xref: /openbmc/linux/mm/swap.c (revision 12d27107867fc7216e8faaff0b894b0f162dcf75)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34 
35 #include "internal.h"
36 
37 /* How many pages do we try to swap or page in/out together? */
38 int page_cluster;
39 
40 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
42 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
43 
44 /*
45  * This path almost never happens for VM activity - pages are normally
46  * freed via pagevecs.  But it gets used by networking.
47  */
48 static void __page_cache_release(struct page *page)
49 {
50 	if (PageLRU(page)) {
51 		unsigned long flags;
52 		struct zone *zone = page_zone(page);
53 
54 		spin_lock_irqsave(&zone->lru_lock, flags);
55 		VM_BUG_ON(!PageLRU(page));
56 		__ClearPageLRU(page);
57 		del_page_from_lru(zone, page);
58 		spin_unlock_irqrestore(&zone->lru_lock, flags);
59 	}
60 }
61 
62 static void __put_single_page(struct page *page)
63 {
64 	__page_cache_release(page);
65 	free_hot_cold_page(page, 0);
66 }
67 
68 static void __put_compound_page(struct page *page)
69 {
70 	compound_page_dtor *dtor;
71 
72 	__page_cache_release(page);
73 	dtor = get_compound_page_dtor(page);
74 	(*dtor)(page);
75 }
76 
77 static void put_compound_page(struct page *page)
78 {
79 	if (unlikely(PageTail(page))) {
80 		/* __split_huge_page_refcount can run under us */
81 		struct page *page_head = compound_trans_head(page);
82 
83 		if (likely(page != page_head &&
84 			   get_page_unless_zero(page_head))) {
85 			unsigned long flags;
86 			/*
87 			 * page_head wasn't a dangling pointer but it
88 			 * may not be a head page anymore by the time
89 			 * we obtain the lock. That is ok as long as it
90 			 * can't be freed from under us.
91 			 */
92 			flags = compound_lock_irqsave(page_head);
93 			if (unlikely(!PageTail(page))) {
94 				/* __split_huge_page_refcount run before us */
95 				compound_unlock_irqrestore(page_head, flags);
96 				VM_BUG_ON(PageHead(page_head));
97 				if (put_page_testzero(page_head))
98 					__put_single_page(page_head);
99 			out_put_single:
100 				if (put_page_testzero(page))
101 					__put_single_page(page);
102 				return;
103 			}
104 			VM_BUG_ON(page_head != page->first_page);
105 			/*
106 			 * We can release the refcount taken by
107 			 * get_page_unless_zero() now that
108 			 * __split_huge_page_refcount() is blocked on
109 			 * the compound_lock.
110 			 */
111 			if (put_page_testzero(page_head))
112 				VM_BUG_ON(1);
113 			/* __split_huge_page_refcount will wait now */
114 			VM_BUG_ON(page_mapcount(page) <= 0);
115 			atomic_dec(&page->_mapcount);
116 			VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
117 			VM_BUG_ON(atomic_read(&page->_count) != 0);
118 			compound_unlock_irqrestore(page_head, flags);
119 			if (put_page_testzero(page_head)) {
120 				if (PageHead(page_head))
121 					__put_compound_page(page_head);
122 				else
123 					__put_single_page(page_head);
124 			}
125 		} else {
126 			/* page_head is a dangling pointer */
127 			VM_BUG_ON(PageTail(page));
128 			goto out_put_single;
129 		}
130 	} else if (put_page_testzero(page)) {
131 		if (PageHead(page))
132 			__put_compound_page(page);
133 		else
134 			__put_single_page(page);
135 	}
136 }
137 
138 void put_page(struct page *page)
139 {
140 	if (unlikely(PageCompound(page)))
141 		put_compound_page(page);
142 	else if (put_page_testzero(page))
143 		__put_single_page(page);
144 }
145 EXPORT_SYMBOL(put_page);
146 
147 /*
148  * This function is exported but must not be called by anything other
149  * than get_page(). It implements the slow path of get_page().
150  */
151 bool __get_page_tail(struct page *page)
152 {
153 	/*
154 	 * This takes care of get_page() if run on a tail page
155 	 * returned by one of the get_user_pages/follow_page variants.
156 	 * get_user_pages/follow_page itself doesn't need the compound
157 	 * lock because it runs __get_page_tail_foll() under the
158 	 * proper PT lock that already serializes against
159 	 * split_huge_page().
160 	 */
161 	unsigned long flags;
162 	bool got = false;
163 	struct page *page_head = compound_trans_head(page);
164 
165 	if (likely(page != page_head && get_page_unless_zero(page_head))) {
166 		/*
167 		 * page_head wasn't a dangling pointer but it
168 		 * may not be a head page anymore by the time
169 		 * we obtain the lock. That is ok as long as it
170 		 * can't be freed from under us.
171 		 */
172 		flags = compound_lock_irqsave(page_head);
173 		/* here __split_huge_page_refcount won't run anymore */
174 		if (likely(PageTail(page))) {
175 			__get_page_tail_foll(page, false);
176 			got = true;
177 		}
178 		compound_unlock_irqrestore(page_head, flags);
179 		if (unlikely(!got))
180 			put_page(page_head);
181 	}
182 	return got;
183 }
184 EXPORT_SYMBOL(__get_page_tail);
185 
186 /**
187  * put_pages_list() - release a list of pages
188  * @pages: list of pages threaded on page->lru
189  *
190  * Release a list of pages which are strung together on page.lru.  Currently
191  * used by read_cache_pages() and related error recovery code.
192  */
193 void put_pages_list(struct list_head *pages)
194 {
195 	while (!list_empty(pages)) {
196 		struct page *victim;
197 
198 		victim = list_entry(pages->prev, struct page, lru);
199 		list_del(&victim->lru);
200 		page_cache_release(victim);
201 	}
202 }
203 EXPORT_SYMBOL(put_pages_list);
204 
205 static void pagevec_lru_move_fn(struct pagevec *pvec,
206 				void (*move_fn)(struct page *page, void *arg),
207 				void *arg)
208 {
209 	int i;
210 	struct zone *zone = NULL;
211 	unsigned long flags = 0;
212 
213 	for (i = 0; i < pagevec_count(pvec); i++) {
214 		struct page *page = pvec->pages[i];
215 		struct zone *pagezone = page_zone(page);
216 
217 		if (pagezone != zone) {
218 			if (zone)
219 				spin_unlock_irqrestore(&zone->lru_lock, flags);
220 			zone = pagezone;
221 			spin_lock_irqsave(&zone->lru_lock, flags);
222 		}
223 
224 		(*move_fn)(page, arg);
225 	}
226 	if (zone)
227 		spin_unlock_irqrestore(&zone->lru_lock, flags);
228 	release_pages(pvec->pages, pvec->nr, pvec->cold);
229 	pagevec_reinit(pvec);
230 }
231 
232 static void pagevec_move_tail_fn(struct page *page, void *arg)
233 {
234 	int *pgmoved = arg;
235 
236 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
237 		enum lru_list lru = page_lru_base_type(page);
238 		struct lruvec *lruvec;
239 
240 		lruvec = mem_cgroup_lru_move_lists(page_zone(page),
241 						   page, lru, lru);
242 		list_move_tail(&page->lru, &lruvec->lists[lru]);
243 		(*pgmoved)++;
244 	}
245 }
246 
247 /*
248  * pagevec_move_tail() must be called with IRQ disabled.
249  * Otherwise this may cause nasty races.
250  */
251 static void pagevec_move_tail(struct pagevec *pvec)
252 {
253 	int pgmoved = 0;
254 
255 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
256 	__count_vm_events(PGROTATED, pgmoved);
257 }
258 
259 /*
260  * Writeback is about to end against a page which has been marked for immediate
261  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
262  * inactive list.
263  */
264 void rotate_reclaimable_page(struct page *page)
265 {
266 	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
267 	    !PageUnevictable(page) && PageLRU(page)) {
268 		struct pagevec *pvec;
269 		unsigned long flags;
270 
271 		page_cache_get(page);
272 		local_irq_save(flags);
273 		pvec = &__get_cpu_var(lru_rotate_pvecs);
274 		if (!pagevec_add(pvec, page))
275 			pagevec_move_tail(pvec);
276 		local_irq_restore(flags);
277 	}
278 }
279 
280 static void update_page_reclaim_stat(struct zone *zone, struct page *page,
281 				     int file, int rotated)
282 {
283 	struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
284 	struct zone_reclaim_stat *memcg_reclaim_stat;
285 
286 	memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
287 
288 	reclaim_stat->recent_scanned[file]++;
289 	if (rotated)
290 		reclaim_stat->recent_rotated[file]++;
291 
292 	if (!memcg_reclaim_stat)
293 		return;
294 
295 	memcg_reclaim_stat->recent_scanned[file]++;
296 	if (rotated)
297 		memcg_reclaim_stat->recent_rotated[file]++;
298 }
299 
300 static void __activate_page(struct page *page, void *arg)
301 {
302 	struct zone *zone = page_zone(page);
303 
304 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
305 		int file = page_is_file_cache(page);
306 		int lru = page_lru_base_type(page);
307 		del_page_from_lru_list(zone, page, lru);
308 
309 		SetPageActive(page);
310 		lru += LRU_ACTIVE;
311 		add_page_to_lru_list(zone, page, lru);
312 		__count_vm_event(PGACTIVATE);
313 
314 		update_page_reclaim_stat(zone, page, file, 1);
315 	}
316 }
317 
318 #ifdef CONFIG_SMP
319 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
320 
321 static void activate_page_drain(int cpu)
322 {
323 	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
324 
325 	if (pagevec_count(pvec))
326 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
327 }
328 
329 void activate_page(struct page *page)
330 {
331 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
332 		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
333 
334 		page_cache_get(page);
335 		if (!pagevec_add(pvec, page))
336 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
337 		put_cpu_var(activate_page_pvecs);
338 	}
339 }
340 
341 #else
342 static inline void activate_page_drain(int cpu)
343 {
344 }
345 
346 void activate_page(struct page *page)
347 {
348 	struct zone *zone = page_zone(page);
349 
350 	spin_lock_irq(&zone->lru_lock);
351 	__activate_page(page, NULL);
352 	spin_unlock_irq(&zone->lru_lock);
353 }
354 #endif
355 
356 /*
357  * Mark a page as having seen activity.
358  *
359  * inactive,unreferenced	->	inactive,referenced
360  * inactive,referenced		->	active,unreferenced
361  * active,unreferenced		->	active,referenced
362  */
363 void mark_page_accessed(struct page *page)
364 {
365 	if (!PageActive(page) && !PageUnevictable(page) &&
366 			PageReferenced(page) && PageLRU(page)) {
367 		activate_page(page);
368 		ClearPageReferenced(page);
369 	} else if (!PageReferenced(page)) {
370 		SetPageReferenced(page);
371 	}
372 }
373 
374 EXPORT_SYMBOL(mark_page_accessed);
375 
376 void __lru_cache_add(struct page *page, enum lru_list lru)
377 {
378 	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
379 
380 	page_cache_get(page);
381 	if (!pagevec_add(pvec, page))
382 		____pagevec_lru_add(pvec, lru);
383 	put_cpu_var(lru_add_pvecs);
384 }
385 EXPORT_SYMBOL(__lru_cache_add);
386 
387 /**
388  * lru_cache_add_lru - add a page to a page list
389  * @page: the page to be added to the LRU.
390  * @lru: the LRU list to which the page is added.
391  */
392 void lru_cache_add_lru(struct page *page, enum lru_list lru)
393 {
394 	if (PageActive(page)) {
395 		VM_BUG_ON(PageUnevictable(page));
396 		ClearPageActive(page);
397 	} else if (PageUnevictable(page)) {
398 		VM_BUG_ON(PageActive(page));
399 		ClearPageUnevictable(page);
400 	}
401 
402 	VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
403 	__lru_cache_add(page, lru);
404 }
405 
406 /**
407  * add_page_to_unevictable_list - add a page to the unevictable list
408  * @page:  the page to be added to the unevictable list
409  *
410  * Add page directly to its zone's unevictable list.  To avoid races with
411  * tasks that might be making the page evictable, through eg. munlock,
412  * munmap or exit, while it's not on the lru, we want to add the page
413  * while it's locked or otherwise "invisible" to other tasks.  This is
414  * difficult to do when using the pagevec cache, so bypass that.
415  */
416 void add_page_to_unevictable_list(struct page *page)
417 {
418 	struct zone *zone = page_zone(page);
419 
420 	spin_lock_irq(&zone->lru_lock);
421 	SetPageUnevictable(page);
422 	SetPageLRU(page);
423 	add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
424 	spin_unlock_irq(&zone->lru_lock);
425 }
426 
427 /*
428  * If the page can not be invalidated, it is moved to the
429  * inactive list to speed up its reclaim.  It is moved to the
430  * head of the list, rather than the tail, to give the flusher
431  * threads some time to write it out, as this is much more
432  * effective than the single-page writeout from reclaim.
433  *
434  * If the page isn't page_mapped and dirty/writeback, the page
435  * could reclaim asap using PG_reclaim.
436  *
437  * 1. active, mapped page -> none
438  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
439  * 3. inactive, mapped page -> none
440  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
441  * 5. inactive, clean -> inactive, tail
442  * 6. Others -> none
443  *
444  * In 4, why it moves inactive's head, the VM expects the page would
445  * be write it out by flusher threads as this is much more effective
446  * than the single-page writeout from reclaim.
447  */
448 static void lru_deactivate_fn(struct page *page, void *arg)
449 {
450 	int lru, file;
451 	bool active;
452 	struct zone *zone = page_zone(page);
453 
454 	if (!PageLRU(page))
455 		return;
456 
457 	if (PageUnevictable(page))
458 		return;
459 
460 	/* Some processes are using the page */
461 	if (page_mapped(page))
462 		return;
463 
464 	active = PageActive(page);
465 
466 	file = page_is_file_cache(page);
467 	lru = page_lru_base_type(page);
468 	del_page_from_lru_list(zone, page, lru + active);
469 	ClearPageActive(page);
470 	ClearPageReferenced(page);
471 	add_page_to_lru_list(zone, page, lru);
472 
473 	if (PageWriteback(page) || PageDirty(page)) {
474 		/*
475 		 * PG_reclaim could be raced with end_page_writeback
476 		 * It can make readahead confusing.  But race window
477 		 * is _really_ small and  it's non-critical problem.
478 		 */
479 		SetPageReclaim(page);
480 	} else {
481 		struct lruvec *lruvec;
482 		/*
483 		 * The page's writeback ends up during pagevec
484 		 * We moves tha page into tail of inactive.
485 		 */
486 		lruvec = mem_cgroup_lru_move_lists(zone, page, lru, lru);
487 		list_move_tail(&page->lru, &lruvec->lists[lru]);
488 		__count_vm_event(PGROTATED);
489 	}
490 
491 	if (active)
492 		__count_vm_event(PGDEACTIVATE);
493 	update_page_reclaim_stat(zone, page, file, 0);
494 }
495 
496 /*
497  * Drain pages out of the cpu's pagevecs.
498  * Either "cpu" is the current CPU, and preemption has already been
499  * disabled; or "cpu" is being hot-unplugged, and is already dead.
500  */
501 static void drain_cpu_pagevecs(int cpu)
502 {
503 	struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
504 	struct pagevec *pvec;
505 	int lru;
506 
507 	for_each_lru(lru) {
508 		pvec = &pvecs[lru - LRU_BASE];
509 		if (pagevec_count(pvec))
510 			____pagevec_lru_add(pvec, lru);
511 	}
512 
513 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
514 	if (pagevec_count(pvec)) {
515 		unsigned long flags;
516 
517 		/* No harm done if a racing interrupt already did this */
518 		local_irq_save(flags);
519 		pagevec_move_tail(pvec);
520 		local_irq_restore(flags);
521 	}
522 
523 	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
524 	if (pagevec_count(pvec))
525 		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
526 
527 	activate_page_drain(cpu);
528 }
529 
530 /**
531  * deactivate_page - forcefully deactivate a page
532  * @page: page to deactivate
533  *
534  * This function hints the VM that @page is a good reclaim candidate,
535  * for example if its invalidation fails due to the page being dirty
536  * or under writeback.
537  */
538 void deactivate_page(struct page *page)
539 {
540 	/*
541 	 * In a workload with many unevictable page such as mprotect, unevictable
542 	 * page deactivation for accelerating reclaim is pointless.
543 	 */
544 	if (PageUnevictable(page))
545 		return;
546 
547 	if (likely(get_page_unless_zero(page))) {
548 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
549 
550 		if (!pagevec_add(pvec, page))
551 			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
552 		put_cpu_var(lru_deactivate_pvecs);
553 	}
554 }
555 
556 void lru_add_drain(void)
557 {
558 	drain_cpu_pagevecs(get_cpu());
559 	put_cpu();
560 }
561 
562 static void lru_add_drain_per_cpu(struct work_struct *dummy)
563 {
564 	lru_add_drain();
565 }
566 
567 /*
568  * Returns 0 for success
569  */
570 int lru_add_drain_all(void)
571 {
572 	return schedule_on_each_cpu(lru_add_drain_per_cpu);
573 }
574 
575 /*
576  * Batched page_cache_release().  Decrement the reference count on all the
577  * passed pages.  If it fell to zero then remove the page from the LRU and
578  * free it.
579  *
580  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
581  * for the remainder of the operation.
582  *
583  * The locking in this function is against shrink_inactive_list(): we recheck
584  * the page count inside the lock to see whether shrink_inactive_list()
585  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
586  * will free it.
587  */
588 void release_pages(struct page **pages, int nr, int cold)
589 {
590 	int i;
591 	LIST_HEAD(pages_to_free);
592 	struct zone *zone = NULL;
593 	unsigned long uninitialized_var(flags);
594 
595 	for (i = 0; i < nr; i++) {
596 		struct page *page = pages[i];
597 
598 		if (unlikely(PageCompound(page))) {
599 			if (zone) {
600 				spin_unlock_irqrestore(&zone->lru_lock, flags);
601 				zone = NULL;
602 			}
603 			put_compound_page(page);
604 			continue;
605 		}
606 
607 		if (!put_page_testzero(page))
608 			continue;
609 
610 		if (PageLRU(page)) {
611 			struct zone *pagezone = page_zone(page);
612 
613 			if (pagezone != zone) {
614 				if (zone)
615 					spin_unlock_irqrestore(&zone->lru_lock,
616 									flags);
617 				zone = pagezone;
618 				spin_lock_irqsave(&zone->lru_lock, flags);
619 			}
620 			VM_BUG_ON(!PageLRU(page));
621 			__ClearPageLRU(page);
622 			del_page_from_lru(zone, page);
623 		}
624 
625 		list_add(&page->lru, &pages_to_free);
626 	}
627 	if (zone)
628 		spin_unlock_irqrestore(&zone->lru_lock, flags);
629 
630 	free_hot_cold_page_list(&pages_to_free, cold);
631 }
632 EXPORT_SYMBOL(release_pages);
633 
634 /*
635  * The pages which we're about to release may be in the deferred lru-addition
636  * queues.  That would prevent them from really being freed right now.  That's
637  * OK from a correctness point of view but is inefficient - those pages may be
638  * cache-warm and we want to give them back to the page allocator ASAP.
639  *
640  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
641  * and __pagevec_lru_add_active() call release_pages() directly to avoid
642  * mutual recursion.
643  */
644 void __pagevec_release(struct pagevec *pvec)
645 {
646 	lru_add_drain();
647 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
648 	pagevec_reinit(pvec);
649 }
650 
651 EXPORT_SYMBOL(__pagevec_release);
652 
653 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
654 /* used by __split_huge_page_refcount() */
655 void lru_add_page_tail(struct zone* zone,
656 		       struct page *page, struct page *page_tail)
657 {
658 	int active;
659 	enum lru_list lru;
660 	const int file = 0;
661 
662 	VM_BUG_ON(!PageHead(page));
663 	VM_BUG_ON(PageCompound(page_tail));
664 	VM_BUG_ON(PageLRU(page_tail));
665 	VM_BUG_ON(!spin_is_locked(&zone->lru_lock));
666 
667 	SetPageLRU(page_tail);
668 
669 	if (page_evictable(page_tail, NULL)) {
670 		if (PageActive(page)) {
671 			SetPageActive(page_tail);
672 			active = 1;
673 			lru = LRU_ACTIVE_ANON;
674 		} else {
675 			active = 0;
676 			lru = LRU_INACTIVE_ANON;
677 		}
678 		update_page_reclaim_stat(zone, page_tail, file, active);
679 	} else {
680 		SetPageUnevictable(page_tail);
681 		lru = LRU_UNEVICTABLE;
682 	}
683 
684 	if (likely(PageLRU(page)))
685 		list_add_tail(&page_tail->lru, &page->lru);
686 	else {
687 		struct list_head *list_head;
688 		/*
689 		 * Head page has not yet been counted, as an hpage,
690 		 * so we must account for each subpage individually.
691 		 *
692 		 * Use the standard add function to put page_tail on the list,
693 		 * but then correct its position so they all end up in order.
694 		 */
695 		add_page_to_lru_list(zone, page_tail, lru);
696 		list_head = page_tail->lru.prev;
697 		list_move_tail(&page_tail->lru, list_head);
698 	}
699 }
700 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
701 
702 static void ____pagevec_lru_add_fn(struct page *page, void *arg)
703 {
704 	enum lru_list lru = (enum lru_list)arg;
705 	struct zone *zone = page_zone(page);
706 	int file = is_file_lru(lru);
707 	int active = is_active_lru(lru);
708 
709 	VM_BUG_ON(PageActive(page));
710 	VM_BUG_ON(PageUnevictable(page));
711 	VM_BUG_ON(PageLRU(page));
712 
713 	SetPageLRU(page);
714 	if (active)
715 		SetPageActive(page);
716 	update_page_reclaim_stat(zone, page, file, active);
717 	add_page_to_lru_list(zone, page, lru);
718 }
719 
720 /*
721  * Add the passed pages to the LRU, then drop the caller's refcount
722  * on them.  Reinitialises the caller's pagevec.
723  */
724 void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
725 {
726 	VM_BUG_ON(is_unevictable_lru(lru));
727 
728 	pagevec_lru_move_fn(pvec, ____pagevec_lru_add_fn, (void *)lru);
729 }
730 
731 EXPORT_SYMBOL(____pagevec_lru_add);
732 
733 /*
734  * Try to drop buffers from the pages in a pagevec
735  */
736 void pagevec_strip(struct pagevec *pvec)
737 {
738 	int i;
739 
740 	for (i = 0; i < pagevec_count(pvec); i++) {
741 		struct page *page = pvec->pages[i];
742 
743 		if (page_has_private(page) && trylock_page(page)) {
744 			if (page_has_private(page))
745 				try_to_release_page(page, 0);
746 			unlock_page(page);
747 		}
748 	}
749 }
750 
751 /**
752  * pagevec_lookup - gang pagecache lookup
753  * @pvec:	Where the resulting pages are placed
754  * @mapping:	The address_space to search
755  * @start:	The starting page index
756  * @nr_pages:	The maximum number of pages
757  *
758  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
759  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
760  * reference against the pages in @pvec.
761  *
762  * The search returns a group of mapping-contiguous pages with ascending
763  * indexes.  There may be holes in the indices due to not-present pages.
764  *
765  * pagevec_lookup() returns the number of pages which were found.
766  */
767 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
768 		pgoff_t start, unsigned nr_pages)
769 {
770 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
771 	return pagevec_count(pvec);
772 }
773 
774 EXPORT_SYMBOL(pagevec_lookup);
775 
776 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
777 		pgoff_t *index, int tag, unsigned nr_pages)
778 {
779 	pvec->nr = find_get_pages_tag(mapping, index, tag,
780 					nr_pages, pvec->pages);
781 	return pagevec_count(pvec);
782 }
783 
784 EXPORT_SYMBOL(pagevec_lookup_tag);
785 
786 /*
787  * Perform any setup for the swap system
788  */
789 void __init swap_setup(void)
790 {
791 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
792 
793 #ifdef CONFIG_SWAP
794 	bdi_init(swapper_space.backing_dev_info);
795 #endif
796 
797 	/* Use a smaller cluster for small-memory machines */
798 	if (megs < 16)
799 		page_cluster = 2;
800 	else
801 		page_cluster = 3;
802 	/*
803 	 * Right now other parts of the system means that we
804 	 * _really_ don't want to cluster much more
805 	 */
806 }
807