1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/proc_fs.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ctype.h> 29 #include <linux/stackdepot.h> 30 #include <linux/debugobjects.h> 31 #include <linux/kallsyms.h> 32 #include <linux/kfence.h> 33 #include <linux/memory.h> 34 #include <linux/math64.h> 35 #include <linux/fault-inject.h> 36 #include <linux/stacktrace.h> 37 #include <linux/prefetch.h> 38 #include <linux/memcontrol.h> 39 #include <linux/random.h> 40 #include <kunit/test.h> 41 #include <linux/sort.h> 42 43 #include <linux/debugfs.h> 44 #include <trace/events/kmem.h> 45 46 #include "internal.h" 47 48 /* 49 * Lock order: 50 * 1. slab_mutex (Global Mutex) 51 * 2. node->list_lock (Spinlock) 52 * 3. kmem_cache->cpu_slab->lock (Local lock) 53 * 4. slab_lock(slab) (Only on some arches or for debugging) 54 * 5. object_map_lock (Only for debugging) 55 * 56 * slab_mutex 57 * 58 * The role of the slab_mutex is to protect the list of all the slabs 59 * and to synchronize major metadata changes to slab cache structures. 60 * Also synchronizes memory hotplug callbacks. 61 * 62 * slab_lock 63 * 64 * The slab_lock is a wrapper around the page lock, thus it is a bit 65 * spinlock. 66 * 67 * The slab_lock is only used for debugging and on arches that do not 68 * have the ability to do a cmpxchg_double. It only protects: 69 * A. slab->freelist -> List of free objects in a slab 70 * B. slab->inuse -> Number of objects in use 71 * C. slab->objects -> Number of objects in slab 72 * D. slab->frozen -> frozen state 73 * 74 * Frozen slabs 75 * 76 * If a slab is frozen then it is exempt from list management. It is not 77 * on any list except per cpu partial list. The processor that froze the 78 * slab is the one who can perform list operations on the slab. Other 79 * processors may put objects onto the freelist but the processor that 80 * froze the slab is the only one that can retrieve the objects from the 81 * slab's freelist. 82 * 83 * list_lock 84 * 85 * The list_lock protects the partial and full list on each node and 86 * the partial slab counter. If taken then no new slabs may be added or 87 * removed from the lists nor make the number of partial slabs be modified. 88 * (Note that the total number of slabs is an atomic value that may be 89 * modified without taking the list lock). 90 * 91 * The list_lock is a centralized lock and thus we avoid taking it as 92 * much as possible. As long as SLUB does not have to handle partial 93 * slabs, operations can continue without any centralized lock. F.e. 94 * allocating a long series of objects that fill up slabs does not require 95 * the list lock. 96 * 97 * cpu_slab->lock local lock 98 * 99 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 100 * except the stat counters. This is a percpu structure manipulated only by 101 * the local cpu, so the lock protects against being preempted or interrupted 102 * by an irq. Fast path operations rely on lockless operations instead. 103 * On PREEMPT_RT, the local lock does not actually disable irqs (and thus 104 * prevent the lockless operations), so fastpath operations also need to take 105 * the lock and are no longer lockless. 106 * 107 * lockless fastpaths 108 * 109 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 110 * are fully lockless when satisfied from the percpu slab (and when 111 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 112 * They also don't disable preemption or migration or irqs. They rely on 113 * the transaction id (tid) field to detect being preempted or moved to 114 * another cpu. 115 * 116 * irq, preemption, migration considerations 117 * 118 * Interrupts are disabled as part of list_lock or local_lock operations, or 119 * around the slab_lock operation, in order to make the slab allocator safe 120 * to use in the context of an irq. 121 * 122 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 123 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 124 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 125 * doesn't have to be revalidated in each section protected by the local lock. 126 * 127 * SLUB assigns one slab for allocation to each processor. 128 * Allocations only occur from these slabs called cpu slabs. 129 * 130 * Slabs with free elements are kept on a partial list and during regular 131 * operations no list for full slabs is used. If an object in a full slab is 132 * freed then the slab will show up again on the partial lists. 133 * We track full slabs for debugging purposes though because otherwise we 134 * cannot scan all objects. 135 * 136 * Slabs are freed when they become empty. Teardown and setup is 137 * minimal so we rely on the page allocators per cpu caches for 138 * fast frees and allocs. 139 * 140 * slab->frozen The slab is frozen and exempt from list processing. 141 * This means that the slab is dedicated to a purpose 142 * such as satisfying allocations for a specific 143 * processor. Objects may be freed in the slab while 144 * it is frozen but slab_free will then skip the usual 145 * list operations. It is up to the processor holding 146 * the slab to integrate the slab into the slab lists 147 * when the slab is no longer needed. 148 * 149 * One use of this flag is to mark slabs that are 150 * used for allocations. Then such a slab becomes a cpu 151 * slab. The cpu slab may be equipped with an additional 152 * freelist that allows lockless access to 153 * free objects in addition to the regular freelist 154 * that requires the slab lock. 155 * 156 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 157 * options set. This moves slab handling out of 158 * the fast path and disables lockless freelists. 159 */ 160 161 /* 162 * We could simply use migrate_disable()/enable() but as long as it's a 163 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 164 */ 165 #ifndef CONFIG_PREEMPT_RT 166 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 167 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 168 #else 169 #define slub_get_cpu_ptr(var) \ 170 ({ \ 171 migrate_disable(); \ 172 this_cpu_ptr(var); \ 173 }) 174 #define slub_put_cpu_ptr(var) \ 175 do { \ 176 (void)(var); \ 177 migrate_enable(); \ 178 } while (0) 179 #endif 180 181 #ifdef CONFIG_SLUB_DEBUG 182 #ifdef CONFIG_SLUB_DEBUG_ON 183 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 184 #else 185 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 186 #endif 187 #endif /* CONFIG_SLUB_DEBUG */ 188 189 static inline bool kmem_cache_debug(struct kmem_cache *s) 190 { 191 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 192 } 193 194 void *fixup_red_left(struct kmem_cache *s, void *p) 195 { 196 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 197 p += s->red_left_pad; 198 199 return p; 200 } 201 202 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 203 { 204 #ifdef CONFIG_SLUB_CPU_PARTIAL 205 return !kmem_cache_debug(s); 206 #else 207 return false; 208 #endif 209 } 210 211 /* 212 * Issues still to be resolved: 213 * 214 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 215 * 216 * - Variable sizing of the per node arrays 217 */ 218 219 /* Enable to log cmpxchg failures */ 220 #undef SLUB_DEBUG_CMPXCHG 221 222 /* 223 * Minimum number of partial slabs. These will be left on the partial 224 * lists even if they are empty. kmem_cache_shrink may reclaim them. 225 */ 226 #define MIN_PARTIAL 5 227 228 /* 229 * Maximum number of desirable partial slabs. 230 * The existence of more partial slabs makes kmem_cache_shrink 231 * sort the partial list by the number of objects in use. 232 */ 233 #define MAX_PARTIAL 10 234 235 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 236 SLAB_POISON | SLAB_STORE_USER) 237 238 /* 239 * These debug flags cannot use CMPXCHG because there might be consistency 240 * issues when checking or reading debug information 241 */ 242 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 243 SLAB_TRACE) 244 245 246 /* 247 * Debugging flags that require metadata to be stored in the slab. These get 248 * disabled when slub_debug=O is used and a cache's min order increases with 249 * metadata. 250 */ 251 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 252 253 #define OO_SHIFT 16 254 #define OO_MASK ((1 << OO_SHIFT) - 1) 255 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 256 257 /* Internal SLUB flags */ 258 /* Poison object */ 259 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 260 /* Use cmpxchg_double */ 261 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 262 263 /* 264 * Tracking user of a slab. 265 */ 266 #define TRACK_ADDRS_COUNT 16 267 struct track { 268 unsigned long addr; /* Called from address */ 269 #ifdef CONFIG_STACKDEPOT 270 depot_stack_handle_t handle; 271 #endif 272 int cpu; /* Was running on cpu */ 273 int pid; /* Pid context */ 274 unsigned long when; /* When did the operation occur */ 275 }; 276 277 enum track_item { TRACK_ALLOC, TRACK_FREE }; 278 279 #ifdef CONFIG_SYSFS 280 static int sysfs_slab_add(struct kmem_cache *); 281 static int sysfs_slab_alias(struct kmem_cache *, const char *); 282 #else 283 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 284 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 285 { return 0; } 286 #endif 287 288 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 289 static void debugfs_slab_add(struct kmem_cache *); 290 #else 291 static inline void debugfs_slab_add(struct kmem_cache *s) { } 292 #endif 293 294 static inline void stat(const struct kmem_cache *s, enum stat_item si) 295 { 296 #ifdef CONFIG_SLUB_STATS 297 /* 298 * The rmw is racy on a preemptible kernel but this is acceptable, so 299 * avoid this_cpu_add()'s irq-disable overhead. 300 */ 301 raw_cpu_inc(s->cpu_slab->stat[si]); 302 #endif 303 } 304 305 /* 306 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 307 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 308 * differ during memory hotplug/hotremove operations. 309 * Protected by slab_mutex. 310 */ 311 static nodemask_t slab_nodes; 312 313 /******************************************************************** 314 * Core slab cache functions 315 *******************************************************************/ 316 317 /* 318 * Returns freelist pointer (ptr). With hardening, this is obfuscated 319 * with an XOR of the address where the pointer is held and a per-cache 320 * random number. 321 */ 322 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 323 unsigned long ptr_addr) 324 { 325 #ifdef CONFIG_SLAB_FREELIST_HARDENED 326 /* 327 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged. 328 * Normally, this doesn't cause any issues, as both set_freepointer() 329 * and get_freepointer() are called with a pointer with the same tag. 330 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 331 * example, when __free_slub() iterates over objects in a cache, it 332 * passes untagged pointers to check_object(). check_object() in turns 333 * calls get_freepointer() with an untagged pointer, which causes the 334 * freepointer to be restored incorrectly. 335 */ 336 return (void *)((unsigned long)ptr ^ s->random ^ 337 swab((unsigned long)kasan_reset_tag((void *)ptr_addr))); 338 #else 339 return ptr; 340 #endif 341 } 342 343 /* Returns the freelist pointer recorded at location ptr_addr. */ 344 static inline void *freelist_dereference(const struct kmem_cache *s, 345 void *ptr_addr) 346 { 347 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 348 (unsigned long)ptr_addr); 349 } 350 351 static inline void *get_freepointer(struct kmem_cache *s, void *object) 352 { 353 object = kasan_reset_tag(object); 354 return freelist_dereference(s, object + s->offset); 355 } 356 357 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 358 { 359 prefetchw(object + s->offset); 360 } 361 362 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 363 { 364 unsigned long freepointer_addr; 365 void *p; 366 367 if (!debug_pagealloc_enabled_static()) 368 return get_freepointer(s, object); 369 370 object = kasan_reset_tag(object); 371 freepointer_addr = (unsigned long)object + s->offset; 372 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p)); 373 return freelist_ptr(s, p, freepointer_addr); 374 } 375 376 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 377 { 378 unsigned long freeptr_addr = (unsigned long)object + s->offset; 379 380 #ifdef CONFIG_SLAB_FREELIST_HARDENED 381 BUG_ON(object == fp); /* naive detection of double free or corruption */ 382 #endif 383 384 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 385 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 386 } 387 388 /* Loop over all objects in a slab */ 389 #define for_each_object(__p, __s, __addr, __objects) \ 390 for (__p = fixup_red_left(__s, __addr); \ 391 __p < (__addr) + (__objects) * (__s)->size; \ 392 __p += (__s)->size) 393 394 static inline unsigned int order_objects(unsigned int order, unsigned int size) 395 { 396 return ((unsigned int)PAGE_SIZE << order) / size; 397 } 398 399 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 400 unsigned int size) 401 { 402 struct kmem_cache_order_objects x = { 403 (order << OO_SHIFT) + order_objects(order, size) 404 }; 405 406 return x; 407 } 408 409 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 410 { 411 return x.x >> OO_SHIFT; 412 } 413 414 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 415 { 416 return x.x & OO_MASK; 417 } 418 419 #ifdef CONFIG_SLUB_CPU_PARTIAL 420 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 421 { 422 unsigned int nr_slabs; 423 424 s->cpu_partial = nr_objects; 425 426 /* 427 * We take the number of objects but actually limit the number of 428 * slabs on the per cpu partial list, in order to limit excessive 429 * growth of the list. For simplicity we assume that the slabs will 430 * be half-full. 431 */ 432 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); 433 s->cpu_partial_slabs = nr_slabs; 434 } 435 #else 436 static inline void 437 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 438 { 439 } 440 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 441 442 /* 443 * Per slab locking using the pagelock 444 */ 445 static __always_inline void __slab_lock(struct slab *slab) 446 { 447 struct page *page = slab_page(slab); 448 449 VM_BUG_ON_PAGE(PageTail(page), page); 450 bit_spin_lock(PG_locked, &page->flags); 451 } 452 453 static __always_inline void __slab_unlock(struct slab *slab) 454 { 455 struct page *page = slab_page(slab); 456 457 VM_BUG_ON_PAGE(PageTail(page), page); 458 __bit_spin_unlock(PG_locked, &page->flags); 459 } 460 461 static __always_inline void slab_lock(struct slab *slab, unsigned long *flags) 462 { 463 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 464 local_irq_save(*flags); 465 __slab_lock(slab); 466 } 467 468 static __always_inline void slab_unlock(struct slab *slab, unsigned long *flags) 469 { 470 __slab_unlock(slab); 471 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 472 local_irq_restore(*flags); 473 } 474 475 /* 476 * Interrupts must be disabled (for the fallback code to work right), typically 477 * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different 478 * so we disable interrupts as part of slab_[un]lock(). 479 */ 480 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab, 481 void *freelist_old, unsigned long counters_old, 482 void *freelist_new, unsigned long counters_new, 483 const char *n) 484 { 485 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 486 lockdep_assert_irqs_disabled(); 487 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 488 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 489 if (s->flags & __CMPXCHG_DOUBLE) { 490 if (cmpxchg_double(&slab->freelist, &slab->counters, 491 freelist_old, counters_old, 492 freelist_new, counters_new)) 493 return true; 494 } else 495 #endif 496 { 497 /* init to 0 to prevent spurious warnings */ 498 unsigned long flags = 0; 499 500 slab_lock(slab, &flags); 501 if (slab->freelist == freelist_old && 502 slab->counters == counters_old) { 503 slab->freelist = freelist_new; 504 slab->counters = counters_new; 505 slab_unlock(slab, &flags); 506 return true; 507 } 508 slab_unlock(slab, &flags); 509 } 510 511 cpu_relax(); 512 stat(s, CMPXCHG_DOUBLE_FAIL); 513 514 #ifdef SLUB_DEBUG_CMPXCHG 515 pr_info("%s %s: cmpxchg double redo ", n, s->name); 516 #endif 517 518 return false; 519 } 520 521 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab, 522 void *freelist_old, unsigned long counters_old, 523 void *freelist_new, unsigned long counters_new, 524 const char *n) 525 { 526 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 527 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 528 if (s->flags & __CMPXCHG_DOUBLE) { 529 if (cmpxchg_double(&slab->freelist, &slab->counters, 530 freelist_old, counters_old, 531 freelist_new, counters_new)) 532 return true; 533 } else 534 #endif 535 { 536 unsigned long flags; 537 538 local_irq_save(flags); 539 __slab_lock(slab); 540 if (slab->freelist == freelist_old && 541 slab->counters == counters_old) { 542 slab->freelist = freelist_new; 543 slab->counters = counters_new; 544 __slab_unlock(slab); 545 local_irq_restore(flags); 546 return true; 547 } 548 __slab_unlock(slab); 549 local_irq_restore(flags); 550 } 551 552 cpu_relax(); 553 stat(s, CMPXCHG_DOUBLE_FAIL); 554 555 #ifdef SLUB_DEBUG_CMPXCHG 556 pr_info("%s %s: cmpxchg double redo ", n, s->name); 557 #endif 558 559 return false; 560 } 561 562 #ifdef CONFIG_SLUB_DEBUG 563 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 564 static DEFINE_RAW_SPINLOCK(object_map_lock); 565 566 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 567 struct slab *slab) 568 { 569 void *addr = slab_address(slab); 570 void *p; 571 572 bitmap_zero(obj_map, slab->objects); 573 574 for (p = slab->freelist; p; p = get_freepointer(s, p)) 575 set_bit(__obj_to_index(s, addr, p), obj_map); 576 } 577 578 #if IS_ENABLED(CONFIG_KUNIT) 579 static bool slab_add_kunit_errors(void) 580 { 581 struct kunit_resource *resource; 582 583 if (likely(!current->kunit_test)) 584 return false; 585 586 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 587 if (!resource) 588 return false; 589 590 (*(int *)resource->data)++; 591 kunit_put_resource(resource); 592 return true; 593 } 594 #else 595 static inline bool slab_add_kunit_errors(void) { return false; } 596 #endif 597 598 /* 599 * Determine a map of objects in use in a slab. 600 * 601 * Node listlock must be held to guarantee that the slab does 602 * not vanish from under us. 603 */ 604 static unsigned long *get_map(struct kmem_cache *s, struct slab *slab) 605 __acquires(&object_map_lock) 606 { 607 VM_BUG_ON(!irqs_disabled()); 608 609 raw_spin_lock(&object_map_lock); 610 611 __fill_map(object_map, s, slab); 612 613 return object_map; 614 } 615 616 static void put_map(unsigned long *map) __releases(&object_map_lock) 617 { 618 VM_BUG_ON(map != object_map); 619 raw_spin_unlock(&object_map_lock); 620 } 621 622 static inline unsigned int size_from_object(struct kmem_cache *s) 623 { 624 if (s->flags & SLAB_RED_ZONE) 625 return s->size - s->red_left_pad; 626 627 return s->size; 628 } 629 630 static inline void *restore_red_left(struct kmem_cache *s, void *p) 631 { 632 if (s->flags & SLAB_RED_ZONE) 633 p -= s->red_left_pad; 634 635 return p; 636 } 637 638 /* 639 * Debug settings: 640 */ 641 #if defined(CONFIG_SLUB_DEBUG_ON) 642 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 643 #else 644 static slab_flags_t slub_debug; 645 #endif 646 647 static char *slub_debug_string; 648 static int disable_higher_order_debug; 649 650 /* 651 * slub is about to manipulate internal object metadata. This memory lies 652 * outside the range of the allocated object, so accessing it would normally 653 * be reported by kasan as a bounds error. metadata_access_enable() is used 654 * to tell kasan that these accesses are OK. 655 */ 656 static inline void metadata_access_enable(void) 657 { 658 kasan_disable_current(); 659 } 660 661 static inline void metadata_access_disable(void) 662 { 663 kasan_enable_current(); 664 } 665 666 /* 667 * Object debugging 668 */ 669 670 /* Verify that a pointer has an address that is valid within a slab page */ 671 static inline int check_valid_pointer(struct kmem_cache *s, 672 struct slab *slab, void *object) 673 { 674 void *base; 675 676 if (!object) 677 return 1; 678 679 base = slab_address(slab); 680 object = kasan_reset_tag(object); 681 object = restore_red_left(s, object); 682 if (object < base || object >= base + slab->objects * s->size || 683 (object - base) % s->size) { 684 return 0; 685 } 686 687 return 1; 688 } 689 690 static void print_section(char *level, char *text, u8 *addr, 691 unsigned int length) 692 { 693 metadata_access_enable(); 694 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 695 16, 1, kasan_reset_tag((void *)addr), length, 1); 696 metadata_access_disable(); 697 } 698 699 /* 700 * See comment in calculate_sizes(). 701 */ 702 static inline bool freeptr_outside_object(struct kmem_cache *s) 703 { 704 return s->offset >= s->inuse; 705 } 706 707 /* 708 * Return offset of the end of info block which is inuse + free pointer if 709 * not overlapping with object. 710 */ 711 static inline unsigned int get_info_end(struct kmem_cache *s) 712 { 713 if (freeptr_outside_object(s)) 714 return s->inuse + sizeof(void *); 715 else 716 return s->inuse; 717 } 718 719 static struct track *get_track(struct kmem_cache *s, void *object, 720 enum track_item alloc) 721 { 722 struct track *p; 723 724 p = object + get_info_end(s); 725 726 return kasan_reset_tag(p + alloc); 727 } 728 729 #ifdef CONFIG_STACKDEPOT 730 static noinline depot_stack_handle_t set_track_prepare(void) 731 { 732 depot_stack_handle_t handle; 733 unsigned long entries[TRACK_ADDRS_COUNT]; 734 unsigned int nr_entries; 735 736 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 737 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 738 739 return handle; 740 } 741 #else 742 static inline depot_stack_handle_t set_track_prepare(void) 743 { 744 return 0; 745 } 746 #endif 747 748 static void set_track_update(struct kmem_cache *s, void *object, 749 enum track_item alloc, unsigned long addr, 750 depot_stack_handle_t handle) 751 { 752 struct track *p = get_track(s, object, alloc); 753 754 #ifdef CONFIG_STACKDEPOT 755 p->handle = handle; 756 #endif 757 p->addr = addr; 758 p->cpu = smp_processor_id(); 759 p->pid = current->pid; 760 p->when = jiffies; 761 } 762 763 static __always_inline void set_track(struct kmem_cache *s, void *object, 764 enum track_item alloc, unsigned long addr) 765 { 766 depot_stack_handle_t handle = set_track_prepare(); 767 768 set_track_update(s, object, alloc, addr, handle); 769 } 770 771 static void init_tracking(struct kmem_cache *s, void *object) 772 { 773 struct track *p; 774 775 if (!(s->flags & SLAB_STORE_USER)) 776 return; 777 778 p = get_track(s, object, TRACK_ALLOC); 779 memset(p, 0, 2*sizeof(struct track)); 780 } 781 782 static void print_track(const char *s, struct track *t, unsigned long pr_time) 783 { 784 depot_stack_handle_t handle __maybe_unused; 785 786 if (!t->addr) 787 return; 788 789 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 790 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 791 #ifdef CONFIG_STACKDEPOT 792 handle = READ_ONCE(t->handle); 793 if (handle) 794 stack_depot_print(handle); 795 else 796 pr_err("object allocation/free stack trace missing\n"); 797 #endif 798 } 799 800 void print_tracking(struct kmem_cache *s, void *object) 801 { 802 unsigned long pr_time = jiffies; 803 if (!(s->flags & SLAB_STORE_USER)) 804 return; 805 806 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 807 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 808 } 809 810 static void print_slab_info(const struct slab *slab) 811 { 812 struct folio *folio = (struct folio *)slab_folio(slab); 813 814 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 815 slab, slab->objects, slab->inuse, slab->freelist, 816 folio_flags(folio, 0)); 817 } 818 819 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 820 { 821 struct va_format vaf; 822 va_list args; 823 824 va_start(args, fmt); 825 vaf.fmt = fmt; 826 vaf.va = &args; 827 pr_err("=============================================================================\n"); 828 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 829 pr_err("-----------------------------------------------------------------------------\n\n"); 830 va_end(args); 831 } 832 833 __printf(2, 3) 834 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 835 { 836 struct va_format vaf; 837 va_list args; 838 839 if (slab_add_kunit_errors()) 840 return; 841 842 va_start(args, fmt); 843 vaf.fmt = fmt; 844 vaf.va = &args; 845 pr_err("FIX %s: %pV\n", s->name, &vaf); 846 va_end(args); 847 } 848 849 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 850 { 851 unsigned int off; /* Offset of last byte */ 852 u8 *addr = slab_address(slab); 853 854 print_tracking(s, p); 855 856 print_slab_info(slab); 857 858 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 859 p, p - addr, get_freepointer(s, p)); 860 861 if (s->flags & SLAB_RED_ZONE) 862 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 863 s->red_left_pad); 864 else if (p > addr + 16) 865 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 866 867 print_section(KERN_ERR, "Object ", p, 868 min_t(unsigned int, s->object_size, PAGE_SIZE)); 869 if (s->flags & SLAB_RED_ZONE) 870 print_section(KERN_ERR, "Redzone ", p + s->object_size, 871 s->inuse - s->object_size); 872 873 off = get_info_end(s); 874 875 if (s->flags & SLAB_STORE_USER) 876 off += 2 * sizeof(struct track); 877 878 off += kasan_metadata_size(s); 879 880 if (off != size_from_object(s)) 881 /* Beginning of the filler is the free pointer */ 882 print_section(KERN_ERR, "Padding ", p + off, 883 size_from_object(s) - off); 884 885 dump_stack(); 886 } 887 888 static void object_err(struct kmem_cache *s, struct slab *slab, 889 u8 *object, char *reason) 890 { 891 if (slab_add_kunit_errors()) 892 return; 893 894 slab_bug(s, "%s", reason); 895 print_trailer(s, slab, object); 896 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 897 } 898 899 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 900 void **freelist, void *nextfree) 901 { 902 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 903 !check_valid_pointer(s, slab, nextfree) && freelist) { 904 object_err(s, slab, *freelist, "Freechain corrupt"); 905 *freelist = NULL; 906 slab_fix(s, "Isolate corrupted freechain"); 907 return true; 908 } 909 910 return false; 911 } 912 913 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 914 const char *fmt, ...) 915 { 916 va_list args; 917 char buf[100]; 918 919 if (slab_add_kunit_errors()) 920 return; 921 922 va_start(args, fmt); 923 vsnprintf(buf, sizeof(buf), fmt, args); 924 va_end(args); 925 slab_bug(s, "%s", buf); 926 print_slab_info(slab); 927 dump_stack(); 928 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 929 } 930 931 static void init_object(struct kmem_cache *s, void *object, u8 val) 932 { 933 u8 *p = kasan_reset_tag(object); 934 935 if (s->flags & SLAB_RED_ZONE) 936 memset(p - s->red_left_pad, val, s->red_left_pad); 937 938 if (s->flags & __OBJECT_POISON) { 939 memset(p, POISON_FREE, s->object_size - 1); 940 p[s->object_size - 1] = POISON_END; 941 } 942 943 if (s->flags & SLAB_RED_ZONE) 944 memset(p + s->object_size, val, s->inuse - s->object_size); 945 } 946 947 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 948 void *from, void *to) 949 { 950 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 951 memset(from, data, to - from); 952 } 953 954 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 955 u8 *object, char *what, 956 u8 *start, unsigned int value, unsigned int bytes) 957 { 958 u8 *fault; 959 u8 *end; 960 u8 *addr = slab_address(slab); 961 962 metadata_access_enable(); 963 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 964 metadata_access_disable(); 965 if (!fault) 966 return 1; 967 968 end = start + bytes; 969 while (end > fault && end[-1] == value) 970 end--; 971 972 if (slab_add_kunit_errors()) 973 goto skip_bug_print; 974 975 slab_bug(s, "%s overwritten", what); 976 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 977 fault, end - 1, fault - addr, 978 fault[0], value); 979 print_trailer(s, slab, object); 980 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 981 982 skip_bug_print: 983 restore_bytes(s, what, value, fault, end); 984 return 0; 985 } 986 987 /* 988 * Object layout: 989 * 990 * object address 991 * Bytes of the object to be managed. 992 * If the freepointer may overlay the object then the free 993 * pointer is at the middle of the object. 994 * 995 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 996 * 0xa5 (POISON_END) 997 * 998 * object + s->object_size 999 * Padding to reach word boundary. This is also used for Redzoning. 1000 * Padding is extended by another word if Redzoning is enabled and 1001 * object_size == inuse. 1002 * 1003 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 1004 * 0xcc (RED_ACTIVE) for objects in use. 1005 * 1006 * object + s->inuse 1007 * Meta data starts here. 1008 * 1009 * A. Free pointer (if we cannot overwrite object on free) 1010 * B. Tracking data for SLAB_STORE_USER 1011 * C. Padding to reach required alignment boundary or at minimum 1012 * one word if debugging is on to be able to detect writes 1013 * before the word boundary. 1014 * 1015 * Padding is done using 0x5a (POISON_INUSE) 1016 * 1017 * object + s->size 1018 * Nothing is used beyond s->size. 1019 * 1020 * If slabcaches are merged then the object_size and inuse boundaries are mostly 1021 * ignored. And therefore no slab options that rely on these boundaries 1022 * may be used with merged slabcaches. 1023 */ 1024 1025 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1026 { 1027 unsigned long off = get_info_end(s); /* The end of info */ 1028 1029 if (s->flags & SLAB_STORE_USER) 1030 /* We also have user information there */ 1031 off += 2 * sizeof(struct track); 1032 1033 off += kasan_metadata_size(s); 1034 1035 if (size_from_object(s) == off) 1036 return 1; 1037 1038 return check_bytes_and_report(s, slab, p, "Object padding", 1039 p + off, POISON_INUSE, size_from_object(s) - off); 1040 } 1041 1042 /* Check the pad bytes at the end of a slab page */ 1043 static void slab_pad_check(struct kmem_cache *s, struct slab *slab) 1044 { 1045 u8 *start; 1046 u8 *fault; 1047 u8 *end; 1048 u8 *pad; 1049 int length; 1050 int remainder; 1051 1052 if (!(s->flags & SLAB_POISON)) 1053 return; 1054 1055 start = slab_address(slab); 1056 length = slab_size(slab); 1057 end = start + length; 1058 remainder = length % s->size; 1059 if (!remainder) 1060 return; 1061 1062 pad = end - remainder; 1063 metadata_access_enable(); 1064 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1065 metadata_access_disable(); 1066 if (!fault) 1067 return; 1068 while (end > fault && end[-1] == POISON_INUSE) 1069 end--; 1070 1071 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1072 fault, end - 1, fault - start); 1073 print_section(KERN_ERR, "Padding ", pad, remainder); 1074 1075 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1076 } 1077 1078 static int check_object(struct kmem_cache *s, struct slab *slab, 1079 void *object, u8 val) 1080 { 1081 u8 *p = object; 1082 u8 *endobject = object + s->object_size; 1083 1084 if (s->flags & SLAB_RED_ZONE) { 1085 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1086 object - s->red_left_pad, val, s->red_left_pad)) 1087 return 0; 1088 1089 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1090 endobject, val, s->inuse - s->object_size)) 1091 return 0; 1092 } else { 1093 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1094 check_bytes_and_report(s, slab, p, "Alignment padding", 1095 endobject, POISON_INUSE, 1096 s->inuse - s->object_size); 1097 } 1098 } 1099 1100 if (s->flags & SLAB_POISON) { 1101 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 1102 (!check_bytes_and_report(s, slab, p, "Poison", p, 1103 POISON_FREE, s->object_size - 1) || 1104 !check_bytes_and_report(s, slab, p, "End Poison", 1105 p + s->object_size - 1, POISON_END, 1))) 1106 return 0; 1107 /* 1108 * check_pad_bytes cleans up on its own. 1109 */ 1110 check_pad_bytes(s, slab, p); 1111 } 1112 1113 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) 1114 /* 1115 * Object and freepointer overlap. Cannot check 1116 * freepointer while object is allocated. 1117 */ 1118 return 1; 1119 1120 /* Check free pointer validity */ 1121 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) { 1122 object_err(s, slab, p, "Freepointer corrupt"); 1123 /* 1124 * No choice but to zap it and thus lose the remainder 1125 * of the free objects in this slab. May cause 1126 * another error because the object count is now wrong. 1127 */ 1128 set_freepointer(s, p, NULL); 1129 return 0; 1130 } 1131 return 1; 1132 } 1133 1134 static int check_slab(struct kmem_cache *s, struct slab *slab) 1135 { 1136 int maxobj; 1137 1138 if (!folio_test_slab(slab_folio(slab))) { 1139 slab_err(s, slab, "Not a valid slab page"); 1140 return 0; 1141 } 1142 1143 maxobj = order_objects(slab_order(slab), s->size); 1144 if (slab->objects > maxobj) { 1145 slab_err(s, slab, "objects %u > max %u", 1146 slab->objects, maxobj); 1147 return 0; 1148 } 1149 if (slab->inuse > slab->objects) { 1150 slab_err(s, slab, "inuse %u > max %u", 1151 slab->inuse, slab->objects); 1152 return 0; 1153 } 1154 /* Slab_pad_check fixes things up after itself */ 1155 slab_pad_check(s, slab); 1156 return 1; 1157 } 1158 1159 /* 1160 * Determine if a certain object in a slab is on the freelist. Must hold the 1161 * slab lock to guarantee that the chains are in a consistent state. 1162 */ 1163 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1164 { 1165 int nr = 0; 1166 void *fp; 1167 void *object = NULL; 1168 int max_objects; 1169 1170 fp = slab->freelist; 1171 while (fp && nr <= slab->objects) { 1172 if (fp == search) 1173 return 1; 1174 if (!check_valid_pointer(s, slab, fp)) { 1175 if (object) { 1176 object_err(s, slab, object, 1177 "Freechain corrupt"); 1178 set_freepointer(s, object, NULL); 1179 } else { 1180 slab_err(s, slab, "Freepointer corrupt"); 1181 slab->freelist = NULL; 1182 slab->inuse = slab->objects; 1183 slab_fix(s, "Freelist cleared"); 1184 return 0; 1185 } 1186 break; 1187 } 1188 object = fp; 1189 fp = get_freepointer(s, object); 1190 nr++; 1191 } 1192 1193 max_objects = order_objects(slab_order(slab), s->size); 1194 if (max_objects > MAX_OBJS_PER_PAGE) 1195 max_objects = MAX_OBJS_PER_PAGE; 1196 1197 if (slab->objects != max_objects) { 1198 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1199 slab->objects, max_objects); 1200 slab->objects = max_objects; 1201 slab_fix(s, "Number of objects adjusted"); 1202 } 1203 if (slab->inuse != slab->objects - nr) { 1204 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1205 slab->inuse, slab->objects - nr); 1206 slab->inuse = slab->objects - nr; 1207 slab_fix(s, "Object count adjusted"); 1208 } 1209 return search == NULL; 1210 } 1211 1212 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1213 int alloc) 1214 { 1215 if (s->flags & SLAB_TRACE) { 1216 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1217 s->name, 1218 alloc ? "alloc" : "free", 1219 object, slab->inuse, 1220 slab->freelist); 1221 1222 if (!alloc) 1223 print_section(KERN_INFO, "Object ", (void *)object, 1224 s->object_size); 1225 1226 dump_stack(); 1227 } 1228 } 1229 1230 /* 1231 * Tracking of fully allocated slabs for debugging purposes. 1232 */ 1233 static void add_full(struct kmem_cache *s, 1234 struct kmem_cache_node *n, struct slab *slab) 1235 { 1236 if (!(s->flags & SLAB_STORE_USER)) 1237 return; 1238 1239 lockdep_assert_held(&n->list_lock); 1240 list_add(&slab->slab_list, &n->full); 1241 } 1242 1243 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1244 { 1245 if (!(s->flags & SLAB_STORE_USER)) 1246 return; 1247 1248 lockdep_assert_held(&n->list_lock); 1249 list_del(&slab->slab_list); 1250 } 1251 1252 /* Tracking of the number of slabs for debugging purposes */ 1253 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1254 { 1255 struct kmem_cache_node *n = get_node(s, node); 1256 1257 return atomic_long_read(&n->nr_slabs); 1258 } 1259 1260 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1261 { 1262 return atomic_long_read(&n->nr_slabs); 1263 } 1264 1265 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1266 { 1267 struct kmem_cache_node *n = get_node(s, node); 1268 1269 /* 1270 * May be called early in order to allocate a slab for the 1271 * kmem_cache_node structure. Solve the chicken-egg 1272 * dilemma by deferring the increment of the count during 1273 * bootstrap (see early_kmem_cache_node_alloc). 1274 */ 1275 if (likely(n)) { 1276 atomic_long_inc(&n->nr_slabs); 1277 atomic_long_add(objects, &n->total_objects); 1278 } 1279 } 1280 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1281 { 1282 struct kmem_cache_node *n = get_node(s, node); 1283 1284 atomic_long_dec(&n->nr_slabs); 1285 atomic_long_sub(objects, &n->total_objects); 1286 } 1287 1288 /* Object debug checks for alloc/free paths */ 1289 static void setup_object_debug(struct kmem_cache *s, void *object) 1290 { 1291 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1292 return; 1293 1294 init_object(s, object, SLUB_RED_INACTIVE); 1295 init_tracking(s, object); 1296 } 1297 1298 static 1299 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1300 { 1301 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1302 return; 1303 1304 metadata_access_enable(); 1305 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1306 metadata_access_disable(); 1307 } 1308 1309 static inline int alloc_consistency_checks(struct kmem_cache *s, 1310 struct slab *slab, void *object) 1311 { 1312 if (!check_slab(s, slab)) 1313 return 0; 1314 1315 if (!check_valid_pointer(s, slab, object)) { 1316 object_err(s, slab, object, "Freelist Pointer check fails"); 1317 return 0; 1318 } 1319 1320 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1321 return 0; 1322 1323 return 1; 1324 } 1325 1326 static noinline int alloc_debug_processing(struct kmem_cache *s, 1327 struct slab *slab, 1328 void *object, unsigned long addr) 1329 { 1330 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1331 if (!alloc_consistency_checks(s, slab, object)) 1332 goto bad; 1333 } 1334 1335 /* Success perform special debug activities for allocs */ 1336 if (s->flags & SLAB_STORE_USER) 1337 set_track(s, object, TRACK_ALLOC, addr); 1338 trace(s, slab, object, 1); 1339 init_object(s, object, SLUB_RED_ACTIVE); 1340 return 1; 1341 1342 bad: 1343 if (folio_test_slab(slab_folio(slab))) { 1344 /* 1345 * If this is a slab page then lets do the best we can 1346 * to avoid issues in the future. Marking all objects 1347 * as used avoids touching the remaining objects. 1348 */ 1349 slab_fix(s, "Marking all objects used"); 1350 slab->inuse = slab->objects; 1351 slab->freelist = NULL; 1352 } 1353 return 0; 1354 } 1355 1356 static inline int free_consistency_checks(struct kmem_cache *s, 1357 struct slab *slab, void *object, unsigned long addr) 1358 { 1359 if (!check_valid_pointer(s, slab, object)) { 1360 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1361 return 0; 1362 } 1363 1364 if (on_freelist(s, slab, object)) { 1365 object_err(s, slab, object, "Object already free"); 1366 return 0; 1367 } 1368 1369 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1370 return 0; 1371 1372 if (unlikely(s != slab->slab_cache)) { 1373 if (!folio_test_slab(slab_folio(slab))) { 1374 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", 1375 object); 1376 } else if (!slab->slab_cache) { 1377 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1378 object); 1379 dump_stack(); 1380 } else 1381 object_err(s, slab, object, 1382 "page slab pointer corrupt."); 1383 return 0; 1384 } 1385 return 1; 1386 } 1387 1388 /* Supports checking bulk free of a constructed freelist */ 1389 static noinline int free_debug_processing( 1390 struct kmem_cache *s, struct slab *slab, 1391 void *head, void *tail, int bulk_cnt, 1392 unsigned long addr) 1393 { 1394 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 1395 void *object = head; 1396 int cnt = 0; 1397 unsigned long flags, flags2; 1398 int ret = 0; 1399 depot_stack_handle_t handle = 0; 1400 1401 if (s->flags & SLAB_STORE_USER) 1402 handle = set_track_prepare(); 1403 1404 spin_lock_irqsave(&n->list_lock, flags); 1405 slab_lock(slab, &flags2); 1406 1407 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1408 if (!check_slab(s, slab)) 1409 goto out; 1410 } 1411 1412 next_object: 1413 cnt++; 1414 1415 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1416 if (!free_consistency_checks(s, slab, object, addr)) 1417 goto out; 1418 } 1419 1420 if (s->flags & SLAB_STORE_USER) 1421 set_track_update(s, object, TRACK_FREE, addr, handle); 1422 trace(s, slab, object, 0); 1423 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1424 init_object(s, object, SLUB_RED_INACTIVE); 1425 1426 /* Reached end of constructed freelist yet? */ 1427 if (object != tail) { 1428 object = get_freepointer(s, object); 1429 goto next_object; 1430 } 1431 ret = 1; 1432 1433 out: 1434 if (cnt != bulk_cnt) 1435 slab_err(s, slab, "Bulk freelist count(%d) invalid(%d)\n", 1436 bulk_cnt, cnt); 1437 1438 slab_unlock(slab, &flags2); 1439 spin_unlock_irqrestore(&n->list_lock, flags); 1440 if (!ret) 1441 slab_fix(s, "Object at 0x%p not freed", object); 1442 return ret; 1443 } 1444 1445 /* 1446 * Parse a block of slub_debug options. Blocks are delimited by ';' 1447 * 1448 * @str: start of block 1449 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1450 * @slabs: return start of list of slabs, or NULL when there's no list 1451 * @init: assume this is initial parsing and not per-kmem-create parsing 1452 * 1453 * returns the start of next block if there's any, or NULL 1454 */ 1455 static char * 1456 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1457 { 1458 bool higher_order_disable = false; 1459 1460 /* Skip any completely empty blocks */ 1461 while (*str && *str == ';') 1462 str++; 1463 1464 if (*str == ',') { 1465 /* 1466 * No options but restriction on slabs. This means full 1467 * debugging for slabs matching a pattern. 1468 */ 1469 *flags = DEBUG_DEFAULT_FLAGS; 1470 goto check_slabs; 1471 } 1472 *flags = 0; 1473 1474 /* Determine which debug features should be switched on */ 1475 for (; *str && *str != ',' && *str != ';'; str++) { 1476 switch (tolower(*str)) { 1477 case '-': 1478 *flags = 0; 1479 break; 1480 case 'f': 1481 *flags |= SLAB_CONSISTENCY_CHECKS; 1482 break; 1483 case 'z': 1484 *flags |= SLAB_RED_ZONE; 1485 break; 1486 case 'p': 1487 *flags |= SLAB_POISON; 1488 break; 1489 case 'u': 1490 *flags |= SLAB_STORE_USER; 1491 break; 1492 case 't': 1493 *flags |= SLAB_TRACE; 1494 break; 1495 case 'a': 1496 *flags |= SLAB_FAILSLAB; 1497 break; 1498 case 'o': 1499 /* 1500 * Avoid enabling debugging on caches if its minimum 1501 * order would increase as a result. 1502 */ 1503 higher_order_disable = true; 1504 break; 1505 default: 1506 if (init) 1507 pr_err("slub_debug option '%c' unknown. skipped\n", *str); 1508 } 1509 } 1510 check_slabs: 1511 if (*str == ',') 1512 *slabs = ++str; 1513 else 1514 *slabs = NULL; 1515 1516 /* Skip over the slab list */ 1517 while (*str && *str != ';') 1518 str++; 1519 1520 /* Skip any completely empty blocks */ 1521 while (*str && *str == ';') 1522 str++; 1523 1524 if (init && higher_order_disable) 1525 disable_higher_order_debug = 1; 1526 1527 if (*str) 1528 return str; 1529 else 1530 return NULL; 1531 } 1532 1533 static int __init setup_slub_debug(char *str) 1534 { 1535 slab_flags_t flags; 1536 slab_flags_t global_flags; 1537 char *saved_str; 1538 char *slab_list; 1539 bool global_slub_debug_changed = false; 1540 bool slab_list_specified = false; 1541 1542 global_flags = DEBUG_DEFAULT_FLAGS; 1543 if (*str++ != '=' || !*str) 1544 /* 1545 * No options specified. Switch on full debugging. 1546 */ 1547 goto out; 1548 1549 saved_str = str; 1550 while (str) { 1551 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1552 1553 if (!slab_list) { 1554 global_flags = flags; 1555 global_slub_debug_changed = true; 1556 } else { 1557 slab_list_specified = true; 1558 if (flags & SLAB_STORE_USER) 1559 stack_depot_want_early_init(); 1560 } 1561 } 1562 1563 /* 1564 * For backwards compatibility, a single list of flags with list of 1565 * slabs means debugging is only changed for those slabs, so the global 1566 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1567 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1568 * long as there is no option specifying flags without a slab list. 1569 */ 1570 if (slab_list_specified) { 1571 if (!global_slub_debug_changed) 1572 global_flags = slub_debug; 1573 slub_debug_string = saved_str; 1574 } 1575 out: 1576 slub_debug = global_flags; 1577 if (slub_debug & SLAB_STORE_USER) 1578 stack_depot_want_early_init(); 1579 if (slub_debug != 0 || slub_debug_string) 1580 static_branch_enable(&slub_debug_enabled); 1581 else 1582 static_branch_disable(&slub_debug_enabled); 1583 if ((static_branch_unlikely(&init_on_alloc) || 1584 static_branch_unlikely(&init_on_free)) && 1585 (slub_debug & SLAB_POISON)) 1586 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1587 return 1; 1588 } 1589 1590 __setup("slub_debug", setup_slub_debug); 1591 1592 /* 1593 * kmem_cache_flags - apply debugging options to the cache 1594 * @object_size: the size of an object without meta data 1595 * @flags: flags to set 1596 * @name: name of the cache 1597 * 1598 * Debug option(s) are applied to @flags. In addition to the debug 1599 * option(s), if a slab name (or multiple) is specified i.e. 1600 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1601 * then only the select slabs will receive the debug option(s). 1602 */ 1603 slab_flags_t kmem_cache_flags(unsigned int object_size, 1604 slab_flags_t flags, const char *name) 1605 { 1606 char *iter; 1607 size_t len; 1608 char *next_block; 1609 slab_flags_t block_flags; 1610 slab_flags_t slub_debug_local = slub_debug; 1611 1612 if (flags & SLAB_NO_USER_FLAGS) 1613 return flags; 1614 1615 /* 1616 * If the slab cache is for debugging (e.g. kmemleak) then 1617 * don't store user (stack trace) information by default, 1618 * but let the user enable it via the command line below. 1619 */ 1620 if (flags & SLAB_NOLEAKTRACE) 1621 slub_debug_local &= ~SLAB_STORE_USER; 1622 1623 len = strlen(name); 1624 next_block = slub_debug_string; 1625 /* Go through all blocks of debug options, see if any matches our slab's name */ 1626 while (next_block) { 1627 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1628 if (!iter) 1629 continue; 1630 /* Found a block that has a slab list, search it */ 1631 while (*iter) { 1632 char *end, *glob; 1633 size_t cmplen; 1634 1635 end = strchrnul(iter, ','); 1636 if (next_block && next_block < end) 1637 end = next_block - 1; 1638 1639 glob = strnchr(iter, end - iter, '*'); 1640 if (glob) 1641 cmplen = glob - iter; 1642 else 1643 cmplen = max_t(size_t, len, (end - iter)); 1644 1645 if (!strncmp(name, iter, cmplen)) { 1646 flags |= block_flags; 1647 return flags; 1648 } 1649 1650 if (!*end || *end == ';') 1651 break; 1652 iter = end + 1; 1653 } 1654 } 1655 1656 return flags | slub_debug_local; 1657 } 1658 #else /* !CONFIG_SLUB_DEBUG */ 1659 static inline void setup_object_debug(struct kmem_cache *s, void *object) {} 1660 static inline 1661 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1662 1663 static inline int alloc_debug_processing(struct kmem_cache *s, 1664 struct slab *slab, void *object, unsigned long addr) { return 0; } 1665 1666 static inline int free_debug_processing( 1667 struct kmem_cache *s, struct slab *slab, 1668 void *head, void *tail, int bulk_cnt, 1669 unsigned long addr) { return 0; } 1670 1671 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} 1672 static inline int check_object(struct kmem_cache *s, struct slab *slab, 1673 void *object, u8 val) { return 1; } 1674 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1675 struct slab *slab) {} 1676 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1677 struct slab *slab) {} 1678 slab_flags_t kmem_cache_flags(unsigned int object_size, 1679 slab_flags_t flags, const char *name) 1680 { 1681 return flags; 1682 } 1683 #define slub_debug 0 1684 1685 #define disable_higher_order_debug 0 1686 1687 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1688 { return 0; } 1689 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1690 { return 0; } 1691 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1692 int objects) {} 1693 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1694 int objects) {} 1695 1696 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1697 void **freelist, void *nextfree) 1698 { 1699 return false; 1700 } 1701 #endif /* CONFIG_SLUB_DEBUG */ 1702 1703 /* 1704 * Hooks for other subsystems that check memory allocations. In a typical 1705 * production configuration these hooks all should produce no code at all. 1706 */ 1707 static __always_inline void kfree_hook(void *x) 1708 { 1709 kmemleak_free(x); 1710 kasan_kfree_large(x); 1711 } 1712 1713 static __always_inline bool slab_free_hook(struct kmem_cache *s, 1714 void *x, bool init) 1715 { 1716 kmemleak_free_recursive(x, s->flags); 1717 1718 debug_check_no_locks_freed(x, s->object_size); 1719 1720 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1721 debug_check_no_obj_freed(x, s->object_size); 1722 1723 /* Use KCSAN to help debug racy use-after-free. */ 1724 if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) 1725 __kcsan_check_access(x, s->object_size, 1726 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 1727 1728 /* 1729 * As memory initialization might be integrated into KASAN, 1730 * kasan_slab_free and initialization memset's must be 1731 * kept together to avoid discrepancies in behavior. 1732 * 1733 * The initialization memset's clear the object and the metadata, 1734 * but don't touch the SLAB redzone. 1735 */ 1736 if (init) { 1737 int rsize; 1738 1739 if (!kasan_has_integrated_init()) 1740 memset(kasan_reset_tag(x), 0, s->object_size); 1741 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 1742 memset((char *)kasan_reset_tag(x) + s->inuse, 0, 1743 s->size - s->inuse - rsize); 1744 } 1745 /* KASAN might put x into memory quarantine, delaying its reuse. */ 1746 return kasan_slab_free(s, x, init); 1747 } 1748 1749 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1750 void **head, void **tail, 1751 int *cnt) 1752 { 1753 1754 void *object; 1755 void *next = *head; 1756 void *old_tail = *tail ? *tail : *head; 1757 1758 if (is_kfence_address(next)) { 1759 slab_free_hook(s, next, false); 1760 return true; 1761 } 1762 1763 /* Head and tail of the reconstructed freelist */ 1764 *head = NULL; 1765 *tail = NULL; 1766 1767 do { 1768 object = next; 1769 next = get_freepointer(s, object); 1770 1771 /* If object's reuse doesn't have to be delayed */ 1772 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) { 1773 /* Move object to the new freelist */ 1774 set_freepointer(s, object, *head); 1775 *head = object; 1776 if (!*tail) 1777 *tail = object; 1778 } else { 1779 /* 1780 * Adjust the reconstructed freelist depth 1781 * accordingly if object's reuse is delayed. 1782 */ 1783 --(*cnt); 1784 } 1785 } while (object != old_tail); 1786 1787 if (*head == *tail) 1788 *tail = NULL; 1789 1790 return *head != NULL; 1791 } 1792 1793 static void *setup_object(struct kmem_cache *s, void *object) 1794 { 1795 setup_object_debug(s, object); 1796 object = kasan_init_slab_obj(s, object); 1797 if (unlikely(s->ctor)) { 1798 kasan_unpoison_object_data(s, object); 1799 s->ctor(object); 1800 kasan_poison_object_data(s, object); 1801 } 1802 return object; 1803 } 1804 1805 /* 1806 * Slab allocation and freeing 1807 */ 1808 static inline struct slab *alloc_slab_page(gfp_t flags, int node, 1809 struct kmem_cache_order_objects oo) 1810 { 1811 struct folio *folio; 1812 struct slab *slab; 1813 unsigned int order = oo_order(oo); 1814 1815 if (node == NUMA_NO_NODE) 1816 folio = (struct folio *)alloc_pages(flags, order); 1817 else 1818 folio = (struct folio *)__alloc_pages_node(node, flags, order); 1819 1820 if (!folio) 1821 return NULL; 1822 1823 slab = folio_slab(folio); 1824 __folio_set_slab(folio); 1825 if (page_is_pfmemalloc(folio_page(folio, 0))) 1826 slab_set_pfmemalloc(slab); 1827 1828 return slab; 1829 } 1830 1831 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1832 /* Pre-initialize the random sequence cache */ 1833 static int init_cache_random_seq(struct kmem_cache *s) 1834 { 1835 unsigned int count = oo_objects(s->oo); 1836 int err; 1837 1838 /* Bailout if already initialised */ 1839 if (s->random_seq) 1840 return 0; 1841 1842 err = cache_random_seq_create(s, count, GFP_KERNEL); 1843 if (err) { 1844 pr_err("SLUB: Unable to initialize free list for %s\n", 1845 s->name); 1846 return err; 1847 } 1848 1849 /* Transform to an offset on the set of pages */ 1850 if (s->random_seq) { 1851 unsigned int i; 1852 1853 for (i = 0; i < count; i++) 1854 s->random_seq[i] *= s->size; 1855 } 1856 return 0; 1857 } 1858 1859 /* Initialize each random sequence freelist per cache */ 1860 static void __init init_freelist_randomization(void) 1861 { 1862 struct kmem_cache *s; 1863 1864 mutex_lock(&slab_mutex); 1865 1866 list_for_each_entry(s, &slab_caches, list) 1867 init_cache_random_seq(s); 1868 1869 mutex_unlock(&slab_mutex); 1870 } 1871 1872 /* Get the next entry on the pre-computed freelist randomized */ 1873 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab, 1874 unsigned long *pos, void *start, 1875 unsigned long page_limit, 1876 unsigned long freelist_count) 1877 { 1878 unsigned int idx; 1879 1880 /* 1881 * If the target page allocation failed, the number of objects on the 1882 * page might be smaller than the usual size defined by the cache. 1883 */ 1884 do { 1885 idx = s->random_seq[*pos]; 1886 *pos += 1; 1887 if (*pos >= freelist_count) 1888 *pos = 0; 1889 } while (unlikely(idx >= page_limit)); 1890 1891 return (char *)start + idx; 1892 } 1893 1894 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1895 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 1896 { 1897 void *start; 1898 void *cur; 1899 void *next; 1900 unsigned long idx, pos, page_limit, freelist_count; 1901 1902 if (slab->objects < 2 || !s->random_seq) 1903 return false; 1904 1905 freelist_count = oo_objects(s->oo); 1906 pos = get_random_int() % freelist_count; 1907 1908 page_limit = slab->objects * s->size; 1909 start = fixup_red_left(s, slab_address(slab)); 1910 1911 /* First entry is used as the base of the freelist */ 1912 cur = next_freelist_entry(s, slab, &pos, start, page_limit, 1913 freelist_count); 1914 cur = setup_object(s, cur); 1915 slab->freelist = cur; 1916 1917 for (idx = 1; idx < slab->objects; idx++) { 1918 next = next_freelist_entry(s, slab, &pos, start, page_limit, 1919 freelist_count); 1920 next = setup_object(s, next); 1921 set_freepointer(s, cur, next); 1922 cur = next; 1923 } 1924 set_freepointer(s, cur, NULL); 1925 1926 return true; 1927 } 1928 #else 1929 static inline int init_cache_random_seq(struct kmem_cache *s) 1930 { 1931 return 0; 1932 } 1933 static inline void init_freelist_randomization(void) { } 1934 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 1935 { 1936 return false; 1937 } 1938 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1939 1940 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1941 { 1942 struct slab *slab; 1943 struct kmem_cache_order_objects oo = s->oo; 1944 gfp_t alloc_gfp; 1945 void *start, *p, *next; 1946 int idx; 1947 bool shuffle; 1948 1949 flags &= gfp_allowed_mask; 1950 1951 flags |= s->allocflags; 1952 1953 /* 1954 * Let the initial higher-order allocation fail under memory pressure 1955 * so we fall-back to the minimum order allocation. 1956 */ 1957 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1958 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1959 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; 1960 1961 slab = alloc_slab_page(alloc_gfp, node, oo); 1962 if (unlikely(!slab)) { 1963 oo = s->min; 1964 alloc_gfp = flags; 1965 /* 1966 * Allocation may have failed due to fragmentation. 1967 * Try a lower order alloc if possible 1968 */ 1969 slab = alloc_slab_page(alloc_gfp, node, oo); 1970 if (unlikely(!slab)) 1971 goto out; 1972 stat(s, ORDER_FALLBACK); 1973 } 1974 1975 slab->objects = oo_objects(oo); 1976 1977 account_slab(slab, oo_order(oo), s, flags); 1978 1979 slab->slab_cache = s; 1980 1981 kasan_poison_slab(slab); 1982 1983 start = slab_address(slab); 1984 1985 setup_slab_debug(s, slab, start); 1986 1987 shuffle = shuffle_freelist(s, slab); 1988 1989 if (!shuffle) { 1990 start = fixup_red_left(s, start); 1991 start = setup_object(s, start); 1992 slab->freelist = start; 1993 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 1994 next = p + s->size; 1995 next = setup_object(s, next); 1996 set_freepointer(s, p, next); 1997 p = next; 1998 } 1999 set_freepointer(s, p, NULL); 2000 } 2001 2002 slab->inuse = slab->objects; 2003 slab->frozen = 1; 2004 2005 out: 2006 if (!slab) 2007 return NULL; 2008 2009 inc_slabs_node(s, slab_nid(slab), slab->objects); 2010 2011 return slab; 2012 } 2013 2014 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 2015 { 2016 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2017 flags = kmalloc_fix_flags(flags); 2018 2019 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2020 2021 return allocate_slab(s, 2022 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 2023 } 2024 2025 static void __free_slab(struct kmem_cache *s, struct slab *slab) 2026 { 2027 struct folio *folio = slab_folio(slab); 2028 int order = folio_order(folio); 2029 int pages = 1 << order; 2030 2031 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 2032 void *p; 2033 2034 slab_pad_check(s, slab); 2035 for_each_object(p, s, slab_address(slab), slab->objects) 2036 check_object(s, slab, p, SLUB_RED_INACTIVE); 2037 } 2038 2039 __slab_clear_pfmemalloc(slab); 2040 __folio_clear_slab(folio); 2041 folio->mapping = NULL; 2042 if (current->reclaim_state) 2043 current->reclaim_state->reclaimed_slab += pages; 2044 unaccount_slab(slab, order, s); 2045 __free_pages(folio_page(folio, 0), order); 2046 } 2047 2048 static void rcu_free_slab(struct rcu_head *h) 2049 { 2050 struct slab *slab = container_of(h, struct slab, rcu_head); 2051 2052 __free_slab(slab->slab_cache, slab); 2053 } 2054 2055 static void free_slab(struct kmem_cache *s, struct slab *slab) 2056 { 2057 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 2058 call_rcu(&slab->rcu_head, rcu_free_slab); 2059 } else 2060 __free_slab(s, slab); 2061 } 2062 2063 static void discard_slab(struct kmem_cache *s, struct slab *slab) 2064 { 2065 dec_slabs_node(s, slab_nid(slab), slab->objects); 2066 free_slab(s, slab); 2067 } 2068 2069 /* 2070 * Management of partially allocated slabs. 2071 */ 2072 static inline void 2073 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) 2074 { 2075 n->nr_partial++; 2076 if (tail == DEACTIVATE_TO_TAIL) 2077 list_add_tail(&slab->slab_list, &n->partial); 2078 else 2079 list_add(&slab->slab_list, &n->partial); 2080 } 2081 2082 static inline void add_partial(struct kmem_cache_node *n, 2083 struct slab *slab, int tail) 2084 { 2085 lockdep_assert_held(&n->list_lock); 2086 __add_partial(n, slab, tail); 2087 } 2088 2089 static inline void remove_partial(struct kmem_cache_node *n, 2090 struct slab *slab) 2091 { 2092 lockdep_assert_held(&n->list_lock); 2093 list_del(&slab->slab_list); 2094 n->nr_partial--; 2095 } 2096 2097 /* 2098 * Remove slab from the partial list, freeze it and 2099 * return the pointer to the freelist. 2100 * 2101 * Returns a list of objects or NULL if it fails. 2102 */ 2103 static inline void *acquire_slab(struct kmem_cache *s, 2104 struct kmem_cache_node *n, struct slab *slab, 2105 int mode) 2106 { 2107 void *freelist; 2108 unsigned long counters; 2109 struct slab new; 2110 2111 lockdep_assert_held(&n->list_lock); 2112 2113 /* 2114 * Zap the freelist and set the frozen bit. 2115 * The old freelist is the list of objects for the 2116 * per cpu allocation list. 2117 */ 2118 freelist = slab->freelist; 2119 counters = slab->counters; 2120 new.counters = counters; 2121 if (mode) { 2122 new.inuse = slab->objects; 2123 new.freelist = NULL; 2124 } else { 2125 new.freelist = freelist; 2126 } 2127 2128 VM_BUG_ON(new.frozen); 2129 new.frozen = 1; 2130 2131 if (!__cmpxchg_double_slab(s, slab, 2132 freelist, counters, 2133 new.freelist, new.counters, 2134 "acquire_slab")) 2135 return NULL; 2136 2137 remove_partial(n, slab); 2138 WARN_ON(!freelist); 2139 return freelist; 2140 } 2141 2142 #ifdef CONFIG_SLUB_CPU_PARTIAL 2143 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); 2144 #else 2145 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, 2146 int drain) { } 2147 #endif 2148 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 2149 2150 /* 2151 * Try to allocate a partial slab from a specific node. 2152 */ 2153 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 2154 struct slab **ret_slab, gfp_t gfpflags) 2155 { 2156 struct slab *slab, *slab2; 2157 void *object = NULL; 2158 unsigned long flags; 2159 unsigned int partial_slabs = 0; 2160 2161 /* 2162 * Racy check. If we mistakenly see no partial slabs then we 2163 * just allocate an empty slab. If we mistakenly try to get a 2164 * partial slab and there is none available then get_partial() 2165 * will return NULL. 2166 */ 2167 if (!n || !n->nr_partial) 2168 return NULL; 2169 2170 spin_lock_irqsave(&n->list_lock, flags); 2171 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 2172 void *t; 2173 2174 if (!pfmemalloc_match(slab, gfpflags)) 2175 continue; 2176 2177 t = acquire_slab(s, n, slab, object == NULL); 2178 if (!t) 2179 break; 2180 2181 if (!object) { 2182 *ret_slab = slab; 2183 stat(s, ALLOC_FROM_PARTIAL); 2184 object = t; 2185 } else { 2186 put_cpu_partial(s, slab, 0); 2187 stat(s, CPU_PARTIAL_NODE); 2188 partial_slabs++; 2189 } 2190 #ifdef CONFIG_SLUB_CPU_PARTIAL 2191 if (!kmem_cache_has_cpu_partial(s) 2192 || partial_slabs > s->cpu_partial_slabs / 2) 2193 break; 2194 #else 2195 break; 2196 #endif 2197 2198 } 2199 spin_unlock_irqrestore(&n->list_lock, flags); 2200 return object; 2201 } 2202 2203 /* 2204 * Get a slab from somewhere. Search in increasing NUMA distances. 2205 */ 2206 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 2207 struct slab **ret_slab) 2208 { 2209 #ifdef CONFIG_NUMA 2210 struct zonelist *zonelist; 2211 struct zoneref *z; 2212 struct zone *zone; 2213 enum zone_type highest_zoneidx = gfp_zone(flags); 2214 void *object; 2215 unsigned int cpuset_mems_cookie; 2216 2217 /* 2218 * The defrag ratio allows a configuration of the tradeoffs between 2219 * inter node defragmentation and node local allocations. A lower 2220 * defrag_ratio increases the tendency to do local allocations 2221 * instead of attempting to obtain partial slabs from other nodes. 2222 * 2223 * If the defrag_ratio is set to 0 then kmalloc() always 2224 * returns node local objects. If the ratio is higher then kmalloc() 2225 * may return off node objects because partial slabs are obtained 2226 * from other nodes and filled up. 2227 * 2228 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2229 * (which makes defrag_ratio = 1000) then every (well almost) 2230 * allocation will first attempt to defrag slab caches on other nodes. 2231 * This means scanning over all nodes to look for partial slabs which 2232 * may be expensive if we do it every time we are trying to find a slab 2233 * with available objects. 2234 */ 2235 if (!s->remote_node_defrag_ratio || 2236 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2237 return NULL; 2238 2239 do { 2240 cpuset_mems_cookie = read_mems_allowed_begin(); 2241 zonelist = node_zonelist(mempolicy_slab_node(), flags); 2242 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2243 struct kmem_cache_node *n; 2244 2245 n = get_node(s, zone_to_nid(zone)); 2246 2247 if (n && cpuset_zone_allowed(zone, flags) && 2248 n->nr_partial > s->min_partial) { 2249 object = get_partial_node(s, n, ret_slab, flags); 2250 if (object) { 2251 /* 2252 * Don't check read_mems_allowed_retry() 2253 * here - if mems_allowed was updated in 2254 * parallel, that was a harmless race 2255 * between allocation and the cpuset 2256 * update 2257 */ 2258 return object; 2259 } 2260 } 2261 } 2262 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2263 #endif /* CONFIG_NUMA */ 2264 return NULL; 2265 } 2266 2267 /* 2268 * Get a partial slab, lock it and return it. 2269 */ 2270 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 2271 struct slab **ret_slab) 2272 { 2273 void *object; 2274 int searchnode = node; 2275 2276 if (node == NUMA_NO_NODE) 2277 searchnode = numa_mem_id(); 2278 2279 object = get_partial_node(s, get_node(s, searchnode), ret_slab, flags); 2280 if (object || node != NUMA_NO_NODE) 2281 return object; 2282 2283 return get_any_partial(s, flags, ret_slab); 2284 } 2285 2286 #ifdef CONFIG_PREEMPTION 2287 /* 2288 * Calculate the next globally unique transaction for disambiguation 2289 * during cmpxchg. The transactions start with the cpu number and are then 2290 * incremented by CONFIG_NR_CPUS. 2291 */ 2292 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2293 #else 2294 /* 2295 * No preemption supported therefore also no need to check for 2296 * different cpus. 2297 */ 2298 #define TID_STEP 1 2299 #endif 2300 2301 static inline unsigned long next_tid(unsigned long tid) 2302 { 2303 return tid + TID_STEP; 2304 } 2305 2306 #ifdef SLUB_DEBUG_CMPXCHG 2307 static inline unsigned int tid_to_cpu(unsigned long tid) 2308 { 2309 return tid % TID_STEP; 2310 } 2311 2312 static inline unsigned long tid_to_event(unsigned long tid) 2313 { 2314 return tid / TID_STEP; 2315 } 2316 #endif 2317 2318 static inline unsigned int init_tid(int cpu) 2319 { 2320 return cpu; 2321 } 2322 2323 static inline void note_cmpxchg_failure(const char *n, 2324 const struct kmem_cache *s, unsigned long tid) 2325 { 2326 #ifdef SLUB_DEBUG_CMPXCHG 2327 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2328 2329 pr_info("%s %s: cmpxchg redo ", n, s->name); 2330 2331 #ifdef CONFIG_PREEMPTION 2332 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2333 pr_warn("due to cpu change %d -> %d\n", 2334 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2335 else 2336 #endif 2337 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2338 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2339 tid_to_event(tid), tid_to_event(actual_tid)); 2340 else 2341 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2342 actual_tid, tid, next_tid(tid)); 2343 #endif 2344 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2345 } 2346 2347 static void init_kmem_cache_cpus(struct kmem_cache *s) 2348 { 2349 int cpu; 2350 struct kmem_cache_cpu *c; 2351 2352 for_each_possible_cpu(cpu) { 2353 c = per_cpu_ptr(s->cpu_slab, cpu); 2354 local_lock_init(&c->lock); 2355 c->tid = init_tid(cpu); 2356 } 2357 } 2358 2359 /* 2360 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, 2361 * unfreezes the slabs and puts it on the proper list. 2362 * Assumes the slab has been already safely taken away from kmem_cache_cpu 2363 * by the caller. 2364 */ 2365 static void deactivate_slab(struct kmem_cache *s, struct slab *slab, 2366 void *freelist) 2367 { 2368 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE, M_FULL_NOLIST }; 2369 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 2370 int free_delta = 0; 2371 enum slab_modes mode = M_NONE; 2372 void *nextfree, *freelist_iter, *freelist_tail; 2373 int tail = DEACTIVATE_TO_HEAD; 2374 unsigned long flags = 0; 2375 struct slab new; 2376 struct slab old; 2377 2378 if (slab->freelist) { 2379 stat(s, DEACTIVATE_REMOTE_FREES); 2380 tail = DEACTIVATE_TO_TAIL; 2381 } 2382 2383 /* 2384 * Stage one: Count the objects on cpu's freelist as free_delta and 2385 * remember the last object in freelist_tail for later splicing. 2386 */ 2387 freelist_tail = NULL; 2388 freelist_iter = freelist; 2389 while (freelist_iter) { 2390 nextfree = get_freepointer(s, freelist_iter); 2391 2392 /* 2393 * If 'nextfree' is invalid, it is possible that the object at 2394 * 'freelist_iter' is already corrupted. So isolate all objects 2395 * starting at 'freelist_iter' by skipping them. 2396 */ 2397 if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) 2398 break; 2399 2400 freelist_tail = freelist_iter; 2401 free_delta++; 2402 2403 freelist_iter = nextfree; 2404 } 2405 2406 /* 2407 * Stage two: Unfreeze the slab while splicing the per-cpu 2408 * freelist to the head of slab's freelist. 2409 * 2410 * Ensure that the slab is unfrozen while the list presence 2411 * reflects the actual number of objects during unfreeze. 2412 * 2413 * We first perform cmpxchg holding lock and insert to list 2414 * when it succeed. If there is mismatch then the slab is not 2415 * unfrozen and number of objects in the slab may have changed. 2416 * Then release lock and retry cmpxchg again. 2417 */ 2418 redo: 2419 2420 old.freelist = READ_ONCE(slab->freelist); 2421 old.counters = READ_ONCE(slab->counters); 2422 VM_BUG_ON(!old.frozen); 2423 2424 /* Determine target state of the slab */ 2425 new.counters = old.counters; 2426 if (freelist_tail) { 2427 new.inuse -= free_delta; 2428 set_freepointer(s, freelist_tail, old.freelist); 2429 new.freelist = freelist; 2430 } else 2431 new.freelist = old.freelist; 2432 2433 new.frozen = 0; 2434 2435 if (!new.inuse && n->nr_partial >= s->min_partial) { 2436 mode = M_FREE; 2437 } else if (new.freelist) { 2438 mode = M_PARTIAL; 2439 /* 2440 * Taking the spinlock removes the possibility that 2441 * acquire_slab() will see a slab that is frozen 2442 */ 2443 spin_lock_irqsave(&n->list_lock, flags); 2444 } else if (kmem_cache_debug_flags(s, SLAB_STORE_USER)) { 2445 mode = M_FULL; 2446 /* 2447 * This also ensures that the scanning of full 2448 * slabs from diagnostic functions will not see 2449 * any frozen slabs. 2450 */ 2451 spin_lock_irqsave(&n->list_lock, flags); 2452 } else { 2453 mode = M_FULL_NOLIST; 2454 } 2455 2456 2457 if (!cmpxchg_double_slab(s, slab, 2458 old.freelist, old.counters, 2459 new.freelist, new.counters, 2460 "unfreezing slab")) { 2461 if (mode == M_PARTIAL || mode == M_FULL) 2462 spin_unlock_irqrestore(&n->list_lock, flags); 2463 goto redo; 2464 } 2465 2466 2467 if (mode == M_PARTIAL) { 2468 add_partial(n, slab, tail); 2469 spin_unlock_irqrestore(&n->list_lock, flags); 2470 stat(s, tail); 2471 } else if (mode == M_FREE) { 2472 stat(s, DEACTIVATE_EMPTY); 2473 discard_slab(s, slab); 2474 stat(s, FREE_SLAB); 2475 } else if (mode == M_FULL) { 2476 add_full(s, n, slab); 2477 spin_unlock_irqrestore(&n->list_lock, flags); 2478 stat(s, DEACTIVATE_FULL); 2479 } else if (mode == M_FULL_NOLIST) { 2480 stat(s, DEACTIVATE_FULL); 2481 } 2482 } 2483 2484 #ifdef CONFIG_SLUB_CPU_PARTIAL 2485 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab) 2486 { 2487 struct kmem_cache_node *n = NULL, *n2 = NULL; 2488 struct slab *slab, *slab_to_discard = NULL; 2489 unsigned long flags = 0; 2490 2491 while (partial_slab) { 2492 struct slab new; 2493 struct slab old; 2494 2495 slab = partial_slab; 2496 partial_slab = slab->next; 2497 2498 n2 = get_node(s, slab_nid(slab)); 2499 if (n != n2) { 2500 if (n) 2501 spin_unlock_irqrestore(&n->list_lock, flags); 2502 2503 n = n2; 2504 spin_lock_irqsave(&n->list_lock, flags); 2505 } 2506 2507 do { 2508 2509 old.freelist = slab->freelist; 2510 old.counters = slab->counters; 2511 VM_BUG_ON(!old.frozen); 2512 2513 new.counters = old.counters; 2514 new.freelist = old.freelist; 2515 2516 new.frozen = 0; 2517 2518 } while (!__cmpxchg_double_slab(s, slab, 2519 old.freelist, old.counters, 2520 new.freelist, new.counters, 2521 "unfreezing slab")); 2522 2523 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2524 slab->next = slab_to_discard; 2525 slab_to_discard = slab; 2526 } else { 2527 add_partial(n, slab, DEACTIVATE_TO_TAIL); 2528 stat(s, FREE_ADD_PARTIAL); 2529 } 2530 } 2531 2532 if (n) 2533 spin_unlock_irqrestore(&n->list_lock, flags); 2534 2535 while (slab_to_discard) { 2536 slab = slab_to_discard; 2537 slab_to_discard = slab_to_discard->next; 2538 2539 stat(s, DEACTIVATE_EMPTY); 2540 discard_slab(s, slab); 2541 stat(s, FREE_SLAB); 2542 } 2543 } 2544 2545 /* 2546 * Unfreeze all the cpu partial slabs. 2547 */ 2548 static void unfreeze_partials(struct kmem_cache *s) 2549 { 2550 struct slab *partial_slab; 2551 unsigned long flags; 2552 2553 local_lock_irqsave(&s->cpu_slab->lock, flags); 2554 partial_slab = this_cpu_read(s->cpu_slab->partial); 2555 this_cpu_write(s->cpu_slab->partial, NULL); 2556 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2557 2558 if (partial_slab) 2559 __unfreeze_partials(s, partial_slab); 2560 } 2561 2562 static void unfreeze_partials_cpu(struct kmem_cache *s, 2563 struct kmem_cache_cpu *c) 2564 { 2565 struct slab *partial_slab; 2566 2567 partial_slab = slub_percpu_partial(c); 2568 c->partial = NULL; 2569 2570 if (partial_slab) 2571 __unfreeze_partials(s, partial_slab); 2572 } 2573 2574 /* 2575 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a 2576 * partial slab slot if available. 2577 * 2578 * If we did not find a slot then simply move all the partials to the 2579 * per node partial list. 2580 */ 2581 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) 2582 { 2583 struct slab *oldslab; 2584 struct slab *slab_to_unfreeze = NULL; 2585 unsigned long flags; 2586 int slabs = 0; 2587 2588 local_lock_irqsave(&s->cpu_slab->lock, flags); 2589 2590 oldslab = this_cpu_read(s->cpu_slab->partial); 2591 2592 if (oldslab) { 2593 if (drain && oldslab->slabs >= s->cpu_partial_slabs) { 2594 /* 2595 * Partial array is full. Move the existing set to the 2596 * per node partial list. Postpone the actual unfreezing 2597 * outside of the critical section. 2598 */ 2599 slab_to_unfreeze = oldslab; 2600 oldslab = NULL; 2601 } else { 2602 slabs = oldslab->slabs; 2603 } 2604 } 2605 2606 slabs++; 2607 2608 slab->slabs = slabs; 2609 slab->next = oldslab; 2610 2611 this_cpu_write(s->cpu_slab->partial, slab); 2612 2613 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2614 2615 if (slab_to_unfreeze) { 2616 __unfreeze_partials(s, slab_to_unfreeze); 2617 stat(s, CPU_PARTIAL_DRAIN); 2618 } 2619 } 2620 2621 #else /* CONFIG_SLUB_CPU_PARTIAL */ 2622 2623 static inline void unfreeze_partials(struct kmem_cache *s) { } 2624 static inline void unfreeze_partials_cpu(struct kmem_cache *s, 2625 struct kmem_cache_cpu *c) { } 2626 2627 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2628 2629 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2630 { 2631 unsigned long flags; 2632 struct slab *slab; 2633 void *freelist; 2634 2635 local_lock_irqsave(&s->cpu_slab->lock, flags); 2636 2637 slab = c->slab; 2638 freelist = c->freelist; 2639 2640 c->slab = NULL; 2641 c->freelist = NULL; 2642 c->tid = next_tid(c->tid); 2643 2644 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2645 2646 if (slab) { 2647 deactivate_slab(s, slab, freelist); 2648 stat(s, CPUSLAB_FLUSH); 2649 } 2650 } 2651 2652 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2653 { 2654 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2655 void *freelist = c->freelist; 2656 struct slab *slab = c->slab; 2657 2658 c->slab = NULL; 2659 c->freelist = NULL; 2660 c->tid = next_tid(c->tid); 2661 2662 if (slab) { 2663 deactivate_slab(s, slab, freelist); 2664 stat(s, CPUSLAB_FLUSH); 2665 } 2666 2667 unfreeze_partials_cpu(s, c); 2668 } 2669 2670 struct slub_flush_work { 2671 struct work_struct work; 2672 struct kmem_cache *s; 2673 bool skip; 2674 }; 2675 2676 /* 2677 * Flush cpu slab. 2678 * 2679 * Called from CPU work handler with migration disabled. 2680 */ 2681 static void flush_cpu_slab(struct work_struct *w) 2682 { 2683 struct kmem_cache *s; 2684 struct kmem_cache_cpu *c; 2685 struct slub_flush_work *sfw; 2686 2687 sfw = container_of(w, struct slub_flush_work, work); 2688 2689 s = sfw->s; 2690 c = this_cpu_ptr(s->cpu_slab); 2691 2692 if (c->slab) 2693 flush_slab(s, c); 2694 2695 unfreeze_partials(s); 2696 } 2697 2698 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 2699 { 2700 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2701 2702 return c->slab || slub_percpu_partial(c); 2703 } 2704 2705 static DEFINE_MUTEX(flush_lock); 2706 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 2707 2708 static void flush_all_cpus_locked(struct kmem_cache *s) 2709 { 2710 struct slub_flush_work *sfw; 2711 unsigned int cpu; 2712 2713 lockdep_assert_cpus_held(); 2714 mutex_lock(&flush_lock); 2715 2716 for_each_online_cpu(cpu) { 2717 sfw = &per_cpu(slub_flush, cpu); 2718 if (!has_cpu_slab(cpu, s)) { 2719 sfw->skip = true; 2720 continue; 2721 } 2722 INIT_WORK(&sfw->work, flush_cpu_slab); 2723 sfw->skip = false; 2724 sfw->s = s; 2725 schedule_work_on(cpu, &sfw->work); 2726 } 2727 2728 for_each_online_cpu(cpu) { 2729 sfw = &per_cpu(slub_flush, cpu); 2730 if (sfw->skip) 2731 continue; 2732 flush_work(&sfw->work); 2733 } 2734 2735 mutex_unlock(&flush_lock); 2736 } 2737 2738 static void flush_all(struct kmem_cache *s) 2739 { 2740 cpus_read_lock(); 2741 flush_all_cpus_locked(s); 2742 cpus_read_unlock(); 2743 } 2744 2745 /* 2746 * Use the cpu notifier to insure that the cpu slabs are flushed when 2747 * necessary. 2748 */ 2749 static int slub_cpu_dead(unsigned int cpu) 2750 { 2751 struct kmem_cache *s; 2752 2753 mutex_lock(&slab_mutex); 2754 list_for_each_entry(s, &slab_caches, list) 2755 __flush_cpu_slab(s, cpu); 2756 mutex_unlock(&slab_mutex); 2757 return 0; 2758 } 2759 2760 /* 2761 * Check if the objects in a per cpu structure fit numa 2762 * locality expectations. 2763 */ 2764 static inline int node_match(struct slab *slab, int node) 2765 { 2766 #ifdef CONFIG_NUMA 2767 if (node != NUMA_NO_NODE && slab_nid(slab) != node) 2768 return 0; 2769 #endif 2770 return 1; 2771 } 2772 2773 #ifdef CONFIG_SLUB_DEBUG 2774 static int count_free(struct slab *slab) 2775 { 2776 return slab->objects - slab->inuse; 2777 } 2778 2779 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2780 { 2781 return atomic_long_read(&n->total_objects); 2782 } 2783 #endif /* CONFIG_SLUB_DEBUG */ 2784 2785 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2786 static unsigned long count_partial(struct kmem_cache_node *n, 2787 int (*get_count)(struct slab *)) 2788 { 2789 unsigned long flags; 2790 unsigned long x = 0; 2791 struct slab *slab; 2792 2793 spin_lock_irqsave(&n->list_lock, flags); 2794 list_for_each_entry(slab, &n->partial, slab_list) 2795 x += get_count(slab); 2796 spin_unlock_irqrestore(&n->list_lock, flags); 2797 return x; 2798 } 2799 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2800 2801 static noinline void 2802 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2803 { 2804 #ifdef CONFIG_SLUB_DEBUG 2805 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2806 DEFAULT_RATELIMIT_BURST); 2807 int node; 2808 struct kmem_cache_node *n; 2809 2810 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2811 return; 2812 2813 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2814 nid, gfpflags, &gfpflags); 2815 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2816 s->name, s->object_size, s->size, oo_order(s->oo), 2817 oo_order(s->min)); 2818 2819 if (oo_order(s->min) > get_order(s->object_size)) 2820 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2821 s->name); 2822 2823 for_each_kmem_cache_node(s, node, n) { 2824 unsigned long nr_slabs; 2825 unsigned long nr_objs; 2826 unsigned long nr_free; 2827 2828 nr_free = count_partial(n, count_free); 2829 nr_slabs = node_nr_slabs(n); 2830 nr_objs = node_nr_objs(n); 2831 2832 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2833 node, nr_slabs, nr_objs, nr_free); 2834 } 2835 #endif 2836 } 2837 2838 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 2839 { 2840 if (unlikely(slab_test_pfmemalloc(slab))) 2841 return gfp_pfmemalloc_allowed(gfpflags); 2842 2843 return true; 2844 } 2845 2846 /* 2847 * Check the slab->freelist and either transfer the freelist to the 2848 * per cpu freelist or deactivate the slab. 2849 * 2850 * The slab is still frozen if the return value is not NULL. 2851 * 2852 * If this function returns NULL then the slab has been unfrozen. 2853 */ 2854 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) 2855 { 2856 struct slab new; 2857 unsigned long counters; 2858 void *freelist; 2859 2860 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 2861 2862 do { 2863 freelist = slab->freelist; 2864 counters = slab->counters; 2865 2866 new.counters = counters; 2867 VM_BUG_ON(!new.frozen); 2868 2869 new.inuse = slab->objects; 2870 new.frozen = freelist != NULL; 2871 2872 } while (!__cmpxchg_double_slab(s, slab, 2873 freelist, counters, 2874 NULL, new.counters, 2875 "get_freelist")); 2876 2877 return freelist; 2878 } 2879 2880 /* 2881 * Slow path. The lockless freelist is empty or we need to perform 2882 * debugging duties. 2883 * 2884 * Processing is still very fast if new objects have been freed to the 2885 * regular freelist. In that case we simply take over the regular freelist 2886 * as the lockless freelist and zap the regular freelist. 2887 * 2888 * If that is not working then we fall back to the partial lists. We take the 2889 * first element of the freelist as the object to allocate now and move the 2890 * rest of the freelist to the lockless freelist. 2891 * 2892 * And if we were unable to get a new slab from the partial slab lists then 2893 * we need to allocate a new slab. This is the slowest path since it involves 2894 * a call to the page allocator and the setup of a new slab. 2895 * 2896 * Version of __slab_alloc to use when we know that preemption is 2897 * already disabled (which is the case for bulk allocation). 2898 */ 2899 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2900 unsigned long addr, struct kmem_cache_cpu *c) 2901 { 2902 void *freelist; 2903 struct slab *slab; 2904 unsigned long flags; 2905 2906 stat(s, ALLOC_SLOWPATH); 2907 2908 reread_slab: 2909 2910 slab = READ_ONCE(c->slab); 2911 if (!slab) { 2912 /* 2913 * if the node is not online or has no normal memory, just 2914 * ignore the node constraint 2915 */ 2916 if (unlikely(node != NUMA_NO_NODE && 2917 !node_isset(node, slab_nodes))) 2918 node = NUMA_NO_NODE; 2919 goto new_slab; 2920 } 2921 redo: 2922 2923 if (unlikely(!node_match(slab, node))) { 2924 /* 2925 * same as above but node_match() being false already 2926 * implies node != NUMA_NO_NODE 2927 */ 2928 if (!node_isset(node, slab_nodes)) { 2929 node = NUMA_NO_NODE; 2930 } else { 2931 stat(s, ALLOC_NODE_MISMATCH); 2932 goto deactivate_slab; 2933 } 2934 } 2935 2936 /* 2937 * By rights, we should be searching for a slab page that was 2938 * PFMEMALLOC but right now, we are losing the pfmemalloc 2939 * information when the page leaves the per-cpu allocator 2940 */ 2941 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 2942 goto deactivate_slab; 2943 2944 /* must check again c->slab in case we got preempted and it changed */ 2945 local_lock_irqsave(&s->cpu_slab->lock, flags); 2946 if (unlikely(slab != c->slab)) { 2947 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2948 goto reread_slab; 2949 } 2950 freelist = c->freelist; 2951 if (freelist) 2952 goto load_freelist; 2953 2954 freelist = get_freelist(s, slab); 2955 2956 if (!freelist) { 2957 c->slab = NULL; 2958 c->tid = next_tid(c->tid); 2959 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2960 stat(s, DEACTIVATE_BYPASS); 2961 goto new_slab; 2962 } 2963 2964 stat(s, ALLOC_REFILL); 2965 2966 load_freelist: 2967 2968 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 2969 2970 /* 2971 * freelist is pointing to the list of objects to be used. 2972 * slab is pointing to the slab from which the objects are obtained. 2973 * That slab must be frozen for per cpu allocations to work. 2974 */ 2975 VM_BUG_ON(!c->slab->frozen); 2976 c->freelist = get_freepointer(s, freelist); 2977 c->tid = next_tid(c->tid); 2978 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2979 return freelist; 2980 2981 deactivate_slab: 2982 2983 local_lock_irqsave(&s->cpu_slab->lock, flags); 2984 if (slab != c->slab) { 2985 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2986 goto reread_slab; 2987 } 2988 freelist = c->freelist; 2989 c->slab = NULL; 2990 c->freelist = NULL; 2991 c->tid = next_tid(c->tid); 2992 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2993 deactivate_slab(s, slab, freelist); 2994 2995 new_slab: 2996 2997 if (slub_percpu_partial(c)) { 2998 local_lock_irqsave(&s->cpu_slab->lock, flags); 2999 if (unlikely(c->slab)) { 3000 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3001 goto reread_slab; 3002 } 3003 if (unlikely(!slub_percpu_partial(c))) { 3004 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3005 /* we were preempted and partial list got empty */ 3006 goto new_objects; 3007 } 3008 3009 slab = c->slab = slub_percpu_partial(c); 3010 slub_set_percpu_partial(c, slab); 3011 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3012 stat(s, CPU_PARTIAL_ALLOC); 3013 goto redo; 3014 } 3015 3016 new_objects: 3017 3018 freelist = get_partial(s, gfpflags, node, &slab); 3019 if (freelist) 3020 goto check_new_slab; 3021 3022 slub_put_cpu_ptr(s->cpu_slab); 3023 slab = new_slab(s, gfpflags, node); 3024 c = slub_get_cpu_ptr(s->cpu_slab); 3025 3026 if (unlikely(!slab)) { 3027 slab_out_of_memory(s, gfpflags, node); 3028 return NULL; 3029 } 3030 3031 /* 3032 * No other reference to the slab yet so we can 3033 * muck around with it freely without cmpxchg 3034 */ 3035 freelist = slab->freelist; 3036 slab->freelist = NULL; 3037 3038 stat(s, ALLOC_SLAB); 3039 3040 check_new_slab: 3041 3042 if (kmem_cache_debug(s)) { 3043 if (!alloc_debug_processing(s, slab, freelist, addr)) { 3044 /* Slab failed checks. Next slab needed */ 3045 goto new_slab; 3046 } else { 3047 /* 3048 * For debug case, we don't load freelist so that all 3049 * allocations go through alloc_debug_processing() 3050 */ 3051 goto return_single; 3052 } 3053 } 3054 3055 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 3056 /* 3057 * For !pfmemalloc_match() case we don't load freelist so that 3058 * we don't make further mismatched allocations easier. 3059 */ 3060 goto return_single; 3061 3062 retry_load_slab: 3063 3064 local_lock_irqsave(&s->cpu_slab->lock, flags); 3065 if (unlikely(c->slab)) { 3066 void *flush_freelist = c->freelist; 3067 struct slab *flush_slab = c->slab; 3068 3069 c->slab = NULL; 3070 c->freelist = NULL; 3071 c->tid = next_tid(c->tid); 3072 3073 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3074 3075 deactivate_slab(s, flush_slab, flush_freelist); 3076 3077 stat(s, CPUSLAB_FLUSH); 3078 3079 goto retry_load_slab; 3080 } 3081 c->slab = slab; 3082 3083 goto load_freelist; 3084 3085 return_single: 3086 3087 deactivate_slab(s, slab, get_freepointer(s, freelist)); 3088 return freelist; 3089 } 3090 3091 /* 3092 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 3093 * disabled. Compensates for possible cpu changes by refetching the per cpu area 3094 * pointer. 3095 */ 3096 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3097 unsigned long addr, struct kmem_cache_cpu *c) 3098 { 3099 void *p; 3100 3101 #ifdef CONFIG_PREEMPT_COUNT 3102 /* 3103 * We may have been preempted and rescheduled on a different 3104 * cpu before disabling preemption. Need to reload cpu area 3105 * pointer. 3106 */ 3107 c = slub_get_cpu_ptr(s->cpu_slab); 3108 #endif 3109 3110 p = ___slab_alloc(s, gfpflags, node, addr, c); 3111 #ifdef CONFIG_PREEMPT_COUNT 3112 slub_put_cpu_ptr(s->cpu_slab); 3113 #endif 3114 return p; 3115 } 3116 3117 /* 3118 * If the object has been wiped upon free, make sure it's fully initialized by 3119 * zeroing out freelist pointer. 3120 */ 3121 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 3122 void *obj) 3123 { 3124 if (unlikely(slab_want_init_on_free(s)) && obj) 3125 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 3126 0, sizeof(void *)); 3127 } 3128 3129 /* 3130 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 3131 * have the fastpath folded into their functions. So no function call 3132 * overhead for requests that can be satisfied on the fastpath. 3133 * 3134 * The fastpath works by first checking if the lockless freelist can be used. 3135 * If not then __slab_alloc is called for slow processing. 3136 * 3137 * Otherwise we can simply pick the next object from the lockless free list. 3138 */ 3139 static __always_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, 3140 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3141 { 3142 void *object; 3143 struct kmem_cache_cpu *c; 3144 struct slab *slab; 3145 unsigned long tid; 3146 struct obj_cgroup *objcg = NULL; 3147 bool init = false; 3148 3149 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags); 3150 if (!s) 3151 return NULL; 3152 3153 object = kfence_alloc(s, orig_size, gfpflags); 3154 if (unlikely(object)) 3155 goto out; 3156 3157 redo: 3158 /* 3159 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 3160 * enabled. We may switch back and forth between cpus while 3161 * reading from one cpu area. That does not matter as long 3162 * as we end up on the original cpu again when doing the cmpxchg. 3163 * 3164 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 3165 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 3166 * the tid. If we are preempted and switched to another cpu between the 3167 * two reads, it's OK as the two are still associated with the same cpu 3168 * and cmpxchg later will validate the cpu. 3169 */ 3170 c = raw_cpu_ptr(s->cpu_slab); 3171 tid = READ_ONCE(c->tid); 3172 3173 /* 3174 * Irqless object alloc/free algorithm used here depends on sequence 3175 * of fetching cpu_slab's data. tid should be fetched before anything 3176 * on c to guarantee that object and slab associated with previous tid 3177 * won't be used with current tid. If we fetch tid first, object and 3178 * slab could be one associated with next tid and our alloc/free 3179 * request will be failed. In this case, we will retry. So, no problem. 3180 */ 3181 barrier(); 3182 3183 /* 3184 * The transaction ids are globally unique per cpu and per operation on 3185 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 3186 * occurs on the right processor and that there was no operation on the 3187 * linked list in between. 3188 */ 3189 3190 object = c->freelist; 3191 slab = c->slab; 3192 /* 3193 * We cannot use the lockless fastpath on PREEMPT_RT because if a 3194 * slowpath has taken the local_lock_irqsave(), it is not protected 3195 * against a fast path operation in an irq handler. So we need to take 3196 * the slow path which uses local_lock. It is still relatively fast if 3197 * there is a suitable cpu freelist. 3198 */ 3199 if (IS_ENABLED(CONFIG_PREEMPT_RT) || 3200 unlikely(!object || !slab || !node_match(slab, node))) { 3201 object = __slab_alloc(s, gfpflags, node, addr, c); 3202 } else { 3203 void *next_object = get_freepointer_safe(s, object); 3204 3205 /* 3206 * The cmpxchg will only match if there was no additional 3207 * operation and if we are on the right processor. 3208 * 3209 * The cmpxchg does the following atomically (without lock 3210 * semantics!) 3211 * 1. Relocate first pointer to the current per cpu area. 3212 * 2. Verify that tid and freelist have not been changed 3213 * 3. If they were not changed replace tid and freelist 3214 * 3215 * Since this is without lock semantics the protection is only 3216 * against code executing on this cpu *not* from access by 3217 * other cpus. 3218 */ 3219 if (unlikely(!this_cpu_cmpxchg_double( 3220 s->cpu_slab->freelist, s->cpu_slab->tid, 3221 object, tid, 3222 next_object, next_tid(tid)))) { 3223 3224 note_cmpxchg_failure("slab_alloc", s, tid); 3225 goto redo; 3226 } 3227 prefetch_freepointer(s, next_object); 3228 stat(s, ALLOC_FASTPATH); 3229 } 3230 3231 maybe_wipe_obj_freeptr(s, object); 3232 init = slab_want_init_on_alloc(gfpflags, s); 3233 3234 out: 3235 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init); 3236 3237 return object; 3238 } 3239 3240 static __always_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru, 3241 gfp_t gfpflags, unsigned long addr, size_t orig_size) 3242 { 3243 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size); 3244 } 3245 3246 static __always_inline 3247 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 3248 gfp_t gfpflags) 3249 { 3250 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size); 3251 3252 trace_kmem_cache_alloc(_RET_IP_, ret, s, s->object_size, 3253 s->size, gfpflags); 3254 3255 return ret; 3256 } 3257 3258 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 3259 { 3260 return __kmem_cache_alloc_lru(s, NULL, gfpflags); 3261 } 3262 EXPORT_SYMBOL(kmem_cache_alloc); 3263 3264 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 3265 gfp_t gfpflags) 3266 { 3267 return __kmem_cache_alloc_lru(s, lru, gfpflags); 3268 } 3269 EXPORT_SYMBOL(kmem_cache_alloc_lru); 3270 3271 #ifdef CONFIG_TRACING 3272 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 3273 { 3274 void *ret = slab_alloc(s, NULL, gfpflags, _RET_IP_, size); 3275 trace_kmalloc(_RET_IP_, ret, s, size, s->size, gfpflags); 3276 ret = kasan_kmalloc(s, ret, size, gfpflags); 3277 return ret; 3278 } 3279 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3280 #endif 3281 3282 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 3283 { 3284 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); 3285 3286 trace_kmem_cache_alloc_node(_RET_IP_, ret, s, 3287 s->object_size, s->size, gfpflags, node); 3288 3289 return ret; 3290 } 3291 EXPORT_SYMBOL(kmem_cache_alloc_node); 3292 3293 #ifdef CONFIG_TRACING 3294 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 3295 gfp_t gfpflags, 3296 int node, size_t size) 3297 { 3298 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); 3299 3300 trace_kmalloc_node(_RET_IP_, ret, s, 3301 size, s->size, gfpflags, node); 3302 3303 ret = kasan_kmalloc(s, ret, size, gfpflags); 3304 return ret; 3305 } 3306 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3307 #endif 3308 3309 /* 3310 * Slow path handling. This may still be called frequently since objects 3311 * have a longer lifetime than the cpu slabs in most processing loads. 3312 * 3313 * So we still attempt to reduce cache line usage. Just take the slab 3314 * lock and free the item. If there is no additional partial slab 3315 * handling required then we can return immediately. 3316 */ 3317 static void __slab_free(struct kmem_cache *s, struct slab *slab, 3318 void *head, void *tail, int cnt, 3319 unsigned long addr) 3320 3321 { 3322 void *prior; 3323 int was_frozen; 3324 struct slab new; 3325 unsigned long counters; 3326 struct kmem_cache_node *n = NULL; 3327 unsigned long flags; 3328 3329 stat(s, FREE_SLOWPATH); 3330 3331 if (kfence_free(head)) 3332 return; 3333 3334 if (kmem_cache_debug(s) && 3335 !free_debug_processing(s, slab, head, tail, cnt, addr)) 3336 return; 3337 3338 do { 3339 if (unlikely(n)) { 3340 spin_unlock_irqrestore(&n->list_lock, flags); 3341 n = NULL; 3342 } 3343 prior = slab->freelist; 3344 counters = slab->counters; 3345 set_freepointer(s, tail, prior); 3346 new.counters = counters; 3347 was_frozen = new.frozen; 3348 new.inuse -= cnt; 3349 if ((!new.inuse || !prior) && !was_frozen) { 3350 3351 if (kmem_cache_has_cpu_partial(s) && !prior) { 3352 3353 /* 3354 * Slab was on no list before and will be 3355 * partially empty 3356 * We can defer the list move and instead 3357 * freeze it. 3358 */ 3359 new.frozen = 1; 3360 3361 } else { /* Needs to be taken off a list */ 3362 3363 n = get_node(s, slab_nid(slab)); 3364 /* 3365 * Speculatively acquire the list_lock. 3366 * If the cmpxchg does not succeed then we may 3367 * drop the list_lock without any processing. 3368 * 3369 * Otherwise the list_lock will synchronize with 3370 * other processors updating the list of slabs. 3371 */ 3372 spin_lock_irqsave(&n->list_lock, flags); 3373 3374 } 3375 } 3376 3377 } while (!cmpxchg_double_slab(s, slab, 3378 prior, counters, 3379 head, new.counters, 3380 "__slab_free")); 3381 3382 if (likely(!n)) { 3383 3384 if (likely(was_frozen)) { 3385 /* 3386 * The list lock was not taken therefore no list 3387 * activity can be necessary. 3388 */ 3389 stat(s, FREE_FROZEN); 3390 } else if (new.frozen) { 3391 /* 3392 * If we just froze the slab then put it onto the 3393 * per cpu partial list. 3394 */ 3395 put_cpu_partial(s, slab, 1); 3396 stat(s, CPU_PARTIAL_FREE); 3397 } 3398 3399 return; 3400 } 3401 3402 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 3403 goto slab_empty; 3404 3405 /* 3406 * Objects left in the slab. If it was not on the partial list before 3407 * then add it. 3408 */ 3409 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 3410 remove_full(s, n, slab); 3411 add_partial(n, slab, DEACTIVATE_TO_TAIL); 3412 stat(s, FREE_ADD_PARTIAL); 3413 } 3414 spin_unlock_irqrestore(&n->list_lock, flags); 3415 return; 3416 3417 slab_empty: 3418 if (prior) { 3419 /* 3420 * Slab on the partial list. 3421 */ 3422 remove_partial(n, slab); 3423 stat(s, FREE_REMOVE_PARTIAL); 3424 } else { 3425 /* Slab must be on the full list */ 3426 remove_full(s, n, slab); 3427 } 3428 3429 spin_unlock_irqrestore(&n->list_lock, flags); 3430 stat(s, FREE_SLAB); 3431 discard_slab(s, slab); 3432 } 3433 3434 /* 3435 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 3436 * can perform fastpath freeing without additional function calls. 3437 * 3438 * The fastpath is only possible if we are freeing to the current cpu slab 3439 * of this processor. This typically the case if we have just allocated 3440 * the item before. 3441 * 3442 * If fastpath is not possible then fall back to __slab_free where we deal 3443 * with all sorts of special processing. 3444 * 3445 * Bulk free of a freelist with several objects (all pointing to the 3446 * same slab) possible by specifying head and tail ptr, plus objects 3447 * count (cnt). Bulk free indicated by tail pointer being set. 3448 */ 3449 static __always_inline void do_slab_free(struct kmem_cache *s, 3450 struct slab *slab, void *head, void *tail, 3451 int cnt, unsigned long addr) 3452 { 3453 void *tail_obj = tail ? : head; 3454 struct kmem_cache_cpu *c; 3455 unsigned long tid; 3456 3457 redo: 3458 /* 3459 * Determine the currently cpus per cpu slab. 3460 * The cpu may change afterward. However that does not matter since 3461 * data is retrieved via this pointer. If we are on the same cpu 3462 * during the cmpxchg then the free will succeed. 3463 */ 3464 c = raw_cpu_ptr(s->cpu_slab); 3465 tid = READ_ONCE(c->tid); 3466 3467 /* Same with comment on barrier() in slab_alloc_node() */ 3468 barrier(); 3469 3470 if (likely(slab == c->slab)) { 3471 #ifndef CONFIG_PREEMPT_RT 3472 void **freelist = READ_ONCE(c->freelist); 3473 3474 set_freepointer(s, tail_obj, freelist); 3475 3476 if (unlikely(!this_cpu_cmpxchg_double( 3477 s->cpu_slab->freelist, s->cpu_slab->tid, 3478 freelist, tid, 3479 head, next_tid(tid)))) { 3480 3481 note_cmpxchg_failure("slab_free", s, tid); 3482 goto redo; 3483 } 3484 #else /* CONFIG_PREEMPT_RT */ 3485 /* 3486 * We cannot use the lockless fastpath on PREEMPT_RT because if 3487 * a slowpath has taken the local_lock_irqsave(), it is not 3488 * protected against a fast path operation in an irq handler. So 3489 * we need to take the local_lock. We shouldn't simply defer to 3490 * __slab_free() as that wouldn't use the cpu freelist at all. 3491 */ 3492 void **freelist; 3493 3494 local_lock(&s->cpu_slab->lock); 3495 c = this_cpu_ptr(s->cpu_slab); 3496 if (unlikely(slab != c->slab)) { 3497 local_unlock(&s->cpu_slab->lock); 3498 goto redo; 3499 } 3500 tid = c->tid; 3501 freelist = c->freelist; 3502 3503 set_freepointer(s, tail_obj, freelist); 3504 c->freelist = head; 3505 c->tid = next_tid(tid); 3506 3507 local_unlock(&s->cpu_slab->lock); 3508 #endif 3509 stat(s, FREE_FASTPATH); 3510 } else 3511 __slab_free(s, slab, head, tail_obj, cnt, addr); 3512 3513 } 3514 3515 static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab, 3516 void *head, void *tail, void **p, int cnt, 3517 unsigned long addr) 3518 { 3519 memcg_slab_free_hook(s, slab, p, cnt); 3520 /* 3521 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3522 * to remove objects, whose reuse must be delayed. 3523 */ 3524 if (slab_free_freelist_hook(s, &head, &tail, &cnt)) 3525 do_slab_free(s, slab, head, tail, cnt, addr); 3526 } 3527 3528 #ifdef CONFIG_KASAN_GENERIC 3529 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3530 { 3531 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr); 3532 } 3533 #endif 3534 3535 void kmem_cache_free(struct kmem_cache *s, void *x) 3536 { 3537 s = cache_from_obj(s, x); 3538 if (!s) 3539 return; 3540 trace_kmem_cache_free(_RET_IP_, x, s->name); 3541 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_); 3542 } 3543 EXPORT_SYMBOL(kmem_cache_free); 3544 3545 struct detached_freelist { 3546 struct slab *slab; 3547 void *tail; 3548 void *freelist; 3549 int cnt; 3550 struct kmem_cache *s; 3551 }; 3552 3553 static inline void free_large_kmalloc(struct folio *folio, void *object) 3554 { 3555 unsigned int order = folio_order(folio); 3556 3557 if (WARN_ON_ONCE(order == 0)) 3558 pr_warn_once("object pointer: 0x%p\n", object); 3559 3560 kfree_hook(object); 3561 mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B, 3562 -(PAGE_SIZE << order)); 3563 __free_pages(folio_page(folio, 0), order); 3564 } 3565 3566 /* 3567 * This function progressively scans the array with free objects (with 3568 * a limited look ahead) and extract objects belonging to the same 3569 * slab. It builds a detached freelist directly within the given 3570 * slab/objects. This can happen without any need for 3571 * synchronization, because the objects are owned by running process. 3572 * The freelist is build up as a single linked list in the objects. 3573 * The idea is, that this detached freelist can then be bulk 3574 * transferred to the real freelist(s), but only requiring a single 3575 * synchronization primitive. Look ahead in the array is limited due 3576 * to performance reasons. 3577 */ 3578 static inline 3579 int build_detached_freelist(struct kmem_cache *s, size_t size, 3580 void **p, struct detached_freelist *df) 3581 { 3582 int lookahead = 3; 3583 void *object; 3584 struct folio *folio; 3585 size_t same; 3586 3587 object = p[--size]; 3588 folio = virt_to_folio(object); 3589 if (!s) { 3590 /* Handle kalloc'ed objects */ 3591 if (unlikely(!folio_test_slab(folio))) { 3592 free_large_kmalloc(folio, object); 3593 df->slab = NULL; 3594 return size; 3595 } 3596 /* Derive kmem_cache from object */ 3597 df->slab = folio_slab(folio); 3598 df->s = df->slab->slab_cache; 3599 } else { 3600 df->slab = folio_slab(folio); 3601 df->s = cache_from_obj(s, object); /* Support for memcg */ 3602 } 3603 3604 /* Start new detached freelist */ 3605 df->tail = object; 3606 df->freelist = object; 3607 df->cnt = 1; 3608 3609 if (is_kfence_address(object)) 3610 return size; 3611 3612 set_freepointer(df->s, object, NULL); 3613 3614 same = size; 3615 while (size) { 3616 object = p[--size]; 3617 /* df->slab is always set at this point */ 3618 if (df->slab == virt_to_slab(object)) { 3619 /* Opportunity build freelist */ 3620 set_freepointer(df->s, object, df->freelist); 3621 df->freelist = object; 3622 df->cnt++; 3623 same--; 3624 if (size != same) 3625 swap(p[size], p[same]); 3626 continue; 3627 } 3628 3629 /* Limit look ahead search */ 3630 if (!--lookahead) 3631 break; 3632 } 3633 3634 return same; 3635 } 3636 3637 /* Note that interrupts must be enabled when calling this function. */ 3638 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3639 { 3640 if (!size) 3641 return; 3642 3643 do { 3644 struct detached_freelist df; 3645 3646 size = build_detached_freelist(s, size, p, &df); 3647 if (!df.slab) 3648 continue; 3649 3650 slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt, 3651 _RET_IP_); 3652 } while (likely(size)); 3653 } 3654 EXPORT_SYMBOL(kmem_cache_free_bulk); 3655 3656 /* Note that interrupts must be enabled when calling this function. */ 3657 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3658 void **p) 3659 { 3660 struct kmem_cache_cpu *c; 3661 int i; 3662 struct obj_cgroup *objcg = NULL; 3663 3664 /* memcg and kmem_cache debug support */ 3665 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags); 3666 if (unlikely(!s)) 3667 return false; 3668 /* 3669 * Drain objects in the per cpu slab, while disabling local 3670 * IRQs, which protects against PREEMPT and interrupts 3671 * handlers invoking normal fastpath. 3672 */ 3673 c = slub_get_cpu_ptr(s->cpu_slab); 3674 local_lock_irq(&s->cpu_slab->lock); 3675 3676 for (i = 0; i < size; i++) { 3677 void *object = kfence_alloc(s, s->object_size, flags); 3678 3679 if (unlikely(object)) { 3680 p[i] = object; 3681 continue; 3682 } 3683 3684 object = c->freelist; 3685 if (unlikely(!object)) { 3686 /* 3687 * We may have removed an object from c->freelist using 3688 * the fastpath in the previous iteration; in that case, 3689 * c->tid has not been bumped yet. 3690 * Since ___slab_alloc() may reenable interrupts while 3691 * allocating memory, we should bump c->tid now. 3692 */ 3693 c->tid = next_tid(c->tid); 3694 3695 local_unlock_irq(&s->cpu_slab->lock); 3696 3697 /* 3698 * Invoking slow path likely have side-effect 3699 * of re-populating per CPU c->freelist 3700 */ 3701 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3702 _RET_IP_, c); 3703 if (unlikely(!p[i])) 3704 goto error; 3705 3706 c = this_cpu_ptr(s->cpu_slab); 3707 maybe_wipe_obj_freeptr(s, p[i]); 3708 3709 local_lock_irq(&s->cpu_slab->lock); 3710 3711 continue; /* goto for-loop */ 3712 } 3713 c->freelist = get_freepointer(s, object); 3714 p[i] = object; 3715 maybe_wipe_obj_freeptr(s, p[i]); 3716 } 3717 c->tid = next_tid(c->tid); 3718 local_unlock_irq(&s->cpu_slab->lock); 3719 slub_put_cpu_ptr(s->cpu_slab); 3720 3721 /* 3722 * memcg and kmem_cache debug support and memory initialization. 3723 * Done outside of the IRQ disabled fastpath loop. 3724 */ 3725 slab_post_alloc_hook(s, objcg, flags, size, p, 3726 slab_want_init_on_alloc(flags, s)); 3727 return i; 3728 error: 3729 slub_put_cpu_ptr(s->cpu_slab); 3730 slab_post_alloc_hook(s, objcg, flags, i, p, false); 3731 kmem_cache_free_bulk(s, i, p); 3732 return 0; 3733 } 3734 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3735 3736 3737 /* 3738 * Object placement in a slab is made very easy because we always start at 3739 * offset 0. If we tune the size of the object to the alignment then we can 3740 * get the required alignment by putting one properly sized object after 3741 * another. 3742 * 3743 * Notice that the allocation order determines the sizes of the per cpu 3744 * caches. Each processor has always one slab available for allocations. 3745 * Increasing the allocation order reduces the number of times that slabs 3746 * must be moved on and off the partial lists and is therefore a factor in 3747 * locking overhead. 3748 */ 3749 3750 /* 3751 * Minimum / Maximum order of slab pages. This influences locking overhead 3752 * and slab fragmentation. A higher order reduces the number of partial slabs 3753 * and increases the number of allocations possible without having to 3754 * take the list_lock. 3755 */ 3756 static unsigned int slub_min_order; 3757 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3758 static unsigned int slub_min_objects; 3759 3760 /* 3761 * Calculate the order of allocation given an slab object size. 3762 * 3763 * The order of allocation has significant impact on performance and other 3764 * system components. Generally order 0 allocations should be preferred since 3765 * order 0 does not cause fragmentation in the page allocator. Larger objects 3766 * be problematic to put into order 0 slabs because there may be too much 3767 * unused space left. We go to a higher order if more than 1/16th of the slab 3768 * would be wasted. 3769 * 3770 * In order to reach satisfactory performance we must ensure that a minimum 3771 * number of objects is in one slab. Otherwise we may generate too much 3772 * activity on the partial lists which requires taking the list_lock. This is 3773 * less a concern for large slabs though which are rarely used. 3774 * 3775 * slub_max_order specifies the order where we begin to stop considering the 3776 * number of objects in a slab as critical. If we reach slub_max_order then 3777 * we try to keep the page order as low as possible. So we accept more waste 3778 * of space in favor of a small page order. 3779 * 3780 * Higher order allocations also allow the placement of more objects in a 3781 * slab and thereby reduce object handling overhead. If the user has 3782 * requested a higher minimum order then we start with that one instead of 3783 * the smallest order which will fit the object. 3784 */ 3785 static inline unsigned int calc_slab_order(unsigned int size, 3786 unsigned int min_objects, unsigned int max_order, 3787 unsigned int fract_leftover) 3788 { 3789 unsigned int min_order = slub_min_order; 3790 unsigned int order; 3791 3792 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3793 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3794 3795 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3796 order <= max_order; order++) { 3797 3798 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3799 unsigned int rem; 3800 3801 rem = slab_size % size; 3802 3803 if (rem <= slab_size / fract_leftover) 3804 break; 3805 } 3806 3807 return order; 3808 } 3809 3810 static inline int calculate_order(unsigned int size) 3811 { 3812 unsigned int order; 3813 unsigned int min_objects; 3814 unsigned int max_objects; 3815 unsigned int nr_cpus; 3816 3817 /* 3818 * Attempt to find best configuration for a slab. This 3819 * works by first attempting to generate a layout with 3820 * the best configuration and backing off gradually. 3821 * 3822 * First we increase the acceptable waste in a slab. Then 3823 * we reduce the minimum objects required in a slab. 3824 */ 3825 min_objects = slub_min_objects; 3826 if (!min_objects) { 3827 /* 3828 * Some architectures will only update present cpus when 3829 * onlining them, so don't trust the number if it's just 1. But 3830 * we also don't want to use nr_cpu_ids always, as on some other 3831 * architectures, there can be many possible cpus, but never 3832 * onlined. Here we compromise between trying to avoid too high 3833 * order on systems that appear larger than they are, and too 3834 * low order on systems that appear smaller than they are. 3835 */ 3836 nr_cpus = num_present_cpus(); 3837 if (nr_cpus <= 1) 3838 nr_cpus = nr_cpu_ids; 3839 min_objects = 4 * (fls(nr_cpus) + 1); 3840 } 3841 max_objects = order_objects(slub_max_order, size); 3842 min_objects = min(min_objects, max_objects); 3843 3844 while (min_objects > 1) { 3845 unsigned int fraction; 3846 3847 fraction = 16; 3848 while (fraction >= 4) { 3849 order = calc_slab_order(size, min_objects, 3850 slub_max_order, fraction); 3851 if (order <= slub_max_order) 3852 return order; 3853 fraction /= 2; 3854 } 3855 min_objects--; 3856 } 3857 3858 /* 3859 * We were unable to place multiple objects in a slab. Now 3860 * lets see if we can place a single object there. 3861 */ 3862 order = calc_slab_order(size, 1, slub_max_order, 1); 3863 if (order <= slub_max_order) 3864 return order; 3865 3866 /* 3867 * Doh this slab cannot be placed using slub_max_order. 3868 */ 3869 order = calc_slab_order(size, 1, MAX_ORDER, 1); 3870 if (order < MAX_ORDER) 3871 return order; 3872 return -ENOSYS; 3873 } 3874 3875 static void 3876 init_kmem_cache_node(struct kmem_cache_node *n) 3877 { 3878 n->nr_partial = 0; 3879 spin_lock_init(&n->list_lock); 3880 INIT_LIST_HEAD(&n->partial); 3881 #ifdef CONFIG_SLUB_DEBUG 3882 atomic_long_set(&n->nr_slabs, 0); 3883 atomic_long_set(&n->total_objects, 0); 3884 INIT_LIST_HEAD(&n->full); 3885 #endif 3886 } 3887 3888 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3889 { 3890 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3891 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3892 3893 /* 3894 * Must align to double word boundary for the double cmpxchg 3895 * instructions to work; see __pcpu_double_call_return_bool(). 3896 */ 3897 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3898 2 * sizeof(void *)); 3899 3900 if (!s->cpu_slab) 3901 return 0; 3902 3903 init_kmem_cache_cpus(s); 3904 3905 return 1; 3906 } 3907 3908 static struct kmem_cache *kmem_cache_node; 3909 3910 /* 3911 * No kmalloc_node yet so do it by hand. We know that this is the first 3912 * slab on the node for this slabcache. There are no concurrent accesses 3913 * possible. 3914 * 3915 * Note that this function only works on the kmem_cache_node 3916 * when allocating for the kmem_cache_node. This is used for bootstrapping 3917 * memory on a fresh node that has no slab structures yet. 3918 */ 3919 static void early_kmem_cache_node_alloc(int node) 3920 { 3921 struct slab *slab; 3922 struct kmem_cache_node *n; 3923 3924 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3925 3926 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3927 3928 BUG_ON(!slab); 3929 if (slab_nid(slab) != node) { 3930 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3931 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3932 } 3933 3934 n = slab->freelist; 3935 BUG_ON(!n); 3936 #ifdef CONFIG_SLUB_DEBUG 3937 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3938 init_tracking(kmem_cache_node, n); 3939 #endif 3940 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 3941 slab->freelist = get_freepointer(kmem_cache_node, n); 3942 slab->inuse = 1; 3943 slab->frozen = 0; 3944 kmem_cache_node->node[node] = n; 3945 init_kmem_cache_node(n); 3946 inc_slabs_node(kmem_cache_node, node, slab->objects); 3947 3948 /* 3949 * No locks need to be taken here as it has just been 3950 * initialized and there is no concurrent access. 3951 */ 3952 __add_partial(n, slab, DEACTIVATE_TO_HEAD); 3953 } 3954 3955 static void free_kmem_cache_nodes(struct kmem_cache *s) 3956 { 3957 int node; 3958 struct kmem_cache_node *n; 3959 3960 for_each_kmem_cache_node(s, node, n) { 3961 s->node[node] = NULL; 3962 kmem_cache_free(kmem_cache_node, n); 3963 } 3964 } 3965 3966 void __kmem_cache_release(struct kmem_cache *s) 3967 { 3968 cache_random_seq_destroy(s); 3969 free_percpu(s->cpu_slab); 3970 free_kmem_cache_nodes(s); 3971 } 3972 3973 static int init_kmem_cache_nodes(struct kmem_cache *s) 3974 { 3975 int node; 3976 3977 for_each_node_mask(node, slab_nodes) { 3978 struct kmem_cache_node *n; 3979 3980 if (slab_state == DOWN) { 3981 early_kmem_cache_node_alloc(node); 3982 continue; 3983 } 3984 n = kmem_cache_alloc_node(kmem_cache_node, 3985 GFP_KERNEL, node); 3986 3987 if (!n) { 3988 free_kmem_cache_nodes(s); 3989 return 0; 3990 } 3991 3992 init_kmem_cache_node(n); 3993 s->node[node] = n; 3994 } 3995 return 1; 3996 } 3997 3998 static void set_cpu_partial(struct kmem_cache *s) 3999 { 4000 #ifdef CONFIG_SLUB_CPU_PARTIAL 4001 unsigned int nr_objects; 4002 4003 /* 4004 * cpu_partial determined the maximum number of objects kept in the 4005 * per cpu partial lists of a processor. 4006 * 4007 * Per cpu partial lists mainly contain slabs that just have one 4008 * object freed. If they are used for allocation then they can be 4009 * filled up again with minimal effort. The slab will never hit the 4010 * per node partial lists and therefore no locking will be required. 4011 * 4012 * For backwards compatibility reasons, this is determined as number 4013 * of objects, even though we now limit maximum number of pages, see 4014 * slub_set_cpu_partial() 4015 */ 4016 if (!kmem_cache_has_cpu_partial(s)) 4017 nr_objects = 0; 4018 else if (s->size >= PAGE_SIZE) 4019 nr_objects = 6; 4020 else if (s->size >= 1024) 4021 nr_objects = 24; 4022 else if (s->size >= 256) 4023 nr_objects = 52; 4024 else 4025 nr_objects = 120; 4026 4027 slub_set_cpu_partial(s, nr_objects); 4028 #endif 4029 } 4030 4031 /* 4032 * calculate_sizes() determines the order and the distribution of data within 4033 * a slab object. 4034 */ 4035 static int calculate_sizes(struct kmem_cache *s) 4036 { 4037 slab_flags_t flags = s->flags; 4038 unsigned int size = s->object_size; 4039 unsigned int order; 4040 4041 /* 4042 * Round up object size to the next word boundary. We can only 4043 * place the free pointer at word boundaries and this determines 4044 * the possible location of the free pointer. 4045 */ 4046 size = ALIGN(size, sizeof(void *)); 4047 4048 #ifdef CONFIG_SLUB_DEBUG 4049 /* 4050 * Determine if we can poison the object itself. If the user of 4051 * the slab may touch the object after free or before allocation 4052 * then we should never poison the object itself. 4053 */ 4054 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 4055 !s->ctor) 4056 s->flags |= __OBJECT_POISON; 4057 else 4058 s->flags &= ~__OBJECT_POISON; 4059 4060 4061 /* 4062 * If we are Redzoning then check if there is some space between the 4063 * end of the object and the free pointer. If not then add an 4064 * additional word to have some bytes to store Redzone information. 4065 */ 4066 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 4067 size += sizeof(void *); 4068 #endif 4069 4070 /* 4071 * With that we have determined the number of bytes in actual use 4072 * by the object and redzoning. 4073 */ 4074 s->inuse = size; 4075 4076 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 4077 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) || 4078 s->ctor) { 4079 /* 4080 * Relocate free pointer after the object if it is not 4081 * permitted to overwrite the first word of the object on 4082 * kmem_cache_free. 4083 * 4084 * This is the case if we do RCU, have a constructor or 4085 * destructor, are poisoning the objects, or are 4086 * redzoning an object smaller than sizeof(void *). 4087 * 4088 * The assumption that s->offset >= s->inuse means free 4089 * pointer is outside of the object is used in the 4090 * freeptr_outside_object() function. If that is no 4091 * longer true, the function needs to be modified. 4092 */ 4093 s->offset = size; 4094 size += sizeof(void *); 4095 } else { 4096 /* 4097 * Store freelist pointer near middle of object to keep 4098 * it away from the edges of the object to avoid small 4099 * sized over/underflows from neighboring allocations. 4100 */ 4101 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 4102 } 4103 4104 #ifdef CONFIG_SLUB_DEBUG 4105 if (flags & SLAB_STORE_USER) 4106 /* 4107 * Need to store information about allocs and frees after 4108 * the object. 4109 */ 4110 size += 2 * sizeof(struct track); 4111 #endif 4112 4113 kasan_cache_create(s, &size, &s->flags); 4114 #ifdef CONFIG_SLUB_DEBUG 4115 if (flags & SLAB_RED_ZONE) { 4116 /* 4117 * Add some empty padding so that we can catch 4118 * overwrites from earlier objects rather than let 4119 * tracking information or the free pointer be 4120 * corrupted if a user writes before the start 4121 * of the object. 4122 */ 4123 size += sizeof(void *); 4124 4125 s->red_left_pad = sizeof(void *); 4126 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 4127 size += s->red_left_pad; 4128 } 4129 #endif 4130 4131 /* 4132 * SLUB stores one object immediately after another beginning from 4133 * offset 0. In order to align the objects we have to simply size 4134 * each object to conform to the alignment. 4135 */ 4136 size = ALIGN(size, s->align); 4137 s->size = size; 4138 s->reciprocal_size = reciprocal_value(size); 4139 order = calculate_order(size); 4140 4141 if ((int)order < 0) 4142 return 0; 4143 4144 s->allocflags = 0; 4145 if (order) 4146 s->allocflags |= __GFP_COMP; 4147 4148 if (s->flags & SLAB_CACHE_DMA) 4149 s->allocflags |= GFP_DMA; 4150 4151 if (s->flags & SLAB_CACHE_DMA32) 4152 s->allocflags |= GFP_DMA32; 4153 4154 if (s->flags & SLAB_RECLAIM_ACCOUNT) 4155 s->allocflags |= __GFP_RECLAIMABLE; 4156 4157 /* 4158 * Determine the number of objects per slab 4159 */ 4160 s->oo = oo_make(order, size); 4161 s->min = oo_make(get_order(size), size); 4162 4163 return !!oo_objects(s->oo); 4164 } 4165 4166 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 4167 { 4168 s->flags = kmem_cache_flags(s->size, flags, s->name); 4169 #ifdef CONFIG_SLAB_FREELIST_HARDENED 4170 s->random = get_random_long(); 4171 #endif 4172 4173 if (!calculate_sizes(s)) 4174 goto error; 4175 if (disable_higher_order_debug) { 4176 /* 4177 * Disable debugging flags that store metadata if the min slab 4178 * order increased. 4179 */ 4180 if (get_order(s->size) > get_order(s->object_size)) { 4181 s->flags &= ~DEBUG_METADATA_FLAGS; 4182 s->offset = 0; 4183 if (!calculate_sizes(s)) 4184 goto error; 4185 } 4186 } 4187 4188 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 4189 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 4190 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 4191 /* Enable fast mode */ 4192 s->flags |= __CMPXCHG_DOUBLE; 4193 #endif 4194 4195 /* 4196 * The larger the object size is, the more slabs we want on the partial 4197 * list to avoid pounding the page allocator excessively. 4198 */ 4199 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); 4200 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); 4201 4202 set_cpu_partial(s); 4203 4204 #ifdef CONFIG_NUMA 4205 s->remote_node_defrag_ratio = 1000; 4206 #endif 4207 4208 /* Initialize the pre-computed randomized freelist if slab is up */ 4209 if (slab_state >= UP) { 4210 if (init_cache_random_seq(s)) 4211 goto error; 4212 } 4213 4214 if (!init_kmem_cache_nodes(s)) 4215 goto error; 4216 4217 if (alloc_kmem_cache_cpus(s)) 4218 return 0; 4219 4220 error: 4221 __kmem_cache_release(s); 4222 return -EINVAL; 4223 } 4224 4225 static void list_slab_objects(struct kmem_cache *s, struct slab *slab, 4226 const char *text) 4227 { 4228 #ifdef CONFIG_SLUB_DEBUG 4229 void *addr = slab_address(slab); 4230 unsigned long flags; 4231 unsigned long *map; 4232 void *p; 4233 4234 slab_err(s, slab, text, s->name); 4235 slab_lock(slab, &flags); 4236 4237 map = get_map(s, slab); 4238 for_each_object(p, s, addr, slab->objects) { 4239 4240 if (!test_bit(__obj_to_index(s, addr, p), map)) { 4241 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 4242 print_tracking(s, p); 4243 } 4244 } 4245 put_map(map); 4246 slab_unlock(slab, &flags); 4247 #endif 4248 } 4249 4250 /* 4251 * Attempt to free all partial slabs on a node. 4252 * This is called from __kmem_cache_shutdown(). We must take list_lock 4253 * because sysfs file might still access partial list after the shutdowning. 4254 */ 4255 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 4256 { 4257 LIST_HEAD(discard); 4258 struct slab *slab, *h; 4259 4260 BUG_ON(irqs_disabled()); 4261 spin_lock_irq(&n->list_lock); 4262 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 4263 if (!slab->inuse) { 4264 remove_partial(n, slab); 4265 list_add(&slab->slab_list, &discard); 4266 } else { 4267 list_slab_objects(s, slab, 4268 "Objects remaining in %s on __kmem_cache_shutdown()"); 4269 } 4270 } 4271 spin_unlock_irq(&n->list_lock); 4272 4273 list_for_each_entry_safe(slab, h, &discard, slab_list) 4274 discard_slab(s, slab); 4275 } 4276 4277 bool __kmem_cache_empty(struct kmem_cache *s) 4278 { 4279 int node; 4280 struct kmem_cache_node *n; 4281 4282 for_each_kmem_cache_node(s, node, n) 4283 if (n->nr_partial || slabs_node(s, node)) 4284 return false; 4285 return true; 4286 } 4287 4288 /* 4289 * Release all resources used by a slab cache. 4290 */ 4291 int __kmem_cache_shutdown(struct kmem_cache *s) 4292 { 4293 int node; 4294 struct kmem_cache_node *n; 4295 4296 flush_all_cpus_locked(s); 4297 /* Attempt to free all objects */ 4298 for_each_kmem_cache_node(s, node, n) { 4299 free_partial(s, n); 4300 if (n->nr_partial || slabs_node(s, node)) 4301 return 1; 4302 } 4303 return 0; 4304 } 4305 4306 #ifdef CONFIG_PRINTK 4307 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 4308 { 4309 void *base; 4310 int __maybe_unused i; 4311 unsigned int objnr; 4312 void *objp; 4313 void *objp0; 4314 struct kmem_cache *s = slab->slab_cache; 4315 struct track __maybe_unused *trackp; 4316 4317 kpp->kp_ptr = object; 4318 kpp->kp_slab = slab; 4319 kpp->kp_slab_cache = s; 4320 base = slab_address(slab); 4321 objp0 = kasan_reset_tag(object); 4322 #ifdef CONFIG_SLUB_DEBUG 4323 objp = restore_red_left(s, objp0); 4324 #else 4325 objp = objp0; 4326 #endif 4327 objnr = obj_to_index(s, slab, objp); 4328 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 4329 objp = base + s->size * objnr; 4330 kpp->kp_objp = objp; 4331 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 4332 || (objp - base) % s->size) || 4333 !(s->flags & SLAB_STORE_USER)) 4334 return; 4335 #ifdef CONFIG_SLUB_DEBUG 4336 objp = fixup_red_left(s, objp); 4337 trackp = get_track(s, objp, TRACK_ALLOC); 4338 kpp->kp_ret = (void *)trackp->addr; 4339 #ifdef CONFIG_STACKDEPOT 4340 { 4341 depot_stack_handle_t handle; 4342 unsigned long *entries; 4343 unsigned int nr_entries; 4344 4345 handle = READ_ONCE(trackp->handle); 4346 if (handle) { 4347 nr_entries = stack_depot_fetch(handle, &entries); 4348 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 4349 kpp->kp_stack[i] = (void *)entries[i]; 4350 } 4351 4352 trackp = get_track(s, objp, TRACK_FREE); 4353 handle = READ_ONCE(trackp->handle); 4354 if (handle) { 4355 nr_entries = stack_depot_fetch(handle, &entries); 4356 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 4357 kpp->kp_free_stack[i] = (void *)entries[i]; 4358 } 4359 } 4360 #endif 4361 #endif 4362 } 4363 #endif 4364 4365 /******************************************************************** 4366 * Kmalloc subsystem 4367 *******************************************************************/ 4368 4369 static int __init setup_slub_min_order(char *str) 4370 { 4371 get_option(&str, (int *)&slub_min_order); 4372 4373 return 1; 4374 } 4375 4376 __setup("slub_min_order=", setup_slub_min_order); 4377 4378 static int __init setup_slub_max_order(char *str) 4379 { 4380 get_option(&str, (int *)&slub_max_order); 4381 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 4382 4383 return 1; 4384 } 4385 4386 __setup("slub_max_order=", setup_slub_max_order); 4387 4388 static int __init setup_slub_min_objects(char *str) 4389 { 4390 get_option(&str, (int *)&slub_min_objects); 4391 4392 return 1; 4393 } 4394 4395 __setup("slub_min_objects=", setup_slub_min_objects); 4396 4397 static __always_inline 4398 void *__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) 4399 { 4400 struct kmem_cache *s; 4401 void *ret; 4402 4403 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4404 ret = kmalloc_large_node_notrace(size, flags, node); 4405 4406 trace_kmalloc_node(caller, ret, NULL, 4407 size, PAGE_SIZE << get_order(size), 4408 flags, node); 4409 4410 return ret; 4411 } 4412 4413 s = kmalloc_slab(size, flags); 4414 4415 if (unlikely(ZERO_OR_NULL_PTR(s))) 4416 return s; 4417 4418 ret = slab_alloc_node(s, NULL, flags, node, caller, size); 4419 4420 trace_kmalloc_node(caller, ret, s, size, s->size, flags, node); 4421 4422 ret = kasan_kmalloc(s, ret, size, flags); 4423 4424 return ret; 4425 } 4426 4427 void *__kmalloc_node(size_t size, gfp_t flags, int node) 4428 { 4429 return __do_kmalloc_node(size, flags, node, _RET_IP_); 4430 } 4431 EXPORT_SYMBOL(__kmalloc_node); 4432 4433 void *__kmalloc(size_t size, gfp_t flags) 4434 { 4435 return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_); 4436 } 4437 EXPORT_SYMBOL(__kmalloc); 4438 4439 4440 #ifdef CONFIG_HARDENED_USERCOPY 4441 /* 4442 * Rejects incorrectly sized objects and objects that are to be copied 4443 * to/from userspace but do not fall entirely within the containing slab 4444 * cache's usercopy region. 4445 * 4446 * Returns NULL if check passes, otherwise const char * to name of cache 4447 * to indicate an error. 4448 */ 4449 void __check_heap_object(const void *ptr, unsigned long n, 4450 const struct slab *slab, bool to_user) 4451 { 4452 struct kmem_cache *s; 4453 unsigned int offset; 4454 bool is_kfence = is_kfence_address(ptr); 4455 4456 ptr = kasan_reset_tag(ptr); 4457 4458 /* Find object and usable object size. */ 4459 s = slab->slab_cache; 4460 4461 /* Reject impossible pointers. */ 4462 if (ptr < slab_address(slab)) 4463 usercopy_abort("SLUB object not in SLUB page?!", NULL, 4464 to_user, 0, n); 4465 4466 /* Find offset within object. */ 4467 if (is_kfence) 4468 offset = ptr - kfence_object_start(ptr); 4469 else 4470 offset = (ptr - slab_address(slab)) % s->size; 4471 4472 /* Adjust for redzone and reject if within the redzone. */ 4473 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 4474 if (offset < s->red_left_pad) 4475 usercopy_abort("SLUB object in left red zone", 4476 s->name, to_user, offset, n); 4477 offset -= s->red_left_pad; 4478 } 4479 4480 /* Allow address range falling entirely within usercopy region. */ 4481 if (offset >= s->useroffset && 4482 offset - s->useroffset <= s->usersize && 4483 n <= s->useroffset - offset + s->usersize) 4484 return; 4485 4486 usercopy_abort("SLUB object", s->name, to_user, offset, n); 4487 } 4488 #endif /* CONFIG_HARDENED_USERCOPY */ 4489 4490 size_t __ksize(const void *object) 4491 { 4492 struct folio *folio; 4493 4494 if (unlikely(object == ZERO_SIZE_PTR)) 4495 return 0; 4496 4497 folio = virt_to_folio(object); 4498 4499 if (unlikely(!folio_test_slab(folio))) 4500 return folio_size(folio); 4501 4502 return slab_ksize(folio_slab(folio)->slab_cache); 4503 } 4504 EXPORT_SYMBOL(__ksize); 4505 4506 void kfree(const void *x) 4507 { 4508 struct folio *folio; 4509 struct slab *slab; 4510 void *object = (void *)x; 4511 4512 trace_kfree(_RET_IP_, x); 4513 4514 if (unlikely(ZERO_OR_NULL_PTR(x))) 4515 return; 4516 4517 folio = virt_to_folio(x); 4518 if (unlikely(!folio_test_slab(folio))) { 4519 free_large_kmalloc(folio, object); 4520 return; 4521 } 4522 slab = folio_slab(folio); 4523 slab_free(slab->slab_cache, slab, object, NULL, &object, 1, _RET_IP_); 4524 } 4525 EXPORT_SYMBOL(kfree); 4526 4527 #define SHRINK_PROMOTE_MAX 32 4528 4529 /* 4530 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 4531 * up most to the head of the partial lists. New allocations will then 4532 * fill those up and thus they can be removed from the partial lists. 4533 * 4534 * The slabs with the least items are placed last. This results in them 4535 * being allocated from last increasing the chance that the last objects 4536 * are freed in them. 4537 */ 4538 static int __kmem_cache_do_shrink(struct kmem_cache *s) 4539 { 4540 int node; 4541 int i; 4542 struct kmem_cache_node *n; 4543 struct slab *slab; 4544 struct slab *t; 4545 struct list_head discard; 4546 struct list_head promote[SHRINK_PROMOTE_MAX]; 4547 unsigned long flags; 4548 int ret = 0; 4549 4550 for_each_kmem_cache_node(s, node, n) { 4551 INIT_LIST_HEAD(&discard); 4552 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 4553 INIT_LIST_HEAD(promote + i); 4554 4555 spin_lock_irqsave(&n->list_lock, flags); 4556 4557 /* 4558 * Build lists of slabs to discard or promote. 4559 * 4560 * Note that concurrent frees may occur while we hold the 4561 * list_lock. slab->inuse here is the upper limit. 4562 */ 4563 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 4564 int free = slab->objects - slab->inuse; 4565 4566 /* Do not reread slab->inuse */ 4567 barrier(); 4568 4569 /* We do not keep full slabs on the list */ 4570 BUG_ON(free <= 0); 4571 4572 if (free == slab->objects) { 4573 list_move(&slab->slab_list, &discard); 4574 n->nr_partial--; 4575 } else if (free <= SHRINK_PROMOTE_MAX) 4576 list_move(&slab->slab_list, promote + free - 1); 4577 } 4578 4579 /* 4580 * Promote the slabs filled up most to the head of the 4581 * partial list. 4582 */ 4583 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4584 list_splice(promote + i, &n->partial); 4585 4586 spin_unlock_irqrestore(&n->list_lock, flags); 4587 4588 /* Release empty slabs */ 4589 list_for_each_entry_safe(slab, t, &discard, slab_list) 4590 discard_slab(s, slab); 4591 4592 if (slabs_node(s, node)) 4593 ret = 1; 4594 } 4595 4596 return ret; 4597 } 4598 4599 int __kmem_cache_shrink(struct kmem_cache *s) 4600 { 4601 flush_all(s); 4602 return __kmem_cache_do_shrink(s); 4603 } 4604 4605 static int slab_mem_going_offline_callback(void *arg) 4606 { 4607 struct kmem_cache *s; 4608 4609 mutex_lock(&slab_mutex); 4610 list_for_each_entry(s, &slab_caches, list) { 4611 flush_all_cpus_locked(s); 4612 __kmem_cache_do_shrink(s); 4613 } 4614 mutex_unlock(&slab_mutex); 4615 4616 return 0; 4617 } 4618 4619 static void slab_mem_offline_callback(void *arg) 4620 { 4621 struct memory_notify *marg = arg; 4622 int offline_node; 4623 4624 offline_node = marg->status_change_nid_normal; 4625 4626 /* 4627 * If the node still has available memory. we need kmem_cache_node 4628 * for it yet. 4629 */ 4630 if (offline_node < 0) 4631 return; 4632 4633 mutex_lock(&slab_mutex); 4634 node_clear(offline_node, slab_nodes); 4635 /* 4636 * We no longer free kmem_cache_node structures here, as it would be 4637 * racy with all get_node() users, and infeasible to protect them with 4638 * slab_mutex. 4639 */ 4640 mutex_unlock(&slab_mutex); 4641 } 4642 4643 static int slab_mem_going_online_callback(void *arg) 4644 { 4645 struct kmem_cache_node *n; 4646 struct kmem_cache *s; 4647 struct memory_notify *marg = arg; 4648 int nid = marg->status_change_nid_normal; 4649 int ret = 0; 4650 4651 /* 4652 * If the node's memory is already available, then kmem_cache_node is 4653 * already created. Nothing to do. 4654 */ 4655 if (nid < 0) 4656 return 0; 4657 4658 /* 4659 * We are bringing a node online. No memory is available yet. We must 4660 * allocate a kmem_cache_node structure in order to bring the node 4661 * online. 4662 */ 4663 mutex_lock(&slab_mutex); 4664 list_for_each_entry(s, &slab_caches, list) { 4665 /* 4666 * The structure may already exist if the node was previously 4667 * onlined and offlined. 4668 */ 4669 if (get_node(s, nid)) 4670 continue; 4671 /* 4672 * XXX: kmem_cache_alloc_node will fallback to other nodes 4673 * since memory is not yet available from the node that 4674 * is brought up. 4675 */ 4676 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4677 if (!n) { 4678 ret = -ENOMEM; 4679 goto out; 4680 } 4681 init_kmem_cache_node(n); 4682 s->node[nid] = n; 4683 } 4684 /* 4685 * Any cache created after this point will also have kmem_cache_node 4686 * initialized for the new node. 4687 */ 4688 node_set(nid, slab_nodes); 4689 out: 4690 mutex_unlock(&slab_mutex); 4691 return ret; 4692 } 4693 4694 static int slab_memory_callback(struct notifier_block *self, 4695 unsigned long action, void *arg) 4696 { 4697 int ret = 0; 4698 4699 switch (action) { 4700 case MEM_GOING_ONLINE: 4701 ret = slab_mem_going_online_callback(arg); 4702 break; 4703 case MEM_GOING_OFFLINE: 4704 ret = slab_mem_going_offline_callback(arg); 4705 break; 4706 case MEM_OFFLINE: 4707 case MEM_CANCEL_ONLINE: 4708 slab_mem_offline_callback(arg); 4709 break; 4710 case MEM_ONLINE: 4711 case MEM_CANCEL_OFFLINE: 4712 break; 4713 } 4714 if (ret) 4715 ret = notifier_from_errno(ret); 4716 else 4717 ret = NOTIFY_OK; 4718 return ret; 4719 } 4720 4721 static struct notifier_block slab_memory_callback_nb = { 4722 .notifier_call = slab_memory_callback, 4723 .priority = SLAB_CALLBACK_PRI, 4724 }; 4725 4726 /******************************************************************** 4727 * Basic setup of slabs 4728 *******************************************************************/ 4729 4730 /* 4731 * Used for early kmem_cache structures that were allocated using 4732 * the page allocator. Allocate them properly then fix up the pointers 4733 * that may be pointing to the wrong kmem_cache structure. 4734 */ 4735 4736 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4737 { 4738 int node; 4739 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4740 struct kmem_cache_node *n; 4741 4742 memcpy(s, static_cache, kmem_cache->object_size); 4743 4744 /* 4745 * This runs very early, and only the boot processor is supposed to be 4746 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4747 * IPIs around. 4748 */ 4749 __flush_cpu_slab(s, smp_processor_id()); 4750 for_each_kmem_cache_node(s, node, n) { 4751 struct slab *p; 4752 4753 list_for_each_entry(p, &n->partial, slab_list) 4754 p->slab_cache = s; 4755 4756 #ifdef CONFIG_SLUB_DEBUG 4757 list_for_each_entry(p, &n->full, slab_list) 4758 p->slab_cache = s; 4759 #endif 4760 } 4761 list_add(&s->list, &slab_caches); 4762 return s; 4763 } 4764 4765 void __init kmem_cache_init(void) 4766 { 4767 static __initdata struct kmem_cache boot_kmem_cache, 4768 boot_kmem_cache_node; 4769 int node; 4770 4771 if (debug_guardpage_minorder()) 4772 slub_max_order = 0; 4773 4774 /* Print slub debugging pointers without hashing */ 4775 if (__slub_debug_enabled()) 4776 no_hash_pointers_enable(NULL); 4777 4778 kmem_cache_node = &boot_kmem_cache_node; 4779 kmem_cache = &boot_kmem_cache; 4780 4781 /* 4782 * Initialize the nodemask for which we will allocate per node 4783 * structures. Here we don't need taking slab_mutex yet. 4784 */ 4785 for_each_node_state(node, N_NORMAL_MEMORY) 4786 node_set(node, slab_nodes); 4787 4788 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4789 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4790 4791 register_hotmemory_notifier(&slab_memory_callback_nb); 4792 4793 /* Able to allocate the per node structures */ 4794 slab_state = PARTIAL; 4795 4796 create_boot_cache(kmem_cache, "kmem_cache", 4797 offsetof(struct kmem_cache, node) + 4798 nr_node_ids * sizeof(struct kmem_cache_node *), 4799 SLAB_HWCACHE_ALIGN, 0, 0); 4800 4801 kmem_cache = bootstrap(&boot_kmem_cache); 4802 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4803 4804 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4805 setup_kmalloc_cache_index_table(); 4806 create_kmalloc_caches(0); 4807 4808 /* Setup random freelists for each cache */ 4809 init_freelist_randomization(); 4810 4811 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4812 slub_cpu_dead); 4813 4814 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 4815 cache_line_size(), 4816 slub_min_order, slub_max_order, slub_min_objects, 4817 nr_cpu_ids, nr_node_ids); 4818 } 4819 4820 void __init kmem_cache_init_late(void) 4821 { 4822 } 4823 4824 struct kmem_cache * 4825 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4826 slab_flags_t flags, void (*ctor)(void *)) 4827 { 4828 struct kmem_cache *s; 4829 4830 s = find_mergeable(size, align, flags, name, ctor); 4831 if (s) { 4832 if (sysfs_slab_alias(s, name)) 4833 return NULL; 4834 4835 s->refcount++; 4836 4837 /* 4838 * Adjust the object sizes so that we clear 4839 * the complete object on kzalloc. 4840 */ 4841 s->object_size = max(s->object_size, size); 4842 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4843 } 4844 4845 return s; 4846 } 4847 4848 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4849 { 4850 int err; 4851 4852 err = kmem_cache_open(s, flags); 4853 if (err) 4854 return err; 4855 4856 /* Mutex is not taken during early boot */ 4857 if (slab_state <= UP) 4858 return 0; 4859 4860 err = sysfs_slab_add(s); 4861 if (err) { 4862 __kmem_cache_release(s); 4863 return err; 4864 } 4865 4866 if (s->flags & SLAB_STORE_USER) 4867 debugfs_slab_add(s); 4868 4869 return 0; 4870 } 4871 4872 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4873 int node, unsigned long caller) 4874 { 4875 return __do_kmalloc_node(size, gfpflags, node, caller); 4876 } 4877 EXPORT_SYMBOL(__kmalloc_node_track_caller); 4878 4879 #ifdef CONFIG_SYSFS 4880 static int count_inuse(struct slab *slab) 4881 { 4882 return slab->inuse; 4883 } 4884 4885 static int count_total(struct slab *slab) 4886 { 4887 return slab->objects; 4888 } 4889 #endif 4890 4891 #ifdef CONFIG_SLUB_DEBUG 4892 static void validate_slab(struct kmem_cache *s, struct slab *slab, 4893 unsigned long *obj_map) 4894 { 4895 void *p; 4896 void *addr = slab_address(slab); 4897 unsigned long flags; 4898 4899 slab_lock(slab, &flags); 4900 4901 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 4902 goto unlock; 4903 4904 /* Now we know that a valid freelist exists */ 4905 __fill_map(obj_map, s, slab); 4906 for_each_object(p, s, addr, slab->objects) { 4907 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 4908 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 4909 4910 if (!check_object(s, slab, p, val)) 4911 break; 4912 } 4913 unlock: 4914 slab_unlock(slab, &flags); 4915 } 4916 4917 static int validate_slab_node(struct kmem_cache *s, 4918 struct kmem_cache_node *n, unsigned long *obj_map) 4919 { 4920 unsigned long count = 0; 4921 struct slab *slab; 4922 unsigned long flags; 4923 4924 spin_lock_irqsave(&n->list_lock, flags); 4925 4926 list_for_each_entry(slab, &n->partial, slab_list) { 4927 validate_slab(s, slab, obj_map); 4928 count++; 4929 } 4930 if (count != n->nr_partial) { 4931 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4932 s->name, count, n->nr_partial); 4933 slab_add_kunit_errors(); 4934 } 4935 4936 if (!(s->flags & SLAB_STORE_USER)) 4937 goto out; 4938 4939 list_for_each_entry(slab, &n->full, slab_list) { 4940 validate_slab(s, slab, obj_map); 4941 count++; 4942 } 4943 if (count != atomic_long_read(&n->nr_slabs)) { 4944 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4945 s->name, count, atomic_long_read(&n->nr_slabs)); 4946 slab_add_kunit_errors(); 4947 } 4948 4949 out: 4950 spin_unlock_irqrestore(&n->list_lock, flags); 4951 return count; 4952 } 4953 4954 long validate_slab_cache(struct kmem_cache *s) 4955 { 4956 int node; 4957 unsigned long count = 0; 4958 struct kmem_cache_node *n; 4959 unsigned long *obj_map; 4960 4961 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 4962 if (!obj_map) 4963 return -ENOMEM; 4964 4965 flush_all(s); 4966 for_each_kmem_cache_node(s, node, n) 4967 count += validate_slab_node(s, n, obj_map); 4968 4969 bitmap_free(obj_map); 4970 4971 return count; 4972 } 4973 EXPORT_SYMBOL(validate_slab_cache); 4974 4975 #ifdef CONFIG_DEBUG_FS 4976 /* 4977 * Generate lists of code addresses where slabcache objects are allocated 4978 * and freed. 4979 */ 4980 4981 struct location { 4982 depot_stack_handle_t handle; 4983 unsigned long count; 4984 unsigned long addr; 4985 long long sum_time; 4986 long min_time; 4987 long max_time; 4988 long min_pid; 4989 long max_pid; 4990 DECLARE_BITMAP(cpus, NR_CPUS); 4991 nodemask_t nodes; 4992 }; 4993 4994 struct loc_track { 4995 unsigned long max; 4996 unsigned long count; 4997 struct location *loc; 4998 loff_t idx; 4999 }; 5000 5001 static struct dentry *slab_debugfs_root; 5002 5003 static void free_loc_track(struct loc_track *t) 5004 { 5005 if (t->max) 5006 free_pages((unsigned long)t->loc, 5007 get_order(sizeof(struct location) * t->max)); 5008 } 5009 5010 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 5011 { 5012 struct location *l; 5013 int order; 5014 5015 order = get_order(sizeof(struct location) * max); 5016 5017 l = (void *)__get_free_pages(flags, order); 5018 if (!l) 5019 return 0; 5020 5021 if (t->count) { 5022 memcpy(l, t->loc, sizeof(struct location) * t->count); 5023 free_loc_track(t); 5024 } 5025 t->max = max; 5026 t->loc = l; 5027 return 1; 5028 } 5029 5030 static int add_location(struct loc_track *t, struct kmem_cache *s, 5031 const struct track *track) 5032 { 5033 long start, end, pos; 5034 struct location *l; 5035 unsigned long caddr, chandle; 5036 unsigned long age = jiffies - track->when; 5037 depot_stack_handle_t handle = 0; 5038 5039 #ifdef CONFIG_STACKDEPOT 5040 handle = READ_ONCE(track->handle); 5041 #endif 5042 start = -1; 5043 end = t->count; 5044 5045 for ( ; ; ) { 5046 pos = start + (end - start + 1) / 2; 5047 5048 /* 5049 * There is nothing at "end". If we end up there 5050 * we need to add something to before end. 5051 */ 5052 if (pos == end) 5053 break; 5054 5055 caddr = t->loc[pos].addr; 5056 chandle = t->loc[pos].handle; 5057 if ((track->addr == caddr) && (handle == chandle)) { 5058 5059 l = &t->loc[pos]; 5060 l->count++; 5061 if (track->when) { 5062 l->sum_time += age; 5063 if (age < l->min_time) 5064 l->min_time = age; 5065 if (age > l->max_time) 5066 l->max_time = age; 5067 5068 if (track->pid < l->min_pid) 5069 l->min_pid = track->pid; 5070 if (track->pid > l->max_pid) 5071 l->max_pid = track->pid; 5072 5073 cpumask_set_cpu(track->cpu, 5074 to_cpumask(l->cpus)); 5075 } 5076 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5077 return 1; 5078 } 5079 5080 if (track->addr < caddr) 5081 end = pos; 5082 else if (track->addr == caddr && handle < chandle) 5083 end = pos; 5084 else 5085 start = pos; 5086 } 5087 5088 /* 5089 * Not found. Insert new tracking element. 5090 */ 5091 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 5092 return 0; 5093 5094 l = t->loc + pos; 5095 if (pos < t->count) 5096 memmove(l + 1, l, 5097 (t->count - pos) * sizeof(struct location)); 5098 t->count++; 5099 l->count = 1; 5100 l->addr = track->addr; 5101 l->sum_time = age; 5102 l->min_time = age; 5103 l->max_time = age; 5104 l->min_pid = track->pid; 5105 l->max_pid = track->pid; 5106 l->handle = handle; 5107 cpumask_clear(to_cpumask(l->cpus)); 5108 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 5109 nodes_clear(l->nodes); 5110 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5111 return 1; 5112 } 5113 5114 static void process_slab(struct loc_track *t, struct kmem_cache *s, 5115 struct slab *slab, enum track_item alloc, 5116 unsigned long *obj_map) 5117 { 5118 void *addr = slab_address(slab); 5119 void *p; 5120 5121 __fill_map(obj_map, s, slab); 5122 5123 for_each_object(p, s, addr, slab->objects) 5124 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 5125 add_location(t, s, get_track(s, p, alloc)); 5126 } 5127 #endif /* CONFIG_DEBUG_FS */ 5128 #endif /* CONFIG_SLUB_DEBUG */ 5129 5130 #ifdef CONFIG_SYSFS 5131 enum slab_stat_type { 5132 SL_ALL, /* All slabs */ 5133 SL_PARTIAL, /* Only partially allocated slabs */ 5134 SL_CPU, /* Only slabs used for cpu caches */ 5135 SL_OBJECTS, /* Determine allocated objects not slabs */ 5136 SL_TOTAL /* Determine object capacity not slabs */ 5137 }; 5138 5139 #define SO_ALL (1 << SL_ALL) 5140 #define SO_PARTIAL (1 << SL_PARTIAL) 5141 #define SO_CPU (1 << SL_CPU) 5142 #define SO_OBJECTS (1 << SL_OBJECTS) 5143 #define SO_TOTAL (1 << SL_TOTAL) 5144 5145 static ssize_t show_slab_objects(struct kmem_cache *s, 5146 char *buf, unsigned long flags) 5147 { 5148 unsigned long total = 0; 5149 int node; 5150 int x; 5151 unsigned long *nodes; 5152 int len = 0; 5153 5154 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 5155 if (!nodes) 5156 return -ENOMEM; 5157 5158 if (flags & SO_CPU) { 5159 int cpu; 5160 5161 for_each_possible_cpu(cpu) { 5162 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 5163 cpu); 5164 int node; 5165 struct slab *slab; 5166 5167 slab = READ_ONCE(c->slab); 5168 if (!slab) 5169 continue; 5170 5171 node = slab_nid(slab); 5172 if (flags & SO_TOTAL) 5173 x = slab->objects; 5174 else if (flags & SO_OBJECTS) 5175 x = slab->inuse; 5176 else 5177 x = 1; 5178 5179 total += x; 5180 nodes[node] += x; 5181 5182 #ifdef CONFIG_SLUB_CPU_PARTIAL 5183 slab = slub_percpu_partial_read_once(c); 5184 if (slab) { 5185 node = slab_nid(slab); 5186 if (flags & SO_TOTAL) 5187 WARN_ON_ONCE(1); 5188 else if (flags & SO_OBJECTS) 5189 WARN_ON_ONCE(1); 5190 else 5191 x = slab->slabs; 5192 total += x; 5193 nodes[node] += x; 5194 } 5195 #endif 5196 } 5197 } 5198 5199 /* 5200 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 5201 * already held which will conflict with an existing lock order: 5202 * 5203 * mem_hotplug_lock->slab_mutex->kernfs_mutex 5204 * 5205 * We don't really need mem_hotplug_lock (to hold off 5206 * slab_mem_going_offline_callback) here because slab's memory hot 5207 * unplug code doesn't destroy the kmem_cache->node[] data. 5208 */ 5209 5210 #ifdef CONFIG_SLUB_DEBUG 5211 if (flags & SO_ALL) { 5212 struct kmem_cache_node *n; 5213 5214 for_each_kmem_cache_node(s, node, n) { 5215 5216 if (flags & SO_TOTAL) 5217 x = atomic_long_read(&n->total_objects); 5218 else if (flags & SO_OBJECTS) 5219 x = atomic_long_read(&n->total_objects) - 5220 count_partial(n, count_free); 5221 else 5222 x = atomic_long_read(&n->nr_slabs); 5223 total += x; 5224 nodes[node] += x; 5225 } 5226 5227 } else 5228 #endif 5229 if (flags & SO_PARTIAL) { 5230 struct kmem_cache_node *n; 5231 5232 for_each_kmem_cache_node(s, node, n) { 5233 if (flags & SO_TOTAL) 5234 x = count_partial(n, count_total); 5235 else if (flags & SO_OBJECTS) 5236 x = count_partial(n, count_inuse); 5237 else 5238 x = n->nr_partial; 5239 total += x; 5240 nodes[node] += x; 5241 } 5242 } 5243 5244 len += sysfs_emit_at(buf, len, "%lu", total); 5245 #ifdef CONFIG_NUMA 5246 for (node = 0; node < nr_node_ids; node++) { 5247 if (nodes[node]) 5248 len += sysfs_emit_at(buf, len, " N%d=%lu", 5249 node, nodes[node]); 5250 } 5251 #endif 5252 len += sysfs_emit_at(buf, len, "\n"); 5253 kfree(nodes); 5254 5255 return len; 5256 } 5257 5258 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 5259 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 5260 5261 struct slab_attribute { 5262 struct attribute attr; 5263 ssize_t (*show)(struct kmem_cache *s, char *buf); 5264 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 5265 }; 5266 5267 #define SLAB_ATTR_RO(_name) \ 5268 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) 5269 5270 #define SLAB_ATTR(_name) \ 5271 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) 5272 5273 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 5274 { 5275 return sysfs_emit(buf, "%u\n", s->size); 5276 } 5277 SLAB_ATTR_RO(slab_size); 5278 5279 static ssize_t align_show(struct kmem_cache *s, char *buf) 5280 { 5281 return sysfs_emit(buf, "%u\n", s->align); 5282 } 5283 SLAB_ATTR_RO(align); 5284 5285 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 5286 { 5287 return sysfs_emit(buf, "%u\n", s->object_size); 5288 } 5289 SLAB_ATTR_RO(object_size); 5290 5291 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 5292 { 5293 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 5294 } 5295 SLAB_ATTR_RO(objs_per_slab); 5296 5297 static ssize_t order_show(struct kmem_cache *s, char *buf) 5298 { 5299 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 5300 } 5301 SLAB_ATTR_RO(order); 5302 5303 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 5304 { 5305 return sysfs_emit(buf, "%lu\n", s->min_partial); 5306 } 5307 5308 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 5309 size_t length) 5310 { 5311 unsigned long min; 5312 int err; 5313 5314 err = kstrtoul(buf, 10, &min); 5315 if (err) 5316 return err; 5317 5318 s->min_partial = min; 5319 return length; 5320 } 5321 SLAB_ATTR(min_partial); 5322 5323 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 5324 { 5325 unsigned int nr_partial = 0; 5326 #ifdef CONFIG_SLUB_CPU_PARTIAL 5327 nr_partial = s->cpu_partial; 5328 #endif 5329 5330 return sysfs_emit(buf, "%u\n", nr_partial); 5331 } 5332 5333 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 5334 size_t length) 5335 { 5336 unsigned int objects; 5337 int err; 5338 5339 err = kstrtouint(buf, 10, &objects); 5340 if (err) 5341 return err; 5342 if (objects && !kmem_cache_has_cpu_partial(s)) 5343 return -EINVAL; 5344 5345 slub_set_cpu_partial(s, objects); 5346 flush_all(s); 5347 return length; 5348 } 5349 SLAB_ATTR(cpu_partial); 5350 5351 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5352 { 5353 if (!s->ctor) 5354 return 0; 5355 return sysfs_emit(buf, "%pS\n", s->ctor); 5356 } 5357 SLAB_ATTR_RO(ctor); 5358 5359 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5360 { 5361 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5362 } 5363 SLAB_ATTR_RO(aliases); 5364 5365 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5366 { 5367 return show_slab_objects(s, buf, SO_PARTIAL); 5368 } 5369 SLAB_ATTR_RO(partial); 5370 5371 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5372 { 5373 return show_slab_objects(s, buf, SO_CPU); 5374 } 5375 SLAB_ATTR_RO(cpu_slabs); 5376 5377 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5378 { 5379 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5380 } 5381 SLAB_ATTR_RO(objects); 5382 5383 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5384 { 5385 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5386 } 5387 SLAB_ATTR_RO(objects_partial); 5388 5389 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5390 { 5391 int objects = 0; 5392 int slabs = 0; 5393 int cpu __maybe_unused; 5394 int len = 0; 5395 5396 #ifdef CONFIG_SLUB_CPU_PARTIAL 5397 for_each_online_cpu(cpu) { 5398 struct slab *slab; 5399 5400 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5401 5402 if (slab) 5403 slabs += slab->slabs; 5404 } 5405 #endif 5406 5407 /* Approximate half-full slabs, see slub_set_cpu_partial() */ 5408 objects = (slabs * oo_objects(s->oo)) / 2; 5409 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); 5410 5411 #if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP) 5412 for_each_online_cpu(cpu) { 5413 struct slab *slab; 5414 5415 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5416 if (slab) { 5417 slabs = READ_ONCE(slab->slabs); 5418 objects = (slabs * oo_objects(s->oo)) / 2; 5419 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 5420 cpu, objects, slabs); 5421 } 5422 } 5423 #endif 5424 len += sysfs_emit_at(buf, len, "\n"); 5425 5426 return len; 5427 } 5428 SLAB_ATTR_RO(slabs_cpu_partial); 5429 5430 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5431 { 5432 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5433 } 5434 SLAB_ATTR_RO(reclaim_account); 5435 5436 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5437 { 5438 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5439 } 5440 SLAB_ATTR_RO(hwcache_align); 5441 5442 #ifdef CONFIG_ZONE_DMA 5443 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5444 { 5445 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5446 } 5447 SLAB_ATTR_RO(cache_dma); 5448 #endif 5449 5450 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5451 { 5452 return sysfs_emit(buf, "%u\n", s->usersize); 5453 } 5454 SLAB_ATTR_RO(usersize); 5455 5456 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5457 { 5458 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5459 } 5460 SLAB_ATTR_RO(destroy_by_rcu); 5461 5462 #ifdef CONFIG_SLUB_DEBUG 5463 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5464 { 5465 return show_slab_objects(s, buf, SO_ALL); 5466 } 5467 SLAB_ATTR_RO(slabs); 5468 5469 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5470 { 5471 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5472 } 5473 SLAB_ATTR_RO(total_objects); 5474 5475 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5476 { 5477 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5478 } 5479 SLAB_ATTR_RO(sanity_checks); 5480 5481 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5482 { 5483 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5484 } 5485 SLAB_ATTR_RO(trace); 5486 5487 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5488 { 5489 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5490 } 5491 5492 SLAB_ATTR_RO(red_zone); 5493 5494 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5495 { 5496 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5497 } 5498 5499 SLAB_ATTR_RO(poison); 5500 5501 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5502 { 5503 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5504 } 5505 5506 SLAB_ATTR_RO(store_user); 5507 5508 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5509 { 5510 return 0; 5511 } 5512 5513 static ssize_t validate_store(struct kmem_cache *s, 5514 const char *buf, size_t length) 5515 { 5516 int ret = -EINVAL; 5517 5518 if (buf[0] == '1') { 5519 ret = validate_slab_cache(s); 5520 if (ret >= 0) 5521 ret = length; 5522 } 5523 return ret; 5524 } 5525 SLAB_ATTR(validate); 5526 5527 #endif /* CONFIG_SLUB_DEBUG */ 5528 5529 #ifdef CONFIG_FAILSLAB 5530 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5531 { 5532 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5533 } 5534 SLAB_ATTR_RO(failslab); 5535 #endif 5536 5537 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5538 { 5539 return 0; 5540 } 5541 5542 static ssize_t shrink_store(struct kmem_cache *s, 5543 const char *buf, size_t length) 5544 { 5545 if (buf[0] == '1') 5546 kmem_cache_shrink(s); 5547 else 5548 return -EINVAL; 5549 return length; 5550 } 5551 SLAB_ATTR(shrink); 5552 5553 #ifdef CONFIG_NUMA 5554 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5555 { 5556 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5557 } 5558 5559 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5560 const char *buf, size_t length) 5561 { 5562 unsigned int ratio; 5563 int err; 5564 5565 err = kstrtouint(buf, 10, &ratio); 5566 if (err) 5567 return err; 5568 if (ratio > 100) 5569 return -ERANGE; 5570 5571 s->remote_node_defrag_ratio = ratio * 10; 5572 5573 return length; 5574 } 5575 SLAB_ATTR(remote_node_defrag_ratio); 5576 #endif 5577 5578 #ifdef CONFIG_SLUB_STATS 5579 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5580 { 5581 unsigned long sum = 0; 5582 int cpu; 5583 int len = 0; 5584 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5585 5586 if (!data) 5587 return -ENOMEM; 5588 5589 for_each_online_cpu(cpu) { 5590 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5591 5592 data[cpu] = x; 5593 sum += x; 5594 } 5595 5596 len += sysfs_emit_at(buf, len, "%lu", sum); 5597 5598 #ifdef CONFIG_SMP 5599 for_each_online_cpu(cpu) { 5600 if (data[cpu]) 5601 len += sysfs_emit_at(buf, len, " C%d=%u", 5602 cpu, data[cpu]); 5603 } 5604 #endif 5605 kfree(data); 5606 len += sysfs_emit_at(buf, len, "\n"); 5607 5608 return len; 5609 } 5610 5611 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5612 { 5613 int cpu; 5614 5615 for_each_online_cpu(cpu) 5616 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5617 } 5618 5619 #define STAT_ATTR(si, text) \ 5620 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5621 { \ 5622 return show_stat(s, buf, si); \ 5623 } \ 5624 static ssize_t text##_store(struct kmem_cache *s, \ 5625 const char *buf, size_t length) \ 5626 { \ 5627 if (buf[0] != '0') \ 5628 return -EINVAL; \ 5629 clear_stat(s, si); \ 5630 return length; \ 5631 } \ 5632 SLAB_ATTR(text); \ 5633 5634 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5635 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5636 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5637 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5638 STAT_ATTR(FREE_FROZEN, free_frozen); 5639 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5640 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5641 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5642 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5643 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5644 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5645 STAT_ATTR(FREE_SLAB, free_slab); 5646 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5647 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5648 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5649 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5650 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5651 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5652 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5653 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5654 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5655 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5656 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5657 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5658 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5659 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5660 #endif /* CONFIG_SLUB_STATS */ 5661 5662 static struct attribute *slab_attrs[] = { 5663 &slab_size_attr.attr, 5664 &object_size_attr.attr, 5665 &objs_per_slab_attr.attr, 5666 &order_attr.attr, 5667 &min_partial_attr.attr, 5668 &cpu_partial_attr.attr, 5669 &objects_attr.attr, 5670 &objects_partial_attr.attr, 5671 &partial_attr.attr, 5672 &cpu_slabs_attr.attr, 5673 &ctor_attr.attr, 5674 &aliases_attr.attr, 5675 &align_attr.attr, 5676 &hwcache_align_attr.attr, 5677 &reclaim_account_attr.attr, 5678 &destroy_by_rcu_attr.attr, 5679 &shrink_attr.attr, 5680 &slabs_cpu_partial_attr.attr, 5681 #ifdef CONFIG_SLUB_DEBUG 5682 &total_objects_attr.attr, 5683 &slabs_attr.attr, 5684 &sanity_checks_attr.attr, 5685 &trace_attr.attr, 5686 &red_zone_attr.attr, 5687 &poison_attr.attr, 5688 &store_user_attr.attr, 5689 &validate_attr.attr, 5690 #endif 5691 #ifdef CONFIG_ZONE_DMA 5692 &cache_dma_attr.attr, 5693 #endif 5694 #ifdef CONFIG_NUMA 5695 &remote_node_defrag_ratio_attr.attr, 5696 #endif 5697 #ifdef CONFIG_SLUB_STATS 5698 &alloc_fastpath_attr.attr, 5699 &alloc_slowpath_attr.attr, 5700 &free_fastpath_attr.attr, 5701 &free_slowpath_attr.attr, 5702 &free_frozen_attr.attr, 5703 &free_add_partial_attr.attr, 5704 &free_remove_partial_attr.attr, 5705 &alloc_from_partial_attr.attr, 5706 &alloc_slab_attr.attr, 5707 &alloc_refill_attr.attr, 5708 &alloc_node_mismatch_attr.attr, 5709 &free_slab_attr.attr, 5710 &cpuslab_flush_attr.attr, 5711 &deactivate_full_attr.attr, 5712 &deactivate_empty_attr.attr, 5713 &deactivate_to_head_attr.attr, 5714 &deactivate_to_tail_attr.attr, 5715 &deactivate_remote_frees_attr.attr, 5716 &deactivate_bypass_attr.attr, 5717 &order_fallback_attr.attr, 5718 &cmpxchg_double_fail_attr.attr, 5719 &cmpxchg_double_cpu_fail_attr.attr, 5720 &cpu_partial_alloc_attr.attr, 5721 &cpu_partial_free_attr.attr, 5722 &cpu_partial_node_attr.attr, 5723 &cpu_partial_drain_attr.attr, 5724 #endif 5725 #ifdef CONFIG_FAILSLAB 5726 &failslab_attr.attr, 5727 #endif 5728 &usersize_attr.attr, 5729 5730 NULL 5731 }; 5732 5733 static const struct attribute_group slab_attr_group = { 5734 .attrs = slab_attrs, 5735 }; 5736 5737 static ssize_t slab_attr_show(struct kobject *kobj, 5738 struct attribute *attr, 5739 char *buf) 5740 { 5741 struct slab_attribute *attribute; 5742 struct kmem_cache *s; 5743 int err; 5744 5745 attribute = to_slab_attr(attr); 5746 s = to_slab(kobj); 5747 5748 if (!attribute->show) 5749 return -EIO; 5750 5751 err = attribute->show(s, buf); 5752 5753 return err; 5754 } 5755 5756 static ssize_t slab_attr_store(struct kobject *kobj, 5757 struct attribute *attr, 5758 const char *buf, size_t len) 5759 { 5760 struct slab_attribute *attribute; 5761 struct kmem_cache *s; 5762 int err; 5763 5764 attribute = to_slab_attr(attr); 5765 s = to_slab(kobj); 5766 5767 if (!attribute->store) 5768 return -EIO; 5769 5770 err = attribute->store(s, buf, len); 5771 return err; 5772 } 5773 5774 static void kmem_cache_release(struct kobject *k) 5775 { 5776 slab_kmem_cache_release(to_slab(k)); 5777 } 5778 5779 static const struct sysfs_ops slab_sysfs_ops = { 5780 .show = slab_attr_show, 5781 .store = slab_attr_store, 5782 }; 5783 5784 static struct kobj_type slab_ktype = { 5785 .sysfs_ops = &slab_sysfs_ops, 5786 .release = kmem_cache_release, 5787 }; 5788 5789 static struct kset *slab_kset; 5790 5791 static inline struct kset *cache_kset(struct kmem_cache *s) 5792 { 5793 return slab_kset; 5794 } 5795 5796 #define ID_STR_LENGTH 64 5797 5798 /* Create a unique string id for a slab cache: 5799 * 5800 * Format :[flags-]size 5801 */ 5802 static char *create_unique_id(struct kmem_cache *s) 5803 { 5804 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5805 char *p = name; 5806 5807 BUG_ON(!name); 5808 5809 *p++ = ':'; 5810 /* 5811 * First flags affecting slabcache operations. We will only 5812 * get here for aliasable slabs so we do not need to support 5813 * too many flags. The flags here must cover all flags that 5814 * are matched during merging to guarantee that the id is 5815 * unique. 5816 */ 5817 if (s->flags & SLAB_CACHE_DMA) 5818 *p++ = 'd'; 5819 if (s->flags & SLAB_CACHE_DMA32) 5820 *p++ = 'D'; 5821 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5822 *p++ = 'a'; 5823 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5824 *p++ = 'F'; 5825 if (s->flags & SLAB_ACCOUNT) 5826 *p++ = 'A'; 5827 if (p != name + 1) 5828 *p++ = '-'; 5829 p += sprintf(p, "%07u", s->size); 5830 5831 BUG_ON(p > name + ID_STR_LENGTH - 1); 5832 return name; 5833 } 5834 5835 static int sysfs_slab_add(struct kmem_cache *s) 5836 { 5837 int err; 5838 const char *name; 5839 struct kset *kset = cache_kset(s); 5840 int unmergeable = slab_unmergeable(s); 5841 5842 if (!kset) { 5843 kobject_init(&s->kobj, &slab_ktype); 5844 return 0; 5845 } 5846 5847 if (!unmergeable && disable_higher_order_debug && 5848 (slub_debug & DEBUG_METADATA_FLAGS)) 5849 unmergeable = 1; 5850 5851 if (unmergeable) { 5852 /* 5853 * Slabcache can never be merged so we can use the name proper. 5854 * This is typically the case for debug situations. In that 5855 * case we can catch duplicate names easily. 5856 */ 5857 sysfs_remove_link(&slab_kset->kobj, s->name); 5858 name = s->name; 5859 } else { 5860 /* 5861 * Create a unique name for the slab as a target 5862 * for the symlinks. 5863 */ 5864 name = create_unique_id(s); 5865 } 5866 5867 s->kobj.kset = kset; 5868 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5869 if (err) 5870 goto out; 5871 5872 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5873 if (err) 5874 goto out_del_kobj; 5875 5876 if (!unmergeable) { 5877 /* Setup first alias */ 5878 sysfs_slab_alias(s, s->name); 5879 } 5880 out: 5881 if (!unmergeable) 5882 kfree(name); 5883 return err; 5884 out_del_kobj: 5885 kobject_del(&s->kobj); 5886 goto out; 5887 } 5888 5889 void sysfs_slab_unlink(struct kmem_cache *s) 5890 { 5891 if (slab_state >= FULL) 5892 kobject_del(&s->kobj); 5893 } 5894 5895 void sysfs_slab_release(struct kmem_cache *s) 5896 { 5897 if (slab_state >= FULL) 5898 kobject_put(&s->kobj); 5899 } 5900 5901 /* 5902 * Need to buffer aliases during bootup until sysfs becomes 5903 * available lest we lose that information. 5904 */ 5905 struct saved_alias { 5906 struct kmem_cache *s; 5907 const char *name; 5908 struct saved_alias *next; 5909 }; 5910 5911 static struct saved_alias *alias_list; 5912 5913 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5914 { 5915 struct saved_alias *al; 5916 5917 if (slab_state == FULL) { 5918 /* 5919 * If we have a leftover link then remove it. 5920 */ 5921 sysfs_remove_link(&slab_kset->kobj, name); 5922 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5923 } 5924 5925 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5926 if (!al) 5927 return -ENOMEM; 5928 5929 al->s = s; 5930 al->name = name; 5931 al->next = alias_list; 5932 alias_list = al; 5933 return 0; 5934 } 5935 5936 static int __init slab_sysfs_init(void) 5937 { 5938 struct kmem_cache *s; 5939 int err; 5940 5941 mutex_lock(&slab_mutex); 5942 5943 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 5944 if (!slab_kset) { 5945 mutex_unlock(&slab_mutex); 5946 pr_err("Cannot register slab subsystem.\n"); 5947 return -ENOSYS; 5948 } 5949 5950 slab_state = FULL; 5951 5952 list_for_each_entry(s, &slab_caches, list) { 5953 err = sysfs_slab_add(s); 5954 if (err) 5955 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5956 s->name); 5957 } 5958 5959 while (alias_list) { 5960 struct saved_alias *al = alias_list; 5961 5962 alias_list = alias_list->next; 5963 err = sysfs_slab_alias(al->s, al->name); 5964 if (err) 5965 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5966 al->name); 5967 kfree(al); 5968 } 5969 5970 mutex_unlock(&slab_mutex); 5971 return 0; 5972 } 5973 5974 __initcall(slab_sysfs_init); 5975 #endif /* CONFIG_SYSFS */ 5976 5977 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 5978 static int slab_debugfs_show(struct seq_file *seq, void *v) 5979 { 5980 struct loc_track *t = seq->private; 5981 struct location *l; 5982 unsigned long idx; 5983 5984 idx = (unsigned long) t->idx; 5985 if (idx < t->count) { 5986 l = &t->loc[idx]; 5987 5988 seq_printf(seq, "%7ld ", l->count); 5989 5990 if (l->addr) 5991 seq_printf(seq, "%pS", (void *)l->addr); 5992 else 5993 seq_puts(seq, "<not-available>"); 5994 5995 if (l->sum_time != l->min_time) { 5996 seq_printf(seq, " age=%ld/%llu/%ld", 5997 l->min_time, div_u64(l->sum_time, l->count), 5998 l->max_time); 5999 } else 6000 seq_printf(seq, " age=%ld", l->min_time); 6001 6002 if (l->min_pid != l->max_pid) 6003 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 6004 else 6005 seq_printf(seq, " pid=%ld", 6006 l->min_pid); 6007 6008 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 6009 seq_printf(seq, " cpus=%*pbl", 6010 cpumask_pr_args(to_cpumask(l->cpus))); 6011 6012 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 6013 seq_printf(seq, " nodes=%*pbl", 6014 nodemask_pr_args(&l->nodes)); 6015 6016 #ifdef CONFIG_STACKDEPOT 6017 { 6018 depot_stack_handle_t handle; 6019 unsigned long *entries; 6020 unsigned int nr_entries, j; 6021 6022 handle = READ_ONCE(l->handle); 6023 if (handle) { 6024 nr_entries = stack_depot_fetch(handle, &entries); 6025 seq_puts(seq, "\n"); 6026 for (j = 0; j < nr_entries; j++) 6027 seq_printf(seq, " %pS\n", (void *)entries[j]); 6028 } 6029 } 6030 #endif 6031 seq_puts(seq, "\n"); 6032 } 6033 6034 if (!idx && !t->count) 6035 seq_puts(seq, "No data\n"); 6036 6037 return 0; 6038 } 6039 6040 static void slab_debugfs_stop(struct seq_file *seq, void *v) 6041 { 6042 } 6043 6044 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 6045 { 6046 struct loc_track *t = seq->private; 6047 6048 t->idx = ++(*ppos); 6049 if (*ppos <= t->count) 6050 return ppos; 6051 6052 return NULL; 6053 } 6054 6055 static int cmp_loc_by_count(const void *a, const void *b, const void *data) 6056 { 6057 struct location *loc1 = (struct location *)a; 6058 struct location *loc2 = (struct location *)b; 6059 6060 if (loc1->count > loc2->count) 6061 return -1; 6062 else 6063 return 1; 6064 } 6065 6066 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 6067 { 6068 struct loc_track *t = seq->private; 6069 6070 t->idx = *ppos; 6071 return ppos; 6072 } 6073 6074 static const struct seq_operations slab_debugfs_sops = { 6075 .start = slab_debugfs_start, 6076 .next = slab_debugfs_next, 6077 .stop = slab_debugfs_stop, 6078 .show = slab_debugfs_show, 6079 }; 6080 6081 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 6082 { 6083 6084 struct kmem_cache_node *n; 6085 enum track_item alloc; 6086 int node; 6087 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 6088 sizeof(struct loc_track)); 6089 struct kmem_cache *s = file_inode(filep)->i_private; 6090 unsigned long *obj_map; 6091 6092 if (!t) 6093 return -ENOMEM; 6094 6095 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 6096 if (!obj_map) { 6097 seq_release_private(inode, filep); 6098 return -ENOMEM; 6099 } 6100 6101 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) 6102 alloc = TRACK_ALLOC; 6103 else 6104 alloc = TRACK_FREE; 6105 6106 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 6107 bitmap_free(obj_map); 6108 seq_release_private(inode, filep); 6109 return -ENOMEM; 6110 } 6111 6112 for_each_kmem_cache_node(s, node, n) { 6113 unsigned long flags; 6114 struct slab *slab; 6115 6116 if (!atomic_long_read(&n->nr_slabs)) 6117 continue; 6118 6119 spin_lock_irqsave(&n->list_lock, flags); 6120 list_for_each_entry(slab, &n->partial, slab_list) 6121 process_slab(t, s, slab, alloc, obj_map); 6122 list_for_each_entry(slab, &n->full, slab_list) 6123 process_slab(t, s, slab, alloc, obj_map); 6124 spin_unlock_irqrestore(&n->list_lock, flags); 6125 } 6126 6127 /* Sort locations by count */ 6128 sort_r(t->loc, t->count, sizeof(struct location), 6129 cmp_loc_by_count, NULL, NULL); 6130 6131 bitmap_free(obj_map); 6132 return 0; 6133 } 6134 6135 static int slab_debug_trace_release(struct inode *inode, struct file *file) 6136 { 6137 struct seq_file *seq = file->private_data; 6138 struct loc_track *t = seq->private; 6139 6140 free_loc_track(t); 6141 return seq_release_private(inode, file); 6142 } 6143 6144 static const struct file_operations slab_debugfs_fops = { 6145 .open = slab_debug_trace_open, 6146 .read = seq_read, 6147 .llseek = seq_lseek, 6148 .release = slab_debug_trace_release, 6149 }; 6150 6151 static void debugfs_slab_add(struct kmem_cache *s) 6152 { 6153 struct dentry *slab_cache_dir; 6154 6155 if (unlikely(!slab_debugfs_root)) 6156 return; 6157 6158 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 6159 6160 debugfs_create_file("alloc_traces", 0400, 6161 slab_cache_dir, s, &slab_debugfs_fops); 6162 6163 debugfs_create_file("free_traces", 0400, 6164 slab_cache_dir, s, &slab_debugfs_fops); 6165 } 6166 6167 void debugfs_slab_release(struct kmem_cache *s) 6168 { 6169 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root)); 6170 } 6171 6172 static int __init slab_debugfs_init(void) 6173 { 6174 struct kmem_cache *s; 6175 6176 slab_debugfs_root = debugfs_create_dir("slab", NULL); 6177 6178 list_for_each_entry(s, &slab_caches, list) 6179 if (s->flags & SLAB_STORE_USER) 6180 debugfs_slab_add(s); 6181 6182 return 0; 6183 6184 } 6185 __initcall(slab_debugfs_init); 6186 #endif 6187 /* 6188 * The /proc/slabinfo ABI 6189 */ 6190 #ifdef CONFIG_SLUB_DEBUG 6191 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 6192 { 6193 unsigned long nr_slabs = 0; 6194 unsigned long nr_objs = 0; 6195 unsigned long nr_free = 0; 6196 int node; 6197 struct kmem_cache_node *n; 6198 6199 for_each_kmem_cache_node(s, node, n) { 6200 nr_slabs += node_nr_slabs(n); 6201 nr_objs += node_nr_objs(n); 6202 nr_free += count_partial(n, count_free); 6203 } 6204 6205 sinfo->active_objs = nr_objs - nr_free; 6206 sinfo->num_objs = nr_objs; 6207 sinfo->active_slabs = nr_slabs; 6208 sinfo->num_slabs = nr_slabs; 6209 sinfo->objects_per_slab = oo_objects(s->oo); 6210 sinfo->cache_order = oo_order(s->oo); 6211 } 6212 6213 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 6214 { 6215 } 6216 6217 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 6218 size_t count, loff_t *ppos) 6219 { 6220 return -EIO; 6221 } 6222 #endif /* CONFIG_SLUB_DEBUG */ 6223