 } 100 101 static void __folio_put_small(struct folio *folio) 102 { 103 __page_cache_release(folio); 104 mem_cgroup_uncharge(folio); 105 free_unref_page(&folio->page, 0); 106 } 107 108 static void __folio_put_large(struct folio *folio) 109 { 110 /* 111 * __page_cache_release() is supposed to be called for thp, not for 112 * hugetlb. This is because hugetlb page does never have PageLRU set 113 * (it's never listed to any LRU lists) and no memcg routines should 114 * be called for hugetlb (it has a separate hugetlb_cgroup.) 115 */ 116 if (!folio_test_hugetlb(folio)) 117 __page_cache_release(folio); 118 destroy_large_folio(folio); 119 } 120 121 void __folio_put(struct folio *folio) 122 { 123 if (unlikely(folio_is_zone_device(folio))) 124 free_zone_device_page(&folio->page); 125 else if (unlikely(folio_test_large(folio))) 126 __folio_put_large(folio); 127 else 128 __folio_put_small(folio); 129 } 130 EXPORT_SYMBOL(__folio_put); 131 132 /** 133 * put_pages_list() - release a list of pages 134 * @pages: list of pages threaded on page->lru 135 * 136 * Release a list of pages which are strung together on page.lru. 137 */ 138 void put_pages_list(struct list_head *pages) 139 { 140 struct folio *folio, *next; 141 142 list_for_each_entry_safe(folio, next, pages, lru) { 143 if (!folio_put_testzero(folio)) { 144 list_del(&folio->lru); 145 continue; 146 } 147 if (folio_test_large(folio)) { 148 list_del(&folio->lru); 149 __folio_put_large(folio); 150 continue; 151 } 152 /* LRU flag must be clear because it's passed using the lru */ 153 } 154 155 free_unref_page_list(pages); 156 INIT_LIST_HEAD(pages); 157 } 158 EXPORT_SYMBOL(put_pages_list); 159 160 /* 161 * get_kernel_pages() - pin kernel pages in memory 162 * @kiov: An array of struct kvec structures 163 * @nr_segs: number of segments to pin 164 * @write: pinning for read/write, currently ignored 165 * @pages: array that receives pointers to the pages pinned. 166 * Should be at least nr_segs long. 167 * 168 * Returns number of pages pinned. This may be fewer than the number requested. 169 * If nr_segs is 0 or negative, returns 0. If no pages were pinned, returns 0. 170 * Each page returned must be released with a put_page() call when it is 171 * finished with. 172 */ 173 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, 174 struct page **pages) 175 { 176 int seg; 177 178 for (seg = 0; seg < nr_segs; seg++) { 179 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) 180 return seg; 181 182 pages[seg] = kmap_to_page(kiov[seg].iov_base); 183 get_page(pages[seg]); 184 } 185 186 return seg; 187 } 188 EXPORT_SYMBOL_GPL(get_kernel_pages); 189 190 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio); 191 192 static void lru_add_fn(struct lruvec *lruvec, struct folio *folio) 193 { 194 int was_unevictable = folio_test_clear_unevictable(folio); 195 long nr_pages = folio_nr_pages(folio); 196 197 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 198 199 /* 200 * Is an smp_mb__after_atomic() still required here, before 201 * folio_evictable() tests the mlocked flag, to rule out the possibility 202 * of stranding an evictable folio on an unevictable LRU? I think 203 * not, because __munlock_page() only clears the mlocked flag 204 * while the LRU lock is held. 205 * 206 * (That is not true of __page_cache_release(), and not necessarily 207 * true of release_pages(): but those only clear the mlocked flag after 208 * folio_put_testzero() has excluded any other users of the folio.) 209 */ 210 if (folio_evictable(folio)) { 211 if (was_unevictable) 212 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages); 213 } else { 214 folio_clear_active(folio); 215 folio_set_unevictable(folio); 216 /* 217 * folio->mlock_count = !!folio_test_mlocked(folio)? 218 * But that leaves __mlock_page() in doubt whether another 219 * actor has already counted the mlock or not. Err on the 220 * safe side, underestimate, let page reclaim fix it, rather 221 * than leaving a page on the unevictable LRU indefinitely. 222 */ 223 folio->mlock_count = 0; 224 if (!was_unevictable) 225 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages); 226 } 227 228 lruvec_add_folio(lruvec, folio); 229 trace_mm_lru_insertion(folio); 230 } 231 232 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn) 233 { 234 int i; 235 struct lruvec *lruvec = NULL; 236 unsigned long flags = 0; 237 238 for (i = 0; i < folio_batch_count(fbatch); i++) { 239 struct folio *folio = fbatch->folios[i]; 240 241 /* block memcg migration while the folio moves between lru */ 242 if (move_fn != lru_add_fn && !folio_test_clear_lru(folio)) 243 continue; 244 245 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags); 246 move_fn(lruvec, folio); 247 248 folio_set_lru(folio); 249 } 250 251 if (lruvec) 252 unlock_page_lruvec_irqrestore(lruvec, flags); 253 folios_put(fbatch->folios, folio_batch_count(fbatch)); 254 folio_batch_init(fbatch); 255 } 256 257 static void folio_batch_add_and_move(struct folio_batch *fbatch, 258 struct folio *folio, move_fn_t move_fn) 259 { 260 if (folio_batch_add(fbatch, folio) && !folio_test_large(folio) && 261 !lru_cache_disabled()) 262 return; 263 folio_batch_move_lru(fbatch, move_fn); 264 } 265 266 static void lru_move_tail_fn(struct lruvec *lruvec, struct folio *folio) 267 { 268 if (!folio_test_unevictable(folio)) { 269 lruvec_del_folio(lruvec, folio); 270 folio_clear_active(folio); 271 lruvec_add_folio_tail(lruvec, folio); 272 __count_vm_events(PGROTATED, folio_nr_pages(folio)); 273 } 274 } 275 276 /* 277 * Writeback is about to end against a folio which has been marked for 278 * immediate reclaim. If it still appears to be reclaimable, move it 279 * to the tail of the inactive list. 280 * 281 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races. 282 */ 283 void folio_rotate_reclaimable(struct folio *folio) 284 { 285 if (!folio_test_locked(folio) && !folio_test_dirty(folio) && 286 !folio_test_unevictable(folio) && folio_test_lru(folio)) { 287 struct folio_batch *fbatch; 288 unsigned long flags; 289 290 folio_get(folio); 291 local_lock_irqsave(&lru_rotate.lock, flags); 292 fbatch = this_cpu_ptr(&lru_rotate.fbatch); 293 folio_batch_add_and_move(fbatch, folio, lru_move_tail_fn); 294 local_unlock_irqrestore(&lru_rotate.lock, flags); 295 } 296 } 297 298 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages) 299 { 300 do { 301 unsigned long lrusize; 302 303 /* 304 * Hold lruvec->lru_lock is safe here, since 305 * 1) The pinned lruvec in reclaim, or 306 * 2) From a pre-LRU page during refault (which also holds the 307 * rcu lock, so would be safe even if the page was on the LRU 308 * and could move simultaneously to a new lruvec). 309 */ 310 spin_lock_irq(&lruvec->lru_lock); 311 /* Record cost event */ 312 if (file) 313 lruvec->file_cost += nr_pages; 314 else 315 lruvec->anon_cost += nr_pages; 316 317 /* 318 * Decay previous events 319 * 320 * Because workloads change over time (and to avoid 321 * overflow) we keep these statistics as a floating 322 * average, which ends up weighing recent refaults 323 * more than old ones. 324 */ 325 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) + 326 lruvec_page_state(lruvec, NR_ACTIVE_ANON) + 327 lruvec_page_state(lruvec, NR_INACTIVE_FILE) + 328 lruvec_page_state(lruvec, NR_ACTIVE_FILE); 329 330 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) { 331 lruvec->file_cost /= 2; 332 lruvec->anon_cost /= 2; 333 } 334 spin_unlock_irq(&lruvec->lru_lock); 335 } while ((lruvec = parent_lruvec(lruvec))); 336 } 337 338 void lru_note_cost_folio(struct folio *folio) 339 { 340 lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio), 341 folio_nr_pages(folio)); 342 } 343 344 static void folio_activate_fn(struct lruvec *lruvec, struct folio *folio) 345 { 346 if (!folio_test_active(folio) && !folio_test_unevictable(folio)) { 347 long nr_pages = folio_nr_pages(folio); 348 349 lruvec_del_folio(lruvec, folio); 350 folio_set_active(folio); 351 lruvec_add_folio(lruvec, folio); 352 trace_mm_lru_activate(folio); 353 354 __count_vm_events(PGACTIVATE, nr_pages); 355 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, 356 nr_pages); 357 } 358 } 359 360 #ifdef CONFIG_SMP 361 static void folio_activate_drain(int cpu) 362 { 363 struct folio_batch *fbatch = &per_cpu(cpu_fbatches.activate, cpu); 364 365 if (folio_batch_count(fbatch)) 366 folio_batch_move_lru(fbatch, folio_activate_fn); 367 } 368 369 static void folio_activate(struct folio *folio) 370 { 371 if (folio_test_lru(folio) && !folio_test_active(folio) && 372 !folio_test_unevictable(folio)) { 373 struct folio_batch *fbatch; 374 375 folio_get(folio); 376 local_lock(&cpu_fbatches.lock); 377 fbatch = this_cpu_ptr(&cpu_fbatches.activate); 378 folio_batch_add_and_move(fbatch, folio, folio_activate_fn); 379 local_unlock(&cpu_fbatches.lock); 380 } 381 } 382 383 #else 384 static inline void folio_activate_drain(int cpu) 385 { 386 } 387 388 static void folio_activate(struct folio *folio) 389 { 390 struct lruvec *lruvec; 391 392 if (folio_test_clear_lru(folio)) { 393 lruvec = folio_lruvec_lock_irq(folio); 394 folio_activate_fn(lruvec, folio); 395 unlock_page_lruvec_irq(lruvec); 396 folio_set_lru(folio); 397 } 398 } 399 #endif 400 401 static void __lru_cache_activate_folio(struct folio *folio) 402 { 403 struct folio_batch *fbatch; 404 int i; 405 406 local_lock(&cpu_fbatches.lock); 407 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add); 408 409 /* 410 * Search backwards on the optimistic assumption that the folio being 411 * activated has just been added to this batch. Note that only 412 * the local batch is examined as a !LRU folio could be in the 413 * process of being released, reclaimed, migrated or on a remote 414 * batch that is currently being drained. Furthermore, marking 415 * a remote batch's folio active potentially hits a race where 416 * a folio is marked active just after it is added to the inactive 417 * list causing accounting errors and BUG_ON checks to trigger. 418 */ 419 for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) { 420 struct folio *batch_folio = fbatch->folios[i]; 421 422 if (batch_folio == folio) { 423 folio_set_active(folio); 424 break; 425 } 426 } 427 428 local_unlock(&cpu_fbatches.lock); 429 } 430 431 /* 432 * Mark a page as having seen activity. 433 * 434 * inactive,unreferenced -> inactive,referenced 435 * inactive,referenced -> active,unreferenced 436 * active,unreferenced -> active,referenced 437 * 438 * When a newly allocated page is not yet visible, so safe for non-atomic ops, 439 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page). 440 */ 441 void folio_mark_accessed(struct folio *folio) 442 { 443 if (!folio_test_referenced(folio)) { 444 folio_set_referenced(folio); 445 } else if (folio_test_unevictable(folio)) { 446 /* 447 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But, 448 * this list is never rotated or maintained, so marking an 449 * unevictable page accessed has no effect. 450 */ 451 } else if (!folio_test_active(folio)) { 452 /* 453 * If the folio is on the LRU, queue it for activation via 454 * cpu_fbatches.activate. Otherwise, assume the folio is in a 455 * folio_batch, mark it active and it'll be moved to the active 456 * LRU on the next drain. 457 */ 458 if (folio_test_lru(folio)) 459 folio_activate(folio); 460 else 461 __lru_cache_activate_folio(folio); 462 folio_clear_referenced(folio); 463 workingset_activation(folio); 464 } 465 if (folio_test_idle(folio)) 466 folio_clear_idle(folio); 467 } 468 EXPORT_SYMBOL(folio_mark_accessed); 469 470 /** 471 * folio_add_lru - Add a folio to an LRU list. 472 * @folio: The folio to be added to the LRU. 473 * 474 * Queue the folio for addition to the LRU. The decision on whether 475 * to add the page to the [in]active [file|anon] list is deferred until the 476 * folio_batch is drained. This gives a chance for the caller of folio_add_lru() 477 * have the folio added to the active list using folio_mark_accessed(). 478 */ 479 void folio_add_lru(struct folio *folio) 480 { 481 struct folio_batch *fbatch; 482 483 VM_BUG_ON_FOLIO(folio_test_active(folio) && 484 folio_test_unevictable(folio), folio); 485 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 486 487 /* see the comment in lru_gen_add_folio() */ 488 if (lru_gen_enabled() && !folio_test_unevictable(folio) && 489 lru_gen_in_fault() && !(current->flags & PF_MEMALLOC)) 490 folio_set_active(folio); 491 492 folio_get(folio); 493 local_lock(&cpu_fbatches.lock); 494 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add); 495 folio_batch_add_and_move(fbatch, folio, lru_add_fn); 496 local_unlock(&cpu_fbatches.lock); 497 } 498 EXPORT_SYMBOL(folio_add_lru); 499 500 /** 501 * lru_cache_add_inactive_or_unevictable 502 * @page: the page to be added to LRU 503 * @vma: vma in which page is mapped for determining reclaimability 504 * 505 * Place @page on the inactive or unevictable LRU list, depending on its 506 * evictability. 507 */ 508 void lru_cache_add_inactive_or_unevictable(struct page *page, 509 struct vm_area_struct *vma) 510 { 511 VM_BUG_ON_PAGE(PageLRU(page), page); 512 513 if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED)) 514 mlock_new_page(page); 515 else 516 lru_cache_add(page); 517 } 518 519 /* 520 * If the folio cannot be invalidated, it is moved to the 521 * inactive list to speed up its reclaim. It is moved to the 522 * head of the list, rather than the tail, to give the flusher 523 * threads some time to write it out, as this is much more 524 * effective than the single-page writeout from reclaim. 525 * 526 * If the folio isn't mapped and dirty/writeback, the folio 527 * could be reclaimed asap using the reclaim flag. 528 * 529 * 1. active, mapped folio -> none 530 * 2. active, dirty/writeback folio -> inactive, head, reclaim 531 * 3. inactive, mapped folio -> none 532 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim 533 * 5. inactive, clean -> inactive, tail 534 * 6. Others -> none 535 * 536 * In 4, it moves to the head of the inactive list so the folio is 537 * written out by flusher threads as this is much more efficient 538 * than the single-page writeout from reclaim. 539 */ 540 static void lru_deactivate_file_fn(struct lruvec *lruvec, struct folio *folio) 541 { 542 bool active = folio_test_active(folio); 543 long nr_pages = folio_nr_pages(folio); 544 545 if (folio_test_unevictable(folio)) 546 return; 547 548 /* Some processes are using the folio */ 549 if (folio_mapped(folio)) 550 return; 551 552 lruvec_del_folio(lruvec, folio); 553 folio_clear_active(folio); 554 folio_clear_referenced(folio); 555 556 if (folio_test_writeback(folio) || folio_test_dirty(folio)) { 557 /* 558 * Setting the reclaim flag could race with 559 * folio_end_writeback() and confuse readahead. But the 560 * race window is _really_ small and it's not a critical 561 * problem. 562 */ 563 lruvec_add_folio(lruvec, folio); 564 folio_set_reclaim(folio); 565 } else { 566 /* 567 * The folio's writeback ended while it was in the batch. 568 * We move that folio to the tail of the inactive list. 569 */ 570 lruvec_add_folio_tail(lruvec, folio); 571 __count_vm_events(PGROTATED, nr_pages); 572 } 573 574 if (active) { 575 __count_vm_events(PGDEACTIVATE, nr_pages); 576 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 577 nr_pages); 578 } 579 } 580 581 static void lru_deactivate_fn(struct lruvec *lruvec, struct folio *folio) 582 { 583 if (!folio_test_unevictable(folio) && (folio_test_active(folio) || lru_gen_enabled())) { 584 long nr_pages = folio_nr_pages(folio); 585 586 lruvec_del_folio(lruvec, folio); 587 folio_clear_active(folio); 588 folio_clear_referenced(folio); 589 lruvec_add_folio(lruvec, folio); 590 591 __count_vm_events(PGDEACTIVATE, nr_pages); 592 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 593 nr_pages); 594 } 595 } 596 597 static void lru_lazyfree_fn(struct lruvec *lruvec, struct folio *folio) 598 { 599 if (folio_test_anon(folio) && folio_test_swapbacked(folio) && 600 !folio_test_swapcache(folio) && !folio_test_unevictable(folio)) { 601 long nr_pages = folio_nr_pages(folio); 602 603 lruvec_del_folio(lruvec, folio); 604 folio_clear_active(folio); 605 folio_clear_referenced(folio); 606 /* 607 * Lazyfree folios are clean anonymous folios. They have 608 * the swapbacked flag cleared, to distinguish them from normal 609 * anonymous folios 610 */ 611 folio_clear_swapbacked(folio); 612 lruvec_add_folio(lruvec, folio); 613 614 __count_vm_events(PGLAZYFREE, nr_pages); 615 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, 616 nr_pages); 617 } 618 } 619 620 /* 621 * Drain pages out of the cpu's folio_batch. 622 * Either "cpu" is the current CPU, and preemption has already been 623 * disabled; or "cpu" is being hot-unplugged, and is already dead. 624 */ 625 void lru_add_drain_cpu(int cpu) 626 { 627 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu); 628 struct folio_batch *fbatch = &fbatches->lru_add; 629 630 if (folio_batch_count(fbatch)) 631 folio_batch_move_lru(fbatch, lru_add_fn); 632 633 fbatch = &per_cpu(lru_rotate.fbatch, cpu); 634 /* Disabling interrupts below acts as a compiler barrier. */ 635 if (data_race(folio_batch_count(fbatch))) { 636 unsigned long flags; 637 638 /* No harm done if a racing interrupt already did this */ 639 local_lock_irqsave(&lru_rotate.lock, flags); 640 folio_batch_move_lru(fbatch, lru_move_tail_fn); 641 local_unlock_irqrestore(&lru_rotate.lock, flags); 642 } 643 644 fbatch = &fbatches->lru_deactivate_file; 645 if (folio_batch_count(fbatch)) 646 folio_batch_move_lru(fbatch, lru_deactivate_file_fn); 647 648 fbatch = &fbatches->lru_deactivate; 649 if (folio_batch_count(fbatch)) 650 folio_batch_move_lru(fbatch, lru_deactivate_fn); 651 652 fbatch = &fbatches->lru_lazyfree; 653 if (folio_batch_count(fbatch)) 654 folio_batch_move_lru(fbatch, lru_lazyfree_fn); 655 656 folio_activate_drain(cpu); 657 } 658 659 /** 660 * deactivate_file_folio() - Deactivate a file folio. 661 * @folio: Folio to deactivate. 662 * 663 * This function hints to the VM that @folio is a good reclaim candidate, 664 * for example if its invalidation fails due to the folio being dirty 665 * or under writeback. 666 * 667 * Context: Caller holds a reference on the folio. 668 */ 669 void deactivate_file_folio(struct folio *folio) 670 { 671 struct folio_batch *fbatch; 672 673 /* Deactivating an unevictable folio will not accelerate reclaim */ 674 if (folio_test_unevictable(folio)) 675 return; 676 677 folio_get(folio); 678 local_lock(&cpu_fbatches.lock); 679 fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate_file); 680 folio_batch_add_and_move(fbatch, folio, lru_deactivate_file_fn); 681 local_unlock(&cpu_fbatches.lock); 682 } 683 684 /* 685 * deactivate_page - deactivate a page 686 * @page: page to deactivate 687 * 688 * deactivate_page() moves @page to the inactive list if @page was on the active 689 * list and was not an unevictable page. This is done to accelerate the reclaim 690 * of @page. 691 */ 692 void deactivate_page(struct page *page) 693 { 694 struct folio *folio = page_folio(page); 695 696 if (folio_test_lru(folio) && !folio_test_unevictable(folio) && 697 (folio_test_active(folio) || lru_gen_enabled())) { 698 struct folio_batch *fbatch; 699 700 folio_get(folio); 701 local_lock(&cpu_fbatches.lock); 702 fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate); 703 folio_batch_add_and_move(fbatch, folio, lru_deactivate_fn); 704 local_unlock(&cpu_fbatches.lock); 705 } 706 } 707 708 /** 709 * mark_page_lazyfree - make an anon page lazyfree 710 * @page: page to deactivate 711 * 712 * mark_page_lazyfree() moves @page to the inactive file list. 713 * This is done to accelerate the reclaim of @page. 714 */ 715 void mark_page_lazyfree(struct page *page) 716 { 717 struct folio *folio = page_folio(page); 718 719 if (folio_test_lru(folio) && folio_test_anon(folio) && 720 folio_test_swapbacked(folio) && !folio_test_swapcache(folio) && 721 !folio_test_unevictable(folio)) { 722 struct folio_batch *fbatch; 723 724 folio_get(folio); 725 local_lock(&cpu_fbatches.lock); 726 fbatch = this_cpu_ptr(&cpu_fbatches.lru_lazyfree); 727 folio_batch_add_and_move(fbatch, folio, lru_lazyfree_fn); 728 local_unlock(&cpu_fbatches.lock); 729 } 730 } 731 732 void lru_add_drain(void) 733 { 734 local_lock(&cpu_fbatches.lock); 735 lru_add_drain_cpu(smp_processor_id()); 736 local_unlock(&cpu_fbatches.lock); 737 mlock_page_drain_local(); 738 } 739 740 /* 741 * It's called from per-cpu workqueue context in SMP case so 742 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on 743 * the same cpu. It shouldn't be a problem in !SMP case since 744 * the core is only one and the locks will disable preemption. 745 */ 746 static void lru_add_and_bh_lrus_drain(void) 747 { 748 local_lock(&cpu_fbatches.lock); 749 lru_add_drain_cpu(smp_processor_id()); 750 local_unlock(&cpu_fbatches.lock); 751 invalidate_bh_lrus_cpu(); 752 mlock_page_drain_local(); 753 } 754 755 void lru_add_drain_cpu_zone(struct zone *zone) 756 { 757 local_lock(&cpu_fbatches.lock); 758 lru_add_drain_cpu(smp_processor_id()); 759 drain_local_pages(zone); 760 local_unlock(&cpu_fbatches.lock); 761 mlock_page_drain_local(); 762 } 763 764 #ifdef CONFIG_SMP 765 766 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); 767 768 static void lru_add_drain_per_cpu(struct work_struct *dummy) 769 { 770 lru_add_and_bh_lrus_drain(); 771 } 772 773 static bool cpu_needs_drain(unsigned int cpu) 774 { 775 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu); 776 777 /* Check these in order of likelihood that they're not zero */ 778 return folio_batch_count(&fbatches->lru_add) || 779 data_race(folio_batch_count(&per_cpu(lru_rotate.fbatch, cpu))) || 780 folio_batch_count(&fbatches->lru_deactivate_file) || 781 folio_batch_count(&fbatches->lru_deactivate) || 782 folio_batch_count(&fbatches->lru_lazyfree) || 783 folio_batch_count(&fbatches->activate) || 784 need_mlock_page_drain(cpu) || 785 has_bh_in_lru(cpu, NULL); 786 } 787 788 /* 789 * Doesn't need any cpu hotplug locking because we do rely on per-cpu 790 * kworkers being shut down before our page_alloc_cpu_dead callback is 791 * executed on the offlined cpu. 792 * Calling this function with cpu hotplug locks held can actually lead 793 * to obscure indirect dependencies via WQ context. 794 */ 795 static inline void __lru_add_drain_all(bool force_all_cpus) 796 { 797 /* 798 * lru_drain_gen - Global pages generation number 799 * 800 * (A) Definition: global lru_drain_gen = x implies that all generations 801 * 0 < n <= x are already *scheduled* for draining. 802 * 803 * This is an optimization for the highly-contended use case where a 804 * user space workload keeps constantly generating a flow of pages for 805 * each CPU. 806 */ 807 static unsigned int lru_drain_gen; 808 static struct cpumask has_work; 809 static DEFINE_MUTEX(lock); 810 unsigned cpu, this_gen; 811 812 /* 813 * Make sure nobody triggers this path before mm_percpu_wq is fully 814 * initialized. 815 */ 816 if (WARN_ON(!mm_percpu_wq)) 817 return; 818 819 /* 820 * Guarantee folio_batch counter stores visible by this CPU 821 * are visible to other CPUs before loading the current drain 822 * generation. 823 */ 824 smp_mb(); 825 826 /* 827 * (B) Locally cache global LRU draining generation number 828 * 829 * The read barrier ensures that the counter is loaded before the mutex 830 * is taken. It pairs with smp_mb() inside the mutex critical section 831 * at (D). 832 */ 833 this_gen = smp_load_acquire(&lru_drain_gen); 834 835 mutex_lock(&lock); 836 837 /* 838 * (C) Exit the draining operation if a newer generation, from another 839 * lru_add_drain_all(), was already scheduled for draining. Check (A). 840 */ 841 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus)) 842 goto done; 843 844 /* 845 * (D) Increment global generation number 846 * 847 * Pairs with smp_load_acquire() at (B), outside of the critical 848 * section. Use a full memory barrier to guarantee that the 849 * new global drain generation number is stored before loading 850 * folio_batch counters. 851 * 852 * This pairing must be done here, before the for_each_online_cpu loop 853 * below which drains the page vectors. 854 * 855 * Let x, y, and z represent some system CPU numbers, where x < y < z. 856 * Assume CPU #z is in the middle of the for_each_online_cpu loop 857 * below and has already reached CPU #y's per-cpu data. CPU #x comes 858 * along, adds some pages to its per-cpu vectors, then calls 859 * lru_add_drain_all(). 860 * 861 * If the paired barrier is done at any later step, e.g. after the 862 * loop, CPU #x will just exit at (C) and miss flushing out all of its 863 * added pages. 864 */ 865 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1); 866 smp_mb(); 867 868 cpumask_clear(&has_work); 869 for_each_online_cpu(cpu) { 870 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); 871 872 if (cpu_needs_drain(cpu)) { 873 INIT_WORK(work, lru_add_drain_per_cpu); 874 queue_work_on(cpu, mm_percpu_wq, work); 875 __cpumask_set_cpu(cpu, &has_work); 876 } 877 } 878 879 for_each_cpu(cpu, &has_work) 880 flush_work(&per_cpu(lru_add_drain_work, cpu)); 881 882 done: 883 mutex_unlock(&lock); 884 } 885 886 void lru_add_drain_all(void) 887 { 888 __lru_add_drain_all(false); 889 } 890 #else 891 void lru_add_drain_all(void) 892 { 893 lru_add_drain(); 894 } 895 #endif /* CONFIG_SMP */ 896 897 atomic_t lru_disable_count = ATOMIC_INIT(0); 898 899 /* 900 * lru_cache_disable() needs to be called before we start compiling 901 * a list of pages to be migrated using isolate_lru_page(). 902 * It drains pages on LRU cache and then disable on all cpus until 903 * lru_cache_enable is called. 904 * 905 * Must be paired with a call to lru_cache_enable(). 906 */ 907 void lru_cache_disable(void) 908 { 909 atomic_inc(&lru_disable_count); 910 /* 911 * Readers of lru_disable_count are protected by either disabling 912 * preemption or rcu_read_lock: 913 * 914 * preempt_disable, local_irq_disable [bh_lru_lock()] 915 * rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT] 916 * preempt_disable [local_lock !CONFIG_PREEMPT_RT] 917 * 918 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on 919 * preempt_disable() regions of code. So any CPU which sees 920 * lru_disable_count = 0 will have exited the critical 921 * section when synchronize_rcu() returns. 922 */ 923 synchronize_rcu_expedited(); 924 #ifdef CONFIG_SMP 925 __lru_add_drain_all(true); 926 #else 927 lru_add_and_bh_lrus_drain(); 928 #endif 929 } 930 931 /** 932 * release_pages - batched put_page() 933 * @pages: array of pages to release 934 * @nr: number of pages 935 * 936 * Decrement the reference count on all the pages in @pages. If it 937 * fell to zero, remove the page from the LRU and free it. 938 */ 939 void release_pages(struct page **pages, int nr) 940 { 941 int i; 942 LIST_HEAD(pages_to_free); 943 struct lruvec *lruvec = NULL; 944 unsigned long flags = 0; 945 unsigned int lock_batch; 946 947 for (i = 0; i < nr; i++) { 948 struct folio *folio = page_folio(pages[i]); 949 950 /* 951 * Make sure the IRQ-safe lock-holding time does not get 952 * excessive with a continuous string of pages from the 953 * same lruvec. The lock is held only if lruvec != NULL. 954 */ 955 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) { 956 unlock_page_lruvec_irqrestore(lruvec, flags); 957 lruvec = NULL; 958 } 959 960 if (is_huge_zero_page(&folio->page)) 961 continue; 962 963 if (folio_is_zone_device(folio)) { 964 if (lruvec) { 965 unlock_page_lruvec_irqrestore(lruvec, flags); 966 lruvec = NULL; 967 } 968 if (put_devmap_managed_page(&folio->page)) 969 continue; 970 if (folio_put_testzero(folio)) 971 free_zone_device_page(&folio->page); 972 continue; 973 } 974 975 if (!folio_put_testzero(folio)) 976 continue; 977 978 if (folio_test_large(folio)) { 979 if (lruvec) { 980 unlock_page_lruvec_irqrestore(lruvec, flags); 981 lruvec = NULL; 982 } 983 __folio_put_large(folio); 984 continue; 985 } 986 987 if (folio_test_lru(folio)) { 988 struct lruvec *prev_lruvec = lruvec; 989 990 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, 991 &flags); 992 if (prev_lruvec != lruvec) 993 lock_batch = 0; 994 995 lruvec_del_folio(lruvec, folio); 996 __folio_clear_lru_flags(folio); 997 } 998 999 /* 1000 * In rare cases, when truncation or holepunching raced with 1001 * munlock after VM_LOCKED was cleared, Mlocked may still be 1002 * found set here. This does not indicate a problem, unless 1003 * "unevictable_pgs_cleared" appears worryingly large. 1004 */ 1005 if (unlikely(folio_test_mlocked(folio))) { 1006 __folio_clear_mlocked(folio); 1007 zone_stat_sub_folio(folio, NR_MLOCK); 1008 count_vm_event(UNEVICTABLE_PGCLEARED); 1009 } 1010 1011 list_add(&folio->lru, &pages_to_free); 1012 } 1013 if (lruvec) 1014 unlock_page_lruvec_irqrestore(lruvec, flags); 1015 1016 mem_cgroup_uncharge_list(&pages_to_free); 1017 free_unref_page_list(&pages_to_free); 1018 } 1019 EXPORT_SYMBOL(release_pages); 1020 1021 /* 1022 * The pages which we're about to release may be in the deferred lru-addition 1023 * queues. That would prevent them from really being freed right now. That's 1024 * OK from a correctness point of view but is inefficient - those pages may be 1025 * cache-warm and we want to give them back to the page allocator ASAP. 1026 * 1027 * So __pagevec_release() will drain those queues here. 1028 * folio_batch_move_lru() calls folios_put() directly to avoid 1029 * mutual recursion. 1030 */ 1031 void __pagevec_release(struct pagevec *pvec) 1032 { 1033 if (!pvec->percpu_pvec_drained) { 1034 lru_add_drain(); 1035 pvec->percpu_pvec_drained = true; 1036 } 1037 release_pages(pvec->pages, pagevec_count(pvec)); 1038 pagevec_reinit(pvec); 1039 } 1040 EXPORT_SYMBOL(__pagevec_release); 1041 1042 /** 1043 * folio_batch_remove_exceptionals() - Prune non-folios from a batch. 1044 * @fbatch: The batch to prune 1045 * 1046 * find_get_entries() fills a batch with both folios and shadow/swap/DAX 1047 * entries. This function prunes all the non-folio entries from @fbatch 1048 * without leaving holes, so that it can be passed on to folio-only batch 1049 * operations. 1050 */ 1051 void folio_batch_remove_exceptionals(struct folio_batch *fbatch) 1052 { 1053 unsigned int i, j; 1054 1055 for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) { 1056 struct folio *folio = fbatch->folios[i]; 1057 if (!xa_is_value(folio)) 1058 fbatch->folios[j++] = folio; 1059 } 1060 fbatch->nr = j; 1061 } 1062 1063 unsigned pagevec_lookup_range_tag(struct pagevec *pvec, 1064 struct address_space *mapping, pgoff_t *index, pgoff_t end, 1065 xa_mark_t tag) 1066 { 1067 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag, 1068 PAGEVEC_SIZE, pvec->pages); 1069 return pagevec_count(pvec); 1070 } 1071 EXPORT_SYMBOL(pagevec_lookup_range_tag); 1072 1073 /* 1074 * Perform any setup for the swap system 1075 */ 1076 void __init swap_setup(void) 1077 { 1078 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT); 1079 1080 /* Use a smaller cluster for small-memory machines */ 1081 if (megs < 16) 1082 page_cluster = 2; 1083 else 1084 page_cluster = 3; 1085 /* 1086 * Right now other parts of the system means that we 1087 * _really_ don't want to cluster much more 1088 */ 1089 } 1090