xref: /openbmc/linux/mm/sparse.c (revision 67bb66d32905627e29400e2cb7f87a7c4c8cf667)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/bootmem_info.h>
17 
18 #include "internal.h"
19 #include <asm/dma.h>
20 
21 /*
22  * Permanent SPARSEMEM data:
23  *
24  * 1) mem_section	- memory sections, mem_map's for valid memory
25  */
26 #ifdef CONFIG_SPARSEMEM_EXTREME
27 struct mem_section **mem_section;
28 #else
29 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
30 	____cacheline_internodealigned_in_smp;
31 #endif
32 EXPORT_SYMBOL(mem_section);
33 
34 #ifdef NODE_NOT_IN_PAGE_FLAGS
35 /*
36  * If we did not store the node number in the page then we have to
37  * do a lookup in the section_to_node_table in order to find which
38  * node the page belongs to.
39  */
40 #if MAX_NUMNODES <= 256
41 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
42 #else
43 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
44 #endif
45 
46 int page_to_nid(const struct page *page)
47 {
48 	return section_to_node_table[page_to_section(page)];
49 }
50 EXPORT_SYMBOL(page_to_nid);
51 
52 static void set_section_nid(unsigned long section_nr, int nid)
53 {
54 	section_to_node_table[section_nr] = nid;
55 }
56 #else /* !NODE_NOT_IN_PAGE_FLAGS */
57 static inline void set_section_nid(unsigned long section_nr, int nid)
58 {
59 }
60 #endif
61 
62 #ifdef CONFIG_SPARSEMEM_EXTREME
63 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
64 {
65 	struct mem_section *section = NULL;
66 	unsigned long array_size = SECTIONS_PER_ROOT *
67 				   sizeof(struct mem_section);
68 
69 	if (slab_is_available()) {
70 		section = kzalloc_node(array_size, GFP_KERNEL, nid);
71 	} else {
72 		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
73 					      nid);
74 		if (!section)
75 			panic("%s: Failed to allocate %lu bytes nid=%d\n",
76 			      __func__, array_size, nid);
77 	}
78 
79 	return section;
80 }
81 
82 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
83 {
84 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
85 	struct mem_section *section;
86 
87 	/*
88 	 * An existing section is possible in the sub-section hotplug
89 	 * case. First hot-add instantiates, follow-on hot-add reuses
90 	 * the existing section.
91 	 *
92 	 * The mem_hotplug_lock resolves the apparent race below.
93 	 */
94 	if (mem_section[root])
95 		return 0;
96 
97 	section = sparse_index_alloc(nid);
98 	if (!section)
99 		return -ENOMEM;
100 
101 	mem_section[root] = section;
102 
103 	return 0;
104 }
105 #else /* !SPARSEMEM_EXTREME */
106 static inline int sparse_index_init(unsigned long section_nr, int nid)
107 {
108 	return 0;
109 }
110 #endif
111 
112 #ifdef CONFIG_SPARSEMEM_EXTREME
113 unsigned long __section_nr(struct mem_section *ms)
114 {
115 	unsigned long root_nr;
116 	struct mem_section *root = NULL;
117 
118 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
119 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
120 		if (!root)
121 			continue;
122 
123 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
124 		     break;
125 	}
126 
127 	VM_BUG_ON(!root);
128 
129 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
130 }
131 #else
132 unsigned long __section_nr(struct mem_section *ms)
133 {
134 	return (unsigned long)(ms - mem_section[0]);
135 }
136 #endif
137 
138 /*
139  * During early boot, before section_mem_map is used for an actual
140  * mem_map, we use section_mem_map to store the section's NUMA
141  * node.  This keeps us from having to use another data structure.  The
142  * node information is cleared just before we store the real mem_map.
143  */
144 static inline unsigned long sparse_encode_early_nid(int nid)
145 {
146 	return (nid << SECTION_NID_SHIFT);
147 }
148 
149 static inline int sparse_early_nid(struct mem_section *section)
150 {
151 	return (section->section_mem_map >> SECTION_NID_SHIFT);
152 }
153 
154 /* Validate the physical addressing limitations of the model */
155 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
156 						unsigned long *end_pfn)
157 {
158 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
159 
160 	/*
161 	 * Sanity checks - do not allow an architecture to pass
162 	 * in larger pfns than the maximum scope of sparsemem:
163 	 */
164 	if (*start_pfn > max_sparsemem_pfn) {
165 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
166 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
167 			*start_pfn, *end_pfn, max_sparsemem_pfn);
168 		WARN_ON_ONCE(1);
169 		*start_pfn = max_sparsemem_pfn;
170 		*end_pfn = max_sparsemem_pfn;
171 	} else if (*end_pfn > max_sparsemem_pfn) {
172 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
173 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
174 			*start_pfn, *end_pfn, max_sparsemem_pfn);
175 		WARN_ON_ONCE(1);
176 		*end_pfn = max_sparsemem_pfn;
177 	}
178 }
179 
180 /*
181  * There are a number of times that we loop over NR_MEM_SECTIONS,
182  * looking for section_present() on each.  But, when we have very
183  * large physical address spaces, NR_MEM_SECTIONS can also be
184  * very large which makes the loops quite long.
185  *
186  * Keeping track of this gives us an easy way to break out of
187  * those loops early.
188  */
189 unsigned long __highest_present_section_nr;
190 static void section_mark_present(struct mem_section *ms)
191 {
192 	unsigned long section_nr = __section_nr(ms);
193 
194 	if (section_nr > __highest_present_section_nr)
195 		__highest_present_section_nr = section_nr;
196 
197 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
198 }
199 
200 #define for_each_present_section_nr(start, section_nr)		\
201 	for (section_nr = next_present_section_nr(start-1);	\
202 	     ((section_nr != -1) &&				\
203 	      (section_nr <= __highest_present_section_nr));	\
204 	     section_nr = next_present_section_nr(section_nr))
205 
206 static inline unsigned long first_present_section_nr(void)
207 {
208 	return next_present_section_nr(-1);
209 }
210 
211 #ifdef CONFIG_SPARSEMEM_VMEMMAP
212 static void subsection_mask_set(unsigned long *map, unsigned long pfn,
213 		unsigned long nr_pages)
214 {
215 	int idx = subsection_map_index(pfn);
216 	int end = subsection_map_index(pfn + nr_pages - 1);
217 
218 	bitmap_set(map, idx, end - idx + 1);
219 }
220 
221 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
222 {
223 	int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
224 	unsigned long nr, start_sec = pfn_to_section_nr(pfn);
225 
226 	if (!nr_pages)
227 		return;
228 
229 	for (nr = start_sec; nr <= end_sec; nr++) {
230 		struct mem_section *ms;
231 		unsigned long pfns;
232 
233 		pfns = min(nr_pages, PAGES_PER_SECTION
234 				- (pfn & ~PAGE_SECTION_MASK));
235 		ms = __nr_to_section(nr);
236 		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
237 
238 		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
239 				pfns, subsection_map_index(pfn),
240 				subsection_map_index(pfn + pfns - 1));
241 
242 		pfn += pfns;
243 		nr_pages -= pfns;
244 	}
245 }
246 #else
247 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
248 {
249 }
250 #endif
251 
252 /* Record a memory area against a node. */
253 static void __init memory_present(int nid, unsigned long start, unsigned long end)
254 {
255 	unsigned long pfn;
256 
257 #ifdef CONFIG_SPARSEMEM_EXTREME
258 	if (unlikely(!mem_section)) {
259 		unsigned long size, align;
260 
261 		size = sizeof(struct mem_section *) * NR_SECTION_ROOTS;
262 		align = 1 << (INTERNODE_CACHE_SHIFT);
263 		mem_section = memblock_alloc(size, align);
264 		if (!mem_section)
265 			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
266 			      __func__, size, align);
267 	}
268 #endif
269 
270 	start &= PAGE_SECTION_MASK;
271 	mminit_validate_memmodel_limits(&start, &end);
272 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
273 		unsigned long section = pfn_to_section_nr(pfn);
274 		struct mem_section *ms;
275 
276 		sparse_index_init(section, nid);
277 		set_section_nid(section, nid);
278 
279 		ms = __nr_to_section(section);
280 		if (!ms->section_mem_map) {
281 			ms->section_mem_map = sparse_encode_early_nid(nid) |
282 							SECTION_IS_ONLINE;
283 			section_mark_present(ms);
284 		}
285 	}
286 }
287 
288 /*
289  * Mark all memblocks as present using memory_present().
290  * This is a convenience function that is useful to mark all of the systems
291  * memory as present during initialization.
292  */
293 static void __init memblocks_present(void)
294 {
295 	unsigned long start, end;
296 	int i, nid;
297 
298 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
299 		memory_present(nid, start, end);
300 }
301 
302 /*
303  * Subtle, we encode the real pfn into the mem_map such that
304  * the identity pfn - section_mem_map will return the actual
305  * physical page frame number.
306  */
307 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
308 {
309 	unsigned long coded_mem_map =
310 		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
311 	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
312 	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
313 	return coded_mem_map;
314 }
315 
316 #ifdef CONFIG_MEMORY_HOTPLUG
317 /*
318  * Decode mem_map from the coded memmap
319  */
320 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
321 {
322 	/* mask off the extra low bits of information */
323 	coded_mem_map &= SECTION_MAP_MASK;
324 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
325 }
326 #endif /* CONFIG_MEMORY_HOTPLUG */
327 
328 static void __meminit sparse_init_one_section(struct mem_section *ms,
329 		unsigned long pnum, struct page *mem_map,
330 		struct mem_section_usage *usage, unsigned long flags)
331 {
332 	ms->section_mem_map &= ~SECTION_MAP_MASK;
333 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
334 		| SECTION_HAS_MEM_MAP | flags;
335 	ms->usage = usage;
336 }
337 
338 static unsigned long usemap_size(void)
339 {
340 	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
341 }
342 
343 size_t mem_section_usage_size(void)
344 {
345 	return sizeof(struct mem_section_usage) + usemap_size();
346 }
347 
348 static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat)
349 {
350 #ifndef CONFIG_NUMA
351 	return __pa_symbol(pgdat);
352 #else
353 	return __pa(pgdat);
354 #endif
355 }
356 
357 #ifdef CONFIG_MEMORY_HOTREMOVE
358 static struct mem_section_usage * __init
359 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
360 					 unsigned long size)
361 {
362 	struct mem_section_usage *usage;
363 	unsigned long goal, limit;
364 	int nid;
365 	/*
366 	 * A page may contain usemaps for other sections preventing the
367 	 * page being freed and making a section unremovable while
368 	 * other sections referencing the usemap remain active. Similarly,
369 	 * a pgdat can prevent a section being removed. If section A
370 	 * contains a pgdat and section B contains the usemap, both
371 	 * sections become inter-dependent. This allocates usemaps
372 	 * from the same section as the pgdat where possible to avoid
373 	 * this problem.
374 	 */
375 	goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
376 	limit = goal + (1UL << PA_SECTION_SHIFT);
377 	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
378 again:
379 	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
380 	if (!usage && limit) {
381 		limit = 0;
382 		goto again;
383 	}
384 	return usage;
385 }
386 
387 static void __init check_usemap_section_nr(int nid,
388 		struct mem_section_usage *usage)
389 {
390 	unsigned long usemap_snr, pgdat_snr;
391 	static unsigned long old_usemap_snr;
392 	static unsigned long old_pgdat_snr;
393 	struct pglist_data *pgdat = NODE_DATA(nid);
394 	int usemap_nid;
395 
396 	/* First call */
397 	if (!old_usemap_snr) {
398 		old_usemap_snr = NR_MEM_SECTIONS;
399 		old_pgdat_snr = NR_MEM_SECTIONS;
400 	}
401 
402 	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
403 	pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT);
404 	if (usemap_snr == pgdat_snr)
405 		return;
406 
407 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
408 		/* skip redundant message */
409 		return;
410 
411 	old_usemap_snr = usemap_snr;
412 	old_pgdat_snr = pgdat_snr;
413 
414 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
415 	if (usemap_nid != nid) {
416 		pr_info("node %d must be removed before remove section %ld\n",
417 			nid, usemap_snr);
418 		return;
419 	}
420 	/*
421 	 * There is a circular dependency.
422 	 * Some platforms allow un-removable section because they will just
423 	 * gather other removable sections for dynamic partitioning.
424 	 * Just notify un-removable section's number here.
425 	 */
426 	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
427 		usemap_snr, pgdat_snr, nid);
428 }
429 #else
430 static struct mem_section_usage * __init
431 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
432 					 unsigned long size)
433 {
434 	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
435 }
436 
437 static void __init check_usemap_section_nr(int nid,
438 		struct mem_section_usage *usage)
439 {
440 }
441 #endif /* CONFIG_MEMORY_HOTREMOVE */
442 
443 #ifdef CONFIG_SPARSEMEM_VMEMMAP
444 static unsigned long __init section_map_size(void)
445 {
446 	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
447 }
448 
449 #else
450 static unsigned long __init section_map_size(void)
451 {
452 	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
453 }
454 
455 struct page __init *__populate_section_memmap(unsigned long pfn,
456 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
457 {
458 	unsigned long size = section_map_size();
459 	struct page *map = sparse_buffer_alloc(size);
460 	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
461 
462 	if (map)
463 		return map;
464 
465 	map = memblock_alloc_try_nid_raw(size, size, addr,
466 					  MEMBLOCK_ALLOC_ACCESSIBLE, nid);
467 	if (!map)
468 		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
469 		      __func__, size, PAGE_SIZE, nid, &addr);
470 
471 	return map;
472 }
473 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
474 
475 static void *sparsemap_buf __meminitdata;
476 static void *sparsemap_buf_end __meminitdata;
477 
478 static inline void __meminit sparse_buffer_free(unsigned long size)
479 {
480 	WARN_ON(!sparsemap_buf || size == 0);
481 	memblock_free_early(__pa(sparsemap_buf), size);
482 }
483 
484 static void __init sparse_buffer_init(unsigned long size, int nid)
485 {
486 	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
487 	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
488 	/*
489 	 * Pre-allocated buffer is mainly used by __populate_section_memmap
490 	 * and we want it to be properly aligned to the section size - this is
491 	 * especially the case for VMEMMAP which maps memmap to PMDs
492 	 */
493 	sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
494 					addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
495 	sparsemap_buf_end = sparsemap_buf + size;
496 }
497 
498 static void __init sparse_buffer_fini(void)
499 {
500 	unsigned long size = sparsemap_buf_end - sparsemap_buf;
501 
502 	if (sparsemap_buf && size > 0)
503 		sparse_buffer_free(size);
504 	sparsemap_buf = NULL;
505 }
506 
507 void * __meminit sparse_buffer_alloc(unsigned long size)
508 {
509 	void *ptr = NULL;
510 
511 	if (sparsemap_buf) {
512 		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
513 		if (ptr + size > sparsemap_buf_end)
514 			ptr = NULL;
515 		else {
516 			/* Free redundant aligned space */
517 			if ((unsigned long)(ptr - sparsemap_buf) > 0)
518 				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
519 			sparsemap_buf = ptr + size;
520 		}
521 	}
522 	return ptr;
523 }
524 
525 void __weak __meminit vmemmap_populate_print_last(void)
526 {
527 }
528 
529 /*
530  * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
531  * And number of present sections in this node is map_count.
532  */
533 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
534 				   unsigned long pnum_end,
535 				   unsigned long map_count)
536 {
537 	struct mem_section_usage *usage;
538 	unsigned long pnum;
539 	struct page *map;
540 
541 	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
542 			mem_section_usage_size() * map_count);
543 	if (!usage) {
544 		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
545 		goto failed;
546 	}
547 	sparse_buffer_init(map_count * section_map_size(), nid);
548 	for_each_present_section_nr(pnum_begin, pnum) {
549 		unsigned long pfn = section_nr_to_pfn(pnum);
550 
551 		if (pnum >= pnum_end)
552 			break;
553 
554 		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
555 				nid, NULL);
556 		if (!map) {
557 			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
558 			       __func__, nid);
559 			pnum_begin = pnum;
560 			sparse_buffer_fini();
561 			goto failed;
562 		}
563 		check_usemap_section_nr(nid, usage);
564 		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
565 				SECTION_IS_EARLY);
566 		usage = (void *) usage + mem_section_usage_size();
567 	}
568 	sparse_buffer_fini();
569 	return;
570 failed:
571 	/* We failed to allocate, mark all the following pnums as not present */
572 	for_each_present_section_nr(pnum_begin, pnum) {
573 		struct mem_section *ms;
574 
575 		if (pnum >= pnum_end)
576 			break;
577 		ms = __nr_to_section(pnum);
578 		ms->section_mem_map = 0;
579 	}
580 }
581 
582 /*
583  * Allocate the accumulated non-linear sections, allocate a mem_map
584  * for each and record the physical to section mapping.
585  */
586 void __init sparse_init(void)
587 {
588 	unsigned long pnum_end, pnum_begin, map_count = 1;
589 	int nid_begin;
590 
591 	memblocks_present();
592 
593 	pnum_begin = first_present_section_nr();
594 	nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
595 
596 	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
597 	set_pageblock_order();
598 
599 	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
600 		int nid = sparse_early_nid(__nr_to_section(pnum_end));
601 
602 		if (nid == nid_begin) {
603 			map_count++;
604 			continue;
605 		}
606 		/* Init node with sections in range [pnum_begin, pnum_end) */
607 		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
608 		nid_begin = nid;
609 		pnum_begin = pnum_end;
610 		map_count = 1;
611 	}
612 	/* cover the last node */
613 	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
614 	vmemmap_populate_print_last();
615 }
616 
617 #ifdef CONFIG_MEMORY_HOTPLUG
618 
619 /* Mark all memory sections within the pfn range as online */
620 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
621 {
622 	unsigned long pfn;
623 
624 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
625 		unsigned long section_nr = pfn_to_section_nr(pfn);
626 		struct mem_section *ms;
627 
628 		/* onlining code should never touch invalid ranges */
629 		if (WARN_ON(!valid_section_nr(section_nr)))
630 			continue;
631 
632 		ms = __nr_to_section(section_nr);
633 		ms->section_mem_map |= SECTION_IS_ONLINE;
634 	}
635 }
636 
637 /* Mark all memory sections within the pfn range as offline */
638 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
639 {
640 	unsigned long pfn;
641 
642 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
643 		unsigned long section_nr = pfn_to_section_nr(pfn);
644 		struct mem_section *ms;
645 
646 		/*
647 		 * TODO this needs some double checking. Offlining code makes
648 		 * sure to check pfn_valid but those checks might be just bogus
649 		 */
650 		if (WARN_ON(!valid_section_nr(section_nr)))
651 			continue;
652 
653 		ms = __nr_to_section(section_nr);
654 		ms->section_mem_map &= ~SECTION_IS_ONLINE;
655 	}
656 }
657 
658 #ifdef CONFIG_SPARSEMEM_VMEMMAP
659 static struct page * __meminit populate_section_memmap(unsigned long pfn,
660 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
661 {
662 	return __populate_section_memmap(pfn, nr_pages, nid, altmap);
663 }
664 
665 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
666 		struct vmem_altmap *altmap)
667 {
668 	unsigned long start = (unsigned long) pfn_to_page(pfn);
669 	unsigned long end = start + nr_pages * sizeof(struct page);
670 
671 	vmemmap_free(start, end, altmap);
672 }
673 static void free_map_bootmem(struct page *memmap)
674 {
675 	unsigned long start = (unsigned long)memmap;
676 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
677 
678 	vmemmap_free(start, end, NULL);
679 }
680 
681 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
682 {
683 	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
684 	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
685 	struct mem_section *ms = __pfn_to_section(pfn);
686 	unsigned long *subsection_map = ms->usage
687 		? &ms->usage->subsection_map[0] : NULL;
688 
689 	subsection_mask_set(map, pfn, nr_pages);
690 	if (subsection_map)
691 		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
692 
693 	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
694 				"section already deactivated (%#lx + %ld)\n",
695 				pfn, nr_pages))
696 		return -EINVAL;
697 
698 	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
699 	return 0;
700 }
701 
702 static bool is_subsection_map_empty(struct mem_section *ms)
703 {
704 	return bitmap_empty(&ms->usage->subsection_map[0],
705 			    SUBSECTIONS_PER_SECTION);
706 }
707 
708 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
709 {
710 	struct mem_section *ms = __pfn_to_section(pfn);
711 	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
712 	unsigned long *subsection_map;
713 	int rc = 0;
714 
715 	subsection_mask_set(map, pfn, nr_pages);
716 
717 	subsection_map = &ms->usage->subsection_map[0];
718 
719 	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
720 		rc = -EINVAL;
721 	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
722 		rc = -EEXIST;
723 	else
724 		bitmap_or(subsection_map, map, subsection_map,
725 				SUBSECTIONS_PER_SECTION);
726 
727 	return rc;
728 }
729 #else
730 struct page * __meminit populate_section_memmap(unsigned long pfn,
731 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
732 {
733 	return kvmalloc_node(array_size(sizeof(struct page),
734 					PAGES_PER_SECTION), GFP_KERNEL, nid);
735 }
736 
737 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
738 		struct vmem_altmap *altmap)
739 {
740 	kvfree(pfn_to_page(pfn));
741 }
742 
743 static void free_map_bootmem(struct page *memmap)
744 {
745 	unsigned long maps_section_nr, removing_section_nr, i;
746 	unsigned long magic, nr_pages;
747 	struct page *page = virt_to_page(memmap);
748 
749 	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
750 		>> PAGE_SHIFT;
751 
752 	for (i = 0; i < nr_pages; i++, page++) {
753 		magic = (unsigned long) page->freelist;
754 
755 		BUG_ON(magic == NODE_INFO);
756 
757 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
758 		removing_section_nr = page_private(page);
759 
760 		/*
761 		 * When this function is called, the removing section is
762 		 * logical offlined state. This means all pages are isolated
763 		 * from page allocator. If removing section's memmap is placed
764 		 * on the same section, it must not be freed.
765 		 * If it is freed, page allocator may allocate it which will
766 		 * be removed physically soon.
767 		 */
768 		if (maps_section_nr != removing_section_nr)
769 			put_page_bootmem(page);
770 	}
771 }
772 
773 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
774 {
775 	return 0;
776 }
777 
778 static bool is_subsection_map_empty(struct mem_section *ms)
779 {
780 	return true;
781 }
782 
783 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
784 {
785 	return 0;
786 }
787 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
788 
789 /*
790  * To deactivate a memory region, there are 3 cases to handle across
791  * two configurations (SPARSEMEM_VMEMMAP={y,n}):
792  *
793  * 1. deactivation of a partial hot-added section (only possible in
794  *    the SPARSEMEM_VMEMMAP=y case).
795  *      a) section was present at memory init.
796  *      b) section was hot-added post memory init.
797  * 2. deactivation of a complete hot-added section.
798  * 3. deactivation of a complete section from memory init.
799  *
800  * For 1, when subsection_map does not empty we will not be freeing the
801  * usage map, but still need to free the vmemmap range.
802  *
803  * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
804  */
805 static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
806 		struct vmem_altmap *altmap)
807 {
808 	struct mem_section *ms = __pfn_to_section(pfn);
809 	bool section_is_early = early_section(ms);
810 	struct page *memmap = NULL;
811 	bool empty;
812 
813 	if (clear_subsection_map(pfn, nr_pages))
814 		return;
815 
816 	empty = is_subsection_map_empty(ms);
817 	if (empty) {
818 		unsigned long section_nr = pfn_to_section_nr(pfn);
819 
820 		/*
821 		 * When removing an early section, the usage map is kept (as the
822 		 * usage maps of other sections fall into the same page). It
823 		 * will be re-used when re-adding the section - which is then no
824 		 * longer an early section. If the usage map is PageReserved, it
825 		 * was allocated during boot.
826 		 */
827 		if (!PageReserved(virt_to_page(ms->usage))) {
828 			kfree(ms->usage);
829 			ms->usage = NULL;
830 		}
831 		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
832 		/*
833 		 * Mark the section invalid so that valid_section()
834 		 * return false. This prevents code from dereferencing
835 		 * ms->usage array.
836 		 */
837 		ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
838 	}
839 
840 	/*
841 	 * The memmap of early sections is always fully populated. See
842 	 * section_activate() and pfn_valid() .
843 	 */
844 	if (!section_is_early)
845 		depopulate_section_memmap(pfn, nr_pages, altmap);
846 	else if (memmap)
847 		free_map_bootmem(memmap);
848 
849 	if (empty)
850 		ms->section_mem_map = (unsigned long)NULL;
851 }
852 
853 static struct page * __meminit section_activate(int nid, unsigned long pfn,
854 		unsigned long nr_pages, struct vmem_altmap *altmap)
855 {
856 	struct mem_section *ms = __pfn_to_section(pfn);
857 	struct mem_section_usage *usage = NULL;
858 	struct page *memmap;
859 	int rc = 0;
860 
861 	if (!ms->usage) {
862 		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
863 		if (!usage)
864 			return ERR_PTR(-ENOMEM);
865 		ms->usage = usage;
866 	}
867 
868 	rc = fill_subsection_map(pfn, nr_pages);
869 	if (rc) {
870 		if (usage)
871 			ms->usage = NULL;
872 		kfree(usage);
873 		return ERR_PTR(rc);
874 	}
875 
876 	/*
877 	 * The early init code does not consider partially populated
878 	 * initial sections, it simply assumes that memory will never be
879 	 * referenced.  If we hot-add memory into such a section then we
880 	 * do not need to populate the memmap and can simply reuse what
881 	 * is already there.
882 	 */
883 	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
884 		return pfn_to_page(pfn);
885 
886 	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
887 	if (!memmap) {
888 		section_deactivate(pfn, nr_pages, altmap);
889 		return ERR_PTR(-ENOMEM);
890 	}
891 
892 	return memmap;
893 }
894 
895 /**
896  * sparse_add_section - add a memory section, or populate an existing one
897  * @nid: The node to add section on
898  * @start_pfn: start pfn of the memory range
899  * @nr_pages: number of pfns to add in the section
900  * @altmap: device page map
901  *
902  * This is only intended for hotplug.
903  *
904  * Note that only VMEMMAP supports sub-section aligned hotplug,
905  * the proper alignment and size are gated by check_pfn_span().
906  *
907  *
908  * Return:
909  * * 0		- On success.
910  * * -EEXIST	- Section has been present.
911  * * -ENOMEM	- Out of memory.
912  */
913 int __meminit sparse_add_section(int nid, unsigned long start_pfn,
914 		unsigned long nr_pages, struct vmem_altmap *altmap)
915 {
916 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
917 	struct mem_section *ms;
918 	struct page *memmap;
919 	int ret;
920 
921 	ret = sparse_index_init(section_nr, nid);
922 	if (ret < 0)
923 		return ret;
924 
925 	memmap = section_activate(nid, start_pfn, nr_pages, altmap);
926 	if (IS_ERR(memmap))
927 		return PTR_ERR(memmap);
928 
929 	/*
930 	 * Poison uninitialized struct pages in order to catch invalid flags
931 	 * combinations.
932 	 */
933 	page_init_poison(memmap, sizeof(struct page) * nr_pages);
934 
935 	ms = __nr_to_section(section_nr);
936 	set_section_nid(section_nr, nid);
937 	section_mark_present(ms);
938 
939 	/* Align memmap to section boundary in the subsection case */
940 	if (section_nr_to_pfn(section_nr) != start_pfn)
941 		memmap = pfn_to_page(section_nr_to_pfn(section_nr));
942 	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
943 
944 	return 0;
945 }
946 
947 #ifdef CONFIG_MEMORY_FAILURE
948 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
949 {
950 	int i;
951 
952 	/*
953 	 * A further optimization is to have per section refcounted
954 	 * num_poisoned_pages.  But that would need more space per memmap, so
955 	 * for now just do a quick global check to speed up this routine in the
956 	 * absence of bad pages.
957 	 */
958 	if (atomic_long_read(&num_poisoned_pages) == 0)
959 		return;
960 
961 	for (i = 0; i < nr_pages; i++) {
962 		if (PageHWPoison(&memmap[i])) {
963 			num_poisoned_pages_dec();
964 			ClearPageHWPoison(&memmap[i]);
965 		}
966 	}
967 }
968 #else
969 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
970 {
971 }
972 #endif
973 
974 void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
975 		unsigned long nr_pages, unsigned long map_offset,
976 		struct vmem_altmap *altmap)
977 {
978 	clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
979 			nr_pages - map_offset);
980 	section_deactivate(pfn, nr_pages, altmap);
981 }
982 #endif /* CONFIG_MEMORY_HOTPLUG */
983