xref: /openbmc/linux/mm/swap.c (revision 2bcf887963812c075f80a14e1fad8ec7e1c67acf)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 
34 #include "internal.h"
35 
36 /* How many pages do we try to swap or page in/out together? */
37 int page_cluster;
38 
39 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
40 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
42 
43 /*
44  * This path almost never happens for VM activity - pages are normally
45  * freed via pagevecs.  But it gets used by networking.
46  */
47 static void __page_cache_release(struct page *page)
48 {
49 	if (PageLRU(page)) {
50 		unsigned long flags;
51 		struct zone *zone = page_zone(page);
52 
53 		spin_lock_irqsave(&zone->lru_lock, flags);
54 		VM_BUG_ON(!PageLRU(page));
55 		__ClearPageLRU(page);
56 		del_page_from_lru(zone, page);
57 		spin_unlock_irqrestore(&zone->lru_lock, flags);
58 	}
59 }
60 
61 static void __put_single_page(struct page *page)
62 {
63 	__page_cache_release(page);
64 	free_hot_cold_page(page, 0);
65 }
66 
67 static void __put_compound_page(struct page *page)
68 {
69 	compound_page_dtor *dtor;
70 
71 	__page_cache_release(page);
72 	dtor = get_compound_page_dtor(page);
73 	(*dtor)(page);
74 }
75 
76 static void put_compound_page(struct page *page)
77 {
78 	if (unlikely(PageTail(page))) {
79 		/* __split_huge_page_refcount can run under us */
80 		struct page *page_head = compound_trans_head(page);
81 
82 		if (likely(page != page_head &&
83 			   get_page_unless_zero(page_head))) {
84 			unsigned long flags;
85 			/*
86 			 * page_head wasn't a dangling pointer but it
87 			 * may not be a head page anymore by the time
88 			 * we obtain the lock. That is ok as long as it
89 			 * can't be freed from under us.
90 			 */
91 			flags = compound_lock_irqsave(page_head);
92 			if (unlikely(!PageTail(page))) {
93 				/* __split_huge_page_refcount run before us */
94 				compound_unlock_irqrestore(page_head, flags);
95 				VM_BUG_ON(PageHead(page_head));
96 				if (put_page_testzero(page_head))
97 					__put_single_page(page_head);
98 			out_put_single:
99 				if (put_page_testzero(page))
100 					__put_single_page(page);
101 				return;
102 			}
103 			VM_BUG_ON(page_head != page->first_page);
104 			/*
105 			 * We can release the refcount taken by
106 			 * get_page_unless_zero() now that
107 			 * __split_huge_page_refcount() is blocked on
108 			 * the compound_lock.
109 			 */
110 			if (put_page_testzero(page_head))
111 				VM_BUG_ON(1);
112 			/* __split_huge_page_refcount will wait now */
113 			VM_BUG_ON(page_mapcount(page) <= 0);
114 			atomic_dec(&page->_mapcount);
115 			VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
116 			VM_BUG_ON(atomic_read(&page->_count) != 0);
117 			compound_unlock_irqrestore(page_head, flags);
118 			if (put_page_testzero(page_head)) {
119 				if (PageHead(page_head))
120 					__put_compound_page(page_head);
121 				else
122 					__put_single_page(page_head);
123 			}
124 		} else {
125 			/* page_head is a dangling pointer */
126 			VM_BUG_ON(PageTail(page));
127 			goto out_put_single;
128 		}
129 	} else if (put_page_testzero(page)) {
130 		if (PageHead(page))
131 			__put_compound_page(page);
132 		else
133 			__put_single_page(page);
134 	}
135 }
136 
137 void put_page(struct page *page)
138 {
139 	if (unlikely(PageCompound(page)))
140 		put_compound_page(page);
141 	else if (put_page_testzero(page))
142 		__put_single_page(page);
143 }
144 EXPORT_SYMBOL(put_page);
145 
146 /*
147  * This function is exported but must not be called by anything other
148  * than get_page(). It implements the slow path of get_page().
149  */
150 bool __get_page_tail(struct page *page)
151 {
152 	/*
153 	 * This takes care of get_page() if run on a tail page
154 	 * returned by one of the get_user_pages/follow_page variants.
155 	 * get_user_pages/follow_page itself doesn't need the compound
156 	 * lock because it runs __get_page_tail_foll() under the
157 	 * proper PT lock that already serializes against
158 	 * split_huge_page().
159 	 */
160 	unsigned long flags;
161 	bool got = false;
162 	struct page *page_head = compound_trans_head(page);
163 
164 	if (likely(page != page_head && get_page_unless_zero(page_head))) {
165 		/*
166 		 * page_head wasn't a dangling pointer but it
167 		 * may not be a head page anymore by the time
168 		 * we obtain the lock. That is ok as long as it
169 		 * can't be freed from under us.
170 		 */
171 		flags = compound_lock_irqsave(page_head);
172 		/* here __split_huge_page_refcount won't run anymore */
173 		if (likely(PageTail(page))) {
174 			__get_page_tail_foll(page, false);
175 			got = true;
176 		}
177 		compound_unlock_irqrestore(page_head, flags);
178 		if (unlikely(!got))
179 			put_page(page_head);
180 	}
181 	return got;
182 }
183 EXPORT_SYMBOL(__get_page_tail);
184 
185 /**
186  * put_pages_list() - release a list of pages
187  * @pages: list of pages threaded on page->lru
188  *
189  * Release a list of pages which are strung together on page.lru.  Currently
190  * used by read_cache_pages() and related error recovery code.
191  */
192 void put_pages_list(struct list_head *pages)
193 {
194 	while (!list_empty(pages)) {
195 		struct page *victim;
196 
197 		victim = list_entry(pages->prev, struct page, lru);
198 		list_del(&victim->lru);
199 		page_cache_release(victim);
200 	}
201 }
202 EXPORT_SYMBOL(put_pages_list);
203 
204 static void pagevec_lru_move_fn(struct pagevec *pvec,
205 				void (*move_fn)(struct page *page, void *arg),
206 				void *arg)
207 {
208 	int i;
209 	struct zone *zone = NULL;
210 	unsigned long flags = 0;
211 
212 	for (i = 0; i < pagevec_count(pvec); i++) {
213 		struct page *page = pvec->pages[i];
214 		struct zone *pagezone = page_zone(page);
215 
216 		if (pagezone != zone) {
217 			if (zone)
218 				spin_unlock_irqrestore(&zone->lru_lock, flags);
219 			zone = pagezone;
220 			spin_lock_irqsave(&zone->lru_lock, flags);
221 		}
222 
223 		(*move_fn)(page, arg);
224 	}
225 	if (zone)
226 		spin_unlock_irqrestore(&zone->lru_lock, flags);
227 	release_pages(pvec->pages, pvec->nr, pvec->cold);
228 	pagevec_reinit(pvec);
229 }
230 
231 static void pagevec_move_tail_fn(struct page *page, void *arg)
232 {
233 	int *pgmoved = arg;
234 
235 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
236 		enum lru_list lru = page_lru_base_type(page);
237 		struct lruvec *lruvec;
238 
239 		lruvec = mem_cgroup_lru_move_lists(page_zone(page),
240 						   page, lru, lru);
241 		list_move_tail(&page->lru, &lruvec->lists[lru]);
242 		(*pgmoved)++;
243 	}
244 }
245 
246 /*
247  * pagevec_move_tail() must be called with IRQ disabled.
248  * Otherwise this may cause nasty races.
249  */
250 static void pagevec_move_tail(struct pagevec *pvec)
251 {
252 	int pgmoved = 0;
253 
254 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
255 	__count_vm_events(PGROTATED, pgmoved);
256 }
257 
258 /*
259  * Writeback is about to end against a page which has been marked for immediate
260  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
261  * inactive list.
262  */
263 void rotate_reclaimable_page(struct page *page)
264 {
265 	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
266 	    !PageUnevictable(page) && PageLRU(page)) {
267 		struct pagevec *pvec;
268 		unsigned long flags;
269 
270 		page_cache_get(page);
271 		local_irq_save(flags);
272 		pvec = &__get_cpu_var(lru_rotate_pvecs);
273 		if (!pagevec_add(pvec, page))
274 			pagevec_move_tail(pvec);
275 		local_irq_restore(flags);
276 	}
277 }
278 
279 static void update_page_reclaim_stat(struct zone *zone, struct page *page,
280 				     int file, int rotated)
281 {
282 	struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
283 	struct zone_reclaim_stat *memcg_reclaim_stat;
284 
285 	memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
286 
287 	reclaim_stat->recent_scanned[file]++;
288 	if (rotated)
289 		reclaim_stat->recent_rotated[file]++;
290 
291 	if (!memcg_reclaim_stat)
292 		return;
293 
294 	memcg_reclaim_stat->recent_scanned[file]++;
295 	if (rotated)
296 		memcg_reclaim_stat->recent_rotated[file]++;
297 }
298 
299 static void __activate_page(struct page *page, void *arg)
300 {
301 	struct zone *zone = page_zone(page);
302 
303 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
304 		int file = page_is_file_cache(page);
305 		int lru = page_lru_base_type(page);
306 		del_page_from_lru_list(zone, page, lru);
307 
308 		SetPageActive(page);
309 		lru += LRU_ACTIVE;
310 		add_page_to_lru_list(zone, page, lru);
311 		__count_vm_event(PGACTIVATE);
312 
313 		update_page_reclaim_stat(zone, page, file, 1);
314 	}
315 }
316 
317 #ifdef CONFIG_SMP
318 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
319 
320 static void activate_page_drain(int cpu)
321 {
322 	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
323 
324 	if (pagevec_count(pvec))
325 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
326 }
327 
328 void activate_page(struct page *page)
329 {
330 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
331 		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
332 
333 		page_cache_get(page);
334 		if (!pagevec_add(pvec, page))
335 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
336 		put_cpu_var(activate_page_pvecs);
337 	}
338 }
339 
340 #else
341 static inline void activate_page_drain(int cpu)
342 {
343 }
344 
345 void activate_page(struct page *page)
346 {
347 	struct zone *zone = page_zone(page);
348 
349 	spin_lock_irq(&zone->lru_lock);
350 	__activate_page(page, NULL);
351 	spin_unlock_irq(&zone->lru_lock);
352 }
353 #endif
354 
355 /*
356  * Mark a page as having seen activity.
357  *
358  * inactive,unreferenced	->	inactive,referenced
359  * inactive,referenced		->	active,unreferenced
360  * active,unreferenced		->	active,referenced
361  */
362 void mark_page_accessed(struct page *page)
363 {
364 	if (!PageActive(page) && !PageUnevictable(page) &&
365 			PageReferenced(page) && PageLRU(page)) {
366 		activate_page(page);
367 		ClearPageReferenced(page);
368 	} else if (!PageReferenced(page)) {
369 		SetPageReferenced(page);
370 	}
371 }
372 
373 EXPORT_SYMBOL(mark_page_accessed);
374 
375 void __lru_cache_add(struct page *page, enum lru_list lru)
376 {
377 	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
378 
379 	page_cache_get(page);
380 	if (!pagevec_add(pvec, page))
381 		____pagevec_lru_add(pvec, lru);
382 	put_cpu_var(lru_add_pvecs);
383 }
384 EXPORT_SYMBOL(__lru_cache_add);
385 
386 /**
387  * lru_cache_add_lru - add a page to a page list
388  * @page: the page to be added to the LRU.
389  * @lru: the LRU list to which the page is added.
390  */
391 void lru_cache_add_lru(struct page *page, enum lru_list lru)
392 {
393 	if (PageActive(page)) {
394 		VM_BUG_ON(PageUnevictable(page));
395 		ClearPageActive(page);
396 	} else if (PageUnevictable(page)) {
397 		VM_BUG_ON(PageActive(page));
398 		ClearPageUnevictable(page);
399 	}
400 
401 	VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
402 	__lru_cache_add(page, lru);
403 }
404 
405 /**
406  * add_page_to_unevictable_list - add a page to the unevictable list
407  * @page:  the page to be added to the unevictable list
408  *
409  * Add page directly to its zone's unevictable list.  To avoid races with
410  * tasks that might be making the page evictable, through eg. munlock,
411  * munmap or exit, while it's not on the lru, we want to add the page
412  * while it's locked or otherwise "invisible" to other tasks.  This is
413  * difficult to do when using the pagevec cache, so bypass that.
414  */
415 void add_page_to_unevictable_list(struct page *page)
416 {
417 	struct zone *zone = page_zone(page);
418 
419 	spin_lock_irq(&zone->lru_lock);
420 	SetPageUnevictable(page);
421 	SetPageLRU(page);
422 	add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
423 	spin_unlock_irq(&zone->lru_lock);
424 }
425 
426 /*
427  * If the page can not be invalidated, it is moved to the
428  * inactive list to speed up its reclaim.  It is moved to the
429  * head of the list, rather than the tail, to give the flusher
430  * threads some time to write it out, as this is much more
431  * effective than the single-page writeout from reclaim.
432  *
433  * If the page isn't page_mapped and dirty/writeback, the page
434  * could reclaim asap using PG_reclaim.
435  *
436  * 1. active, mapped page -> none
437  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
438  * 3. inactive, mapped page -> none
439  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
440  * 5. inactive, clean -> inactive, tail
441  * 6. Others -> none
442  *
443  * In 4, why it moves inactive's head, the VM expects the page would
444  * be write it out by flusher threads as this is much more effective
445  * than the single-page writeout from reclaim.
446  */
447 static void lru_deactivate_fn(struct page *page, void *arg)
448 {
449 	int lru, file;
450 	bool active;
451 	struct zone *zone = page_zone(page);
452 
453 	if (!PageLRU(page))
454 		return;
455 
456 	if (PageUnevictable(page))
457 		return;
458 
459 	/* Some processes are using the page */
460 	if (page_mapped(page))
461 		return;
462 
463 	active = PageActive(page);
464 
465 	file = page_is_file_cache(page);
466 	lru = page_lru_base_type(page);
467 	del_page_from_lru_list(zone, page, lru + active);
468 	ClearPageActive(page);
469 	ClearPageReferenced(page);
470 	add_page_to_lru_list(zone, page, lru);
471 
472 	if (PageWriteback(page) || PageDirty(page)) {
473 		/*
474 		 * PG_reclaim could be raced with end_page_writeback
475 		 * It can make readahead confusing.  But race window
476 		 * is _really_ small and  it's non-critical problem.
477 		 */
478 		SetPageReclaim(page);
479 	} else {
480 		struct lruvec *lruvec;
481 		/*
482 		 * The page's writeback ends up during pagevec
483 		 * We moves tha page into tail of inactive.
484 		 */
485 		lruvec = mem_cgroup_lru_move_lists(zone, page, lru, lru);
486 		list_move_tail(&page->lru, &lruvec->lists[lru]);
487 		__count_vm_event(PGROTATED);
488 	}
489 
490 	if (active)
491 		__count_vm_event(PGDEACTIVATE);
492 	update_page_reclaim_stat(zone, page, file, 0);
493 }
494 
495 /*
496  * Drain pages out of the cpu's pagevecs.
497  * Either "cpu" is the current CPU, and preemption has already been
498  * disabled; or "cpu" is being hot-unplugged, and is already dead.
499  */
500 static void drain_cpu_pagevecs(int cpu)
501 {
502 	struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
503 	struct pagevec *pvec;
504 	int lru;
505 
506 	for_each_lru(lru) {
507 		pvec = &pvecs[lru - LRU_BASE];
508 		if (pagevec_count(pvec))
509 			____pagevec_lru_add(pvec, lru);
510 	}
511 
512 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
513 	if (pagevec_count(pvec)) {
514 		unsigned long flags;
515 
516 		/* No harm done if a racing interrupt already did this */
517 		local_irq_save(flags);
518 		pagevec_move_tail(pvec);
519 		local_irq_restore(flags);
520 	}
521 
522 	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
523 	if (pagevec_count(pvec))
524 		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
525 
526 	activate_page_drain(cpu);
527 }
528 
529 /**
530  * deactivate_page - forcefully deactivate a page
531  * @page: page to deactivate
532  *
533  * This function hints the VM that @page is a good reclaim candidate,
534  * for example if its invalidation fails due to the page being dirty
535  * or under writeback.
536  */
537 void deactivate_page(struct page *page)
538 {
539 	/*
540 	 * In a workload with many unevictable page such as mprotect, unevictable
541 	 * page deactivation for accelerating reclaim is pointless.
542 	 */
543 	if (PageUnevictable(page))
544 		return;
545 
546 	if (likely(get_page_unless_zero(page))) {
547 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
548 
549 		if (!pagevec_add(pvec, page))
550 			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
551 		put_cpu_var(lru_deactivate_pvecs);
552 	}
553 }
554 
555 void lru_add_drain(void)
556 {
557 	drain_cpu_pagevecs(get_cpu());
558 	put_cpu();
559 }
560 
561 static void lru_add_drain_per_cpu(struct work_struct *dummy)
562 {
563 	lru_add_drain();
564 }
565 
566 /*
567  * Returns 0 for success
568  */
569 int lru_add_drain_all(void)
570 {
571 	return schedule_on_each_cpu(lru_add_drain_per_cpu);
572 }
573 
574 /*
575  * Batched page_cache_release().  Decrement the reference count on all the
576  * passed pages.  If it fell to zero then remove the page from the LRU and
577  * free it.
578  *
579  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
580  * for the remainder of the operation.
581  *
582  * The locking in this function is against shrink_inactive_list(): we recheck
583  * the page count inside the lock to see whether shrink_inactive_list()
584  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
585  * will free it.
586  */
587 void release_pages(struct page **pages, int nr, int cold)
588 {
589 	int i;
590 	LIST_HEAD(pages_to_free);
591 	struct zone *zone = NULL;
592 	unsigned long uninitialized_var(flags);
593 
594 	for (i = 0; i < nr; i++) {
595 		struct page *page = pages[i];
596 
597 		if (unlikely(PageCompound(page))) {
598 			if (zone) {
599 				spin_unlock_irqrestore(&zone->lru_lock, flags);
600 				zone = NULL;
601 			}
602 			put_compound_page(page);
603 			continue;
604 		}
605 
606 		if (!put_page_testzero(page))
607 			continue;
608 
609 		if (PageLRU(page)) {
610 			struct zone *pagezone = page_zone(page);
611 
612 			if (pagezone != zone) {
613 				if (zone)
614 					spin_unlock_irqrestore(&zone->lru_lock,
615 									flags);
616 				zone = pagezone;
617 				spin_lock_irqsave(&zone->lru_lock, flags);
618 			}
619 			VM_BUG_ON(!PageLRU(page));
620 			__ClearPageLRU(page);
621 			del_page_from_lru(zone, page);
622 		}
623 
624 		list_add(&page->lru, &pages_to_free);
625 	}
626 	if (zone)
627 		spin_unlock_irqrestore(&zone->lru_lock, flags);
628 
629 	free_hot_cold_page_list(&pages_to_free, cold);
630 }
631 EXPORT_SYMBOL(release_pages);
632 
633 /*
634  * The pages which we're about to release may be in the deferred lru-addition
635  * queues.  That would prevent them from really being freed right now.  That's
636  * OK from a correctness point of view but is inefficient - those pages may be
637  * cache-warm and we want to give them back to the page allocator ASAP.
638  *
639  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
640  * and __pagevec_lru_add_active() call release_pages() directly to avoid
641  * mutual recursion.
642  */
643 void __pagevec_release(struct pagevec *pvec)
644 {
645 	lru_add_drain();
646 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
647 	pagevec_reinit(pvec);
648 }
649 
650 EXPORT_SYMBOL(__pagevec_release);
651 
652 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
653 /* used by __split_huge_page_refcount() */
654 void lru_add_page_tail(struct zone* zone,
655 		       struct page *page, struct page *page_tail)
656 {
657 	int active;
658 	enum lru_list lru;
659 	const int file = 0;
660 
661 	VM_BUG_ON(!PageHead(page));
662 	VM_BUG_ON(PageCompound(page_tail));
663 	VM_BUG_ON(PageLRU(page_tail));
664 	VM_BUG_ON(!spin_is_locked(&zone->lru_lock));
665 
666 	SetPageLRU(page_tail);
667 
668 	if (page_evictable(page_tail, NULL)) {
669 		if (PageActive(page)) {
670 			SetPageActive(page_tail);
671 			active = 1;
672 			lru = LRU_ACTIVE_ANON;
673 		} else {
674 			active = 0;
675 			lru = LRU_INACTIVE_ANON;
676 		}
677 		update_page_reclaim_stat(zone, page_tail, file, active);
678 	} else {
679 		SetPageUnevictable(page_tail);
680 		lru = LRU_UNEVICTABLE;
681 	}
682 
683 	if (likely(PageLRU(page)))
684 		list_add_tail(&page_tail->lru, &page->lru);
685 	else {
686 		struct list_head *list_head;
687 		/*
688 		 * Head page has not yet been counted, as an hpage,
689 		 * so we must account for each subpage individually.
690 		 *
691 		 * Use the standard add function to put page_tail on the list,
692 		 * but then correct its position so they all end up in order.
693 		 */
694 		add_page_to_lru_list(zone, page_tail, lru);
695 		list_head = page_tail->lru.prev;
696 		list_move_tail(&page_tail->lru, list_head);
697 	}
698 }
699 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
700 
701 static void ____pagevec_lru_add_fn(struct page *page, void *arg)
702 {
703 	enum lru_list lru = (enum lru_list)arg;
704 	struct zone *zone = page_zone(page);
705 	int file = is_file_lru(lru);
706 	int active = is_active_lru(lru);
707 
708 	VM_BUG_ON(PageActive(page));
709 	VM_BUG_ON(PageUnevictable(page));
710 	VM_BUG_ON(PageLRU(page));
711 
712 	SetPageLRU(page);
713 	if (active)
714 		SetPageActive(page);
715 	update_page_reclaim_stat(zone, page, file, active);
716 	add_page_to_lru_list(zone, page, lru);
717 }
718 
719 /*
720  * Add the passed pages to the LRU, then drop the caller's refcount
721  * on them.  Reinitialises the caller's pagevec.
722  */
723 void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
724 {
725 	VM_BUG_ON(is_unevictable_lru(lru));
726 
727 	pagevec_lru_move_fn(pvec, ____pagevec_lru_add_fn, (void *)lru);
728 }
729 
730 EXPORT_SYMBOL(____pagevec_lru_add);
731 
732 /**
733  * pagevec_lookup - gang pagecache lookup
734  * @pvec:	Where the resulting pages are placed
735  * @mapping:	The address_space to search
736  * @start:	The starting page index
737  * @nr_pages:	The maximum number of pages
738  *
739  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
740  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
741  * reference against the pages in @pvec.
742  *
743  * The search returns a group of mapping-contiguous pages with ascending
744  * indexes.  There may be holes in the indices due to not-present pages.
745  *
746  * pagevec_lookup() returns the number of pages which were found.
747  */
748 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
749 		pgoff_t start, unsigned nr_pages)
750 {
751 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
752 	return pagevec_count(pvec);
753 }
754 
755 EXPORT_SYMBOL(pagevec_lookup);
756 
757 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
758 		pgoff_t *index, int tag, unsigned nr_pages)
759 {
760 	pvec->nr = find_get_pages_tag(mapping, index, tag,
761 					nr_pages, pvec->pages);
762 	return pagevec_count(pvec);
763 }
764 
765 EXPORT_SYMBOL(pagevec_lookup_tag);
766 
767 /*
768  * Perform any setup for the swap system
769  */
770 void __init swap_setup(void)
771 {
772 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
773 
774 #ifdef CONFIG_SWAP
775 	bdi_init(swapper_space.backing_dev_info);
776 #endif
777 
778 	/* Use a smaller cluster for small-memory machines */
779 	if (megs < 16)
780 		page_cluster = 2;
781 	else
782 		page_cluster = 3;
783 	/*
784 	 * Right now other parts of the system means that we
785 	 * _really_ don't want to cluster much more
786 	 */
787 }
788