1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/proc_fs.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/kmsan.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ctype.h> 30 #include <linux/stackdepot.h> 31 #include <linux/debugobjects.h> 32 #include <linux/kallsyms.h> 33 #include <linux/kfence.h> 34 #include <linux/memory.h> 35 #include <linux/math64.h> 36 #include <linux/fault-inject.h> 37 #include <linux/stacktrace.h> 38 #include <linux/prefetch.h> 39 #include <linux/memcontrol.h> 40 #include <linux/random.h> 41 #include <kunit/test.h> 42 #include <kunit/test-bug.h> 43 #include <linux/sort.h> 44 45 #include <linux/debugfs.h> 46 #include <trace/events/kmem.h> 47 48 #include "internal.h" 49 50 /* 51 * Lock order: 52 * 1. slab_mutex (Global Mutex) 53 * 2. node->list_lock (Spinlock) 54 * 3. kmem_cache->cpu_slab->lock (Local lock) 55 * 4. slab_lock(slab) (Only on some arches) 56 * 5. object_map_lock (Only for debugging) 57 * 58 * slab_mutex 59 * 60 * The role of the slab_mutex is to protect the list of all the slabs 61 * and to synchronize major metadata changes to slab cache structures. 62 * Also synchronizes memory hotplug callbacks. 63 * 64 * slab_lock 65 * 66 * The slab_lock is a wrapper around the page lock, thus it is a bit 67 * spinlock. 68 * 69 * The slab_lock is only used on arches that do not have the ability 70 * to do a cmpxchg_double. It only protects: 71 * 72 * A. slab->freelist -> List of free objects in a slab 73 * B. slab->inuse -> Number of objects in use 74 * C. slab->objects -> Number of objects in slab 75 * D. slab->frozen -> frozen state 76 * 77 * Frozen slabs 78 * 79 * If a slab is frozen then it is exempt from list management. It is not 80 * on any list except per cpu partial list. The processor that froze the 81 * slab is the one who can perform list operations on the slab. Other 82 * processors may put objects onto the freelist but the processor that 83 * froze the slab is the only one that can retrieve the objects from the 84 * slab's freelist. 85 * 86 * list_lock 87 * 88 * The list_lock protects the partial and full list on each node and 89 * the partial slab counter. If taken then no new slabs may be added or 90 * removed from the lists nor make the number of partial slabs be modified. 91 * (Note that the total number of slabs is an atomic value that may be 92 * modified without taking the list lock). 93 * 94 * The list_lock is a centralized lock and thus we avoid taking it as 95 * much as possible. As long as SLUB does not have to handle partial 96 * slabs, operations can continue without any centralized lock. F.e. 97 * allocating a long series of objects that fill up slabs does not require 98 * the list lock. 99 * 100 * For debug caches, all allocations are forced to go through a list_lock 101 * protected region to serialize against concurrent validation. 102 * 103 * cpu_slab->lock local lock 104 * 105 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 106 * except the stat counters. This is a percpu structure manipulated only by 107 * the local cpu, so the lock protects against being preempted or interrupted 108 * by an irq. Fast path operations rely on lockless operations instead. 109 * 110 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption 111 * which means the lockless fastpath cannot be used as it might interfere with 112 * an in-progress slow path operations. In this case the local lock is always 113 * taken but it still utilizes the freelist for the common operations. 114 * 115 * lockless fastpaths 116 * 117 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 118 * are fully lockless when satisfied from the percpu slab (and when 119 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 120 * They also don't disable preemption or migration or irqs. They rely on 121 * the transaction id (tid) field to detect being preempted or moved to 122 * another cpu. 123 * 124 * irq, preemption, migration considerations 125 * 126 * Interrupts are disabled as part of list_lock or local_lock operations, or 127 * around the slab_lock operation, in order to make the slab allocator safe 128 * to use in the context of an irq. 129 * 130 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 131 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 132 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 133 * doesn't have to be revalidated in each section protected by the local lock. 134 * 135 * SLUB assigns one slab for allocation to each processor. 136 * Allocations only occur from these slabs called cpu slabs. 137 * 138 * Slabs with free elements are kept on a partial list and during regular 139 * operations no list for full slabs is used. If an object in a full slab is 140 * freed then the slab will show up again on the partial lists. 141 * We track full slabs for debugging purposes though because otherwise we 142 * cannot scan all objects. 143 * 144 * Slabs are freed when they become empty. Teardown and setup is 145 * minimal so we rely on the page allocators per cpu caches for 146 * fast frees and allocs. 147 * 148 * slab->frozen The slab is frozen and exempt from list processing. 149 * This means that the slab is dedicated to a purpose 150 * such as satisfying allocations for a specific 151 * processor. Objects may be freed in the slab while 152 * it is frozen but slab_free will then skip the usual 153 * list operations. It is up to the processor holding 154 * the slab to integrate the slab into the slab lists 155 * when the slab is no longer needed. 156 * 157 * One use of this flag is to mark slabs that are 158 * used for allocations. Then such a slab becomes a cpu 159 * slab. The cpu slab may be equipped with an additional 160 * freelist that allows lockless access to 161 * free objects in addition to the regular freelist 162 * that requires the slab lock. 163 * 164 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 165 * options set. This moves slab handling out of 166 * the fast path and disables lockless freelists. 167 */ 168 169 /* 170 * We could simply use migrate_disable()/enable() but as long as it's a 171 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 172 */ 173 #ifndef CONFIG_PREEMPT_RT 174 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 175 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 176 #define USE_LOCKLESS_FAST_PATH() (true) 177 #else 178 #define slub_get_cpu_ptr(var) \ 179 ({ \ 180 migrate_disable(); \ 181 this_cpu_ptr(var); \ 182 }) 183 #define slub_put_cpu_ptr(var) \ 184 do { \ 185 (void)(var); \ 186 migrate_enable(); \ 187 } while (0) 188 #define USE_LOCKLESS_FAST_PATH() (false) 189 #endif 190 191 #ifndef CONFIG_SLUB_TINY 192 #define __fastpath_inline __always_inline 193 #else 194 #define __fastpath_inline 195 #endif 196 197 #ifdef CONFIG_SLUB_DEBUG 198 #ifdef CONFIG_SLUB_DEBUG_ON 199 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 200 #else 201 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 202 #endif 203 #endif /* CONFIG_SLUB_DEBUG */ 204 205 /* Structure holding parameters for get_partial() call chain */ 206 struct partial_context { 207 struct slab **slab; 208 gfp_t flags; 209 unsigned int orig_size; 210 }; 211 212 static inline bool kmem_cache_debug(struct kmem_cache *s) 213 { 214 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 215 } 216 217 static inline bool slub_debug_orig_size(struct kmem_cache *s) 218 { 219 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) && 220 (s->flags & SLAB_KMALLOC)); 221 } 222 223 void *fixup_red_left(struct kmem_cache *s, void *p) 224 { 225 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 226 p += s->red_left_pad; 227 228 return p; 229 } 230 231 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 232 { 233 #ifdef CONFIG_SLUB_CPU_PARTIAL 234 return !kmem_cache_debug(s); 235 #else 236 return false; 237 #endif 238 } 239 240 /* 241 * Issues still to be resolved: 242 * 243 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 244 * 245 * - Variable sizing of the per node arrays 246 */ 247 248 /* Enable to log cmpxchg failures */ 249 #undef SLUB_DEBUG_CMPXCHG 250 251 #ifndef CONFIG_SLUB_TINY 252 /* 253 * Minimum number of partial slabs. These will be left on the partial 254 * lists even if they are empty. kmem_cache_shrink may reclaim them. 255 */ 256 #define MIN_PARTIAL 5 257 258 /* 259 * Maximum number of desirable partial slabs. 260 * The existence of more partial slabs makes kmem_cache_shrink 261 * sort the partial list by the number of objects in use. 262 */ 263 #define MAX_PARTIAL 10 264 #else 265 #define MIN_PARTIAL 0 266 #define MAX_PARTIAL 0 267 #endif 268 269 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 270 SLAB_POISON | SLAB_STORE_USER) 271 272 /* 273 * These debug flags cannot use CMPXCHG because there might be consistency 274 * issues when checking or reading debug information 275 */ 276 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 277 SLAB_TRACE) 278 279 280 /* 281 * Debugging flags that require metadata to be stored in the slab. These get 282 * disabled when slub_debug=O is used and a cache's min order increases with 283 * metadata. 284 */ 285 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 286 287 #define OO_SHIFT 16 288 #define OO_MASK ((1 << OO_SHIFT) - 1) 289 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 290 291 /* Internal SLUB flags */ 292 /* Poison object */ 293 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 294 /* Use cmpxchg_double */ 295 296 #ifdef system_has_freelist_aba 297 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 298 #else 299 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0U) 300 #endif 301 302 /* 303 * Tracking user of a slab. 304 */ 305 #define TRACK_ADDRS_COUNT 16 306 struct track { 307 unsigned long addr; /* Called from address */ 308 #ifdef CONFIG_STACKDEPOT 309 depot_stack_handle_t handle; 310 #endif 311 int cpu; /* Was running on cpu */ 312 int pid; /* Pid context */ 313 unsigned long when; /* When did the operation occur */ 314 }; 315 316 enum track_item { TRACK_ALLOC, TRACK_FREE }; 317 318 #ifdef SLAB_SUPPORTS_SYSFS 319 static int sysfs_slab_add(struct kmem_cache *); 320 static int sysfs_slab_alias(struct kmem_cache *, const char *); 321 #else 322 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 323 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 324 { return 0; } 325 #endif 326 327 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 328 static void debugfs_slab_add(struct kmem_cache *); 329 #else 330 static inline void debugfs_slab_add(struct kmem_cache *s) { } 331 #endif 332 333 static inline void stat(const struct kmem_cache *s, enum stat_item si) 334 { 335 #ifdef CONFIG_SLUB_STATS 336 /* 337 * The rmw is racy on a preemptible kernel but this is acceptable, so 338 * avoid this_cpu_add()'s irq-disable overhead. 339 */ 340 raw_cpu_inc(s->cpu_slab->stat[si]); 341 #endif 342 } 343 344 /* 345 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 346 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 347 * differ during memory hotplug/hotremove operations. 348 * Protected by slab_mutex. 349 */ 350 static nodemask_t slab_nodes; 351 352 #ifndef CONFIG_SLUB_TINY 353 /* 354 * Workqueue used for flush_cpu_slab(). 355 */ 356 static struct workqueue_struct *flushwq; 357 #endif 358 359 /******************************************************************** 360 * Core slab cache functions 361 *******************************************************************/ 362 363 /* 364 * freeptr_t represents a SLUB freelist pointer, which might be encoded 365 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled. 366 */ 367 typedef struct { unsigned long v; } freeptr_t; 368 369 /* 370 * Returns freelist pointer (ptr). With hardening, this is obfuscated 371 * with an XOR of the address where the pointer is held and a per-cache 372 * random number. 373 */ 374 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s, 375 void *ptr, unsigned long ptr_addr) 376 { 377 unsigned long encoded; 378 379 #ifdef CONFIG_SLAB_FREELIST_HARDENED 380 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr); 381 #else 382 encoded = (unsigned long)ptr; 383 #endif 384 return (freeptr_t){.v = encoded}; 385 } 386 387 static inline void *freelist_ptr_decode(const struct kmem_cache *s, 388 freeptr_t ptr, unsigned long ptr_addr) 389 { 390 void *decoded; 391 392 #ifdef CONFIG_SLAB_FREELIST_HARDENED 393 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr)); 394 #else 395 decoded = (void *)ptr.v; 396 #endif 397 return decoded; 398 } 399 400 /* Returns the freelist pointer recorded at location ptr_addr. */ 401 static inline void *freelist_dereference(const struct kmem_cache *s, 402 void *ptr_addr) 403 { 404 return freelist_ptr_decode(s, *(freeptr_t *)(ptr_addr), 405 (unsigned long)ptr_addr); 406 } 407 408 static inline void *get_freepointer(struct kmem_cache *s, void *object) 409 { 410 object = kasan_reset_tag(object); 411 return freelist_dereference(s, (freeptr_t *)(object + s->offset)); 412 } 413 414 #ifndef CONFIG_SLUB_TINY 415 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 416 { 417 prefetchw(object + s->offset); 418 } 419 #endif 420 421 /* 422 * When running under KMSAN, get_freepointer_safe() may return an uninitialized 423 * pointer value in the case the current thread loses the race for the next 424 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in 425 * slab_alloc_node() will fail, so the uninitialized value won't be used, but 426 * KMSAN will still check all arguments of cmpxchg because of imperfect 427 * handling of inline assembly. 428 * To work around this problem, we apply __no_kmsan_checks to ensure that 429 * get_freepointer_safe() returns initialized memory. 430 */ 431 __no_kmsan_checks 432 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 433 { 434 unsigned long freepointer_addr; 435 freeptr_t p; 436 437 if (!debug_pagealloc_enabled_static()) 438 return get_freepointer(s, object); 439 440 object = kasan_reset_tag(object); 441 freepointer_addr = (unsigned long)object + s->offset; 442 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p)); 443 return freelist_ptr_decode(s, p, freepointer_addr); 444 } 445 446 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 447 { 448 unsigned long freeptr_addr = (unsigned long)object + s->offset; 449 450 #ifdef CONFIG_SLAB_FREELIST_HARDENED 451 BUG_ON(object == fp); /* naive detection of double free or corruption */ 452 #endif 453 454 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 455 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr); 456 } 457 458 /* Loop over all objects in a slab */ 459 #define for_each_object(__p, __s, __addr, __objects) \ 460 for (__p = fixup_red_left(__s, __addr); \ 461 __p < (__addr) + (__objects) * (__s)->size; \ 462 __p += (__s)->size) 463 464 static inline unsigned int order_objects(unsigned int order, unsigned int size) 465 { 466 return ((unsigned int)PAGE_SIZE << order) / size; 467 } 468 469 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 470 unsigned int size) 471 { 472 struct kmem_cache_order_objects x = { 473 (order << OO_SHIFT) + order_objects(order, size) 474 }; 475 476 return x; 477 } 478 479 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 480 { 481 return x.x >> OO_SHIFT; 482 } 483 484 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 485 { 486 return x.x & OO_MASK; 487 } 488 489 #ifdef CONFIG_SLUB_CPU_PARTIAL 490 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 491 { 492 unsigned int nr_slabs; 493 494 s->cpu_partial = nr_objects; 495 496 /* 497 * We take the number of objects but actually limit the number of 498 * slabs on the per cpu partial list, in order to limit excessive 499 * growth of the list. For simplicity we assume that the slabs will 500 * be half-full. 501 */ 502 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); 503 s->cpu_partial_slabs = nr_slabs; 504 } 505 #else 506 static inline void 507 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 508 { 509 } 510 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 511 512 /* 513 * Per slab locking using the pagelock 514 */ 515 static __always_inline void slab_lock(struct slab *slab) 516 { 517 struct page *page = slab_page(slab); 518 519 VM_BUG_ON_PAGE(PageTail(page), page); 520 bit_spin_lock(PG_locked, &page->flags); 521 } 522 523 static __always_inline void slab_unlock(struct slab *slab) 524 { 525 struct page *page = slab_page(slab); 526 527 VM_BUG_ON_PAGE(PageTail(page), page); 528 __bit_spin_unlock(PG_locked, &page->flags); 529 } 530 531 static inline bool 532 __update_freelist_fast(struct slab *slab, 533 void *freelist_old, unsigned long counters_old, 534 void *freelist_new, unsigned long counters_new) 535 { 536 #ifdef system_has_freelist_aba 537 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old }; 538 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new }; 539 540 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full); 541 #else 542 return false; 543 #endif 544 } 545 546 static inline bool 547 __update_freelist_slow(struct slab *slab, 548 void *freelist_old, unsigned long counters_old, 549 void *freelist_new, unsigned long counters_new) 550 { 551 bool ret = false; 552 553 slab_lock(slab); 554 if (slab->freelist == freelist_old && 555 slab->counters == counters_old) { 556 slab->freelist = freelist_new; 557 slab->counters = counters_new; 558 ret = true; 559 } 560 slab_unlock(slab); 561 562 return ret; 563 } 564 565 /* 566 * Interrupts must be disabled (for the fallback code to work right), typically 567 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is 568 * part of bit_spin_lock(), is sufficient because the policy is not to allow any 569 * allocation/ free operation in hardirq context. Therefore nothing can 570 * interrupt the operation. 571 */ 572 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab, 573 void *freelist_old, unsigned long counters_old, 574 void *freelist_new, unsigned long counters_new, 575 const char *n) 576 { 577 bool ret; 578 579 if (USE_LOCKLESS_FAST_PATH()) 580 lockdep_assert_irqs_disabled(); 581 582 if (s->flags & __CMPXCHG_DOUBLE) { 583 ret = __update_freelist_fast(slab, freelist_old, counters_old, 584 freelist_new, counters_new); 585 } else { 586 ret = __update_freelist_slow(slab, freelist_old, counters_old, 587 freelist_new, counters_new); 588 } 589 if (likely(ret)) 590 return true; 591 592 cpu_relax(); 593 stat(s, CMPXCHG_DOUBLE_FAIL); 594 595 #ifdef SLUB_DEBUG_CMPXCHG 596 pr_info("%s %s: cmpxchg double redo ", n, s->name); 597 #endif 598 599 return false; 600 } 601 602 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab, 603 void *freelist_old, unsigned long counters_old, 604 void *freelist_new, unsigned long counters_new, 605 const char *n) 606 { 607 bool ret; 608 609 if (s->flags & __CMPXCHG_DOUBLE) { 610 ret = __update_freelist_fast(slab, freelist_old, counters_old, 611 freelist_new, counters_new); 612 } else { 613 unsigned long flags; 614 615 local_irq_save(flags); 616 ret = __update_freelist_slow(slab, freelist_old, counters_old, 617 freelist_new, counters_new); 618 local_irq_restore(flags); 619 } 620 if (likely(ret)) 621 return true; 622 623 cpu_relax(); 624 stat(s, CMPXCHG_DOUBLE_FAIL); 625 626 #ifdef SLUB_DEBUG_CMPXCHG 627 pr_info("%s %s: cmpxchg double redo ", n, s->name); 628 #endif 629 630 return false; 631 } 632 633 #ifdef CONFIG_SLUB_DEBUG 634 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 635 static DEFINE_SPINLOCK(object_map_lock); 636 637 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 638 struct slab *slab) 639 { 640 void *addr = slab_address(slab); 641 void *p; 642 643 bitmap_zero(obj_map, slab->objects); 644 645 for (p = slab->freelist; p; p = get_freepointer(s, p)) 646 set_bit(__obj_to_index(s, addr, p), obj_map); 647 } 648 649 #if IS_ENABLED(CONFIG_KUNIT) 650 static bool slab_add_kunit_errors(void) 651 { 652 struct kunit_resource *resource; 653 654 if (!kunit_get_current_test()) 655 return false; 656 657 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 658 if (!resource) 659 return false; 660 661 (*(int *)resource->data)++; 662 kunit_put_resource(resource); 663 return true; 664 } 665 #else 666 static inline bool slab_add_kunit_errors(void) { return false; } 667 #endif 668 669 static inline unsigned int size_from_object(struct kmem_cache *s) 670 { 671 if (s->flags & SLAB_RED_ZONE) 672 return s->size - s->red_left_pad; 673 674 return s->size; 675 } 676 677 static inline void *restore_red_left(struct kmem_cache *s, void *p) 678 { 679 if (s->flags & SLAB_RED_ZONE) 680 p -= s->red_left_pad; 681 682 return p; 683 } 684 685 /* 686 * Debug settings: 687 */ 688 #if defined(CONFIG_SLUB_DEBUG_ON) 689 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 690 #else 691 static slab_flags_t slub_debug; 692 #endif 693 694 static char *slub_debug_string; 695 static int disable_higher_order_debug; 696 697 /* 698 * slub is about to manipulate internal object metadata. This memory lies 699 * outside the range of the allocated object, so accessing it would normally 700 * be reported by kasan as a bounds error. metadata_access_enable() is used 701 * to tell kasan that these accesses are OK. 702 */ 703 static inline void metadata_access_enable(void) 704 { 705 kasan_disable_current(); 706 } 707 708 static inline void metadata_access_disable(void) 709 { 710 kasan_enable_current(); 711 } 712 713 /* 714 * Object debugging 715 */ 716 717 /* Verify that a pointer has an address that is valid within a slab page */ 718 static inline int check_valid_pointer(struct kmem_cache *s, 719 struct slab *slab, void *object) 720 { 721 void *base; 722 723 if (!object) 724 return 1; 725 726 base = slab_address(slab); 727 object = kasan_reset_tag(object); 728 object = restore_red_left(s, object); 729 if (object < base || object >= base + slab->objects * s->size || 730 (object - base) % s->size) { 731 return 0; 732 } 733 734 return 1; 735 } 736 737 static void print_section(char *level, char *text, u8 *addr, 738 unsigned int length) 739 { 740 metadata_access_enable(); 741 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 742 16, 1, kasan_reset_tag((void *)addr), length, 1); 743 metadata_access_disable(); 744 } 745 746 /* 747 * See comment in calculate_sizes(). 748 */ 749 static inline bool freeptr_outside_object(struct kmem_cache *s) 750 { 751 return s->offset >= s->inuse; 752 } 753 754 /* 755 * Return offset of the end of info block which is inuse + free pointer if 756 * not overlapping with object. 757 */ 758 static inline unsigned int get_info_end(struct kmem_cache *s) 759 { 760 if (freeptr_outside_object(s)) 761 return s->inuse + sizeof(void *); 762 else 763 return s->inuse; 764 } 765 766 static struct track *get_track(struct kmem_cache *s, void *object, 767 enum track_item alloc) 768 { 769 struct track *p; 770 771 p = object + get_info_end(s); 772 773 return kasan_reset_tag(p + alloc); 774 } 775 776 #ifdef CONFIG_STACKDEPOT 777 static noinline depot_stack_handle_t set_track_prepare(void) 778 { 779 depot_stack_handle_t handle; 780 unsigned long entries[TRACK_ADDRS_COUNT]; 781 unsigned int nr_entries; 782 783 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 784 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 785 786 return handle; 787 } 788 #else 789 static inline depot_stack_handle_t set_track_prepare(void) 790 { 791 return 0; 792 } 793 #endif 794 795 static void set_track_update(struct kmem_cache *s, void *object, 796 enum track_item alloc, unsigned long addr, 797 depot_stack_handle_t handle) 798 { 799 struct track *p = get_track(s, object, alloc); 800 801 #ifdef CONFIG_STACKDEPOT 802 p->handle = handle; 803 #endif 804 p->addr = addr; 805 p->cpu = smp_processor_id(); 806 p->pid = current->pid; 807 p->when = jiffies; 808 } 809 810 static __always_inline void set_track(struct kmem_cache *s, void *object, 811 enum track_item alloc, unsigned long addr) 812 { 813 depot_stack_handle_t handle = set_track_prepare(); 814 815 set_track_update(s, object, alloc, addr, handle); 816 } 817 818 static void init_tracking(struct kmem_cache *s, void *object) 819 { 820 struct track *p; 821 822 if (!(s->flags & SLAB_STORE_USER)) 823 return; 824 825 p = get_track(s, object, TRACK_ALLOC); 826 memset(p, 0, 2*sizeof(struct track)); 827 } 828 829 static void print_track(const char *s, struct track *t, unsigned long pr_time) 830 { 831 depot_stack_handle_t handle __maybe_unused; 832 833 if (!t->addr) 834 return; 835 836 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 837 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 838 #ifdef CONFIG_STACKDEPOT 839 handle = READ_ONCE(t->handle); 840 if (handle) 841 stack_depot_print(handle); 842 else 843 pr_err("object allocation/free stack trace missing\n"); 844 #endif 845 } 846 847 void print_tracking(struct kmem_cache *s, void *object) 848 { 849 unsigned long pr_time = jiffies; 850 if (!(s->flags & SLAB_STORE_USER)) 851 return; 852 853 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 854 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 855 } 856 857 static void print_slab_info(const struct slab *slab) 858 { 859 struct folio *folio = (struct folio *)slab_folio(slab); 860 861 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 862 slab, slab->objects, slab->inuse, slab->freelist, 863 folio_flags(folio, 0)); 864 } 865 866 /* 867 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API 868 * family will round up the real request size to these fixed ones, so 869 * there could be an extra area than what is requested. Save the original 870 * request size in the meta data area, for better debug and sanity check. 871 */ 872 static inline void set_orig_size(struct kmem_cache *s, 873 void *object, unsigned int orig_size) 874 { 875 void *p = kasan_reset_tag(object); 876 877 if (!slub_debug_orig_size(s)) 878 return; 879 880 #ifdef CONFIG_KASAN_GENERIC 881 /* 882 * KASAN could save its free meta data in object's data area at 883 * offset 0, if the size is larger than 'orig_size', it will 884 * overlap the data redzone in [orig_size+1, object_size], and 885 * the check should be skipped. 886 */ 887 if (kasan_metadata_size(s, true) > orig_size) 888 orig_size = s->object_size; 889 #endif 890 891 p += get_info_end(s); 892 p += sizeof(struct track) * 2; 893 894 *(unsigned int *)p = orig_size; 895 } 896 897 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object) 898 { 899 void *p = kasan_reset_tag(object); 900 901 if (!slub_debug_orig_size(s)) 902 return s->object_size; 903 904 p += get_info_end(s); 905 p += sizeof(struct track) * 2; 906 907 return *(unsigned int *)p; 908 } 909 910 void skip_orig_size_check(struct kmem_cache *s, const void *object) 911 { 912 set_orig_size(s, (void *)object, s->object_size); 913 } 914 915 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 916 { 917 struct va_format vaf; 918 va_list args; 919 920 va_start(args, fmt); 921 vaf.fmt = fmt; 922 vaf.va = &args; 923 pr_err("=============================================================================\n"); 924 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 925 pr_err("-----------------------------------------------------------------------------\n\n"); 926 va_end(args); 927 } 928 929 __printf(2, 3) 930 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 931 { 932 struct va_format vaf; 933 va_list args; 934 935 if (slab_add_kunit_errors()) 936 return; 937 938 va_start(args, fmt); 939 vaf.fmt = fmt; 940 vaf.va = &args; 941 pr_err("FIX %s: %pV\n", s->name, &vaf); 942 va_end(args); 943 } 944 945 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 946 { 947 unsigned int off; /* Offset of last byte */ 948 u8 *addr = slab_address(slab); 949 950 print_tracking(s, p); 951 952 print_slab_info(slab); 953 954 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 955 p, p - addr, get_freepointer(s, p)); 956 957 if (s->flags & SLAB_RED_ZONE) 958 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 959 s->red_left_pad); 960 else if (p > addr + 16) 961 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 962 963 print_section(KERN_ERR, "Object ", p, 964 min_t(unsigned int, s->object_size, PAGE_SIZE)); 965 if (s->flags & SLAB_RED_ZONE) 966 print_section(KERN_ERR, "Redzone ", p + s->object_size, 967 s->inuse - s->object_size); 968 969 off = get_info_end(s); 970 971 if (s->flags & SLAB_STORE_USER) 972 off += 2 * sizeof(struct track); 973 974 if (slub_debug_orig_size(s)) 975 off += sizeof(unsigned int); 976 977 off += kasan_metadata_size(s, false); 978 979 if (off != size_from_object(s)) 980 /* Beginning of the filler is the free pointer */ 981 print_section(KERN_ERR, "Padding ", p + off, 982 size_from_object(s) - off); 983 984 dump_stack(); 985 } 986 987 static void object_err(struct kmem_cache *s, struct slab *slab, 988 u8 *object, char *reason) 989 { 990 if (slab_add_kunit_errors()) 991 return; 992 993 slab_bug(s, "%s", reason); 994 print_trailer(s, slab, object); 995 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 996 } 997 998 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 999 void **freelist, void *nextfree) 1000 { 1001 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 1002 !check_valid_pointer(s, slab, nextfree) && freelist) { 1003 object_err(s, slab, *freelist, "Freechain corrupt"); 1004 *freelist = NULL; 1005 slab_fix(s, "Isolate corrupted freechain"); 1006 return true; 1007 } 1008 1009 return false; 1010 } 1011 1012 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 1013 const char *fmt, ...) 1014 { 1015 va_list args; 1016 char buf[100]; 1017 1018 if (slab_add_kunit_errors()) 1019 return; 1020 1021 va_start(args, fmt); 1022 vsnprintf(buf, sizeof(buf), fmt, args); 1023 va_end(args); 1024 slab_bug(s, "%s", buf); 1025 print_slab_info(slab); 1026 dump_stack(); 1027 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1028 } 1029 1030 static void init_object(struct kmem_cache *s, void *object, u8 val) 1031 { 1032 u8 *p = kasan_reset_tag(object); 1033 unsigned int poison_size = s->object_size; 1034 1035 if (s->flags & SLAB_RED_ZONE) { 1036 memset(p - s->red_left_pad, val, s->red_left_pad); 1037 1038 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1039 /* 1040 * Redzone the extra allocated space by kmalloc than 1041 * requested, and the poison size will be limited to 1042 * the original request size accordingly. 1043 */ 1044 poison_size = get_orig_size(s, object); 1045 } 1046 } 1047 1048 if (s->flags & __OBJECT_POISON) { 1049 memset(p, POISON_FREE, poison_size - 1); 1050 p[poison_size - 1] = POISON_END; 1051 } 1052 1053 if (s->flags & SLAB_RED_ZONE) 1054 memset(p + poison_size, val, s->inuse - poison_size); 1055 } 1056 1057 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 1058 void *from, void *to) 1059 { 1060 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 1061 memset(from, data, to - from); 1062 } 1063 1064 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 1065 u8 *object, char *what, 1066 u8 *start, unsigned int value, unsigned int bytes) 1067 { 1068 u8 *fault; 1069 u8 *end; 1070 u8 *addr = slab_address(slab); 1071 1072 metadata_access_enable(); 1073 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 1074 metadata_access_disable(); 1075 if (!fault) 1076 return 1; 1077 1078 end = start + bytes; 1079 while (end > fault && end[-1] == value) 1080 end--; 1081 1082 if (slab_add_kunit_errors()) 1083 goto skip_bug_print; 1084 1085 slab_bug(s, "%s overwritten", what); 1086 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 1087 fault, end - 1, fault - addr, 1088 fault[0], value); 1089 print_trailer(s, slab, object); 1090 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1091 1092 skip_bug_print: 1093 restore_bytes(s, what, value, fault, end); 1094 return 0; 1095 } 1096 1097 /* 1098 * Object layout: 1099 * 1100 * object address 1101 * Bytes of the object to be managed. 1102 * If the freepointer may overlay the object then the free 1103 * pointer is at the middle of the object. 1104 * 1105 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 1106 * 0xa5 (POISON_END) 1107 * 1108 * object + s->object_size 1109 * Padding to reach word boundary. This is also used for Redzoning. 1110 * Padding is extended by another word if Redzoning is enabled and 1111 * object_size == inuse. 1112 * 1113 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 1114 * 0xcc (RED_ACTIVE) for objects in use. 1115 * 1116 * object + s->inuse 1117 * Meta data starts here. 1118 * 1119 * A. Free pointer (if we cannot overwrite object on free) 1120 * B. Tracking data for SLAB_STORE_USER 1121 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled) 1122 * D. Padding to reach required alignment boundary or at minimum 1123 * one word if debugging is on to be able to detect writes 1124 * before the word boundary. 1125 * 1126 * Padding is done using 0x5a (POISON_INUSE) 1127 * 1128 * object + s->size 1129 * Nothing is used beyond s->size. 1130 * 1131 * If slabcaches are merged then the object_size and inuse boundaries are mostly 1132 * ignored. And therefore no slab options that rely on these boundaries 1133 * may be used with merged slabcaches. 1134 */ 1135 1136 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1137 { 1138 unsigned long off = get_info_end(s); /* The end of info */ 1139 1140 if (s->flags & SLAB_STORE_USER) { 1141 /* We also have user information there */ 1142 off += 2 * sizeof(struct track); 1143 1144 if (s->flags & SLAB_KMALLOC) 1145 off += sizeof(unsigned int); 1146 } 1147 1148 off += kasan_metadata_size(s, false); 1149 1150 if (size_from_object(s) == off) 1151 return 1; 1152 1153 return check_bytes_and_report(s, slab, p, "Object padding", 1154 p + off, POISON_INUSE, size_from_object(s) - off); 1155 } 1156 1157 /* Check the pad bytes at the end of a slab page */ 1158 static void slab_pad_check(struct kmem_cache *s, struct slab *slab) 1159 { 1160 u8 *start; 1161 u8 *fault; 1162 u8 *end; 1163 u8 *pad; 1164 int length; 1165 int remainder; 1166 1167 if (!(s->flags & SLAB_POISON)) 1168 return; 1169 1170 start = slab_address(slab); 1171 length = slab_size(slab); 1172 end = start + length; 1173 remainder = length % s->size; 1174 if (!remainder) 1175 return; 1176 1177 pad = end - remainder; 1178 metadata_access_enable(); 1179 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1180 metadata_access_disable(); 1181 if (!fault) 1182 return; 1183 while (end > fault && end[-1] == POISON_INUSE) 1184 end--; 1185 1186 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1187 fault, end - 1, fault - start); 1188 print_section(KERN_ERR, "Padding ", pad, remainder); 1189 1190 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1191 } 1192 1193 static int check_object(struct kmem_cache *s, struct slab *slab, 1194 void *object, u8 val) 1195 { 1196 u8 *p = object; 1197 u8 *endobject = object + s->object_size; 1198 unsigned int orig_size; 1199 1200 if (s->flags & SLAB_RED_ZONE) { 1201 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1202 object - s->red_left_pad, val, s->red_left_pad)) 1203 return 0; 1204 1205 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1206 endobject, val, s->inuse - s->object_size)) 1207 return 0; 1208 1209 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1210 orig_size = get_orig_size(s, object); 1211 1212 if (s->object_size > orig_size && 1213 !check_bytes_and_report(s, slab, object, 1214 "kmalloc Redzone", p + orig_size, 1215 val, s->object_size - orig_size)) { 1216 return 0; 1217 } 1218 } 1219 } else { 1220 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1221 check_bytes_and_report(s, slab, p, "Alignment padding", 1222 endobject, POISON_INUSE, 1223 s->inuse - s->object_size); 1224 } 1225 } 1226 1227 if (s->flags & SLAB_POISON) { 1228 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 1229 (!check_bytes_and_report(s, slab, p, "Poison", p, 1230 POISON_FREE, s->object_size - 1) || 1231 !check_bytes_and_report(s, slab, p, "End Poison", 1232 p + s->object_size - 1, POISON_END, 1))) 1233 return 0; 1234 /* 1235 * check_pad_bytes cleans up on its own. 1236 */ 1237 check_pad_bytes(s, slab, p); 1238 } 1239 1240 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) 1241 /* 1242 * Object and freepointer overlap. Cannot check 1243 * freepointer while object is allocated. 1244 */ 1245 return 1; 1246 1247 /* Check free pointer validity */ 1248 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) { 1249 object_err(s, slab, p, "Freepointer corrupt"); 1250 /* 1251 * No choice but to zap it and thus lose the remainder 1252 * of the free objects in this slab. May cause 1253 * another error because the object count is now wrong. 1254 */ 1255 set_freepointer(s, p, NULL); 1256 return 0; 1257 } 1258 return 1; 1259 } 1260 1261 static int check_slab(struct kmem_cache *s, struct slab *slab) 1262 { 1263 int maxobj; 1264 1265 if (!folio_test_slab(slab_folio(slab))) { 1266 slab_err(s, slab, "Not a valid slab page"); 1267 return 0; 1268 } 1269 1270 maxobj = order_objects(slab_order(slab), s->size); 1271 if (slab->objects > maxobj) { 1272 slab_err(s, slab, "objects %u > max %u", 1273 slab->objects, maxobj); 1274 return 0; 1275 } 1276 if (slab->inuse > slab->objects) { 1277 slab_err(s, slab, "inuse %u > max %u", 1278 slab->inuse, slab->objects); 1279 return 0; 1280 } 1281 /* Slab_pad_check fixes things up after itself */ 1282 slab_pad_check(s, slab); 1283 return 1; 1284 } 1285 1286 /* 1287 * Determine if a certain object in a slab is on the freelist. Must hold the 1288 * slab lock to guarantee that the chains are in a consistent state. 1289 */ 1290 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1291 { 1292 int nr = 0; 1293 void *fp; 1294 void *object = NULL; 1295 int max_objects; 1296 1297 fp = slab->freelist; 1298 while (fp && nr <= slab->objects) { 1299 if (fp == search) 1300 return 1; 1301 if (!check_valid_pointer(s, slab, fp)) { 1302 if (object) { 1303 object_err(s, slab, object, 1304 "Freechain corrupt"); 1305 set_freepointer(s, object, NULL); 1306 } else { 1307 slab_err(s, slab, "Freepointer corrupt"); 1308 slab->freelist = NULL; 1309 slab->inuse = slab->objects; 1310 slab_fix(s, "Freelist cleared"); 1311 return 0; 1312 } 1313 break; 1314 } 1315 object = fp; 1316 fp = get_freepointer(s, object); 1317 nr++; 1318 } 1319 1320 max_objects = order_objects(slab_order(slab), s->size); 1321 if (max_objects > MAX_OBJS_PER_PAGE) 1322 max_objects = MAX_OBJS_PER_PAGE; 1323 1324 if (slab->objects != max_objects) { 1325 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1326 slab->objects, max_objects); 1327 slab->objects = max_objects; 1328 slab_fix(s, "Number of objects adjusted"); 1329 } 1330 if (slab->inuse != slab->objects - nr) { 1331 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1332 slab->inuse, slab->objects - nr); 1333 slab->inuse = slab->objects - nr; 1334 slab_fix(s, "Object count adjusted"); 1335 } 1336 return search == NULL; 1337 } 1338 1339 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1340 int alloc) 1341 { 1342 if (s->flags & SLAB_TRACE) { 1343 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1344 s->name, 1345 alloc ? "alloc" : "free", 1346 object, slab->inuse, 1347 slab->freelist); 1348 1349 if (!alloc) 1350 print_section(KERN_INFO, "Object ", (void *)object, 1351 s->object_size); 1352 1353 dump_stack(); 1354 } 1355 } 1356 1357 /* 1358 * Tracking of fully allocated slabs for debugging purposes. 1359 */ 1360 static void add_full(struct kmem_cache *s, 1361 struct kmem_cache_node *n, struct slab *slab) 1362 { 1363 if (!(s->flags & SLAB_STORE_USER)) 1364 return; 1365 1366 lockdep_assert_held(&n->list_lock); 1367 list_add(&slab->slab_list, &n->full); 1368 } 1369 1370 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1371 { 1372 if (!(s->flags & SLAB_STORE_USER)) 1373 return; 1374 1375 lockdep_assert_held(&n->list_lock); 1376 list_del(&slab->slab_list); 1377 } 1378 1379 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1380 { 1381 return atomic_long_read(&n->nr_slabs); 1382 } 1383 1384 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1385 { 1386 struct kmem_cache_node *n = get_node(s, node); 1387 1388 /* 1389 * May be called early in order to allocate a slab for the 1390 * kmem_cache_node structure. Solve the chicken-egg 1391 * dilemma by deferring the increment of the count during 1392 * bootstrap (see early_kmem_cache_node_alloc). 1393 */ 1394 if (likely(n)) { 1395 atomic_long_inc(&n->nr_slabs); 1396 atomic_long_add(objects, &n->total_objects); 1397 } 1398 } 1399 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1400 { 1401 struct kmem_cache_node *n = get_node(s, node); 1402 1403 atomic_long_dec(&n->nr_slabs); 1404 atomic_long_sub(objects, &n->total_objects); 1405 } 1406 1407 /* Object debug checks for alloc/free paths */ 1408 static void setup_object_debug(struct kmem_cache *s, void *object) 1409 { 1410 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1411 return; 1412 1413 init_object(s, object, SLUB_RED_INACTIVE); 1414 init_tracking(s, object); 1415 } 1416 1417 static 1418 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1419 { 1420 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1421 return; 1422 1423 metadata_access_enable(); 1424 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1425 metadata_access_disable(); 1426 } 1427 1428 static inline int alloc_consistency_checks(struct kmem_cache *s, 1429 struct slab *slab, void *object) 1430 { 1431 if (!check_slab(s, slab)) 1432 return 0; 1433 1434 if (!check_valid_pointer(s, slab, object)) { 1435 object_err(s, slab, object, "Freelist Pointer check fails"); 1436 return 0; 1437 } 1438 1439 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1440 return 0; 1441 1442 return 1; 1443 } 1444 1445 static noinline bool alloc_debug_processing(struct kmem_cache *s, 1446 struct slab *slab, void *object, int orig_size) 1447 { 1448 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1449 if (!alloc_consistency_checks(s, slab, object)) 1450 goto bad; 1451 } 1452 1453 /* Success. Perform special debug activities for allocs */ 1454 trace(s, slab, object, 1); 1455 set_orig_size(s, object, orig_size); 1456 init_object(s, object, SLUB_RED_ACTIVE); 1457 return true; 1458 1459 bad: 1460 if (folio_test_slab(slab_folio(slab))) { 1461 /* 1462 * If this is a slab page then lets do the best we can 1463 * to avoid issues in the future. Marking all objects 1464 * as used avoids touching the remaining objects. 1465 */ 1466 slab_fix(s, "Marking all objects used"); 1467 slab->inuse = slab->objects; 1468 slab->freelist = NULL; 1469 } 1470 return false; 1471 } 1472 1473 static inline int free_consistency_checks(struct kmem_cache *s, 1474 struct slab *slab, void *object, unsigned long addr) 1475 { 1476 if (!check_valid_pointer(s, slab, object)) { 1477 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1478 return 0; 1479 } 1480 1481 if (on_freelist(s, slab, object)) { 1482 object_err(s, slab, object, "Object already free"); 1483 return 0; 1484 } 1485 1486 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1487 return 0; 1488 1489 if (unlikely(s != slab->slab_cache)) { 1490 if (!folio_test_slab(slab_folio(slab))) { 1491 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", 1492 object); 1493 } else if (!slab->slab_cache) { 1494 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1495 object); 1496 dump_stack(); 1497 } else 1498 object_err(s, slab, object, 1499 "page slab pointer corrupt."); 1500 return 0; 1501 } 1502 return 1; 1503 } 1504 1505 /* 1506 * Parse a block of slub_debug options. Blocks are delimited by ';' 1507 * 1508 * @str: start of block 1509 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1510 * @slabs: return start of list of slabs, or NULL when there's no list 1511 * @init: assume this is initial parsing and not per-kmem-create parsing 1512 * 1513 * returns the start of next block if there's any, or NULL 1514 */ 1515 static char * 1516 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1517 { 1518 bool higher_order_disable = false; 1519 1520 /* Skip any completely empty blocks */ 1521 while (*str && *str == ';') 1522 str++; 1523 1524 if (*str == ',') { 1525 /* 1526 * No options but restriction on slabs. This means full 1527 * debugging for slabs matching a pattern. 1528 */ 1529 *flags = DEBUG_DEFAULT_FLAGS; 1530 goto check_slabs; 1531 } 1532 *flags = 0; 1533 1534 /* Determine which debug features should be switched on */ 1535 for (; *str && *str != ',' && *str != ';'; str++) { 1536 switch (tolower(*str)) { 1537 case '-': 1538 *flags = 0; 1539 break; 1540 case 'f': 1541 *flags |= SLAB_CONSISTENCY_CHECKS; 1542 break; 1543 case 'z': 1544 *flags |= SLAB_RED_ZONE; 1545 break; 1546 case 'p': 1547 *flags |= SLAB_POISON; 1548 break; 1549 case 'u': 1550 *flags |= SLAB_STORE_USER; 1551 break; 1552 case 't': 1553 *flags |= SLAB_TRACE; 1554 break; 1555 case 'a': 1556 *flags |= SLAB_FAILSLAB; 1557 break; 1558 case 'o': 1559 /* 1560 * Avoid enabling debugging on caches if its minimum 1561 * order would increase as a result. 1562 */ 1563 higher_order_disable = true; 1564 break; 1565 default: 1566 if (init) 1567 pr_err("slub_debug option '%c' unknown. skipped\n", *str); 1568 } 1569 } 1570 check_slabs: 1571 if (*str == ',') 1572 *slabs = ++str; 1573 else 1574 *slabs = NULL; 1575 1576 /* Skip over the slab list */ 1577 while (*str && *str != ';') 1578 str++; 1579 1580 /* Skip any completely empty blocks */ 1581 while (*str && *str == ';') 1582 str++; 1583 1584 if (init && higher_order_disable) 1585 disable_higher_order_debug = 1; 1586 1587 if (*str) 1588 return str; 1589 else 1590 return NULL; 1591 } 1592 1593 static int __init setup_slub_debug(char *str) 1594 { 1595 slab_flags_t flags; 1596 slab_flags_t global_flags; 1597 char *saved_str; 1598 char *slab_list; 1599 bool global_slub_debug_changed = false; 1600 bool slab_list_specified = false; 1601 1602 global_flags = DEBUG_DEFAULT_FLAGS; 1603 if (*str++ != '=' || !*str) 1604 /* 1605 * No options specified. Switch on full debugging. 1606 */ 1607 goto out; 1608 1609 saved_str = str; 1610 while (str) { 1611 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1612 1613 if (!slab_list) { 1614 global_flags = flags; 1615 global_slub_debug_changed = true; 1616 } else { 1617 slab_list_specified = true; 1618 if (flags & SLAB_STORE_USER) 1619 stack_depot_request_early_init(); 1620 } 1621 } 1622 1623 /* 1624 * For backwards compatibility, a single list of flags with list of 1625 * slabs means debugging is only changed for those slabs, so the global 1626 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1627 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1628 * long as there is no option specifying flags without a slab list. 1629 */ 1630 if (slab_list_specified) { 1631 if (!global_slub_debug_changed) 1632 global_flags = slub_debug; 1633 slub_debug_string = saved_str; 1634 } 1635 out: 1636 slub_debug = global_flags; 1637 if (slub_debug & SLAB_STORE_USER) 1638 stack_depot_request_early_init(); 1639 if (slub_debug != 0 || slub_debug_string) 1640 static_branch_enable(&slub_debug_enabled); 1641 else 1642 static_branch_disable(&slub_debug_enabled); 1643 if ((static_branch_unlikely(&init_on_alloc) || 1644 static_branch_unlikely(&init_on_free)) && 1645 (slub_debug & SLAB_POISON)) 1646 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1647 return 1; 1648 } 1649 1650 __setup("slub_debug", setup_slub_debug); 1651 1652 /* 1653 * kmem_cache_flags - apply debugging options to the cache 1654 * @object_size: the size of an object without meta data 1655 * @flags: flags to set 1656 * @name: name of the cache 1657 * 1658 * Debug option(s) are applied to @flags. In addition to the debug 1659 * option(s), if a slab name (or multiple) is specified i.e. 1660 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1661 * then only the select slabs will receive the debug option(s). 1662 */ 1663 slab_flags_t kmem_cache_flags(unsigned int object_size, 1664 slab_flags_t flags, const char *name) 1665 { 1666 char *iter; 1667 size_t len; 1668 char *next_block; 1669 slab_flags_t block_flags; 1670 slab_flags_t slub_debug_local = slub_debug; 1671 1672 if (flags & SLAB_NO_USER_FLAGS) 1673 return flags; 1674 1675 /* 1676 * If the slab cache is for debugging (e.g. kmemleak) then 1677 * don't store user (stack trace) information by default, 1678 * but let the user enable it via the command line below. 1679 */ 1680 if (flags & SLAB_NOLEAKTRACE) 1681 slub_debug_local &= ~SLAB_STORE_USER; 1682 1683 len = strlen(name); 1684 next_block = slub_debug_string; 1685 /* Go through all blocks of debug options, see if any matches our slab's name */ 1686 while (next_block) { 1687 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1688 if (!iter) 1689 continue; 1690 /* Found a block that has a slab list, search it */ 1691 while (*iter) { 1692 char *end, *glob; 1693 size_t cmplen; 1694 1695 end = strchrnul(iter, ','); 1696 if (next_block && next_block < end) 1697 end = next_block - 1; 1698 1699 glob = strnchr(iter, end - iter, '*'); 1700 if (glob) 1701 cmplen = glob - iter; 1702 else 1703 cmplen = max_t(size_t, len, (end - iter)); 1704 1705 if (!strncmp(name, iter, cmplen)) { 1706 flags |= block_flags; 1707 return flags; 1708 } 1709 1710 if (!*end || *end == ';') 1711 break; 1712 iter = end + 1; 1713 } 1714 } 1715 1716 return flags | slub_debug_local; 1717 } 1718 #else /* !CONFIG_SLUB_DEBUG */ 1719 static inline void setup_object_debug(struct kmem_cache *s, void *object) {} 1720 static inline 1721 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1722 1723 static inline bool alloc_debug_processing(struct kmem_cache *s, 1724 struct slab *slab, void *object, int orig_size) { return true; } 1725 1726 static inline bool free_debug_processing(struct kmem_cache *s, 1727 struct slab *slab, void *head, void *tail, int *bulk_cnt, 1728 unsigned long addr, depot_stack_handle_t handle) { return true; } 1729 1730 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} 1731 static inline int check_object(struct kmem_cache *s, struct slab *slab, 1732 void *object, u8 val) { return 1; } 1733 static inline depot_stack_handle_t set_track_prepare(void) { return 0; } 1734 static inline void set_track(struct kmem_cache *s, void *object, 1735 enum track_item alloc, unsigned long addr) {} 1736 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1737 struct slab *slab) {} 1738 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1739 struct slab *slab) {} 1740 slab_flags_t kmem_cache_flags(unsigned int object_size, 1741 slab_flags_t flags, const char *name) 1742 { 1743 return flags; 1744 } 1745 #define slub_debug 0 1746 1747 #define disable_higher_order_debug 0 1748 1749 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1750 { return 0; } 1751 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1752 int objects) {} 1753 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1754 int objects) {} 1755 1756 #ifndef CONFIG_SLUB_TINY 1757 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1758 void **freelist, void *nextfree) 1759 { 1760 return false; 1761 } 1762 #endif 1763 #endif /* CONFIG_SLUB_DEBUG */ 1764 1765 /* 1766 * Hooks for other subsystems that check memory allocations. In a typical 1767 * production configuration these hooks all should produce no code at all. 1768 */ 1769 static __always_inline bool slab_free_hook(struct kmem_cache *s, 1770 void *x, bool init) 1771 { 1772 kmemleak_free_recursive(x, s->flags); 1773 kmsan_slab_free(s, x); 1774 1775 debug_check_no_locks_freed(x, s->object_size); 1776 1777 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1778 debug_check_no_obj_freed(x, s->object_size); 1779 1780 /* Use KCSAN to help debug racy use-after-free. */ 1781 if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) 1782 __kcsan_check_access(x, s->object_size, 1783 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 1784 1785 /* 1786 * As memory initialization might be integrated into KASAN, 1787 * kasan_slab_free and initialization memset's must be 1788 * kept together to avoid discrepancies in behavior. 1789 * 1790 * The initialization memset's clear the object and the metadata, 1791 * but don't touch the SLAB redzone. 1792 */ 1793 if (init) { 1794 int rsize; 1795 1796 if (!kasan_has_integrated_init()) 1797 memset(kasan_reset_tag(x), 0, s->object_size); 1798 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 1799 memset((char *)kasan_reset_tag(x) + s->inuse, 0, 1800 s->size - s->inuse - rsize); 1801 } 1802 /* KASAN might put x into memory quarantine, delaying its reuse. */ 1803 return kasan_slab_free(s, x, init); 1804 } 1805 1806 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1807 void **head, void **tail, 1808 int *cnt) 1809 { 1810 1811 void *object; 1812 void *next = *head; 1813 void *old_tail = *tail ? *tail : *head; 1814 1815 if (is_kfence_address(next)) { 1816 slab_free_hook(s, next, false); 1817 return true; 1818 } 1819 1820 /* Head and tail of the reconstructed freelist */ 1821 *head = NULL; 1822 *tail = NULL; 1823 1824 do { 1825 object = next; 1826 next = get_freepointer(s, object); 1827 1828 /* If object's reuse doesn't have to be delayed */ 1829 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) { 1830 /* Move object to the new freelist */ 1831 set_freepointer(s, object, *head); 1832 *head = object; 1833 if (!*tail) 1834 *tail = object; 1835 } else { 1836 /* 1837 * Adjust the reconstructed freelist depth 1838 * accordingly if object's reuse is delayed. 1839 */ 1840 --(*cnt); 1841 } 1842 } while (object != old_tail); 1843 1844 if (*head == *tail) 1845 *tail = NULL; 1846 1847 return *head != NULL; 1848 } 1849 1850 static void *setup_object(struct kmem_cache *s, void *object) 1851 { 1852 setup_object_debug(s, object); 1853 object = kasan_init_slab_obj(s, object); 1854 if (unlikely(s->ctor)) { 1855 kasan_unpoison_object_data(s, object); 1856 s->ctor(object); 1857 kasan_poison_object_data(s, object); 1858 } 1859 return object; 1860 } 1861 1862 /* 1863 * Slab allocation and freeing 1864 */ 1865 static inline struct slab *alloc_slab_page(gfp_t flags, int node, 1866 struct kmem_cache_order_objects oo) 1867 { 1868 struct folio *folio; 1869 struct slab *slab; 1870 unsigned int order = oo_order(oo); 1871 1872 if (node == NUMA_NO_NODE) 1873 folio = (struct folio *)alloc_pages(flags, order); 1874 else 1875 folio = (struct folio *)__alloc_pages_node(node, flags, order); 1876 1877 if (!folio) 1878 return NULL; 1879 1880 slab = folio_slab(folio); 1881 __folio_set_slab(folio); 1882 /* Make the flag visible before any changes to folio->mapping */ 1883 smp_wmb(); 1884 if (folio_is_pfmemalloc(folio)) 1885 slab_set_pfmemalloc(slab); 1886 1887 return slab; 1888 } 1889 1890 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1891 /* Pre-initialize the random sequence cache */ 1892 static int init_cache_random_seq(struct kmem_cache *s) 1893 { 1894 unsigned int count = oo_objects(s->oo); 1895 int err; 1896 1897 /* Bailout if already initialised */ 1898 if (s->random_seq) 1899 return 0; 1900 1901 err = cache_random_seq_create(s, count, GFP_KERNEL); 1902 if (err) { 1903 pr_err("SLUB: Unable to initialize free list for %s\n", 1904 s->name); 1905 return err; 1906 } 1907 1908 /* Transform to an offset on the set of pages */ 1909 if (s->random_seq) { 1910 unsigned int i; 1911 1912 for (i = 0; i < count; i++) 1913 s->random_seq[i] *= s->size; 1914 } 1915 return 0; 1916 } 1917 1918 /* Initialize each random sequence freelist per cache */ 1919 static void __init init_freelist_randomization(void) 1920 { 1921 struct kmem_cache *s; 1922 1923 mutex_lock(&slab_mutex); 1924 1925 list_for_each_entry(s, &slab_caches, list) 1926 init_cache_random_seq(s); 1927 1928 mutex_unlock(&slab_mutex); 1929 } 1930 1931 /* Get the next entry on the pre-computed freelist randomized */ 1932 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab, 1933 unsigned long *pos, void *start, 1934 unsigned long page_limit, 1935 unsigned long freelist_count) 1936 { 1937 unsigned int idx; 1938 1939 /* 1940 * If the target page allocation failed, the number of objects on the 1941 * page might be smaller than the usual size defined by the cache. 1942 */ 1943 do { 1944 idx = s->random_seq[*pos]; 1945 *pos += 1; 1946 if (*pos >= freelist_count) 1947 *pos = 0; 1948 } while (unlikely(idx >= page_limit)); 1949 1950 return (char *)start + idx; 1951 } 1952 1953 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1954 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 1955 { 1956 void *start; 1957 void *cur; 1958 void *next; 1959 unsigned long idx, pos, page_limit, freelist_count; 1960 1961 if (slab->objects < 2 || !s->random_seq) 1962 return false; 1963 1964 freelist_count = oo_objects(s->oo); 1965 pos = get_random_u32_below(freelist_count); 1966 1967 page_limit = slab->objects * s->size; 1968 start = fixup_red_left(s, slab_address(slab)); 1969 1970 /* First entry is used as the base of the freelist */ 1971 cur = next_freelist_entry(s, slab, &pos, start, page_limit, 1972 freelist_count); 1973 cur = setup_object(s, cur); 1974 slab->freelist = cur; 1975 1976 for (idx = 1; idx < slab->objects; idx++) { 1977 next = next_freelist_entry(s, slab, &pos, start, page_limit, 1978 freelist_count); 1979 next = setup_object(s, next); 1980 set_freepointer(s, cur, next); 1981 cur = next; 1982 } 1983 set_freepointer(s, cur, NULL); 1984 1985 return true; 1986 } 1987 #else 1988 static inline int init_cache_random_seq(struct kmem_cache *s) 1989 { 1990 return 0; 1991 } 1992 static inline void init_freelist_randomization(void) { } 1993 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 1994 { 1995 return false; 1996 } 1997 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1998 1999 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 2000 { 2001 struct slab *slab; 2002 struct kmem_cache_order_objects oo = s->oo; 2003 gfp_t alloc_gfp; 2004 void *start, *p, *next; 2005 int idx; 2006 bool shuffle; 2007 2008 flags &= gfp_allowed_mask; 2009 2010 flags |= s->allocflags; 2011 2012 /* 2013 * Let the initial higher-order allocation fail under memory pressure 2014 * so we fall-back to the minimum order allocation. 2015 */ 2016 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 2017 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 2018 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; 2019 2020 slab = alloc_slab_page(alloc_gfp, node, oo); 2021 if (unlikely(!slab)) { 2022 oo = s->min; 2023 alloc_gfp = flags; 2024 /* 2025 * Allocation may have failed due to fragmentation. 2026 * Try a lower order alloc if possible 2027 */ 2028 slab = alloc_slab_page(alloc_gfp, node, oo); 2029 if (unlikely(!slab)) 2030 return NULL; 2031 stat(s, ORDER_FALLBACK); 2032 } 2033 2034 slab->objects = oo_objects(oo); 2035 slab->inuse = 0; 2036 slab->frozen = 0; 2037 2038 account_slab(slab, oo_order(oo), s, flags); 2039 2040 slab->slab_cache = s; 2041 2042 kasan_poison_slab(slab); 2043 2044 start = slab_address(slab); 2045 2046 setup_slab_debug(s, slab, start); 2047 2048 shuffle = shuffle_freelist(s, slab); 2049 2050 if (!shuffle) { 2051 start = fixup_red_left(s, start); 2052 start = setup_object(s, start); 2053 slab->freelist = start; 2054 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 2055 next = p + s->size; 2056 next = setup_object(s, next); 2057 set_freepointer(s, p, next); 2058 p = next; 2059 } 2060 set_freepointer(s, p, NULL); 2061 } 2062 2063 return slab; 2064 } 2065 2066 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 2067 { 2068 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2069 flags = kmalloc_fix_flags(flags); 2070 2071 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2072 2073 return allocate_slab(s, 2074 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 2075 } 2076 2077 static void __free_slab(struct kmem_cache *s, struct slab *slab) 2078 { 2079 struct folio *folio = slab_folio(slab); 2080 int order = folio_order(folio); 2081 int pages = 1 << order; 2082 2083 __slab_clear_pfmemalloc(slab); 2084 folio->mapping = NULL; 2085 /* Make the mapping reset visible before clearing the flag */ 2086 smp_wmb(); 2087 __folio_clear_slab(folio); 2088 mm_account_reclaimed_pages(pages); 2089 unaccount_slab(slab, order, s); 2090 __free_pages(&folio->page, order); 2091 } 2092 2093 static void rcu_free_slab(struct rcu_head *h) 2094 { 2095 struct slab *slab = container_of(h, struct slab, rcu_head); 2096 2097 __free_slab(slab->slab_cache, slab); 2098 } 2099 2100 static void free_slab(struct kmem_cache *s, struct slab *slab) 2101 { 2102 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 2103 void *p; 2104 2105 slab_pad_check(s, slab); 2106 for_each_object(p, s, slab_address(slab), slab->objects) 2107 check_object(s, slab, p, SLUB_RED_INACTIVE); 2108 } 2109 2110 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) 2111 call_rcu(&slab->rcu_head, rcu_free_slab); 2112 else 2113 __free_slab(s, slab); 2114 } 2115 2116 static void discard_slab(struct kmem_cache *s, struct slab *slab) 2117 { 2118 dec_slabs_node(s, slab_nid(slab), slab->objects); 2119 free_slab(s, slab); 2120 } 2121 2122 /* 2123 * Management of partially allocated slabs. 2124 */ 2125 static inline void 2126 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) 2127 { 2128 n->nr_partial++; 2129 if (tail == DEACTIVATE_TO_TAIL) 2130 list_add_tail(&slab->slab_list, &n->partial); 2131 else 2132 list_add(&slab->slab_list, &n->partial); 2133 } 2134 2135 static inline void add_partial(struct kmem_cache_node *n, 2136 struct slab *slab, int tail) 2137 { 2138 lockdep_assert_held(&n->list_lock); 2139 __add_partial(n, slab, tail); 2140 } 2141 2142 static inline void remove_partial(struct kmem_cache_node *n, 2143 struct slab *slab) 2144 { 2145 lockdep_assert_held(&n->list_lock); 2146 list_del(&slab->slab_list); 2147 n->nr_partial--; 2148 } 2149 2150 /* 2151 * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a 2152 * slab from the n->partial list. Remove only a single object from the slab, do 2153 * the alloc_debug_processing() checks and leave the slab on the list, or move 2154 * it to full list if it was the last free object. 2155 */ 2156 static void *alloc_single_from_partial(struct kmem_cache *s, 2157 struct kmem_cache_node *n, struct slab *slab, int orig_size) 2158 { 2159 void *object; 2160 2161 lockdep_assert_held(&n->list_lock); 2162 2163 object = slab->freelist; 2164 slab->freelist = get_freepointer(s, object); 2165 slab->inuse++; 2166 2167 if (!alloc_debug_processing(s, slab, object, orig_size)) { 2168 remove_partial(n, slab); 2169 return NULL; 2170 } 2171 2172 if (slab->inuse == slab->objects) { 2173 remove_partial(n, slab); 2174 add_full(s, n, slab); 2175 } 2176 2177 return object; 2178 } 2179 2180 /* 2181 * Called only for kmem_cache_debug() caches to allocate from a freshly 2182 * allocated slab. Allocate a single object instead of whole freelist 2183 * and put the slab to the partial (or full) list. 2184 */ 2185 static void *alloc_single_from_new_slab(struct kmem_cache *s, 2186 struct slab *slab, int orig_size) 2187 { 2188 int nid = slab_nid(slab); 2189 struct kmem_cache_node *n = get_node(s, nid); 2190 unsigned long flags; 2191 void *object; 2192 2193 2194 object = slab->freelist; 2195 slab->freelist = get_freepointer(s, object); 2196 slab->inuse = 1; 2197 2198 if (!alloc_debug_processing(s, slab, object, orig_size)) 2199 /* 2200 * It's not really expected that this would fail on a 2201 * freshly allocated slab, but a concurrent memory 2202 * corruption in theory could cause that. 2203 */ 2204 return NULL; 2205 2206 spin_lock_irqsave(&n->list_lock, flags); 2207 2208 if (slab->inuse == slab->objects) 2209 add_full(s, n, slab); 2210 else 2211 add_partial(n, slab, DEACTIVATE_TO_HEAD); 2212 2213 inc_slabs_node(s, nid, slab->objects); 2214 spin_unlock_irqrestore(&n->list_lock, flags); 2215 2216 return object; 2217 } 2218 2219 /* 2220 * Remove slab from the partial list, freeze it and 2221 * return the pointer to the freelist. 2222 * 2223 * Returns a list of objects or NULL if it fails. 2224 */ 2225 static inline void *acquire_slab(struct kmem_cache *s, 2226 struct kmem_cache_node *n, struct slab *slab, 2227 int mode) 2228 { 2229 void *freelist; 2230 unsigned long counters; 2231 struct slab new; 2232 2233 lockdep_assert_held(&n->list_lock); 2234 2235 /* 2236 * Zap the freelist and set the frozen bit. 2237 * The old freelist is the list of objects for the 2238 * per cpu allocation list. 2239 */ 2240 freelist = slab->freelist; 2241 counters = slab->counters; 2242 new.counters = counters; 2243 if (mode) { 2244 new.inuse = slab->objects; 2245 new.freelist = NULL; 2246 } else { 2247 new.freelist = freelist; 2248 } 2249 2250 VM_BUG_ON(new.frozen); 2251 new.frozen = 1; 2252 2253 if (!__slab_update_freelist(s, slab, 2254 freelist, counters, 2255 new.freelist, new.counters, 2256 "acquire_slab")) 2257 return NULL; 2258 2259 remove_partial(n, slab); 2260 WARN_ON(!freelist); 2261 return freelist; 2262 } 2263 2264 #ifdef CONFIG_SLUB_CPU_PARTIAL 2265 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); 2266 #else 2267 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, 2268 int drain) { } 2269 #endif 2270 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 2271 2272 /* 2273 * Try to allocate a partial slab from a specific node. 2274 */ 2275 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 2276 struct partial_context *pc) 2277 { 2278 struct slab *slab, *slab2; 2279 void *object = NULL; 2280 unsigned long flags; 2281 unsigned int partial_slabs = 0; 2282 2283 /* 2284 * Racy check. If we mistakenly see no partial slabs then we 2285 * just allocate an empty slab. If we mistakenly try to get a 2286 * partial slab and there is none available then get_partial() 2287 * will return NULL. 2288 */ 2289 if (!n || !n->nr_partial) 2290 return NULL; 2291 2292 spin_lock_irqsave(&n->list_lock, flags); 2293 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 2294 void *t; 2295 2296 if (!pfmemalloc_match(slab, pc->flags)) 2297 continue; 2298 2299 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 2300 object = alloc_single_from_partial(s, n, slab, 2301 pc->orig_size); 2302 if (object) 2303 break; 2304 continue; 2305 } 2306 2307 t = acquire_slab(s, n, slab, object == NULL); 2308 if (!t) 2309 break; 2310 2311 if (!object) { 2312 *pc->slab = slab; 2313 stat(s, ALLOC_FROM_PARTIAL); 2314 object = t; 2315 } else { 2316 put_cpu_partial(s, slab, 0); 2317 stat(s, CPU_PARTIAL_NODE); 2318 partial_slabs++; 2319 } 2320 #ifdef CONFIG_SLUB_CPU_PARTIAL 2321 if (!kmem_cache_has_cpu_partial(s) 2322 || partial_slabs > s->cpu_partial_slabs / 2) 2323 break; 2324 #else 2325 break; 2326 #endif 2327 2328 } 2329 spin_unlock_irqrestore(&n->list_lock, flags); 2330 return object; 2331 } 2332 2333 /* 2334 * Get a slab from somewhere. Search in increasing NUMA distances. 2335 */ 2336 static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc) 2337 { 2338 #ifdef CONFIG_NUMA 2339 struct zonelist *zonelist; 2340 struct zoneref *z; 2341 struct zone *zone; 2342 enum zone_type highest_zoneidx = gfp_zone(pc->flags); 2343 void *object; 2344 unsigned int cpuset_mems_cookie; 2345 2346 /* 2347 * The defrag ratio allows a configuration of the tradeoffs between 2348 * inter node defragmentation and node local allocations. A lower 2349 * defrag_ratio increases the tendency to do local allocations 2350 * instead of attempting to obtain partial slabs from other nodes. 2351 * 2352 * If the defrag_ratio is set to 0 then kmalloc() always 2353 * returns node local objects. If the ratio is higher then kmalloc() 2354 * may return off node objects because partial slabs are obtained 2355 * from other nodes and filled up. 2356 * 2357 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2358 * (which makes defrag_ratio = 1000) then every (well almost) 2359 * allocation will first attempt to defrag slab caches on other nodes. 2360 * This means scanning over all nodes to look for partial slabs which 2361 * may be expensive if we do it every time we are trying to find a slab 2362 * with available objects. 2363 */ 2364 if (!s->remote_node_defrag_ratio || 2365 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2366 return NULL; 2367 2368 do { 2369 cpuset_mems_cookie = read_mems_allowed_begin(); 2370 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags); 2371 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2372 struct kmem_cache_node *n; 2373 2374 n = get_node(s, zone_to_nid(zone)); 2375 2376 if (n && cpuset_zone_allowed(zone, pc->flags) && 2377 n->nr_partial > s->min_partial) { 2378 object = get_partial_node(s, n, pc); 2379 if (object) { 2380 /* 2381 * Don't check read_mems_allowed_retry() 2382 * here - if mems_allowed was updated in 2383 * parallel, that was a harmless race 2384 * between allocation and the cpuset 2385 * update 2386 */ 2387 return object; 2388 } 2389 } 2390 } 2391 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2392 #endif /* CONFIG_NUMA */ 2393 return NULL; 2394 } 2395 2396 /* 2397 * Get a partial slab, lock it and return it. 2398 */ 2399 static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc) 2400 { 2401 void *object; 2402 int searchnode = node; 2403 2404 if (node == NUMA_NO_NODE) 2405 searchnode = numa_mem_id(); 2406 2407 object = get_partial_node(s, get_node(s, searchnode), pc); 2408 if (object || node != NUMA_NO_NODE) 2409 return object; 2410 2411 return get_any_partial(s, pc); 2412 } 2413 2414 #ifndef CONFIG_SLUB_TINY 2415 2416 #ifdef CONFIG_PREEMPTION 2417 /* 2418 * Calculate the next globally unique transaction for disambiguation 2419 * during cmpxchg. The transactions start with the cpu number and are then 2420 * incremented by CONFIG_NR_CPUS. 2421 */ 2422 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2423 #else 2424 /* 2425 * No preemption supported therefore also no need to check for 2426 * different cpus. 2427 */ 2428 #define TID_STEP 1 2429 #endif /* CONFIG_PREEMPTION */ 2430 2431 static inline unsigned long next_tid(unsigned long tid) 2432 { 2433 return tid + TID_STEP; 2434 } 2435 2436 #ifdef SLUB_DEBUG_CMPXCHG 2437 static inline unsigned int tid_to_cpu(unsigned long tid) 2438 { 2439 return tid % TID_STEP; 2440 } 2441 2442 static inline unsigned long tid_to_event(unsigned long tid) 2443 { 2444 return tid / TID_STEP; 2445 } 2446 #endif 2447 2448 static inline unsigned int init_tid(int cpu) 2449 { 2450 return cpu; 2451 } 2452 2453 static inline void note_cmpxchg_failure(const char *n, 2454 const struct kmem_cache *s, unsigned long tid) 2455 { 2456 #ifdef SLUB_DEBUG_CMPXCHG 2457 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2458 2459 pr_info("%s %s: cmpxchg redo ", n, s->name); 2460 2461 #ifdef CONFIG_PREEMPTION 2462 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2463 pr_warn("due to cpu change %d -> %d\n", 2464 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2465 else 2466 #endif 2467 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2468 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2469 tid_to_event(tid), tid_to_event(actual_tid)); 2470 else 2471 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2472 actual_tid, tid, next_tid(tid)); 2473 #endif 2474 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2475 } 2476 2477 static void init_kmem_cache_cpus(struct kmem_cache *s) 2478 { 2479 int cpu; 2480 struct kmem_cache_cpu *c; 2481 2482 for_each_possible_cpu(cpu) { 2483 c = per_cpu_ptr(s->cpu_slab, cpu); 2484 local_lock_init(&c->lock); 2485 c->tid = init_tid(cpu); 2486 } 2487 } 2488 2489 /* 2490 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, 2491 * unfreezes the slabs and puts it on the proper list. 2492 * Assumes the slab has been already safely taken away from kmem_cache_cpu 2493 * by the caller. 2494 */ 2495 static void deactivate_slab(struct kmem_cache *s, struct slab *slab, 2496 void *freelist) 2497 { 2498 enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST }; 2499 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 2500 int free_delta = 0; 2501 enum slab_modes mode = M_NONE; 2502 void *nextfree, *freelist_iter, *freelist_tail; 2503 int tail = DEACTIVATE_TO_HEAD; 2504 unsigned long flags = 0; 2505 struct slab new; 2506 struct slab old; 2507 2508 if (slab->freelist) { 2509 stat(s, DEACTIVATE_REMOTE_FREES); 2510 tail = DEACTIVATE_TO_TAIL; 2511 } 2512 2513 /* 2514 * Stage one: Count the objects on cpu's freelist as free_delta and 2515 * remember the last object in freelist_tail for later splicing. 2516 */ 2517 freelist_tail = NULL; 2518 freelist_iter = freelist; 2519 while (freelist_iter) { 2520 nextfree = get_freepointer(s, freelist_iter); 2521 2522 /* 2523 * If 'nextfree' is invalid, it is possible that the object at 2524 * 'freelist_iter' is already corrupted. So isolate all objects 2525 * starting at 'freelist_iter' by skipping them. 2526 */ 2527 if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) 2528 break; 2529 2530 freelist_tail = freelist_iter; 2531 free_delta++; 2532 2533 freelist_iter = nextfree; 2534 } 2535 2536 /* 2537 * Stage two: Unfreeze the slab while splicing the per-cpu 2538 * freelist to the head of slab's freelist. 2539 * 2540 * Ensure that the slab is unfrozen while the list presence 2541 * reflects the actual number of objects during unfreeze. 2542 * 2543 * We first perform cmpxchg holding lock and insert to list 2544 * when it succeed. If there is mismatch then the slab is not 2545 * unfrozen and number of objects in the slab may have changed. 2546 * Then release lock and retry cmpxchg again. 2547 */ 2548 redo: 2549 2550 old.freelist = READ_ONCE(slab->freelist); 2551 old.counters = READ_ONCE(slab->counters); 2552 VM_BUG_ON(!old.frozen); 2553 2554 /* Determine target state of the slab */ 2555 new.counters = old.counters; 2556 if (freelist_tail) { 2557 new.inuse -= free_delta; 2558 set_freepointer(s, freelist_tail, old.freelist); 2559 new.freelist = freelist; 2560 } else 2561 new.freelist = old.freelist; 2562 2563 new.frozen = 0; 2564 2565 if (!new.inuse && n->nr_partial >= s->min_partial) { 2566 mode = M_FREE; 2567 } else if (new.freelist) { 2568 mode = M_PARTIAL; 2569 /* 2570 * Taking the spinlock removes the possibility that 2571 * acquire_slab() will see a slab that is frozen 2572 */ 2573 spin_lock_irqsave(&n->list_lock, flags); 2574 } else { 2575 mode = M_FULL_NOLIST; 2576 } 2577 2578 2579 if (!slab_update_freelist(s, slab, 2580 old.freelist, old.counters, 2581 new.freelist, new.counters, 2582 "unfreezing slab")) { 2583 if (mode == M_PARTIAL) 2584 spin_unlock_irqrestore(&n->list_lock, flags); 2585 goto redo; 2586 } 2587 2588 2589 if (mode == M_PARTIAL) { 2590 add_partial(n, slab, tail); 2591 spin_unlock_irqrestore(&n->list_lock, flags); 2592 stat(s, tail); 2593 } else if (mode == M_FREE) { 2594 stat(s, DEACTIVATE_EMPTY); 2595 discard_slab(s, slab); 2596 stat(s, FREE_SLAB); 2597 } else if (mode == M_FULL_NOLIST) { 2598 stat(s, DEACTIVATE_FULL); 2599 } 2600 } 2601 2602 #ifdef CONFIG_SLUB_CPU_PARTIAL 2603 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab) 2604 { 2605 struct kmem_cache_node *n = NULL, *n2 = NULL; 2606 struct slab *slab, *slab_to_discard = NULL; 2607 unsigned long flags = 0; 2608 2609 while (partial_slab) { 2610 struct slab new; 2611 struct slab old; 2612 2613 slab = partial_slab; 2614 partial_slab = slab->next; 2615 2616 n2 = get_node(s, slab_nid(slab)); 2617 if (n != n2) { 2618 if (n) 2619 spin_unlock_irqrestore(&n->list_lock, flags); 2620 2621 n = n2; 2622 spin_lock_irqsave(&n->list_lock, flags); 2623 } 2624 2625 do { 2626 2627 old.freelist = slab->freelist; 2628 old.counters = slab->counters; 2629 VM_BUG_ON(!old.frozen); 2630 2631 new.counters = old.counters; 2632 new.freelist = old.freelist; 2633 2634 new.frozen = 0; 2635 2636 } while (!__slab_update_freelist(s, slab, 2637 old.freelist, old.counters, 2638 new.freelist, new.counters, 2639 "unfreezing slab")); 2640 2641 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2642 slab->next = slab_to_discard; 2643 slab_to_discard = slab; 2644 } else { 2645 add_partial(n, slab, DEACTIVATE_TO_TAIL); 2646 stat(s, FREE_ADD_PARTIAL); 2647 } 2648 } 2649 2650 if (n) 2651 spin_unlock_irqrestore(&n->list_lock, flags); 2652 2653 while (slab_to_discard) { 2654 slab = slab_to_discard; 2655 slab_to_discard = slab_to_discard->next; 2656 2657 stat(s, DEACTIVATE_EMPTY); 2658 discard_slab(s, slab); 2659 stat(s, FREE_SLAB); 2660 } 2661 } 2662 2663 /* 2664 * Unfreeze all the cpu partial slabs. 2665 */ 2666 static void unfreeze_partials(struct kmem_cache *s) 2667 { 2668 struct slab *partial_slab; 2669 unsigned long flags; 2670 2671 local_lock_irqsave(&s->cpu_slab->lock, flags); 2672 partial_slab = this_cpu_read(s->cpu_slab->partial); 2673 this_cpu_write(s->cpu_slab->partial, NULL); 2674 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2675 2676 if (partial_slab) 2677 __unfreeze_partials(s, partial_slab); 2678 } 2679 2680 static void unfreeze_partials_cpu(struct kmem_cache *s, 2681 struct kmem_cache_cpu *c) 2682 { 2683 struct slab *partial_slab; 2684 2685 partial_slab = slub_percpu_partial(c); 2686 c->partial = NULL; 2687 2688 if (partial_slab) 2689 __unfreeze_partials(s, partial_slab); 2690 } 2691 2692 /* 2693 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a 2694 * partial slab slot if available. 2695 * 2696 * If we did not find a slot then simply move all the partials to the 2697 * per node partial list. 2698 */ 2699 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) 2700 { 2701 struct slab *oldslab; 2702 struct slab *slab_to_unfreeze = NULL; 2703 unsigned long flags; 2704 int slabs = 0; 2705 2706 local_lock_irqsave(&s->cpu_slab->lock, flags); 2707 2708 oldslab = this_cpu_read(s->cpu_slab->partial); 2709 2710 if (oldslab) { 2711 if (drain && oldslab->slabs >= s->cpu_partial_slabs) { 2712 /* 2713 * Partial array is full. Move the existing set to the 2714 * per node partial list. Postpone the actual unfreezing 2715 * outside of the critical section. 2716 */ 2717 slab_to_unfreeze = oldslab; 2718 oldslab = NULL; 2719 } else { 2720 slabs = oldslab->slabs; 2721 } 2722 } 2723 2724 slabs++; 2725 2726 slab->slabs = slabs; 2727 slab->next = oldslab; 2728 2729 this_cpu_write(s->cpu_slab->partial, slab); 2730 2731 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2732 2733 if (slab_to_unfreeze) { 2734 __unfreeze_partials(s, slab_to_unfreeze); 2735 stat(s, CPU_PARTIAL_DRAIN); 2736 } 2737 } 2738 2739 #else /* CONFIG_SLUB_CPU_PARTIAL */ 2740 2741 static inline void unfreeze_partials(struct kmem_cache *s) { } 2742 static inline void unfreeze_partials_cpu(struct kmem_cache *s, 2743 struct kmem_cache_cpu *c) { } 2744 2745 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2746 2747 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2748 { 2749 unsigned long flags; 2750 struct slab *slab; 2751 void *freelist; 2752 2753 local_lock_irqsave(&s->cpu_slab->lock, flags); 2754 2755 slab = c->slab; 2756 freelist = c->freelist; 2757 2758 c->slab = NULL; 2759 c->freelist = NULL; 2760 c->tid = next_tid(c->tid); 2761 2762 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2763 2764 if (slab) { 2765 deactivate_slab(s, slab, freelist); 2766 stat(s, CPUSLAB_FLUSH); 2767 } 2768 } 2769 2770 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2771 { 2772 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2773 void *freelist = c->freelist; 2774 struct slab *slab = c->slab; 2775 2776 c->slab = NULL; 2777 c->freelist = NULL; 2778 c->tid = next_tid(c->tid); 2779 2780 if (slab) { 2781 deactivate_slab(s, slab, freelist); 2782 stat(s, CPUSLAB_FLUSH); 2783 } 2784 2785 unfreeze_partials_cpu(s, c); 2786 } 2787 2788 struct slub_flush_work { 2789 struct work_struct work; 2790 struct kmem_cache *s; 2791 bool skip; 2792 }; 2793 2794 /* 2795 * Flush cpu slab. 2796 * 2797 * Called from CPU work handler with migration disabled. 2798 */ 2799 static void flush_cpu_slab(struct work_struct *w) 2800 { 2801 struct kmem_cache *s; 2802 struct kmem_cache_cpu *c; 2803 struct slub_flush_work *sfw; 2804 2805 sfw = container_of(w, struct slub_flush_work, work); 2806 2807 s = sfw->s; 2808 c = this_cpu_ptr(s->cpu_slab); 2809 2810 if (c->slab) 2811 flush_slab(s, c); 2812 2813 unfreeze_partials(s); 2814 } 2815 2816 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 2817 { 2818 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2819 2820 return c->slab || slub_percpu_partial(c); 2821 } 2822 2823 static DEFINE_MUTEX(flush_lock); 2824 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 2825 2826 static void flush_all_cpus_locked(struct kmem_cache *s) 2827 { 2828 struct slub_flush_work *sfw; 2829 unsigned int cpu; 2830 2831 lockdep_assert_cpus_held(); 2832 mutex_lock(&flush_lock); 2833 2834 for_each_online_cpu(cpu) { 2835 sfw = &per_cpu(slub_flush, cpu); 2836 if (!has_cpu_slab(cpu, s)) { 2837 sfw->skip = true; 2838 continue; 2839 } 2840 INIT_WORK(&sfw->work, flush_cpu_slab); 2841 sfw->skip = false; 2842 sfw->s = s; 2843 queue_work_on(cpu, flushwq, &sfw->work); 2844 } 2845 2846 for_each_online_cpu(cpu) { 2847 sfw = &per_cpu(slub_flush, cpu); 2848 if (sfw->skip) 2849 continue; 2850 flush_work(&sfw->work); 2851 } 2852 2853 mutex_unlock(&flush_lock); 2854 } 2855 2856 static void flush_all(struct kmem_cache *s) 2857 { 2858 cpus_read_lock(); 2859 flush_all_cpus_locked(s); 2860 cpus_read_unlock(); 2861 } 2862 2863 /* 2864 * Use the cpu notifier to insure that the cpu slabs are flushed when 2865 * necessary. 2866 */ 2867 static int slub_cpu_dead(unsigned int cpu) 2868 { 2869 struct kmem_cache *s; 2870 2871 mutex_lock(&slab_mutex); 2872 list_for_each_entry(s, &slab_caches, list) 2873 __flush_cpu_slab(s, cpu); 2874 mutex_unlock(&slab_mutex); 2875 return 0; 2876 } 2877 2878 #else /* CONFIG_SLUB_TINY */ 2879 static inline void flush_all_cpus_locked(struct kmem_cache *s) { } 2880 static inline void flush_all(struct kmem_cache *s) { } 2881 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { } 2882 static inline int slub_cpu_dead(unsigned int cpu) { return 0; } 2883 #endif /* CONFIG_SLUB_TINY */ 2884 2885 /* 2886 * Check if the objects in a per cpu structure fit numa 2887 * locality expectations. 2888 */ 2889 static inline int node_match(struct slab *slab, int node) 2890 { 2891 #ifdef CONFIG_NUMA 2892 if (node != NUMA_NO_NODE && slab_nid(slab) != node) 2893 return 0; 2894 #endif 2895 return 1; 2896 } 2897 2898 #ifdef CONFIG_SLUB_DEBUG 2899 static int count_free(struct slab *slab) 2900 { 2901 return slab->objects - slab->inuse; 2902 } 2903 2904 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2905 { 2906 return atomic_long_read(&n->total_objects); 2907 } 2908 2909 /* Supports checking bulk free of a constructed freelist */ 2910 static inline bool free_debug_processing(struct kmem_cache *s, 2911 struct slab *slab, void *head, void *tail, int *bulk_cnt, 2912 unsigned long addr, depot_stack_handle_t handle) 2913 { 2914 bool checks_ok = false; 2915 void *object = head; 2916 int cnt = 0; 2917 2918 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 2919 if (!check_slab(s, slab)) 2920 goto out; 2921 } 2922 2923 if (slab->inuse < *bulk_cnt) { 2924 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n", 2925 slab->inuse, *bulk_cnt); 2926 goto out; 2927 } 2928 2929 next_object: 2930 2931 if (++cnt > *bulk_cnt) 2932 goto out_cnt; 2933 2934 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 2935 if (!free_consistency_checks(s, slab, object, addr)) 2936 goto out; 2937 } 2938 2939 if (s->flags & SLAB_STORE_USER) 2940 set_track_update(s, object, TRACK_FREE, addr, handle); 2941 trace(s, slab, object, 0); 2942 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 2943 init_object(s, object, SLUB_RED_INACTIVE); 2944 2945 /* Reached end of constructed freelist yet? */ 2946 if (object != tail) { 2947 object = get_freepointer(s, object); 2948 goto next_object; 2949 } 2950 checks_ok = true; 2951 2952 out_cnt: 2953 if (cnt != *bulk_cnt) { 2954 slab_err(s, slab, "Bulk free expected %d objects but found %d\n", 2955 *bulk_cnt, cnt); 2956 *bulk_cnt = cnt; 2957 } 2958 2959 out: 2960 2961 if (!checks_ok) 2962 slab_fix(s, "Object at 0x%p not freed", object); 2963 2964 return checks_ok; 2965 } 2966 #endif /* CONFIG_SLUB_DEBUG */ 2967 2968 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS) 2969 static unsigned long count_partial(struct kmem_cache_node *n, 2970 int (*get_count)(struct slab *)) 2971 { 2972 unsigned long flags; 2973 unsigned long x = 0; 2974 struct slab *slab; 2975 2976 spin_lock_irqsave(&n->list_lock, flags); 2977 list_for_each_entry(slab, &n->partial, slab_list) 2978 x += get_count(slab); 2979 spin_unlock_irqrestore(&n->list_lock, flags); 2980 return x; 2981 } 2982 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */ 2983 2984 #ifdef CONFIG_SLUB_DEBUG 2985 static noinline void 2986 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2987 { 2988 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2989 DEFAULT_RATELIMIT_BURST); 2990 int node; 2991 struct kmem_cache_node *n; 2992 2993 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2994 return; 2995 2996 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2997 nid, gfpflags, &gfpflags); 2998 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2999 s->name, s->object_size, s->size, oo_order(s->oo), 3000 oo_order(s->min)); 3001 3002 if (oo_order(s->min) > get_order(s->object_size)) 3003 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 3004 s->name); 3005 3006 for_each_kmem_cache_node(s, node, n) { 3007 unsigned long nr_slabs; 3008 unsigned long nr_objs; 3009 unsigned long nr_free; 3010 3011 nr_free = count_partial(n, count_free); 3012 nr_slabs = node_nr_slabs(n); 3013 nr_objs = node_nr_objs(n); 3014 3015 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 3016 node, nr_slabs, nr_objs, nr_free); 3017 } 3018 } 3019 #else /* CONFIG_SLUB_DEBUG */ 3020 static inline void 3021 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { } 3022 #endif 3023 3024 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 3025 { 3026 if (unlikely(slab_test_pfmemalloc(slab))) 3027 return gfp_pfmemalloc_allowed(gfpflags); 3028 3029 return true; 3030 } 3031 3032 #ifndef CONFIG_SLUB_TINY 3033 static inline bool 3034 __update_cpu_freelist_fast(struct kmem_cache *s, 3035 void *freelist_old, void *freelist_new, 3036 unsigned long tid) 3037 { 3038 freelist_aba_t old = { .freelist = freelist_old, .counter = tid }; 3039 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) }; 3040 3041 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full, 3042 &old.full, new.full); 3043 } 3044 3045 /* 3046 * Check the slab->freelist and either transfer the freelist to the 3047 * per cpu freelist or deactivate the slab. 3048 * 3049 * The slab is still frozen if the return value is not NULL. 3050 * 3051 * If this function returns NULL then the slab has been unfrozen. 3052 */ 3053 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) 3054 { 3055 struct slab new; 3056 unsigned long counters; 3057 void *freelist; 3058 3059 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3060 3061 do { 3062 freelist = slab->freelist; 3063 counters = slab->counters; 3064 3065 new.counters = counters; 3066 VM_BUG_ON(!new.frozen); 3067 3068 new.inuse = slab->objects; 3069 new.frozen = freelist != NULL; 3070 3071 } while (!__slab_update_freelist(s, slab, 3072 freelist, counters, 3073 NULL, new.counters, 3074 "get_freelist")); 3075 3076 return freelist; 3077 } 3078 3079 /* 3080 * Slow path. The lockless freelist is empty or we need to perform 3081 * debugging duties. 3082 * 3083 * Processing is still very fast if new objects have been freed to the 3084 * regular freelist. In that case we simply take over the regular freelist 3085 * as the lockless freelist and zap the regular freelist. 3086 * 3087 * If that is not working then we fall back to the partial lists. We take the 3088 * first element of the freelist as the object to allocate now and move the 3089 * rest of the freelist to the lockless freelist. 3090 * 3091 * And if we were unable to get a new slab from the partial slab lists then 3092 * we need to allocate a new slab. This is the slowest path since it involves 3093 * a call to the page allocator and the setup of a new slab. 3094 * 3095 * Version of __slab_alloc to use when we know that preemption is 3096 * already disabled (which is the case for bulk allocation). 3097 */ 3098 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3099 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3100 { 3101 void *freelist; 3102 struct slab *slab; 3103 unsigned long flags; 3104 struct partial_context pc; 3105 3106 stat(s, ALLOC_SLOWPATH); 3107 3108 reread_slab: 3109 3110 slab = READ_ONCE(c->slab); 3111 if (!slab) { 3112 /* 3113 * if the node is not online or has no normal memory, just 3114 * ignore the node constraint 3115 */ 3116 if (unlikely(node != NUMA_NO_NODE && 3117 !node_isset(node, slab_nodes))) 3118 node = NUMA_NO_NODE; 3119 goto new_slab; 3120 } 3121 redo: 3122 3123 if (unlikely(!node_match(slab, node))) { 3124 /* 3125 * same as above but node_match() being false already 3126 * implies node != NUMA_NO_NODE 3127 */ 3128 if (!node_isset(node, slab_nodes)) { 3129 node = NUMA_NO_NODE; 3130 } else { 3131 stat(s, ALLOC_NODE_MISMATCH); 3132 goto deactivate_slab; 3133 } 3134 } 3135 3136 /* 3137 * By rights, we should be searching for a slab page that was 3138 * PFMEMALLOC but right now, we are losing the pfmemalloc 3139 * information when the page leaves the per-cpu allocator 3140 */ 3141 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 3142 goto deactivate_slab; 3143 3144 /* must check again c->slab in case we got preempted and it changed */ 3145 local_lock_irqsave(&s->cpu_slab->lock, flags); 3146 if (unlikely(slab != c->slab)) { 3147 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3148 goto reread_slab; 3149 } 3150 freelist = c->freelist; 3151 if (freelist) 3152 goto load_freelist; 3153 3154 freelist = get_freelist(s, slab); 3155 3156 if (!freelist) { 3157 c->slab = NULL; 3158 c->tid = next_tid(c->tid); 3159 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3160 stat(s, DEACTIVATE_BYPASS); 3161 goto new_slab; 3162 } 3163 3164 stat(s, ALLOC_REFILL); 3165 3166 load_freelist: 3167 3168 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3169 3170 /* 3171 * freelist is pointing to the list of objects to be used. 3172 * slab is pointing to the slab from which the objects are obtained. 3173 * That slab must be frozen for per cpu allocations to work. 3174 */ 3175 VM_BUG_ON(!c->slab->frozen); 3176 c->freelist = get_freepointer(s, freelist); 3177 c->tid = next_tid(c->tid); 3178 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3179 return freelist; 3180 3181 deactivate_slab: 3182 3183 local_lock_irqsave(&s->cpu_slab->lock, flags); 3184 if (slab != c->slab) { 3185 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3186 goto reread_slab; 3187 } 3188 freelist = c->freelist; 3189 c->slab = NULL; 3190 c->freelist = NULL; 3191 c->tid = next_tid(c->tid); 3192 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3193 deactivate_slab(s, slab, freelist); 3194 3195 new_slab: 3196 3197 if (slub_percpu_partial(c)) { 3198 local_lock_irqsave(&s->cpu_slab->lock, flags); 3199 if (unlikely(c->slab)) { 3200 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3201 goto reread_slab; 3202 } 3203 if (unlikely(!slub_percpu_partial(c))) { 3204 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3205 /* we were preempted and partial list got empty */ 3206 goto new_objects; 3207 } 3208 3209 slab = c->slab = slub_percpu_partial(c); 3210 slub_set_percpu_partial(c, slab); 3211 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3212 stat(s, CPU_PARTIAL_ALLOC); 3213 goto redo; 3214 } 3215 3216 new_objects: 3217 3218 pc.flags = gfpflags; 3219 pc.slab = &slab; 3220 pc.orig_size = orig_size; 3221 freelist = get_partial(s, node, &pc); 3222 if (freelist) 3223 goto check_new_slab; 3224 3225 slub_put_cpu_ptr(s->cpu_slab); 3226 slab = new_slab(s, gfpflags, node); 3227 c = slub_get_cpu_ptr(s->cpu_slab); 3228 3229 if (unlikely(!slab)) { 3230 slab_out_of_memory(s, gfpflags, node); 3231 return NULL; 3232 } 3233 3234 stat(s, ALLOC_SLAB); 3235 3236 if (kmem_cache_debug(s)) { 3237 freelist = alloc_single_from_new_slab(s, slab, orig_size); 3238 3239 if (unlikely(!freelist)) 3240 goto new_objects; 3241 3242 if (s->flags & SLAB_STORE_USER) 3243 set_track(s, freelist, TRACK_ALLOC, addr); 3244 3245 return freelist; 3246 } 3247 3248 /* 3249 * No other reference to the slab yet so we can 3250 * muck around with it freely without cmpxchg 3251 */ 3252 freelist = slab->freelist; 3253 slab->freelist = NULL; 3254 slab->inuse = slab->objects; 3255 slab->frozen = 1; 3256 3257 inc_slabs_node(s, slab_nid(slab), slab->objects); 3258 3259 check_new_slab: 3260 3261 if (kmem_cache_debug(s)) { 3262 /* 3263 * For debug caches here we had to go through 3264 * alloc_single_from_partial() so just store the tracking info 3265 * and return the object 3266 */ 3267 if (s->flags & SLAB_STORE_USER) 3268 set_track(s, freelist, TRACK_ALLOC, addr); 3269 3270 return freelist; 3271 } 3272 3273 if (unlikely(!pfmemalloc_match(slab, gfpflags))) { 3274 /* 3275 * For !pfmemalloc_match() case we don't load freelist so that 3276 * we don't make further mismatched allocations easier. 3277 */ 3278 deactivate_slab(s, slab, get_freepointer(s, freelist)); 3279 return freelist; 3280 } 3281 3282 retry_load_slab: 3283 3284 local_lock_irqsave(&s->cpu_slab->lock, flags); 3285 if (unlikely(c->slab)) { 3286 void *flush_freelist = c->freelist; 3287 struct slab *flush_slab = c->slab; 3288 3289 c->slab = NULL; 3290 c->freelist = NULL; 3291 c->tid = next_tid(c->tid); 3292 3293 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3294 3295 deactivate_slab(s, flush_slab, flush_freelist); 3296 3297 stat(s, CPUSLAB_FLUSH); 3298 3299 goto retry_load_slab; 3300 } 3301 c->slab = slab; 3302 3303 goto load_freelist; 3304 } 3305 3306 /* 3307 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 3308 * disabled. Compensates for possible cpu changes by refetching the per cpu area 3309 * pointer. 3310 */ 3311 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3312 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3313 { 3314 void *p; 3315 3316 #ifdef CONFIG_PREEMPT_COUNT 3317 /* 3318 * We may have been preempted and rescheduled on a different 3319 * cpu before disabling preemption. Need to reload cpu area 3320 * pointer. 3321 */ 3322 c = slub_get_cpu_ptr(s->cpu_slab); 3323 #endif 3324 3325 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size); 3326 #ifdef CONFIG_PREEMPT_COUNT 3327 slub_put_cpu_ptr(s->cpu_slab); 3328 #endif 3329 return p; 3330 } 3331 3332 static __always_inline void *__slab_alloc_node(struct kmem_cache *s, 3333 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3334 { 3335 struct kmem_cache_cpu *c; 3336 struct slab *slab; 3337 unsigned long tid; 3338 void *object; 3339 3340 redo: 3341 /* 3342 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 3343 * enabled. We may switch back and forth between cpus while 3344 * reading from one cpu area. That does not matter as long 3345 * as we end up on the original cpu again when doing the cmpxchg. 3346 * 3347 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 3348 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 3349 * the tid. If we are preempted and switched to another cpu between the 3350 * two reads, it's OK as the two are still associated with the same cpu 3351 * and cmpxchg later will validate the cpu. 3352 */ 3353 c = raw_cpu_ptr(s->cpu_slab); 3354 tid = READ_ONCE(c->tid); 3355 3356 /* 3357 * Irqless object alloc/free algorithm used here depends on sequence 3358 * of fetching cpu_slab's data. tid should be fetched before anything 3359 * on c to guarantee that object and slab associated with previous tid 3360 * won't be used with current tid. If we fetch tid first, object and 3361 * slab could be one associated with next tid and our alloc/free 3362 * request will be failed. In this case, we will retry. So, no problem. 3363 */ 3364 barrier(); 3365 3366 /* 3367 * The transaction ids are globally unique per cpu and per operation on 3368 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 3369 * occurs on the right processor and that there was no operation on the 3370 * linked list in between. 3371 */ 3372 3373 object = c->freelist; 3374 slab = c->slab; 3375 3376 if (!USE_LOCKLESS_FAST_PATH() || 3377 unlikely(!object || !slab || !node_match(slab, node))) { 3378 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size); 3379 } else { 3380 void *next_object = get_freepointer_safe(s, object); 3381 3382 /* 3383 * The cmpxchg will only match if there was no additional 3384 * operation and if we are on the right processor. 3385 * 3386 * The cmpxchg does the following atomically (without lock 3387 * semantics!) 3388 * 1. Relocate first pointer to the current per cpu area. 3389 * 2. Verify that tid and freelist have not been changed 3390 * 3. If they were not changed replace tid and freelist 3391 * 3392 * Since this is without lock semantics the protection is only 3393 * against code executing on this cpu *not* from access by 3394 * other cpus. 3395 */ 3396 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) { 3397 note_cmpxchg_failure("slab_alloc", s, tid); 3398 goto redo; 3399 } 3400 prefetch_freepointer(s, next_object); 3401 stat(s, ALLOC_FASTPATH); 3402 } 3403 3404 return object; 3405 } 3406 #else /* CONFIG_SLUB_TINY */ 3407 static void *__slab_alloc_node(struct kmem_cache *s, 3408 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3409 { 3410 struct partial_context pc; 3411 struct slab *slab; 3412 void *object; 3413 3414 pc.flags = gfpflags; 3415 pc.slab = &slab; 3416 pc.orig_size = orig_size; 3417 object = get_partial(s, node, &pc); 3418 3419 if (object) 3420 return object; 3421 3422 slab = new_slab(s, gfpflags, node); 3423 if (unlikely(!slab)) { 3424 slab_out_of_memory(s, gfpflags, node); 3425 return NULL; 3426 } 3427 3428 object = alloc_single_from_new_slab(s, slab, orig_size); 3429 3430 return object; 3431 } 3432 #endif /* CONFIG_SLUB_TINY */ 3433 3434 /* 3435 * If the object has been wiped upon free, make sure it's fully initialized by 3436 * zeroing out freelist pointer. 3437 */ 3438 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 3439 void *obj) 3440 { 3441 if (unlikely(slab_want_init_on_free(s)) && obj) 3442 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 3443 0, sizeof(void *)); 3444 } 3445 3446 /* 3447 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 3448 * have the fastpath folded into their functions. So no function call 3449 * overhead for requests that can be satisfied on the fastpath. 3450 * 3451 * The fastpath works by first checking if the lockless freelist can be used. 3452 * If not then __slab_alloc is called for slow processing. 3453 * 3454 * Otherwise we can simply pick the next object from the lockless free list. 3455 */ 3456 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, 3457 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3458 { 3459 void *object; 3460 struct obj_cgroup *objcg = NULL; 3461 bool init = false; 3462 3463 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags); 3464 if (!s) 3465 return NULL; 3466 3467 object = kfence_alloc(s, orig_size, gfpflags); 3468 if (unlikely(object)) 3469 goto out; 3470 3471 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size); 3472 3473 maybe_wipe_obj_freeptr(s, object); 3474 init = slab_want_init_on_alloc(gfpflags, s); 3475 3476 out: 3477 /* 3478 * When init equals 'true', like for kzalloc() family, only 3479 * @orig_size bytes might be zeroed instead of s->object_size 3480 */ 3481 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size); 3482 3483 return object; 3484 } 3485 3486 static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru, 3487 gfp_t gfpflags, unsigned long addr, size_t orig_size) 3488 { 3489 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size); 3490 } 3491 3492 static __fastpath_inline 3493 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 3494 gfp_t gfpflags) 3495 { 3496 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size); 3497 3498 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 3499 3500 return ret; 3501 } 3502 3503 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 3504 { 3505 return __kmem_cache_alloc_lru(s, NULL, gfpflags); 3506 } 3507 EXPORT_SYMBOL(kmem_cache_alloc); 3508 3509 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 3510 gfp_t gfpflags) 3511 { 3512 return __kmem_cache_alloc_lru(s, lru, gfpflags); 3513 } 3514 EXPORT_SYMBOL(kmem_cache_alloc_lru); 3515 3516 void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, 3517 int node, size_t orig_size, 3518 unsigned long caller) 3519 { 3520 return slab_alloc_node(s, NULL, gfpflags, node, 3521 caller, orig_size); 3522 } 3523 3524 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 3525 { 3526 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); 3527 3528 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); 3529 3530 return ret; 3531 } 3532 EXPORT_SYMBOL(kmem_cache_alloc_node); 3533 3534 static noinline void free_to_partial_list( 3535 struct kmem_cache *s, struct slab *slab, 3536 void *head, void *tail, int bulk_cnt, 3537 unsigned long addr) 3538 { 3539 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 3540 struct slab *slab_free = NULL; 3541 int cnt = bulk_cnt; 3542 unsigned long flags; 3543 depot_stack_handle_t handle = 0; 3544 3545 if (s->flags & SLAB_STORE_USER) 3546 handle = set_track_prepare(); 3547 3548 spin_lock_irqsave(&n->list_lock, flags); 3549 3550 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) { 3551 void *prior = slab->freelist; 3552 3553 /* Perform the actual freeing while we still hold the locks */ 3554 slab->inuse -= cnt; 3555 set_freepointer(s, tail, prior); 3556 slab->freelist = head; 3557 3558 /* 3559 * If the slab is empty, and node's partial list is full, 3560 * it should be discarded anyway no matter it's on full or 3561 * partial list. 3562 */ 3563 if (slab->inuse == 0 && n->nr_partial >= s->min_partial) 3564 slab_free = slab; 3565 3566 if (!prior) { 3567 /* was on full list */ 3568 remove_full(s, n, slab); 3569 if (!slab_free) { 3570 add_partial(n, slab, DEACTIVATE_TO_TAIL); 3571 stat(s, FREE_ADD_PARTIAL); 3572 } 3573 } else if (slab_free) { 3574 remove_partial(n, slab); 3575 stat(s, FREE_REMOVE_PARTIAL); 3576 } 3577 } 3578 3579 if (slab_free) { 3580 /* 3581 * Update the counters while still holding n->list_lock to 3582 * prevent spurious validation warnings 3583 */ 3584 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects); 3585 } 3586 3587 spin_unlock_irqrestore(&n->list_lock, flags); 3588 3589 if (slab_free) { 3590 stat(s, FREE_SLAB); 3591 free_slab(s, slab_free); 3592 } 3593 } 3594 3595 /* 3596 * Slow path handling. This may still be called frequently since objects 3597 * have a longer lifetime than the cpu slabs in most processing loads. 3598 * 3599 * So we still attempt to reduce cache line usage. Just take the slab 3600 * lock and free the item. If there is no additional partial slab 3601 * handling required then we can return immediately. 3602 */ 3603 static void __slab_free(struct kmem_cache *s, struct slab *slab, 3604 void *head, void *tail, int cnt, 3605 unsigned long addr) 3606 3607 { 3608 void *prior; 3609 int was_frozen; 3610 struct slab new; 3611 unsigned long counters; 3612 struct kmem_cache_node *n = NULL; 3613 unsigned long flags; 3614 3615 stat(s, FREE_SLOWPATH); 3616 3617 if (kfence_free(head)) 3618 return; 3619 3620 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 3621 free_to_partial_list(s, slab, head, tail, cnt, addr); 3622 return; 3623 } 3624 3625 do { 3626 if (unlikely(n)) { 3627 spin_unlock_irqrestore(&n->list_lock, flags); 3628 n = NULL; 3629 } 3630 prior = slab->freelist; 3631 counters = slab->counters; 3632 set_freepointer(s, tail, prior); 3633 new.counters = counters; 3634 was_frozen = new.frozen; 3635 new.inuse -= cnt; 3636 if ((!new.inuse || !prior) && !was_frozen) { 3637 3638 if (kmem_cache_has_cpu_partial(s) && !prior) { 3639 3640 /* 3641 * Slab was on no list before and will be 3642 * partially empty 3643 * We can defer the list move and instead 3644 * freeze it. 3645 */ 3646 new.frozen = 1; 3647 3648 } else { /* Needs to be taken off a list */ 3649 3650 n = get_node(s, slab_nid(slab)); 3651 /* 3652 * Speculatively acquire the list_lock. 3653 * If the cmpxchg does not succeed then we may 3654 * drop the list_lock without any processing. 3655 * 3656 * Otherwise the list_lock will synchronize with 3657 * other processors updating the list of slabs. 3658 */ 3659 spin_lock_irqsave(&n->list_lock, flags); 3660 3661 } 3662 } 3663 3664 } while (!slab_update_freelist(s, slab, 3665 prior, counters, 3666 head, new.counters, 3667 "__slab_free")); 3668 3669 if (likely(!n)) { 3670 3671 if (likely(was_frozen)) { 3672 /* 3673 * The list lock was not taken therefore no list 3674 * activity can be necessary. 3675 */ 3676 stat(s, FREE_FROZEN); 3677 } else if (new.frozen) { 3678 /* 3679 * If we just froze the slab then put it onto the 3680 * per cpu partial list. 3681 */ 3682 put_cpu_partial(s, slab, 1); 3683 stat(s, CPU_PARTIAL_FREE); 3684 } 3685 3686 return; 3687 } 3688 3689 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 3690 goto slab_empty; 3691 3692 /* 3693 * Objects left in the slab. If it was not on the partial list before 3694 * then add it. 3695 */ 3696 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 3697 remove_full(s, n, slab); 3698 add_partial(n, slab, DEACTIVATE_TO_TAIL); 3699 stat(s, FREE_ADD_PARTIAL); 3700 } 3701 spin_unlock_irqrestore(&n->list_lock, flags); 3702 return; 3703 3704 slab_empty: 3705 if (prior) { 3706 /* 3707 * Slab on the partial list. 3708 */ 3709 remove_partial(n, slab); 3710 stat(s, FREE_REMOVE_PARTIAL); 3711 } else { 3712 /* Slab must be on the full list */ 3713 remove_full(s, n, slab); 3714 } 3715 3716 spin_unlock_irqrestore(&n->list_lock, flags); 3717 stat(s, FREE_SLAB); 3718 discard_slab(s, slab); 3719 } 3720 3721 #ifndef CONFIG_SLUB_TINY 3722 /* 3723 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 3724 * can perform fastpath freeing without additional function calls. 3725 * 3726 * The fastpath is only possible if we are freeing to the current cpu slab 3727 * of this processor. This typically the case if we have just allocated 3728 * the item before. 3729 * 3730 * If fastpath is not possible then fall back to __slab_free where we deal 3731 * with all sorts of special processing. 3732 * 3733 * Bulk free of a freelist with several objects (all pointing to the 3734 * same slab) possible by specifying head and tail ptr, plus objects 3735 * count (cnt). Bulk free indicated by tail pointer being set. 3736 */ 3737 static __always_inline void do_slab_free(struct kmem_cache *s, 3738 struct slab *slab, void *head, void *tail, 3739 int cnt, unsigned long addr) 3740 { 3741 void *tail_obj = tail ? : head; 3742 struct kmem_cache_cpu *c; 3743 unsigned long tid; 3744 void **freelist; 3745 3746 redo: 3747 /* 3748 * Determine the currently cpus per cpu slab. 3749 * The cpu may change afterward. However that does not matter since 3750 * data is retrieved via this pointer. If we are on the same cpu 3751 * during the cmpxchg then the free will succeed. 3752 */ 3753 c = raw_cpu_ptr(s->cpu_slab); 3754 tid = READ_ONCE(c->tid); 3755 3756 /* Same with comment on barrier() in slab_alloc_node() */ 3757 barrier(); 3758 3759 if (unlikely(slab != c->slab)) { 3760 __slab_free(s, slab, head, tail_obj, cnt, addr); 3761 return; 3762 } 3763 3764 if (USE_LOCKLESS_FAST_PATH()) { 3765 freelist = READ_ONCE(c->freelist); 3766 3767 set_freepointer(s, tail_obj, freelist); 3768 3769 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) { 3770 note_cmpxchg_failure("slab_free", s, tid); 3771 goto redo; 3772 } 3773 } else { 3774 /* Update the free list under the local lock */ 3775 local_lock(&s->cpu_slab->lock); 3776 c = this_cpu_ptr(s->cpu_slab); 3777 if (unlikely(slab != c->slab)) { 3778 local_unlock(&s->cpu_slab->lock); 3779 goto redo; 3780 } 3781 tid = c->tid; 3782 freelist = c->freelist; 3783 3784 set_freepointer(s, tail_obj, freelist); 3785 c->freelist = head; 3786 c->tid = next_tid(tid); 3787 3788 local_unlock(&s->cpu_slab->lock); 3789 } 3790 stat(s, FREE_FASTPATH); 3791 } 3792 #else /* CONFIG_SLUB_TINY */ 3793 static void do_slab_free(struct kmem_cache *s, 3794 struct slab *slab, void *head, void *tail, 3795 int cnt, unsigned long addr) 3796 { 3797 void *tail_obj = tail ? : head; 3798 3799 __slab_free(s, slab, head, tail_obj, cnt, addr); 3800 } 3801 #endif /* CONFIG_SLUB_TINY */ 3802 3803 static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab, 3804 void *head, void *tail, void **p, int cnt, 3805 unsigned long addr) 3806 { 3807 memcg_slab_free_hook(s, slab, p, cnt); 3808 /* 3809 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3810 * to remove objects, whose reuse must be delayed. 3811 */ 3812 if (slab_free_freelist_hook(s, &head, &tail, &cnt)) 3813 do_slab_free(s, slab, head, tail, cnt, addr); 3814 } 3815 3816 #ifdef CONFIG_KASAN_GENERIC 3817 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3818 { 3819 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr); 3820 } 3821 #endif 3822 3823 void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller) 3824 { 3825 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller); 3826 } 3827 3828 void kmem_cache_free(struct kmem_cache *s, void *x) 3829 { 3830 s = cache_from_obj(s, x); 3831 if (!s) 3832 return; 3833 trace_kmem_cache_free(_RET_IP_, x, s); 3834 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_); 3835 } 3836 EXPORT_SYMBOL(kmem_cache_free); 3837 3838 struct detached_freelist { 3839 struct slab *slab; 3840 void *tail; 3841 void *freelist; 3842 int cnt; 3843 struct kmem_cache *s; 3844 }; 3845 3846 /* 3847 * This function progressively scans the array with free objects (with 3848 * a limited look ahead) and extract objects belonging to the same 3849 * slab. It builds a detached freelist directly within the given 3850 * slab/objects. This can happen without any need for 3851 * synchronization, because the objects are owned by running process. 3852 * The freelist is build up as a single linked list in the objects. 3853 * The idea is, that this detached freelist can then be bulk 3854 * transferred to the real freelist(s), but only requiring a single 3855 * synchronization primitive. Look ahead in the array is limited due 3856 * to performance reasons. 3857 */ 3858 static inline 3859 int build_detached_freelist(struct kmem_cache *s, size_t size, 3860 void **p, struct detached_freelist *df) 3861 { 3862 int lookahead = 3; 3863 void *object; 3864 struct folio *folio; 3865 size_t same; 3866 3867 object = p[--size]; 3868 folio = virt_to_folio(object); 3869 if (!s) { 3870 /* Handle kalloc'ed objects */ 3871 if (unlikely(!folio_test_slab(folio))) { 3872 free_large_kmalloc(folio, object); 3873 df->slab = NULL; 3874 return size; 3875 } 3876 /* Derive kmem_cache from object */ 3877 df->slab = folio_slab(folio); 3878 df->s = df->slab->slab_cache; 3879 } else { 3880 df->slab = folio_slab(folio); 3881 df->s = cache_from_obj(s, object); /* Support for memcg */ 3882 } 3883 3884 /* Start new detached freelist */ 3885 df->tail = object; 3886 df->freelist = object; 3887 df->cnt = 1; 3888 3889 if (is_kfence_address(object)) 3890 return size; 3891 3892 set_freepointer(df->s, object, NULL); 3893 3894 same = size; 3895 while (size) { 3896 object = p[--size]; 3897 /* df->slab is always set at this point */ 3898 if (df->slab == virt_to_slab(object)) { 3899 /* Opportunity build freelist */ 3900 set_freepointer(df->s, object, df->freelist); 3901 df->freelist = object; 3902 df->cnt++; 3903 same--; 3904 if (size != same) 3905 swap(p[size], p[same]); 3906 continue; 3907 } 3908 3909 /* Limit look ahead search */ 3910 if (!--lookahead) 3911 break; 3912 } 3913 3914 return same; 3915 } 3916 3917 /* Note that interrupts must be enabled when calling this function. */ 3918 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3919 { 3920 if (!size) 3921 return; 3922 3923 do { 3924 struct detached_freelist df; 3925 3926 size = build_detached_freelist(s, size, p, &df); 3927 if (!df.slab) 3928 continue; 3929 3930 slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt, 3931 _RET_IP_); 3932 } while (likely(size)); 3933 } 3934 EXPORT_SYMBOL(kmem_cache_free_bulk); 3935 3936 #ifndef CONFIG_SLUB_TINY 3937 static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, 3938 size_t size, void **p, struct obj_cgroup *objcg) 3939 { 3940 struct kmem_cache_cpu *c; 3941 unsigned long irqflags; 3942 int i; 3943 3944 /* 3945 * Drain objects in the per cpu slab, while disabling local 3946 * IRQs, which protects against PREEMPT and interrupts 3947 * handlers invoking normal fastpath. 3948 */ 3949 c = slub_get_cpu_ptr(s->cpu_slab); 3950 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 3951 3952 for (i = 0; i < size; i++) { 3953 void *object = kfence_alloc(s, s->object_size, flags); 3954 3955 if (unlikely(object)) { 3956 p[i] = object; 3957 continue; 3958 } 3959 3960 object = c->freelist; 3961 if (unlikely(!object)) { 3962 /* 3963 * We may have removed an object from c->freelist using 3964 * the fastpath in the previous iteration; in that case, 3965 * c->tid has not been bumped yet. 3966 * Since ___slab_alloc() may reenable interrupts while 3967 * allocating memory, we should bump c->tid now. 3968 */ 3969 c->tid = next_tid(c->tid); 3970 3971 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 3972 3973 /* 3974 * Invoking slow path likely have side-effect 3975 * of re-populating per CPU c->freelist 3976 */ 3977 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3978 _RET_IP_, c, s->object_size); 3979 if (unlikely(!p[i])) 3980 goto error; 3981 3982 c = this_cpu_ptr(s->cpu_slab); 3983 maybe_wipe_obj_freeptr(s, p[i]); 3984 3985 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 3986 3987 continue; /* goto for-loop */ 3988 } 3989 c->freelist = get_freepointer(s, object); 3990 p[i] = object; 3991 maybe_wipe_obj_freeptr(s, p[i]); 3992 } 3993 c->tid = next_tid(c->tid); 3994 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 3995 slub_put_cpu_ptr(s->cpu_slab); 3996 3997 return i; 3998 3999 error: 4000 slub_put_cpu_ptr(s->cpu_slab); 4001 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size); 4002 kmem_cache_free_bulk(s, i, p); 4003 return 0; 4004 4005 } 4006 #else /* CONFIG_SLUB_TINY */ 4007 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, 4008 size_t size, void **p, struct obj_cgroup *objcg) 4009 { 4010 int i; 4011 4012 for (i = 0; i < size; i++) { 4013 void *object = kfence_alloc(s, s->object_size, flags); 4014 4015 if (unlikely(object)) { 4016 p[i] = object; 4017 continue; 4018 } 4019 4020 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE, 4021 _RET_IP_, s->object_size); 4022 if (unlikely(!p[i])) 4023 goto error; 4024 4025 maybe_wipe_obj_freeptr(s, p[i]); 4026 } 4027 4028 return i; 4029 4030 error: 4031 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size); 4032 kmem_cache_free_bulk(s, i, p); 4033 return 0; 4034 } 4035 #endif /* CONFIG_SLUB_TINY */ 4036 4037 /* Note that interrupts must be enabled when calling this function. */ 4038 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 4039 void **p) 4040 { 4041 int i; 4042 struct obj_cgroup *objcg = NULL; 4043 4044 if (!size) 4045 return 0; 4046 4047 /* memcg and kmem_cache debug support */ 4048 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags); 4049 if (unlikely(!s)) 4050 return 0; 4051 4052 i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg); 4053 4054 /* 4055 * memcg and kmem_cache debug support and memory initialization. 4056 * Done outside of the IRQ disabled fastpath loop. 4057 */ 4058 if (i != 0) 4059 slab_post_alloc_hook(s, objcg, flags, size, p, 4060 slab_want_init_on_alloc(flags, s), s->object_size); 4061 return i; 4062 } 4063 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 4064 4065 4066 /* 4067 * Object placement in a slab is made very easy because we always start at 4068 * offset 0. If we tune the size of the object to the alignment then we can 4069 * get the required alignment by putting one properly sized object after 4070 * another. 4071 * 4072 * Notice that the allocation order determines the sizes of the per cpu 4073 * caches. Each processor has always one slab available for allocations. 4074 * Increasing the allocation order reduces the number of times that slabs 4075 * must be moved on and off the partial lists and is therefore a factor in 4076 * locking overhead. 4077 */ 4078 4079 /* 4080 * Minimum / Maximum order of slab pages. This influences locking overhead 4081 * and slab fragmentation. A higher order reduces the number of partial slabs 4082 * and increases the number of allocations possible without having to 4083 * take the list_lock. 4084 */ 4085 static unsigned int slub_min_order; 4086 static unsigned int slub_max_order = 4087 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER; 4088 static unsigned int slub_min_objects; 4089 4090 /* 4091 * Calculate the order of allocation given an slab object size. 4092 * 4093 * The order of allocation has significant impact on performance and other 4094 * system components. Generally order 0 allocations should be preferred since 4095 * order 0 does not cause fragmentation in the page allocator. Larger objects 4096 * be problematic to put into order 0 slabs because there may be too much 4097 * unused space left. We go to a higher order if more than 1/16th of the slab 4098 * would be wasted. 4099 * 4100 * In order to reach satisfactory performance we must ensure that a minimum 4101 * number of objects is in one slab. Otherwise we may generate too much 4102 * activity on the partial lists which requires taking the list_lock. This is 4103 * less a concern for large slabs though which are rarely used. 4104 * 4105 * slub_max_order specifies the order where we begin to stop considering the 4106 * number of objects in a slab as critical. If we reach slub_max_order then 4107 * we try to keep the page order as low as possible. So we accept more waste 4108 * of space in favor of a small page order. 4109 * 4110 * Higher order allocations also allow the placement of more objects in a 4111 * slab and thereby reduce object handling overhead. If the user has 4112 * requested a higher minimum order then we start with that one instead of 4113 * the smallest order which will fit the object. 4114 */ 4115 static inline unsigned int calc_slab_order(unsigned int size, 4116 unsigned int min_objects, unsigned int max_order, 4117 unsigned int fract_leftover) 4118 { 4119 unsigned int min_order = slub_min_order; 4120 unsigned int order; 4121 4122 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 4123 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 4124 4125 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 4126 order <= max_order; order++) { 4127 4128 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 4129 unsigned int rem; 4130 4131 rem = slab_size % size; 4132 4133 if (rem <= slab_size / fract_leftover) 4134 break; 4135 } 4136 4137 return order; 4138 } 4139 4140 static inline int calculate_order(unsigned int size) 4141 { 4142 unsigned int order; 4143 unsigned int min_objects; 4144 unsigned int max_objects; 4145 unsigned int nr_cpus; 4146 4147 /* 4148 * Attempt to find best configuration for a slab. This 4149 * works by first attempting to generate a layout with 4150 * the best configuration and backing off gradually. 4151 * 4152 * First we increase the acceptable waste in a slab. Then 4153 * we reduce the minimum objects required in a slab. 4154 */ 4155 min_objects = slub_min_objects; 4156 if (!min_objects) { 4157 /* 4158 * Some architectures will only update present cpus when 4159 * onlining them, so don't trust the number if it's just 1. But 4160 * we also don't want to use nr_cpu_ids always, as on some other 4161 * architectures, there can be many possible cpus, but never 4162 * onlined. Here we compromise between trying to avoid too high 4163 * order on systems that appear larger than they are, and too 4164 * low order on systems that appear smaller than they are. 4165 */ 4166 nr_cpus = num_present_cpus(); 4167 if (nr_cpus <= 1) 4168 nr_cpus = nr_cpu_ids; 4169 min_objects = 4 * (fls(nr_cpus) + 1); 4170 } 4171 max_objects = order_objects(slub_max_order, size); 4172 min_objects = min(min_objects, max_objects); 4173 4174 while (min_objects > 1) { 4175 unsigned int fraction; 4176 4177 fraction = 16; 4178 while (fraction >= 4) { 4179 order = calc_slab_order(size, min_objects, 4180 slub_max_order, fraction); 4181 if (order <= slub_max_order) 4182 return order; 4183 fraction /= 2; 4184 } 4185 min_objects--; 4186 } 4187 4188 /* 4189 * We were unable to place multiple objects in a slab. Now 4190 * lets see if we can place a single object there. 4191 */ 4192 order = calc_slab_order(size, 1, slub_max_order, 1); 4193 if (order <= slub_max_order) 4194 return order; 4195 4196 /* 4197 * Doh this slab cannot be placed using slub_max_order. 4198 */ 4199 order = calc_slab_order(size, 1, MAX_ORDER, 1); 4200 if (order <= MAX_ORDER) 4201 return order; 4202 return -ENOSYS; 4203 } 4204 4205 static void 4206 init_kmem_cache_node(struct kmem_cache_node *n) 4207 { 4208 n->nr_partial = 0; 4209 spin_lock_init(&n->list_lock); 4210 INIT_LIST_HEAD(&n->partial); 4211 #ifdef CONFIG_SLUB_DEBUG 4212 atomic_long_set(&n->nr_slabs, 0); 4213 atomic_long_set(&n->total_objects, 0); 4214 INIT_LIST_HEAD(&n->full); 4215 #endif 4216 } 4217 4218 #ifndef CONFIG_SLUB_TINY 4219 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 4220 { 4221 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 4222 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH * 4223 sizeof(struct kmem_cache_cpu)); 4224 4225 /* 4226 * Must align to double word boundary for the double cmpxchg 4227 * instructions to work; see __pcpu_double_call_return_bool(). 4228 */ 4229 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 4230 2 * sizeof(void *)); 4231 4232 if (!s->cpu_slab) 4233 return 0; 4234 4235 init_kmem_cache_cpus(s); 4236 4237 return 1; 4238 } 4239 #else 4240 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 4241 { 4242 return 1; 4243 } 4244 #endif /* CONFIG_SLUB_TINY */ 4245 4246 static struct kmem_cache *kmem_cache_node; 4247 4248 /* 4249 * No kmalloc_node yet so do it by hand. We know that this is the first 4250 * slab on the node for this slabcache. There are no concurrent accesses 4251 * possible. 4252 * 4253 * Note that this function only works on the kmem_cache_node 4254 * when allocating for the kmem_cache_node. This is used for bootstrapping 4255 * memory on a fresh node that has no slab structures yet. 4256 */ 4257 static void early_kmem_cache_node_alloc(int node) 4258 { 4259 struct slab *slab; 4260 struct kmem_cache_node *n; 4261 4262 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 4263 4264 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 4265 4266 BUG_ON(!slab); 4267 inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects); 4268 if (slab_nid(slab) != node) { 4269 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 4270 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 4271 } 4272 4273 n = slab->freelist; 4274 BUG_ON(!n); 4275 #ifdef CONFIG_SLUB_DEBUG 4276 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 4277 init_tracking(kmem_cache_node, n); 4278 #endif 4279 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 4280 slab->freelist = get_freepointer(kmem_cache_node, n); 4281 slab->inuse = 1; 4282 kmem_cache_node->node[node] = n; 4283 init_kmem_cache_node(n); 4284 inc_slabs_node(kmem_cache_node, node, slab->objects); 4285 4286 /* 4287 * No locks need to be taken here as it has just been 4288 * initialized and there is no concurrent access. 4289 */ 4290 __add_partial(n, slab, DEACTIVATE_TO_HEAD); 4291 } 4292 4293 static void free_kmem_cache_nodes(struct kmem_cache *s) 4294 { 4295 int node; 4296 struct kmem_cache_node *n; 4297 4298 for_each_kmem_cache_node(s, node, n) { 4299 s->node[node] = NULL; 4300 kmem_cache_free(kmem_cache_node, n); 4301 } 4302 } 4303 4304 void __kmem_cache_release(struct kmem_cache *s) 4305 { 4306 cache_random_seq_destroy(s); 4307 #ifndef CONFIG_SLUB_TINY 4308 free_percpu(s->cpu_slab); 4309 #endif 4310 free_kmem_cache_nodes(s); 4311 } 4312 4313 static int init_kmem_cache_nodes(struct kmem_cache *s) 4314 { 4315 int node; 4316 4317 for_each_node_mask(node, slab_nodes) { 4318 struct kmem_cache_node *n; 4319 4320 if (slab_state == DOWN) { 4321 early_kmem_cache_node_alloc(node); 4322 continue; 4323 } 4324 n = kmem_cache_alloc_node(kmem_cache_node, 4325 GFP_KERNEL, node); 4326 4327 if (!n) { 4328 free_kmem_cache_nodes(s); 4329 return 0; 4330 } 4331 4332 init_kmem_cache_node(n); 4333 s->node[node] = n; 4334 } 4335 return 1; 4336 } 4337 4338 static void set_cpu_partial(struct kmem_cache *s) 4339 { 4340 #ifdef CONFIG_SLUB_CPU_PARTIAL 4341 unsigned int nr_objects; 4342 4343 /* 4344 * cpu_partial determined the maximum number of objects kept in the 4345 * per cpu partial lists of a processor. 4346 * 4347 * Per cpu partial lists mainly contain slabs that just have one 4348 * object freed. If they are used for allocation then they can be 4349 * filled up again with minimal effort. The slab will never hit the 4350 * per node partial lists and therefore no locking will be required. 4351 * 4352 * For backwards compatibility reasons, this is determined as number 4353 * of objects, even though we now limit maximum number of pages, see 4354 * slub_set_cpu_partial() 4355 */ 4356 if (!kmem_cache_has_cpu_partial(s)) 4357 nr_objects = 0; 4358 else if (s->size >= PAGE_SIZE) 4359 nr_objects = 6; 4360 else if (s->size >= 1024) 4361 nr_objects = 24; 4362 else if (s->size >= 256) 4363 nr_objects = 52; 4364 else 4365 nr_objects = 120; 4366 4367 slub_set_cpu_partial(s, nr_objects); 4368 #endif 4369 } 4370 4371 /* 4372 * calculate_sizes() determines the order and the distribution of data within 4373 * a slab object. 4374 */ 4375 static int calculate_sizes(struct kmem_cache *s) 4376 { 4377 slab_flags_t flags = s->flags; 4378 unsigned int size = s->object_size; 4379 unsigned int order; 4380 4381 /* 4382 * Round up object size to the next word boundary. We can only 4383 * place the free pointer at word boundaries and this determines 4384 * the possible location of the free pointer. 4385 */ 4386 size = ALIGN(size, sizeof(void *)); 4387 4388 #ifdef CONFIG_SLUB_DEBUG 4389 /* 4390 * Determine if we can poison the object itself. If the user of 4391 * the slab may touch the object after free or before allocation 4392 * then we should never poison the object itself. 4393 */ 4394 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 4395 !s->ctor) 4396 s->flags |= __OBJECT_POISON; 4397 else 4398 s->flags &= ~__OBJECT_POISON; 4399 4400 4401 /* 4402 * If we are Redzoning then check if there is some space between the 4403 * end of the object and the free pointer. If not then add an 4404 * additional word to have some bytes to store Redzone information. 4405 */ 4406 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 4407 size += sizeof(void *); 4408 #endif 4409 4410 /* 4411 * With that we have determined the number of bytes in actual use 4412 * by the object and redzoning. 4413 */ 4414 s->inuse = size; 4415 4416 if (slub_debug_orig_size(s) || 4417 (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 4418 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) || 4419 s->ctor) { 4420 /* 4421 * Relocate free pointer after the object if it is not 4422 * permitted to overwrite the first word of the object on 4423 * kmem_cache_free. 4424 * 4425 * This is the case if we do RCU, have a constructor or 4426 * destructor, are poisoning the objects, or are 4427 * redzoning an object smaller than sizeof(void *). 4428 * 4429 * The assumption that s->offset >= s->inuse means free 4430 * pointer is outside of the object is used in the 4431 * freeptr_outside_object() function. If that is no 4432 * longer true, the function needs to be modified. 4433 */ 4434 s->offset = size; 4435 size += sizeof(void *); 4436 } else { 4437 /* 4438 * Store freelist pointer near middle of object to keep 4439 * it away from the edges of the object to avoid small 4440 * sized over/underflows from neighboring allocations. 4441 */ 4442 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 4443 } 4444 4445 #ifdef CONFIG_SLUB_DEBUG 4446 if (flags & SLAB_STORE_USER) { 4447 /* 4448 * Need to store information about allocs and frees after 4449 * the object. 4450 */ 4451 size += 2 * sizeof(struct track); 4452 4453 /* Save the original kmalloc request size */ 4454 if (flags & SLAB_KMALLOC) 4455 size += sizeof(unsigned int); 4456 } 4457 #endif 4458 4459 kasan_cache_create(s, &size, &s->flags); 4460 #ifdef CONFIG_SLUB_DEBUG 4461 if (flags & SLAB_RED_ZONE) { 4462 /* 4463 * Add some empty padding so that we can catch 4464 * overwrites from earlier objects rather than let 4465 * tracking information or the free pointer be 4466 * corrupted if a user writes before the start 4467 * of the object. 4468 */ 4469 size += sizeof(void *); 4470 4471 s->red_left_pad = sizeof(void *); 4472 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 4473 size += s->red_left_pad; 4474 } 4475 #endif 4476 4477 /* 4478 * SLUB stores one object immediately after another beginning from 4479 * offset 0. In order to align the objects we have to simply size 4480 * each object to conform to the alignment. 4481 */ 4482 size = ALIGN(size, s->align); 4483 s->size = size; 4484 s->reciprocal_size = reciprocal_value(size); 4485 order = calculate_order(size); 4486 4487 if ((int)order < 0) 4488 return 0; 4489 4490 s->allocflags = 0; 4491 if (order) 4492 s->allocflags |= __GFP_COMP; 4493 4494 if (s->flags & SLAB_CACHE_DMA) 4495 s->allocflags |= GFP_DMA; 4496 4497 if (s->flags & SLAB_CACHE_DMA32) 4498 s->allocflags |= GFP_DMA32; 4499 4500 if (s->flags & SLAB_RECLAIM_ACCOUNT) 4501 s->allocflags |= __GFP_RECLAIMABLE; 4502 4503 /* 4504 * Determine the number of objects per slab 4505 */ 4506 s->oo = oo_make(order, size); 4507 s->min = oo_make(get_order(size), size); 4508 4509 return !!oo_objects(s->oo); 4510 } 4511 4512 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 4513 { 4514 s->flags = kmem_cache_flags(s->size, flags, s->name); 4515 #ifdef CONFIG_SLAB_FREELIST_HARDENED 4516 s->random = get_random_long(); 4517 #endif 4518 4519 if (!calculate_sizes(s)) 4520 goto error; 4521 if (disable_higher_order_debug) { 4522 /* 4523 * Disable debugging flags that store metadata if the min slab 4524 * order increased. 4525 */ 4526 if (get_order(s->size) > get_order(s->object_size)) { 4527 s->flags &= ~DEBUG_METADATA_FLAGS; 4528 s->offset = 0; 4529 if (!calculate_sizes(s)) 4530 goto error; 4531 } 4532 } 4533 4534 #ifdef system_has_freelist_aba 4535 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) { 4536 /* Enable fast mode */ 4537 s->flags |= __CMPXCHG_DOUBLE; 4538 } 4539 #endif 4540 4541 /* 4542 * The larger the object size is, the more slabs we want on the partial 4543 * list to avoid pounding the page allocator excessively. 4544 */ 4545 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); 4546 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); 4547 4548 set_cpu_partial(s); 4549 4550 #ifdef CONFIG_NUMA 4551 s->remote_node_defrag_ratio = 1000; 4552 #endif 4553 4554 /* Initialize the pre-computed randomized freelist if slab is up */ 4555 if (slab_state >= UP) { 4556 if (init_cache_random_seq(s)) 4557 goto error; 4558 } 4559 4560 if (!init_kmem_cache_nodes(s)) 4561 goto error; 4562 4563 if (alloc_kmem_cache_cpus(s)) 4564 return 0; 4565 4566 error: 4567 __kmem_cache_release(s); 4568 return -EINVAL; 4569 } 4570 4571 static void list_slab_objects(struct kmem_cache *s, struct slab *slab, 4572 const char *text) 4573 { 4574 #ifdef CONFIG_SLUB_DEBUG 4575 void *addr = slab_address(slab); 4576 void *p; 4577 4578 slab_err(s, slab, text, s->name); 4579 4580 spin_lock(&object_map_lock); 4581 __fill_map(object_map, s, slab); 4582 4583 for_each_object(p, s, addr, slab->objects) { 4584 4585 if (!test_bit(__obj_to_index(s, addr, p), object_map)) { 4586 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 4587 print_tracking(s, p); 4588 } 4589 } 4590 spin_unlock(&object_map_lock); 4591 #endif 4592 } 4593 4594 /* 4595 * Attempt to free all partial slabs on a node. 4596 * This is called from __kmem_cache_shutdown(). We must take list_lock 4597 * because sysfs file might still access partial list after the shutdowning. 4598 */ 4599 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 4600 { 4601 LIST_HEAD(discard); 4602 struct slab *slab, *h; 4603 4604 BUG_ON(irqs_disabled()); 4605 spin_lock_irq(&n->list_lock); 4606 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 4607 if (!slab->inuse) { 4608 remove_partial(n, slab); 4609 list_add(&slab->slab_list, &discard); 4610 } else { 4611 list_slab_objects(s, slab, 4612 "Objects remaining in %s on __kmem_cache_shutdown()"); 4613 } 4614 } 4615 spin_unlock_irq(&n->list_lock); 4616 4617 list_for_each_entry_safe(slab, h, &discard, slab_list) 4618 discard_slab(s, slab); 4619 } 4620 4621 bool __kmem_cache_empty(struct kmem_cache *s) 4622 { 4623 int node; 4624 struct kmem_cache_node *n; 4625 4626 for_each_kmem_cache_node(s, node, n) 4627 if (n->nr_partial || node_nr_slabs(n)) 4628 return false; 4629 return true; 4630 } 4631 4632 /* 4633 * Release all resources used by a slab cache. 4634 */ 4635 int __kmem_cache_shutdown(struct kmem_cache *s) 4636 { 4637 int node; 4638 struct kmem_cache_node *n; 4639 4640 flush_all_cpus_locked(s); 4641 /* Attempt to free all objects */ 4642 for_each_kmem_cache_node(s, node, n) { 4643 free_partial(s, n); 4644 if (n->nr_partial || node_nr_slabs(n)) 4645 return 1; 4646 } 4647 return 0; 4648 } 4649 4650 #ifdef CONFIG_PRINTK 4651 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 4652 { 4653 void *base; 4654 int __maybe_unused i; 4655 unsigned int objnr; 4656 void *objp; 4657 void *objp0; 4658 struct kmem_cache *s = slab->slab_cache; 4659 struct track __maybe_unused *trackp; 4660 4661 kpp->kp_ptr = object; 4662 kpp->kp_slab = slab; 4663 kpp->kp_slab_cache = s; 4664 base = slab_address(slab); 4665 objp0 = kasan_reset_tag(object); 4666 #ifdef CONFIG_SLUB_DEBUG 4667 objp = restore_red_left(s, objp0); 4668 #else 4669 objp = objp0; 4670 #endif 4671 objnr = obj_to_index(s, slab, objp); 4672 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 4673 objp = base + s->size * objnr; 4674 kpp->kp_objp = objp; 4675 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 4676 || (objp - base) % s->size) || 4677 !(s->flags & SLAB_STORE_USER)) 4678 return; 4679 #ifdef CONFIG_SLUB_DEBUG 4680 objp = fixup_red_left(s, objp); 4681 trackp = get_track(s, objp, TRACK_ALLOC); 4682 kpp->kp_ret = (void *)trackp->addr; 4683 #ifdef CONFIG_STACKDEPOT 4684 { 4685 depot_stack_handle_t handle; 4686 unsigned long *entries; 4687 unsigned int nr_entries; 4688 4689 handle = READ_ONCE(trackp->handle); 4690 if (handle) { 4691 nr_entries = stack_depot_fetch(handle, &entries); 4692 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 4693 kpp->kp_stack[i] = (void *)entries[i]; 4694 } 4695 4696 trackp = get_track(s, objp, TRACK_FREE); 4697 handle = READ_ONCE(trackp->handle); 4698 if (handle) { 4699 nr_entries = stack_depot_fetch(handle, &entries); 4700 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 4701 kpp->kp_free_stack[i] = (void *)entries[i]; 4702 } 4703 } 4704 #endif 4705 #endif 4706 } 4707 #endif 4708 4709 /******************************************************************** 4710 * Kmalloc subsystem 4711 *******************************************************************/ 4712 4713 static int __init setup_slub_min_order(char *str) 4714 { 4715 get_option(&str, (int *)&slub_min_order); 4716 4717 return 1; 4718 } 4719 4720 __setup("slub_min_order=", setup_slub_min_order); 4721 4722 static int __init setup_slub_max_order(char *str) 4723 { 4724 get_option(&str, (int *)&slub_max_order); 4725 slub_max_order = min_t(unsigned int, slub_max_order, MAX_ORDER); 4726 4727 return 1; 4728 } 4729 4730 __setup("slub_max_order=", setup_slub_max_order); 4731 4732 static int __init setup_slub_min_objects(char *str) 4733 { 4734 get_option(&str, (int *)&slub_min_objects); 4735 4736 return 1; 4737 } 4738 4739 __setup("slub_min_objects=", setup_slub_min_objects); 4740 4741 #ifdef CONFIG_HARDENED_USERCOPY 4742 /* 4743 * Rejects incorrectly sized objects and objects that are to be copied 4744 * to/from userspace but do not fall entirely within the containing slab 4745 * cache's usercopy region. 4746 * 4747 * Returns NULL if check passes, otherwise const char * to name of cache 4748 * to indicate an error. 4749 */ 4750 void __check_heap_object(const void *ptr, unsigned long n, 4751 const struct slab *slab, bool to_user) 4752 { 4753 struct kmem_cache *s; 4754 unsigned int offset; 4755 bool is_kfence = is_kfence_address(ptr); 4756 4757 ptr = kasan_reset_tag(ptr); 4758 4759 /* Find object and usable object size. */ 4760 s = slab->slab_cache; 4761 4762 /* Reject impossible pointers. */ 4763 if (ptr < slab_address(slab)) 4764 usercopy_abort("SLUB object not in SLUB page?!", NULL, 4765 to_user, 0, n); 4766 4767 /* Find offset within object. */ 4768 if (is_kfence) 4769 offset = ptr - kfence_object_start(ptr); 4770 else 4771 offset = (ptr - slab_address(slab)) % s->size; 4772 4773 /* Adjust for redzone and reject if within the redzone. */ 4774 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 4775 if (offset < s->red_left_pad) 4776 usercopy_abort("SLUB object in left red zone", 4777 s->name, to_user, offset, n); 4778 offset -= s->red_left_pad; 4779 } 4780 4781 /* Allow address range falling entirely within usercopy region. */ 4782 if (offset >= s->useroffset && 4783 offset - s->useroffset <= s->usersize && 4784 n <= s->useroffset - offset + s->usersize) 4785 return; 4786 4787 usercopy_abort("SLUB object", s->name, to_user, offset, n); 4788 } 4789 #endif /* CONFIG_HARDENED_USERCOPY */ 4790 4791 #define SHRINK_PROMOTE_MAX 32 4792 4793 /* 4794 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 4795 * up most to the head of the partial lists. New allocations will then 4796 * fill those up and thus they can be removed from the partial lists. 4797 * 4798 * The slabs with the least items are placed last. This results in them 4799 * being allocated from last increasing the chance that the last objects 4800 * are freed in them. 4801 */ 4802 static int __kmem_cache_do_shrink(struct kmem_cache *s) 4803 { 4804 int node; 4805 int i; 4806 struct kmem_cache_node *n; 4807 struct slab *slab; 4808 struct slab *t; 4809 struct list_head discard; 4810 struct list_head promote[SHRINK_PROMOTE_MAX]; 4811 unsigned long flags; 4812 int ret = 0; 4813 4814 for_each_kmem_cache_node(s, node, n) { 4815 INIT_LIST_HEAD(&discard); 4816 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 4817 INIT_LIST_HEAD(promote + i); 4818 4819 spin_lock_irqsave(&n->list_lock, flags); 4820 4821 /* 4822 * Build lists of slabs to discard or promote. 4823 * 4824 * Note that concurrent frees may occur while we hold the 4825 * list_lock. slab->inuse here is the upper limit. 4826 */ 4827 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 4828 int free = slab->objects - slab->inuse; 4829 4830 /* Do not reread slab->inuse */ 4831 barrier(); 4832 4833 /* We do not keep full slabs on the list */ 4834 BUG_ON(free <= 0); 4835 4836 if (free == slab->objects) { 4837 list_move(&slab->slab_list, &discard); 4838 n->nr_partial--; 4839 dec_slabs_node(s, node, slab->objects); 4840 } else if (free <= SHRINK_PROMOTE_MAX) 4841 list_move(&slab->slab_list, promote + free - 1); 4842 } 4843 4844 /* 4845 * Promote the slabs filled up most to the head of the 4846 * partial list. 4847 */ 4848 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4849 list_splice(promote + i, &n->partial); 4850 4851 spin_unlock_irqrestore(&n->list_lock, flags); 4852 4853 /* Release empty slabs */ 4854 list_for_each_entry_safe(slab, t, &discard, slab_list) 4855 free_slab(s, slab); 4856 4857 if (node_nr_slabs(n)) 4858 ret = 1; 4859 } 4860 4861 return ret; 4862 } 4863 4864 int __kmem_cache_shrink(struct kmem_cache *s) 4865 { 4866 flush_all(s); 4867 return __kmem_cache_do_shrink(s); 4868 } 4869 4870 static int slab_mem_going_offline_callback(void *arg) 4871 { 4872 struct kmem_cache *s; 4873 4874 mutex_lock(&slab_mutex); 4875 list_for_each_entry(s, &slab_caches, list) { 4876 flush_all_cpus_locked(s); 4877 __kmem_cache_do_shrink(s); 4878 } 4879 mutex_unlock(&slab_mutex); 4880 4881 return 0; 4882 } 4883 4884 static void slab_mem_offline_callback(void *arg) 4885 { 4886 struct memory_notify *marg = arg; 4887 int offline_node; 4888 4889 offline_node = marg->status_change_nid_normal; 4890 4891 /* 4892 * If the node still has available memory. we need kmem_cache_node 4893 * for it yet. 4894 */ 4895 if (offline_node < 0) 4896 return; 4897 4898 mutex_lock(&slab_mutex); 4899 node_clear(offline_node, slab_nodes); 4900 /* 4901 * We no longer free kmem_cache_node structures here, as it would be 4902 * racy with all get_node() users, and infeasible to protect them with 4903 * slab_mutex. 4904 */ 4905 mutex_unlock(&slab_mutex); 4906 } 4907 4908 static int slab_mem_going_online_callback(void *arg) 4909 { 4910 struct kmem_cache_node *n; 4911 struct kmem_cache *s; 4912 struct memory_notify *marg = arg; 4913 int nid = marg->status_change_nid_normal; 4914 int ret = 0; 4915 4916 /* 4917 * If the node's memory is already available, then kmem_cache_node is 4918 * already created. Nothing to do. 4919 */ 4920 if (nid < 0) 4921 return 0; 4922 4923 /* 4924 * We are bringing a node online. No memory is available yet. We must 4925 * allocate a kmem_cache_node structure in order to bring the node 4926 * online. 4927 */ 4928 mutex_lock(&slab_mutex); 4929 list_for_each_entry(s, &slab_caches, list) { 4930 /* 4931 * The structure may already exist if the node was previously 4932 * onlined and offlined. 4933 */ 4934 if (get_node(s, nid)) 4935 continue; 4936 /* 4937 * XXX: kmem_cache_alloc_node will fallback to other nodes 4938 * since memory is not yet available from the node that 4939 * is brought up. 4940 */ 4941 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4942 if (!n) { 4943 ret = -ENOMEM; 4944 goto out; 4945 } 4946 init_kmem_cache_node(n); 4947 s->node[nid] = n; 4948 } 4949 /* 4950 * Any cache created after this point will also have kmem_cache_node 4951 * initialized for the new node. 4952 */ 4953 node_set(nid, slab_nodes); 4954 out: 4955 mutex_unlock(&slab_mutex); 4956 return ret; 4957 } 4958 4959 static int slab_memory_callback(struct notifier_block *self, 4960 unsigned long action, void *arg) 4961 { 4962 int ret = 0; 4963 4964 switch (action) { 4965 case MEM_GOING_ONLINE: 4966 ret = slab_mem_going_online_callback(arg); 4967 break; 4968 case MEM_GOING_OFFLINE: 4969 ret = slab_mem_going_offline_callback(arg); 4970 break; 4971 case MEM_OFFLINE: 4972 case MEM_CANCEL_ONLINE: 4973 slab_mem_offline_callback(arg); 4974 break; 4975 case MEM_ONLINE: 4976 case MEM_CANCEL_OFFLINE: 4977 break; 4978 } 4979 if (ret) 4980 ret = notifier_from_errno(ret); 4981 else 4982 ret = NOTIFY_OK; 4983 return ret; 4984 } 4985 4986 /******************************************************************** 4987 * Basic setup of slabs 4988 *******************************************************************/ 4989 4990 /* 4991 * Used for early kmem_cache structures that were allocated using 4992 * the page allocator. Allocate them properly then fix up the pointers 4993 * that may be pointing to the wrong kmem_cache structure. 4994 */ 4995 4996 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4997 { 4998 int node; 4999 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 5000 struct kmem_cache_node *n; 5001 5002 memcpy(s, static_cache, kmem_cache->object_size); 5003 5004 /* 5005 * This runs very early, and only the boot processor is supposed to be 5006 * up. Even if it weren't true, IRQs are not up so we couldn't fire 5007 * IPIs around. 5008 */ 5009 __flush_cpu_slab(s, smp_processor_id()); 5010 for_each_kmem_cache_node(s, node, n) { 5011 struct slab *p; 5012 5013 list_for_each_entry(p, &n->partial, slab_list) 5014 p->slab_cache = s; 5015 5016 #ifdef CONFIG_SLUB_DEBUG 5017 list_for_each_entry(p, &n->full, slab_list) 5018 p->slab_cache = s; 5019 #endif 5020 } 5021 list_add(&s->list, &slab_caches); 5022 return s; 5023 } 5024 5025 void __init kmem_cache_init(void) 5026 { 5027 static __initdata struct kmem_cache boot_kmem_cache, 5028 boot_kmem_cache_node; 5029 int node; 5030 5031 if (debug_guardpage_minorder()) 5032 slub_max_order = 0; 5033 5034 /* Print slub debugging pointers without hashing */ 5035 if (__slub_debug_enabled()) 5036 no_hash_pointers_enable(NULL); 5037 5038 kmem_cache_node = &boot_kmem_cache_node; 5039 kmem_cache = &boot_kmem_cache; 5040 5041 /* 5042 * Initialize the nodemask for which we will allocate per node 5043 * structures. Here we don't need taking slab_mutex yet. 5044 */ 5045 for_each_node_state(node, N_NORMAL_MEMORY) 5046 node_set(node, slab_nodes); 5047 5048 create_boot_cache(kmem_cache_node, "kmem_cache_node", 5049 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 5050 5051 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 5052 5053 /* Able to allocate the per node structures */ 5054 slab_state = PARTIAL; 5055 5056 create_boot_cache(kmem_cache, "kmem_cache", 5057 offsetof(struct kmem_cache, node) + 5058 nr_node_ids * sizeof(struct kmem_cache_node *), 5059 SLAB_HWCACHE_ALIGN, 0, 0); 5060 5061 kmem_cache = bootstrap(&boot_kmem_cache); 5062 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 5063 5064 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 5065 setup_kmalloc_cache_index_table(); 5066 create_kmalloc_caches(0); 5067 5068 /* Setup random freelists for each cache */ 5069 init_freelist_randomization(); 5070 5071 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 5072 slub_cpu_dead); 5073 5074 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 5075 cache_line_size(), 5076 slub_min_order, slub_max_order, slub_min_objects, 5077 nr_cpu_ids, nr_node_ids); 5078 } 5079 5080 void __init kmem_cache_init_late(void) 5081 { 5082 #ifndef CONFIG_SLUB_TINY 5083 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); 5084 WARN_ON(!flushwq); 5085 #endif 5086 } 5087 5088 struct kmem_cache * 5089 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 5090 slab_flags_t flags, void (*ctor)(void *)) 5091 { 5092 struct kmem_cache *s; 5093 5094 s = find_mergeable(size, align, flags, name, ctor); 5095 if (s) { 5096 if (sysfs_slab_alias(s, name)) 5097 return NULL; 5098 5099 s->refcount++; 5100 5101 /* 5102 * Adjust the object sizes so that we clear 5103 * the complete object on kzalloc. 5104 */ 5105 s->object_size = max(s->object_size, size); 5106 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 5107 } 5108 5109 return s; 5110 } 5111 5112 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 5113 { 5114 int err; 5115 5116 err = kmem_cache_open(s, flags); 5117 if (err) 5118 return err; 5119 5120 /* Mutex is not taken during early boot */ 5121 if (slab_state <= UP) 5122 return 0; 5123 5124 err = sysfs_slab_add(s); 5125 if (err) { 5126 __kmem_cache_release(s); 5127 return err; 5128 } 5129 5130 if (s->flags & SLAB_STORE_USER) 5131 debugfs_slab_add(s); 5132 5133 return 0; 5134 } 5135 5136 #ifdef SLAB_SUPPORTS_SYSFS 5137 static int count_inuse(struct slab *slab) 5138 { 5139 return slab->inuse; 5140 } 5141 5142 static int count_total(struct slab *slab) 5143 { 5144 return slab->objects; 5145 } 5146 #endif 5147 5148 #ifdef CONFIG_SLUB_DEBUG 5149 static void validate_slab(struct kmem_cache *s, struct slab *slab, 5150 unsigned long *obj_map) 5151 { 5152 void *p; 5153 void *addr = slab_address(slab); 5154 5155 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 5156 return; 5157 5158 /* Now we know that a valid freelist exists */ 5159 __fill_map(obj_map, s, slab); 5160 for_each_object(p, s, addr, slab->objects) { 5161 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 5162 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 5163 5164 if (!check_object(s, slab, p, val)) 5165 break; 5166 } 5167 } 5168 5169 static int validate_slab_node(struct kmem_cache *s, 5170 struct kmem_cache_node *n, unsigned long *obj_map) 5171 { 5172 unsigned long count = 0; 5173 struct slab *slab; 5174 unsigned long flags; 5175 5176 spin_lock_irqsave(&n->list_lock, flags); 5177 5178 list_for_each_entry(slab, &n->partial, slab_list) { 5179 validate_slab(s, slab, obj_map); 5180 count++; 5181 } 5182 if (count != n->nr_partial) { 5183 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 5184 s->name, count, n->nr_partial); 5185 slab_add_kunit_errors(); 5186 } 5187 5188 if (!(s->flags & SLAB_STORE_USER)) 5189 goto out; 5190 5191 list_for_each_entry(slab, &n->full, slab_list) { 5192 validate_slab(s, slab, obj_map); 5193 count++; 5194 } 5195 if (count != node_nr_slabs(n)) { 5196 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 5197 s->name, count, node_nr_slabs(n)); 5198 slab_add_kunit_errors(); 5199 } 5200 5201 out: 5202 spin_unlock_irqrestore(&n->list_lock, flags); 5203 return count; 5204 } 5205 5206 long validate_slab_cache(struct kmem_cache *s) 5207 { 5208 int node; 5209 unsigned long count = 0; 5210 struct kmem_cache_node *n; 5211 unsigned long *obj_map; 5212 5213 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 5214 if (!obj_map) 5215 return -ENOMEM; 5216 5217 flush_all(s); 5218 for_each_kmem_cache_node(s, node, n) 5219 count += validate_slab_node(s, n, obj_map); 5220 5221 bitmap_free(obj_map); 5222 5223 return count; 5224 } 5225 EXPORT_SYMBOL(validate_slab_cache); 5226 5227 #ifdef CONFIG_DEBUG_FS 5228 /* 5229 * Generate lists of code addresses where slabcache objects are allocated 5230 * and freed. 5231 */ 5232 5233 struct location { 5234 depot_stack_handle_t handle; 5235 unsigned long count; 5236 unsigned long addr; 5237 unsigned long waste; 5238 long long sum_time; 5239 long min_time; 5240 long max_time; 5241 long min_pid; 5242 long max_pid; 5243 DECLARE_BITMAP(cpus, NR_CPUS); 5244 nodemask_t nodes; 5245 }; 5246 5247 struct loc_track { 5248 unsigned long max; 5249 unsigned long count; 5250 struct location *loc; 5251 loff_t idx; 5252 }; 5253 5254 static struct dentry *slab_debugfs_root; 5255 5256 static void free_loc_track(struct loc_track *t) 5257 { 5258 if (t->max) 5259 free_pages((unsigned long)t->loc, 5260 get_order(sizeof(struct location) * t->max)); 5261 } 5262 5263 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 5264 { 5265 struct location *l; 5266 int order; 5267 5268 order = get_order(sizeof(struct location) * max); 5269 5270 l = (void *)__get_free_pages(flags, order); 5271 if (!l) 5272 return 0; 5273 5274 if (t->count) { 5275 memcpy(l, t->loc, sizeof(struct location) * t->count); 5276 free_loc_track(t); 5277 } 5278 t->max = max; 5279 t->loc = l; 5280 return 1; 5281 } 5282 5283 static int add_location(struct loc_track *t, struct kmem_cache *s, 5284 const struct track *track, 5285 unsigned int orig_size) 5286 { 5287 long start, end, pos; 5288 struct location *l; 5289 unsigned long caddr, chandle, cwaste; 5290 unsigned long age = jiffies - track->when; 5291 depot_stack_handle_t handle = 0; 5292 unsigned int waste = s->object_size - orig_size; 5293 5294 #ifdef CONFIG_STACKDEPOT 5295 handle = READ_ONCE(track->handle); 5296 #endif 5297 start = -1; 5298 end = t->count; 5299 5300 for ( ; ; ) { 5301 pos = start + (end - start + 1) / 2; 5302 5303 /* 5304 * There is nothing at "end". If we end up there 5305 * we need to add something to before end. 5306 */ 5307 if (pos == end) 5308 break; 5309 5310 l = &t->loc[pos]; 5311 caddr = l->addr; 5312 chandle = l->handle; 5313 cwaste = l->waste; 5314 if ((track->addr == caddr) && (handle == chandle) && 5315 (waste == cwaste)) { 5316 5317 l->count++; 5318 if (track->when) { 5319 l->sum_time += age; 5320 if (age < l->min_time) 5321 l->min_time = age; 5322 if (age > l->max_time) 5323 l->max_time = age; 5324 5325 if (track->pid < l->min_pid) 5326 l->min_pid = track->pid; 5327 if (track->pid > l->max_pid) 5328 l->max_pid = track->pid; 5329 5330 cpumask_set_cpu(track->cpu, 5331 to_cpumask(l->cpus)); 5332 } 5333 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5334 return 1; 5335 } 5336 5337 if (track->addr < caddr) 5338 end = pos; 5339 else if (track->addr == caddr && handle < chandle) 5340 end = pos; 5341 else if (track->addr == caddr && handle == chandle && 5342 waste < cwaste) 5343 end = pos; 5344 else 5345 start = pos; 5346 } 5347 5348 /* 5349 * Not found. Insert new tracking element. 5350 */ 5351 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 5352 return 0; 5353 5354 l = t->loc + pos; 5355 if (pos < t->count) 5356 memmove(l + 1, l, 5357 (t->count - pos) * sizeof(struct location)); 5358 t->count++; 5359 l->count = 1; 5360 l->addr = track->addr; 5361 l->sum_time = age; 5362 l->min_time = age; 5363 l->max_time = age; 5364 l->min_pid = track->pid; 5365 l->max_pid = track->pid; 5366 l->handle = handle; 5367 l->waste = waste; 5368 cpumask_clear(to_cpumask(l->cpus)); 5369 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 5370 nodes_clear(l->nodes); 5371 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5372 return 1; 5373 } 5374 5375 static void process_slab(struct loc_track *t, struct kmem_cache *s, 5376 struct slab *slab, enum track_item alloc, 5377 unsigned long *obj_map) 5378 { 5379 void *addr = slab_address(slab); 5380 bool is_alloc = (alloc == TRACK_ALLOC); 5381 void *p; 5382 5383 __fill_map(obj_map, s, slab); 5384 5385 for_each_object(p, s, addr, slab->objects) 5386 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 5387 add_location(t, s, get_track(s, p, alloc), 5388 is_alloc ? get_orig_size(s, p) : 5389 s->object_size); 5390 } 5391 #endif /* CONFIG_DEBUG_FS */ 5392 #endif /* CONFIG_SLUB_DEBUG */ 5393 5394 #ifdef SLAB_SUPPORTS_SYSFS 5395 enum slab_stat_type { 5396 SL_ALL, /* All slabs */ 5397 SL_PARTIAL, /* Only partially allocated slabs */ 5398 SL_CPU, /* Only slabs used for cpu caches */ 5399 SL_OBJECTS, /* Determine allocated objects not slabs */ 5400 SL_TOTAL /* Determine object capacity not slabs */ 5401 }; 5402 5403 #define SO_ALL (1 << SL_ALL) 5404 #define SO_PARTIAL (1 << SL_PARTIAL) 5405 #define SO_CPU (1 << SL_CPU) 5406 #define SO_OBJECTS (1 << SL_OBJECTS) 5407 #define SO_TOTAL (1 << SL_TOTAL) 5408 5409 static ssize_t show_slab_objects(struct kmem_cache *s, 5410 char *buf, unsigned long flags) 5411 { 5412 unsigned long total = 0; 5413 int node; 5414 int x; 5415 unsigned long *nodes; 5416 int len = 0; 5417 5418 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 5419 if (!nodes) 5420 return -ENOMEM; 5421 5422 if (flags & SO_CPU) { 5423 int cpu; 5424 5425 for_each_possible_cpu(cpu) { 5426 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 5427 cpu); 5428 int node; 5429 struct slab *slab; 5430 5431 slab = READ_ONCE(c->slab); 5432 if (!slab) 5433 continue; 5434 5435 node = slab_nid(slab); 5436 if (flags & SO_TOTAL) 5437 x = slab->objects; 5438 else if (flags & SO_OBJECTS) 5439 x = slab->inuse; 5440 else 5441 x = 1; 5442 5443 total += x; 5444 nodes[node] += x; 5445 5446 #ifdef CONFIG_SLUB_CPU_PARTIAL 5447 slab = slub_percpu_partial_read_once(c); 5448 if (slab) { 5449 node = slab_nid(slab); 5450 if (flags & SO_TOTAL) 5451 WARN_ON_ONCE(1); 5452 else if (flags & SO_OBJECTS) 5453 WARN_ON_ONCE(1); 5454 else 5455 x = slab->slabs; 5456 total += x; 5457 nodes[node] += x; 5458 } 5459 #endif 5460 } 5461 } 5462 5463 /* 5464 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 5465 * already held which will conflict with an existing lock order: 5466 * 5467 * mem_hotplug_lock->slab_mutex->kernfs_mutex 5468 * 5469 * We don't really need mem_hotplug_lock (to hold off 5470 * slab_mem_going_offline_callback) here because slab's memory hot 5471 * unplug code doesn't destroy the kmem_cache->node[] data. 5472 */ 5473 5474 #ifdef CONFIG_SLUB_DEBUG 5475 if (flags & SO_ALL) { 5476 struct kmem_cache_node *n; 5477 5478 for_each_kmem_cache_node(s, node, n) { 5479 5480 if (flags & SO_TOTAL) 5481 x = node_nr_objs(n); 5482 else if (flags & SO_OBJECTS) 5483 x = node_nr_objs(n) - count_partial(n, count_free); 5484 else 5485 x = node_nr_slabs(n); 5486 total += x; 5487 nodes[node] += x; 5488 } 5489 5490 } else 5491 #endif 5492 if (flags & SO_PARTIAL) { 5493 struct kmem_cache_node *n; 5494 5495 for_each_kmem_cache_node(s, node, n) { 5496 if (flags & SO_TOTAL) 5497 x = count_partial(n, count_total); 5498 else if (flags & SO_OBJECTS) 5499 x = count_partial(n, count_inuse); 5500 else 5501 x = n->nr_partial; 5502 total += x; 5503 nodes[node] += x; 5504 } 5505 } 5506 5507 len += sysfs_emit_at(buf, len, "%lu", total); 5508 #ifdef CONFIG_NUMA 5509 for (node = 0; node < nr_node_ids; node++) { 5510 if (nodes[node]) 5511 len += sysfs_emit_at(buf, len, " N%d=%lu", 5512 node, nodes[node]); 5513 } 5514 #endif 5515 len += sysfs_emit_at(buf, len, "\n"); 5516 kfree(nodes); 5517 5518 return len; 5519 } 5520 5521 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 5522 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 5523 5524 struct slab_attribute { 5525 struct attribute attr; 5526 ssize_t (*show)(struct kmem_cache *s, char *buf); 5527 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 5528 }; 5529 5530 #define SLAB_ATTR_RO(_name) \ 5531 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) 5532 5533 #define SLAB_ATTR(_name) \ 5534 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) 5535 5536 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 5537 { 5538 return sysfs_emit(buf, "%u\n", s->size); 5539 } 5540 SLAB_ATTR_RO(slab_size); 5541 5542 static ssize_t align_show(struct kmem_cache *s, char *buf) 5543 { 5544 return sysfs_emit(buf, "%u\n", s->align); 5545 } 5546 SLAB_ATTR_RO(align); 5547 5548 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 5549 { 5550 return sysfs_emit(buf, "%u\n", s->object_size); 5551 } 5552 SLAB_ATTR_RO(object_size); 5553 5554 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 5555 { 5556 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 5557 } 5558 SLAB_ATTR_RO(objs_per_slab); 5559 5560 static ssize_t order_show(struct kmem_cache *s, char *buf) 5561 { 5562 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 5563 } 5564 SLAB_ATTR_RO(order); 5565 5566 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 5567 { 5568 return sysfs_emit(buf, "%lu\n", s->min_partial); 5569 } 5570 5571 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 5572 size_t length) 5573 { 5574 unsigned long min; 5575 int err; 5576 5577 err = kstrtoul(buf, 10, &min); 5578 if (err) 5579 return err; 5580 5581 s->min_partial = min; 5582 return length; 5583 } 5584 SLAB_ATTR(min_partial); 5585 5586 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 5587 { 5588 unsigned int nr_partial = 0; 5589 #ifdef CONFIG_SLUB_CPU_PARTIAL 5590 nr_partial = s->cpu_partial; 5591 #endif 5592 5593 return sysfs_emit(buf, "%u\n", nr_partial); 5594 } 5595 5596 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 5597 size_t length) 5598 { 5599 unsigned int objects; 5600 int err; 5601 5602 err = kstrtouint(buf, 10, &objects); 5603 if (err) 5604 return err; 5605 if (objects && !kmem_cache_has_cpu_partial(s)) 5606 return -EINVAL; 5607 5608 slub_set_cpu_partial(s, objects); 5609 flush_all(s); 5610 return length; 5611 } 5612 SLAB_ATTR(cpu_partial); 5613 5614 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5615 { 5616 if (!s->ctor) 5617 return 0; 5618 return sysfs_emit(buf, "%pS\n", s->ctor); 5619 } 5620 SLAB_ATTR_RO(ctor); 5621 5622 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5623 { 5624 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5625 } 5626 SLAB_ATTR_RO(aliases); 5627 5628 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5629 { 5630 return show_slab_objects(s, buf, SO_PARTIAL); 5631 } 5632 SLAB_ATTR_RO(partial); 5633 5634 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5635 { 5636 return show_slab_objects(s, buf, SO_CPU); 5637 } 5638 SLAB_ATTR_RO(cpu_slabs); 5639 5640 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5641 { 5642 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5643 } 5644 SLAB_ATTR_RO(objects_partial); 5645 5646 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5647 { 5648 int objects = 0; 5649 int slabs = 0; 5650 int cpu __maybe_unused; 5651 int len = 0; 5652 5653 #ifdef CONFIG_SLUB_CPU_PARTIAL 5654 for_each_online_cpu(cpu) { 5655 struct slab *slab; 5656 5657 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5658 5659 if (slab) 5660 slabs += slab->slabs; 5661 } 5662 #endif 5663 5664 /* Approximate half-full slabs, see slub_set_cpu_partial() */ 5665 objects = (slabs * oo_objects(s->oo)) / 2; 5666 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); 5667 5668 #ifdef CONFIG_SLUB_CPU_PARTIAL 5669 for_each_online_cpu(cpu) { 5670 struct slab *slab; 5671 5672 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5673 if (slab) { 5674 slabs = READ_ONCE(slab->slabs); 5675 objects = (slabs * oo_objects(s->oo)) / 2; 5676 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 5677 cpu, objects, slabs); 5678 } 5679 } 5680 #endif 5681 len += sysfs_emit_at(buf, len, "\n"); 5682 5683 return len; 5684 } 5685 SLAB_ATTR_RO(slabs_cpu_partial); 5686 5687 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5688 { 5689 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5690 } 5691 SLAB_ATTR_RO(reclaim_account); 5692 5693 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5694 { 5695 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5696 } 5697 SLAB_ATTR_RO(hwcache_align); 5698 5699 #ifdef CONFIG_ZONE_DMA 5700 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5701 { 5702 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5703 } 5704 SLAB_ATTR_RO(cache_dma); 5705 #endif 5706 5707 #ifdef CONFIG_HARDENED_USERCOPY 5708 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5709 { 5710 return sysfs_emit(buf, "%u\n", s->usersize); 5711 } 5712 SLAB_ATTR_RO(usersize); 5713 #endif 5714 5715 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5716 { 5717 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5718 } 5719 SLAB_ATTR_RO(destroy_by_rcu); 5720 5721 #ifdef CONFIG_SLUB_DEBUG 5722 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5723 { 5724 return show_slab_objects(s, buf, SO_ALL); 5725 } 5726 SLAB_ATTR_RO(slabs); 5727 5728 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5729 { 5730 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5731 } 5732 SLAB_ATTR_RO(total_objects); 5733 5734 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5735 { 5736 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5737 } 5738 SLAB_ATTR_RO(objects); 5739 5740 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5741 { 5742 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5743 } 5744 SLAB_ATTR_RO(sanity_checks); 5745 5746 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5747 { 5748 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5749 } 5750 SLAB_ATTR_RO(trace); 5751 5752 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5753 { 5754 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5755 } 5756 5757 SLAB_ATTR_RO(red_zone); 5758 5759 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5760 { 5761 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5762 } 5763 5764 SLAB_ATTR_RO(poison); 5765 5766 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5767 { 5768 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5769 } 5770 5771 SLAB_ATTR_RO(store_user); 5772 5773 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5774 { 5775 return 0; 5776 } 5777 5778 static ssize_t validate_store(struct kmem_cache *s, 5779 const char *buf, size_t length) 5780 { 5781 int ret = -EINVAL; 5782 5783 if (buf[0] == '1' && kmem_cache_debug(s)) { 5784 ret = validate_slab_cache(s); 5785 if (ret >= 0) 5786 ret = length; 5787 } 5788 return ret; 5789 } 5790 SLAB_ATTR(validate); 5791 5792 #endif /* CONFIG_SLUB_DEBUG */ 5793 5794 #ifdef CONFIG_FAILSLAB 5795 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5796 { 5797 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5798 } 5799 5800 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5801 size_t length) 5802 { 5803 if (s->refcount > 1) 5804 return -EINVAL; 5805 5806 if (buf[0] == '1') 5807 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB); 5808 else 5809 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB); 5810 5811 return length; 5812 } 5813 SLAB_ATTR(failslab); 5814 #endif 5815 5816 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5817 { 5818 return 0; 5819 } 5820 5821 static ssize_t shrink_store(struct kmem_cache *s, 5822 const char *buf, size_t length) 5823 { 5824 if (buf[0] == '1') 5825 kmem_cache_shrink(s); 5826 else 5827 return -EINVAL; 5828 return length; 5829 } 5830 SLAB_ATTR(shrink); 5831 5832 #ifdef CONFIG_NUMA 5833 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5834 { 5835 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5836 } 5837 5838 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5839 const char *buf, size_t length) 5840 { 5841 unsigned int ratio; 5842 int err; 5843 5844 err = kstrtouint(buf, 10, &ratio); 5845 if (err) 5846 return err; 5847 if (ratio > 100) 5848 return -ERANGE; 5849 5850 s->remote_node_defrag_ratio = ratio * 10; 5851 5852 return length; 5853 } 5854 SLAB_ATTR(remote_node_defrag_ratio); 5855 #endif 5856 5857 #ifdef CONFIG_SLUB_STATS 5858 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5859 { 5860 unsigned long sum = 0; 5861 int cpu; 5862 int len = 0; 5863 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5864 5865 if (!data) 5866 return -ENOMEM; 5867 5868 for_each_online_cpu(cpu) { 5869 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5870 5871 data[cpu] = x; 5872 sum += x; 5873 } 5874 5875 len += sysfs_emit_at(buf, len, "%lu", sum); 5876 5877 #ifdef CONFIG_SMP 5878 for_each_online_cpu(cpu) { 5879 if (data[cpu]) 5880 len += sysfs_emit_at(buf, len, " C%d=%u", 5881 cpu, data[cpu]); 5882 } 5883 #endif 5884 kfree(data); 5885 len += sysfs_emit_at(buf, len, "\n"); 5886 5887 return len; 5888 } 5889 5890 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5891 { 5892 int cpu; 5893 5894 for_each_online_cpu(cpu) 5895 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5896 } 5897 5898 #define STAT_ATTR(si, text) \ 5899 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5900 { \ 5901 return show_stat(s, buf, si); \ 5902 } \ 5903 static ssize_t text##_store(struct kmem_cache *s, \ 5904 const char *buf, size_t length) \ 5905 { \ 5906 if (buf[0] != '0') \ 5907 return -EINVAL; \ 5908 clear_stat(s, si); \ 5909 return length; \ 5910 } \ 5911 SLAB_ATTR(text); \ 5912 5913 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5914 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5915 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5916 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5917 STAT_ATTR(FREE_FROZEN, free_frozen); 5918 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5919 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5920 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5921 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5922 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5923 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5924 STAT_ATTR(FREE_SLAB, free_slab); 5925 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5926 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5927 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5928 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5929 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5930 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5931 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5932 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5933 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5934 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5935 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5936 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5937 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5938 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5939 #endif /* CONFIG_SLUB_STATS */ 5940 5941 #ifdef CONFIG_KFENCE 5942 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf) 5943 { 5944 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE)); 5945 } 5946 5947 static ssize_t skip_kfence_store(struct kmem_cache *s, 5948 const char *buf, size_t length) 5949 { 5950 int ret = length; 5951 5952 if (buf[0] == '0') 5953 s->flags &= ~SLAB_SKIP_KFENCE; 5954 else if (buf[0] == '1') 5955 s->flags |= SLAB_SKIP_KFENCE; 5956 else 5957 ret = -EINVAL; 5958 5959 return ret; 5960 } 5961 SLAB_ATTR(skip_kfence); 5962 #endif 5963 5964 static struct attribute *slab_attrs[] = { 5965 &slab_size_attr.attr, 5966 &object_size_attr.attr, 5967 &objs_per_slab_attr.attr, 5968 &order_attr.attr, 5969 &min_partial_attr.attr, 5970 &cpu_partial_attr.attr, 5971 &objects_partial_attr.attr, 5972 &partial_attr.attr, 5973 &cpu_slabs_attr.attr, 5974 &ctor_attr.attr, 5975 &aliases_attr.attr, 5976 &align_attr.attr, 5977 &hwcache_align_attr.attr, 5978 &reclaim_account_attr.attr, 5979 &destroy_by_rcu_attr.attr, 5980 &shrink_attr.attr, 5981 &slabs_cpu_partial_attr.attr, 5982 #ifdef CONFIG_SLUB_DEBUG 5983 &total_objects_attr.attr, 5984 &objects_attr.attr, 5985 &slabs_attr.attr, 5986 &sanity_checks_attr.attr, 5987 &trace_attr.attr, 5988 &red_zone_attr.attr, 5989 &poison_attr.attr, 5990 &store_user_attr.attr, 5991 &validate_attr.attr, 5992 #endif 5993 #ifdef CONFIG_ZONE_DMA 5994 &cache_dma_attr.attr, 5995 #endif 5996 #ifdef CONFIG_NUMA 5997 &remote_node_defrag_ratio_attr.attr, 5998 #endif 5999 #ifdef CONFIG_SLUB_STATS 6000 &alloc_fastpath_attr.attr, 6001 &alloc_slowpath_attr.attr, 6002 &free_fastpath_attr.attr, 6003 &free_slowpath_attr.attr, 6004 &free_frozen_attr.attr, 6005 &free_add_partial_attr.attr, 6006 &free_remove_partial_attr.attr, 6007 &alloc_from_partial_attr.attr, 6008 &alloc_slab_attr.attr, 6009 &alloc_refill_attr.attr, 6010 &alloc_node_mismatch_attr.attr, 6011 &free_slab_attr.attr, 6012 &cpuslab_flush_attr.attr, 6013 &deactivate_full_attr.attr, 6014 &deactivate_empty_attr.attr, 6015 &deactivate_to_head_attr.attr, 6016 &deactivate_to_tail_attr.attr, 6017 &deactivate_remote_frees_attr.attr, 6018 &deactivate_bypass_attr.attr, 6019 &order_fallback_attr.attr, 6020 &cmpxchg_double_fail_attr.attr, 6021 &cmpxchg_double_cpu_fail_attr.attr, 6022 &cpu_partial_alloc_attr.attr, 6023 &cpu_partial_free_attr.attr, 6024 &cpu_partial_node_attr.attr, 6025 &cpu_partial_drain_attr.attr, 6026 #endif 6027 #ifdef CONFIG_FAILSLAB 6028 &failslab_attr.attr, 6029 #endif 6030 #ifdef CONFIG_HARDENED_USERCOPY 6031 &usersize_attr.attr, 6032 #endif 6033 #ifdef CONFIG_KFENCE 6034 &skip_kfence_attr.attr, 6035 #endif 6036 6037 NULL 6038 }; 6039 6040 static const struct attribute_group slab_attr_group = { 6041 .attrs = slab_attrs, 6042 }; 6043 6044 static ssize_t slab_attr_show(struct kobject *kobj, 6045 struct attribute *attr, 6046 char *buf) 6047 { 6048 struct slab_attribute *attribute; 6049 struct kmem_cache *s; 6050 6051 attribute = to_slab_attr(attr); 6052 s = to_slab(kobj); 6053 6054 if (!attribute->show) 6055 return -EIO; 6056 6057 return attribute->show(s, buf); 6058 } 6059 6060 static ssize_t slab_attr_store(struct kobject *kobj, 6061 struct attribute *attr, 6062 const char *buf, size_t len) 6063 { 6064 struct slab_attribute *attribute; 6065 struct kmem_cache *s; 6066 6067 attribute = to_slab_attr(attr); 6068 s = to_slab(kobj); 6069 6070 if (!attribute->store) 6071 return -EIO; 6072 6073 return attribute->store(s, buf, len); 6074 } 6075 6076 static void kmem_cache_release(struct kobject *k) 6077 { 6078 slab_kmem_cache_release(to_slab(k)); 6079 } 6080 6081 static const struct sysfs_ops slab_sysfs_ops = { 6082 .show = slab_attr_show, 6083 .store = slab_attr_store, 6084 }; 6085 6086 static const struct kobj_type slab_ktype = { 6087 .sysfs_ops = &slab_sysfs_ops, 6088 .release = kmem_cache_release, 6089 }; 6090 6091 static struct kset *slab_kset; 6092 6093 static inline struct kset *cache_kset(struct kmem_cache *s) 6094 { 6095 return slab_kset; 6096 } 6097 6098 #define ID_STR_LENGTH 32 6099 6100 /* Create a unique string id for a slab cache: 6101 * 6102 * Format :[flags-]size 6103 */ 6104 static char *create_unique_id(struct kmem_cache *s) 6105 { 6106 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 6107 char *p = name; 6108 6109 if (!name) 6110 return ERR_PTR(-ENOMEM); 6111 6112 *p++ = ':'; 6113 /* 6114 * First flags affecting slabcache operations. We will only 6115 * get here for aliasable slabs so we do not need to support 6116 * too many flags. The flags here must cover all flags that 6117 * are matched during merging to guarantee that the id is 6118 * unique. 6119 */ 6120 if (s->flags & SLAB_CACHE_DMA) 6121 *p++ = 'd'; 6122 if (s->flags & SLAB_CACHE_DMA32) 6123 *p++ = 'D'; 6124 if (s->flags & SLAB_RECLAIM_ACCOUNT) 6125 *p++ = 'a'; 6126 if (s->flags & SLAB_CONSISTENCY_CHECKS) 6127 *p++ = 'F'; 6128 if (s->flags & SLAB_ACCOUNT) 6129 *p++ = 'A'; 6130 if (p != name + 1) 6131 *p++ = '-'; 6132 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size); 6133 6134 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) { 6135 kfree(name); 6136 return ERR_PTR(-EINVAL); 6137 } 6138 kmsan_unpoison_memory(name, p - name); 6139 return name; 6140 } 6141 6142 static int sysfs_slab_add(struct kmem_cache *s) 6143 { 6144 int err; 6145 const char *name; 6146 struct kset *kset = cache_kset(s); 6147 int unmergeable = slab_unmergeable(s); 6148 6149 if (!unmergeable && disable_higher_order_debug && 6150 (slub_debug & DEBUG_METADATA_FLAGS)) 6151 unmergeable = 1; 6152 6153 if (unmergeable) { 6154 /* 6155 * Slabcache can never be merged so we can use the name proper. 6156 * This is typically the case for debug situations. In that 6157 * case we can catch duplicate names easily. 6158 */ 6159 sysfs_remove_link(&slab_kset->kobj, s->name); 6160 name = s->name; 6161 } else { 6162 /* 6163 * Create a unique name for the slab as a target 6164 * for the symlinks. 6165 */ 6166 name = create_unique_id(s); 6167 if (IS_ERR(name)) 6168 return PTR_ERR(name); 6169 } 6170 6171 s->kobj.kset = kset; 6172 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 6173 if (err) 6174 goto out; 6175 6176 err = sysfs_create_group(&s->kobj, &slab_attr_group); 6177 if (err) 6178 goto out_del_kobj; 6179 6180 if (!unmergeable) { 6181 /* Setup first alias */ 6182 sysfs_slab_alias(s, s->name); 6183 } 6184 out: 6185 if (!unmergeable) 6186 kfree(name); 6187 return err; 6188 out_del_kobj: 6189 kobject_del(&s->kobj); 6190 goto out; 6191 } 6192 6193 void sysfs_slab_unlink(struct kmem_cache *s) 6194 { 6195 if (slab_state >= FULL) 6196 kobject_del(&s->kobj); 6197 } 6198 6199 void sysfs_slab_release(struct kmem_cache *s) 6200 { 6201 if (slab_state >= FULL) 6202 kobject_put(&s->kobj); 6203 } 6204 6205 /* 6206 * Need to buffer aliases during bootup until sysfs becomes 6207 * available lest we lose that information. 6208 */ 6209 struct saved_alias { 6210 struct kmem_cache *s; 6211 const char *name; 6212 struct saved_alias *next; 6213 }; 6214 6215 static struct saved_alias *alias_list; 6216 6217 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 6218 { 6219 struct saved_alias *al; 6220 6221 if (slab_state == FULL) { 6222 /* 6223 * If we have a leftover link then remove it. 6224 */ 6225 sysfs_remove_link(&slab_kset->kobj, name); 6226 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 6227 } 6228 6229 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 6230 if (!al) 6231 return -ENOMEM; 6232 6233 al->s = s; 6234 al->name = name; 6235 al->next = alias_list; 6236 alias_list = al; 6237 kmsan_unpoison_memory(al, sizeof(*al)); 6238 return 0; 6239 } 6240 6241 static int __init slab_sysfs_init(void) 6242 { 6243 struct kmem_cache *s; 6244 int err; 6245 6246 mutex_lock(&slab_mutex); 6247 6248 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 6249 if (!slab_kset) { 6250 mutex_unlock(&slab_mutex); 6251 pr_err("Cannot register slab subsystem.\n"); 6252 return -ENOMEM; 6253 } 6254 6255 slab_state = FULL; 6256 6257 list_for_each_entry(s, &slab_caches, list) { 6258 err = sysfs_slab_add(s); 6259 if (err) 6260 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 6261 s->name); 6262 } 6263 6264 while (alias_list) { 6265 struct saved_alias *al = alias_list; 6266 6267 alias_list = alias_list->next; 6268 err = sysfs_slab_alias(al->s, al->name); 6269 if (err) 6270 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 6271 al->name); 6272 kfree(al); 6273 } 6274 6275 mutex_unlock(&slab_mutex); 6276 return 0; 6277 } 6278 late_initcall(slab_sysfs_init); 6279 #endif /* SLAB_SUPPORTS_SYSFS */ 6280 6281 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 6282 static int slab_debugfs_show(struct seq_file *seq, void *v) 6283 { 6284 struct loc_track *t = seq->private; 6285 struct location *l; 6286 unsigned long idx; 6287 6288 idx = (unsigned long) t->idx; 6289 if (idx < t->count) { 6290 l = &t->loc[idx]; 6291 6292 seq_printf(seq, "%7ld ", l->count); 6293 6294 if (l->addr) 6295 seq_printf(seq, "%pS", (void *)l->addr); 6296 else 6297 seq_puts(seq, "<not-available>"); 6298 6299 if (l->waste) 6300 seq_printf(seq, " waste=%lu/%lu", 6301 l->count * l->waste, l->waste); 6302 6303 if (l->sum_time != l->min_time) { 6304 seq_printf(seq, " age=%ld/%llu/%ld", 6305 l->min_time, div_u64(l->sum_time, l->count), 6306 l->max_time); 6307 } else 6308 seq_printf(seq, " age=%ld", l->min_time); 6309 6310 if (l->min_pid != l->max_pid) 6311 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 6312 else 6313 seq_printf(seq, " pid=%ld", 6314 l->min_pid); 6315 6316 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 6317 seq_printf(seq, " cpus=%*pbl", 6318 cpumask_pr_args(to_cpumask(l->cpus))); 6319 6320 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 6321 seq_printf(seq, " nodes=%*pbl", 6322 nodemask_pr_args(&l->nodes)); 6323 6324 #ifdef CONFIG_STACKDEPOT 6325 { 6326 depot_stack_handle_t handle; 6327 unsigned long *entries; 6328 unsigned int nr_entries, j; 6329 6330 handle = READ_ONCE(l->handle); 6331 if (handle) { 6332 nr_entries = stack_depot_fetch(handle, &entries); 6333 seq_puts(seq, "\n"); 6334 for (j = 0; j < nr_entries; j++) 6335 seq_printf(seq, " %pS\n", (void *)entries[j]); 6336 } 6337 } 6338 #endif 6339 seq_puts(seq, "\n"); 6340 } 6341 6342 if (!idx && !t->count) 6343 seq_puts(seq, "No data\n"); 6344 6345 return 0; 6346 } 6347 6348 static void slab_debugfs_stop(struct seq_file *seq, void *v) 6349 { 6350 } 6351 6352 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 6353 { 6354 struct loc_track *t = seq->private; 6355 6356 t->idx = ++(*ppos); 6357 if (*ppos <= t->count) 6358 return ppos; 6359 6360 return NULL; 6361 } 6362 6363 static int cmp_loc_by_count(const void *a, const void *b, const void *data) 6364 { 6365 struct location *loc1 = (struct location *)a; 6366 struct location *loc2 = (struct location *)b; 6367 6368 if (loc1->count > loc2->count) 6369 return -1; 6370 else 6371 return 1; 6372 } 6373 6374 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 6375 { 6376 struct loc_track *t = seq->private; 6377 6378 t->idx = *ppos; 6379 return ppos; 6380 } 6381 6382 static const struct seq_operations slab_debugfs_sops = { 6383 .start = slab_debugfs_start, 6384 .next = slab_debugfs_next, 6385 .stop = slab_debugfs_stop, 6386 .show = slab_debugfs_show, 6387 }; 6388 6389 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 6390 { 6391 6392 struct kmem_cache_node *n; 6393 enum track_item alloc; 6394 int node; 6395 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 6396 sizeof(struct loc_track)); 6397 struct kmem_cache *s = file_inode(filep)->i_private; 6398 unsigned long *obj_map; 6399 6400 if (!t) 6401 return -ENOMEM; 6402 6403 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 6404 if (!obj_map) { 6405 seq_release_private(inode, filep); 6406 return -ENOMEM; 6407 } 6408 6409 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) 6410 alloc = TRACK_ALLOC; 6411 else 6412 alloc = TRACK_FREE; 6413 6414 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 6415 bitmap_free(obj_map); 6416 seq_release_private(inode, filep); 6417 return -ENOMEM; 6418 } 6419 6420 for_each_kmem_cache_node(s, node, n) { 6421 unsigned long flags; 6422 struct slab *slab; 6423 6424 if (!node_nr_slabs(n)) 6425 continue; 6426 6427 spin_lock_irqsave(&n->list_lock, flags); 6428 list_for_each_entry(slab, &n->partial, slab_list) 6429 process_slab(t, s, slab, alloc, obj_map); 6430 list_for_each_entry(slab, &n->full, slab_list) 6431 process_slab(t, s, slab, alloc, obj_map); 6432 spin_unlock_irqrestore(&n->list_lock, flags); 6433 } 6434 6435 /* Sort locations by count */ 6436 sort_r(t->loc, t->count, sizeof(struct location), 6437 cmp_loc_by_count, NULL, NULL); 6438 6439 bitmap_free(obj_map); 6440 return 0; 6441 } 6442 6443 static int slab_debug_trace_release(struct inode *inode, struct file *file) 6444 { 6445 struct seq_file *seq = file->private_data; 6446 struct loc_track *t = seq->private; 6447 6448 free_loc_track(t); 6449 return seq_release_private(inode, file); 6450 } 6451 6452 static const struct file_operations slab_debugfs_fops = { 6453 .open = slab_debug_trace_open, 6454 .read = seq_read, 6455 .llseek = seq_lseek, 6456 .release = slab_debug_trace_release, 6457 }; 6458 6459 static void debugfs_slab_add(struct kmem_cache *s) 6460 { 6461 struct dentry *slab_cache_dir; 6462 6463 if (unlikely(!slab_debugfs_root)) 6464 return; 6465 6466 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 6467 6468 debugfs_create_file("alloc_traces", 0400, 6469 slab_cache_dir, s, &slab_debugfs_fops); 6470 6471 debugfs_create_file("free_traces", 0400, 6472 slab_cache_dir, s, &slab_debugfs_fops); 6473 } 6474 6475 void debugfs_slab_release(struct kmem_cache *s) 6476 { 6477 debugfs_lookup_and_remove(s->name, slab_debugfs_root); 6478 } 6479 6480 static int __init slab_debugfs_init(void) 6481 { 6482 struct kmem_cache *s; 6483 6484 slab_debugfs_root = debugfs_create_dir("slab", NULL); 6485 6486 list_for_each_entry(s, &slab_caches, list) 6487 if (s->flags & SLAB_STORE_USER) 6488 debugfs_slab_add(s); 6489 6490 return 0; 6491 6492 } 6493 __initcall(slab_debugfs_init); 6494 #endif 6495 /* 6496 * The /proc/slabinfo ABI 6497 */ 6498 #ifdef CONFIG_SLUB_DEBUG 6499 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 6500 { 6501 unsigned long nr_slabs = 0; 6502 unsigned long nr_objs = 0; 6503 unsigned long nr_free = 0; 6504 int node; 6505 struct kmem_cache_node *n; 6506 6507 for_each_kmem_cache_node(s, node, n) { 6508 nr_slabs += node_nr_slabs(n); 6509 nr_objs += node_nr_objs(n); 6510 nr_free += count_partial(n, count_free); 6511 } 6512 6513 sinfo->active_objs = nr_objs - nr_free; 6514 sinfo->num_objs = nr_objs; 6515 sinfo->active_slabs = nr_slabs; 6516 sinfo->num_slabs = nr_slabs; 6517 sinfo->objects_per_slab = oo_objects(s->oo); 6518 sinfo->cache_order = oo_order(s->oo); 6519 } 6520 6521 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 6522 { 6523 } 6524 6525 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 6526 size_t count, loff_t *ppos) 6527 { 6528 return -EIO; 6529 } 6530 #endif /* CONFIG_SLUB_DEBUG */ 6531