xref: /openbmc/linux/mm/swap.c (revision 7ca4282ade77de53b6e9ffa2695566e5d35dab1e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swap.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * This file contains the default values for the operation of the
10  * Linux VM subsystem. Fine-tuning documentation can be found in
11  * Documentation/admin-guide/sysctl/vm.rst.
12  * Started 18.12.91
13  * Swap aging added 23.2.95, Stephen Tweedie.
14  * Buffermem limits added 12.3.98, Rik van Riel.
15  */
16 
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 
40 #include "internal.h"
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/pagemap.h>
44 
45 /* How many pages do we try to swap or page in/out together? */
46 int page_cluster;
47 
48 /* Protecting only lru_rotate.pvec which requires disabling interrupts */
49 struct lru_rotate {
50 	local_lock_t lock;
51 	struct pagevec pvec;
52 };
53 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
54 	.lock = INIT_LOCAL_LOCK(lock),
55 };
56 
57 /*
58  * The following struct pagevec are grouped together because they are protected
59  * by disabling preemption (and interrupts remain enabled).
60  */
61 struct lru_pvecs {
62 	local_lock_t lock;
63 	struct pagevec lru_add;
64 	struct pagevec lru_deactivate_file;
65 	struct pagevec lru_deactivate;
66 	struct pagevec lru_lazyfree;
67 #ifdef CONFIG_SMP
68 	struct pagevec activate_page;
69 #endif
70 };
71 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
72 	.lock = INIT_LOCAL_LOCK(lock),
73 };
74 
75 /*
76  * This path almost never happens for VM activity - pages are normally
77  * freed via pagevecs.  But it gets used by networking.
78  */
79 static void __page_cache_release(struct page *page)
80 {
81 	if (PageLRU(page)) {
82 		pg_data_t *pgdat = page_pgdat(page);
83 		struct lruvec *lruvec;
84 		unsigned long flags;
85 
86 		spin_lock_irqsave(&pgdat->lru_lock, flags);
87 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
88 		VM_BUG_ON_PAGE(!PageLRU(page), page);
89 		__ClearPageLRU(page);
90 		del_page_from_lru_list(page, lruvec, page_off_lru(page));
91 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
92 	}
93 	__ClearPageWaiters(page);
94 }
95 
96 static void __put_single_page(struct page *page)
97 {
98 	__page_cache_release(page);
99 	mem_cgroup_uncharge(page);
100 	free_unref_page(page);
101 }
102 
103 static void __put_compound_page(struct page *page)
104 {
105 	/*
106 	 * __page_cache_release() is supposed to be called for thp, not for
107 	 * hugetlb. This is because hugetlb page does never have PageLRU set
108 	 * (it's never listed to any LRU lists) and no memcg routines should
109 	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
110 	 */
111 	if (!PageHuge(page))
112 		__page_cache_release(page);
113 	destroy_compound_page(page);
114 }
115 
116 void __put_page(struct page *page)
117 {
118 	if (is_zone_device_page(page)) {
119 		put_dev_pagemap(page->pgmap);
120 
121 		/*
122 		 * The page belongs to the device that created pgmap. Do
123 		 * not return it to page allocator.
124 		 */
125 		return;
126 	}
127 
128 	if (unlikely(PageCompound(page)))
129 		__put_compound_page(page);
130 	else
131 		__put_single_page(page);
132 }
133 EXPORT_SYMBOL(__put_page);
134 
135 /**
136  * put_pages_list() - release a list of pages
137  * @pages: list of pages threaded on page->lru
138  *
139  * Release a list of pages which are strung together on page.lru.  Currently
140  * used by read_cache_pages() and related error recovery code.
141  */
142 void put_pages_list(struct list_head *pages)
143 {
144 	while (!list_empty(pages)) {
145 		struct page *victim;
146 
147 		victim = lru_to_page(pages);
148 		list_del(&victim->lru);
149 		put_page(victim);
150 	}
151 }
152 EXPORT_SYMBOL(put_pages_list);
153 
154 /*
155  * get_kernel_pages() - pin kernel pages in memory
156  * @kiov:	An array of struct kvec structures
157  * @nr_segs:	number of segments to pin
158  * @write:	pinning for read/write, currently ignored
159  * @pages:	array that receives pointers to the pages pinned.
160  *		Should be at least nr_segs long.
161  *
162  * Returns number of pages pinned. This may be fewer than the number
163  * requested. If nr_pages is 0 or negative, returns 0. If no pages
164  * were pinned, returns -errno. Each page returned must be released
165  * with a put_page() call when it is finished with.
166  */
167 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
168 		struct page **pages)
169 {
170 	int seg;
171 
172 	for (seg = 0; seg < nr_segs; seg++) {
173 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
174 			return seg;
175 
176 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
177 		get_page(pages[seg]);
178 	}
179 
180 	return seg;
181 }
182 EXPORT_SYMBOL_GPL(get_kernel_pages);
183 
184 /*
185  * get_kernel_page() - pin a kernel page in memory
186  * @start:	starting kernel address
187  * @write:	pinning for read/write, currently ignored
188  * @pages:	array that receives pointer to the page pinned.
189  *		Must be at least nr_segs long.
190  *
191  * Returns 1 if page is pinned. If the page was not pinned, returns
192  * -errno. The page returned must be released with a put_page() call
193  * when it is finished with.
194  */
195 int get_kernel_page(unsigned long start, int write, struct page **pages)
196 {
197 	const struct kvec kiov = {
198 		.iov_base = (void *)start,
199 		.iov_len = PAGE_SIZE
200 	};
201 
202 	return get_kernel_pages(&kiov, 1, write, pages);
203 }
204 EXPORT_SYMBOL_GPL(get_kernel_page);
205 
206 static void pagevec_lru_move_fn(struct pagevec *pvec,
207 	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
208 	void *arg)
209 {
210 	int i;
211 	struct pglist_data *pgdat = NULL;
212 	struct lruvec *lruvec;
213 	unsigned long flags = 0;
214 
215 	for (i = 0; i < pagevec_count(pvec); i++) {
216 		struct page *page = pvec->pages[i];
217 		struct pglist_data *pagepgdat = page_pgdat(page);
218 
219 		if (pagepgdat != pgdat) {
220 			if (pgdat)
221 				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
222 			pgdat = pagepgdat;
223 			spin_lock_irqsave(&pgdat->lru_lock, flags);
224 		}
225 
226 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
227 		(*move_fn)(page, lruvec, arg);
228 	}
229 	if (pgdat)
230 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
231 	release_pages(pvec->pages, pvec->nr);
232 	pagevec_reinit(pvec);
233 }
234 
235 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
236 				 void *arg)
237 {
238 	int *pgmoved = arg;
239 
240 	if (PageLRU(page) && !PageUnevictable(page)) {
241 		del_page_from_lru_list(page, lruvec, page_lru(page));
242 		ClearPageActive(page);
243 		add_page_to_lru_list_tail(page, lruvec, page_lru(page));
244 		(*pgmoved) += thp_nr_pages(page);
245 	}
246 }
247 
248 /*
249  * pagevec_move_tail() must be called with IRQ disabled.
250  * Otherwise this may cause nasty races.
251  */
252 static void pagevec_move_tail(struct pagevec *pvec)
253 {
254 	int pgmoved = 0;
255 
256 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
257 	__count_vm_events(PGROTATED, pgmoved);
258 }
259 
260 /*
261  * Writeback is about to end against a page which has been marked for immediate
262  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
263  * inactive list.
264  */
265 void rotate_reclaimable_page(struct page *page)
266 {
267 	if (!PageLocked(page) && !PageDirty(page) &&
268 	    !PageUnevictable(page) && PageLRU(page)) {
269 		struct pagevec *pvec;
270 		unsigned long flags;
271 
272 		get_page(page);
273 		local_lock_irqsave(&lru_rotate.lock, flags);
274 		pvec = this_cpu_ptr(&lru_rotate.pvec);
275 		if (!pagevec_add(pvec, page) || PageCompound(page))
276 			pagevec_move_tail(pvec);
277 		local_unlock_irqrestore(&lru_rotate.lock, flags);
278 	}
279 }
280 
281 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
282 {
283 	do {
284 		unsigned long lrusize;
285 
286 		/* Record cost event */
287 		if (file)
288 			lruvec->file_cost += nr_pages;
289 		else
290 			lruvec->anon_cost += nr_pages;
291 
292 		/*
293 		 * Decay previous events
294 		 *
295 		 * Because workloads change over time (and to avoid
296 		 * overflow) we keep these statistics as a floating
297 		 * average, which ends up weighing recent refaults
298 		 * more than old ones.
299 		 */
300 		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
301 			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
302 			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
303 			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
304 
305 		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
306 			lruvec->file_cost /= 2;
307 			lruvec->anon_cost /= 2;
308 		}
309 	} while ((lruvec = parent_lruvec(lruvec)));
310 }
311 
312 void lru_note_cost_page(struct page *page)
313 {
314 	lru_note_cost(mem_cgroup_page_lruvec(page, page_pgdat(page)),
315 		      page_is_file_lru(page), thp_nr_pages(page));
316 }
317 
318 static void __activate_page(struct page *page, struct lruvec *lruvec,
319 			    void *arg)
320 {
321 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
322 		int lru = page_lru_base_type(page);
323 		int nr_pages = thp_nr_pages(page);
324 
325 		del_page_from_lru_list(page, lruvec, lru);
326 		SetPageActive(page);
327 		lru += LRU_ACTIVE;
328 		add_page_to_lru_list(page, lruvec, lru);
329 		trace_mm_lru_activate(page);
330 
331 		__count_vm_events(PGACTIVATE, nr_pages);
332 		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
333 				     nr_pages);
334 	}
335 }
336 
337 #ifdef CONFIG_SMP
338 static void activate_page_drain(int cpu)
339 {
340 	struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
341 
342 	if (pagevec_count(pvec))
343 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
344 }
345 
346 static bool need_activate_page_drain(int cpu)
347 {
348 	return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
349 }
350 
351 static void activate_page(struct page *page)
352 {
353 	page = compound_head(page);
354 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
355 		struct pagevec *pvec;
356 
357 		local_lock(&lru_pvecs.lock);
358 		pvec = this_cpu_ptr(&lru_pvecs.activate_page);
359 		get_page(page);
360 		if (!pagevec_add(pvec, page) || PageCompound(page))
361 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
362 		local_unlock(&lru_pvecs.lock);
363 	}
364 }
365 
366 #else
367 static inline void activate_page_drain(int cpu)
368 {
369 }
370 
371 static void activate_page(struct page *page)
372 {
373 	pg_data_t *pgdat = page_pgdat(page);
374 
375 	page = compound_head(page);
376 	spin_lock_irq(&pgdat->lru_lock);
377 	__activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL);
378 	spin_unlock_irq(&pgdat->lru_lock);
379 }
380 #endif
381 
382 static void __lru_cache_activate_page(struct page *page)
383 {
384 	struct pagevec *pvec;
385 	int i;
386 
387 	local_lock(&lru_pvecs.lock);
388 	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
389 
390 	/*
391 	 * Search backwards on the optimistic assumption that the page being
392 	 * activated has just been added to this pagevec. Note that only
393 	 * the local pagevec is examined as a !PageLRU page could be in the
394 	 * process of being released, reclaimed, migrated or on a remote
395 	 * pagevec that is currently being drained. Furthermore, marking
396 	 * a remote pagevec's page PageActive potentially hits a race where
397 	 * a page is marked PageActive just after it is added to the inactive
398 	 * list causing accounting errors and BUG_ON checks to trigger.
399 	 */
400 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
401 		struct page *pagevec_page = pvec->pages[i];
402 
403 		if (pagevec_page == page) {
404 			SetPageActive(page);
405 			break;
406 		}
407 	}
408 
409 	local_unlock(&lru_pvecs.lock);
410 }
411 
412 /*
413  * Mark a page as having seen activity.
414  *
415  * inactive,unreferenced	->	inactive,referenced
416  * inactive,referenced		->	active,unreferenced
417  * active,unreferenced		->	active,referenced
418  *
419  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
420  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
421  */
422 void mark_page_accessed(struct page *page)
423 {
424 	page = compound_head(page);
425 
426 	if (!PageReferenced(page)) {
427 		SetPageReferenced(page);
428 	} else if (PageUnevictable(page)) {
429 		/*
430 		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
431 		 * this list is never rotated or maintained, so marking an
432 		 * evictable page accessed has no effect.
433 		 */
434 	} else if (!PageActive(page)) {
435 		/*
436 		 * If the page is on the LRU, queue it for activation via
437 		 * lru_pvecs.activate_page. Otherwise, assume the page is on a
438 		 * pagevec, mark it active and it'll be moved to the active
439 		 * LRU on the next drain.
440 		 */
441 		if (PageLRU(page))
442 			activate_page(page);
443 		else
444 			__lru_cache_activate_page(page);
445 		ClearPageReferenced(page);
446 		workingset_activation(page);
447 	}
448 	if (page_is_idle(page))
449 		clear_page_idle(page);
450 }
451 EXPORT_SYMBOL(mark_page_accessed);
452 
453 /**
454  * lru_cache_add - add a page to a page list
455  * @page: the page to be added to the LRU.
456  *
457  * Queue the page for addition to the LRU via pagevec. The decision on whether
458  * to add the page to the [in]active [file|anon] list is deferred until the
459  * pagevec is drained. This gives a chance for the caller of lru_cache_add()
460  * have the page added to the active list using mark_page_accessed().
461  */
462 void lru_cache_add(struct page *page)
463 {
464 	struct pagevec *pvec;
465 
466 	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
467 	VM_BUG_ON_PAGE(PageLRU(page), page);
468 
469 	get_page(page);
470 	local_lock(&lru_pvecs.lock);
471 	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
472 	if (!pagevec_add(pvec, page) || PageCompound(page))
473 		__pagevec_lru_add(pvec);
474 	local_unlock(&lru_pvecs.lock);
475 }
476 EXPORT_SYMBOL(lru_cache_add);
477 
478 /**
479  * lru_cache_add_inactive_or_unevictable
480  * @page:  the page to be added to LRU
481  * @vma:   vma in which page is mapped for determining reclaimability
482  *
483  * Place @page on the inactive or unevictable LRU list, depending on its
484  * evictability.
485  */
486 void lru_cache_add_inactive_or_unevictable(struct page *page,
487 					 struct vm_area_struct *vma)
488 {
489 	bool unevictable;
490 
491 	VM_BUG_ON_PAGE(PageLRU(page), page);
492 
493 	unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
494 	if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
495 		int nr_pages = thp_nr_pages(page);
496 		/*
497 		 * We use the irq-unsafe __mod_zone_page_stat because this
498 		 * counter is not modified from interrupt context, and the pte
499 		 * lock is held(spinlock), which implies preemption disabled.
500 		 */
501 		__mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
502 		count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
503 	}
504 	lru_cache_add(page);
505 }
506 
507 /*
508  * If the page can not be invalidated, it is moved to the
509  * inactive list to speed up its reclaim.  It is moved to the
510  * head of the list, rather than the tail, to give the flusher
511  * threads some time to write it out, as this is much more
512  * effective than the single-page writeout from reclaim.
513  *
514  * If the page isn't page_mapped and dirty/writeback, the page
515  * could reclaim asap using PG_reclaim.
516  *
517  * 1. active, mapped page -> none
518  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
519  * 3. inactive, mapped page -> none
520  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
521  * 5. inactive, clean -> inactive, tail
522  * 6. Others -> none
523  *
524  * In 4, why it moves inactive's head, the VM expects the page would
525  * be write it out by flusher threads as this is much more effective
526  * than the single-page writeout from reclaim.
527  */
528 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
529 			      void *arg)
530 {
531 	int lru;
532 	bool active;
533 	int nr_pages = thp_nr_pages(page);
534 
535 	if (!PageLRU(page))
536 		return;
537 
538 	if (PageUnevictable(page))
539 		return;
540 
541 	/* Some processes are using the page */
542 	if (page_mapped(page))
543 		return;
544 
545 	active = PageActive(page);
546 	lru = page_lru_base_type(page);
547 
548 	del_page_from_lru_list(page, lruvec, lru + active);
549 	ClearPageActive(page);
550 	ClearPageReferenced(page);
551 
552 	if (PageWriteback(page) || PageDirty(page)) {
553 		/*
554 		 * PG_reclaim could be raced with end_page_writeback
555 		 * It can make readahead confusing.  But race window
556 		 * is _really_ small and  it's non-critical problem.
557 		 */
558 		add_page_to_lru_list(page, lruvec, lru);
559 		SetPageReclaim(page);
560 	} else {
561 		/*
562 		 * The page's writeback ends up during pagevec
563 		 * We moves tha page into tail of inactive.
564 		 */
565 		add_page_to_lru_list_tail(page, lruvec, lru);
566 		__count_vm_events(PGROTATED, nr_pages);
567 	}
568 
569 	if (active) {
570 		__count_vm_events(PGDEACTIVATE, nr_pages);
571 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
572 				     nr_pages);
573 	}
574 }
575 
576 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
577 			    void *arg)
578 {
579 	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
580 		int lru = page_lru_base_type(page);
581 		int nr_pages = thp_nr_pages(page);
582 
583 		del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
584 		ClearPageActive(page);
585 		ClearPageReferenced(page);
586 		add_page_to_lru_list(page, lruvec, lru);
587 
588 		__count_vm_events(PGDEACTIVATE, nr_pages);
589 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
590 				     nr_pages);
591 	}
592 }
593 
594 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
595 			    void *arg)
596 {
597 	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
598 	    !PageSwapCache(page) && !PageUnevictable(page)) {
599 		bool active = PageActive(page);
600 		int nr_pages = thp_nr_pages(page);
601 
602 		del_page_from_lru_list(page, lruvec,
603 				       LRU_INACTIVE_ANON + active);
604 		ClearPageActive(page);
605 		ClearPageReferenced(page);
606 		/*
607 		 * Lazyfree pages are clean anonymous pages.  They have
608 		 * PG_swapbacked flag cleared, to distinguish them from normal
609 		 * anonymous pages
610 		 */
611 		ClearPageSwapBacked(page);
612 		add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
613 
614 		__count_vm_events(PGLAZYFREE, nr_pages);
615 		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
616 				     nr_pages);
617 	}
618 }
619 
620 /*
621  * Drain pages out of the cpu's pagevecs.
622  * Either "cpu" is the current CPU, and preemption has already been
623  * disabled; or "cpu" is being hot-unplugged, and is already dead.
624  */
625 void lru_add_drain_cpu(int cpu)
626 {
627 	struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
628 
629 	if (pagevec_count(pvec))
630 		__pagevec_lru_add(pvec);
631 
632 	pvec = &per_cpu(lru_rotate.pvec, cpu);
633 	/* Disabling interrupts below acts as a compiler barrier. */
634 	if (data_race(pagevec_count(pvec))) {
635 		unsigned long flags;
636 
637 		/* No harm done if a racing interrupt already did this */
638 		local_lock_irqsave(&lru_rotate.lock, flags);
639 		pagevec_move_tail(pvec);
640 		local_unlock_irqrestore(&lru_rotate.lock, flags);
641 	}
642 
643 	pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
644 	if (pagevec_count(pvec))
645 		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
646 
647 	pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
648 	if (pagevec_count(pvec))
649 		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
650 
651 	pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
652 	if (pagevec_count(pvec))
653 		pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
654 
655 	activate_page_drain(cpu);
656 }
657 
658 /**
659  * deactivate_file_page - forcefully deactivate a file page
660  * @page: page to deactivate
661  *
662  * This function hints the VM that @page is a good reclaim candidate,
663  * for example if its invalidation fails due to the page being dirty
664  * or under writeback.
665  */
666 void deactivate_file_page(struct page *page)
667 {
668 	/*
669 	 * In a workload with many unevictable page such as mprotect,
670 	 * unevictable page deactivation for accelerating reclaim is pointless.
671 	 */
672 	if (PageUnevictable(page))
673 		return;
674 
675 	if (likely(get_page_unless_zero(page))) {
676 		struct pagevec *pvec;
677 
678 		local_lock(&lru_pvecs.lock);
679 		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
680 
681 		if (!pagevec_add(pvec, page) || PageCompound(page))
682 			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
683 		local_unlock(&lru_pvecs.lock);
684 	}
685 }
686 
687 /*
688  * deactivate_page - deactivate a page
689  * @page: page to deactivate
690  *
691  * deactivate_page() moves @page to the inactive list if @page was on the active
692  * list and was not an unevictable page.  This is done to accelerate the reclaim
693  * of @page.
694  */
695 void deactivate_page(struct page *page)
696 {
697 	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
698 		struct pagevec *pvec;
699 
700 		local_lock(&lru_pvecs.lock);
701 		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
702 		get_page(page);
703 		if (!pagevec_add(pvec, page) || PageCompound(page))
704 			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
705 		local_unlock(&lru_pvecs.lock);
706 	}
707 }
708 
709 /**
710  * mark_page_lazyfree - make an anon page lazyfree
711  * @page: page to deactivate
712  *
713  * mark_page_lazyfree() moves @page to the inactive file list.
714  * This is done to accelerate the reclaim of @page.
715  */
716 void mark_page_lazyfree(struct page *page)
717 {
718 	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
719 	    !PageSwapCache(page) && !PageUnevictable(page)) {
720 		struct pagevec *pvec;
721 
722 		local_lock(&lru_pvecs.lock);
723 		pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
724 		get_page(page);
725 		if (!pagevec_add(pvec, page) || PageCompound(page))
726 			pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
727 		local_unlock(&lru_pvecs.lock);
728 	}
729 }
730 
731 void lru_add_drain(void)
732 {
733 	local_lock(&lru_pvecs.lock);
734 	lru_add_drain_cpu(smp_processor_id());
735 	local_unlock(&lru_pvecs.lock);
736 }
737 
738 void lru_add_drain_cpu_zone(struct zone *zone)
739 {
740 	local_lock(&lru_pvecs.lock);
741 	lru_add_drain_cpu(smp_processor_id());
742 	drain_local_pages(zone);
743 	local_unlock(&lru_pvecs.lock);
744 }
745 
746 #ifdef CONFIG_SMP
747 
748 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
749 
750 static void lru_add_drain_per_cpu(struct work_struct *dummy)
751 {
752 	lru_add_drain();
753 }
754 
755 /*
756  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
757  * kworkers being shut down before our page_alloc_cpu_dead callback is
758  * executed on the offlined cpu.
759  * Calling this function with cpu hotplug locks held can actually lead
760  * to obscure indirect dependencies via WQ context.
761  */
762 void lru_add_drain_all(void)
763 {
764 	/*
765 	 * lru_drain_gen - Global pages generation number
766 	 *
767 	 * (A) Definition: global lru_drain_gen = x implies that all generations
768 	 *     0 < n <= x are already *scheduled* for draining.
769 	 *
770 	 * This is an optimization for the highly-contended use case where a
771 	 * user space workload keeps constantly generating a flow of pages for
772 	 * each CPU.
773 	 */
774 	static unsigned int lru_drain_gen;
775 	static struct cpumask has_work;
776 	static DEFINE_MUTEX(lock);
777 	unsigned cpu, this_gen;
778 
779 	/*
780 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
781 	 * initialized.
782 	 */
783 	if (WARN_ON(!mm_percpu_wq))
784 		return;
785 
786 	/*
787 	 * Guarantee pagevec counter stores visible by this CPU are visible to
788 	 * other CPUs before loading the current drain generation.
789 	 */
790 	smp_mb();
791 
792 	/*
793 	 * (B) Locally cache global LRU draining generation number
794 	 *
795 	 * The read barrier ensures that the counter is loaded before the mutex
796 	 * is taken. It pairs with smp_mb() inside the mutex critical section
797 	 * at (D).
798 	 */
799 	this_gen = smp_load_acquire(&lru_drain_gen);
800 
801 	mutex_lock(&lock);
802 
803 	/*
804 	 * (C) Exit the draining operation if a newer generation, from another
805 	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
806 	 */
807 	if (unlikely(this_gen != lru_drain_gen))
808 		goto done;
809 
810 	/*
811 	 * (D) Increment global generation number
812 	 *
813 	 * Pairs with smp_load_acquire() at (B), outside of the critical
814 	 * section. Use a full memory barrier to guarantee that the new global
815 	 * drain generation number is stored before loading pagevec counters.
816 	 *
817 	 * This pairing must be done here, before the for_each_online_cpu loop
818 	 * below which drains the page vectors.
819 	 *
820 	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
821 	 * Assume CPU #z is is in the middle of the for_each_online_cpu loop
822 	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
823 	 * along, adds some pages to its per-cpu vectors, then calls
824 	 * lru_add_drain_all().
825 	 *
826 	 * If the paired barrier is done at any later step, e.g. after the
827 	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
828 	 * added pages.
829 	 */
830 	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
831 	smp_mb();
832 
833 	cpumask_clear(&has_work);
834 	for_each_online_cpu(cpu) {
835 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
836 
837 		if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
838 		    data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
839 		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
840 		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
841 		    pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
842 		    need_activate_page_drain(cpu)) {
843 			INIT_WORK(work, lru_add_drain_per_cpu);
844 			queue_work_on(cpu, mm_percpu_wq, work);
845 			__cpumask_set_cpu(cpu, &has_work);
846 		}
847 	}
848 
849 	for_each_cpu(cpu, &has_work)
850 		flush_work(&per_cpu(lru_add_drain_work, cpu));
851 
852 done:
853 	mutex_unlock(&lock);
854 }
855 #else
856 void lru_add_drain_all(void)
857 {
858 	lru_add_drain();
859 }
860 #endif /* CONFIG_SMP */
861 
862 /**
863  * release_pages - batched put_page()
864  * @pages: array of pages to release
865  * @nr: number of pages
866  *
867  * Decrement the reference count on all the pages in @pages.  If it
868  * fell to zero, remove the page from the LRU and free it.
869  */
870 void release_pages(struct page **pages, int nr)
871 {
872 	int i;
873 	LIST_HEAD(pages_to_free);
874 	struct pglist_data *locked_pgdat = NULL;
875 	struct lruvec *lruvec;
876 	unsigned long flags;
877 	unsigned int lock_batch;
878 
879 	for (i = 0; i < nr; i++) {
880 		struct page *page = pages[i];
881 
882 		/*
883 		 * Make sure the IRQ-safe lock-holding time does not get
884 		 * excessive with a continuous string of pages from the
885 		 * same pgdat. The lock is held only if pgdat != NULL.
886 		 */
887 		if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
888 			spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
889 			locked_pgdat = NULL;
890 		}
891 
892 		page = compound_head(page);
893 		if (is_huge_zero_page(page))
894 			continue;
895 
896 		if (is_zone_device_page(page)) {
897 			if (locked_pgdat) {
898 				spin_unlock_irqrestore(&locked_pgdat->lru_lock,
899 						       flags);
900 				locked_pgdat = NULL;
901 			}
902 			/*
903 			 * ZONE_DEVICE pages that return 'false' from
904 			 * page_is_devmap_managed() do not require special
905 			 * processing, and instead, expect a call to
906 			 * put_page_testzero().
907 			 */
908 			if (page_is_devmap_managed(page)) {
909 				put_devmap_managed_page(page);
910 				continue;
911 			}
912 		}
913 
914 		if (!put_page_testzero(page))
915 			continue;
916 
917 		if (PageCompound(page)) {
918 			if (locked_pgdat) {
919 				spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
920 				locked_pgdat = NULL;
921 			}
922 			__put_compound_page(page);
923 			continue;
924 		}
925 
926 		if (PageLRU(page)) {
927 			struct pglist_data *pgdat = page_pgdat(page);
928 
929 			if (pgdat != locked_pgdat) {
930 				if (locked_pgdat)
931 					spin_unlock_irqrestore(&locked_pgdat->lru_lock,
932 									flags);
933 				lock_batch = 0;
934 				locked_pgdat = pgdat;
935 				spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
936 			}
937 
938 			lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
939 			VM_BUG_ON_PAGE(!PageLRU(page), page);
940 			__ClearPageLRU(page);
941 			del_page_from_lru_list(page, lruvec, page_off_lru(page));
942 		}
943 
944 		__ClearPageWaiters(page);
945 
946 		list_add(&page->lru, &pages_to_free);
947 	}
948 	if (locked_pgdat)
949 		spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
950 
951 	mem_cgroup_uncharge_list(&pages_to_free);
952 	free_unref_page_list(&pages_to_free);
953 }
954 EXPORT_SYMBOL(release_pages);
955 
956 /*
957  * The pages which we're about to release may be in the deferred lru-addition
958  * queues.  That would prevent them from really being freed right now.  That's
959  * OK from a correctness point of view but is inefficient - those pages may be
960  * cache-warm and we want to give them back to the page allocator ASAP.
961  *
962  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
963  * and __pagevec_lru_add_active() call release_pages() directly to avoid
964  * mutual recursion.
965  */
966 void __pagevec_release(struct pagevec *pvec)
967 {
968 	if (!pvec->percpu_pvec_drained) {
969 		lru_add_drain();
970 		pvec->percpu_pvec_drained = true;
971 	}
972 	release_pages(pvec->pages, pagevec_count(pvec));
973 	pagevec_reinit(pvec);
974 }
975 EXPORT_SYMBOL(__pagevec_release);
976 
977 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
978 /* used by __split_huge_page_refcount() */
979 void lru_add_page_tail(struct page *page, struct page *page_tail,
980 		       struct lruvec *lruvec, struct list_head *list)
981 {
982 	VM_BUG_ON_PAGE(!PageHead(page), page);
983 	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
984 	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
985 	lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
986 
987 	if (!list)
988 		SetPageLRU(page_tail);
989 
990 	if (likely(PageLRU(page)))
991 		list_add_tail(&page_tail->lru, &page->lru);
992 	else if (list) {
993 		/* page reclaim is reclaiming a huge page */
994 		get_page(page_tail);
995 		list_add_tail(&page_tail->lru, list);
996 	} else {
997 		/*
998 		 * Head page has not yet been counted, as an hpage,
999 		 * so we must account for each subpage individually.
1000 		 *
1001 		 * Put page_tail on the list at the correct position
1002 		 * so they all end up in order.
1003 		 */
1004 		add_page_to_lru_list_tail(page_tail, lruvec,
1005 					  page_lru(page_tail));
1006 	}
1007 }
1008 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1009 
1010 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
1011 				 void *arg)
1012 {
1013 	enum lru_list lru;
1014 	int was_unevictable = TestClearPageUnevictable(page);
1015 	int nr_pages = thp_nr_pages(page);
1016 
1017 	VM_BUG_ON_PAGE(PageLRU(page), page);
1018 
1019 	/*
1020 	 * Page becomes evictable in two ways:
1021 	 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
1022 	 * 2) Before acquiring LRU lock to put the page to correct LRU and then
1023 	 *   a) do PageLRU check with lock [check_move_unevictable_pages]
1024 	 *   b) do PageLRU check before lock [clear_page_mlock]
1025 	 *
1026 	 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
1027 	 * following strict ordering:
1028 	 *
1029 	 * #0: __pagevec_lru_add_fn		#1: clear_page_mlock
1030 	 *
1031 	 * SetPageLRU()				TestClearPageMlocked()
1032 	 * smp_mb() // explicit ordering	// above provides strict
1033 	 *					// ordering
1034 	 * PageMlocked()			PageLRU()
1035 	 *
1036 	 *
1037 	 * if '#1' does not observe setting of PG_lru by '#0' and fails
1038 	 * isolation, the explicit barrier will make sure that page_evictable
1039 	 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1040 	 * can be reordered after PageMlocked check and can make '#1' to fail
1041 	 * the isolation of the page whose Mlocked bit is cleared (#0 is also
1042 	 * looking at the same page) and the evictable page will be stranded
1043 	 * in an unevictable LRU.
1044 	 */
1045 	SetPageLRU(page);
1046 	smp_mb__after_atomic();
1047 
1048 	if (page_evictable(page)) {
1049 		lru = page_lru(page);
1050 		if (was_unevictable)
1051 			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1052 	} else {
1053 		lru = LRU_UNEVICTABLE;
1054 		ClearPageActive(page);
1055 		SetPageUnevictable(page);
1056 		if (!was_unevictable)
1057 			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1058 	}
1059 
1060 	add_page_to_lru_list(page, lruvec, lru);
1061 	trace_mm_lru_insertion(page, lru);
1062 }
1063 
1064 /*
1065  * Add the passed pages to the LRU, then drop the caller's refcount
1066  * on them.  Reinitialises the caller's pagevec.
1067  */
1068 void __pagevec_lru_add(struct pagevec *pvec)
1069 {
1070 	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1071 }
1072 
1073 /**
1074  * pagevec_lookup_entries - gang pagecache lookup
1075  * @pvec:	Where the resulting entries are placed
1076  * @mapping:	The address_space to search
1077  * @start:	The starting entry index
1078  * @nr_entries:	The maximum number of pages
1079  * @indices:	The cache indices corresponding to the entries in @pvec
1080  *
1081  * pagevec_lookup_entries() will search for and return a group of up
1082  * to @nr_pages pages and shadow entries in the mapping.  All
1083  * entries are placed in @pvec.  pagevec_lookup_entries() takes a
1084  * reference against actual pages in @pvec.
1085  *
1086  * The search returns a group of mapping-contiguous entries with
1087  * ascending indexes.  There may be holes in the indices due to
1088  * not-present entries.
1089  *
1090  * Only one subpage of a Transparent Huge Page is returned in one call:
1091  * allowing truncate_inode_pages_range() to evict the whole THP without
1092  * cycling through a pagevec of extra references.
1093  *
1094  * pagevec_lookup_entries() returns the number of entries which were
1095  * found.
1096  */
1097 unsigned pagevec_lookup_entries(struct pagevec *pvec,
1098 				struct address_space *mapping,
1099 				pgoff_t start, unsigned nr_entries,
1100 				pgoff_t *indices)
1101 {
1102 	pvec->nr = find_get_entries(mapping, start, nr_entries,
1103 				    pvec->pages, indices);
1104 	return pagevec_count(pvec);
1105 }
1106 
1107 /**
1108  * pagevec_remove_exceptionals - pagevec exceptionals pruning
1109  * @pvec:	The pagevec to prune
1110  *
1111  * pagevec_lookup_entries() fills both pages and exceptional radix
1112  * tree entries into the pagevec.  This function prunes all
1113  * exceptionals from @pvec without leaving holes, so that it can be
1114  * passed on to page-only pagevec operations.
1115  */
1116 void pagevec_remove_exceptionals(struct pagevec *pvec)
1117 {
1118 	int i, j;
1119 
1120 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1121 		struct page *page = pvec->pages[i];
1122 		if (!xa_is_value(page))
1123 			pvec->pages[j++] = page;
1124 	}
1125 	pvec->nr = j;
1126 }
1127 
1128 /**
1129  * pagevec_lookup_range - gang pagecache lookup
1130  * @pvec:	Where the resulting pages are placed
1131  * @mapping:	The address_space to search
1132  * @start:	The starting page index
1133  * @end:	The final page index
1134  *
1135  * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1136  * pages in the mapping starting from index @start and upto index @end
1137  * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
1138  * reference against the pages in @pvec.
1139  *
1140  * The search returns a group of mapping-contiguous pages with ascending
1141  * indexes.  There may be holes in the indices due to not-present pages. We
1142  * also update @start to index the next page for the traversal.
1143  *
1144  * pagevec_lookup_range() returns the number of pages which were found. If this
1145  * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1146  * reached.
1147  */
1148 unsigned pagevec_lookup_range(struct pagevec *pvec,
1149 		struct address_space *mapping, pgoff_t *start, pgoff_t end)
1150 {
1151 	pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1152 					pvec->pages);
1153 	return pagevec_count(pvec);
1154 }
1155 EXPORT_SYMBOL(pagevec_lookup_range);
1156 
1157 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1158 		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1159 		xa_mark_t tag)
1160 {
1161 	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1162 					PAGEVEC_SIZE, pvec->pages);
1163 	return pagevec_count(pvec);
1164 }
1165 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1166 
1167 unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1168 		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1169 		xa_mark_t tag, unsigned max_pages)
1170 {
1171 	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1172 		min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1173 	return pagevec_count(pvec);
1174 }
1175 EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1176 /*
1177  * Perform any setup for the swap system
1178  */
1179 void __init swap_setup(void)
1180 {
1181 	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1182 
1183 	/* Use a smaller cluster for small-memory machines */
1184 	if (megs < 16)
1185 		page_cluster = 2;
1186 	else
1187 		page_cluster = 3;
1188 	/*
1189 	 * Right now other parts of the system means that we
1190 	 * _really_ don't want to cluster much more
1191 	 */
1192 }
1193 
1194 #ifdef CONFIG_DEV_PAGEMAP_OPS
1195 void put_devmap_managed_page(struct page *page)
1196 {
1197 	int count;
1198 
1199 	if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1200 		return;
1201 
1202 	count = page_ref_dec_return(page);
1203 
1204 	/*
1205 	 * devmap page refcounts are 1-based, rather than 0-based: if
1206 	 * refcount is 1, then the page is free and the refcount is
1207 	 * stable because nobody holds a reference on the page.
1208 	 */
1209 	if (count == 1)
1210 		free_devmap_managed_page(page);
1211 	else if (!count)
1212 		__put_page(page);
1213 }
1214 EXPORT_SYMBOL(put_devmap_managed_page);
1215 #endif
1216