xref: /openbmc/linux/mm/slub.c (revision a0c3b940023eef3fa005b2bc37d9312712331dcb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/stackdepot.h>
30 #include <linux/debugobjects.h>
31 #include <linux/kallsyms.h>
32 #include <linux/kfence.h>
33 #include <linux/memory.h>
34 #include <linux/math64.h>
35 #include <linux/fault-inject.h>
36 #include <linux/stacktrace.h>
37 #include <linux/prefetch.h>
38 #include <linux/memcontrol.h>
39 #include <linux/random.h>
40 #include <kunit/test.h>
41 #include <linux/sort.h>
42 
43 #include <linux/debugfs.h>
44 #include <trace/events/kmem.h>
45 
46 #include "internal.h"
47 
48 /*
49  * Lock order:
50  *   1. slab_mutex (Global Mutex)
51  *   2. node->list_lock (Spinlock)
52  *   3. kmem_cache->cpu_slab->lock (Local lock)
53  *   4. slab_lock(slab) (Only on some arches or for debugging)
54  *   5. object_map_lock (Only for debugging)
55  *
56  *   slab_mutex
57  *
58  *   The role of the slab_mutex is to protect the list of all the slabs
59  *   and to synchronize major metadata changes to slab cache structures.
60  *   Also synchronizes memory hotplug callbacks.
61  *
62  *   slab_lock
63  *
64  *   The slab_lock is a wrapper around the page lock, thus it is a bit
65  *   spinlock.
66  *
67  *   The slab_lock is only used for debugging and on arches that do not
68  *   have the ability to do a cmpxchg_double. It only protects:
69  *	A. slab->freelist	-> List of free objects in a slab
70  *	B. slab->inuse		-> Number of objects in use
71  *	C. slab->objects	-> Number of objects in slab
72  *	D. slab->frozen		-> frozen state
73  *
74  *   Frozen slabs
75  *
76  *   If a slab is frozen then it is exempt from list management. It is not
77  *   on any list except per cpu partial list. The processor that froze the
78  *   slab is the one who can perform list operations on the slab. Other
79  *   processors may put objects onto the freelist but the processor that
80  *   froze the slab is the only one that can retrieve the objects from the
81  *   slab's freelist.
82  *
83  *   list_lock
84  *
85  *   The list_lock protects the partial and full list on each node and
86  *   the partial slab counter. If taken then no new slabs may be added or
87  *   removed from the lists nor make the number of partial slabs be modified.
88  *   (Note that the total number of slabs is an atomic value that may be
89  *   modified without taking the list lock).
90  *
91  *   The list_lock is a centralized lock and thus we avoid taking it as
92  *   much as possible. As long as SLUB does not have to handle partial
93  *   slabs, operations can continue without any centralized lock. F.e.
94  *   allocating a long series of objects that fill up slabs does not require
95  *   the list lock.
96  *
97  *   cpu_slab->lock local lock
98  *
99  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
100  *   except the stat counters. This is a percpu structure manipulated only by
101  *   the local cpu, so the lock protects against being preempted or interrupted
102  *   by an irq. Fast path operations rely on lockless operations instead.
103  *   On PREEMPT_RT, the local lock does not actually disable irqs (and thus
104  *   prevent the lockless operations), so fastpath operations also need to take
105  *   the lock and are no longer lockless.
106  *
107  *   lockless fastpaths
108  *
109  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
110  *   are fully lockless when satisfied from the percpu slab (and when
111  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
112  *   They also don't disable preemption or migration or irqs. They rely on
113  *   the transaction id (tid) field to detect being preempted or moved to
114  *   another cpu.
115  *
116  *   irq, preemption, migration considerations
117  *
118  *   Interrupts are disabled as part of list_lock or local_lock operations, or
119  *   around the slab_lock operation, in order to make the slab allocator safe
120  *   to use in the context of an irq.
121  *
122  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
123  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
124  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
125  *   doesn't have to be revalidated in each section protected by the local lock.
126  *
127  * SLUB assigns one slab for allocation to each processor.
128  * Allocations only occur from these slabs called cpu slabs.
129  *
130  * Slabs with free elements are kept on a partial list and during regular
131  * operations no list for full slabs is used. If an object in a full slab is
132  * freed then the slab will show up again on the partial lists.
133  * We track full slabs for debugging purposes though because otherwise we
134  * cannot scan all objects.
135  *
136  * Slabs are freed when they become empty. Teardown and setup is
137  * minimal so we rely on the page allocators per cpu caches for
138  * fast frees and allocs.
139  *
140  * slab->frozen		The slab is frozen and exempt from list processing.
141  * 			This means that the slab is dedicated to a purpose
142  * 			such as satisfying allocations for a specific
143  * 			processor. Objects may be freed in the slab while
144  * 			it is frozen but slab_free will then skip the usual
145  * 			list operations. It is up to the processor holding
146  * 			the slab to integrate the slab into the slab lists
147  * 			when the slab is no longer needed.
148  *
149  * 			One use of this flag is to mark slabs that are
150  * 			used for allocations. Then such a slab becomes a cpu
151  * 			slab. The cpu slab may be equipped with an additional
152  * 			freelist that allows lockless access to
153  * 			free objects in addition to the regular freelist
154  * 			that requires the slab lock.
155  *
156  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
157  * 			options set. This moves	slab handling out of
158  * 			the fast path and disables lockless freelists.
159  */
160 
161 /*
162  * We could simply use migrate_disable()/enable() but as long as it's a
163  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
164  */
165 #ifndef CONFIG_PREEMPT_RT
166 #define slub_get_cpu_ptr(var)	get_cpu_ptr(var)
167 #define slub_put_cpu_ptr(var)	put_cpu_ptr(var)
168 #else
169 #define slub_get_cpu_ptr(var)		\
170 ({					\
171 	migrate_disable();		\
172 	this_cpu_ptr(var);		\
173 })
174 #define slub_put_cpu_ptr(var)		\
175 do {					\
176 	(void)(var);			\
177 	migrate_enable();		\
178 } while (0)
179 #endif
180 
181 #ifdef CONFIG_SLUB_DEBUG
182 #ifdef CONFIG_SLUB_DEBUG_ON
183 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
184 #else
185 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
186 #endif
187 #endif		/* CONFIG_SLUB_DEBUG */
188 
189 static inline bool kmem_cache_debug(struct kmem_cache *s)
190 {
191 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
192 }
193 
194 void *fixup_red_left(struct kmem_cache *s, void *p)
195 {
196 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
197 		p += s->red_left_pad;
198 
199 	return p;
200 }
201 
202 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
203 {
204 #ifdef CONFIG_SLUB_CPU_PARTIAL
205 	return !kmem_cache_debug(s);
206 #else
207 	return false;
208 #endif
209 }
210 
211 /*
212  * Issues still to be resolved:
213  *
214  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
215  *
216  * - Variable sizing of the per node arrays
217  */
218 
219 /* Enable to log cmpxchg failures */
220 #undef SLUB_DEBUG_CMPXCHG
221 
222 /*
223  * Minimum number of partial slabs. These will be left on the partial
224  * lists even if they are empty. kmem_cache_shrink may reclaim them.
225  */
226 #define MIN_PARTIAL 5
227 
228 /*
229  * Maximum number of desirable partial slabs.
230  * The existence of more partial slabs makes kmem_cache_shrink
231  * sort the partial list by the number of objects in use.
232  */
233 #define MAX_PARTIAL 10
234 
235 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
236 				SLAB_POISON | SLAB_STORE_USER)
237 
238 /*
239  * These debug flags cannot use CMPXCHG because there might be consistency
240  * issues when checking or reading debug information
241  */
242 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
243 				SLAB_TRACE)
244 
245 
246 /*
247  * Debugging flags that require metadata to be stored in the slab.  These get
248  * disabled when slub_debug=O is used and a cache's min order increases with
249  * metadata.
250  */
251 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
252 
253 #define OO_SHIFT	16
254 #define OO_MASK		((1 << OO_SHIFT) - 1)
255 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
256 
257 /* Internal SLUB flags */
258 /* Poison object */
259 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
260 /* Use cmpxchg_double */
261 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
262 
263 /*
264  * Tracking user of a slab.
265  */
266 #define TRACK_ADDRS_COUNT 16
267 struct track {
268 	unsigned long addr;	/* Called from address */
269 #ifdef CONFIG_STACKDEPOT
270 	depot_stack_handle_t handle;
271 #endif
272 	int cpu;		/* Was running on cpu */
273 	int pid;		/* Pid context */
274 	unsigned long when;	/* When did the operation occur */
275 };
276 
277 enum track_item { TRACK_ALLOC, TRACK_FREE };
278 
279 #ifdef CONFIG_SYSFS
280 static int sysfs_slab_add(struct kmem_cache *);
281 static int sysfs_slab_alias(struct kmem_cache *, const char *);
282 #else
283 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
284 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
285 							{ return 0; }
286 #endif
287 
288 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
289 static void debugfs_slab_add(struct kmem_cache *);
290 #else
291 static inline void debugfs_slab_add(struct kmem_cache *s) { }
292 #endif
293 
294 static inline void stat(const struct kmem_cache *s, enum stat_item si)
295 {
296 #ifdef CONFIG_SLUB_STATS
297 	/*
298 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
299 	 * avoid this_cpu_add()'s irq-disable overhead.
300 	 */
301 	raw_cpu_inc(s->cpu_slab->stat[si]);
302 #endif
303 }
304 
305 /*
306  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
307  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
308  * differ during memory hotplug/hotremove operations.
309  * Protected by slab_mutex.
310  */
311 static nodemask_t slab_nodes;
312 
313 /********************************************************************
314  * 			Core slab cache functions
315  *******************************************************************/
316 
317 /*
318  * Returns freelist pointer (ptr). With hardening, this is obfuscated
319  * with an XOR of the address where the pointer is held and a per-cache
320  * random number.
321  */
322 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
323 				 unsigned long ptr_addr)
324 {
325 #ifdef CONFIG_SLAB_FREELIST_HARDENED
326 	/*
327 	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
328 	 * Normally, this doesn't cause any issues, as both set_freepointer()
329 	 * and get_freepointer() are called with a pointer with the same tag.
330 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
331 	 * example, when __free_slub() iterates over objects in a cache, it
332 	 * passes untagged pointers to check_object(). check_object() in turns
333 	 * calls get_freepointer() with an untagged pointer, which causes the
334 	 * freepointer to be restored incorrectly.
335 	 */
336 	return (void *)((unsigned long)ptr ^ s->random ^
337 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
338 #else
339 	return ptr;
340 #endif
341 }
342 
343 /* Returns the freelist pointer recorded at location ptr_addr. */
344 static inline void *freelist_dereference(const struct kmem_cache *s,
345 					 void *ptr_addr)
346 {
347 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
348 			    (unsigned long)ptr_addr);
349 }
350 
351 static inline void *get_freepointer(struct kmem_cache *s, void *object)
352 {
353 	object = kasan_reset_tag(object);
354 	return freelist_dereference(s, object + s->offset);
355 }
356 
357 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
358 {
359 	prefetchw(object + s->offset);
360 }
361 
362 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
363 {
364 	unsigned long freepointer_addr;
365 	void *p;
366 
367 	if (!debug_pagealloc_enabled_static())
368 		return get_freepointer(s, object);
369 
370 	object = kasan_reset_tag(object);
371 	freepointer_addr = (unsigned long)object + s->offset;
372 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
373 	return freelist_ptr(s, p, freepointer_addr);
374 }
375 
376 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
377 {
378 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
379 
380 #ifdef CONFIG_SLAB_FREELIST_HARDENED
381 	BUG_ON(object == fp); /* naive detection of double free or corruption */
382 #endif
383 
384 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
385 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
386 }
387 
388 /* Loop over all objects in a slab */
389 #define for_each_object(__p, __s, __addr, __objects) \
390 	for (__p = fixup_red_left(__s, __addr); \
391 		__p < (__addr) + (__objects) * (__s)->size; \
392 		__p += (__s)->size)
393 
394 static inline unsigned int order_objects(unsigned int order, unsigned int size)
395 {
396 	return ((unsigned int)PAGE_SIZE << order) / size;
397 }
398 
399 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
400 		unsigned int size)
401 {
402 	struct kmem_cache_order_objects x = {
403 		(order << OO_SHIFT) + order_objects(order, size)
404 	};
405 
406 	return x;
407 }
408 
409 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
410 {
411 	return x.x >> OO_SHIFT;
412 }
413 
414 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
415 {
416 	return x.x & OO_MASK;
417 }
418 
419 #ifdef CONFIG_SLUB_CPU_PARTIAL
420 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
421 {
422 	unsigned int nr_slabs;
423 
424 	s->cpu_partial = nr_objects;
425 
426 	/*
427 	 * We take the number of objects but actually limit the number of
428 	 * slabs on the per cpu partial list, in order to limit excessive
429 	 * growth of the list. For simplicity we assume that the slabs will
430 	 * be half-full.
431 	 */
432 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
433 	s->cpu_partial_slabs = nr_slabs;
434 }
435 #else
436 static inline void
437 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
438 {
439 }
440 #endif /* CONFIG_SLUB_CPU_PARTIAL */
441 
442 /*
443  * Per slab locking using the pagelock
444  */
445 static __always_inline void __slab_lock(struct slab *slab)
446 {
447 	struct page *page = slab_page(slab);
448 
449 	VM_BUG_ON_PAGE(PageTail(page), page);
450 	bit_spin_lock(PG_locked, &page->flags);
451 }
452 
453 static __always_inline void __slab_unlock(struct slab *slab)
454 {
455 	struct page *page = slab_page(slab);
456 
457 	VM_BUG_ON_PAGE(PageTail(page), page);
458 	__bit_spin_unlock(PG_locked, &page->flags);
459 }
460 
461 static __always_inline void slab_lock(struct slab *slab, unsigned long *flags)
462 {
463 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
464 		local_irq_save(*flags);
465 	__slab_lock(slab);
466 }
467 
468 static __always_inline void slab_unlock(struct slab *slab, unsigned long *flags)
469 {
470 	__slab_unlock(slab);
471 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
472 		local_irq_restore(*flags);
473 }
474 
475 /*
476  * Interrupts must be disabled (for the fallback code to work right), typically
477  * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different
478  * so we disable interrupts as part of slab_[un]lock().
479  */
480 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
481 		void *freelist_old, unsigned long counters_old,
482 		void *freelist_new, unsigned long counters_new,
483 		const char *n)
484 {
485 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
486 		lockdep_assert_irqs_disabled();
487 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
488     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
489 	if (s->flags & __CMPXCHG_DOUBLE) {
490 		if (cmpxchg_double(&slab->freelist, &slab->counters,
491 				   freelist_old, counters_old,
492 				   freelist_new, counters_new))
493 			return true;
494 	} else
495 #endif
496 	{
497 		/* init to 0 to prevent spurious warnings */
498 		unsigned long flags = 0;
499 
500 		slab_lock(slab, &flags);
501 		if (slab->freelist == freelist_old &&
502 					slab->counters == counters_old) {
503 			slab->freelist = freelist_new;
504 			slab->counters = counters_new;
505 			slab_unlock(slab, &flags);
506 			return true;
507 		}
508 		slab_unlock(slab, &flags);
509 	}
510 
511 	cpu_relax();
512 	stat(s, CMPXCHG_DOUBLE_FAIL);
513 
514 #ifdef SLUB_DEBUG_CMPXCHG
515 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
516 #endif
517 
518 	return false;
519 }
520 
521 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
522 		void *freelist_old, unsigned long counters_old,
523 		void *freelist_new, unsigned long counters_new,
524 		const char *n)
525 {
526 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
527     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
528 	if (s->flags & __CMPXCHG_DOUBLE) {
529 		if (cmpxchg_double(&slab->freelist, &slab->counters,
530 				   freelist_old, counters_old,
531 				   freelist_new, counters_new))
532 			return true;
533 	} else
534 #endif
535 	{
536 		unsigned long flags;
537 
538 		local_irq_save(flags);
539 		__slab_lock(slab);
540 		if (slab->freelist == freelist_old &&
541 					slab->counters == counters_old) {
542 			slab->freelist = freelist_new;
543 			slab->counters = counters_new;
544 			__slab_unlock(slab);
545 			local_irq_restore(flags);
546 			return true;
547 		}
548 		__slab_unlock(slab);
549 		local_irq_restore(flags);
550 	}
551 
552 	cpu_relax();
553 	stat(s, CMPXCHG_DOUBLE_FAIL);
554 
555 #ifdef SLUB_DEBUG_CMPXCHG
556 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
557 #endif
558 
559 	return false;
560 }
561 
562 #ifdef CONFIG_SLUB_DEBUG
563 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
564 static DEFINE_RAW_SPINLOCK(object_map_lock);
565 
566 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
567 		       struct slab *slab)
568 {
569 	void *addr = slab_address(slab);
570 	void *p;
571 
572 	bitmap_zero(obj_map, slab->objects);
573 
574 	for (p = slab->freelist; p; p = get_freepointer(s, p))
575 		set_bit(__obj_to_index(s, addr, p), obj_map);
576 }
577 
578 #if IS_ENABLED(CONFIG_KUNIT)
579 static bool slab_add_kunit_errors(void)
580 {
581 	struct kunit_resource *resource;
582 
583 	if (likely(!current->kunit_test))
584 		return false;
585 
586 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
587 	if (!resource)
588 		return false;
589 
590 	(*(int *)resource->data)++;
591 	kunit_put_resource(resource);
592 	return true;
593 }
594 #else
595 static inline bool slab_add_kunit_errors(void) { return false; }
596 #endif
597 
598 /*
599  * Determine a map of objects in use in a slab.
600  *
601  * Node listlock must be held to guarantee that the slab does
602  * not vanish from under us.
603  */
604 static unsigned long *get_map(struct kmem_cache *s, struct slab *slab)
605 	__acquires(&object_map_lock)
606 {
607 	VM_BUG_ON(!irqs_disabled());
608 
609 	raw_spin_lock(&object_map_lock);
610 
611 	__fill_map(object_map, s, slab);
612 
613 	return object_map;
614 }
615 
616 static void put_map(unsigned long *map) __releases(&object_map_lock)
617 {
618 	VM_BUG_ON(map != object_map);
619 	raw_spin_unlock(&object_map_lock);
620 }
621 
622 static inline unsigned int size_from_object(struct kmem_cache *s)
623 {
624 	if (s->flags & SLAB_RED_ZONE)
625 		return s->size - s->red_left_pad;
626 
627 	return s->size;
628 }
629 
630 static inline void *restore_red_left(struct kmem_cache *s, void *p)
631 {
632 	if (s->flags & SLAB_RED_ZONE)
633 		p -= s->red_left_pad;
634 
635 	return p;
636 }
637 
638 /*
639  * Debug settings:
640  */
641 #if defined(CONFIG_SLUB_DEBUG_ON)
642 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
643 #else
644 static slab_flags_t slub_debug;
645 #endif
646 
647 static char *slub_debug_string;
648 static int disable_higher_order_debug;
649 
650 /*
651  * slub is about to manipulate internal object metadata.  This memory lies
652  * outside the range of the allocated object, so accessing it would normally
653  * be reported by kasan as a bounds error.  metadata_access_enable() is used
654  * to tell kasan that these accesses are OK.
655  */
656 static inline void metadata_access_enable(void)
657 {
658 	kasan_disable_current();
659 }
660 
661 static inline void metadata_access_disable(void)
662 {
663 	kasan_enable_current();
664 }
665 
666 /*
667  * Object debugging
668  */
669 
670 /* Verify that a pointer has an address that is valid within a slab page */
671 static inline int check_valid_pointer(struct kmem_cache *s,
672 				struct slab *slab, void *object)
673 {
674 	void *base;
675 
676 	if (!object)
677 		return 1;
678 
679 	base = slab_address(slab);
680 	object = kasan_reset_tag(object);
681 	object = restore_red_left(s, object);
682 	if (object < base || object >= base + slab->objects * s->size ||
683 		(object - base) % s->size) {
684 		return 0;
685 	}
686 
687 	return 1;
688 }
689 
690 static void print_section(char *level, char *text, u8 *addr,
691 			  unsigned int length)
692 {
693 	metadata_access_enable();
694 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
695 			16, 1, kasan_reset_tag((void *)addr), length, 1);
696 	metadata_access_disable();
697 }
698 
699 /*
700  * See comment in calculate_sizes().
701  */
702 static inline bool freeptr_outside_object(struct kmem_cache *s)
703 {
704 	return s->offset >= s->inuse;
705 }
706 
707 /*
708  * Return offset of the end of info block which is inuse + free pointer if
709  * not overlapping with object.
710  */
711 static inline unsigned int get_info_end(struct kmem_cache *s)
712 {
713 	if (freeptr_outside_object(s))
714 		return s->inuse + sizeof(void *);
715 	else
716 		return s->inuse;
717 }
718 
719 static struct track *get_track(struct kmem_cache *s, void *object,
720 	enum track_item alloc)
721 {
722 	struct track *p;
723 
724 	p = object + get_info_end(s);
725 
726 	return kasan_reset_tag(p + alloc);
727 }
728 
729 #ifdef CONFIG_STACKDEPOT
730 static noinline depot_stack_handle_t set_track_prepare(void)
731 {
732 	depot_stack_handle_t handle;
733 	unsigned long entries[TRACK_ADDRS_COUNT];
734 	unsigned int nr_entries;
735 
736 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
737 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
738 
739 	return handle;
740 }
741 #else
742 static inline depot_stack_handle_t set_track_prepare(void)
743 {
744 	return 0;
745 }
746 #endif
747 
748 static void set_track_update(struct kmem_cache *s, void *object,
749 			     enum track_item alloc, unsigned long addr,
750 			     depot_stack_handle_t handle)
751 {
752 	struct track *p = get_track(s, object, alloc);
753 
754 #ifdef CONFIG_STACKDEPOT
755 	p->handle = handle;
756 #endif
757 	p->addr = addr;
758 	p->cpu = smp_processor_id();
759 	p->pid = current->pid;
760 	p->when = jiffies;
761 }
762 
763 static __always_inline void set_track(struct kmem_cache *s, void *object,
764 				      enum track_item alloc, unsigned long addr)
765 {
766 	depot_stack_handle_t handle = set_track_prepare();
767 
768 	set_track_update(s, object, alloc, addr, handle);
769 }
770 
771 static void init_tracking(struct kmem_cache *s, void *object)
772 {
773 	struct track *p;
774 
775 	if (!(s->flags & SLAB_STORE_USER))
776 		return;
777 
778 	p = get_track(s, object, TRACK_ALLOC);
779 	memset(p, 0, 2*sizeof(struct track));
780 }
781 
782 static void print_track(const char *s, struct track *t, unsigned long pr_time)
783 {
784 	depot_stack_handle_t handle __maybe_unused;
785 
786 	if (!t->addr)
787 		return;
788 
789 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
790 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
791 #ifdef CONFIG_STACKDEPOT
792 	handle = READ_ONCE(t->handle);
793 	if (handle)
794 		stack_depot_print(handle);
795 	else
796 		pr_err("object allocation/free stack trace missing\n");
797 #endif
798 }
799 
800 void print_tracking(struct kmem_cache *s, void *object)
801 {
802 	unsigned long pr_time = jiffies;
803 	if (!(s->flags & SLAB_STORE_USER))
804 		return;
805 
806 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
807 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
808 }
809 
810 static void print_slab_info(const struct slab *slab)
811 {
812 	struct folio *folio = (struct folio *)slab_folio(slab);
813 
814 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
815 	       slab, slab->objects, slab->inuse, slab->freelist,
816 	       folio_flags(folio, 0));
817 }
818 
819 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
820 {
821 	struct va_format vaf;
822 	va_list args;
823 
824 	va_start(args, fmt);
825 	vaf.fmt = fmt;
826 	vaf.va = &args;
827 	pr_err("=============================================================================\n");
828 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
829 	pr_err("-----------------------------------------------------------------------------\n\n");
830 	va_end(args);
831 }
832 
833 __printf(2, 3)
834 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
835 {
836 	struct va_format vaf;
837 	va_list args;
838 
839 	if (slab_add_kunit_errors())
840 		return;
841 
842 	va_start(args, fmt);
843 	vaf.fmt = fmt;
844 	vaf.va = &args;
845 	pr_err("FIX %s: %pV\n", s->name, &vaf);
846 	va_end(args);
847 }
848 
849 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
850 {
851 	unsigned int off;	/* Offset of last byte */
852 	u8 *addr = slab_address(slab);
853 
854 	print_tracking(s, p);
855 
856 	print_slab_info(slab);
857 
858 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
859 	       p, p - addr, get_freepointer(s, p));
860 
861 	if (s->flags & SLAB_RED_ZONE)
862 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
863 			      s->red_left_pad);
864 	else if (p > addr + 16)
865 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
866 
867 	print_section(KERN_ERR,         "Object   ", p,
868 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
869 	if (s->flags & SLAB_RED_ZONE)
870 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
871 			s->inuse - s->object_size);
872 
873 	off = get_info_end(s);
874 
875 	if (s->flags & SLAB_STORE_USER)
876 		off += 2 * sizeof(struct track);
877 
878 	off += kasan_metadata_size(s);
879 
880 	if (off != size_from_object(s))
881 		/* Beginning of the filler is the free pointer */
882 		print_section(KERN_ERR, "Padding  ", p + off,
883 			      size_from_object(s) - off);
884 
885 	dump_stack();
886 }
887 
888 static void object_err(struct kmem_cache *s, struct slab *slab,
889 			u8 *object, char *reason)
890 {
891 	if (slab_add_kunit_errors())
892 		return;
893 
894 	slab_bug(s, "%s", reason);
895 	print_trailer(s, slab, object);
896 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
897 }
898 
899 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
900 			       void **freelist, void *nextfree)
901 {
902 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
903 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
904 		object_err(s, slab, *freelist, "Freechain corrupt");
905 		*freelist = NULL;
906 		slab_fix(s, "Isolate corrupted freechain");
907 		return true;
908 	}
909 
910 	return false;
911 }
912 
913 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
914 			const char *fmt, ...)
915 {
916 	va_list args;
917 	char buf[100];
918 
919 	if (slab_add_kunit_errors())
920 		return;
921 
922 	va_start(args, fmt);
923 	vsnprintf(buf, sizeof(buf), fmt, args);
924 	va_end(args);
925 	slab_bug(s, "%s", buf);
926 	print_slab_info(slab);
927 	dump_stack();
928 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
929 }
930 
931 static void init_object(struct kmem_cache *s, void *object, u8 val)
932 {
933 	u8 *p = kasan_reset_tag(object);
934 
935 	if (s->flags & SLAB_RED_ZONE)
936 		memset(p - s->red_left_pad, val, s->red_left_pad);
937 
938 	if (s->flags & __OBJECT_POISON) {
939 		memset(p, POISON_FREE, s->object_size - 1);
940 		p[s->object_size - 1] = POISON_END;
941 	}
942 
943 	if (s->flags & SLAB_RED_ZONE)
944 		memset(p + s->object_size, val, s->inuse - s->object_size);
945 }
946 
947 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
948 						void *from, void *to)
949 {
950 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
951 	memset(from, data, to - from);
952 }
953 
954 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
955 			u8 *object, char *what,
956 			u8 *start, unsigned int value, unsigned int bytes)
957 {
958 	u8 *fault;
959 	u8 *end;
960 	u8 *addr = slab_address(slab);
961 
962 	metadata_access_enable();
963 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
964 	metadata_access_disable();
965 	if (!fault)
966 		return 1;
967 
968 	end = start + bytes;
969 	while (end > fault && end[-1] == value)
970 		end--;
971 
972 	if (slab_add_kunit_errors())
973 		goto skip_bug_print;
974 
975 	slab_bug(s, "%s overwritten", what);
976 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
977 					fault, end - 1, fault - addr,
978 					fault[0], value);
979 	print_trailer(s, slab, object);
980 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
981 
982 skip_bug_print:
983 	restore_bytes(s, what, value, fault, end);
984 	return 0;
985 }
986 
987 /*
988  * Object layout:
989  *
990  * object address
991  * 	Bytes of the object to be managed.
992  * 	If the freepointer may overlay the object then the free
993  *	pointer is at the middle of the object.
994  *
995  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
996  * 	0xa5 (POISON_END)
997  *
998  * object + s->object_size
999  * 	Padding to reach word boundary. This is also used for Redzoning.
1000  * 	Padding is extended by another word if Redzoning is enabled and
1001  * 	object_size == inuse.
1002  *
1003  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1004  * 	0xcc (RED_ACTIVE) for objects in use.
1005  *
1006  * object + s->inuse
1007  * 	Meta data starts here.
1008  *
1009  * 	A. Free pointer (if we cannot overwrite object on free)
1010  * 	B. Tracking data for SLAB_STORE_USER
1011  *	C. Padding to reach required alignment boundary or at minimum
1012  * 		one word if debugging is on to be able to detect writes
1013  * 		before the word boundary.
1014  *
1015  *	Padding is done using 0x5a (POISON_INUSE)
1016  *
1017  * object + s->size
1018  * 	Nothing is used beyond s->size.
1019  *
1020  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1021  * ignored. And therefore no slab options that rely on these boundaries
1022  * may be used with merged slabcaches.
1023  */
1024 
1025 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1026 {
1027 	unsigned long off = get_info_end(s);	/* The end of info */
1028 
1029 	if (s->flags & SLAB_STORE_USER)
1030 		/* We also have user information there */
1031 		off += 2 * sizeof(struct track);
1032 
1033 	off += kasan_metadata_size(s);
1034 
1035 	if (size_from_object(s) == off)
1036 		return 1;
1037 
1038 	return check_bytes_and_report(s, slab, p, "Object padding",
1039 			p + off, POISON_INUSE, size_from_object(s) - off);
1040 }
1041 
1042 /* Check the pad bytes at the end of a slab page */
1043 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1044 {
1045 	u8 *start;
1046 	u8 *fault;
1047 	u8 *end;
1048 	u8 *pad;
1049 	int length;
1050 	int remainder;
1051 
1052 	if (!(s->flags & SLAB_POISON))
1053 		return;
1054 
1055 	start = slab_address(slab);
1056 	length = slab_size(slab);
1057 	end = start + length;
1058 	remainder = length % s->size;
1059 	if (!remainder)
1060 		return;
1061 
1062 	pad = end - remainder;
1063 	metadata_access_enable();
1064 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1065 	metadata_access_disable();
1066 	if (!fault)
1067 		return;
1068 	while (end > fault && end[-1] == POISON_INUSE)
1069 		end--;
1070 
1071 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1072 			fault, end - 1, fault - start);
1073 	print_section(KERN_ERR, "Padding ", pad, remainder);
1074 
1075 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1076 }
1077 
1078 static int check_object(struct kmem_cache *s, struct slab *slab,
1079 					void *object, u8 val)
1080 {
1081 	u8 *p = object;
1082 	u8 *endobject = object + s->object_size;
1083 
1084 	if (s->flags & SLAB_RED_ZONE) {
1085 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1086 			object - s->red_left_pad, val, s->red_left_pad))
1087 			return 0;
1088 
1089 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1090 			endobject, val, s->inuse - s->object_size))
1091 			return 0;
1092 	} else {
1093 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1094 			check_bytes_and_report(s, slab, p, "Alignment padding",
1095 				endobject, POISON_INUSE,
1096 				s->inuse - s->object_size);
1097 		}
1098 	}
1099 
1100 	if (s->flags & SLAB_POISON) {
1101 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1102 			(!check_bytes_and_report(s, slab, p, "Poison", p,
1103 					POISON_FREE, s->object_size - 1) ||
1104 			 !check_bytes_and_report(s, slab, p, "End Poison",
1105 				p + s->object_size - 1, POISON_END, 1)))
1106 			return 0;
1107 		/*
1108 		 * check_pad_bytes cleans up on its own.
1109 		 */
1110 		check_pad_bytes(s, slab, p);
1111 	}
1112 
1113 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1114 		/*
1115 		 * Object and freepointer overlap. Cannot check
1116 		 * freepointer while object is allocated.
1117 		 */
1118 		return 1;
1119 
1120 	/* Check free pointer validity */
1121 	if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1122 		object_err(s, slab, p, "Freepointer corrupt");
1123 		/*
1124 		 * No choice but to zap it and thus lose the remainder
1125 		 * of the free objects in this slab. May cause
1126 		 * another error because the object count is now wrong.
1127 		 */
1128 		set_freepointer(s, p, NULL);
1129 		return 0;
1130 	}
1131 	return 1;
1132 }
1133 
1134 static int check_slab(struct kmem_cache *s, struct slab *slab)
1135 {
1136 	int maxobj;
1137 
1138 	if (!folio_test_slab(slab_folio(slab))) {
1139 		slab_err(s, slab, "Not a valid slab page");
1140 		return 0;
1141 	}
1142 
1143 	maxobj = order_objects(slab_order(slab), s->size);
1144 	if (slab->objects > maxobj) {
1145 		slab_err(s, slab, "objects %u > max %u",
1146 			slab->objects, maxobj);
1147 		return 0;
1148 	}
1149 	if (slab->inuse > slab->objects) {
1150 		slab_err(s, slab, "inuse %u > max %u",
1151 			slab->inuse, slab->objects);
1152 		return 0;
1153 	}
1154 	/* Slab_pad_check fixes things up after itself */
1155 	slab_pad_check(s, slab);
1156 	return 1;
1157 }
1158 
1159 /*
1160  * Determine if a certain object in a slab is on the freelist. Must hold the
1161  * slab lock to guarantee that the chains are in a consistent state.
1162  */
1163 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1164 {
1165 	int nr = 0;
1166 	void *fp;
1167 	void *object = NULL;
1168 	int max_objects;
1169 
1170 	fp = slab->freelist;
1171 	while (fp && nr <= slab->objects) {
1172 		if (fp == search)
1173 			return 1;
1174 		if (!check_valid_pointer(s, slab, fp)) {
1175 			if (object) {
1176 				object_err(s, slab, object,
1177 					"Freechain corrupt");
1178 				set_freepointer(s, object, NULL);
1179 			} else {
1180 				slab_err(s, slab, "Freepointer corrupt");
1181 				slab->freelist = NULL;
1182 				slab->inuse = slab->objects;
1183 				slab_fix(s, "Freelist cleared");
1184 				return 0;
1185 			}
1186 			break;
1187 		}
1188 		object = fp;
1189 		fp = get_freepointer(s, object);
1190 		nr++;
1191 	}
1192 
1193 	max_objects = order_objects(slab_order(slab), s->size);
1194 	if (max_objects > MAX_OBJS_PER_PAGE)
1195 		max_objects = MAX_OBJS_PER_PAGE;
1196 
1197 	if (slab->objects != max_objects) {
1198 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1199 			 slab->objects, max_objects);
1200 		slab->objects = max_objects;
1201 		slab_fix(s, "Number of objects adjusted");
1202 	}
1203 	if (slab->inuse != slab->objects - nr) {
1204 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1205 			 slab->inuse, slab->objects - nr);
1206 		slab->inuse = slab->objects - nr;
1207 		slab_fix(s, "Object count adjusted");
1208 	}
1209 	return search == NULL;
1210 }
1211 
1212 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1213 								int alloc)
1214 {
1215 	if (s->flags & SLAB_TRACE) {
1216 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1217 			s->name,
1218 			alloc ? "alloc" : "free",
1219 			object, slab->inuse,
1220 			slab->freelist);
1221 
1222 		if (!alloc)
1223 			print_section(KERN_INFO, "Object ", (void *)object,
1224 					s->object_size);
1225 
1226 		dump_stack();
1227 	}
1228 }
1229 
1230 /*
1231  * Tracking of fully allocated slabs for debugging purposes.
1232  */
1233 static void add_full(struct kmem_cache *s,
1234 	struct kmem_cache_node *n, struct slab *slab)
1235 {
1236 	if (!(s->flags & SLAB_STORE_USER))
1237 		return;
1238 
1239 	lockdep_assert_held(&n->list_lock);
1240 	list_add(&slab->slab_list, &n->full);
1241 }
1242 
1243 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1244 {
1245 	if (!(s->flags & SLAB_STORE_USER))
1246 		return;
1247 
1248 	lockdep_assert_held(&n->list_lock);
1249 	list_del(&slab->slab_list);
1250 }
1251 
1252 /* Tracking of the number of slabs for debugging purposes */
1253 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1254 {
1255 	struct kmem_cache_node *n = get_node(s, node);
1256 
1257 	return atomic_long_read(&n->nr_slabs);
1258 }
1259 
1260 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1261 {
1262 	return atomic_long_read(&n->nr_slabs);
1263 }
1264 
1265 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1266 {
1267 	struct kmem_cache_node *n = get_node(s, node);
1268 
1269 	/*
1270 	 * May be called early in order to allocate a slab for the
1271 	 * kmem_cache_node structure. Solve the chicken-egg
1272 	 * dilemma by deferring the increment of the count during
1273 	 * bootstrap (see early_kmem_cache_node_alloc).
1274 	 */
1275 	if (likely(n)) {
1276 		atomic_long_inc(&n->nr_slabs);
1277 		atomic_long_add(objects, &n->total_objects);
1278 	}
1279 }
1280 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1281 {
1282 	struct kmem_cache_node *n = get_node(s, node);
1283 
1284 	atomic_long_dec(&n->nr_slabs);
1285 	atomic_long_sub(objects, &n->total_objects);
1286 }
1287 
1288 /* Object debug checks for alloc/free paths */
1289 static void setup_object_debug(struct kmem_cache *s, void *object)
1290 {
1291 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1292 		return;
1293 
1294 	init_object(s, object, SLUB_RED_INACTIVE);
1295 	init_tracking(s, object);
1296 }
1297 
1298 static
1299 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1300 {
1301 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1302 		return;
1303 
1304 	metadata_access_enable();
1305 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1306 	metadata_access_disable();
1307 }
1308 
1309 static inline int alloc_consistency_checks(struct kmem_cache *s,
1310 					struct slab *slab, void *object)
1311 {
1312 	if (!check_slab(s, slab))
1313 		return 0;
1314 
1315 	if (!check_valid_pointer(s, slab, object)) {
1316 		object_err(s, slab, object, "Freelist Pointer check fails");
1317 		return 0;
1318 	}
1319 
1320 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1321 		return 0;
1322 
1323 	return 1;
1324 }
1325 
1326 static noinline int alloc_debug_processing(struct kmem_cache *s,
1327 					struct slab *slab,
1328 					void *object, unsigned long addr)
1329 {
1330 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1331 		if (!alloc_consistency_checks(s, slab, object))
1332 			goto bad;
1333 	}
1334 
1335 	/* Success perform special debug activities for allocs */
1336 	if (s->flags & SLAB_STORE_USER)
1337 		set_track(s, object, TRACK_ALLOC, addr);
1338 	trace(s, slab, object, 1);
1339 	init_object(s, object, SLUB_RED_ACTIVE);
1340 	return 1;
1341 
1342 bad:
1343 	if (folio_test_slab(slab_folio(slab))) {
1344 		/*
1345 		 * If this is a slab page then lets do the best we can
1346 		 * to avoid issues in the future. Marking all objects
1347 		 * as used avoids touching the remaining objects.
1348 		 */
1349 		slab_fix(s, "Marking all objects used");
1350 		slab->inuse = slab->objects;
1351 		slab->freelist = NULL;
1352 	}
1353 	return 0;
1354 }
1355 
1356 static inline int free_consistency_checks(struct kmem_cache *s,
1357 		struct slab *slab, void *object, unsigned long addr)
1358 {
1359 	if (!check_valid_pointer(s, slab, object)) {
1360 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1361 		return 0;
1362 	}
1363 
1364 	if (on_freelist(s, slab, object)) {
1365 		object_err(s, slab, object, "Object already free");
1366 		return 0;
1367 	}
1368 
1369 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1370 		return 0;
1371 
1372 	if (unlikely(s != slab->slab_cache)) {
1373 		if (!folio_test_slab(slab_folio(slab))) {
1374 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1375 				 object);
1376 		} else if (!slab->slab_cache) {
1377 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1378 			       object);
1379 			dump_stack();
1380 		} else
1381 			object_err(s, slab, object,
1382 					"page slab pointer corrupt.");
1383 		return 0;
1384 	}
1385 	return 1;
1386 }
1387 
1388 /* Supports checking bulk free of a constructed freelist */
1389 static noinline int free_debug_processing(
1390 	struct kmem_cache *s, struct slab *slab,
1391 	void *head, void *tail, int bulk_cnt,
1392 	unsigned long addr)
1393 {
1394 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
1395 	void *object = head;
1396 	int cnt = 0;
1397 	unsigned long flags, flags2;
1398 	int ret = 0;
1399 	depot_stack_handle_t handle = 0;
1400 
1401 	if (s->flags & SLAB_STORE_USER)
1402 		handle = set_track_prepare();
1403 
1404 	spin_lock_irqsave(&n->list_lock, flags);
1405 	slab_lock(slab, &flags2);
1406 
1407 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1408 		if (!check_slab(s, slab))
1409 			goto out;
1410 	}
1411 
1412 next_object:
1413 	cnt++;
1414 
1415 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1416 		if (!free_consistency_checks(s, slab, object, addr))
1417 			goto out;
1418 	}
1419 
1420 	if (s->flags & SLAB_STORE_USER)
1421 		set_track_update(s, object, TRACK_FREE, addr, handle);
1422 	trace(s, slab, object, 0);
1423 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1424 	init_object(s, object, SLUB_RED_INACTIVE);
1425 
1426 	/* Reached end of constructed freelist yet? */
1427 	if (object != tail) {
1428 		object = get_freepointer(s, object);
1429 		goto next_object;
1430 	}
1431 	ret = 1;
1432 
1433 out:
1434 	if (cnt != bulk_cnt)
1435 		slab_err(s, slab, "Bulk freelist count(%d) invalid(%d)\n",
1436 			 bulk_cnt, cnt);
1437 
1438 	slab_unlock(slab, &flags2);
1439 	spin_unlock_irqrestore(&n->list_lock, flags);
1440 	if (!ret)
1441 		slab_fix(s, "Object at 0x%p not freed", object);
1442 	return ret;
1443 }
1444 
1445 /*
1446  * Parse a block of slub_debug options. Blocks are delimited by ';'
1447  *
1448  * @str:    start of block
1449  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1450  * @slabs:  return start of list of slabs, or NULL when there's no list
1451  * @init:   assume this is initial parsing and not per-kmem-create parsing
1452  *
1453  * returns the start of next block if there's any, or NULL
1454  */
1455 static char *
1456 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1457 {
1458 	bool higher_order_disable = false;
1459 
1460 	/* Skip any completely empty blocks */
1461 	while (*str && *str == ';')
1462 		str++;
1463 
1464 	if (*str == ',') {
1465 		/*
1466 		 * No options but restriction on slabs. This means full
1467 		 * debugging for slabs matching a pattern.
1468 		 */
1469 		*flags = DEBUG_DEFAULT_FLAGS;
1470 		goto check_slabs;
1471 	}
1472 	*flags = 0;
1473 
1474 	/* Determine which debug features should be switched on */
1475 	for (; *str && *str != ',' && *str != ';'; str++) {
1476 		switch (tolower(*str)) {
1477 		case '-':
1478 			*flags = 0;
1479 			break;
1480 		case 'f':
1481 			*flags |= SLAB_CONSISTENCY_CHECKS;
1482 			break;
1483 		case 'z':
1484 			*flags |= SLAB_RED_ZONE;
1485 			break;
1486 		case 'p':
1487 			*flags |= SLAB_POISON;
1488 			break;
1489 		case 'u':
1490 			*flags |= SLAB_STORE_USER;
1491 			break;
1492 		case 't':
1493 			*flags |= SLAB_TRACE;
1494 			break;
1495 		case 'a':
1496 			*flags |= SLAB_FAILSLAB;
1497 			break;
1498 		case 'o':
1499 			/*
1500 			 * Avoid enabling debugging on caches if its minimum
1501 			 * order would increase as a result.
1502 			 */
1503 			higher_order_disable = true;
1504 			break;
1505 		default:
1506 			if (init)
1507 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1508 		}
1509 	}
1510 check_slabs:
1511 	if (*str == ',')
1512 		*slabs = ++str;
1513 	else
1514 		*slabs = NULL;
1515 
1516 	/* Skip over the slab list */
1517 	while (*str && *str != ';')
1518 		str++;
1519 
1520 	/* Skip any completely empty blocks */
1521 	while (*str && *str == ';')
1522 		str++;
1523 
1524 	if (init && higher_order_disable)
1525 		disable_higher_order_debug = 1;
1526 
1527 	if (*str)
1528 		return str;
1529 	else
1530 		return NULL;
1531 }
1532 
1533 static int __init setup_slub_debug(char *str)
1534 {
1535 	slab_flags_t flags;
1536 	slab_flags_t global_flags;
1537 	char *saved_str;
1538 	char *slab_list;
1539 	bool global_slub_debug_changed = false;
1540 	bool slab_list_specified = false;
1541 
1542 	global_flags = DEBUG_DEFAULT_FLAGS;
1543 	if (*str++ != '=' || !*str)
1544 		/*
1545 		 * No options specified. Switch on full debugging.
1546 		 */
1547 		goto out;
1548 
1549 	saved_str = str;
1550 	while (str) {
1551 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1552 
1553 		if (!slab_list) {
1554 			global_flags = flags;
1555 			global_slub_debug_changed = true;
1556 		} else {
1557 			slab_list_specified = true;
1558 			if (flags & SLAB_STORE_USER)
1559 				stack_depot_want_early_init();
1560 		}
1561 	}
1562 
1563 	/*
1564 	 * For backwards compatibility, a single list of flags with list of
1565 	 * slabs means debugging is only changed for those slabs, so the global
1566 	 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1567 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1568 	 * long as there is no option specifying flags without a slab list.
1569 	 */
1570 	if (slab_list_specified) {
1571 		if (!global_slub_debug_changed)
1572 			global_flags = slub_debug;
1573 		slub_debug_string = saved_str;
1574 	}
1575 out:
1576 	slub_debug = global_flags;
1577 	if (slub_debug & SLAB_STORE_USER)
1578 		stack_depot_want_early_init();
1579 	if (slub_debug != 0 || slub_debug_string)
1580 		static_branch_enable(&slub_debug_enabled);
1581 	else
1582 		static_branch_disable(&slub_debug_enabled);
1583 	if ((static_branch_unlikely(&init_on_alloc) ||
1584 	     static_branch_unlikely(&init_on_free)) &&
1585 	    (slub_debug & SLAB_POISON))
1586 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1587 	return 1;
1588 }
1589 
1590 __setup("slub_debug", setup_slub_debug);
1591 
1592 /*
1593  * kmem_cache_flags - apply debugging options to the cache
1594  * @object_size:	the size of an object without meta data
1595  * @flags:		flags to set
1596  * @name:		name of the cache
1597  *
1598  * Debug option(s) are applied to @flags. In addition to the debug
1599  * option(s), if a slab name (or multiple) is specified i.e.
1600  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1601  * then only the select slabs will receive the debug option(s).
1602  */
1603 slab_flags_t kmem_cache_flags(unsigned int object_size,
1604 	slab_flags_t flags, const char *name)
1605 {
1606 	char *iter;
1607 	size_t len;
1608 	char *next_block;
1609 	slab_flags_t block_flags;
1610 	slab_flags_t slub_debug_local = slub_debug;
1611 
1612 	if (flags & SLAB_NO_USER_FLAGS)
1613 		return flags;
1614 
1615 	/*
1616 	 * If the slab cache is for debugging (e.g. kmemleak) then
1617 	 * don't store user (stack trace) information by default,
1618 	 * but let the user enable it via the command line below.
1619 	 */
1620 	if (flags & SLAB_NOLEAKTRACE)
1621 		slub_debug_local &= ~SLAB_STORE_USER;
1622 
1623 	len = strlen(name);
1624 	next_block = slub_debug_string;
1625 	/* Go through all blocks of debug options, see if any matches our slab's name */
1626 	while (next_block) {
1627 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1628 		if (!iter)
1629 			continue;
1630 		/* Found a block that has a slab list, search it */
1631 		while (*iter) {
1632 			char *end, *glob;
1633 			size_t cmplen;
1634 
1635 			end = strchrnul(iter, ',');
1636 			if (next_block && next_block < end)
1637 				end = next_block - 1;
1638 
1639 			glob = strnchr(iter, end - iter, '*');
1640 			if (glob)
1641 				cmplen = glob - iter;
1642 			else
1643 				cmplen = max_t(size_t, len, (end - iter));
1644 
1645 			if (!strncmp(name, iter, cmplen)) {
1646 				flags |= block_flags;
1647 				return flags;
1648 			}
1649 
1650 			if (!*end || *end == ';')
1651 				break;
1652 			iter = end + 1;
1653 		}
1654 	}
1655 
1656 	return flags | slub_debug_local;
1657 }
1658 #else /* !CONFIG_SLUB_DEBUG */
1659 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1660 static inline
1661 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1662 
1663 static inline int alloc_debug_processing(struct kmem_cache *s,
1664 	struct slab *slab, void *object, unsigned long addr) { return 0; }
1665 
1666 static inline int free_debug_processing(
1667 	struct kmem_cache *s, struct slab *slab,
1668 	void *head, void *tail, int bulk_cnt,
1669 	unsigned long addr) { return 0; }
1670 
1671 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1672 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1673 			void *object, u8 val) { return 1; }
1674 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1675 					struct slab *slab) {}
1676 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1677 					struct slab *slab) {}
1678 slab_flags_t kmem_cache_flags(unsigned int object_size,
1679 	slab_flags_t flags, const char *name)
1680 {
1681 	return flags;
1682 }
1683 #define slub_debug 0
1684 
1685 #define disable_higher_order_debug 0
1686 
1687 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1688 							{ return 0; }
1689 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1690 							{ return 0; }
1691 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1692 							int objects) {}
1693 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1694 							int objects) {}
1695 
1696 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1697 			       void **freelist, void *nextfree)
1698 {
1699 	return false;
1700 }
1701 #endif /* CONFIG_SLUB_DEBUG */
1702 
1703 /*
1704  * Hooks for other subsystems that check memory allocations. In a typical
1705  * production configuration these hooks all should produce no code at all.
1706  */
1707 static __always_inline void kfree_hook(void *x)
1708 {
1709 	kmemleak_free(x);
1710 	kasan_kfree_large(x);
1711 }
1712 
1713 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1714 						void *x, bool init)
1715 {
1716 	kmemleak_free_recursive(x, s->flags);
1717 
1718 	debug_check_no_locks_freed(x, s->object_size);
1719 
1720 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1721 		debug_check_no_obj_freed(x, s->object_size);
1722 
1723 	/* Use KCSAN to help debug racy use-after-free. */
1724 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1725 		__kcsan_check_access(x, s->object_size,
1726 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1727 
1728 	/*
1729 	 * As memory initialization might be integrated into KASAN,
1730 	 * kasan_slab_free and initialization memset's must be
1731 	 * kept together to avoid discrepancies in behavior.
1732 	 *
1733 	 * The initialization memset's clear the object and the metadata,
1734 	 * but don't touch the SLAB redzone.
1735 	 */
1736 	if (init) {
1737 		int rsize;
1738 
1739 		if (!kasan_has_integrated_init())
1740 			memset(kasan_reset_tag(x), 0, s->object_size);
1741 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1742 		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1743 		       s->size - s->inuse - rsize);
1744 	}
1745 	/* KASAN might put x into memory quarantine, delaying its reuse. */
1746 	return kasan_slab_free(s, x, init);
1747 }
1748 
1749 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1750 					   void **head, void **tail,
1751 					   int *cnt)
1752 {
1753 
1754 	void *object;
1755 	void *next = *head;
1756 	void *old_tail = *tail ? *tail : *head;
1757 
1758 	if (is_kfence_address(next)) {
1759 		slab_free_hook(s, next, false);
1760 		return true;
1761 	}
1762 
1763 	/* Head and tail of the reconstructed freelist */
1764 	*head = NULL;
1765 	*tail = NULL;
1766 
1767 	do {
1768 		object = next;
1769 		next = get_freepointer(s, object);
1770 
1771 		/* If object's reuse doesn't have to be delayed */
1772 		if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1773 			/* Move object to the new freelist */
1774 			set_freepointer(s, object, *head);
1775 			*head = object;
1776 			if (!*tail)
1777 				*tail = object;
1778 		} else {
1779 			/*
1780 			 * Adjust the reconstructed freelist depth
1781 			 * accordingly if object's reuse is delayed.
1782 			 */
1783 			--(*cnt);
1784 		}
1785 	} while (object != old_tail);
1786 
1787 	if (*head == *tail)
1788 		*tail = NULL;
1789 
1790 	return *head != NULL;
1791 }
1792 
1793 static void *setup_object(struct kmem_cache *s, void *object)
1794 {
1795 	setup_object_debug(s, object);
1796 	object = kasan_init_slab_obj(s, object);
1797 	if (unlikely(s->ctor)) {
1798 		kasan_unpoison_object_data(s, object);
1799 		s->ctor(object);
1800 		kasan_poison_object_data(s, object);
1801 	}
1802 	return object;
1803 }
1804 
1805 /*
1806  * Slab allocation and freeing
1807  */
1808 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1809 		struct kmem_cache_order_objects oo)
1810 {
1811 	struct folio *folio;
1812 	struct slab *slab;
1813 	unsigned int order = oo_order(oo);
1814 
1815 	if (node == NUMA_NO_NODE)
1816 		folio = (struct folio *)alloc_pages(flags, order);
1817 	else
1818 		folio = (struct folio *)__alloc_pages_node(node, flags, order);
1819 
1820 	if (!folio)
1821 		return NULL;
1822 
1823 	slab = folio_slab(folio);
1824 	__folio_set_slab(folio);
1825 	if (page_is_pfmemalloc(folio_page(folio, 0)))
1826 		slab_set_pfmemalloc(slab);
1827 
1828 	return slab;
1829 }
1830 
1831 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1832 /* Pre-initialize the random sequence cache */
1833 static int init_cache_random_seq(struct kmem_cache *s)
1834 {
1835 	unsigned int count = oo_objects(s->oo);
1836 	int err;
1837 
1838 	/* Bailout if already initialised */
1839 	if (s->random_seq)
1840 		return 0;
1841 
1842 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1843 	if (err) {
1844 		pr_err("SLUB: Unable to initialize free list for %s\n",
1845 			s->name);
1846 		return err;
1847 	}
1848 
1849 	/* Transform to an offset on the set of pages */
1850 	if (s->random_seq) {
1851 		unsigned int i;
1852 
1853 		for (i = 0; i < count; i++)
1854 			s->random_seq[i] *= s->size;
1855 	}
1856 	return 0;
1857 }
1858 
1859 /* Initialize each random sequence freelist per cache */
1860 static void __init init_freelist_randomization(void)
1861 {
1862 	struct kmem_cache *s;
1863 
1864 	mutex_lock(&slab_mutex);
1865 
1866 	list_for_each_entry(s, &slab_caches, list)
1867 		init_cache_random_seq(s);
1868 
1869 	mutex_unlock(&slab_mutex);
1870 }
1871 
1872 /* Get the next entry on the pre-computed freelist randomized */
1873 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1874 				unsigned long *pos, void *start,
1875 				unsigned long page_limit,
1876 				unsigned long freelist_count)
1877 {
1878 	unsigned int idx;
1879 
1880 	/*
1881 	 * If the target page allocation failed, the number of objects on the
1882 	 * page might be smaller than the usual size defined by the cache.
1883 	 */
1884 	do {
1885 		idx = s->random_seq[*pos];
1886 		*pos += 1;
1887 		if (*pos >= freelist_count)
1888 			*pos = 0;
1889 	} while (unlikely(idx >= page_limit));
1890 
1891 	return (char *)start + idx;
1892 }
1893 
1894 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1895 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1896 {
1897 	void *start;
1898 	void *cur;
1899 	void *next;
1900 	unsigned long idx, pos, page_limit, freelist_count;
1901 
1902 	if (slab->objects < 2 || !s->random_seq)
1903 		return false;
1904 
1905 	freelist_count = oo_objects(s->oo);
1906 	pos = get_random_int() % freelist_count;
1907 
1908 	page_limit = slab->objects * s->size;
1909 	start = fixup_red_left(s, slab_address(slab));
1910 
1911 	/* First entry is used as the base of the freelist */
1912 	cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1913 				freelist_count);
1914 	cur = setup_object(s, cur);
1915 	slab->freelist = cur;
1916 
1917 	for (idx = 1; idx < slab->objects; idx++) {
1918 		next = next_freelist_entry(s, slab, &pos, start, page_limit,
1919 			freelist_count);
1920 		next = setup_object(s, next);
1921 		set_freepointer(s, cur, next);
1922 		cur = next;
1923 	}
1924 	set_freepointer(s, cur, NULL);
1925 
1926 	return true;
1927 }
1928 #else
1929 static inline int init_cache_random_seq(struct kmem_cache *s)
1930 {
1931 	return 0;
1932 }
1933 static inline void init_freelist_randomization(void) { }
1934 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1935 {
1936 	return false;
1937 }
1938 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1939 
1940 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1941 {
1942 	struct slab *slab;
1943 	struct kmem_cache_order_objects oo = s->oo;
1944 	gfp_t alloc_gfp;
1945 	void *start, *p, *next;
1946 	int idx;
1947 	bool shuffle;
1948 
1949 	flags &= gfp_allowed_mask;
1950 
1951 	flags |= s->allocflags;
1952 
1953 	/*
1954 	 * Let the initial higher-order allocation fail under memory pressure
1955 	 * so we fall-back to the minimum order allocation.
1956 	 */
1957 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1958 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1959 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
1960 
1961 	slab = alloc_slab_page(alloc_gfp, node, oo);
1962 	if (unlikely(!slab)) {
1963 		oo = s->min;
1964 		alloc_gfp = flags;
1965 		/*
1966 		 * Allocation may have failed due to fragmentation.
1967 		 * Try a lower order alloc if possible
1968 		 */
1969 		slab = alloc_slab_page(alloc_gfp, node, oo);
1970 		if (unlikely(!slab))
1971 			goto out;
1972 		stat(s, ORDER_FALLBACK);
1973 	}
1974 
1975 	slab->objects = oo_objects(oo);
1976 
1977 	account_slab(slab, oo_order(oo), s, flags);
1978 
1979 	slab->slab_cache = s;
1980 
1981 	kasan_poison_slab(slab);
1982 
1983 	start = slab_address(slab);
1984 
1985 	setup_slab_debug(s, slab, start);
1986 
1987 	shuffle = shuffle_freelist(s, slab);
1988 
1989 	if (!shuffle) {
1990 		start = fixup_red_left(s, start);
1991 		start = setup_object(s, start);
1992 		slab->freelist = start;
1993 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
1994 			next = p + s->size;
1995 			next = setup_object(s, next);
1996 			set_freepointer(s, p, next);
1997 			p = next;
1998 		}
1999 		set_freepointer(s, p, NULL);
2000 	}
2001 
2002 	slab->inuse = slab->objects;
2003 	slab->frozen = 1;
2004 
2005 out:
2006 	if (!slab)
2007 		return NULL;
2008 
2009 	inc_slabs_node(s, slab_nid(slab), slab->objects);
2010 
2011 	return slab;
2012 }
2013 
2014 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2015 {
2016 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2017 		flags = kmalloc_fix_flags(flags);
2018 
2019 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2020 
2021 	return allocate_slab(s,
2022 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2023 }
2024 
2025 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2026 {
2027 	struct folio *folio = slab_folio(slab);
2028 	int order = folio_order(folio);
2029 	int pages = 1 << order;
2030 
2031 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2032 		void *p;
2033 
2034 		slab_pad_check(s, slab);
2035 		for_each_object(p, s, slab_address(slab), slab->objects)
2036 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2037 	}
2038 
2039 	__slab_clear_pfmemalloc(slab);
2040 	__folio_clear_slab(folio);
2041 	folio->mapping = NULL;
2042 	if (current->reclaim_state)
2043 		current->reclaim_state->reclaimed_slab += pages;
2044 	unaccount_slab(slab, order, s);
2045 	__free_pages(folio_page(folio, 0), order);
2046 }
2047 
2048 static void rcu_free_slab(struct rcu_head *h)
2049 {
2050 	struct slab *slab = container_of(h, struct slab, rcu_head);
2051 
2052 	__free_slab(slab->slab_cache, slab);
2053 }
2054 
2055 static void free_slab(struct kmem_cache *s, struct slab *slab)
2056 {
2057 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
2058 		call_rcu(&slab->rcu_head, rcu_free_slab);
2059 	} else
2060 		__free_slab(s, slab);
2061 }
2062 
2063 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2064 {
2065 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2066 	free_slab(s, slab);
2067 }
2068 
2069 /*
2070  * Management of partially allocated slabs.
2071  */
2072 static inline void
2073 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2074 {
2075 	n->nr_partial++;
2076 	if (tail == DEACTIVATE_TO_TAIL)
2077 		list_add_tail(&slab->slab_list, &n->partial);
2078 	else
2079 		list_add(&slab->slab_list, &n->partial);
2080 }
2081 
2082 static inline void add_partial(struct kmem_cache_node *n,
2083 				struct slab *slab, int tail)
2084 {
2085 	lockdep_assert_held(&n->list_lock);
2086 	__add_partial(n, slab, tail);
2087 }
2088 
2089 static inline void remove_partial(struct kmem_cache_node *n,
2090 					struct slab *slab)
2091 {
2092 	lockdep_assert_held(&n->list_lock);
2093 	list_del(&slab->slab_list);
2094 	n->nr_partial--;
2095 }
2096 
2097 /*
2098  * Remove slab from the partial list, freeze it and
2099  * return the pointer to the freelist.
2100  *
2101  * Returns a list of objects or NULL if it fails.
2102  */
2103 static inline void *acquire_slab(struct kmem_cache *s,
2104 		struct kmem_cache_node *n, struct slab *slab,
2105 		int mode)
2106 {
2107 	void *freelist;
2108 	unsigned long counters;
2109 	struct slab new;
2110 
2111 	lockdep_assert_held(&n->list_lock);
2112 
2113 	/*
2114 	 * Zap the freelist and set the frozen bit.
2115 	 * The old freelist is the list of objects for the
2116 	 * per cpu allocation list.
2117 	 */
2118 	freelist = slab->freelist;
2119 	counters = slab->counters;
2120 	new.counters = counters;
2121 	if (mode) {
2122 		new.inuse = slab->objects;
2123 		new.freelist = NULL;
2124 	} else {
2125 		new.freelist = freelist;
2126 	}
2127 
2128 	VM_BUG_ON(new.frozen);
2129 	new.frozen = 1;
2130 
2131 	if (!__cmpxchg_double_slab(s, slab,
2132 			freelist, counters,
2133 			new.freelist, new.counters,
2134 			"acquire_slab"))
2135 		return NULL;
2136 
2137 	remove_partial(n, slab);
2138 	WARN_ON(!freelist);
2139 	return freelist;
2140 }
2141 
2142 #ifdef CONFIG_SLUB_CPU_PARTIAL
2143 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2144 #else
2145 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2146 				   int drain) { }
2147 #endif
2148 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2149 
2150 /*
2151  * Try to allocate a partial slab from a specific node.
2152  */
2153 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2154 			      struct slab **ret_slab, gfp_t gfpflags)
2155 {
2156 	struct slab *slab, *slab2;
2157 	void *object = NULL;
2158 	unsigned long flags;
2159 	unsigned int partial_slabs = 0;
2160 
2161 	/*
2162 	 * Racy check. If we mistakenly see no partial slabs then we
2163 	 * just allocate an empty slab. If we mistakenly try to get a
2164 	 * partial slab and there is none available then get_partial()
2165 	 * will return NULL.
2166 	 */
2167 	if (!n || !n->nr_partial)
2168 		return NULL;
2169 
2170 	spin_lock_irqsave(&n->list_lock, flags);
2171 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2172 		void *t;
2173 
2174 		if (!pfmemalloc_match(slab, gfpflags))
2175 			continue;
2176 
2177 		t = acquire_slab(s, n, slab, object == NULL);
2178 		if (!t)
2179 			break;
2180 
2181 		if (!object) {
2182 			*ret_slab = slab;
2183 			stat(s, ALLOC_FROM_PARTIAL);
2184 			object = t;
2185 		} else {
2186 			put_cpu_partial(s, slab, 0);
2187 			stat(s, CPU_PARTIAL_NODE);
2188 			partial_slabs++;
2189 		}
2190 #ifdef CONFIG_SLUB_CPU_PARTIAL
2191 		if (!kmem_cache_has_cpu_partial(s)
2192 			|| partial_slabs > s->cpu_partial_slabs / 2)
2193 			break;
2194 #else
2195 		break;
2196 #endif
2197 
2198 	}
2199 	spin_unlock_irqrestore(&n->list_lock, flags);
2200 	return object;
2201 }
2202 
2203 /*
2204  * Get a slab from somewhere. Search in increasing NUMA distances.
2205  */
2206 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2207 			     struct slab **ret_slab)
2208 {
2209 #ifdef CONFIG_NUMA
2210 	struct zonelist *zonelist;
2211 	struct zoneref *z;
2212 	struct zone *zone;
2213 	enum zone_type highest_zoneidx = gfp_zone(flags);
2214 	void *object;
2215 	unsigned int cpuset_mems_cookie;
2216 
2217 	/*
2218 	 * The defrag ratio allows a configuration of the tradeoffs between
2219 	 * inter node defragmentation and node local allocations. A lower
2220 	 * defrag_ratio increases the tendency to do local allocations
2221 	 * instead of attempting to obtain partial slabs from other nodes.
2222 	 *
2223 	 * If the defrag_ratio is set to 0 then kmalloc() always
2224 	 * returns node local objects. If the ratio is higher then kmalloc()
2225 	 * may return off node objects because partial slabs are obtained
2226 	 * from other nodes and filled up.
2227 	 *
2228 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2229 	 * (which makes defrag_ratio = 1000) then every (well almost)
2230 	 * allocation will first attempt to defrag slab caches on other nodes.
2231 	 * This means scanning over all nodes to look for partial slabs which
2232 	 * may be expensive if we do it every time we are trying to find a slab
2233 	 * with available objects.
2234 	 */
2235 	if (!s->remote_node_defrag_ratio ||
2236 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2237 		return NULL;
2238 
2239 	do {
2240 		cpuset_mems_cookie = read_mems_allowed_begin();
2241 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
2242 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2243 			struct kmem_cache_node *n;
2244 
2245 			n = get_node(s, zone_to_nid(zone));
2246 
2247 			if (n && cpuset_zone_allowed(zone, flags) &&
2248 					n->nr_partial > s->min_partial) {
2249 				object = get_partial_node(s, n, ret_slab, flags);
2250 				if (object) {
2251 					/*
2252 					 * Don't check read_mems_allowed_retry()
2253 					 * here - if mems_allowed was updated in
2254 					 * parallel, that was a harmless race
2255 					 * between allocation and the cpuset
2256 					 * update
2257 					 */
2258 					return object;
2259 				}
2260 			}
2261 		}
2262 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2263 #endif	/* CONFIG_NUMA */
2264 	return NULL;
2265 }
2266 
2267 /*
2268  * Get a partial slab, lock it and return it.
2269  */
2270 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2271 			 struct slab **ret_slab)
2272 {
2273 	void *object;
2274 	int searchnode = node;
2275 
2276 	if (node == NUMA_NO_NODE)
2277 		searchnode = numa_mem_id();
2278 
2279 	object = get_partial_node(s, get_node(s, searchnode), ret_slab, flags);
2280 	if (object || node != NUMA_NO_NODE)
2281 		return object;
2282 
2283 	return get_any_partial(s, flags, ret_slab);
2284 }
2285 
2286 #ifdef CONFIG_PREEMPTION
2287 /*
2288  * Calculate the next globally unique transaction for disambiguation
2289  * during cmpxchg. The transactions start with the cpu number and are then
2290  * incremented by CONFIG_NR_CPUS.
2291  */
2292 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2293 #else
2294 /*
2295  * No preemption supported therefore also no need to check for
2296  * different cpus.
2297  */
2298 #define TID_STEP 1
2299 #endif
2300 
2301 static inline unsigned long next_tid(unsigned long tid)
2302 {
2303 	return tid + TID_STEP;
2304 }
2305 
2306 #ifdef SLUB_DEBUG_CMPXCHG
2307 static inline unsigned int tid_to_cpu(unsigned long tid)
2308 {
2309 	return tid % TID_STEP;
2310 }
2311 
2312 static inline unsigned long tid_to_event(unsigned long tid)
2313 {
2314 	return tid / TID_STEP;
2315 }
2316 #endif
2317 
2318 static inline unsigned int init_tid(int cpu)
2319 {
2320 	return cpu;
2321 }
2322 
2323 static inline void note_cmpxchg_failure(const char *n,
2324 		const struct kmem_cache *s, unsigned long tid)
2325 {
2326 #ifdef SLUB_DEBUG_CMPXCHG
2327 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2328 
2329 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2330 
2331 #ifdef CONFIG_PREEMPTION
2332 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2333 		pr_warn("due to cpu change %d -> %d\n",
2334 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2335 	else
2336 #endif
2337 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2338 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2339 			tid_to_event(tid), tid_to_event(actual_tid));
2340 	else
2341 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2342 			actual_tid, tid, next_tid(tid));
2343 #endif
2344 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2345 }
2346 
2347 static void init_kmem_cache_cpus(struct kmem_cache *s)
2348 {
2349 	int cpu;
2350 	struct kmem_cache_cpu *c;
2351 
2352 	for_each_possible_cpu(cpu) {
2353 		c = per_cpu_ptr(s->cpu_slab, cpu);
2354 		local_lock_init(&c->lock);
2355 		c->tid = init_tid(cpu);
2356 	}
2357 }
2358 
2359 /*
2360  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2361  * unfreezes the slabs and puts it on the proper list.
2362  * Assumes the slab has been already safely taken away from kmem_cache_cpu
2363  * by the caller.
2364  */
2365 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2366 			    void *freelist)
2367 {
2368 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE, M_FULL_NOLIST };
2369 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2370 	int free_delta = 0;
2371 	enum slab_modes mode = M_NONE;
2372 	void *nextfree, *freelist_iter, *freelist_tail;
2373 	int tail = DEACTIVATE_TO_HEAD;
2374 	unsigned long flags = 0;
2375 	struct slab new;
2376 	struct slab old;
2377 
2378 	if (slab->freelist) {
2379 		stat(s, DEACTIVATE_REMOTE_FREES);
2380 		tail = DEACTIVATE_TO_TAIL;
2381 	}
2382 
2383 	/*
2384 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2385 	 * remember the last object in freelist_tail for later splicing.
2386 	 */
2387 	freelist_tail = NULL;
2388 	freelist_iter = freelist;
2389 	while (freelist_iter) {
2390 		nextfree = get_freepointer(s, freelist_iter);
2391 
2392 		/*
2393 		 * If 'nextfree' is invalid, it is possible that the object at
2394 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2395 		 * starting at 'freelist_iter' by skipping them.
2396 		 */
2397 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2398 			break;
2399 
2400 		freelist_tail = freelist_iter;
2401 		free_delta++;
2402 
2403 		freelist_iter = nextfree;
2404 	}
2405 
2406 	/*
2407 	 * Stage two: Unfreeze the slab while splicing the per-cpu
2408 	 * freelist to the head of slab's freelist.
2409 	 *
2410 	 * Ensure that the slab is unfrozen while the list presence
2411 	 * reflects the actual number of objects during unfreeze.
2412 	 *
2413 	 * We first perform cmpxchg holding lock and insert to list
2414 	 * when it succeed. If there is mismatch then the slab is not
2415 	 * unfrozen and number of objects in the slab may have changed.
2416 	 * Then release lock and retry cmpxchg again.
2417 	 */
2418 redo:
2419 
2420 	old.freelist = READ_ONCE(slab->freelist);
2421 	old.counters = READ_ONCE(slab->counters);
2422 	VM_BUG_ON(!old.frozen);
2423 
2424 	/* Determine target state of the slab */
2425 	new.counters = old.counters;
2426 	if (freelist_tail) {
2427 		new.inuse -= free_delta;
2428 		set_freepointer(s, freelist_tail, old.freelist);
2429 		new.freelist = freelist;
2430 	} else
2431 		new.freelist = old.freelist;
2432 
2433 	new.frozen = 0;
2434 
2435 	if (!new.inuse && n->nr_partial >= s->min_partial) {
2436 		mode = M_FREE;
2437 	} else if (new.freelist) {
2438 		mode = M_PARTIAL;
2439 		/*
2440 		 * Taking the spinlock removes the possibility that
2441 		 * acquire_slab() will see a slab that is frozen
2442 		 */
2443 		spin_lock_irqsave(&n->list_lock, flags);
2444 	} else if (kmem_cache_debug_flags(s, SLAB_STORE_USER)) {
2445 		mode = M_FULL;
2446 		/*
2447 		 * This also ensures that the scanning of full
2448 		 * slabs from diagnostic functions will not see
2449 		 * any frozen slabs.
2450 		 */
2451 		spin_lock_irqsave(&n->list_lock, flags);
2452 	} else {
2453 		mode = M_FULL_NOLIST;
2454 	}
2455 
2456 
2457 	if (!cmpxchg_double_slab(s, slab,
2458 				old.freelist, old.counters,
2459 				new.freelist, new.counters,
2460 				"unfreezing slab")) {
2461 		if (mode == M_PARTIAL || mode == M_FULL)
2462 			spin_unlock_irqrestore(&n->list_lock, flags);
2463 		goto redo;
2464 	}
2465 
2466 
2467 	if (mode == M_PARTIAL) {
2468 		add_partial(n, slab, tail);
2469 		spin_unlock_irqrestore(&n->list_lock, flags);
2470 		stat(s, tail);
2471 	} else if (mode == M_FREE) {
2472 		stat(s, DEACTIVATE_EMPTY);
2473 		discard_slab(s, slab);
2474 		stat(s, FREE_SLAB);
2475 	} else if (mode == M_FULL) {
2476 		add_full(s, n, slab);
2477 		spin_unlock_irqrestore(&n->list_lock, flags);
2478 		stat(s, DEACTIVATE_FULL);
2479 	} else if (mode == M_FULL_NOLIST) {
2480 		stat(s, DEACTIVATE_FULL);
2481 	}
2482 }
2483 
2484 #ifdef CONFIG_SLUB_CPU_PARTIAL
2485 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2486 {
2487 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2488 	struct slab *slab, *slab_to_discard = NULL;
2489 	unsigned long flags = 0;
2490 
2491 	while (partial_slab) {
2492 		struct slab new;
2493 		struct slab old;
2494 
2495 		slab = partial_slab;
2496 		partial_slab = slab->next;
2497 
2498 		n2 = get_node(s, slab_nid(slab));
2499 		if (n != n2) {
2500 			if (n)
2501 				spin_unlock_irqrestore(&n->list_lock, flags);
2502 
2503 			n = n2;
2504 			spin_lock_irqsave(&n->list_lock, flags);
2505 		}
2506 
2507 		do {
2508 
2509 			old.freelist = slab->freelist;
2510 			old.counters = slab->counters;
2511 			VM_BUG_ON(!old.frozen);
2512 
2513 			new.counters = old.counters;
2514 			new.freelist = old.freelist;
2515 
2516 			new.frozen = 0;
2517 
2518 		} while (!__cmpxchg_double_slab(s, slab,
2519 				old.freelist, old.counters,
2520 				new.freelist, new.counters,
2521 				"unfreezing slab"));
2522 
2523 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2524 			slab->next = slab_to_discard;
2525 			slab_to_discard = slab;
2526 		} else {
2527 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
2528 			stat(s, FREE_ADD_PARTIAL);
2529 		}
2530 	}
2531 
2532 	if (n)
2533 		spin_unlock_irqrestore(&n->list_lock, flags);
2534 
2535 	while (slab_to_discard) {
2536 		slab = slab_to_discard;
2537 		slab_to_discard = slab_to_discard->next;
2538 
2539 		stat(s, DEACTIVATE_EMPTY);
2540 		discard_slab(s, slab);
2541 		stat(s, FREE_SLAB);
2542 	}
2543 }
2544 
2545 /*
2546  * Unfreeze all the cpu partial slabs.
2547  */
2548 static void unfreeze_partials(struct kmem_cache *s)
2549 {
2550 	struct slab *partial_slab;
2551 	unsigned long flags;
2552 
2553 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2554 	partial_slab = this_cpu_read(s->cpu_slab->partial);
2555 	this_cpu_write(s->cpu_slab->partial, NULL);
2556 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2557 
2558 	if (partial_slab)
2559 		__unfreeze_partials(s, partial_slab);
2560 }
2561 
2562 static void unfreeze_partials_cpu(struct kmem_cache *s,
2563 				  struct kmem_cache_cpu *c)
2564 {
2565 	struct slab *partial_slab;
2566 
2567 	partial_slab = slub_percpu_partial(c);
2568 	c->partial = NULL;
2569 
2570 	if (partial_slab)
2571 		__unfreeze_partials(s, partial_slab);
2572 }
2573 
2574 /*
2575  * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2576  * partial slab slot if available.
2577  *
2578  * If we did not find a slot then simply move all the partials to the
2579  * per node partial list.
2580  */
2581 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2582 {
2583 	struct slab *oldslab;
2584 	struct slab *slab_to_unfreeze = NULL;
2585 	unsigned long flags;
2586 	int slabs = 0;
2587 
2588 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2589 
2590 	oldslab = this_cpu_read(s->cpu_slab->partial);
2591 
2592 	if (oldslab) {
2593 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2594 			/*
2595 			 * Partial array is full. Move the existing set to the
2596 			 * per node partial list. Postpone the actual unfreezing
2597 			 * outside of the critical section.
2598 			 */
2599 			slab_to_unfreeze = oldslab;
2600 			oldslab = NULL;
2601 		} else {
2602 			slabs = oldslab->slabs;
2603 		}
2604 	}
2605 
2606 	slabs++;
2607 
2608 	slab->slabs = slabs;
2609 	slab->next = oldslab;
2610 
2611 	this_cpu_write(s->cpu_slab->partial, slab);
2612 
2613 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2614 
2615 	if (slab_to_unfreeze) {
2616 		__unfreeze_partials(s, slab_to_unfreeze);
2617 		stat(s, CPU_PARTIAL_DRAIN);
2618 	}
2619 }
2620 
2621 #else	/* CONFIG_SLUB_CPU_PARTIAL */
2622 
2623 static inline void unfreeze_partials(struct kmem_cache *s) { }
2624 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2625 				  struct kmem_cache_cpu *c) { }
2626 
2627 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2628 
2629 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2630 {
2631 	unsigned long flags;
2632 	struct slab *slab;
2633 	void *freelist;
2634 
2635 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2636 
2637 	slab = c->slab;
2638 	freelist = c->freelist;
2639 
2640 	c->slab = NULL;
2641 	c->freelist = NULL;
2642 	c->tid = next_tid(c->tid);
2643 
2644 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2645 
2646 	if (slab) {
2647 		deactivate_slab(s, slab, freelist);
2648 		stat(s, CPUSLAB_FLUSH);
2649 	}
2650 }
2651 
2652 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2653 {
2654 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2655 	void *freelist = c->freelist;
2656 	struct slab *slab = c->slab;
2657 
2658 	c->slab = NULL;
2659 	c->freelist = NULL;
2660 	c->tid = next_tid(c->tid);
2661 
2662 	if (slab) {
2663 		deactivate_slab(s, slab, freelist);
2664 		stat(s, CPUSLAB_FLUSH);
2665 	}
2666 
2667 	unfreeze_partials_cpu(s, c);
2668 }
2669 
2670 struct slub_flush_work {
2671 	struct work_struct work;
2672 	struct kmem_cache *s;
2673 	bool skip;
2674 };
2675 
2676 /*
2677  * Flush cpu slab.
2678  *
2679  * Called from CPU work handler with migration disabled.
2680  */
2681 static void flush_cpu_slab(struct work_struct *w)
2682 {
2683 	struct kmem_cache *s;
2684 	struct kmem_cache_cpu *c;
2685 	struct slub_flush_work *sfw;
2686 
2687 	sfw = container_of(w, struct slub_flush_work, work);
2688 
2689 	s = sfw->s;
2690 	c = this_cpu_ptr(s->cpu_slab);
2691 
2692 	if (c->slab)
2693 		flush_slab(s, c);
2694 
2695 	unfreeze_partials(s);
2696 }
2697 
2698 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2699 {
2700 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2701 
2702 	return c->slab || slub_percpu_partial(c);
2703 }
2704 
2705 static DEFINE_MUTEX(flush_lock);
2706 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2707 
2708 static void flush_all_cpus_locked(struct kmem_cache *s)
2709 {
2710 	struct slub_flush_work *sfw;
2711 	unsigned int cpu;
2712 
2713 	lockdep_assert_cpus_held();
2714 	mutex_lock(&flush_lock);
2715 
2716 	for_each_online_cpu(cpu) {
2717 		sfw = &per_cpu(slub_flush, cpu);
2718 		if (!has_cpu_slab(cpu, s)) {
2719 			sfw->skip = true;
2720 			continue;
2721 		}
2722 		INIT_WORK(&sfw->work, flush_cpu_slab);
2723 		sfw->skip = false;
2724 		sfw->s = s;
2725 		schedule_work_on(cpu, &sfw->work);
2726 	}
2727 
2728 	for_each_online_cpu(cpu) {
2729 		sfw = &per_cpu(slub_flush, cpu);
2730 		if (sfw->skip)
2731 			continue;
2732 		flush_work(&sfw->work);
2733 	}
2734 
2735 	mutex_unlock(&flush_lock);
2736 }
2737 
2738 static void flush_all(struct kmem_cache *s)
2739 {
2740 	cpus_read_lock();
2741 	flush_all_cpus_locked(s);
2742 	cpus_read_unlock();
2743 }
2744 
2745 /*
2746  * Use the cpu notifier to insure that the cpu slabs are flushed when
2747  * necessary.
2748  */
2749 static int slub_cpu_dead(unsigned int cpu)
2750 {
2751 	struct kmem_cache *s;
2752 
2753 	mutex_lock(&slab_mutex);
2754 	list_for_each_entry(s, &slab_caches, list)
2755 		__flush_cpu_slab(s, cpu);
2756 	mutex_unlock(&slab_mutex);
2757 	return 0;
2758 }
2759 
2760 /*
2761  * Check if the objects in a per cpu structure fit numa
2762  * locality expectations.
2763  */
2764 static inline int node_match(struct slab *slab, int node)
2765 {
2766 #ifdef CONFIG_NUMA
2767 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2768 		return 0;
2769 #endif
2770 	return 1;
2771 }
2772 
2773 #ifdef CONFIG_SLUB_DEBUG
2774 static int count_free(struct slab *slab)
2775 {
2776 	return slab->objects - slab->inuse;
2777 }
2778 
2779 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2780 {
2781 	return atomic_long_read(&n->total_objects);
2782 }
2783 #endif /* CONFIG_SLUB_DEBUG */
2784 
2785 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2786 static unsigned long count_partial(struct kmem_cache_node *n,
2787 					int (*get_count)(struct slab *))
2788 {
2789 	unsigned long flags;
2790 	unsigned long x = 0;
2791 	struct slab *slab;
2792 
2793 	spin_lock_irqsave(&n->list_lock, flags);
2794 	list_for_each_entry(slab, &n->partial, slab_list)
2795 		x += get_count(slab);
2796 	spin_unlock_irqrestore(&n->list_lock, flags);
2797 	return x;
2798 }
2799 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2800 
2801 static noinline void
2802 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2803 {
2804 #ifdef CONFIG_SLUB_DEBUG
2805 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2806 				      DEFAULT_RATELIMIT_BURST);
2807 	int node;
2808 	struct kmem_cache_node *n;
2809 
2810 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2811 		return;
2812 
2813 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2814 		nid, gfpflags, &gfpflags);
2815 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2816 		s->name, s->object_size, s->size, oo_order(s->oo),
2817 		oo_order(s->min));
2818 
2819 	if (oo_order(s->min) > get_order(s->object_size))
2820 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2821 			s->name);
2822 
2823 	for_each_kmem_cache_node(s, node, n) {
2824 		unsigned long nr_slabs;
2825 		unsigned long nr_objs;
2826 		unsigned long nr_free;
2827 
2828 		nr_free  = count_partial(n, count_free);
2829 		nr_slabs = node_nr_slabs(n);
2830 		nr_objs  = node_nr_objs(n);
2831 
2832 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2833 			node, nr_slabs, nr_objs, nr_free);
2834 	}
2835 #endif
2836 }
2837 
2838 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
2839 {
2840 	if (unlikely(slab_test_pfmemalloc(slab)))
2841 		return gfp_pfmemalloc_allowed(gfpflags);
2842 
2843 	return true;
2844 }
2845 
2846 /*
2847  * Check the slab->freelist and either transfer the freelist to the
2848  * per cpu freelist or deactivate the slab.
2849  *
2850  * The slab is still frozen if the return value is not NULL.
2851  *
2852  * If this function returns NULL then the slab has been unfrozen.
2853  */
2854 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
2855 {
2856 	struct slab new;
2857 	unsigned long counters;
2858 	void *freelist;
2859 
2860 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2861 
2862 	do {
2863 		freelist = slab->freelist;
2864 		counters = slab->counters;
2865 
2866 		new.counters = counters;
2867 		VM_BUG_ON(!new.frozen);
2868 
2869 		new.inuse = slab->objects;
2870 		new.frozen = freelist != NULL;
2871 
2872 	} while (!__cmpxchg_double_slab(s, slab,
2873 		freelist, counters,
2874 		NULL, new.counters,
2875 		"get_freelist"));
2876 
2877 	return freelist;
2878 }
2879 
2880 /*
2881  * Slow path. The lockless freelist is empty or we need to perform
2882  * debugging duties.
2883  *
2884  * Processing is still very fast if new objects have been freed to the
2885  * regular freelist. In that case we simply take over the regular freelist
2886  * as the lockless freelist and zap the regular freelist.
2887  *
2888  * If that is not working then we fall back to the partial lists. We take the
2889  * first element of the freelist as the object to allocate now and move the
2890  * rest of the freelist to the lockless freelist.
2891  *
2892  * And if we were unable to get a new slab from the partial slab lists then
2893  * we need to allocate a new slab. This is the slowest path since it involves
2894  * a call to the page allocator and the setup of a new slab.
2895  *
2896  * Version of __slab_alloc to use when we know that preemption is
2897  * already disabled (which is the case for bulk allocation).
2898  */
2899 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2900 			  unsigned long addr, struct kmem_cache_cpu *c)
2901 {
2902 	void *freelist;
2903 	struct slab *slab;
2904 	unsigned long flags;
2905 
2906 	stat(s, ALLOC_SLOWPATH);
2907 
2908 reread_slab:
2909 
2910 	slab = READ_ONCE(c->slab);
2911 	if (!slab) {
2912 		/*
2913 		 * if the node is not online or has no normal memory, just
2914 		 * ignore the node constraint
2915 		 */
2916 		if (unlikely(node != NUMA_NO_NODE &&
2917 			     !node_isset(node, slab_nodes)))
2918 			node = NUMA_NO_NODE;
2919 		goto new_slab;
2920 	}
2921 redo:
2922 
2923 	if (unlikely(!node_match(slab, node))) {
2924 		/*
2925 		 * same as above but node_match() being false already
2926 		 * implies node != NUMA_NO_NODE
2927 		 */
2928 		if (!node_isset(node, slab_nodes)) {
2929 			node = NUMA_NO_NODE;
2930 		} else {
2931 			stat(s, ALLOC_NODE_MISMATCH);
2932 			goto deactivate_slab;
2933 		}
2934 	}
2935 
2936 	/*
2937 	 * By rights, we should be searching for a slab page that was
2938 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2939 	 * information when the page leaves the per-cpu allocator
2940 	 */
2941 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
2942 		goto deactivate_slab;
2943 
2944 	/* must check again c->slab in case we got preempted and it changed */
2945 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2946 	if (unlikely(slab != c->slab)) {
2947 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2948 		goto reread_slab;
2949 	}
2950 	freelist = c->freelist;
2951 	if (freelist)
2952 		goto load_freelist;
2953 
2954 	freelist = get_freelist(s, slab);
2955 
2956 	if (!freelist) {
2957 		c->slab = NULL;
2958 		c->tid = next_tid(c->tid);
2959 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2960 		stat(s, DEACTIVATE_BYPASS);
2961 		goto new_slab;
2962 	}
2963 
2964 	stat(s, ALLOC_REFILL);
2965 
2966 load_freelist:
2967 
2968 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2969 
2970 	/*
2971 	 * freelist is pointing to the list of objects to be used.
2972 	 * slab is pointing to the slab from which the objects are obtained.
2973 	 * That slab must be frozen for per cpu allocations to work.
2974 	 */
2975 	VM_BUG_ON(!c->slab->frozen);
2976 	c->freelist = get_freepointer(s, freelist);
2977 	c->tid = next_tid(c->tid);
2978 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2979 	return freelist;
2980 
2981 deactivate_slab:
2982 
2983 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2984 	if (slab != c->slab) {
2985 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2986 		goto reread_slab;
2987 	}
2988 	freelist = c->freelist;
2989 	c->slab = NULL;
2990 	c->freelist = NULL;
2991 	c->tid = next_tid(c->tid);
2992 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2993 	deactivate_slab(s, slab, freelist);
2994 
2995 new_slab:
2996 
2997 	if (slub_percpu_partial(c)) {
2998 		local_lock_irqsave(&s->cpu_slab->lock, flags);
2999 		if (unlikely(c->slab)) {
3000 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3001 			goto reread_slab;
3002 		}
3003 		if (unlikely(!slub_percpu_partial(c))) {
3004 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3005 			/* we were preempted and partial list got empty */
3006 			goto new_objects;
3007 		}
3008 
3009 		slab = c->slab = slub_percpu_partial(c);
3010 		slub_set_percpu_partial(c, slab);
3011 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3012 		stat(s, CPU_PARTIAL_ALLOC);
3013 		goto redo;
3014 	}
3015 
3016 new_objects:
3017 
3018 	freelist = get_partial(s, gfpflags, node, &slab);
3019 	if (freelist)
3020 		goto check_new_slab;
3021 
3022 	slub_put_cpu_ptr(s->cpu_slab);
3023 	slab = new_slab(s, gfpflags, node);
3024 	c = slub_get_cpu_ptr(s->cpu_slab);
3025 
3026 	if (unlikely(!slab)) {
3027 		slab_out_of_memory(s, gfpflags, node);
3028 		return NULL;
3029 	}
3030 
3031 	/*
3032 	 * No other reference to the slab yet so we can
3033 	 * muck around with it freely without cmpxchg
3034 	 */
3035 	freelist = slab->freelist;
3036 	slab->freelist = NULL;
3037 
3038 	stat(s, ALLOC_SLAB);
3039 
3040 check_new_slab:
3041 
3042 	if (kmem_cache_debug(s)) {
3043 		if (!alloc_debug_processing(s, slab, freelist, addr)) {
3044 			/* Slab failed checks. Next slab needed */
3045 			goto new_slab;
3046 		} else {
3047 			/*
3048 			 * For debug case, we don't load freelist so that all
3049 			 * allocations go through alloc_debug_processing()
3050 			 */
3051 			goto return_single;
3052 		}
3053 	}
3054 
3055 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3056 		/*
3057 		 * For !pfmemalloc_match() case we don't load freelist so that
3058 		 * we don't make further mismatched allocations easier.
3059 		 */
3060 		goto return_single;
3061 
3062 retry_load_slab:
3063 
3064 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3065 	if (unlikely(c->slab)) {
3066 		void *flush_freelist = c->freelist;
3067 		struct slab *flush_slab = c->slab;
3068 
3069 		c->slab = NULL;
3070 		c->freelist = NULL;
3071 		c->tid = next_tid(c->tid);
3072 
3073 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3074 
3075 		deactivate_slab(s, flush_slab, flush_freelist);
3076 
3077 		stat(s, CPUSLAB_FLUSH);
3078 
3079 		goto retry_load_slab;
3080 	}
3081 	c->slab = slab;
3082 
3083 	goto load_freelist;
3084 
3085 return_single:
3086 
3087 	deactivate_slab(s, slab, get_freepointer(s, freelist));
3088 	return freelist;
3089 }
3090 
3091 /*
3092  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3093  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3094  * pointer.
3095  */
3096 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3097 			  unsigned long addr, struct kmem_cache_cpu *c)
3098 {
3099 	void *p;
3100 
3101 #ifdef CONFIG_PREEMPT_COUNT
3102 	/*
3103 	 * We may have been preempted and rescheduled on a different
3104 	 * cpu before disabling preemption. Need to reload cpu area
3105 	 * pointer.
3106 	 */
3107 	c = slub_get_cpu_ptr(s->cpu_slab);
3108 #endif
3109 
3110 	p = ___slab_alloc(s, gfpflags, node, addr, c);
3111 #ifdef CONFIG_PREEMPT_COUNT
3112 	slub_put_cpu_ptr(s->cpu_slab);
3113 #endif
3114 	return p;
3115 }
3116 
3117 /*
3118  * If the object has been wiped upon free, make sure it's fully initialized by
3119  * zeroing out freelist pointer.
3120  */
3121 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3122 						   void *obj)
3123 {
3124 	if (unlikely(slab_want_init_on_free(s)) && obj)
3125 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3126 			0, sizeof(void *));
3127 }
3128 
3129 /*
3130  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3131  * have the fastpath folded into their functions. So no function call
3132  * overhead for requests that can be satisfied on the fastpath.
3133  *
3134  * The fastpath works by first checking if the lockless freelist can be used.
3135  * If not then __slab_alloc is called for slow processing.
3136  *
3137  * Otherwise we can simply pick the next object from the lockless free list.
3138  */
3139 static __always_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3140 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3141 {
3142 	void *object;
3143 	struct kmem_cache_cpu *c;
3144 	struct slab *slab;
3145 	unsigned long tid;
3146 	struct obj_cgroup *objcg = NULL;
3147 	bool init = false;
3148 
3149 	s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3150 	if (!s)
3151 		return NULL;
3152 
3153 	object = kfence_alloc(s, orig_size, gfpflags);
3154 	if (unlikely(object))
3155 		goto out;
3156 
3157 redo:
3158 	/*
3159 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3160 	 * enabled. We may switch back and forth between cpus while
3161 	 * reading from one cpu area. That does not matter as long
3162 	 * as we end up on the original cpu again when doing the cmpxchg.
3163 	 *
3164 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3165 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3166 	 * the tid. If we are preempted and switched to another cpu between the
3167 	 * two reads, it's OK as the two are still associated with the same cpu
3168 	 * and cmpxchg later will validate the cpu.
3169 	 */
3170 	c = raw_cpu_ptr(s->cpu_slab);
3171 	tid = READ_ONCE(c->tid);
3172 
3173 	/*
3174 	 * Irqless object alloc/free algorithm used here depends on sequence
3175 	 * of fetching cpu_slab's data. tid should be fetched before anything
3176 	 * on c to guarantee that object and slab associated with previous tid
3177 	 * won't be used with current tid. If we fetch tid first, object and
3178 	 * slab could be one associated with next tid and our alloc/free
3179 	 * request will be failed. In this case, we will retry. So, no problem.
3180 	 */
3181 	barrier();
3182 
3183 	/*
3184 	 * The transaction ids are globally unique per cpu and per operation on
3185 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3186 	 * occurs on the right processor and that there was no operation on the
3187 	 * linked list in between.
3188 	 */
3189 
3190 	object = c->freelist;
3191 	slab = c->slab;
3192 	/*
3193 	 * We cannot use the lockless fastpath on PREEMPT_RT because if a
3194 	 * slowpath has taken the local_lock_irqsave(), it is not protected
3195 	 * against a fast path operation in an irq handler. So we need to take
3196 	 * the slow path which uses local_lock. It is still relatively fast if
3197 	 * there is a suitable cpu freelist.
3198 	 */
3199 	if (IS_ENABLED(CONFIG_PREEMPT_RT) ||
3200 	    unlikely(!object || !slab || !node_match(slab, node))) {
3201 		object = __slab_alloc(s, gfpflags, node, addr, c);
3202 	} else {
3203 		void *next_object = get_freepointer_safe(s, object);
3204 
3205 		/*
3206 		 * The cmpxchg will only match if there was no additional
3207 		 * operation and if we are on the right processor.
3208 		 *
3209 		 * The cmpxchg does the following atomically (without lock
3210 		 * semantics!)
3211 		 * 1. Relocate first pointer to the current per cpu area.
3212 		 * 2. Verify that tid and freelist have not been changed
3213 		 * 3. If they were not changed replace tid and freelist
3214 		 *
3215 		 * Since this is without lock semantics the protection is only
3216 		 * against code executing on this cpu *not* from access by
3217 		 * other cpus.
3218 		 */
3219 		if (unlikely(!this_cpu_cmpxchg_double(
3220 				s->cpu_slab->freelist, s->cpu_slab->tid,
3221 				object, tid,
3222 				next_object, next_tid(tid)))) {
3223 
3224 			note_cmpxchg_failure("slab_alloc", s, tid);
3225 			goto redo;
3226 		}
3227 		prefetch_freepointer(s, next_object);
3228 		stat(s, ALLOC_FASTPATH);
3229 	}
3230 
3231 	maybe_wipe_obj_freeptr(s, object);
3232 	init = slab_want_init_on_alloc(gfpflags, s);
3233 
3234 out:
3235 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
3236 
3237 	return object;
3238 }
3239 
3240 static __always_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3241 		gfp_t gfpflags, unsigned long addr, size_t orig_size)
3242 {
3243 	return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3244 }
3245 
3246 static __always_inline
3247 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3248 			     gfp_t gfpflags)
3249 {
3250 	void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3251 
3252 	trace_kmem_cache_alloc(_RET_IP_, ret, s, s->object_size,
3253 				s->size, gfpflags);
3254 
3255 	return ret;
3256 }
3257 
3258 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3259 {
3260 	return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3261 }
3262 EXPORT_SYMBOL(kmem_cache_alloc);
3263 
3264 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3265 			   gfp_t gfpflags)
3266 {
3267 	return __kmem_cache_alloc_lru(s, lru, gfpflags);
3268 }
3269 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3270 
3271 #ifdef CONFIG_TRACING
3272 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
3273 {
3274 	void *ret = slab_alloc(s, NULL, gfpflags, _RET_IP_, size);
3275 	trace_kmalloc(_RET_IP_, ret, s, size, s->size, gfpflags);
3276 	ret = kasan_kmalloc(s, ret, size, gfpflags);
3277 	return ret;
3278 }
3279 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3280 #endif
3281 
3282 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3283 {
3284 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3285 
3286 	trace_kmem_cache_alloc_node(_RET_IP_, ret, s,
3287 				    s->object_size, s->size, gfpflags, node);
3288 
3289 	return ret;
3290 }
3291 EXPORT_SYMBOL(kmem_cache_alloc_node);
3292 
3293 #ifdef CONFIG_TRACING
3294 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
3295 				    gfp_t gfpflags,
3296 				    int node, size_t size)
3297 {
3298 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
3299 
3300 	trace_kmalloc_node(_RET_IP_, ret, s,
3301 			   size, s->size, gfpflags, node);
3302 
3303 	ret = kasan_kmalloc(s, ret, size, gfpflags);
3304 	return ret;
3305 }
3306 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3307 #endif
3308 
3309 /*
3310  * Slow path handling. This may still be called frequently since objects
3311  * have a longer lifetime than the cpu slabs in most processing loads.
3312  *
3313  * So we still attempt to reduce cache line usage. Just take the slab
3314  * lock and free the item. If there is no additional partial slab
3315  * handling required then we can return immediately.
3316  */
3317 static void __slab_free(struct kmem_cache *s, struct slab *slab,
3318 			void *head, void *tail, int cnt,
3319 			unsigned long addr)
3320 
3321 {
3322 	void *prior;
3323 	int was_frozen;
3324 	struct slab new;
3325 	unsigned long counters;
3326 	struct kmem_cache_node *n = NULL;
3327 	unsigned long flags;
3328 
3329 	stat(s, FREE_SLOWPATH);
3330 
3331 	if (kfence_free(head))
3332 		return;
3333 
3334 	if (kmem_cache_debug(s) &&
3335 	    !free_debug_processing(s, slab, head, tail, cnt, addr))
3336 		return;
3337 
3338 	do {
3339 		if (unlikely(n)) {
3340 			spin_unlock_irqrestore(&n->list_lock, flags);
3341 			n = NULL;
3342 		}
3343 		prior = slab->freelist;
3344 		counters = slab->counters;
3345 		set_freepointer(s, tail, prior);
3346 		new.counters = counters;
3347 		was_frozen = new.frozen;
3348 		new.inuse -= cnt;
3349 		if ((!new.inuse || !prior) && !was_frozen) {
3350 
3351 			if (kmem_cache_has_cpu_partial(s) && !prior) {
3352 
3353 				/*
3354 				 * Slab was on no list before and will be
3355 				 * partially empty
3356 				 * We can defer the list move and instead
3357 				 * freeze it.
3358 				 */
3359 				new.frozen = 1;
3360 
3361 			} else { /* Needs to be taken off a list */
3362 
3363 				n = get_node(s, slab_nid(slab));
3364 				/*
3365 				 * Speculatively acquire the list_lock.
3366 				 * If the cmpxchg does not succeed then we may
3367 				 * drop the list_lock without any processing.
3368 				 *
3369 				 * Otherwise the list_lock will synchronize with
3370 				 * other processors updating the list of slabs.
3371 				 */
3372 				spin_lock_irqsave(&n->list_lock, flags);
3373 
3374 			}
3375 		}
3376 
3377 	} while (!cmpxchg_double_slab(s, slab,
3378 		prior, counters,
3379 		head, new.counters,
3380 		"__slab_free"));
3381 
3382 	if (likely(!n)) {
3383 
3384 		if (likely(was_frozen)) {
3385 			/*
3386 			 * The list lock was not taken therefore no list
3387 			 * activity can be necessary.
3388 			 */
3389 			stat(s, FREE_FROZEN);
3390 		} else if (new.frozen) {
3391 			/*
3392 			 * If we just froze the slab then put it onto the
3393 			 * per cpu partial list.
3394 			 */
3395 			put_cpu_partial(s, slab, 1);
3396 			stat(s, CPU_PARTIAL_FREE);
3397 		}
3398 
3399 		return;
3400 	}
3401 
3402 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3403 		goto slab_empty;
3404 
3405 	/*
3406 	 * Objects left in the slab. If it was not on the partial list before
3407 	 * then add it.
3408 	 */
3409 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3410 		remove_full(s, n, slab);
3411 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
3412 		stat(s, FREE_ADD_PARTIAL);
3413 	}
3414 	spin_unlock_irqrestore(&n->list_lock, flags);
3415 	return;
3416 
3417 slab_empty:
3418 	if (prior) {
3419 		/*
3420 		 * Slab on the partial list.
3421 		 */
3422 		remove_partial(n, slab);
3423 		stat(s, FREE_REMOVE_PARTIAL);
3424 	} else {
3425 		/* Slab must be on the full list */
3426 		remove_full(s, n, slab);
3427 	}
3428 
3429 	spin_unlock_irqrestore(&n->list_lock, flags);
3430 	stat(s, FREE_SLAB);
3431 	discard_slab(s, slab);
3432 }
3433 
3434 /*
3435  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3436  * can perform fastpath freeing without additional function calls.
3437  *
3438  * The fastpath is only possible if we are freeing to the current cpu slab
3439  * of this processor. This typically the case if we have just allocated
3440  * the item before.
3441  *
3442  * If fastpath is not possible then fall back to __slab_free where we deal
3443  * with all sorts of special processing.
3444  *
3445  * Bulk free of a freelist with several objects (all pointing to the
3446  * same slab) possible by specifying head and tail ptr, plus objects
3447  * count (cnt). Bulk free indicated by tail pointer being set.
3448  */
3449 static __always_inline void do_slab_free(struct kmem_cache *s,
3450 				struct slab *slab, void *head, void *tail,
3451 				int cnt, unsigned long addr)
3452 {
3453 	void *tail_obj = tail ? : head;
3454 	struct kmem_cache_cpu *c;
3455 	unsigned long tid;
3456 
3457 redo:
3458 	/*
3459 	 * Determine the currently cpus per cpu slab.
3460 	 * The cpu may change afterward. However that does not matter since
3461 	 * data is retrieved via this pointer. If we are on the same cpu
3462 	 * during the cmpxchg then the free will succeed.
3463 	 */
3464 	c = raw_cpu_ptr(s->cpu_slab);
3465 	tid = READ_ONCE(c->tid);
3466 
3467 	/* Same with comment on barrier() in slab_alloc_node() */
3468 	barrier();
3469 
3470 	if (likely(slab == c->slab)) {
3471 #ifndef CONFIG_PREEMPT_RT
3472 		void **freelist = READ_ONCE(c->freelist);
3473 
3474 		set_freepointer(s, tail_obj, freelist);
3475 
3476 		if (unlikely(!this_cpu_cmpxchg_double(
3477 				s->cpu_slab->freelist, s->cpu_slab->tid,
3478 				freelist, tid,
3479 				head, next_tid(tid)))) {
3480 
3481 			note_cmpxchg_failure("slab_free", s, tid);
3482 			goto redo;
3483 		}
3484 #else /* CONFIG_PREEMPT_RT */
3485 		/*
3486 		 * We cannot use the lockless fastpath on PREEMPT_RT because if
3487 		 * a slowpath has taken the local_lock_irqsave(), it is not
3488 		 * protected against a fast path operation in an irq handler. So
3489 		 * we need to take the local_lock. We shouldn't simply defer to
3490 		 * __slab_free() as that wouldn't use the cpu freelist at all.
3491 		 */
3492 		void **freelist;
3493 
3494 		local_lock(&s->cpu_slab->lock);
3495 		c = this_cpu_ptr(s->cpu_slab);
3496 		if (unlikely(slab != c->slab)) {
3497 			local_unlock(&s->cpu_slab->lock);
3498 			goto redo;
3499 		}
3500 		tid = c->tid;
3501 		freelist = c->freelist;
3502 
3503 		set_freepointer(s, tail_obj, freelist);
3504 		c->freelist = head;
3505 		c->tid = next_tid(tid);
3506 
3507 		local_unlock(&s->cpu_slab->lock);
3508 #endif
3509 		stat(s, FREE_FASTPATH);
3510 	} else
3511 		__slab_free(s, slab, head, tail_obj, cnt, addr);
3512 
3513 }
3514 
3515 static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3516 				      void *head, void *tail, void **p, int cnt,
3517 				      unsigned long addr)
3518 {
3519 	memcg_slab_free_hook(s, slab, p, cnt);
3520 	/*
3521 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3522 	 * to remove objects, whose reuse must be delayed.
3523 	 */
3524 	if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3525 		do_slab_free(s, slab, head, tail, cnt, addr);
3526 }
3527 
3528 #ifdef CONFIG_KASAN_GENERIC
3529 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3530 {
3531 	do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3532 }
3533 #endif
3534 
3535 void kmem_cache_free(struct kmem_cache *s, void *x)
3536 {
3537 	s = cache_from_obj(s, x);
3538 	if (!s)
3539 		return;
3540 	trace_kmem_cache_free(_RET_IP_, x, s->name);
3541 	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
3542 }
3543 EXPORT_SYMBOL(kmem_cache_free);
3544 
3545 struct detached_freelist {
3546 	struct slab *slab;
3547 	void *tail;
3548 	void *freelist;
3549 	int cnt;
3550 	struct kmem_cache *s;
3551 };
3552 
3553 static inline void free_large_kmalloc(struct folio *folio, void *object)
3554 {
3555 	unsigned int order = folio_order(folio);
3556 
3557 	if (WARN_ON_ONCE(order == 0))
3558 		pr_warn_once("object pointer: 0x%p\n", object);
3559 
3560 	kfree_hook(object);
3561 	mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B,
3562 			      -(PAGE_SIZE << order));
3563 	__free_pages(folio_page(folio, 0), order);
3564 }
3565 
3566 /*
3567  * This function progressively scans the array with free objects (with
3568  * a limited look ahead) and extract objects belonging to the same
3569  * slab.  It builds a detached freelist directly within the given
3570  * slab/objects.  This can happen without any need for
3571  * synchronization, because the objects are owned by running process.
3572  * The freelist is build up as a single linked list in the objects.
3573  * The idea is, that this detached freelist can then be bulk
3574  * transferred to the real freelist(s), but only requiring a single
3575  * synchronization primitive.  Look ahead in the array is limited due
3576  * to performance reasons.
3577  */
3578 static inline
3579 int build_detached_freelist(struct kmem_cache *s, size_t size,
3580 			    void **p, struct detached_freelist *df)
3581 {
3582 	int lookahead = 3;
3583 	void *object;
3584 	struct folio *folio;
3585 	size_t same;
3586 
3587 	object = p[--size];
3588 	folio = virt_to_folio(object);
3589 	if (!s) {
3590 		/* Handle kalloc'ed objects */
3591 		if (unlikely(!folio_test_slab(folio))) {
3592 			free_large_kmalloc(folio, object);
3593 			df->slab = NULL;
3594 			return size;
3595 		}
3596 		/* Derive kmem_cache from object */
3597 		df->slab = folio_slab(folio);
3598 		df->s = df->slab->slab_cache;
3599 	} else {
3600 		df->slab = folio_slab(folio);
3601 		df->s = cache_from_obj(s, object); /* Support for memcg */
3602 	}
3603 
3604 	/* Start new detached freelist */
3605 	df->tail = object;
3606 	df->freelist = object;
3607 	df->cnt = 1;
3608 
3609 	if (is_kfence_address(object))
3610 		return size;
3611 
3612 	set_freepointer(df->s, object, NULL);
3613 
3614 	same = size;
3615 	while (size) {
3616 		object = p[--size];
3617 		/* df->slab is always set at this point */
3618 		if (df->slab == virt_to_slab(object)) {
3619 			/* Opportunity build freelist */
3620 			set_freepointer(df->s, object, df->freelist);
3621 			df->freelist = object;
3622 			df->cnt++;
3623 			same--;
3624 			if (size != same)
3625 				swap(p[size], p[same]);
3626 			continue;
3627 		}
3628 
3629 		/* Limit look ahead search */
3630 		if (!--lookahead)
3631 			break;
3632 	}
3633 
3634 	return same;
3635 }
3636 
3637 /* Note that interrupts must be enabled when calling this function. */
3638 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3639 {
3640 	if (!size)
3641 		return;
3642 
3643 	do {
3644 		struct detached_freelist df;
3645 
3646 		size = build_detached_freelist(s, size, p, &df);
3647 		if (!df.slab)
3648 			continue;
3649 
3650 		slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3651 			  _RET_IP_);
3652 	} while (likely(size));
3653 }
3654 EXPORT_SYMBOL(kmem_cache_free_bulk);
3655 
3656 /* Note that interrupts must be enabled when calling this function. */
3657 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3658 			  void **p)
3659 {
3660 	struct kmem_cache_cpu *c;
3661 	int i;
3662 	struct obj_cgroup *objcg = NULL;
3663 
3664 	/* memcg and kmem_cache debug support */
3665 	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
3666 	if (unlikely(!s))
3667 		return false;
3668 	/*
3669 	 * Drain objects in the per cpu slab, while disabling local
3670 	 * IRQs, which protects against PREEMPT and interrupts
3671 	 * handlers invoking normal fastpath.
3672 	 */
3673 	c = slub_get_cpu_ptr(s->cpu_slab);
3674 	local_lock_irq(&s->cpu_slab->lock);
3675 
3676 	for (i = 0; i < size; i++) {
3677 		void *object = kfence_alloc(s, s->object_size, flags);
3678 
3679 		if (unlikely(object)) {
3680 			p[i] = object;
3681 			continue;
3682 		}
3683 
3684 		object = c->freelist;
3685 		if (unlikely(!object)) {
3686 			/*
3687 			 * We may have removed an object from c->freelist using
3688 			 * the fastpath in the previous iteration; in that case,
3689 			 * c->tid has not been bumped yet.
3690 			 * Since ___slab_alloc() may reenable interrupts while
3691 			 * allocating memory, we should bump c->tid now.
3692 			 */
3693 			c->tid = next_tid(c->tid);
3694 
3695 			local_unlock_irq(&s->cpu_slab->lock);
3696 
3697 			/*
3698 			 * Invoking slow path likely have side-effect
3699 			 * of re-populating per CPU c->freelist
3700 			 */
3701 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3702 					    _RET_IP_, c);
3703 			if (unlikely(!p[i]))
3704 				goto error;
3705 
3706 			c = this_cpu_ptr(s->cpu_slab);
3707 			maybe_wipe_obj_freeptr(s, p[i]);
3708 
3709 			local_lock_irq(&s->cpu_slab->lock);
3710 
3711 			continue; /* goto for-loop */
3712 		}
3713 		c->freelist = get_freepointer(s, object);
3714 		p[i] = object;
3715 		maybe_wipe_obj_freeptr(s, p[i]);
3716 	}
3717 	c->tid = next_tid(c->tid);
3718 	local_unlock_irq(&s->cpu_slab->lock);
3719 	slub_put_cpu_ptr(s->cpu_slab);
3720 
3721 	/*
3722 	 * memcg and kmem_cache debug support and memory initialization.
3723 	 * Done outside of the IRQ disabled fastpath loop.
3724 	 */
3725 	slab_post_alloc_hook(s, objcg, flags, size, p,
3726 				slab_want_init_on_alloc(flags, s));
3727 	return i;
3728 error:
3729 	slub_put_cpu_ptr(s->cpu_slab);
3730 	slab_post_alloc_hook(s, objcg, flags, i, p, false);
3731 	kmem_cache_free_bulk(s, i, p);
3732 	return 0;
3733 }
3734 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3735 
3736 
3737 /*
3738  * Object placement in a slab is made very easy because we always start at
3739  * offset 0. If we tune the size of the object to the alignment then we can
3740  * get the required alignment by putting one properly sized object after
3741  * another.
3742  *
3743  * Notice that the allocation order determines the sizes of the per cpu
3744  * caches. Each processor has always one slab available for allocations.
3745  * Increasing the allocation order reduces the number of times that slabs
3746  * must be moved on and off the partial lists and is therefore a factor in
3747  * locking overhead.
3748  */
3749 
3750 /*
3751  * Minimum / Maximum order of slab pages. This influences locking overhead
3752  * and slab fragmentation. A higher order reduces the number of partial slabs
3753  * and increases the number of allocations possible without having to
3754  * take the list_lock.
3755  */
3756 static unsigned int slub_min_order;
3757 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3758 static unsigned int slub_min_objects;
3759 
3760 /*
3761  * Calculate the order of allocation given an slab object size.
3762  *
3763  * The order of allocation has significant impact on performance and other
3764  * system components. Generally order 0 allocations should be preferred since
3765  * order 0 does not cause fragmentation in the page allocator. Larger objects
3766  * be problematic to put into order 0 slabs because there may be too much
3767  * unused space left. We go to a higher order if more than 1/16th of the slab
3768  * would be wasted.
3769  *
3770  * In order to reach satisfactory performance we must ensure that a minimum
3771  * number of objects is in one slab. Otherwise we may generate too much
3772  * activity on the partial lists which requires taking the list_lock. This is
3773  * less a concern for large slabs though which are rarely used.
3774  *
3775  * slub_max_order specifies the order where we begin to stop considering the
3776  * number of objects in a slab as critical. If we reach slub_max_order then
3777  * we try to keep the page order as low as possible. So we accept more waste
3778  * of space in favor of a small page order.
3779  *
3780  * Higher order allocations also allow the placement of more objects in a
3781  * slab and thereby reduce object handling overhead. If the user has
3782  * requested a higher minimum order then we start with that one instead of
3783  * the smallest order which will fit the object.
3784  */
3785 static inline unsigned int calc_slab_order(unsigned int size,
3786 		unsigned int min_objects, unsigned int max_order,
3787 		unsigned int fract_leftover)
3788 {
3789 	unsigned int min_order = slub_min_order;
3790 	unsigned int order;
3791 
3792 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3793 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3794 
3795 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3796 			order <= max_order; order++) {
3797 
3798 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3799 		unsigned int rem;
3800 
3801 		rem = slab_size % size;
3802 
3803 		if (rem <= slab_size / fract_leftover)
3804 			break;
3805 	}
3806 
3807 	return order;
3808 }
3809 
3810 static inline int calculate_order(unsigned int size)
3811 {
3812 	unsigned int order;
3813 	unsigned int min_objects;
3814 	unsigned int max_objects;
3815 	unsigned int nr_cpus;
3816 
3817 	/*
3818 	 * Attempt to find best configuration for a slab. This
3819 	 * works by first attempting to generate a layout with
3820 	 * the best configuration and backing off gradually.
3821 	 *
3822 	 * First we increase the acceptable waste in a slab. Then
3823 	 * we reduce the minimum objects required in a slab.
3824 	 */
3825 	min_objects = slub_min_objects;
3826 	if (!min_objects) {
3827 		/*
3828 		 * Some architectures will only update present cpus when
3829 		 * onlining them, so don't trust the number if it's just 1. But
3830 		 * we also don't want to use nr_cpu_ids always, as on some other
3831 		 * architectures, there can be many possible cpus, but never
3832 		 * onlined. Here we compromise between trying to avoid too high
3833 		 * order on systems that appear larger than they are, and too
3834 		 * low order on systems that appear smaller than they are.
3835 		 */
3836 		nr_cpus = num_present_cpus();
3837 		if (nr_cpus <= 1)
3838 			nr_cpus = nr_cpu_ids;
3839 		min_objects = 4 * (fls(nr_cpus) + 1);
3840 	}
3841 	max_objects = order_objects(slub_max_order, size);
3842 	min_objects = min(min_objects, max_objects);
3843 
3844 	while (min_objects > 1) {
3845 		unsigned int fraction;
3846 
3847 		fraction = 16;
3848 		while (fraction >= 4) {
3849 			order = calc_slab_order(size, min_objects,
3850 					slub_max_order, fraction);
3851 			if (order <= slub_max_order)
3852 				return order;
3853 			fraction /= 2;
3854 		}
3855 		min_objects--;
3856 	}
3857 
3858 	/*
3859 	 * We were unable to place multiple objects in a slab. Now
3860 	 * lets see if we can place a single object there.
3861 	 */
3862 	order = calc_slab_order(size, 1, slub_max_order, 1);
3863 	if (order <= slub_max_order)
3864 		return order;
3865 
3866 	/*
3867 	 * Doh this slab cannot be placed using slub_max_order.
3868 	 */
3869 	order = calc_slab_order(size, 1, MAX_ORDER, 1);
3870 	if (order < MAX_ORDER)
3871 		return order;
3872 	return -ENOSYS;
3873 }
3874 
3875 static void
3876 init_kmem_cache_node(struct kmem_cache_node *n)
3877 {
3878 	n->nr_partial = 0;
3879 	spin_lock_init(&n->list_lock);
3880 	INIT_LIST_HEAD(&n->partial);
3881 #ifdef CONFIG_SLUB_DEBUG
3882 	atomic_long_set(&n->nr_slabs, 0);
3883 	atomic_long_set(&n->total_objects, 0);
3884 	INIT_LIST_HEAD(&n->full);
3885 #endif
3886 }
3887 
3888 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3889 {
3890 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3891 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3892 
3893 	/*
3894 	 * Must align to double word boundary for the double cmpxchg
3895 	 * instructions to work; see __pcpu_double_call_return_bool().
3896 	 */
3897 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3898 				     2 * sizeof(void *));
3899 
3900 	if (!s->cpu_slab)
3901 		return 0;
3902 
3903 	init_kmem_cache_cpus(s);
3904 
3905 	return 1;
3906 }
3907 
3908 static struct kmem_cache *kmem_cache_node;
3909 
3910 /*
3911  * No kmalloc_node yet so do it by hand. We know that this is the first
3912  * slab on the node for this slabcache. There are no concurrent accesses
3913  * possible.
3914  *
3915  * Note that this function only works on the kmem_cache_node
3916  * when allocating for the kmem_cache_node. This is used for bootstrapping
3917  * memory on a fresh node that has no slab structures yet.
3918  */
3919 static void early_kmem_cache_node_alloc(int node)
3920 {
3921 	struct slab *slab;
3922 	struct kmem_cache_node *n;
3923 
3924 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3925 
3926 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3927 
3928 	BUG_ON(!slab);
3929 	if (slab_nid(slab) != node) {
3930 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3931 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3932 	}
3933 
3934 	n = slab->freelist;
3935 	BUG_ON(!n);
3936 #ifdef CONFIG_SLUB_DEBUG
3937 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3938 	init_tracking(kmem_cache_node, n);
3939 #endif
3940 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
3941 	slab->freelist = get_freepointer(kmem_cache_node, n);
3942 	slab->inuse = 1;
3943 	slab->frozen = 0;
3944 	kmem_cache_node->node[node] = n;
3945 	init_kmem_cache_node(n);
3946 	inc_slabs_node(kmem_cache_node, node, slab->objects);
3947 
3948 	/*
3949 	 * No locks need to be taken here as it has just been
3950 	 * initialized and there is no concurrent access.
3951 	 */
3952 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
3953 }
3954 
3955 static void free_kmem_cache_nodes(struct kmem_cache *s)
3956 {
3957 	int node;
3958 	struct kmem_cache_node *n;
3959 
3960 	for_each_kmem_cache_node(s, node, n) {
3961 		s->node[node] = NULL;
3962 		kmem_cache_free(kmem_cache_node, n);
3963 	}
3964 }
3965 
3966 void __kmem_cache_release(struct kmem_cache *s)
3967 {
3968 	cache_random_seq_destroy(s);
3969 	free_percpu(s->cpu_slab);
3970 	free_kmem_cache_nodes(s);
3971 }
3972 
3973 static int init_kmem_cache_nodes(struct kmem_cache *s)
3974 {
3975 	int node;
3976 
3977 	for_each_node_mask(node, slab_nodes) {
3978 		struct kmem_cache_node *n;
3979 
3980 		if (slab_state == DOWN) {
3981 			early_kmem_cache_node_alloc(node);
3982 			continue;
3983 		}
3984 		n = kmem_cache_alloc_node(kmem_cache_node,
3985 						GFP_KERNEL, node);
3986 
3987 		if (!n) {
3988 			free_kmem_cache_nodes(s);
3989 			return 0;
3990 		}
3991 
3992 		init_kmem_cache_node(n);
3993 		s->node[node] = n;
3994 	}
3995 	return 1;
3996 }
3997 
3998 static void set_cpu_partial(struct kmem_cache *s)
3999 {
4000 #ifdef CONFIG_SLUB_CPU_PARTIAL
4001 	unsigned int nr_objects;
4002 
4003 	/*
4004 	 * cpu_partial determined the maximum number of objects kept in the
4005 	 * per cpu partial lists of a processor.
4006 	 *
4007 	 * Per cpu partial lists mainly contain slabs that just have one
4008 	 * object freed. If they are used for allocation then they can be
4009 	 * filled up again with minimal effort. The slab will never hit the
4010 	 * per node partial lists and therefore no locking will be required.
4011 	 *
4012 	 * For backwards compatibility reasons, this is determined as number
4013 	 * of objects, even though we now limit maximum number of pages, see
4014 	 * slub_set_cpu_partial()
4015 	 */
4016 	if (!kmem_cache_has_cpu_partial(s))
4017 		nr_objects = 0;
4018 	else if (s->size >= PAGE_SIZE)
4019 		nr_objects = 6;
4020 	else if (s->size >= 1024)
4021 		nr_objects = 24;
4022 	else if (s->size >= 256)
4023 		nr_objects = 52;
4024 	else
4025 		nr_objects = 120;
4026 
4027 	slub_set_cpu_partial(s, nr_objects);
4028 #endif
4029 }
4030 
4031 /*
4032  * calculate_sizes() determines the order and the distribution of data within
4033  * a slab object.
4034  */
4035 static int calculate_sizes(struct kmem_cache *s)
4036 {
4037 	slab_flags_t flags = s->flags;
4038 	unsigned int size = s->object_size;
4039 	unsigned int order;
4040 
4041 	/*
4042 	 * Round up object size to the next word boundary. We can only
4043 	 * place the free pointer at word boundaries and this determines
4044 	 * the possible location of the free pointer.
4045 	 */
4046 	size = ALIGN(size, sizeof(void *));
4047 
4048 #ifdef CONFIG_SLUB_DEBUG
4049 	/*
4050 	 * Determine if we can poison the object itself. If the user of
4051 	 * the slab may touch the object after free or before allocation
4052 	 * then we should never poison the object itself.
4053 	 */
4054 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4055 			!s->ctor)
4056 		s->flags |= __OBJECT_POISON;
4057 	else
4058 		s->flags &= ~__OBJECT_POISON;
4059 
4060 
4061 	/*
4062 	 * If we are Redzoning then check if there is some space between the
4063 	 * end of the object and the free pointer. If not then add an
4064 	 * additional word to have some bytes to store Redzone information.
4065 	 */
4066 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4067 		size += sizeof(void *);
4068 #endif
4069 
4070 	/*
4071 	 * With that we have determined the number of bytes in actual use
4072 	 * by the object and redzoning.
4073 	 */
4074 	s->inuse = size;
4075 
4076 	if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4077 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4078 	    s->ctor) {
4079 		/*
4080 		 * Relocate free pointer after the object if it is not
4081 		 * permitted to overwrite the first word of the object on
4082 		 * kmem_cache_free.
4083 		 *
4084 		 * This is the case if we do RCU, have a constructor or
4085 		 * destructor, are poisoning the objects, or are
4086 		 * redzoning an object smaller than sizeof(void *).
4087 		 *
4088 		 * The assumption that s->offset >= s->inuse means free
4089 		 * pointer is outside of the object is used in the
4090 		 * freeptr_outside_object() function. If that is no
4091 		 * longer true, the function needs to be modified.
4092 		 */
4093 		s->offset = size;
4094 		size += sizeof(void *);
4095 	} else {
4096 		/*
4097 		 * Store freelist pointer near middle of object to keep
4098 		 * it away from the edges of the object to avoid small
4099 		 * sized over/underflows from neighboring allocations.
4100 		 */
4101 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4102 	}
4103 
4104 #ifdef CONFIG_SLUB_DEBUG
4105 	if (flags & SLAB_STORE_USER)
4106 		/*
4107 		 * Need to store information about allocs and frees after
4108 		 * the object.
4109 		 */
4110 		size += 2 * sizeof(struct track);
4111 #endif
4112 
4113 	kasan_cache_create(s, &size, &s->flags);
4114 #ifdef CONFIG_SLUB_DEBUG
4115 	if (flags & SLAB_RED_ZONE) {
4116 		/*
4117 		 * Add some empty padding so that we can catch
4118 		 * overwrites from earlier objects rather than let
4119 		 * tracking information or the free pointer be
4120 		 * corrupted if a user writes before the start
4121 		 * of the object.
4122 		 */
4123 		size += sizeof(void *);
4124 
4125 		s->red_left_pad = sizeof(void *);
4126 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4127 		size += s->red_left_pad;
4128 	}
4129 #endif
4130 
4131 	/*
4132 	 * SLUB stores one object immediately after another beginning from
4133 	 * offset 0. In order to align the objects we have to simply size
4134 	 * each object to conform to the alignment.
4135 	 */
4136 	size = ALIGN(size, s->align);
4137 	s->size = size;
4138 	s->reciprocal_size = reciprocal_value(size);
4139 	order = calculate_order(size);
4140 
4141 	if ((int)order < 0)
4142 		return 0;
4143 
4144 	s->allocflags = 0;
4145 	if (order)
4146 		s->allocflags |= __GFP_COMP;
4147 
4148 	if (s->flags & SLAB_CACHE_DMA)
4149 		s->allocflags |= GFP_DMA;
4150 
4151 	if (s->flags & SLAB_CACHE_DMA32)
4152 		s->allocflags |= GFP_DMA32;
4153 
4154 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4155 		s->allocflags |= __GFP_RECLAIMABLE;
4156 
4157 	/*
4158 	 * Determine the number of objects per slab
4159 	 */
4160 	s->oo = oo_make(order, size);
4161 	s->min = oo_make(get_order(size), size);
4162 
4163 	return !!oo_objects(s->oo);
4164 }
4165 
4166 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4167 {
4168 	s->flags = kmem_cache_flags(s->size, flags, s->name);
4169 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4170 	s->random = get_random_long();
4171 #endif
4172 
4173 	if (!calculate_sizes(s))
4174 		goto error;
4175 	if (disable_higher_order_debug) {
4176 		/*
4177 		 * Disable debugging flags that store metadata if the min slab
4178 		 * order increased.
4179 		 */
4180 		if (get_order(s->size) > get_order(s->object_size)) {
4181 			s->flags &= ~DEBUG_METADATA_FLAGS;
4182 			s->offset = 0;
4183 			if (!calculate_sizes(s))
4184 				goto error;
4185 		}
4186 	}
4187 
4188 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4189     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
4190 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
4191 		/* Enable fast mode */
4192 		s->flags |= __CMPXCHG_DOUBLE;
4193 #endif
4194 
4195 	/*
4196 	 * The larger the object size is, the more slabs we want on the partial
4197 	 * list to avoid pounding the page allocator excessively.
4198 	 */
4199 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4200 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4201 
4202 	set_cpu_partial(s);
4203 
4204 #ifdef CONFIG_NUMA
4205 	s->remote_node_defrag_ratio = 1000;
4206 #endif
4207 
4208 	/* Initialize the pre-computed randomized freelist if slab is up */
4209 	if (slab_state >= UP) {
4210 		if (init_cache_random_seq(s))
4211 			goto error;
4212 	}
4213 
4214 	if (!init_kmem_cache_nodes(s))
4215 		goto error;
4216 
4217 	if (alloc_kmem_cache_cpus(s))
4218 		return 0;
4219 
4220 error:
4221 	__kmem_cache_release(s);
4222 	return -EINVAL;
4223 }
4224 
4225 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4226 			      const char *text)
4227 {
4228 #ifdef CONFIG_SLUB_DEBUG
4229 	void *addr = slab_address(slab);
4230 	unsigned long flags;
4231 	unsigned long *map;
4232 	void *p;
4233 
4234 	slab_err(s, slab, text, s->name);
4235 	slab_lock(slab, &flags);
4236 
4237 	map = get_map(s, slab);
4238 	for_each_object(p, s, addr, slab->objects) {
4239 
4240 		if (!test_bit(__obj_to_index(s, addr, p), map)) {
4241 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4242 			print_tracking(s, p);
4243 		}
4244 	}
4245 	put_map(map);
4246 	slab_unlock(slab, &flags);
4247 #endif
4248 }
4249 
4250 /*
4251  * Attempt to free all partial slabs on a node.
4252  * This is called from __kmem_cache_shutdown(). We must take list_lock
4253  * because sysfs file might still access partial list after the shutdowning.
4254  */
4255 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4256 {
4257 	LIST_HEAD(discard);
4258 	struct slab *slab, *h;
4259 
4260 	BUG_ON(irqs_disabled());
4261 	spin_lock_irq(&n->list_lock);
4262 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4263 		if (!slab->inuse) {
4264 			remove_partial(n, slab);
4265 			list_add(&slab->slab_list, &discard);
4266 		} else {
4267 			list_slab_objects(s, slab,
4268 			  "Objects remaining in %s on __kmem_cache_shutdown()");
4269 		}
4270 	}
4271 	spin_unlock_irq(&n->list_lock);
4272 
4273 	list_for_each_entry_safe(slab, h, &discard, slab_list)
4274 		discard_slab(s, slab);
4275 }
4276 
4277 bool __kmem_cache_empty(struct kmem_cache *s)
4278 {
4279 	int node;
4280 	struct kmem_cache_node *n;
4281 
4282 	for_each_kmem_cache_node(s, node, n)
4283 		if (n->nr_partial || slabs_node(s, node))
4284 			return false;
4285 	return true;
4286 }
4287 
4288 /*
4289  * Release all resources used by a slab cache.
4290  */
4291 int __kmem_cache_shutdown(struct kmem_cache *s)
4292 {
4293 	int node;
4294 	struct kmem_cache_node *n;
4295 
4296 	flush_all_cpus_locked(s);
4297 	/* Attempt to free all objects */
4298 	for_each_kmem_cache_node(s, node, n) {
4299 		free_partial(s, n);
4300 		if (n->nr_partial || slabs_node(s, node))
4301 			return 1;
4302 	}
4303 	return 0;
4304 }
4305 
4306 #ifdef CONFIG_PRINTK
4307 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4308 {
4309 	void *base;
4310 	int __maybe_unused i;
4311 	unsigned int objnr;
4312 	void *objp;
4313 	void *objp0;
4314 	struct kmem_cache *s = slab->slab_cache;
4315 	struct track __maybe_unused *trackp;
4316 
4317 	kpp->kp_ptr = object;
4318 	kpp->kp_slab = slab;
4319 	kpp->kp_slab_cache = s;
4320 	base = slab_address(slab);
4321 	objp0 = kasan_reset_tag(object);
4322 #ifdef CONFIG_SLUB_DEBUG
4323 	objp = restore_red_left(s, objp0);
4324 #else
4325 	objp = objp0;
4326 #endif
4327 	objnr = obj_to_index(s, slab, objp);
4328 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4329 	objp = base + s->size * objnr;
4330 	kpp->kp_objp = objp;
4331 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4332 			 || (objp - base) % s->size) ||
4333 	    !(s->flags & SLAB_STORE_USER))
4334 		return;
4335 #ifdef CONFIG_SLUB_DEBUG
4336 	objp = fixup_red_left(s, objp);
4337 	trackp = get_track(s, objp, TRACK_ALLOC);
4338 	kpp->kp_ret = (void *)trackp->addr;
4339 #ifdef CONFIG_STACKDEPOT
4340 	{
4341 		depot_stack_handle_t handle;
4342 		unsigned long *entries;
4343 		unsigned int nr_entries;
4344 
4345 		handle = READ_ONCE(trackp->handle);
4346 		if (handle) {
4347 			nr_entries = stack_depot_fetch(handle, &entries);
4348 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4349 				kpp->kp_stack[i] = (void *)entries[i];
4350 		}
4351 
4352 		trackp = get_track(s, objp, TRACK_FREE);
4353 		handle = READ_ONCE(trackp->handle);
4354 		if (handle) {
4355 			nr_entries = stack_depot_fetch(handle, &entries);
4356 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4357 				kpp->kp_free_stack[i] = (void *)entries[i];
4358 		}
4359 	}
4360 #endif
4361 #endif
4362 }
4363 #endif
4364 
4365 /********************************************************************
4366  *		Kmalloc subsystem
4367  *******************************************************************/
4368 
4369 static int __init setup_slub_min_order(char *str)
4370 {
4371 	get_option(&str, (int *)&slub_min_order);
4372 
4373 	return 1;
4374 }
4375 
4376 __setup("slub_min_order=", setup_slub_min_order);
4377 
4378 static int __init setup_slub_max_order(char *str)
4379 {
4380 	get_option(&str, (int *)&slub_max_order);
4381 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4382 
4383 	return 1;
4384 }
4385 
4386 __setup("slub_max_order=", setup_slub_max_order);
4387 
4388 static int __init setup_slub_min_objects(char *str)
4389 {
4390 	get_option(&str, (int *)&slub_min_objects);
4391 
4392 	return 1;
4393 }
4394 
4395 __setup("slub_min_objects=", setup_slub_min_objects);
4396 
4397 static __always_inline
4398 void *__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
4399 {
4400 	struct kmem_cache *s;
4401 	void *ret;
4402 
4403 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4404 		ret = kmalloc_large_node(size, flags, node);
4405 
4406 		trace_kmalloc_node(caller, ret, NULL,
4407 				   size, PAGE_SIZE << get_order(size),
4408 				   flags, node);
4409 
4410 		return ret;
4411 	}
4412 
4413 	s = kmalloc_slab(size, flags);
4414 
4415 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4416 		return s;
4417 
4418 	ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4419 
4420 	trace_kmalloc_node(caller, ret, s, size, s->size, flags, node);
4421 
4422 	ret = kasan_kmalloc(s, ret, size, flags);
4423 
4424 	return ret;
4425 }
4426 
4427 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4428 {
4429 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
4430 }
4431 EXPORT_SYMBOL(__kmalloc_node);
4432 
4433 void *__kmalloc(size_t size, gfp_t flags)
4434 {
4435 	return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
4436 }
4437 EXPORT_SYMBOL(__kmalloc);
4438 
4439 
4440 #ifdef CONFIG_HARDENED_USERCOPY
4441 /*
4442  * Rejects incorrectly sized objects and objects that are to be copied
4443  * to/from userspace but do not fall entirely within the containing slab
4444  * cache's usercopy region.
4445  *
4446  * Returns NULL if check passes, otherwise const char * to name of cache
4447  * to indicate an error.
4448  */
4449 void __check_heap_object(const void *ptr, unsigned long n,
4450 			 const struct slab *slab, bool to_user)
4451 {
4452 	struct kmem_cache *s;
4453 	unsigned int offset;
4454 	bool is_kfence = is_kfence_address(ptr);
4455 
4456 	ptr = kasan_reset_tag(ptr);
4457 
4458 	/* Find object and usable object size. */
4459 	s = slab->slab_cache;
4460 
4461 	/* Reject impossible pointers. */
4462 	if (ptr < slab_address(slab))
4463 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4464 			       to_user, 0, n);
4465 
4466 	/* Find offset within object. */
4467 	if (is_kfence)
4468 		offset = ptr - kfence_object_start(ptr);
4469 	else
4470 		offset = (ptr - slab_address(slab)) % s->size;
4471 
4472 	/* Adjust for redzone and reject if within the redzone. */
4473 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4474 		if (offset < s->red_left_pad)
4475 			usercopy_abort("SLUB object in left red zone",
4476 				       s->name, to_user, offset, n);
4477 		offset -= s->red_left_pad;
4478 	}
4479 
4480 	/* Allow address range falling entirely within usercopy region. */
4481 	if (offset >= s->useroffset &&
4482 	    offset - s->useroffset <= s->usersize &&
4483 	    n <= s->useroffset - offset + s->usersize)
4484 		return;
4485 
4486 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4487 }
4488 #endif /* CONFIG_HARDENED_USERCOPY */
4489 
4490 size_t __ksize(const void *object)
4491 {
4492 	struct folio *folio;
4493 
4494 	if (unlikely(object == ZERO_SIZE_PTR))
4495 		return 0;
4496 
4497 	folio = virt_to_folio(object);
4498 
4499 	if (unlikely(!folio_test_slab(folio)))
4500 		return folio_size(folio);
4501 
4502 	return slab_ksize(folio_slab(folio)->slab_cache);
4503 }
4504 EXPORT_SYMBOL(__ksize);
4505 
4506 void kfree(const void *x)
4507 {
4508 	struct folio *folio;
4509 	struct slab *slab;
4510 	void *object = (void *)x;
4511 
4512 	trace_kfree(_RET_IP_, x);
4513 
4514 	if (unlikely(ZERO_OR_NULL_PTR(x)))
4515 		return;
4516 
4517 	folio = virt_to_folio(x);
4518 	if (unlikely(!folio_test_slab(folio))) {
4519 		free_large_kmalloc(folio, object);
4520 		return;
4521 	}
4522 	slab = folio_slab(folio);
4523 	slab_free(slab->slab_cache, slab, object, NULL, &object, 1, _RET_IP_);
4524 }
4525 EXPORT_SYMBOL(kfree);
4526 
4527 #define SHRINK_PROMOTE_MAX 32
4528 
4529 /*
4530  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4531  * up most to the head of the partial lists. New allocations will then
4532  * fill those up and thus they can be removed from the partial lists.
4533  *
4534  * The slabs with the least items are placed last. This results in them
4535  * being allocated from last increasing the chance that the last objects
4536  * are freed in them.
4537  */
4538 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4539 {
4540 	int node;
4541 	int i;
4542 	struct kmem_cache_node *n;
4543 	struct slab *slab;
4544 	struct slab *t;
4545 	struct list_head discard;
4546 	struct list_head promote[SHRINK_PROMOTE_MAX];
4547 	unsigned long flags;
4548 	int ret = 0;
4549 
4550 	for_each_kmem_cache_node(s, node, n) {
4551 		INIT_LIST_HEAD(&discard);
4552 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4553 			INIT_LIST_HEAD(promote + i);
4554 
4555 		spin_lock_irqsave(&n->list_lock, flags);
4556 
4557 		/*
4558 		 * Build lists of slabs to discard or promote.
4559 		 *
4560 		 * Note that concurrent frees may occur while we hold the
4561 		 * list_lock. slab->inuse here is the upper limit.
4562 		 */
4563 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4564 			int free = slab->objects - slab->inuse;
4565 
4566 			/* Do not reread slab->inuse */
4567 			barrier();
4568 
4569 			/* We do not keep full slabs on the list */
4570 			BUG_ON(free <= 0);
4571 
4572 			if (free == slab->objects) {
4573 				list_move(&slab->slab_list, &discard);
4574 				n->nr_partial--;
4575 			} else if (free <= SHRINK_PROMOTE_MAX)
4576 				list_move(&slab->slab_list, promote + free - 1);
4577 		}
4578 
4579 		/*
4580 		 * Promote the slabs filled up most to the head of the
4581 		 * partial list.
4582 		 */
4583 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4584 			list_splice(promote + i, &n->partial);
4585 
4586 		spin_unlock_irqrestore(&n->list_lock, flags);
4587 
4588 		/* Release empty slabs */
4589 		list_for_each_entry_safe(slab, t, &discard, slab_list)
4590 			discard_slab(s, slab);
4591 
4592 		if (slabs_node(s, node))
4593 			ret = 1;
4594 	}
4595 
4596 	return ret;
4597 }
4598 
4599 int __kmem_cache_shrink(struct kmem_cache *s)
4600 {
4601 	flush_all(s);
4602 	return __kmem_cache_do_shrink(s);
4603 }
4604 
4605 static int slab_mem_going_offline_callback(void *arg)
4606 {
4607 	struct kmem_cache *s;
4608 
4609 	mutex_lock(&slab_mutex);
4610 	list_for_each_entry(s, &slab_caches, list) {
4611 		flush_all_cpus_locked(s);
4612 		__kmem_cache_do_shrink(s);
4613 	}
4614 	mutex_unlock(&slab_mutex);
4615 
4616 	return 0;
4617 }
4618 
4619 static void slab_mem_offline_callback(void *arg)
4620 {
4621 	struct memory_notify *marg = arg;
4622 	int offline_node;
4623 
4624 	offline_node = marg->status_change_nid_normal;
4625 
4626 	/*
4627 	 * If the node still has available memory. we need kmem_cache_node
4628 	 * for it yet.
4629 	 */
4630 	if (offline_node < 0)
4631 		return;
4632 
4633 	mutex_lock(&slab_mutex);
4634 	node_clear(offline_node, slab_nodes);
4635 	/*
4636 	 * We no longer free kmem_cache_node structures here, as it would be
4637 	 * racy with all get_node() users, and infeasible to protect them with
4638 	 * slab_mutex.
4639 	 */
4640 	mutex_unlock(&slab_mutex);
4641 }
4642 
4643 static int slab_mem_going_online_callback(void *arg)
4644 {
4645 	struct kmem_cache_node *n;
4646 	struct kmem_cache *s;
4647 	struct memory_notify *marg = arg;
4648 	int nid = marg->status_change_nid_normal;
4649 	int ret = 0;
4650 
4651 	/*
4652 	 * If the node's memory is already available, then kmem_cache_node is
4653 	 * already created. Nothing to do.
4654 	 */
4655 	if (nid < 0)
4656 		return 0;
4657 
4658 	/*
4659 	 * We are bringing a node online. No memory is available yet. We must
4660 	 * allocate a kmem_cache_node structure in order to bring the node
4661 	 * online.
4662 	 */
4663 	mutex_lock(&slab_mutex);
4664 	list_for_each_entry(s, &slab_caches, list) {
4665 		/*
4666 		 * The structure may already exist if the node was previously
4667 		 * onlined and offlined.
4668 		 */
4669 		if (get_node(s, nid))
4670 			continue;
4671 		/*
4672 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4673 		 *      since memory is not yet available from the node that
4674 		 *      is brought up.
4675 		 */
4676 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4677 		if (!n) {
4678 			ret = -ENOMEM;
4679 			goto out;
4680 		}
4681 		init_kmem_cache_node(n);
4682 		s->node[nid] = n;
4683 	}
4684 	/*
4685 	 * Any cache created after this point will also have kmem_cache_node
4686 	 * initialized for the new node.
4687 	 */
4688 	node_set(nid, slab_nodes);
4689 out:
4690 	mutex_unlock(&slab_mutex);
4691 	return ret;
4692 }
4693 
4694 static int slab_memory_callback(struct notifier_block *self,
4695 				unsigned long action, void *arg)
4696 {
4697 	int ret = 0;
4698 
4699 	switch (action) {
4700 	case MEM_GOING_ONLINE:
4701 		ret = slab_mem_going_online_callback(arg);
4702 		break;
4703 	case MEM_GOING_OFFLINE:
4704 		ret = slab_mem_going_offline_callback(arg);
4705 		break;
4706 	case MEM_OFFLINE:
4707 	case MEM_CANCEL_ONLINE:
4708 		slab_mem_offline_callback(arg);
4709 		break;
4710 	case MEM_ONLINE:
4711 	case MEM_CANCEL_OFFLINE:
4712 		break;
4713 	}
4714 	if (ret)
4715 		ret = notifier_from_errno(ret);
4716 	else
4717 		ret = NOTIFY_OK;
4718 	return ret;
4719 }
4720 
4721 static struct notifier_block slab_memory_callback_nb = {
4722 	.notifier_call = slab_memory_callback,
4723 	.priority = SLAB_CALLBACK_PRI,
4724 };
4725 
4726 /********************************************************************
4727  *			Basic setup of slabs
4728  *******************************************************************/
4729 
4730 /*
4731  * Used for early kmem_cache structures that were allocated using
4732  * the page allocator. Allocate them properly then fix up the pointers
4733  * that may be pointing to the wrong kmem_cache structure.
4734  */
4735 
4736 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4737 {
4738 	int node;
4739 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4740 	struct kmem_cache_node *n;
4741 
4742 	memcpy(s, static_cache, kmem_cache->object_size);
4743 
4744 	/*
4745 	 * This runs very early, and only the boot processor is supposed to be
4746 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4747 	 * IPIs around.
4748 	 */
4749 	__flush_cpu_slab(s, smp_processor_id());
4750 	for_each_kmem_cache_node(s, node, n) {
4751 		struct slab *p;
4752 
4753 		list_for_each_entry(p, &n->partial, slab_list)
4754 			p->slab_cache = s;
4755 
4756 #ifdef CONFIG_SLUB_DEBUG
4757 		list_for_each_entry(p, &n->full, slab_list)
4758 			p->slab_cache = s;
4759 #endif
4760 	}
4761 	list_add(&s->list, &slab_caches);
4762 	return s;
4763 }
4764 
4765 void __init kmem_cache_init(void)
4766 {
4767 	static __initdata struct kmem_cache boot_kmem_cache,
4768 		boot_kmem_cache_node;
4769 	int node;
4770 
4771 	if (debug_guardpage_minorder())
4772 		slub_max_order = 0;
4773 
4774 	/* Print slub debugging pointers without hashing */
4775 	if (__slub_debug_enabled())
4776 		no_hash_pointers_enable(NULL);
4777 
4778 	kmem_cache_node = &boot_kmem_cache_node;
4779 	kmem_cache = &boot_kmem_cache;
4780 
4781 	/*
4782 	 * Initialize the nodemask for which we will allocate per node
4783 	 * structures. Here we don't need taking slab_mutex yet.
4784 	 */
4785 	for_each_node_state(node, N_NORMAL_MEMORY)
4786 		node_set(node, slab_nodes);
4787 
4788 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4789 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4790 
4791 	register_hotmemory_notifier(&slab_memory_callback_nb);
4792 
4793 	/* Able to allocate the per node structures */
4794 	slab_state = PARTIAL;
4795 
4796 	create_boot_cache(kmem_cache, "kmem_cache",
4797 			offsetof(struct kmem_cache, node) +
4798 				nr_node_ids * sizeof(struct kmem_cache_node *),
4799 		       SLAB_HWCACHE_ALIGN, 0, 0);
4800 
4801 	kmem_cache = bootstrap(&boot_kmem_cache);
4802 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4803 
4804 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4805 	setup_kmalloc_cache_index_table();
4806 	create_kmalloc_caches(0);
4807 
4808 	/* Setup random freelists for each cache */
4809 	init_freelist_randomization();
4810 
4811 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4812 				  slub_cpu_dead);
4813 
4814 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4815 		cache_line_size(),
4816 		slub_min_order, slub_max_order, slub_min_objects,
4817 		nr_cpu_ids, nr_node_ids);
4818 }
4819 
4820 void __init kmem_cache_init_late(void)
4821 {
4822 }
4823 
4824 struct kmem_cache *
4825 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4826 		   slab_flags_t flags, void (*ctor)(void *))
4827 {
4828 	struct kmem_cache *s;
4829 
4830 	s = find_mergeable(size, align, flags, name, ctor);
4831 	if (s) {
4832 		if (sysfs_slab_alias(s, name))
4833 			return NULL;
4834 
4835 		s->refcount++;
4836 
4837 		/*
4838 		 * Adjust the object sizes so that we clear
4839 		 * the complete object on kzalloc.
4840 		 */
4841 		s->object_size = max(s->object_size, size);
4842 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4843 	}
4844 
4845 	return s;
4846 }
4847 
4848 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4849 {
4850 	int err;
4851 
4852 	err = kmem_cache_open(s, flags);
4853 	if (err)
4854 		return err;
4855 
4856 	/* Mutex is not taken during early boot */
4857 	if (slab_state <= UP)
4858 		return 0;
4859 
4860 	err = sysfs_slab_add(s);
4861 	if (err) {
4862 		__kmem_cache_release(s);
4863 		return err;
4864 	}
4865 
4866 	if (s->flags & SLAB_STORE_USER)
4867 		debugfs_slab_add(s);
4868 
4869 	return 0;
4870 }
4871 
4872 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4873 				  int node, unsigned long caller)
4874 {
4875 	return __do_kmalloc_node(size, gfpflags, node, caller);
4876 }
4877 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4878 
4879 #ifdef CONFIG_SYSFS
4880 static int count_inuse(struct slab *slab)
4881 {
4882 	return slab->inuse;
4883 }
4884 
4885 static int count_total(struct slab *slab)
4886 {
4887 	return slab->objects;
4888 }
4889 #endif
4890 
4891 #ifdef CONFIG_SLUB_DEBUG
4892 static void validate_slab(struct kmem_cache *s, struct slab *slab,
4893 			  unsigned long *obj_map)
4894 {
4895 	void *p;
4896 	void *addr = slab_address(slab);
4897 	unsigned long flags;
4898 
4899 	slab_lock(slab, &flags);
4900 
4901 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
4902 		goto unlock;
4903 
4904 	/* Now we know that a valid freelist exists */
4905 	__fill_map(obj_map, s, slab);
4906 	for_each_object(p, s, addr, slab->objects) {
4907 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
4908 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4909 
4910 		if (!check_object(s, slab, p, val))
4911 			break;
4912 	}
4913 unlock:
4914 	slab_unlock(slab, &flags);
4915 }
4916 
4917 static int validate_slab_node(struct kmem_cache *s,
4918 		struct kmem_cache_node *n, unsigned long *obj_map)
4919 {
4920 	unsigned long count = 0;
4921 	struct slab *slab;
4922 	unsigned long flags;
4923 
4924 	spin_lock_irqsave(&n->list_lock, flags);
4925 
4926 	list_for_each_entry(slab, &n->partial, slab_list) {
4927 		validate_slab(s, slab, obj_map);
4928 		count++;
4929 	}
4930 	if (count != n->nr_partial) {
4931 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4932 		       s->name, count, n->nr_partial);
4933 		slab_add_kunit_errors();
4934 	}
4935 
4936 	if (!(s->flags & SLAB_STORE_USER))
4937 		goto out;
4938 
4939 	list_for_each_entry(slab, &n->full, slab_list) {
4940 		validate_slab(s, slab, obj_map);
4941 		count++;
4942 	}
4943 	if (count != atomic_long_read(&n->nr_slabs)) {
4944 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4945 		       s->name, count, atomic_long_read(&n->nr_slabs));
4946 		slab_add_kunit_errors();
4947 	}
4948 
4949 out:
4950 	spin_unlock_irqrestore(&n->list_lock, flags);
4951 	return count;
4952 }
4953 
4954 long validate_slab_cache(struct kmem_cache *s)
4955 {
4956 	int node;
4957 	unsigned long count = 0;
4958 	struct kmem_cache_node *n;
4959 	unsigned long *obj_map;
4960 
4961 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
4962 	if (!obj_map)
4963 		return -ENOMEM;
4964 
4965 	flush_all(s);
4966 	for_each_kmem_cache_node(s, node, n)
4967 		count += validate_slab_node(s, n, obj_map);
4968 
4969 	bitmap_free(obj_map);
4970 
4971 	return count;
4972 }
4973 EXPORT_SYMBOL(validate_slab_cache);
4974 
4975 #ifdef CONFIG_DEBUG_FS
4976 /*
4977  * Generate lists of code addresses where slabcache objects are allocated
4978  * and freed.
4979  */
4980 
4981 struct location {
4982 	depot_stack_handle_t handle;
4983 	unsigned long count;
4984 	unsigned long addr;
4985 	long long sum_time;
4986 	long min_time;
4987 	long max_time;
4988 	long min_pid;
4989 	long max_pid;
4990 	DECLARE_BITMAP(cpus, NR_CPUS);
4991 	nodemask_t nodes;
4992 };
4993 
4994 struct loc_track {
4995 	unsigned long max;
4996 	unsigned long count;
4997 	struct location *loc;
4998 	loff_t idx;
4999 };
5000 
5001 static struct dentry *slab_debugfs_root;
5002 
5003 static void free_loc_track(struct loc_track *t)
5004 {
5005 	if (t->max)
5006 		free_pages((unsigned long)t->loc,
5007 			get_order(sizeof(struct location) * t->max));
5008 }
5009 
5010 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5011 {
5012 	struct location *l;
5013 	int order;
5014 
5015 	order = get_order(sizeof(struct location) * max);
5016 
5017 	l = (void *)__get_free_pages(flags, order);
5018 	if (!l)
5019 		return 0;
5020 
5021 	if (t->count) {
5022 		memcpy(l, t->loc, sizeof(struct location) * t->count);
5023 		free_loc_track(t);
5024 	}
5025 	t->max = max;
5026 	t->loc = l;
5027 	return 1;
5028 }
5029 
5030 static int add_location(struct loc_track *t, struct kmem_cache *s,
5031 				const struct track *track)
5032 {
5033 	long start, end, pos;
5034 	struct location *l;
5035 	unsigned long caddr, chandle;
5036 	unsigned long age = jiffies - track->when;
5037 	depot_stack_handle_t handle = 0;
5038 
5039 #ifdef CONFIG_STACKDEPOT
5040 	handle = READ_ONCE(track->handle);
5041 #endif
5042 	start = -1;
5043 	end = t->count;
5044 
5045 	for ( ; ; ) {
5046 		pos = start + (end - start + 1) / 2;
5047 
5048 		/*
5049 		 * There is nothing at "end". If we end up there
5050 		 * we need to add something to before end.
5051 		 */
5052 		if (pos == end)
5053 			break;
5054 
5055 		caddr = t->loc[pos].addr;
5056 		chandle = t->loc[pos].handle;
5057 		if ((track->addr == caddr) && (handle == chandle)) {
5058 
5059 			l = &t->loc[pos];
5060 			l->count++;
5061 			if (track->when) {
5062 				l->sum_time += age;
5063 				if (age < l->min_time)
5064 					l->min_time = age;
5065 				if (age > l->max_time)
5066 					l->max_time = age;
5067 
5068 				if (track->pid < l->min_pid)
5069 					l->min_pid = track->pid;
5070 				if (track->pid > l->max_pid)
5071 					l->max_pid = track->pid;
5072 
5073 				cpumask_set_cpu(track->cpu,
5074 						to_cpumask(l->cpus));
5075 			}
5076 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
5077 			return 1;
5078 		}
5079 
5080 		if (track->addr < caddr)
5081 			end = pos;
5082 		else if (track->addr == caddr && handle < chandle)
5083 			end = pos;
5084 		else
5085 			start = pos;
5086 	}
5087 
5088 	/*
5089 	 * Not found. Insert new tracking element.
5090 	 */
5091 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5092 		return 0;
5093 
5094 	l = t->loc + pos;
5095 	if (pos < t->count)
5096 		memmove(l + 1, l,
5097 			(t->count - pos) * sizeof(struct location));
5098 	t->count++;
5099 	l->count = 1;
5100 	l->addr = track->addr;
5101 	l->sum_time = age;
5102 	l->min_time = age;
5103 	l->max_time = age;
5104 	l->min_pid = track->pid;
5105 	l->max_pid = track->pid;
5106 	l->handle = handle;
5107 	cpumask_clear(to_cpumask(l->cpus));
5108 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5109 	nodes_clear(l->nodes);
5110 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
5111 	return 1;
5112 }
5113 
5114 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5115 		struct slab *slab, enum track_item alloc,
5116 		unsigned long *obj_map)
5117 {
5118 	void *addr = slab_address(slab);
5119 	void *p;
5120 
5121 	__fill_map(obj_map, s, slab);
5122 
5123 	for_each_object(p, s, addr, slab->objects)
5124 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5125 			add_location(t, s, get_track(s, p, alloc));
5126 }
5127 #endif  /* CONFIG_DEBUG_FS   */
5128 #endif	/* CONFIG_SLUB_DEBUG */
5129 
5130 #ifdef CONFIG_SYSFS
5131 enum slab_stat_type {
5132 	SL_ALL,			/* All slabs */
5133 	SL_PARTIAL,		/* Only partially allocated slabs */
5134 	SL_CPU,			/* Only slabs used for cpu caches */
5135 	SL_OBJECTS,		/* Determine allocated objects not slabs */
5136 	SL_TOTAL		/* Determine object capacity not slabs */
5137 };
5138 
5139 #define SO_ALL		(1 << SL_ALL)
5140 #define SO_PARTIAL	(1 << SL_PARTIAL)
5141 #define SO_CPU		(1 << SL_CPU)
5142 #define SO_OBJECTS	(1 << SL_OBJECTS)
5143 #define SO_TOTAL	(1 << SL_TOTAL)
5144 
5145 static ssize_t show_slab_objects(struct kmem_cache *s,
5146 				 char *buf, unsigned long flags)
5147 {
5148 	unsigned long total = 0;
5149 	int node;
5150 	int x;
5151 	unsigned long *nodes;
5152 	int len = 0;
5153 
5154 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5155 	if (!nodes)
5156 		return -ENOMEM;
5157 
5158 	if (flags & SO_CPU) {
5159 		int cpu;
5160 
5161 		for_each_possible_cpu(cpu) {
5162 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5163 							       cpu);
5164 			int node;
5165 			struct slab *slab;
5166 
5167 			slab = READ_ONCE(c->slab);
5168 			if (!slab)
5169 				continue;
5170 
5171 			node = slab_nid(slab);
5172 			if (flags & SO_TOTAL)
5173 				x = slab->objects;
5174 			else if (flags & SO_OBJECTS)
5175 				x = slab->inuse;
5176 			else
5177 				x = 1;
5178 
5179 			total += x;
5180 			nodes[node] += x;
5181 
5182 #ifdef CONFIG_SLUB_CPU_PARTIAL
5183 			slab = slub_percpu_partial_read_once(c);
5184 			if (slab) {
5185 				node = slab_nid(slab);
5186 				if (flags & SO_TOTAL)
5187 					WARN_ON_ONCE(1);
5188 				else if (flags & SO_OBJECTS)
5189 					WARN_ON_ONCE(1);
5190 				else
5191 					x = slab->slabs;
5192 				total += x;
5193 				nodes[node] += x;
5194 			}
5195 #endif
5196 		}
5197 	}
5198 
5199 	/*
5200 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5201 	 * already held which will conflict with an existing lock order:
5202 	 *
5203 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5204 	 *
5205 	 * We don't really need mem_hotplug_lock (to hold off
5206 	 * slab_mem_going_offline_callback) here because slab's memory hot
5207 	 * unplug code doesn't destroy the kmem_cache->node[] data.
5208 	 */
5209 
5210 #ifdef CONFIG_SLUB_DEBUG
5211 	if (flags & SO_ALL) {
5212 		struct kmem_cache_node *n;
5213 
5214 		for_each_kmem_cache_node(s, node, n) {
5215 
5216 			if (flags & SO_TOTAL)
5217 				x = atomic_long_read(&n->total_objects);
5218 			else if (flags & SO_OBJECTS)
5219 				x = atomic_long_read(&n->total_objects) -
5220 					count_partial(n, count_free);
5221 			else
5222 				x = atomic_long_read(&n->nr_slabs);
5223 			total += x;
5224 			nodes[node] += x;
5225 		}
5226 
5227 	} else
5228 #endif
5229 	if (flags & SO_PARTIAL) {
5230 		struct kmem_cache_node *n;
5231 
5232 		for_each_kmem_cache_node(s, node, n) {
5233 			if (flags & SO_TOTAL)
5234 				x = count_partial(n, count_total);
5235 			else if (flags & SO_OBJECTS)
5236 				x = count_partial(n, count_inuse);
5237 			else
5238 				x = n->nr_partial;
5239 			total += x;
5240 			nodes[node] += x;
5241 		}
5242 	}
5243 
5244 	len += sysfs_emit_at(buf, len, "%lu", total);
5245 #ifdef CONFIG_NUMA
5246 	for (node = 0; node < nr_node_ids; node++) {
5247 		if (nodes[node])
5248 			len += sysfs_emit_at(buf, len, " N%d=%lu",
5249 					     node, nodes[node]);
5250 	}
5251 #endif
5252 	len += sysfs_emit_at(buf, len, "\n");
5253 	kfree(nodes);
5254 
5255 	return len;
5256 }
5257 
5258 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5259 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5260 
5261 struct slab_attribute {
5262 	struct attribute attr;
5263 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5264 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5265 };
5266 
5267 #define SLAB_ATTR_RO(_name) \
5268 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
5269 
5270 #define SLAB_ATTR(_name) \
5271 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
5272 
5273 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5274 {
5275 	return sysfs_emit(buf, "%u\n", s->size);
5276 }
5277 SLAB_ATTR_RO(slab_size);
5278 
5279 static ssize_t align_show(struct kmem_cache *s, char *buf)
5280 {
5281 	return sysfs_emit(buf, "%u\n", s->align);
5282 }
5283 SLAB_ATTR_RO(align);
5284 
5285 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5286 {
5287 	return sysfs_emit(buf, "%u\n", s->object_size);
5288 }
5289 SLAB_ATTR_RO(object_size);
5290 
5291 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5292 {
5293 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5294 }
5295 SLAB_ATTR_RO(objs_per_slab);
5296 
5297 static ssize_t order_show(struct kmem_cache *s, char *buf)
5298 {
5299 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5300 }
5301 SLAB_ATTR_RO(order);
5302 
5303 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5304 {
5305 	return sysfs_emit(buf, "%lu\n", s->min_partial);
5306 }
5307 
5308 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5309 				 size_t length)
5310 {
5311 	unsigned long min;
5312 	int err;
5313 
5314 	err = kstrtoul(buf, 10, &min);
5315 	if (err)
5316 		return err;
5317 
5318 	s->min_partial = min;
5319 	return length;
5320 }
5321 SLAB_ATTR(min_partial);
5322 
5323 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5324 {
5325 	unsigned int nr_partial = 0;
5326 #ifdef CONFIG_SLUB_CPU_PARTIAL
5327 	nr_partial = s->cpu_partial;
5328 #endif
5329 
5330 	return sysfs_emit(buf, "%u\n", nr_partial);
5331 }
5332 
5333 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5334 				 size_t length)
5335 {
5336 	unsigned int objects;
5337 	int err;
5338 
5339 	err = kstrtouint(buf, 10, &objects);
5340 	if (err)
5341 		return err;
5342 	if (objects && !kmem_cache_has_cpu_partial(s))
5343 		return -EINVAL;
5344 
5345 	slub_set_cpu_partial(s, objects);
5346 	flush_all(s);
5347 	return length;
5348 }
5349 SLAB_ATTR(cpu_partial);
5350 
5351 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5352 {
5353 	if (!s->ctor)
5354 		return 0;
5355 	return sysfs_emit(buf, "%pS\n", s->ctor);
5356 }
5357 SLAB_ATTR_RO(ctor);
5358 
5359 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5360 {
5361 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5362 }
5363 SLAB_ATTR_RO(aliases);
5364 
5365 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5366 {
5367 	return show_slab_objects(s, buf, SO_PARTIAL);
5368 }
5369 SLAB_ATTR_RO(partial);
5370 
5371 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5372 {
5373 	return show_slab_objects(s, buf, SO_CPU);
5374 }
5375 SLAB_ATTR_RO(cpu_slabs);
5376 
5377 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5378 {
5379 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5380 }
5381 SLAB_ATTR_RO(objects);
5382 
5383 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5384 {
5385 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5386 }
5387 SLAB_ATTR_RO(objects_partial);
5388 
5389 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5390 {
5391 	int objects = 0;
5392 	int slabs = 0;
5393 	int cpu __maybe_unused;
5394 	int len = 0;
5395 
5396 #ifdef CONFIG_SLUB_CPU_PARTIAL
5397 	for_each_online_cpu(cpu) {
5398 		struct slab *slab;
5399 
5400 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5401 
5402 		if (slab)
5403 			slabs += slab->slabs;
5404 	}
5405 #endif
5406 
5407 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
5408 	objects = (slabs * oo_objects(s->oo)) / 2;
5409 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5410 
5411 #if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP)
5412 	for_each_online_cpu(cpu) {
5413 		struct slab *slab;
5414 
5415 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5416 		if (slab) {
5417 			slabs = READ_ONCE(slab->slabs);
5418 			objects = (slabs * oo_objects(s->oo)) / 2;
5419 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5420 					     cpu, objects, slabs);
5421 		}
5422 	}
5423 #endif
5424 	len += sysfs_emit_at(buf, len, "\n");
5425 
5426 	return len;
5427 }
5428 SLAB_ATTR_RO(slabs_cpu_partial);
5429 
5430 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5431 {
5432 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5433 }
5434 SLAB_ATTR_RO(reclaim_account);
5435 
5436 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5437 {
5438 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5439 }
5440 SLAB_ATTR_RO(hwcache_align);
5441 
5442 #ifdef CONFIG_ZONE_DMA
5443 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5444 {
5445 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5446 }
5447 SLAB_ATTR_RO(cache_dma);
5448 #endif
5449 
5450 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5451 {
5452 	return sysfs_emit(buf, "%u\n", s->usersize);
5453 }
5454 SLAB_ATTR_RO(usersize);
5455 
5456 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5457 {
5458 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5459 }
5460 SLAB_ATTR_RO(destroy_by_rcu);
5461 
5462 #ifdef CONFIG_SLUB_DEBUG
5463 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5464 {
5465 	return show_slab_objects(s, buf, SO_ALL);
5466 }
5467 SLAB_ATTR_RO(slabs);
5468 
5469 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5470 {
5471 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5472 }
5473 SLAB_ATTR_RO(total_objects);
5474 
5475 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5476 {
5477 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5478 }
5479 SLAB_ATTR_RO(sanity_checks);
5480 
5481 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5482 {
5483 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5484 }
5485 SLAB_ATTR_RO(trace);
5486 
5487 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5488 {
5489 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5490 }
5491 
5492 SLAB_ATTR_RO(red_zone);
5493 
5494 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5495 {
5496 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5497 }
5498 
5499 SLAB_ATTR_RO(poison);
5500 
5501 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5502 {
5503 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5504 }
5505 
5506 SLAB_ATTR_RO(store_user);
5507 
5508 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5509 {
5510 	return 0;
5511 }
5512 
5513 static ssize_t validate_store(struct kmem_cache *s,
5514 			const char *buf, size_t length)
5515 {
5516 	int ret = -EINVAL;
5517 
5518 	if (buf[0] == '1') {
5519 		ret = validate_slab_cache(s);
5520 		if (ret >= 0)
5521 			ret = length;
5522 	}
5523 	return ret;
5524 }
5525 SLAB_ATTR(validate);
5526 
5527 #endif /* CONFIG_SLUB_DEBUG */
5528 
5529 #ifdef CONFIG_FAILSLAB
5530 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5531 {
5532 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5533 }
5534 SLAB_ATTR_RO(failslab);
5535 #endif
5536 
5537 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5538 {
5539 	return 0;
5540 }
5541 
5542 static ssize_t shrink_store(struct kmem_cache *s,
5543 			const char *buf, size_t length)
5544 {
5545 	if (buf[0] == '1')
5546 		kmem_cache_shrink(s);
5547 	else
5548 		return -EINVAL;
5549 	return length;
5550 }
5551 SLAB_ATTR(shrink);
5552 
5553 #ifdef CONFIG_NUMA
5554 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5555 {
5556 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5557 }
5558 
5559 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5560 				const char *buf, size_t length)
5561 {
5562 	unsigned int ratio;
5563 	int err;
5564 
5565 	err = kstrtouint(buf, 10, &ratio);
5566 	if (err)
5567 		return err;
5568 	if (ratio > 100)
5569 		return -ERANGE;
5570 
5571 	s->remote_node_defrag_ratio = ratio * 10;
5572 
5573 	return length;
5574 }
5575 SLAB_ATTR(remote_node_defrag_ratio);
5576 #endif
5577 
5578 #ifdef CONFIG_SLUB_STATS
5579 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5580 {
5581 	unsigned long sum  = 0;
5582 	int cpu;
5583 	int len = 0;
5584 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5585 
5586 	if (!data)
5587 		return -ENOMEM;
5588 
5589 	for_each_online_cpu(cpu) {
5590 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5591 
5592 		data[cpu] = x;
5593 		sum += x;
5594 	}
5595 
5596 	len += sysfs_emit_at(buf, len, "%lu", sum);
5597 
5598 #ifdef CONFIG_SMP
5599 	for_each_online_cpu(cpu) {
5600 		if (data[cpu])
5601 			len += sysfs_emit_at(buf, len, " C%d=%u",
5602 					     cpu, data[cpu]);
5603 	}
5604 #endif
5605 	kfree(data);
5606 	len += sysfs_emit_at(buf, len, "\n");
5607 
5608 	return len;
5609 }
5610 
5611 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5612 {
5613 	int cpu;
5614 
5615 	for_each_online_cpu(cpu)
5616 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5617 }
5618 
5619 #define STAT_ATTR(si, text) 					\
5620 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5621 {								\
5622 	return show_stat(s, buf, si);				\
5623 }								\
5624 static ssize_t text##_store(struct kmem_cache *s,		\
5625 				const char *buf, size_t length)	\
5626 {								\
5627 	if (buf[0] != '0')					\
5628 		return -EINVAL;					\
5629 	clear_stat(s, si);					\
5630 	return length;						\
5631 }								\
5632 SLAB_ATTR(text);						\
5633 
5634 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5635 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5636 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5637 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5638 STAT_ATTR(FREE_FROZEN, free_frozen);
5639 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5640 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5641 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5642 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5643 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5644 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5645 STAT_ATTR(FREE_SLAB, free_slab);
5646 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5647 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5648 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5649 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5650 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5651 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5652 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5653 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5654 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5655 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5656 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5657 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5658 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5659 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5660 #endif	/* CONFIG_SLUB_STATS */
5661 
5662 static struct attribute *slab_attrs[] = {
5663 	&slab_size_attr.attr,
5664 	&object_size_attr.attr,
5665 	&objs_per_slab_attr.attr,
5666 	&order_attr.attr,
5667 	&min_partial_attr.attr,
5668 	&cpu_partial_attr.attr,
5669 	&objects_attr.attr,
5670 	&objects_partial_attr.attr,
5671 	&partial_attr.attr,
5672 	&cpu_slabs_attr.attr,
5673 	&ctor_attr.attr,
5674 	&aliases_attr.attr,
5675 	&align_attr.attr,
5676 	&hwcache_align_attr.attr,
5677 	&reclaim_account_attr.attr,
5678 	&destroy_by_rcu_attr.attr,
5679 	&shrink_attr.attr,
5680 	&slabs_cpu_partial_attr.attr,
5681 #ifdef CONFIG_SLUB_DEBUG
5682 	&total_objects_attr.attr,
5683 	&slabs_attr.attr,
5684 	&sanity_checks_attr.attr,
5685 	&trace_attr.attr,
5686 	&red_zone_attr.attr,
5687 	&poison_attr.attr,
5688 	&store_user_attr.attr,
5689 	&validate_attr.attr,
5690 #endif
5691 #ifdef CONFIG_ZONE_DMA
5692 	&cache_dma_attr.attr,
5693 #endif
5694 #ifdef CONFIG_NUMA
5695 	&remote_node_defrag_ratio_attr.attr,
5696 #endif
5697 #ifdef CONFIG_SLUB_STATS
5698 	&alloc_fastpath_attr.attr,
5699 	&alloc_slowpath_attr.attr,
5700 	&free_fastpath_attr.attr,
5701 	&free_slowpath_attr.attr,
5702 	&free_frozen_attr.attr,
5703 	&free_add_partial_attr.attr,
5704 	&free_remove_partial_attr.attr,
5705 	&alloc_from_partial_attr.attr,
5706 	&alloc_slab_attr.attr,
5707 	&alloc_refill_attr.attr,
5708 	&alloc_node_mismatch_attr.attr,
5709 	&free_slab_attr.attr,
5710 	&cpuslab_flush_attr.attr,
5711 	&deactivate_full_attr.attr,
5712 	&deactivate_empty_attr.attr,
5713 	&deactivate_to_head_attr.attr,
5714 	&deactivate_to_tail_attr.attr,
5715 	&deactivate_remote_frees_attr.attr,
5716 	&deactivate_bypass_attr.attr,
5717 	&order_fallback_attr.attr,
5718 	&cmpxchg_double_fail_attr.attr,
5719 	&cmpxchg_double_cpu_fail_attr.attr,
5720 	&cpu_partial_alloc_attr.attr,
5721 	&cpu_partial_free_attr.attr,
5722 	&cpu_partial_node_attr.attr,
5723 	&cpu_partial_drain_attr.attr,
5724 #endif
5725 #ifdef CONFIG_FAILSLAB
5726 	&failslab_attr.attr,
5727 #endif
5728 	&usersize_attr.attr,
5729 
5730 	NULL
5731 };
5732 
5733 static const struct attribute_group slab_attr_group = {
5734 	.attrs = slab_attrs,
5735 };
5736 
5737 static ssize_t slab_attr_show(struct kobject *kobj,
5738 				struct attribute *attr,
5739 				char *buf)
5740 {
5741 	struct slab_attribute *attribute;
5742 	struct kmem_cache *s;
5743 	int err;
5744 
5745 	attribute = to_slab_attr(attr);
5746 	s = to_slab(kobj);
5747 
5748 	if (!attribute->show)
5749 		return -EIO;
5750 
5751 	err = attribute->show(s, buf);
5752 
5753 	return err;
5754 }
5755 
5756 static ssize_t slab_attr_store(struct kobject *kobj,
5757 				struct attribute *attr,
5758 				const char *buf, size_t len)
5759 {
5760 	struct slab_attribute *attribute;
5761 	struct kmem_cache *s;
5762 	int err;
5763 
5764 	attribute = to_slab_attr(attr);
5765 	s = to_slab(kobj);
5766 
5767 	if (!attribute->store)
5768 		return -EIO;
5769 
5770 	err = attribute->store(s, buf, len);
5771 	return err;
5772 }
5773 
5774 static void kmem_cache_release(struct kobject *k)
5775 {
5776 	slab_kmem_cache_release(to_slab(k));
5777 }
5778 
5779 static const struct sysfs_ops slab_sysfs_ops = {
5780 	.show = slab_attr_show,
5781 	.store = slab_attr_store,
5782 };
5783 
5784 static struct kobj_type slab_ktype = {
5785 	.sysfs_ops = &slab_sysfs_ops,
5786 	.release = kmem_cache_release,
5787 };
5788 
5789 static struct kset *slab_kset;
5790 
5791 static inline struct kset *cache_kset(struct kmem_cache *s)
5792 {
5793 	return slab_kset;
5794 }
5795 
5796 #define ID_STR_LENGTH 64
5797 
5798 /* Create a unique string id for a slab cache:
5799  *
5800  * Format	:[flags-]size
5801  */
5802 static char *create_unique_id(struct kmem_cache *s)
5803 {
5804 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5805 	char *p = name;
5806 
5807 	BUG_ON(!name);
5808 
5809 	*p++ = ':';
5810 	/*
5811 	 * First flags affecting slabcache operations. We will only
5812 	 * get here for aliasable slabs so we do not need to support
5813 	 * too many flags. The flags here must cover all flags that
5814 	 * are matched during merging to guarantee that the id is
5815 	 * unique.
5816 	 */
5817 	if (s->flags & SLAB_CACHE_DMA)
5818 		*p++ = 'd';
5819 	if (s->flags & SLAB_CACHE_DMA32)
5820 		*p++ = 'D';
5821 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5822 		*p++ = 'a';
5823 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5824 		*p++ = 'F';
5825 	if (s->flags & SLAB_ACCOUNT)
5826 		*p++ = 'A';
5827 	if (p != name + 1)
5828 		*p++ = '-';
5829 	p += sprintf(p, "%07u", s->size);
5830 
5831 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5832 	return name;
5833 }
5834 
5835 static int sysfs_slab_add(struct kmem_cache *s)
5836 {
5837 	int err;
5838 	const char *name;
5839 	struct kset *kset = cache_kset(s);
5840 	int unmergeable = slab_unmergeable(s);
5841 
5842 	if (!kset) {
5843 		kobject_init(&s->kobj, &slab_ktype);
5844 		return 0;
5845 	}
5846 
5847 	if (!unmergeable && disable_higher_order_debug &&
5848 			(slub_debug & DEBUG_METADATA_FLAGS))
5849 		unmergeable = 1;
5850 
5851 	if (unmergeable) {
5852 		/*
5853 		 * Slabcache can never be merged so we can use the name proper.
5854 		 * This is typically the case for debug situations. In that
5855 		 * case we can catch duplicate names easily.
5856 		 */
5857 		sysfs_remove_link(&slab_kset->kobj, s->name);
5858 		name = s->name;
5859 	} else {
5860 		/*
5861 		 * Create a unique name for the slab as a target
5862 		 * for the symlinks.
5863 		 */
5864 		name = create_unique_id(s);
5865 	}
5866 
5867 	s->kobj.kset = kset;
5868 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5869 	if (err)
5870 		goto out;
5871 
5872 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5873 	if (err)
5874 		goto out_del_kobj;
5875 
5876 	if (!unmergeable) {
5877 		/* Setup first alias */
5878 		sysfs_slab_alias(s, s->name);
5879 	}
5880 out:
5881 	if (!unmergeable)
5882 		kfree(name);
5883 	return err;
5884 out_del_kobj:
5885 	kobject_del(&s->kobj);
5886 	goto out;
5887 }
5888 
5889 void sysfs_slab_unlink(struct kmem_cache *s)
5890 {
5891 	if (slab_state >= FULL)
5892 		kobject_del(&s->kobj);
5893 }
5894 
5895 void sysfs_slab_release(struct kmem_cache *s)
5896 {
5897 	if (slab_state >= FULL)
5898 		kobject_put(&s->kobj);
5899 }
5900 
5901 /*
5902  * Need to buffer aliases during bootup until sysfs becomes
5903  * available lest we lose that information.
5904  */
5905 struct saved_alias {
5906 	struct kmem_cache *s;
5907 	const char *name;
5908 	struct saved_alias *next;
5909 };
5910 
5911 static struct saved_alias *alias_list;
5912 
5913 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5914 {
5915 	struct saved_alias *al;
5916 
5917 	if (slab_state == FULL) {
5918 		/*
5919 		 * If we have a leftover link then remove it.
5920 		 */
5921 		sysfs_remove_link(&slab_kset->kobj, name);
5922 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5923 	}
5924 
5925 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5926 	if (!al)
5927 		return -ENOMEM;
5928 
5929 	al->s = s;
5930 	al->name = name;
5931 	al->next = alias_list;
5932 	alias_list = al;
5933 	return 0;
5934 }
5935 
5936 static int __init slab_sysfs_init(void)
5937 {
5938 	struct kmem_cache *s;
5939 	int err;
5940 
5941 	mutex_lock(&slab_mutex);
5942 
5943 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5944 	if (!slab_kset) {
5945 		mutex_unlock(&slab_mutex);
5946 		pr_err("Cannot register slab subsystem.\n");
5947 		return -ENOSYS;
5948 	}
5949 
5950 	slab_state = FULL;
5951 
5952 	list_for_each_entry(s, &slab_caches, list) {
5953 		err = sysfs_slab_add(s);
5954 		if (err)
5955 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5956 			       s->name);
5957 	}
5958 
5959 	while (alias_list) {
5960 		struct saved_alias *al = alias_list;
5961 
5962 		alias_list = alias_list->next;
5963 		err = sysfs_slab_alias(al->s, al->name);
5964 		if (err)
5965 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5966 			       al->name);
5967 		kfree(al);
5968 	}
5969 
5970 	mutex_unlock(&slab_mutex);
5971 	return 0;
5972 }
5973 
5974 __initcall(slab_sysfs_init);
5975 #endif /* CONFIG_SYSFS */
5976 
5977 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
5978 static int slab_debugfs_show(struct seq_file *seq, void *v)
5979 {
5980 	struct loc_track *t = seq->private;
5981 	struct location *l;
5982 	unsigned long idx;
5983 
5984 	idx = (unsigned long) t->idx;
5985 	if (idx < t->count) {
5986 		l = &t->loc[idx];
5987 
5988 		seq_printf(seq, "%7ld ", l->count);
5989 
5990 		if (l->addr)
5991 			seq_printf(seq, "%pS", (void *)l->addr);
5992 		else
5993 			seq_puts(seq, "<not-available>");
5994 
5995 		if (l->sum_time != l->min_time) {
5996 			seq_printf(seq, " age=%ld/%llu/%ld",
5997 				l->min_time, div_u64(l->sum_time, l->count),
5998 				l->max_time);
5999 		} else
6000 			seq_printf(seq, " age=%ld", l->min_time);
6001 
6002 		if (l->min_pid != l->max_pid)
6003 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6004 		else
6005 			seq_printf(seq, " pid=%ld",
6006 				l->min_pid);
6007 
6008 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6009 			seq_printf(seq, " cpus=%*pbl",
6010 				 cpumask_pr_args(to_cpumask(l->cpus)));
6011 
6012 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6013 			seq_printf(seq, " nodes=%*pbl",
6014 				 nodemask_pr_args(&l->nodes));
6015 
6016 #ifdef CONFIG_STACKDEPOT
6017 		{
6018 			depot_stack_handle_t handle;
6019 			unsigned long *entries;
6020 			unsigned int nr_entries, j;
6021 
6022 			handle = READ_ONCE(l->handle);
6023 			if (handle) {
6024 				nr_entries = stack_depot_fetch(handle, &entries);
6025 				seq_puts(seq, "\n");
6026 				for (j = 0; j < nr_entries; j++)
6027 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
6028 			}
6029 		}
6030 #endif
6031 		seq_puts(seq, "\n");
6032 	}
6033 
6034 	if (!idx && !t->count)
6035 		seq_puts(seq, "No data\n");
6036 
6037 	return 0;
6038 }
6039 
6040 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6041 {
6042 }
6043 
6044 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6045 {
6046 	struct loc_track *t = seq->private;
6047 
6048 	t->idx = ++(*ppos);
6049 	if (*ppos <= t->count)
6050 		return ppos;
6051 
6052 	return NULL;
6053 }
6054 
6055 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6056 {
6057 	struct location *loc1 = (struct location *)a;
6058 	struct location *loc2 = (struct location *)b;
6059 
6060 	if (loc1->count > loc2->count)
6061 		return -1;
6062 	else
6063 		return 1;
6064 }
6065 
6066 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6067 {
6068 	struct loc_track *t = seq->private;
6069 
6070 	t->idx = *ppos;
6071 	return ppos;
6072 }
6073 
6074 static const struct seq_operations slab_debugfs_sops = {
6075 	.start  = slab_debugfs_start,
6076 	.next   = slab_debugfs_next,
6077 	.stop   = slab_debugfs_stop,
6078 	.show   = slab_debugfs_show,
6079 };
6080 
6081 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6082 {
6083 
6084 	struct kmem_cache_node *n;
6085 	enum track_item alloc;
6086 	int node;
6087 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6088 						sizeof(struct loc_track));
6089 	struct kmem_cache *s = file_inode(filep)->i_private;
6090 	unsigned long *obj_map;
6091 
6092 	if (!t)
6093 		return -ENOMEM;
6094 
6095 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6096 	if (!obj_map) {
6097 		seq_release_private(inode, filep);
6098 		return -ENOMEM;
6099 	}
6100 
6101 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6102 		alloc = TRACK_ALLOC;
6103 	else
6104 		alloc = TRACK_FREE;
6105 
6106 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6107 		bitmap_free(obj_map);
6108 		seq_release_private(inode, filep);
6109 		return -ENOMEM;
6110 	}
6111 
6112 	for_each_kmem_cache_node(s, node, n) {
6113 		unsigned long flags;
6114 		struct slab *slab;
6115 
6116 		if (!atomic_long_read(&n->nr_slabs))
6117 			continue;
6118 
6119 		spin_lock_irqsave(&n->list_lock, flags);
6120 		list_for_each_entry(slab, &n->partial, slab_list)
6121 			process_slab(t, s, slab, alloc, obj_map);
6122 		list_for_each_entry(slab, &n->full, slab_list)
6123 			process_slab(t, s, slab, alloc, obj_map);
6124 		spin_unlock_irqrestore(&n->list_lock, flags);
6125 	}
6126 
6127 	/* Sort locations by count */
6128 	sort_r(t->loc, t->count, sizeof(struct location),
6129 		cmp_loc_by_count, NULL, NULL);
6130 
6131 	bitmap_free(obj_map);
6132 	return 0;
6133 }
6134 
6135 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6136 {
6137 	struct seq_file *seq = file->private_data;
6138 	struct loc_track *t = seq->private;
6139 
6140 	free_loc_track(t);
6141 	return seq_release_private(inode, file);
6142 }
6143 
6144 static const struct file_operations slab_debugfs_fops = {
6145 	.open    = slab_debug_trace_open,
6146 	.read    = seq_read,
6147 	.llseek  = seq_lseek,
6148 	.release = slab_debug_trace_release,
6149 };
6150 
6151 static void debugfs_slab_add(struct kmem_cache *s)
6152 {
6153 	struct dentry *slab_cache_dir;
6154 
6155 	if (unlikely(!slab_debugfs_root))
6156 		return;
6157 
6158 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6159 
6160 	debugfs_create_file("alloc_traces", 0400,
6161 		slab_cache_dir, s, &slab_debugfs_fops);
6162 
6163 	debugfs_create_file("free_traces", 0400,
6164 		slab_cache_dir, s, &slab_debugfs_fops);
6165 }
6166 
6167 void debugfs_slab_release(struct kmem_cache *s)
6168 {
6169 	debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
6170 }
6171 
6172 static int __init slab_debugfs_init(void)
6173 {
6174 	struct kmem_cache *s;
6175 
6176 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
6177 
6178 	list_for_each_entry(s, &slab_caches, list)
6179 		if (s->flags & SLAB_STORE_USER)
6180 			debugfs_slab_add(s);
6181 
6182 	return 0;
6183 
6184 }
6185 __initcall(slab_debugfs_init);
6186 #endif
6187 /*
6188  * The /proc/slabinfo ABI
6189  */
6190 #ifdef CONFIG_SLUB_DEBUG
6191 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6192 {
6193 	unsigned long nr_slabs = 0;
6194 	unsigned long nr_objs = 0;
6195 	unsigned long nr_free = 0;
6196 	int node;
6197 	struct kmem_cache_node *n;
6198 
6199 	for_each_kmem_cache_node(s, node, n) {
6200 		nr_slabs += node_nr_slabs(n);
6201 		nr_objs += node_nr_objs(n);
6202 		nr_free += count_partial(n, count_free);
6203 	}
6204 
6205 	sinfo->active_objs = nr_objs - nr_free;
6206 	sinfo->num_objs = nr_objs;
6207 	sinfo->active_slabs = nr_slabs;
6208 	sinfo->num_slabs = nr_slabs;
6209 	sinfo->objects_per_slab = oo_objects(s->oo);
6210 	sinfo->cache_order = oo_order(s->oo);
6211 }
6212 
6213 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6214 {
6215 }
6216 
6217 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6218 		       size_t count, loff_t *ppos)
6219 {
6220 	return -EIO;
6221 }
6222 #endif /* CONFIG_SLUB_DEBUG */
6223