1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * sparse memory mappings. 4 */ 5 #include <linux/mm.h> 6 #include <linux/slab.h> 7 #include <linux/mmzone.h> 8 #include <linux/memblock.h> 9 #include <linux/compiler.h> 10 #include <linux/highmem.h> 11 #include <linux/export.h> 12 #include <linux/spinlock.h> 13 #include <linux/vmalloc.h> 14 #include <linux/swap.h> 15 #include <linux/swapops.h> 16 17 #include "internal.h" 18 #include <asm/dma.h> 19 20 /* 21 * Permanent SPARSEMEM data: 22 * 23 * 1) mem_section - memory sections, mem_map's for valid memory 24 */ 25 #ifdef CONFIG_SPARSEMEM_EXTREME 26 struct mem_section **mem_section; 27 #else 28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 29 ____cacheline_internodealigned_in_smp; 30 #endif 31 EXPORT_SYMBOL(mem_section); 32 33 #ifdef NODE_NOT_IN_PAGE_FLAGS 34 /* 35 * If we did not store the node number in the page then we have to 36 * do a lookup in the section_to_node_table in order to find which 37 * node the page belongs to. 38 */ 39 #if MAX_NUMNODES <= 256 40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 41 #else 42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 43 #endif 44 45 int page_to_nid(const struct page *page) 46 { 47 return section_to_node_table[page_to_section(page)]; 48 } 49 EXPORT_SYMBOL(page_to_nid); 50 51 static void set_section_nid(unsigned long section_nr, int nid) 52 { 53 section_to_node_table[section_nr] = nid; 54 } 55 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 56 static inline void set_section_nid(unsigned long section_nr, int nid) 57 { 58 } 59 #endif 60 61 #ifdef CONFIG_SPARSEMEM_EXTREME 62 static noinline struct mem_section __ref *sparse_index_alloc(int nid) 63 { 64 struct mem_section *section = NULL; 65 unsigned long array_size = SECTIONS_PER_ROOT * 66 sizeof(struct mem_section); 67 68 if (slab_is_available()) { 69 section = kzalloc_node(array_size, GFP_KERNEL, nid); 70 } else { 71 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES, 72 nid); 73 if (!section) 74 panic("%s: Failed to allocate %lu bytes nid=%d\n", 75 __func__, array_size, nid); 76 } 77 78 return section; 79 } 80 81 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 82 { 83 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 84 struct mem_section *section; 85 86 /* 87 * An existing section is possible in the sub-section hotplug 88 * case. First hot-add instantiates, follow-on hot-add reuses 89 * the existing section. 90 * 91 * The mem_hotplug_lock resolves the apparent race below. 92 */ 93 if (mem_section[root]) 94 return 0; 95 96 section = sparse_index_alloc(nid); 97 if (!section) 98 return -ENOMEM; 99 100 mem_section[root] = section; 101 102 return 0; 103 } 104 #else /* !SPARSEMEM_EXTREME */ 105 static inline int sparse_index_init(unsigned long section_nr, int nid) 106 { 107 return 0; 108 } 109 #endif 110 111 #ifdef CONFIG_SPARSEMEM_EXTREME 112 unsigned long __section_nr(struct mem_section *ms) 113 { 114 unsigned long root_nr; 115 struct mem_section *root = NULL; 116 117 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 118 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 119 if (!root) 120 continue; 121 122 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 123 break; 124 } 125 126 VM_BUG_ON(!root); 127 128 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 129 } 130 #else 131 unsigned long __section_nr(struct mem_section *ms) 132 { 133 return (unsigned long)(ms - mem_section[0]); 134 } 135 #endif 136 137 /* 138 * During early boot, before section_mem_map is used for an actual 139 * mem_map, we use section_mem_map to store the section's NUMA 140 * node. This keeps us from having to use another data structure. The 141 * node information is cleared just before we store the real mem_map. 142 */ 143 static inline unsigned long sparse_encode_early_nid(int nid) 144 { 145 return (nid << SECTION_NID_SHIFT); 146 } 147 148 static inline int sparse_early_nid(struct mem_section *section) 149 { 150 return (section->section_mem_map >> SECTION_NID_SHIFT); 151 } 152 153 /* Validate the physical addressing limitations of the model */ 154 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 155 unsigned long *end_pfn) 156 { 157 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 158 159 /* 160 * Sanity checks - do not allow an architecture to pass 161 * in larger pfns than the maximum scope of sparsemem: 162 */ 163 if (*start_pfn > max_sparsemem_pfn) { 164 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 165 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 166 *start_pfn, *end_pfn, max_sparsemem_pfn); 167 WARN_ON_ONCE(1); 168 *start_pfn = max_sparsemem_pfn; 169 *end_pfn = max_sparsemem_pfn; 170 } else if (*end_pfn > max_sparsemem_pfn) { 171 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 172 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 173 *start_pfn, *end_pfn, max_sparsemem_pfn); 174 WARN_ON_ONCE(1); 175 *end_pfn = max_sparsemem_pfn; 176 } 177 } 178 179 /* 180 * There are a number of times that we loop over NR_MEM_SECTIONS, 181 * looking for section_present() on each. But, when we have very 182 * large physical address spaces, NR_MEM_SECTIONS can also be 183 * very large which makes the loops quite long. 184 * 185 * Keeping track of this gives us an easy way to break out of 186 * those loops early. 187 */ 188 unsigned long __highest_present_section_nr; 189 static void section_mark_present(struct mem_section *ms) 190 { 191 unsigned long section_nr = __section_nr(ms); 192 193 if (section_nr > __highest_present_section_nr) 194 __highest_present_section_nr = section_nr; 195 196 ms->section_mem_map |= SECTION_MARKED_PRESENT; 197 } 198 199 #define for_each_present_section_nr(start, section_nr) \ 200 for (section_nr = next_present_section_nr(start-1); \ 201 ((section_nr != -1) && \ 202 (section_nr <= __highest_present_section_nr)); \ 203 section_nr = next_present_section_nr(section_nr)) 204 205 static inline unsigned long first_present_section_nr(void) 206 { 207 return next_present_section_nr(-1); 208 } 209 210 #ifdef CONFIG_SPARSEMEM_VMEMMAP 211 static void subsection_mask_set(unsigned long *map, unsigned long pfn, 212 unsigned long nr_pages) 213 { 214 int idx = subsection_map_index(pfn); 215 int end = subsection_map_index(pfn + nr_pages - 1); 216 217 bitmap_set(map, idx, end - idx + 1); 218 } 219 220 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages) 221 { 222 int end_sec = pfn_to_section_nr(pfn + nr_pages - 1); 223 unsigned long nr, start_sec = pfn_to_section_nr(pfn); 224 225 if (!nr_pages) 226 return; 227 228 for (nr = start_sec; nr <= end_sec; nr++) { 229 struct mem_section *ms; 230 unsigned long pfns; 231 232 pfns = min(nr_pages, PAGES_PER_SECTION 233 - (pfn & ~PAGE_SECTION_MASK)); 234 ms = __nr_to_section(nr); 235 subsection_mask_set(ms->usage->subsection_map, pfn, pfns); 236 237 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr, 238 pfns, subsection_map_index(pfn), 239 subsection_map_index(pfn + pfns - 1)); 240 241 pfn += pfns; 242 nr_pages -= pfns; 243 } 244 } 245 #else 246 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages) 247 { 248 } 249 #endif 250 251 /* Record a memory area against a node. */ 252 static void __init memory_present(int nid, unsigned long start, unsigned long end) 253 { 254 unsigned long pfn; 255 256 #ifdef CONFIG_SPARSEMEM_EXTREME 257 if (unlikely(!mem_section)) { 258 unsigned long size, align; 259 260 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS; 261 align = 1 << (INTERNODE_CACHE_SHIFT); 262 mem_section = memblock_alloc(size, align); 263 if (!mem_section) 264 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 265 __func__, size, align); 266 } 267 #endif 268 269 start &= PAGE_SECTION_MASK; 270 mminit_validate_memmodel_limits(&start, &end); 271 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 272 unsigned long section = pfn_to_section_nr(pfn); 273 struct mem_section *ms; 274 275 sparse_index_init(section, nid); 276 set_section_nid(section, nid); 277 278 ms = __nr_to_section(section); 279 if (!ms->section_mem_map) { 280 ms->section_mem_map = sparse_encode_early_nid(nid) | 281 SECTION_IS_ONLINE; 282 section_mark_present(ms); 283 } 284 } 285 } 286 287 /* 288 * Mark all memblocks as present using memory_present(). 289 * This is a convenience function that is useful to mark all of the systems 290 * memory as present during initialization. 291 */ 292 static void __init memblocks_present(void) 293 { 294 unsigned long start, end; 295 int i, nid; 296 297 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) 298 memory_present(nid, start, end); 299 } 300 301 /* 302 * Subtle, we encode the real pfn into the mem_map such that 303 * the identity pfn - section_mem_map will return the actual 304 * physical page frame number. 305 */ 306 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 307 { 308 unsigned long coded_mem_map = 309 (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 310 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT)); 311 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK); 312 return coded_mem_map; 313 } 314 315 /* 316 * Decode mem_map from the coded memmap 317 */ 318 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 319 { 320 /* mask off the extra low bits of information */ 321 coded_mem_map &= SECTION_MAP_MASK; 322 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 323 } 324 325 static void __meminit sparse_init_one_section(struct mem_section *ms, 326 unsigned long pnum, struct page *mem_map, 327 struct mem_section_usage *usage, unsigned long flags) 328 { 329 ms->section_mem_map &= ~SECTION_MAP_MASK; 330 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) 331 | SECTION_HAS_MEM_MAP | flags; 332 ms->usage = usage; 333 } 334 335 static unsigned long usemap_size(void) 336 { 337 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long); 338 } 339 340 size_t mem_section_usage_size(void) 341 { 342 return sizeof(struct mem_section_usage) + usemap_size(); 343 } 344 345 #ifdef CONFIG_MEMORY_HOTREMOVE 346 static struct mem_section_usage * __init 347 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 348 unsigned long size) 349 { 350 struct mem_section_usage *usage; 351 unsigned long goal, limit; 352 int nid; 353 /* 354 * A page may contain usemaps for other sections preventing the 355 * page being freed and making a section unremovable while 356 * other sections referencing the usemap remain active. Similarly, 357 * a pgdat can prevent a section being removed. If section A 358 * contains a pgdat and section B contains the usemap, both 359 * sections become inter-dependent. This allocates usemaps 360 * from the same section as the pgdat where possible to avoid 361 * this problem. 362 */ 363 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 364 limit = goal + (1UL << PA_SECTION_SHIFT); 365 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 366 again: 367 usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid); 368 if (!usage && limit) { 369 limit = 0; 370 goto again; 371 } 372 return usage; 373 } 374 375 static void __init check_usemap_section_nr(int nid, 376 struct mem_section_usage *usage) 377 { 378 unsigned long usemap_snr, pgdat_snr; 379 static unsigned long old_usemap_snr; 380 static unsigned long old_pgdat_snr; 381 struct pglist_data *pgdat = NODE_DATA(nid); 382 int usemap_nid; 383 384 /* First call */ 385 if (!old_usemap_snr) { 386 old_usemap_snr = NR_MEM_SECTIONS; 387 old_pgdat_snr = NR_MEM_SECTIONS; 388 } 389 390 usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT); 391 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 392 if (usemap_snr == pgdat_snr) 393 return; 394 395 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 396 /* skip redundant message */ 397 return; 398 399 old_usemap_snr = usemap_snr; 400 old_pgdat_snr = pgdat_snr; 401 402 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 403 if (usemap_nid != nid) { 404 pr_info("node %d must be removed before remove section %ld\n", 405 nid, usemap_snr); 406 return; 407 } 408 /* 409 * There is a circular dependency. 410 * Some platforms allow un-removable section because they will just 411 * gather other removable sections for dynamic partitioning. 412 * Just notify un-removable section's number here. 413 */ 414 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n", 415 usemap_snr, pgdat_snr, nid); 416 } 417 #else 418 static struct mem_section_usage * __init 419 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 420 unsigned long size) 421 { 422 return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id); 423 } 424 425 static void __init check_usemap_section_nr(int nid, 426 struct mem_section_usage *usage) 427 { 428 } 429 #endif /* CONFIG_MEMORY_HOTREMOVE */ 430 431 #ifdef CONFIG_SPARSEMEM_VMEMMAP 432 static unsigned long __init section_map_size(void) 433 { 434 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE); 435 } 436 437 #else 438 static unsigned long __init section_map_size(void) 439 { 440 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 441 } 442 443 struct page __init *__populate_section_memmap(unsigned long pfn, 444 unsigned long nr_pages, int nid, struct vmem_altmap *altmap) 445 { 446 unsigned long size = section_map_size(); 447 struct page *map = sparse_buffer_alloc(size); 448 phys_addr_t addr = __pa(MAX_DMA_ADDRESS); 449 450 if (map) 451 return map; 452 453 map = memblock_alloc_try_nid_raw(size, size, addr, 454 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 455 if (!map) 456 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n", 457 __func__, size, PAGE_SIZE, nid, &addr); 458 459 return map; 460 } 461 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 462 463 static void *sparsemap_buf __meminitdata; 464 static void *sparsemap_buf_end __meminitdata; 465 466 static inline void __meminit sparse_buffer_free(unsigned long size) 467 { 468 WARN_ON(!sparsemap_buf || size == 0); 469 memblock_free_early(__pa(sparsemap_buf), size); 470 } 471 472 static void __init sparse_buffer_init(unsigned long size, int nid) 473 { 474 phys_addr_t addr = __pa(MAX_DMA_ADDRESS); 475 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */ 476 /* 477 * Pre-allocated buffer is mainly used by __populate_section_memmap 478 * and we want it to be properly aligned to the section size - this is 479 * especially the case for VMEMMAP which maps memmap to PMDs 480 */ 481 sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(), 482 addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 483 sparsemap_buf_end = sparsemap_buf + size; 484 } 485 486 static void __init sparse_buffer_fini(void) 487 { 488 unsigned long size = sparsemap_buf_end - sparsemap_buf; 489 490 if (sparsemap_buf && size > 0) 491 sparse_buffer_free(size); 492 sparsemap_buf = NULL; 493 } 494 495 void * __meminit sparse_buffer_alloc(unsigned long size) 496 { 497 void *ptr = NULL; 498 499 if (sparsemap_buf) { 500 ptr = (void *) roundup((unsigned long)sparsemap_buf, size); 501 if (ptr + size > sparsemap_buf_end) 502 ptr = NULL; 503 else { 504 /* Free redundant aligned space */ 505 if ((unsigned long)(ptr - sparsemap_buf) > 0) 506 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf)); 507 sparsemap_buf = ptr + size; 508 } 509 } 510 return ptr; 511 } 512 513 void __weak __meminit vmemmap_populate_print_last(void) 514 { 515 } 516 517 /* 518 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end) 519 * And number of present sections in this node is map_count. 520 */ 521 static void __init sparse_init_nid(int nid, unsigned long pnum_begin, 522 unsigned long pnum_end, 523 unsigned long map_count) 524 { 525 struct mem_section_usage *usage; 526 unsigned long pnum; 527 struct page *map; 528 529 usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid), 530 mem_section_usage_size() * map_count); 531 if (!usage) { 532 pr_err("%s: node[%d] usemap allocation failed", __func__, nid); 533 goto failed; 534 } 535 sparse_buffer_init(map_count * section_map_size(), nid); 536 for_each_present_section_nr(pnum_begin, pnum) { 537 unsigned long pfn = section_nr_to_pfn(pnum); 538 539 if (pnum >= pnum_end) 540 break; 541 542 map = __populate_section_memmap(pfn, PAGES_PER_SECTION, 543 nid, NULL); 544 if (!map) { 545 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.", 546 __func__, nid); 547 pnum_begin = pnum; 548 goto failed; 549 } 550 check_usemap_section_nr(nid, usage); 551 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage, 552 SECTION_IS_EARLY); 553 usage = (void *) usage + mem_section_usage_size(); 554 } 555 sparse_buffer_fini(); 556 return; 557 failed: 558 /* We failed to allocate, mark all the following pnums as not present */ 559 for_each_present_section_nr(pnum_begin, pnum) { 560 struct mem_section *ms; 561 562 if (pnum >= pnum_end) 563 break; 564 ms = __nr_to_section(pnum); 565 ms->section_mem_map = 0; 566 } 567 } 568 569 /* 570 * Allocate the accumulated non-linear sections, allocate a mem_map 571 * for each and record the physical to section mapping. 572 */ 573 void __init sparse_init(void) 574 { 575 unsigned long pnum_end, pnum_begin, map_count = 1; 576 int nid_begin; 577 578 memblocks_present(); 579 580 pnum_begin = first_present_section_nr(); 581 nid_begin = sparse_early_nid(__nr_to_section(pnum_begin)); 582 583 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ 584 set_pageblock_order(); 585 586 for_each_present_section_nr(pnum_begin + 1, pnum_end) { 587 int nid = sparse_early_nid(__nr_to_section(pnum_end)); 588 589 if (nid == nid_begin) { 590 map_count++; 591 continue; 592 } 593 /* Init node with sections in range [pnum_begin, pnum_end) */ 594 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 595 nid_begin = nid; 596 pnum_begin = pnum_end; 597 map_count = 1; 598 } 599 /* cover the last node */ 600 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 601 vmemmap_populate_print_last(); 602 } 603 604 #ifdef CONFIG_MEMORY_HOTPLUG 605 606 /* Mark all memory sections within the pfn range as online */ 607 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 608 { 609 unsigned long pfn; 610 611 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 612 unsigned long section_nr = pfn_to_section_nr(pfn); 613 struct mem_section *ms; 614 615 /* onlining code should never touch invalid ranges */ 616 if (WARN_ON(!valid_section_nr(section_nr))) 617 continue; 618 619 ms = __nr_to_section(section_nr); 620 ms->section_mem_map |= SECTION_IS_ONLINE; 621 } 622 } 623 624 #ifdef CONFIG_MEMORY_HOTREMOVE 625 /* Mark all memory sections within the pfn range as offline */ 626 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 627 { 628 unsigned long pfn; 629 630 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 631 unsigned long section_nr = pfn_to_section_nr(pfn); 632 struct mem_section *ms; 633 634 /* 635 * TODO this needs some double checking. Offlining code makes 636 * sure to check pfn_valid but those checks might be just bogus 637 */ 638 if (WARN_ON(!valid_section_nr(section_nr))) 639 continue; 640 641 ms = __nr_to_section(section_nr); 642 ms->section_mem_map &= ~SECTION_IS_ONLINE; 643 } 644 } 645 #endif 646 647 #ifdef CONFIG_SPARSEMEM_VMEMMAP 648 static struct page * __meminit populate_section_memmap(unsigned long pfn, 649 unsigned long nr_pages, int nid, struct vmem_altmap *altmap) 650 { 651 return __populate_section_memmap(pfn, nr_pages, nid, altmap); 652 } 653 654 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages, 655 struct vmem_altmap *altmap) 656 { 657 unsigned long start = (unsigned long) pfn_to_page(pfn); 658 unsigned long end = start + nr_pages * sizeof(struct page); 659 660 vmemmap_free(start, end, altmap); 661 } 662 static void free_map_bootmem(struct page *memmap) 663 { 664 unsigned long start = (unsigned long)memmap; 665 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 666 667 vmemmap_free(start, end, NULL); 668 } 669 670 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages) 671 { 672 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 }; 673 DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 }; 674 struct mem_section *ms = __pfn_to_section(pfn); 675 unsigned long *subsection_map = ms->usage 676 ? &ms->usage->subsection_map[0] : NULL; 677 678 subsection_mask_set(map, pfn, nr_pages); 679 if (subsection_map) 680 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION); 681 682 if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION), 683 "section already deactivated (%#lx + %ld)\n", 684 pfn, nr_pages)) 685 return -EINVAL; 686 687 bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION); 688 return 0; 689 } 690 691 static bool is_subsection_map_empty(struct mem_section *ms) 692 { 693 return bitmap_empty(&ms->usage->subsection_map[0], 694 SUBSECTIONS_PER_SECTION); 695 } 696 697 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages) 698 { 699 struct mem_section *ms = __pfn_to_section(pfn); 700 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 }; 701 unsigned long *subsection_map; 702 int rc = 0; 703 704 subsection_mask_set(map, pfn, nr_pages); 705 706 subsection_map = &ms->usage->subsection_map[0]; 707 708 if (bitmap_empty(map, SUBSECTIONS_PER_SECTION)) 709 rc = -EINVAL; 710 else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION)) 711 rc = -EEXIST; 712 else 713 bitmap_or(subsection_map, map, subsection_map, 714 SUBSECTIONS_PER_SECTION); 715 716 return rc; 717 } 718 #else 719 struct page * __meminit populate_section_memmap(unsigned long pfn, 720 unsigned long nr_pages, int nid, struct vmem_altmap *altmap) 721 { 722 return kvmalloc_node(array_size(sizeof(struct page), 723 PAGES_PER_SECTION), GFP_KERNEL, nid); 724 } 725 726 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages, 727 struct vmem_altmap *altmap) 728 { 729 kvfree(pfn_to_page(pfn)); 730 } 731 732 static void free_map_bootmem(struct page *memmap) 733 { 734 unsigned long maps_section_nr, removing_section_nr, i; 735 unsigned long magic, nr_pages; 736 struct page *page = virt_to_page(memmap); 737 738 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 739 >> PAGE_SHIFT; 740 741 for (i = 0; i < nr_pages; i++, page++) { 742 magic = (unsigned long) page->freelist; 743 744 BUG_ON(magic == NODE_INFO); 745 746 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 747 removing_section_nr = page_private(page); 748 749 /* 750 * When this function is called, the removing section is 751 * logical offlined state. This means all pages are isolated 752 * from page allocator. If removing section's memmap is placed 753 * on the same section, it must not be freed. 754 * If it is freed, page allocator may allocate it which will 755 * be removed physically soon. 756 */ 757 if (maps_section_nr != removing_section_nr) 758 put_page_bootmem(page); 759 } 760 } 761 762 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages) 763 { 764 return 0; 765 } 766 767 static bool is_subsection_map_empty(struct mem_section *ms) 768 { 769 return true; 770 } 771 772 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages) 773 { 774 return 0; 775 } 776 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 777 778 /* 779 * To deactivate a memory region, there are 3 cases to handle across 780 * two configurations (SPARSEMEM_VMEMMAP={y,n}): 781 * 782 * 1. deactivation of a partial hot-added section (only possible in 783 * the SPARSEMEM_VMEMMAP=y case). 784 * a) section was present at memory init. 785 * b) section was hot-added post memory init. 786 * 2. deactivation of a complete hot-added section. 787 * 3. deactivation of a complete section from memory init. 788 * 789 * For 1, when subsection_map does not empty we will not be freeing the 790 * usage map, but still need to free the vmemmap range. 791 * 792 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified 793 */ 794 static void section_deactivate(unsigned long pfn, unsigned long nr_pages, 795 struct vmem_altmap *altmap) 796 { 797 struct mem_section *ms = __pfn_to_section(pfn); 798 bool section_is_early = early_section(ms); 799 struct page *memmap = NULL; 800 bool empty; 801 802 if (clear_subsection_map(pfn, nr_pages)) 803 return; 804 805 empty = is_subsection_map_empty(ms); 806 if (empty) { 807 unsigned long section_nr = pfn_to_section_nr(pfn); 808 809 /* 810 * When removing an early section, the usage map is kept (as the 811 * usage maps of other sections fall into the same page). It 812 * will be re-used when re-adding the section - which is then no 813 * longer an early section. If the usage map is PageReserved, it 814 * was allocated during boot. 815 */ 816 if (!PageReserved(virt_to_page(ms->usage))) { 817 kfree(ms->usage); 818 ms->usage = NULL; 819 } 820 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 821 /* 822 * Mark the section invalid so that valid_section() 823 * return false. This prevents code from dereferencing 824 * ms->usage array. 825 */ 826 ms->section_mem_map &= ~SECTION_HAS_MEM_MAP; 827 } 828 829 /* 830 * The memmap of early sections is always fully populated. See 831 * section_activate() and pfn_valid() . 832 */ 833 if (!section_is_early) 834 depopulate_section_memmap(pfn, nr_pages, altmap); 835 else if (memmap) 836 free_map_bootmem(memmap); 837 838 if (empty) 839 ms->section_mem_map = (unsigned long)NULL; 840 } 841 842 static struct page * __meminit section_activate(int nid, unsigned long pfn, 843 unsigned long nr_pages, struct vmem_altmap *altmap) 844 { 845 struct mem_section *ms = __pfn_to_section(pfn); 846 struct mem_section_usage *usage = NULL; 847 struct page *memmap; 848 int rc = 0; 849 850 if (!ms->usage) { 851 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL); 852 if (!usage) 853 return ERR_PTR(-ENOMEM); 854 ms->usage = usage; 855 } 856 857 rc = fill_subsection_map(pfn, nr_pages); 858 if (rc) { 859 if (usage) 860 ms->usage = NULL; 861 kfree(usage); 862 return ERR_PTR(rc); 863 } 864 865 /* 866 * The early init code does not consider partially populated 867 * initial sections, it simply assumes that memory will never be 868 * referenced. If we hot-add memory into such a section then we 869 * do not need to populate the memmap and can simply reuse what 870 * is already there. 871 */ 872 if (nr_pages < PAGES_PER_SECTION && early_section(ms)) 873 return pfn_to_page(pfn); 874 875 memmap = populate_section_memmap(pfn, nr_pages, nid, altmap); 876 if (!memmap) { 877 section_deactivate(pfn, nr_pages, altmap); 878 return ERR_PTR(-ENOMEM); 879 } 880 881 return memmap; 882 } 883 884 /** 885 * sparse_add_section - add a memory section, or populate an existing one 886 * @nid: The node to add section on 887 * @start_pfn: start pfn of the memory range 888 * @nr_pages: number of pfns to add in the section 889 * @altmap: device page map 890 * 891 * This is only intended for hotplug. 892 * 893 * Note that only VMEMMAP supports sub-section aligned hotplug, 894 * the proper alignment and size are gated by check_pfn_span(). 895 * 896 * 897 * Return: 898 * * 0 - On success. 899 * * -EEXIST - Section has been present. 900 * * -ENOMEM - Out of memory. 901 */ 902 int __meminit sparse_add_section(int nid, unsigned long start_pfn, 903 unsigned long nr_pages, struct vmem_altmap *altmap) 904 { 905 unsigned long section_nr = pfn_to_section_nr(start_pfn); 906 struct mem_section *ms; 907 struct page *memmap; 908 int ret; 909 910 ret = sparse_index_init(section_nr, nid); 911 if (ret < 0) 912 return ret; 913 914 memmap = section_activate(nid, start_pfn, nr_pages, altmap); 915 if (IS_ERR(memmap)) 916 return PTR_ERR(memmap); 917 918 /* 919 * Poison uninitialized struct pages in order to catch invalid flags 920 * combinations. 921 */ 922 page_init_poison(memmap, sizeof(struct page) * nr_pages); 923 924 ms = __nr_to_section(section_nr); 925 set_section_nid(section_nr, nid); 926 section_mark_present(ms); 927 928 /* Align memmap to section boundary in the subsection case */ 929 if (section_nr_to_pfn(section_nr) != start_pfn) 930 memmap = pfn_to_page(section_nr_to_pfn(section_nr)); 931 sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0); 932 933 return 0; 934 } 935 936 #ifdef CONFIG_MEMORY_FAILURE 937 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 938 { 939 int i; 940 941 /* 942 * A further optimization is to have per section refcounted 943 * num_poisoned_pages. But that would need more space per memmap, so 944 * for now just do a quick global check to speed up this routine in the 945 * absence of bad pages. 946 */ 947 if (atomic_long_read(&num_poisoned_pages) == 0) 948 return; 949 950 for (i = 0; i < nr_pages; i++) { 951 if (PageHWPoison(&memmap[i])) { 952 num_poisoned_pages_dec(); 953 ClearPageHWPoison(&memmap[i]); 954 } 955 } 956 } 957 #else 958 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 959 { 960 } 961 #endif 962 963 void sparse_remove_section(struct mem_section *ms, unsigned long pfn, 964 unsigned long nr_pages, unsigned long map_offset, 965 struct vmem_altmap *altmap) 966 { 967 clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset, 968 nr_pages - map_offset); 969 section_deactivate(pfn, nr_pages, altmap); 970 } 971 #endif /* CONFIG_MEMORY_HOTPLUG */ 972