xref: /openbmc/linux/mm/slub.c (revision 4f174a8bacebf57ffa18be0439b9ed7ee6d00c70)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/stacktrace.h>
38 #include <linux/prefetch.h>
39 #include <linux/memcontrol.h>
40 #include <linux/random.h>
41 #include <kunit/test.h>
42 #include <kunit/test-bug.h>
43 #include <linux/sort.h>
44 
45 #include <linux/debugfs.h>
46 #include <trace/events/kmem.h>
47 
48 #include "internal.h"
49 
50 /*
51  * Lock order:
52  *   1. slab_mutex (Global Mutex)
53  *   2. node->list_lock (Spinlock)
54  *   3. kmem_cache->cpu_slab->lock (Local lock)
55  *   4. slab_lock(slab) (Only on some arches)
56  *   5. object_map_lock (Only for debugging)
57  *
58  *   slab_mutex
59  *
60  *   The role of the slab_mutex is to protect the list of all the slabs
61  *   and to synchronize major metadata changes to slab cache structures.
62  *   Also synchronizes memory hotplug callbacks.
63  *
64  *   slab_lock
65  *
66  *   The slab_lock is a wrapper around the page lock, thus it is a bit
67  *   spinlock.
68  *
69  *   The slab_lock is only used on arches that do not have the ability
70  *   to do a cmpxchg_double. It only protects:
71  *
72  *	A. slab->freelist	-> List of free objects in a slab
73  *	B. slab->inuse		-> Number of objects in use
74  *	C. slab->objects	-> Number of objects in slab
75  *	D. slab->frozen		-> frozen state
76  *
77  *   Frozen slabs
78  *
79  *   If a slab is frozen then it is exempt from list management. It is not
80  *   on any list except per cpu partial list. The processor that froze the
81  *   slab is the one who can perform list operations on the slab. Other
82  *   processors may put objects onto the freelist but the processor that
83  *   froze the slab is the only one that can retrieve the objects from the
84  *   slab's freelist.
85  *
86  *   list_lock
87  *
88  *   The list_lock protects the partial and full list on each node and
89  *   the partial slab counter. If taken then no new slabs may be added or
90  *   removed from the lists nor make the number of partial slabs be modified.
91  *   (Note that the total number of slabs is an atomic value that may be
92  *   modified without taking the list lock).
93  *
94  *   The list_lock is a centralized lock and thus we avoid taking it as
95  *   much as possible. As long as SLUB does not have to handle partial
96  *   slabs, operations can continue without any centralized lock. F.e.
97  *   allocating a long series of objects that fill up slabs does not require
98  *   the list lock.
99  *
100  *   For debug caches, all allocations are forced to go through a list_lock
101  *   protected region to serialize against concurrent validation.
102  *
103  *   cpu_slab->lock local lock
104  *
105  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
106  *   except the stat counters. This is a percpu structure manipulated only by
107  *   the local cpu, so the lock protects against being preempted or interrupted
108  *   by an irq. Fast path operations rely on lockless operations instead.
109  *
110  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
111  *   which means the lockless fastpath cannot be used as it might interfere with
112  *   an in-progress slow path operations. In this case the local lock is always
113  *   taken but it still utilizes the freelist for the common operations.
114  *
115  *   lockless fastpaths
116  *
117  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
118  *   are fully lockless when satisfied from the percpu slab (and when
119  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
120  *   They also don't disable preemption or migration or irqs. They rely on
121  *   the transaction id (tid) field to detect being preempted or moved to
122  *   another cpu.
123  *
124  *   irq, preemption, migration considerations
125  *
126  *   Interrupts are disabled as part of list_lock or local_lock operations, or
127  *   around the slab_lock operation, in order to make the slab allocator safe
128  *   to use in the context of an irq.
129  *
130  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
131  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
132  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
133  *   doesn't have to be revalidated in each section protected by the local lock.
134  *
135  * SLUB assigns one slab for allocation to each processor.
136  * Allocations only occur from these slabs called cpu slabs.
137  *
138  * Slabs with free elements are kept on a partial list and during regular
139  * operations no list for full slabs is used. If an object in a full slab is
140  * freed then the slab will show up again on the partial lists.
141  * We track full slabs for debugging purposes though because otherwise we
142  * cannot scan all objects.
143  *
144  * Slabs are freed when they become empty. Teardown and setup is
145  * minimal so we rely on the page allocators per cpu caches for
146  * fast frees and allocs.
147  *
148  * slab->frozen		The slab is frozen and exempt from list processing.
149  * 			This means that the slab is dedicated to a purpose
150  * 			such as satisfying allocations for a specific
151  * 			processor. Objects may be freed in the slab while
152  * 			it is frozen but slab_free will then skip the usual
153  * 			list operations. It is up to the processor holding
154  * 			the slab to integrate the slab into the slab lists
155  * 			when the slab is no longer needed.
156  *
157  * 			One use of this flag is to mark slabs that are
158  * 			used for allocations. Then such a slab becomes a cpu
159  * 			slab. The cpu slab may be equipped with an additional
160  * 			freelist that allows lockless access to
161  * 			free objects in addition to the regular freelist
162  * 			that requires the slab lock.
163  *
164  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
165  * 			options set. This moves	slab handling out of
166  * 			the fast path and disables lockless freelists.
167  */
168 
169 /*
170  * We could simply use migrate_disable()/enable() but as long as it's a
171  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
172  */
173 #ifndef CONFIG_PREEMPT_RT
174 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
175 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
176 #define USE_LOCKLESS_FAST_PATH()	(true)
177 #else
178 #define slub_get_cpu_ptr(var)		\
179 ({					\
180 	migrate_disable();		\
181 	this_cpu_ptr(var);		\
182 })
183 #define slub_put_cpu_ptr(var)		\
184 do {					\
185 	(void)(var);			\
186 	migrate_enable();		\
187 } while (0)
188 #define USE_LOCKLESS_FAST_PATH()	(false)
189 #endif
190 
191 #ifndef CONFIG_SLUB_TINY
192 #define __fastpath_inline __always_inline
193 #else
194 #define __fastpath_inline
195 #endif
196 
197 #ifdef CONFIG_SLUB_DEBUG
198 #ifdef CONFIG_SLUB_DEBUG_ON
199 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
200 #else
201 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
202 #endif
203 #endif		/* CONFIG_SLUB_DEBUG */
204 
205 /* Structure holding parameters for get_partial() call chain */
206 struct partial_context {
207 	struct slab **slab;
208 	gfp_t flags;
209 	unsigned int orig_size;
210 };
211 
212 static inline bool kmem_cache_debug(struct kmem_cache *s)
213 {
214 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
215 }
216 
217 static inline bool slub_debug_orig_size(struct kmem_cache *s)
218 {
219 	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
220 			(s->flags & SLAB_KMALLOC));
221 }
222 
223 void *fixup_red_left(struct kmem_cache *s, void *p)
224 {
225 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
226 		p += s->red_left_pad;
227 
228 	return p;
229 }
230 
231 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
232 {
233 #ifdef CONFIG_SLUB_CPU_PARTIAL
234 	return !kmem_cache_debug(s);
235 #else
236 	return false;
237 #endif
238 }
239 
240 /*
241  * Issues still to be resolved:
242  *
243  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
244  *
245  * - Variable sizing of the per node arrays
246  */
247 
248 /* Enable to log cmpxchg failures */
249 #undef SLUB_DEBUG_CMPXCHG
250 
251 #ifndef CONFIG_SLUB_TINY
252 /*
253  * Minimum number of partial slabs. These will be left on the partial
254  * lists even if they are empty. kmem_cache_shrink may reclaim them.
255  */
256 #define MIN_PARTIAL 5
257 
258 /*
259  * Maximum number of desirable partial slabs.
260  * The existence of more partial slabs makes kmem_cache_shrink
261  * sort the partial list by the number of objects in use.
262  */
263 #define MAX_PARTIAL 10
264 #else
265 #define MIN_PARTIAL 0
266 #define MAX_PARTIAL 0
267 #endif
268 
269 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
270 				SLAB_POISON | SLAB_STORE_USER)
271 
272 /*
273  * These debug flags cannot use CMPXCHG because there might be consistency
274  * issues when checking or reading debug information
275  */
276 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
277 				SLAB_TRACE)
278 
279 
280 /*
281  * Debugging flags that require metadata to be stored in the slab.  These get
282  * disabled when slub_debug=O is used and a cache's min order increases with
283  * metadata.
284  */
285 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
286 
287 #define OO_SHIFT	16
288 #define OO_MASK		((1 << OO_SHIFT) - 1)
289 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
290 
291 /* Internal SLUB flags */
292 /* Poison object */
293 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
294 /* Use cmpxchg_double */
295 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
296 
297 /*
298  * Tracking user of a slab.
299  */
300 #define TRACK_ADDRS_COUNT 16
301 struct track {
302 	unsigned long addr;	/* Called from address */
303 #ifdef CONFIG_STACKDEPOT
304 	depot_stack_handle_t handle;
305 #endif
306 	int cpu;		/* Was running on cpu */
307 	int pid;		/* Pid context */
308 	unsigned long when;	/* When did the operation occur */
309 };
310 
311 enum track_item { TRACK_ALLOC, TRACK_FREE };
312 
313 #ifdef SLAB_SUPPORTS_SYSFS
314 static int sysfs_slab_add(struct kmem_cache *);
315 static int sysfs_slab_alias(struct kmem_cache *, const char *);
316 #else
317 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
318 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
319 							{ return 0; }
320 #endif
321 
322 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
323 static void debugfs_slab_add(struct kmem_cache *);
324 #else
325 static inline void debugfs_slab_add(struct kmem_cache *s) { }
326 #endif
327 
328 static inline void stat(const struct kmem_cache *s, enum stat_item si)
329 {
330 #ifdef CONFIG_SLUB_STATS
331 	/*
332 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
333 	 * avoid this_cpu_add()'s irq-disable overhead.
334 	 */
335 	raw_cpu_inc(s->cpu_slab->stat[si]);
336 #endif
337 }
338 
339 /*
340  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
341  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
342  * differ during memory hotplug/hotremove operations.
343  * Protected by slab_mutex.
344  */
345 static nodemask_t slab_nodes;
346 
347 #ifndef CONFIG_SLUB_TINY
348 /*
349  * Workqueue used for flush_cpu_slab().
350  */
351 static struct workqueue_struct *flushwq;
352 #endif
353 
354 /********************************************************************
355  * 			Core slab cache functions
356  *******************************************************************/
357 
358 /*
359  * Returns freelist pointer (ptr). With hardening, this is obfuscated
360  * with an XOR of the address where the pointer is held and a per-cache
361  * random number.
362  */
363 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
364 				 unsigned long ptr_addr)
365 {
366 #ifdef CONFIG_SLAB_FREELIST_HARDENED
367 	/*
368 	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
369 	 * Normally, this doesn't cause any issues, as both set_freepointer()
370 	 * and get_freepointer() are called with a pointer with the same tag.
371 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
372 	 * example, when __free_slub() iterates over objects in a cache, it
373 	 * passes untagged pointers to check_object(). check_object() in turns
374 	 * calls get_freepointer() with an untagged pointer, which causes the
375 	 * freepointer to be restored incorrectly.
376 	 */
377 	return (void *)((unsigned long)ptr ^ s->random ^
378 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
379 #else
380 	return ptr;
381 #endif
382 }
383 
384 /* Returns the freelist pointer recorded at location ptr_addr. */
385 static inline void *freelist_dereference(const struct kmem_cache *s,
386 					 void *ptr_addr)
387 {
388 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
389 			    (unsigned long)ptr_addr);
390 }
391 
392 static inline void *get_freepointer(struct kmem_cache *s, void *object)
393 {
394 	object = kasan_reset_tag(object);
395 	return freelist_dereference(s, object + s->offset);
396 }
397 
398 #ifndef CONFIG_SLUB_TINY
399 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
400 {
401 	prefetchw(object + s->offset);
402 }
403 #endif
404 
405 /*
406  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
407  * pointer value in the case the current thread loses the race for the next
408  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
409  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
410  * KMSAN will still check all arguments of cmpxchg because of imperfect
411  * handling of inline assembly.
412  * To work around this problem, we apply __no_kmsan_checks to ensure that
413  * get_freepointer_safe() returns initialized memory.
414  */
415 __no_kmsan_checks
416 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
417 {
418 	unsigned long freepointer_addr;
419 	void *p;
420 
421 	if (!debug_pagealloc_enabled_static())
422 		return get_freepointer(s, object);
423 
424 	object = kasan_reset_tag(object);
425 	freepointer_addr = (unsigned long)object + s->offset;
426 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
427 	return freelist_ptr(s, p, freepointer_addr);
428 }
429 
430 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
431 {
432 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
433 
434 #ifdef CONFIG_SLAB_FREELIST_HARDENED
435 	BUG_ON(object == fp); /* naive detection of double free or corruption */
436 #endif
437 
438 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
439 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
440 }
441 
442 /* Loop over all objects in a slab */
443 #define for_each_object(__p, __s, __addr, __objects) \
444 	for (__p = fixup_red_left(__s, __addr); \
445 		__p < (__addr) + (__objects) * (__s)->size; \
446 		__p += (__s)->size)
447 
448 static inline unsigned int order_objects(unsigned int order, unsigned int size)
449 {
450 	return ((unsigned int)PAGE_SIZE << order) / size;
451 }
452 
453 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
454 		unsigned int size)
455 {
456 	struct kmem_cache_order_objects x = {
457 		(order << OO_SHIFT) + order_objects(order, size)
458 	};
459 
460 	return x;
461 }
462 
463 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
464 {
465 	return x.x >> OO_SHIFT;
466 }
467 
468 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
469 {
470 	return x.x & OO_MASK;
471 }
472 
473 #ifdef CONFIG_SLUB_CPU_PARTIAL
474 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
475 {
476 	unsigned int nr_slabs;
477 
478 	s->cpu_partial = nr_objects;
479 
480 	/*
481 	 * We take the number of objects but actually limit the number of
482 	 * slabs on the per cpu partial list, in order to limit excessive
483 	 * growth of the list. For simplicity we assume that the slabs will
484 	 * be half-full.
485 	 */
486 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
487 	s->cpu_partial_slabs = nr_slabs;
488 }
489 #else
490 static inline void
491 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
492 {
493 }
494 #endif /* CONFIG_SLUB_CPU_PARTIAL */
495 
496 /*
497  * Per slab locking using the pagelock
498  */
499 static __always_inline void slab_lock(struct slab *slab)
500 {
501 	struct page *page = slab_page(slab);
502 
503 	VM_BUG_ON_PAGE(PageTail(page), page);
504 	bit_spin_lock(PG_locked, &page->flags);
505 }
506 
507 static __always_inline void slab_unlock(struct slab *slab)
508 {
509 	struct page *page = slab_page(slab);
510 
511 	VM_BUG_ON_PAGE(PageTail(page), page);
512 	__bit_spin_unlock(PG_locked, &page->flags);
513 }
514 
515 /*
516  * Interrupts must be disabled (for the fallback code to work right), typically
517  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
518  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
519  * allocation/ free operation in hardirq context. Therefore nothing can
520  * interrupt the operation.
521  */
522 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
523 		void *freelist_old, unsigned long counters_old,
524 		void *freelist_new, unsigned long counters_new,
525 		const char *n)
526 {
527 	if (USE_LOCKLESS_FAST_PATH())
528 		lockdep_assert_irqs_disabled();
529 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
530     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
531 	if (s->flags & __CMPXCHG_DOUBLE) {
532 		if (cmpxchg_double(&slab->freelist, &slab->counters,
533 				   freelist_old, counters_old,
534 				   freelist_new, counters_new))
535 			return true;
536 	} else
537 #endif
538 	{
539 		slab_lock(slab);
540 		if (slab->freelist == freelist_old &&
541 					slab->counters == counters_old) {
542 			slab->freelist = freelist_new;
543 			slab->counters = counters_new;
544 			slab_unlock(slab);
545 			return true;
546 		}
547 		slab_unlock(slab);
548 	}
549 
550 	cpu_relax();
551 	stat(s, CMPXCHG_DOUBLE_FAIL);
552 
553 #ifdef SLUB_DEBUG_CMPXCHG
554 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
555 #endif
556 
557 	return false;
558 }
559 
560 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
561 		void *freelist_old, unsigned long counters_old,
562 		void *freelist_new, unsigned long counters_new,
563 		const char *n)
564 {
565 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
566     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
567 	if (s->flags & __CMPXCHG_DOUBLE) {
568 		if (cmpxchg_double(&slab->freelist, &slab->counters,
569 				   freelist_old, counters_old,
570 				   freelist_new, counters_new))
571 			return true;
572 	} else
573 #endif
574 	{
575 		unsigned long flags;
576 
577 		local_irq_save(flags);
578 		slab_lock(slab);
579 		if (slab->freelist == freelist_old &&
580 					slab->counters == counters_old) {
581 			slab->freelist = freelist_new;
582 			slab->counters = counters_new;
583 			slab_unlock(slab);
584 			local_irq_restore(flags);
585 			return true;
586 		}
587 		slab_unlock(slab);
588 		local_irq_restore(flags);
589 	}
590 
591 	cpu_relax();
592 	stat(s, CMPXCHG_DOUBLE_FAIL);
593 
594 #ifdef SLUB_DEBUG_CMPXCHG
595 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
596 #endif
597 
598 	return false;
599 }
600 
601 #ifdef CONFIG_SLUB_DEBUG
602 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
603 static DEFINE_SPINLOCK(object_map_lock);
604 
605 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
606 		       struct slab *slab)
607 {
608 	void *addr = slab_address(slab);
609 	void *p;
610 
611 	bitmap_zero(obj_map, slab->objects);
612 
613 	for (p = slab->freelist; p; p = get_freepointer(s, p))
614 		set_bit(__obj_to_index(s, addr, p), obj_map);
615 }
616 
617 #if IS_ENABLED(CONFIG_KUNIT)
618 static bool slab_add_kunit_errors(void)
619 {
620 	struct kunit_resource *resource;
621 
622 	if (!kunit_get_current_test())
623 		return false;
624 
625 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
626 	if (!resource)
627 		return false;
628 
629 	(*(int *)resource->data)++;
630 	kunit_put_resource(resource);
631 	return true;
632 }
633 #else
634 static inline bool slab_add_kunit_errors(void) { return false; }
635 #endif
636 
637 static inline unsigned int size_from_object(struct kmem_cache *s)
638 {
639 	if (s->flags & SLAB_RED_ZONE)
640 		return s->size - s->red_left_pad;
641 
642 	return s->size;
643 }
644 
645 static inline void *restore_red_left(struct kmem_cache *s, void *p)
646 {
647 	if (s->flags & SLAB_RED_ZONE)
648 		p -= s->red_left_pad;
649 
650 	return p;
651 }
652 
653 /*
654  * Debug settings:
655  */
656 #if defined(CONFIG_SLUB_DEBUG_ON)
657 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
658 #else
659 static slab_flags_t slub_debug;
660 #endif
661 
662 static char *slub_debug_string;
663 static int disable_higher_order_debug;
664 
665 /*
666  * slub is about to manipulate internal object metadata.  This memory lies
667  * outside the range of the allocated object, so accessing it would normally
668  * be reported by kasan as a bounds error.  metadata_access_enable() is used
669  * to tell kasan that these accesses are OK.
670  */
671 static inline void metadata_access_enable(void)
672 {
673 	kasan_disable_current();
674 }
675 
676 static inline void metadata_access_disable(void)
677 {
678 	kasan_enable_current();
679 }
680 
681 /*
682  * Object debugging
683  */
684 
685 /* Verify that a pointer has an address that is valid within a slab page */
686 static inline int check_valid_pointer(struct kmem_cache *s,
687 				struct slab *slab, void *object)
688 {
689 	void *base;
690 
691 	if (!object)
692 		return 1;
693 
694 	base = slab_address(slab);
695 	object = kasan_reset_tag(object);
696 	object = restore_red_left(s, object);
697 	if (object < base || object >= base + slab->objects * s->size ||
698 		(object - base) % s->size) {
699 		return 0;
700 	}
701 
702 	return 1;
703 }
704 
705 static void print_section(char *level, char *text, u8 *addr,
706 			  unsigned int length)
707 {
708 	metadata_access_enable();
709 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
710 			16, 1, kasan_reset_tag((void *)addr), length, 1);
711 	metadata_access_disable();
712 }
713 
714 /*
715  * See comment in calculate_sizes().
716  */
717 static inline bool freeptr_outside_object(struct kmem_cache *s)
718 {
719 	return s->offset >= s->inuse;
720 }
721 
722 /*
723  * Return offset of the end of info block which is inuse + free pointer if
724  * not overlapping with object.
725  */
726 static inline unsigned int get_info_end(struct kmem_cache *s)
727 {
728 	if (freeptr_outside_object(s))
729 		return s->inuse + sizeof(void *);
730 	else
731 		return s->inuse;
732 }
733 
734 static struct track *get_track(struct kmem_cache *s, void *object,
735 	enum track_item alloc)
736 {
737 	struct track *p;
738 
739 	p = object + get_info_end(s);
740 
741 	return kasan_reset_tag(p + alloc);
742 }
743 
744 #ifdef CONFIG_STACKDEPOT
745 static noinline depot_stack_handle_t set_track_prepare(void)
746 {
747 	depot_stack_handle_t handle;
748 	unsigned long entries[TRACK_ADDRS_COUNT];
749 	unsigned int nr_entries;
750 
751 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
752 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
753 
754 	return handle;
755 }
756 #else
757 static inline depot_stack_handle_t set_track_prepare(void)
758 {
759 	return 0;
760 }
761 #endif
762 
763 static void set_track_update(struct kmem_cache *s, void *object,
764 			     enum track_item alloc, unsigned long addr,
765 			     depot_stack_handle_t handle)
766 {
767 	struct track *p = get_track(s, object, alloc);
768 
769 #ifdef CONFIG_STACKDEPOT
770 	p->handle = handle;
771 #endif
772 	p->addr = addr;
773 	p->cpu = smp_processor_id();
774 	p->pid = current->pid;
775 	p->when = jiffies;
776 }
777 
778 static __always_inline void set_track(struct kmem_cache *s, void *object,
779 				      enum track_item alloc, unsigned long addr)
780 {
781 	depot_stack_handle_t handle = set_track_prepare();
782 
783 	set_track_update(s, object, alloc, addr, handle);
784 }
785 
786 static void init_tracking(struct kmem_cache *s, void *object)
787 {
788 	struct track *p;
789 
790 	if (!(s->flags & SLAB_STORE_USER))
791 		return;
792 
793 	p = get_track(s, object, TRACK_ALLOC);
794 	memset(p, 0, 2*sizeof(struct track));
795 }
796 
797 static void print_track(const char *s, struct track *t, unsigned long pr_time)
798 {
799 	depot_stack_handle_t handle __maybe_unused;
800 
801 	if (!t->addr)
802 		return;
803 
804 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
805 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
806 #ifdef CONFIG_STACKDEPOT
807 	handle = READ_ONCE(t->handle);
808 	if (handle)
809 		stack_depot_print(handle);
810 	else
811 		pr_err("object allocation/free stack trace missing\n");
812 #endif
813 }
814 
815 void print_tracking(struct kmem_cache *s, void *object)
816 {
817 	unsigned long pr_time = jiffies;
818 	if (!(s->flags & SLAB_STORE_USER))
819 		return;
820 
821 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
822 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
823 }
824 
825 static void print_slab_info(const struct slab *slab)
826 {
827 	struct folio *folio = (struct folio *)slab_folio(slab);
828 
829 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
830 	       slab, slab->objects, slab->inuse, slab->freelist,
831 	       folio_flags(folio, 0));
832 }
833 
834 /*
835  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
836  * family will round up the real request size to these fixed ones, so
837  * there could be an extra area than what is requested. Save the original
838  * request size in the meta data area, for better debug and sanity check.
839  */
840 static inline void set_orig_size(struct kmem_cache *s,
841 				void *object, unsigned int orig_size)
842 {
843 	void *p = kasan_reset_tag(object);
844 
845 	if (!slub_debug_orig_size(s))
846 		return;
847 
848 #ifdef CONFIG_KASAN_GENERIC
849 	/*
850 	 * KASAN could save its free meta data in object's data area at
851 	 * offset 0, if the size is larger than 'orig_size', it will
852 	 * overlap the data redzone in [orig_size+1, object_size], and
853 	 * the check should be skipped.
854 	 */
855 	if (kasan_metadata_size(s, true) > orig_size)
856 		orig_size = s->object_size;
857 #endif
858 
859 	p += get_info_end(s);
860 	p += sizeof(struct track) * 2;
861 
862 	*(unsigned int *)p = orig_size;
863 }
864 
865 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
866 {
867 	void *p = kasan_reset_tag(object);
868 
869 	if (!slub_debug_orig_size(s))
870 		return s->object_size;
871 
872 	p += get_info_end(s);
873 	p += sizeof(struct track) * 2;
874 
875 	return *(unsigned int *)p;
876 }
877 
878 void skip_orig_size_check(struct kmem_cache *s, const void *object)
879 {
880 	set_orig_size(s, (void *)object, s->object_size);
881 }
882 
883 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
884 {
885 	struct va_format vaf;
886 	va_list args;
887 
888 	va_start(args, fmt);
889 	vaf.fmt = fmt;
890 	vaf.va = &args;
891 	pr_err("=============================================================================\n");
892 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
893 	pr_err("-----------------------------------------------------------------------------\n\n");
894 	va_end(args);
895 }
896 
897 __printf(2, 3)
898 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
899 {
900 	struct va_format vaf;
901 	va_list args;
902 
903 	if (slab_add_kunit_errors())
904 		return;
905 
906 	va_start(args, fmt);
907 	vaf.fmt = fmt;
908 	vaf.va = &args;
909 	pr_err("FIX %s: %pV\n", s->name, &vaf);
910 	va_end(args);
911 }
912 
913 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
914 {
915 	unsigned int off;	/* Offset of last byte */
916 	u8 *addr = slab_address(slab);
917 
918 	print_tracking(s, p);
919 
920 	print_slab_info(slab);
921 
922 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
923 	       p, p - addr, get_freepointer(s, p));
924 
925 	if (s->flags & SLAB_RED_ZONE)
926 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
927 			      s->red_left_pad);
928 	else if (p > addr + 16)
929 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
930 
931 	print_section(KERN_ERR,         "Object   ", p,
932 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
933 	if (s->flags & SLAB_RED_ZONE)
934 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
935 			s->inuse - s->object_size);
936 
937 	off = get_info_end(s);
938 
939 	if (s->flags & SLAB_STORE_USER)
940 		off += 2 * sizeof(struct track);
941 
942 	if (slub_debug_orig_size(s))
943 		off += sizeof(unsigned int);
944 
945 	off += kasan_metadata_size(s, false);
946 
947 	if (off != size_from_object(s))
948 		/* Beginning of the filler is the free pointer */
949 		print_section(KERN_ERR, "Padding  ", p + off,
950 			      size_from_object(s) - off);
951 
952 	dump_stack();
953 }
954 
955 static void object_err(struct kmem_cache *s, struct slab *slab,
956 			u8 *object, char *reason)
957 {
958 	if (slab_add_kunit_errors())
959 		return;
960 
961 	slab_bug(s, "%s", reason);
962 	print_trailer(s, slab, object);
963 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
964 }
965 
966 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
967 			       void **freelist, void *nextfree)
968 {
969 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
970 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
971 		object_err(s, slab, *freelist, "Freechain corrupt");
972 		*freelist = NULL;
973 		slab_fix(s, "Isolate corrupted freechain");
974 		return true;
975 	}
976 
977 	return false;
978 }
979 
980 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
981 			const char *fmt, ...)
982 {
983 	va_list args;
984 	char buf[100];
985 
986 	if (slab_add_kunit_errors())
987 		return;
988 
989 	va_start(args, fmt);
990 	vsnprintf(buf, sizeof(buf), fmt, args);
991 	va_end(args);
992 	slab_bug(s, "%s", buf);
993 	print_slab_info(slab);
994 	dump_stack();
995 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
996 }
997 
998 static void init_object(struct kmem_cache *s, void *object, u8 val)
999 {
1000 	u8 *p = kasan_reset_tag(object);
1001 	unsigned int poison_size = s->object_size;
1002 
1003 	if (s->flags & SLAB_RED_ZONE) {
1004 		memset(p - s->red_left_pad, val, s->red_left_pad);
1005 
1006 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1007 			/*
1008 			 * Redzone the extra allocated space by kmalloc than
1009 			 * requested, and the poison size will be limited to
1010 			 * the original request size accordingly.
1011 			 */
1012 			poison_size = get_orig_size(s, object);
1013 		}
1014 	}
1015 
1016 	if (s->flags & __OBJECT_POISON) {
1017 		memset(p, POISON_FREE, poison_size - 1);
1018 		p[poison_size - 1] = POISON_END;
1019 	}
1020 
1021 	if (s->flags & SLAB_RED_ZONE)
1022 		memset(p + poison_size, val, s->inuse - poison_size);
1023 }
1024 
1025 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1026 						void *from, void *to)
1027 {
1028 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1029 	memset(from, data, to - from);
1030 }
1031 
1032 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1033 			u8 *object, char *what,
1034 			u8 *start, unsigned int value, unsigned int bytes)
1035 {
1036 	u8 *fault;
1037 	u8 *end;
1038 	u8 *addr = slab_address(slab);
1039 
1040 	metadata_access_enable();
1041 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1042 	metadata_access_disable();
1043 	if (!fault)
1044 		return 1;
1045 
1046 	end = start + bytes;
1047 	while (end > fault && end[-1] == value)
1048 		end--;
1049 
1050 	if (slab_add_kunit_errors())
1051 		goto skip_bug_print;
1052 
1053 	slab_bug(s, "%s overwritten", what);
1054 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1055 					fault, end - 1, fault - addr,
1056 					fault[0], value);
1057 	print_trailer(s, slab, object);
1058 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1059 
1060 skip_bug_print:
1061 	restore_bytes(s, what, value, fault, end);
1062 	return 0;
1063 }
1064 
1065 /*
1066  * Object layout:
1067  *
1068  * object address
1069  * 	Bytes of the object to be managed.
1070  * 	If the freepointer may overlay the object then the free
1071  *	pointer is at the middle of the object.
1072  *
1073  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1074  * 	0xa5 (POISON_END)
1075  *
1076  * object + s->object_size
1077  * 	Padding to reach word boundary. This is also used for Redzoning.
1078  * 	Padding is extended by another word if Redzoning is enabled and
1079  * 	object_size == inuse.
1080  *
1081  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1082  * 	0xcc (RED_ACTIVE) for objects in use.
1083  *
1084  * object + s->inuse
1085  * 	Meta data starts here.
1086  *
1087  * 	A. Free pointer (if we cannot overwrite object on free)
1088  * 	B. Tracking data for SLAB_STORE_USER
1089  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1090  *	D. Padding to reach required alignment boundary or at minimum
1091  * 		one word if debugging is on to be able to detect writes
1092  * 		before the word boundary.
1093  *
1094  *	Padding is done using 0x5a (POISON_INUSE)
1095  *
1096  * object + s->size
1097  * 	Nothing is used beyond s->size.
1098  *
1099  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1100  * ignored. And therefore no slab options that rely on these boundaries
1101  * may be used with merged slabcaches.
1102  */
1103 
1104 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1105 {
1106 	unsigned long off = get_info_end(s);	/* The end of info */
1107 
1108 	if (s->flags & SLAB_STORE_USER) {
1109 		/* We also have user information there */
1110 		off += 2 * sizeof(struct track);
1111 
1112 		if (s->flags & SLAB_KMALLOC)
1113 			off += sizeof(unsigned int);
1114 	}
1115 
1116 	off += kasan_metadata_size(s, false);
1117 
1118 	if (size_from_object(s) == off)
1119 		return 1;
1120 
1121 	return check_bytes_and_report(s, slab, p, "Object padding",
1122 			p + off, POISON_INUSE, size_from_object(s) - off);
1123 }
1124 
1125 /* Check the pad bytes at the end of a slab page */
1126 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1127 {
1128 	u8 *start;
1129 	u8 *fault;
1130 	u8 *end;
1131 	u8 *pad;
1132 	int length;
1133 	int remainder;
1134 
1135 	if (!(s->flags & SLAB_POISON))
1136 		return;
1137 
1138 	start = slab_address(slab);
1139 	length = slab_size(slab);
1140 	end = start + length;
1141 	remainder = length % s->size;
1142 	if (!remainder)
1143 		return;
1144 
1145 	pad = end - remainder;
1146 	metadata_access_enable();
1147 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1148 	metadata_access_disable();
1149 	if (!fault)
1150 		return;
1151 	while (end > fault && end[-1] == POISON_INUSE)
1152 		end--;
1153 
1154 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1155 			fault, end - 1, fault - start);
1156 	print_section(KERN_ERR, "Padding ", pad, remainder);
1157 
1158 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1159 }
1160 
1161 static int check_object(struct kmem_cache *s, struct slab *slab,
1162 					void *object, u8 val)
1163 {
1164 	u8 *p = object;
1165 	u8 *endobject = object + s->object_size;
1166 	unsigned int orig_size;
1167 
1168 	if (s->flags & SLAB_RED_ZONE) {
1169 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1170 			object - s->red_left_pad, val, s->red_left_pad))
1171 			return 0;
1172 
1173 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1174 			endobject, val, s->inuse - s->object_size))
1175 			return 0;
1176 
1177 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1178 			orig_size = get_orig_size(s, object);
1179 
1180 			if (s->object_size > orig_size  &&
1181 				!check_bytes_and_report(s, slab, object,
1182 					"kmalloc Redzone", p + orig_size,
1183 					val, s->object_size - orig_size)) {
1184 				return 0;
1185 			}
1186 		}
1187 	} else {
1188 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1189 			check_bytes_and_report(s, slab, p, "Alignment padding",
1190 				endobject, POISON_INUSE,
1191 				s->inuse - s->object_size);
1192 		}
1193 	}
1194 
1195 	if (s->flags & SLAB_POISON) {
1196 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1197 			(!check_bytes_and_report(s, slab, p, "Poison", p,
1198 					POISON_FREE, s->object_size - 1) ||
1199 			 !check_bytes_and_report(s, slab, p, "End Poison",
1200 				p + s->object_size - 1, POISON_END, 1)))
1201 			return 0;
1202 		/*
1203 		 * check_pad_bytes cleans up on its own.
1204 		 */
1205 		check_pad_bytes(s, slab, p);
1206 	}
1207 
1208 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1209 		/*
1210 		 * Object and freepointer overlap. Cannot check
1211 		 * freepointer while object is allocated.
1212 		 */
1213 		return 1;
1214 
1215 	/* Check free pointer validity */
1216 	if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1217 		object_err(s, slab, p, "Freepointer corrupt");
1218 		/*
1219 		 * No choice but to zap it and thus lose the remainder
1220 		 * of the free objects in this slab. May cause
1221 		 * another error because the object count is now wrong.
1222 		 */
1223 		set_freepointer(s, p, NULL);
1224 		return 0;
1225 	}
1226 	return 1;
1227 }
1228 
1229 static int check_slab(struct kmem_cache *s, struct slab *slab)
1230 {
1231 	int maxobj;
1232 
1233 	if (!folio_test_slab(slab_folio(slab))) {
1234 		slab_err(s, slab, "Not a valid slab page");
1235 		return 0;
1236 	}
1237 
1238 	maxobj = order_objects(slab_order(slab), s->size);
1239 	if (slab->objects > maxobj) {
1240 		slab_err(s, slab, "objects %u > max %u",
1241 			slab->objects, maxobj);
1242 		return 0;
1243 	}
1244 	if (slab->inuse > slab->objects) {
1245 		slab_err(s, slab, "inuse %u > max %u",
1246 			slab->inuse, slab->objects);
1247 		return 0;
1248 	}
1249 	/* Slab_pad_check fixes things up after itself */
1250 	slab_pad_check(s, slab);
1251 	return 1;
1252 }
1253 
1254 /*
1255  * Determine if a certain object in a slab is on the freelist. Must hold the
1256  * slab lock to guarantee that the chains are in a consistent state.
1257  */
1258 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1259 {
1260 	int nr = 0;
1261 	void *fp;
1262 	void *object = NULL;
1263 	int max_objects;
1264 
1265 	fp = slab->freelist;
1266 	while (fp && nr <= slab->objects) {
1267 		if (fp == search)
1268 			return 1;
1269 		if (!check_valid_pointer(s, slab, fp)) {
1270 			if (object) {
1271 				object_err(s, slab, object,
1272 					"Freechain corrupt");
1273 				set_freepointer(s, object, NULL);
1274 			} else {
1275 				slab_err(s, slab, "Freepointer corrupt");
1276 				slab->freelist = NULL;
1277 				slab->inuse = slab->objects;
1278 				slab_fix(s, "Freelist cleared");
1279 				return 0;
1280 			}
1281 			break;
1282 		}
1283 		object = fp;
1284 		fp = get_freepointer(s, object);
1285 		nr++;
1286 	}
1287 
1288 	max_objects = order_objects(slab_order(slab), s->size);
1289 	if (max_objects > MAX_OBJS_PER_PAGE)
1290 		max_objects = MAX_OBJS_PER_PAGE;
1291 
1292 	if (slab->objects != max_objects) {
1293 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1294 			 slab->objects, max_objects);
1295 		slab->objects = max_objects;
1296 		slab_fix(s, "Number of objects adjusted");
1297 	}
1298 	if (slab->inuse != slab->objects - nr) {
1299 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1300 			 slab->inuse, slab->objects - nr);
1301 		slab->inuse = slab->objects - nr;
1302 		slab_fix(s, "Object count adjusted");
1303 	}
1304 	return search == NULL;
1305 }
1306 
1307 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1308 								int alloc)
1309 {
1310 	if (s->flags & SLAB_TRACE) {
1311 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1312 			s->name,
1313 			alloc ? "alloc" : "free",
1314 			object, slab->inuse,
1315 			slab->freelist);
1316 
1317 		if (!alloc)
1318 			print_section(KERN_INFO, "Object ", (void *)object,
1319 					s->object_size);
1320 
1321 		dump_stack();
1322 	}
1323 }
1324 
1325 /*
1326  * Tracking of fully allocated slabs for debugging purposes.
1327  */
1328 static void add_full(struct kmem_cache *s,
1329 	struct kmem_cache_node *n, struct slab *slab)
1330 {
1331 	if (!(s->flags & SLAB_STORE_USER))
1332 		return;
1333 
1334 	lockdep_assert_held(&n->list_lock);
1335 	list_add(&slab->slab_list, &n->full);
1336 }
1337 
1338 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1339 {
1340 	if (!(s->flags & SLAB_STORE_USER))
1341 		return;
1342 
1343 	lockdep_assert_held(&n->list_lock);
1344 	list_del(&slab->slab_list);
1345 }
1346 
1347 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1348 {
1349 	return atomic_long_read(&n->nr_slabs);
1350 }
1351 
1352 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1353 {
1354 	struct kmem_cache_node *n = get_node(s, node);
1355 
1356 	/*
1357 	 * May be called early in order to allocate a slab for the
1358 	 * kmem_cache_node structure. Solve the chicken-egg
1359 	 * dilemma by deferring the increment of the count during
1360 	 * bootstrap (see early_kmem_cache_node_alloc).
1361 	 */
1362 	if (likely(n)) {
1363 		atomic_long_inc(&n->nr_slabs);
1364 		atomic_long_add(objects, &n->total_objects);
1365 	}
1366 }
1367 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1368 {
1369 	struct kmem_cache_node *n = get_node(s, node);
1370 
1371 	atomic_long_dec(&n->nr_slabs);
1372 	atomic_long_sub(objects, &n->total_objects);
1373 }
1374 
1375 /* Object debug checks for alloc/free paths */
1376 static void setup_object_debug(struct kmem_cache *s, void *object)
1377 {
1378 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1379 		return;
1380 
1381 	init_object(s, object, SLUB_RED_INACTIVE);
1382 	init_tracking(s, object);
1383 }
1384 
1385 static
1386 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1387 {
1388 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1389 		return;
1390 
1391 	metadata_access_enable();
1392 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1393 	metadata_access_disable();
1394 }
1395 
1396 static inline int alloc_consistency_checks(struct kmem_cache *s,
1397 					struct slab *slab, void *object)
1398 {
1399 	if (!check_slab(s, slab))
1400 		return 0;
1401 
1402 	if (!check_valid_pointer(s, slab, object)) {
1403 		object_err(s, slab, object, "Freelist Pointer check fails");
1404 		return 0;
1405 	}
1406 
1407 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1408 		return 0;
1409 
1410 	return 1;
1411 }
1412 
1413 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1414 			struct slab *slab, void *object, int orig_size)
1415 {
1416 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1417 		if (!alloc_consistency_checks(s, slab, object))
1418 			goto bad;
1419 	}
1420 
1421 	/* Success. Perform special debug activities for allocs */
1422 	trace(s, slab, object, 1);
1423 	set_orig_size(s, object, orig_size);
1424 	init_object(s, object, SLUB_RED_ACTIVE);
1425 	return true;
1426 
1427 bad:
1428 	if (folio_test_slab(slab_folio(slab))) {
1429 		/*
1430 		 * If this is a slab page then lets do the best we can
1431 		 * to avoid issues in the future. Marking all objects
1432 		 * as used avoids touching the remaining objects.
1433 		 */
1434 		slab_fix(s, "Marking all objects used");
1435 		slab->inuse = slab->objects;
1436 		slab->freelist = NULL;
1437 	}
1438 	return false;
1439 }
1440 
1441 static inline int free_consistency_checks(struct kmem_cache *s,
1442 		struct slab *slab, void *object, unsigned long addr)
1443 {
1444 	if (!check_valid_pointer(s, slab, object)) {
1445 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1446 		return 0;
1447 	}
1448 
1449 	if (on_freelist(s, slab, object)) {
1450 		object_err(s, slab, object, "Object already free");
1451 		return 0;
1452 	}
1453 
1454 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1455 		return 0;
1456 
1457 	if (unlikely(s != slab->slab_cache)) {
1458 		if (!folio_test_slab(slab_folio(slab))) {
1459 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1460 				 object);
1461 		} else if (!slab->slab_cache) {
1462 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1463 			       object);
1464 			dump_stack();
1465 		} else
1466 			object_err(s, slab, object,
1467 					"page slab pointer corrupt.");
1468 		return 0;
1469 	}
1470 	return 1;
1471 }
1472 
1473 /*
1474  * Parse a block of slub_debug options. Blocks are delimited by ';'
1475  *
1476  * @str:    start of block
1477  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1478  * @slabs:  return start of list of slabs, or NULL when there's no list
1479  * @init:   assume this is initial parsing and not per-kmem-create parsing
1480  *
1481  * returns the start of next block if there's any, or NULL
1482  */
1483 static char *
1484 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1485 {
1486 	bool higher_order_disable = false;
1487 
1488 	/* Skip any completely empty blocks */
1489 	while (*str && *str == ';')
1490 		str++;
1491 
1492 	if (*str == ',') {
1493 		/*
1494 		 * No options but restriction on slabs. This means full
1495 		 * debugging for slabs matching a pattern.
1496 		 */
1497 		*flags = DEBUG_DEFAULT_FLAGS;
1498 		goto check_slabs;
1499 	}
1500 	*flags = 0;
1501 
1502 	/* Determine which debug features should be switched on */
1503 	for (; *str && *str != ',' && *str != ';'; str++) {
1504 		switch (tolower(*str)) {
1505 		case '-':
1506 			*flags = 0;
1507 			break;
1508 		case 'f':
1509 			*flags |= SLAB_CONSISTENCY_CHECKS;
1510 			break;
1511 		case 'z':
1512 			*flags |= SLAB_RED_ZONE;
1513 			break;
1514 		case 'p':
1515 			*flags |= SLAB_POISON;
1516 			break;
1517 		case 'u':
1518 			*flags |= SLAB_STORE_USER;
1519 			break;
1520 		case 't':
1521 			*flags |= SLAB_TRACE;
1522 			break;
1523 		case 'a':
1524 			*flags |= SLAB_FAILSLAB;
1525 			break;
1526 		case 'o':
1527 			/*
1528 			 * Avoid enabling debugging on caches if its minimum
1529 			 * order would increase as a result.
1530 			 */
1531 			higher_order_disable = true;
1532 			break;
1533 		default:
1534 			if (init)
1535 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1536 		}
1537 	}
1538 check_slabs:
1539 	if (*str == ',')
1540 		*slabs = ++str;
1541 	else
1542 		*slabs = NULL;
1543 
1544 	/* Skip over the slab list */
1545 	while (*str && *str != ';')
1546 		str++;
1547 
1548 	/* Skip any completely empty blocks */
1549 	while (*str && *str == ';')
1550 		str++;
1551 
1552 	if (init && higher_order_disable)
1553 		disable_higher_order_debug = 1;
1554 
1555 	if (*str)
1556 		return str;
1557 	else
1558 		return NULL;
1559 }
1560 
1561 static int __init setup_slub_debug(char *str)
1562 {
1563 	slab_flags_t flags;
1564 	slab_flags_t global_flags;
1565 	char *saved_str;
1566 	char *slab_list;
1567 	bool global_slub_debug_changed = false;
1568 	bool slab_list_specified = false;
1569 
1570 	global_flags = DEBUG_DEFAULT_FLAGS;
1571 	if (*str++ != '=' || !*str)
1572 		/*
1573 		 * No options specified. Switch on full debugging.
1574 		 */
1575 		goto out;
1576 
1577 	saved_str = str;
1578 	while (str) {
1579 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1580 
1581 		if (!slab_list) {
1582 			global_flags = flags;
1583 			global_slub_debug_changed = true;
1584 		} else {
1585 			slab_list_specified = true;
1586 			if (flags & SLAB_STORE_USER)
1587 				stack_depot_request_early_init();
1588 		}
1589 	}
1590 
1591 	/*
1592 	 * For backwards compatibility, a single list of flags with list of
1593 	 * slabs means debugging is only changed for those slabs, so the global
1594 	 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1595 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1596 	 * long as there is no option specifying flags without a slab list.
1597 	 */
1598 	if (slab_list_specified) {
1599 		if (!global_slub_debug_changed)
1600 			global_flags = slub_debug;
1601 		slub_debug_string = saved_str;
1602 	}
1603 out:
1604 	slub_debug = global_flags;
1605 	if (slub_debug & SLAB_STORE_USER)
1606 		stack_depot_request_early_init();
1607 	if (slub_debug != 0 || slub_debug_string)
1608 		static_branch_enable(&slub_debug_enabled);
1609 	else
1610 		static_branch_disable(&slub_debug_enabled);
1611 	if ((static_branch_unlikely(&init_on_alloc) ||
1612 	     static_branch_unlikely(&init_on_free)) &&
1613 	    (slub_debug & SLAB_POISON))
1614 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1615 	return 1;
1616 }
1617 
1618 __setup("slub_debug", setup_slub_debug);
1619 
1620 /*
1621  * kmem_cache_flags - apply debugging options to the cache
1622  * @object_size:	the size of an object without meta data
1623  * @flags:		flags to set
1624  * @name:		name of the cache
1625  *
1626  * Debug option(s) are applied to @flags. In addition to the debug
1627  * option(s), if a slab name (or multiple) is specified i.e.
1628  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1629  * then only the select slabs will receive the debug option(s).
1630  */
1631 slab_flags_t kmem_cache_flags(unsigned int object_size,
1632 	slab_flags_t flags, const char *name)
1633 {
1634 	char *iter;
1635 	size_t len;
1636 	char *next_block;
1637 	slab_flags_t block_flags;
1638 	slab_flags_t slub_debug_local = slub_debug;
1639 
1640 	if (flags & SLAB_NO_USER_FLAGS)
1641 		return flags;
1642 
1643 	/*
1644 	 * If the slab cache is for debugging (e.g. kmemleak) then
1645 	 * don't store user (stack trace) information by default,
1646 	 * but let the user enable it via the command line below.
1647 	 */
1648 	if (flags & SLAB_NOLEAKTRACE)
1649 		slub_debug_local &= ~SLAB_STORE_USER;
1650 
1651 	len = strlen(name);
1652 	next_block = slub_debug_string;
1653 	/* Go through all blocks of debug options, see if any matches our slab's name */
1654 	while (next_block) {
1655 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1656 		if (!iter)
1657 			continue;
1658 		/* Found a block that has a slab list, search it */
1659 		while (*iter) {
1660 			char *end, *glob;
1661 			size_t cmplen;
1662 
1663 			end = strchrnul(iter, ',');
1664 			if (next_block && next_block < end)
1665 				end = next_block - 1;
1666 
1667 			glob = strnchr(iter, end - iter, '*');
1668 			if (glob)
1669 				cmplen = glob - iter;
1670 			else
1671 				cmplen = max_t(size_t, len, (end - iter));
1672 
1673 			if (!strncmp(name, iter, cmplen)) {
1674 				flags |= block_flags;
1675 				return flags;
1676 			}
1677 
1678 			if (!*end || *end == ';')
1679 				break;
1680 			iter = end + 1;
1681 		}
1682 	}
1683 
1684 	return flags | slub_debug_local;
1685 }
1686 #else /* !CONFIG_SLUB_DEBUG */
1687 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1688 static inline
1689 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1690 
1691 static inline bool alloc_debug_processing(struct kmem_cache *s,
1692 	struct slab *slab, void *object, int orig_size) { return true; }
1693 
1694 static inline bool free_debug_processing(struct kmem_cache *s,
1695 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1696 	unsigned long addr, depot_stack_handle_t handle) { return true; }
1697 
1698 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1699 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1700 			void *object, u8 val) { return 1; }
1701 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1702 static inline void set_track(struct kmem_cache *s, void *object,
1703 			     enum track_item alloc, unsigned long addr) {}
1704 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1705 					struct slab *slab) {}
1706 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1707 					struct slab *slab) {}
1708 slab_flags_t kmem_cache_flags(unsigned int object_size,
1709 	slab_flags_t flags, const char *name)
1710 {
1711 	return flags;
1712 }
1713 #define slub_debug 0
1714 
1715 #define disable_higher_order_debug 0
1716 
1717 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1718 							{ return 0; }
1719 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1720 							int objects) {}
1721 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1722 							int objects) {}
1723 
1724 #ifndef CONFIG_SLUB_TINY
1725 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1726 			       void **freelist, void *nextfree)
1727 {
1728 	return false;
1729 }
1730 #endif
1731 #endif /* CONFIG_SLUB_DEBUG */
1732 
1733 /*
1734  * Hooks for other subsystems that check memory allocations. In a typical
1735  * production configuration these hooks all should produce no code at all.
1736  */
1737 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1738 						void *x, bool init)
1739 {
1740 	kmemleak_free_recursive(x, s->flags);
1741 	kmsan_slab_free(s, x);
1742 
1743 	debug_check_no_locks_freed(x, s->object_size);
1744 
1745 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1746 		debug_check_no_obj_freed(x, s->object_size);
1747 
1748 	/* Use KCSAN to help debug racy use-after-free. */
1749 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1750 		__kcsan_check_access(x, s->object_size,
1751 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1752 
1753 	/*
1754 	 * As memory initialization might be integrated into KASAN,
1755 	 * kasan_slab_free and initialization memset's must be
1756 	 * kept together to avoid discrepancies in behavior.
1757 	 *
1758 	 * The initialization memset's clear the object and the metadata,
1759 	 * but don't touch the SLAB redzone.
1760 	 */
1761 	if (init) {
1762 		int rsize;
1763 
1764 		if (!kasan_has_integrated_init())
1765 			memset(kasan_reset_tag(x), 0, s->object_size);
1766 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1767 		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1768 		       s->size - s->inuse - rsize);
1769 	}
1770 	/* KASAN might put x into memory quarantine, delaying its reuse. */
1771 	return kasan_slab_free(s, x, init);
1772 }
1773 
1774 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1775 					   void **head, void **tail,
1776 					   int *cnt)
1777 {
1778 
1779 	void *object;
1780 	void *next = *head;
1781 	void *old_tail = *tail ? *tail : *head;
1782 
1783 	if (is_kfence_address(next)) {
1784 		slab_free_hook(s, next, false);
1785 		return true;
1786 	}
1787 
1788 	/* Head and tail of the reconstructed freelist */
1789 	*head = NULL;
1790 	*tail = NULL;
1791 
1792 	do {
1793 		object = next;
1794 		next = get_freepointer(s, object);
1795 
1796 		/* If object's reuse doesn't have to be delayed */
1797 		if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1798 			/* Move object to the new freelist */
1799 			set_freepointer(s, object, *head);
1800 			*head = object;
1801 			if (!*tail)
1802 				*tail = object;
1803 		} else {
1804 			/*
1805 			 * Adjust the reconstructed freelist depth
1806 			 * accordingly if object's reuse is delayed.
1807 			 */
1808 			--(*cnt);
1809 		}
1810 	} while (object != old_tail);
1811 
1812 	if (*head == *tail)
1813 		*tail = NULL;
1814 
1815 	return *head != NULL;
1816 }
1817 
1818 static void *setup_object(struct kmem_cache *s, void *object)
1819 {
1820 	setup_object_debug(s, object);
1821 	object = kasan_init_slab_obj(s, object);
1822 	if (unlikely(s->ctor)) {
1823 		kasan_unpoison_object_data(s, object);
1824 		s->ctor(object);
1825 		kasan_poison_object_data(s, object);
1826 	}
1827 	return object;
1828 }
1829 
1830 /*
1831  * Slab allocation and freeing
1832  */
1833 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1834 		struct kmem_cache_order_objects oo)
1835 {
1836 	struct folio *folio;
1837 	struct slab *slab;
1838 	unsigned int order = oo_order(oo);
1839 
1840 	if (node == NUMA_NO_NODE)
1841 		folio = (struct folio *)alloc_pages(flags, order);
1842 	else
1843 		folio = (struct folio *)__alloc_pages_node(node, flags, order);
1844 
1845 	if (!folio)
1846 		return NULL;
1847 
1848 	slab = folio_slab(folio);
1849 	__folio_set_slab(folio);
1850 	/* Make the flag visible before any changes to folio->mapping */
1851 	smp_wmb();
1852 	if (folio_is_pfmemalloc(folio))
1853 		slab_set_pfmemalloc(slab);
1854 
1855 	return slab;
1856 }
1857 
1858 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1859 /* Pre-initialize the random sequence cache */
1860 static int init_cache_random_seq(struct kmem_cache *s)
1861 {
1862 	unsigned int count = oo_objects(s->oo);
1863 	int err;
1864 
1865 	/* Bailout if already initialised */
1866 	if (s->random_seq)
1867 		return 0;
1868 
1869 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1870 	if (err) {
1871 		pr_err("SLUB: Unable to initialize free list for %s\n",
1872 			s->name);
1873 		return err;
1874 	}
1875 
1876 	/* Transform to an offset on the set of pages */
1877 	if (s->random_seq) {
1878 		unsigned int i;
1879 
1880 		for (i = 0; i < count; i++)
1881 			s->random_seq[i] *= s->size;
1882 	}
1883 	return 0;
1884 }
1885 
1886 /* Initialize each random sequence freelist per cache */
1887 static void __init init_freelist_randomization(void)
1888 {
1889 	struct kmem_cache *s;
1890 
1891 	mutex_lock(&slab_mutex);
1892 
1893 	list_for_each_entry(s, &slab_caches, list)
1894 		init_cache_random_seq(s);
1895 
1896 	mutex_unlock(&slab_mutex);
1897 }
1898 
1899 /* Get the next entry on the pre-computed freelist randomized */
1900 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1901 				unsigned long *pos, void *start,
1902 				unsigned long page_limit,
1903 				unsigned long freelist_count)
1904 {
1905 	unsigned int idx;
1906 
1907 	/*
1908 	 * If the target page allocation failed, the number of objects on the
1909 	 * page might be smaller than the usual size defined by the cache.
1910 	 */
1911 	do {
1912 		idx = s->random_seq[*pos];
1913 		*pos += 1;
1914 		if (*pos >= freelist_count)
1915 			*pos = 0;
1916 	} while (unlikely(idx >= page_limit));
1917 
1918 	return (char *)start + idx;
1919 }
1920 
1921 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1922 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1923 {
1924 	void *start;
1925 	void *cur;
1926 	void *next;
1927 	unsigned long idx, pos, page_limit, freelist_count;
1928 
1929 	if (slab->objects < 2 || !s->random_seq)
1930 		return false;
1931 
1932 	freelist_count = oo_objects(s->oo);
1933 	pos = get_random_u32_below(freelist_count);
1934 
1935 	page_limit = slab->objects * s->size;
1936 	start = fixup_red_left(s, slab_address(slab));
1937 
1938 	/* First entry is used as the base of the freelist */
1939 	cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1940 				freelist_count);
1941 	cur = setup_object(s, cur);
1942 	slab->freelist = cur;
1943 
1944 	for (idx = 1; idx < slab->objects; idx++) {
1945 		next = next_freelist_entry(s, slab, &pos, start, page_limit,
1946 			freelist_count);
1947 		next = setup_object(s, next);
1948 		set_freepointer(s, cur, next);
1949 		cur = next;
1950 	}
1951 	set_freepointer(s, cur, NULL);
1952 
1953 	return true;
1954 }
1955 #else
1956 static inline int init_cache_random_seq(struct kmem_cache *s)
1957 {
1958 	return 0;
1959 }
1960 static inline void init_freelist_randomization(void) { }
1961 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1962 {
1963 	return false;
1964 }
1965 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1966 
1967 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1968 {
1969 	struct slab *slab;
1970 	struct kmem_cache_order_objects oo = s->oo;
1971 	gfp_t alloc_gfp;
1972 	void *start, *p, *next;
1973 	int idx;
1974 	bool shuffle;
1975 
1976 	flags &= gfp_allowed_mask;
1977 
1978 	flags |= s->allocflags;
1979 
1980 	/*
1981 	 * Let the initial higher-order allocation fail under memory pressure
1982 	 * so we fall-back to the minimum order allocation.
1983 	 */
1984 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1985 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1986 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
1987 
1988 	slab = alloc_slab_page(alloc_gfp, node, oo);
1989 	if (unlikely(!slab)) {
1990 		oo = s->min;
1991 		alloc_gfp = flags;
1992 		/*
1993 		 * Allocation may have failed due to fragmentation.
1994 		 * Try a lower order alloc if possible
1995 		 */
1996 		slab = alloc_slab_page(alloc_gfp, node, oo);
1997 		if (unlikely(!slab))
1998 			return NULL;
1999 		stat(s, ORDER_FALLBACK);
2000 	}
2001 
2002 	slab->objects = oo_objects(oo);
2003 	slab->inuse = 0;
2004 	slab->frozen = 0;
2005 
2006 	account_slab(slab, oo_order(oo), s, flags);
2007 
2008 	slab->slab_cache = s;
2009 
2010 	kasan_poison_slab(slab);
2011 
2012 	start = slab_address(slab);
2013 
2014 	setup_slab_debug(s, slab, start);
2015 
2016 	shuffle = shuffle_freelist(s, slab);
2017 
2018 	if (!shuffle) {
2019 		start = fixup_red_left(s, start);
2020 		start = setup_object(s, start);
2021 		slab->freelist = start;
2022 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2023 			next = p + s->size;
2024 			next = setup_object(s, next);
2025 			set_freepointer(s, p, next);
2026 			p = next;
2027 		}
2028 		set_freepointer(s, p, NULL);
2029 	}
2030 
2031 	return slab;
2032 }
2033 
2034 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2035 {
2036 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2037 		flags = kmalloc_fix_flags(flags);
2038 
2039 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2040 
2041 	return allocate_slab(s,
2042 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2043 }
2044 
2045 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2046 {
2047 	struct folio *folio = slab_folio(slab);
2048 	int order = folio_order(folio);
2049 	int pages = 1 << order;
2050 
2051 	__slab_clear_pfmemalloc(slab);
2052 	folio->mapping = NULL;
2053 	/* Make the mapping reset visible before clearing the flag */
2054 	smp_wmb();
2055 	__folio_clear_slab(folio);
2056 	mm_account_reclaimed_pages(pages);
2057 	unaccount_slab(slab, order, s);
2058 	__free_pages(&folio->page, order);
2059 }
2060 
2061 static void rcu_free_slab(struct rcu_head *h)
2062 {
2063 	struct slab *slab = container_of(h, struct slab, rcu_head);
2064 
2065 	__free_slab(slab->slab_cache, slab);
2066 }
2067 
2068 static void free_slab(struct kmem_cache *s, struct slab *slab)
2069 {
2070 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2071 		void *p;
2072 
2073 		slab_pad_check(s, slab);
2074 		for_each_object(p, s, slab_address(slab), slab->objects)
2075 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2076 	}
2077 
2078 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2079 		call_rcu(&slab->rcu_head, rcu_free_slab);
2080 	else
2081 		__free_slab(s, slab);
2082 }
2083 
2084 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2085 {
2086 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2087 	free_slab(s, slab);
2088 }
2089 
2090 /*
2091  * Management of partially allocated slabs.
2092  */
2093 static inline void
2094 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2095 {
2096 	n->nr_partial++;
2097 	if (tail == DEACTIVATE_TO_TAIL)
2098 		list_add_tail(&slab->slab_list, &n->partial);
2099 	else
2100 		list_add(&slab->slab_list, &n->partial);
2101 }
2102 
2103 static inline void add_partial(struct kmem_cache_node *n,
2104 				struct slab *slab, int tail)
2105 {
2106 	lockdep_assert_held(&n->list_lock);
2107 	__add_partial(n, slab, tail);
2108 }
2109 
2110 static inline void remove_partial(struct kmem_cache_node *n,
2111 					struct slab *slab)
2112 {
2113 	lockdep_assert_held(&n->list_lock);
2114 	list_del(&slab->slab_list);
2115 	n->nr_partial--;
2116 }
2117 
2118 /*
2119  * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a
2120  * slab from the n->partial list. Remove only a single object from the slab, do
2121  * the alloc_debug_processing() checks and leave the slab on the list, or move
2122  * it to full list if it was the last free object.
2123  */
2124 static void *alloc_single_from_partial(struct kmem_cache *s,
2125 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2126 {
2127 	void *object;
2128 
2129 	lockdep_assert_held(&n->list_lock);
2130 
2131 	object = slab->freelist;
2132 	slab->freelist = get_freepointer(s, object);
2133 	slab->inuse++;
2134 
2135 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2136 		remove_partial(n, slab);
2137 		return NULL;
2138 	}
2139 
2140 	if (slab->inuse == slab->objects) {
2141 		remove_partial(n, slab);
2142 		add_full(s, n, slab);
2143 	}
2144 
2145 	return object;
2146 }
2147 
2148 /*
2149  * Called only for kmem_cache_debug() caches to allocate from a freshly
2150  * allocated slab. Allocate a single object instead of whole freelist
2151  * and put the slab to the partial (or full) list.
2152  */
2153 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2154 					struct slab *slab, int orig_size)
2155 {
2156 	int nid = slab_nid(slab);
2157 	struct kmem_cache_node *n = get_node(s, nid);
2158 	unsigned long flags;
2159 	void *object;
2160 
2161 
2162 	object = slab->freelist;
2163 	slab->freelist = get_freepointer(s, object);
2164 	slab->inuse = 1;
2165 
2166 	if (!alloc_debug_processing(s, slab, object, orig_size))
2167 		/*
2168 		 * It's not really expected that this would fail on a
2169 		 * freshly allocated slab, but a concurrent memory
2170 		 * corruption in theory could cause that.
2171 		 */
2172 		return NULL;
2173 
2174 	spin_lock_irqsave(&n->list_lock, flags);
2175 
2176 	if (slab->inuse == slab->objects)
2177 		add_full(s, n, slab);
2178 	else
2179 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2180 
2181 	inc_slabs_node(s, nid, slab->objects);
2182 	spin_unlock_irqrestore(&n->list_lock, flags);
2183 
2184 	return object;
2185 }
2186 
2187 /*
2188  * Remove slab from the partial list, freeze it and
2189  * return the pointer to the freelist.
2190  *
2191  * Returns a list of objects or NULL if it fails.
2192  */
2193 static inline void *acquire_slab(struct kmem_cache *s,
2194 		struct kmem_cache_node *n, struct slab *slab,
2195 		int mode)
2196 {
2197 	void *freelist;
2198 	unsigned long counters;
2199 	struct slab new;
2200 
2201 	lockdep_assert_held(&n->list_lock);
2202 
2203 	/*
2204 	 * Zap the freelist and set the frozen bit.
2205 	 * The old freelist is the list of objects for the
2206 	 * per cpu allocation list.
2207 	 */
2208 	freelist = slab->freelist;
2209 	counters = slab->counters;
2210 	new.counters = counters;
2211 	if (mode) {
2212 		new.inuse = slab->objects;
2213 		new.freelist = NULL;
2214 	} else {
2215 		new.freelist = freelist;
2216 	}
2217 
2218 	VM_BUG_ON(new.frozen);
2219 	new.frozen = 1;
2220 
2221 	if (!__cmpxchg_double_slab(s, slab,
2222 			freelist, counters,
2223 			new.freelist, new.counters,
2224 			"acquire_slab"))
2225 		return NULL;
2226 
2227 	remove_partial(n, slab);
2228 	WARN_ON(!freelist);
2229 	return freelist;
2230 }
2231 
2232 #ifdef CONFIG_SLUB_CPU_PARTIAL
2233 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2234 #else
2235 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2236 				   int drain) { }
2237 #endif
2238 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2239 
2240 /*
2241  * Try to allocate a partial slab from a specific node.
2242  */
2243 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2244 			      struct partial_context *pc)
2245 {
2246 	struct slab *slab, *slab2;
2247 	void *object = NULL;
2248 	unsigned long flags;
2249 	unsigned int partial_slabs = 0;
2250 
2251 	/*
2252 	 * Racy check. If we mistakenly see no partial slabs then we
2253 	 * just allocate an empty slab. If we mistakenly try to get a
2254 	 * partial slab and there is none available then get_partial()
2255 	 * will return NULL.
2256 	 */
2257 	if (!n || !n->nr_partial)
2258 		return NULL;
2259 
2260 	spin_lock_irqsave(&n->list_lock, flags);
2261 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2262 		void *t;
2263 
2264 		if (!pfmemalloc_match(slab, pc->flags))
2265 			continue;
2266 
2267 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2268 			object = alloc_single_from_partial(s, n, slab,
2269 							pc->orig_size);
2270 			if (object)
2271 				break;
2272 			continue;
2273 		}
2274 
2275 		t = acquire_slab(s, n, slab, object == NULL);
2276 		if (!t)
2277 			break;
2278 
2279 		if (!object) {
2280 			*pc->slab = slab;
2281 			stat(s, ALLOC_FROM_PARTIAL);
2282 			object = t;
2283 		} else {
2284 			put_cpu_partial(s, slab, 0);
2285 			stat(s, CPU_PARTIAL_NODE);
2286 			partial_slabs++;
2287 		}
2288 #ifdef CONFIG_SLUB_CPU_PARTIAL
2289 		if (!kmem_cache_has_cpu_partial(s)
2290 			|| partial_slabs > s->cpu_partial_slabs / 2)
2291 			break;
2292 #else
2293 		break;
2294 #endif
2295 
2296 	}
2297 	spin_unlock_irqrestore(&n->list_lock, flags);
2298 	return object;
2299 }
2300 
2301 /*
2302  * Get a slab from somewhere. Search in increasing NUMA distances.
2303  */
2304 static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc)
2305 {
2306 #ifdef CONFIG_NUMA
2307 	struct zonelist *zonelist;
2308 	struct zoneref *z;
2309 	struct zone *zone;
2310 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2311 	void *object;
2312 	unsigned int cpuset_mems_cookie;
2313 
2314 	/*
2315 	 * The defrag ratio allows a configuration of the tradeoffs between
2316 	 * inter node defragmentation and node local allocations. A lower
2317 	 * defrag_ratio increases the tendency to do local allocations
2318 	 * instead of attempting to obtain partial slabs from other nodes.
2319 	 *
2320 	 * If the defrag_ratio is set to 0 then kmalloc() always
2321 	 * returns node local objects. If the ratio is higher then kmalloc()
2322 	 * may return off node objects because partial slabs are obtained
2323 	 * from other nodes and filled up.
2324 	 *
2325 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2326 	 * (which makes defrag_ratio = 1000) then every (well almost)
2327 	 * allocation will first attempt to defrag slab caches on other nodes.
2328 	 * This means scanning over all nodes to look for partial slabs which
2329 	 * may be expensive if we do it every time we are trying to find a slab
2330 	 * with available objects.
2331 	 */
2332 	if (!s->remote_node_defrag_ratio ||
2333 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2334 		return NULL;
2335 
2336 	do {
2337 		cpuset_mems_cookie = read_mems_allowed_begin();
2338 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2339 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2340 			struct kmem_cache_node *n;
2341 
2342 			n = get_node(s, zone_to_nid(zone));
2343 
2344 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2345 					n->nr_partial > s->min_partial) {
2346 				object = get_partial_node(s, n, pc);
2347 				if (object) {
2348 					/*
2349 					 * Don't check read_mems_allowed_retry()
2350 					 * here - if mems_allowed was updated in
2351 					 * parallel, that was a harmless race
2352 					 * between allocation and the cpuset
2353 					 * update
2354 					 */
2355 					return object;
2356 				}
2357 			}
2358 		}
2359 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2360 #endif	/* CONFIG_NUMA */
2361 	return NULL;
2362 }
2363 
2364 /*
2365  * Get a partial slab, lock it and return it.
2366  */
2367 static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc)
2368 {
2369 	void *object;
2370 	int searchnode = node;
2371 
2372 	if (node == NUMA_NO_NODE)
2373 		searchnode = numa_mem_id();
2374 
2375 	object = get_partial_node(s, get_node(s, searchnode), pc);
2376 	if (object || node != NUMA_NO_NODE)
2377 		return object;
2378 
2379 	return get_any_partial(s, pc);
2380 }
2381 
2382 #ifndef CONFIG_SLUB_TINY
2383 
2384 #ifdef CONFIG_PREEMPTION
2385 /*
2386  * Calculate the next globally unique transaction for disambiguation
2387  * during cmpxchg. The transactions start with the cpu number and are then
2388  * incremented by CONFIG_NR_CPUS.
2389  */
2390 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2391 #else
2392 /*
2393  * No preemption supported therefore also no need to check for
2394  * different cpus.
2395  */
2396 #define TID_STEP 1
2397 #endif /* CONFIG_PREEMPTION */
2398 
2399 static inline unsigned long next_tid(unsigned long tid)
2400 {
2401 	return tid + TID_STEP;
2402 }
2403 
2404 #ifdef SLUB_DEBUG_CMPXCHG
2405 static inline unsigned int tid_to_cpu(unsigned long tid)
2406 {
2407 	return tid % TID_STEP;
2408 }
2409 
2410 static inline unsigned long tid_to_event(unsigned long tid)
2411 {
2412 	return tid / TID_STEP;
2413 }
2414 #endif
2415 
2416 static inline unsigned int init_tid(int cpu)
2417 {
2418 	return cpu;
2419 }
2420 
2421 static inline void note_cmpxchg_failure(const char *n,
2422 		const struct kmem_cache *s, unsigned long tid)
2423 {
2424 #ifdef SLUB_DEBUG_CMPXCHG
2425 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2426 
2427 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2428 
2429 #ifdef CONFIG_PREEMPTION
2430 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2431 		pr_warn("due to cpu change %d -> %d\n",
2432 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2433 	else
2434 #endif
2435 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2436 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2437 			tid_to_event(tid), tid_to_event(actual_tid));
2438 	else
2439 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2440 			actual_tid, tid, next_tid(tid));
2441 #endif
2442 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2443 }
2444 
2445 static void init_kmem_cache_cpus(struct kmem_cache *s)
2446 {
2447 	int cpu;
2448 	struct kmem_cache_cpu *c;
2449 
2450 	for_each_possible_cpu(cpu) {
2451 		c = per_cpu_ptr(s->cpu_slab, cpu);
2452 		local_lock_init(&c->lock);
2453 		c->tid = init_tid(cpu);
2454 	}
2455 }
2456 
2457 /*
2458  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2459  * unfreezes the slabs and puts it on the proper list.
2460  * Assumes the slab has been already safely taken away from kmem_cache_cpu
2461  * by the caller.
2462  */
2463 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2464 			    void *freelist)
2465 {
2466 	enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST };
2467 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2468 	int free_delta = 0;
2469 	enum slab_modes mode = M_NONE;
2470 	void *nextfree, *freelist_iter, *freelist_tail;
2471 	int tail = DEACTIVATE_TO_HEAD;
2472 	unsigned long flags = 0;
2473 	struct slab new;
2474 	struct slab old;
2475 
2476 	if (slab->freelist) {
2477 		stat(s, DEACTIVATE_REMOTE_FREES);
2478 		tail = DEACTIVATE_TO_TAIL;
2479 	}
2480 
2481 	/*
2482 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2483 	 * remember the last object in freelist_tail for later splicing.
2484 	 */
2485 	freelist_tail = NULL;
2486 	freelist_iter = freelist;
2487 	while (freelist_iter) {
2488 		nextfree = get_freepointer(s, freelist_iter);
2489 
2490 		/*
2491 		 * If 'nextfree' is invalid, it is possible that the object at
2492 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2493 		 * starting at 'freelist_iter' by skipping them.
2494 		 */
2495 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2496 			break;
2497 
2498 		freelist_tail = freelist_iter;
2499 		free_delta++;
2500 
2501 		freelist_iter = nextfree;
2502 	}
2503 
2504 	/*
2505 	 * Stage two: Unfreeze the slab while splicing the per-cpu
2506 	 * freelist to the head of slab's freelist.
2507 	 *
2508 	 * Ensure that the slab is unfrozen while the list presence
2509 	 * reflects the actual number of objects during unfreeze.
2510 	 *
2511 	 * We first perform cmpxchg holding lock and insert to list
2512 	 * when it succeed. If there is mismatch then the slab is not
2513 	 * unfrozen and number of objects in the slab may have changed.
2514 	 * Then release lock and retry cmpxchg again.
2515 	 */
2516 redo:
2517 
2518 	old.freelist = READ_ONCE(slab->freelist);
2519 	old.counters = READ_ONCE(slab->counters);
2520 	VM_BUG_ON(!old.frozen);
2521 
2522 	/* Determine target state of the slab */
2523 	new.counters = old.counters;
2524 	if (freelist_tail) {
2525 		new.inuse -= free_delta;
2526 		set_freepointer(s, freelist_tail, old.freelist);
2527 		new.freelist = freelist;
2528 	} else
2529 		new.freelist = old.freelist;
2530 
2531 	new.frozen = 0;
2532 
2533 	if (!new.inuse && n->nr_partial >= s->min_partial) {
2534 		mode = M_FREE;
2535 	} else if (new.freelist) {
2536 		mode = M_PARTIAL;
2537 		/*
2538 		 * Taking the spinlock removes the possibility that
2539 		 * acquire_slab() will see a slab that is frozen
2540 		 */
2541 		spin_lock_irqsave(&n->list_lock, flags);
2542 	} else {
2543 		mode = M_FULL_NOLIST;
2544 	}
2545 
2546 
2547 	if (!cmpxchg_double_slab(s, slab,
2548 				old.freelist, old.counters,
2549 				new.freelist, new.counters,
2550 				"unfreezing slab")) {
2551 		if (mode == M_PARTIAL)
2552 			spin_unlock_irqrestore(&n->list_lock, flags);
2553 		goto redo;
2554 	}
2555 
2556 
2557 	if (mode == M_PARTIAL) {
2558 		add_partial(n, slab, tail);
2559 		spin_unlock_irqrestore(&n->list_lock, flags);
2560 		stat(s, tail);
2561 	} else if (mode == M_FREE) {
2562 		stat(s, DEACTIVATE_EMPTY);
2563 		discard_slab(s, slab);
2564 		stat(s, FREE_SLAB);
2565 	} else if (mode == M_FULL_NOLIST) {
2566 		stat(s, DEACTIVATE_FULL);
2567 	}
2568 }
2569 
2570 #ifdef CONFIG_SLUB_CPU_PARTIAL
2571 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2572 {
2573 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2574 	struct slab *slab, *slab_to_discard = NULL;
2575 	unsigned long flags = 0;
2576 
2577 	while (partial_slab) {
2578 		struct slab new;
2579 		struct slab old;
2580 
2581 		slab = partial_slab;
2582 		partial_slab = slab->next;
2583 
2584 		n2 = get_node(s, slab_nid(slab));
2585 		if (n != n2) {
2586 			if (n)
2587 				spin_unlock_irqrestore(&n->list_lock, flags);
2588 
2589 			n = n2;
2590 			spin_lock_irqsave(&n->list_lock, flags);
2591 		}
2592 
2593 		do {
2594 
2595 			old.freelist = slab->freelist;
2596 			old.counters = slab->counters;
2597 			VM_BUG_ON(!old.frozen);
2598 
2599 			new.counters = old.counters;
2600 			new.freelist = old.freelist;
2601 
2602 			new.frozen = 0;
2603 
2604 		} while (!__cmpxchg_double_slab(s, slab,
2605 				old.freelist, old.counters,
2606 				new.freelist, new.counters,
2607 				"unfreezing slab"));
2608 
2609 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2610 			slab->next = slab_to_discard;
2611 			slab_to_discard = slab;
2612 		} else {
2613 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
2614 			stat(s, FREE_ADD_PARTIAL);
2615 		}
2616 	}
2617 
2618 	if (n)
2619 		spin_unlock_irqrestore(&n->list_lock, flags);
2620 
2621 	while (slab_to_discard) {
2622 		slab = slab_to_discard;
2623 		slab_to_discard = slab_to_discard->next;
2624 
2625 		stat(s, DEACTIVATE_EMPTY);
2626 		discard_slab(s, slab);
2627 		stat(s, FREE_SLAB);
2628 	}
2629 }
2630 
2631 /*
2632  * Unfreeze all the cpu partial slabs.
2633  */
2634 static void unfreeze_partials(struct kmem_cache *s)
2635 {
2636 	struct slab *partial_slab;
2637 	unsigned long flags;
2638 
2639 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2640 	partial_slab = this_cpu_read(s->cpu_slab->partial);
2641 	this_cpu_write(s->cpu_slab->partial, NULL);
2642 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2643 
2644 	if (partial_slab)
2645 		__unfreeze_partials(s, partial_slab);
2646 }
2647 
2648 static void unfreeze_partials_cpu(struct kmem_cache *s,
2649 				  struct kmem_cache_cpu *c)
2650 {
2651 	struct slab *partial_slab;
2652 
2653 	partial_slab = slub_percpu_partial(c);
2654 	c->partial = NULL;
2655 
2656 	if (partial_slab)
2657 		__unfreeze_partials(s, partial_slab);
2658 }
2659 
2660 /*
2661  * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2662  * partial slab slot if available.
2663  *
2664  * If we did not find a slot then simply move all the partials to the
2665  * per node partial list.
2666  */
2667 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2668 {
2669 	struct slab *oldslab;
2670 	struct slab *slab_to_unfreeze = NULL;
2671 	unsigned long flags;
2672 	int slabs = 0;
2673 
2674 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2675 
2676 	oldslab = this_cpu_read(s->cpu_slab->partial);
2677 
2678 	if (oldslab) {
2679 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2680 			/*
2681 			 * Partial array is full. Move the existing set to the
2682 			 * per node partial list. Postpone the actual unfreezing
2683 			 * outside of the critical section.
2684 			 */
2685 			slab_to_unfreeze = oldslab;
2686 			oldslab = NULL;
2687 		} else {
2688 			slabs = oldslab->slabs;
2689 		}
2690 	}
2691 
2692 	slabs++;
2693 
2694 	slab->slabs = slabs;
2695 	slab->next = oldslab;
2696 
2697 	this_cpu_write(s->cpu_slab->partial, slab);
2698 
2699 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2700 
2701 	if (slab_to_unfreeze) {
2702 		__unfreeze_partials(s, slab_to_unfreeze);
2703 		stat(s, CPU_PARTIAL_DRAIN);
2704 	}
2705 }
2706 
2707 #else	/* CONFIG_SLUB_CPU_PARTIAL */
2708 
2709 static inline void unfreeze_partials(struct kmem_cache *s) { }
2710 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2711 				  struct kmem_cache_cpu *c) { }
2712 
2713 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2714 
2715 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2716 {
2717 	unsigned long flags;
2718 	struct slab *slab;
2719 	void *freelist;
2720 
2721 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2722 
2723 	slab = c->slab;
2724 	freelist = c->freelist;
2725 
2726 	c->slab = NULL;
2727 	c->freelist = NULL;
2728 	c->tid = next_tid(c->tid);
2729 
2730 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2731 
2732 	if (slab) {
2733 		deactivate_slab(s, slab, freelist);
2734 		stat(s, CPUSLAB_FLUSH);
2735 	}
2736 }
2737 
2738 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2739 {
2740 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2741 	void *freelist = c->freelist;
2742 	struct slab *slab = c->slab;
2743 
2744 	c->slab = NULL;
2745 	c->freelist = NULL;
2746 	c->tid = next_tid(c->tid);
2747 
2748 	if (slab) {
2749 		deactivate_slab(s, slab, freelist);
2750 		stat(s, CPUSLAB_FLUSH);
2751 	}
2752 
2753 	unfreeze_partials_cpu(s, c);
2754 }
2755 
2756 struct slub_flush_work {
2757 	struct work_struct work;
2758 	struct kmem_cache *s;
2759 	bool skip;
2760 };
2761 
2762 /*
2763  * Flush cpu slab.
2764  *
2765  * Called from CPU work handler with migration disabled.
2766  */
2767 static void flush_cpu_slab(struct work_struct *w)
2768 {
2769 	struct kmem_cache *s;
2770 	struct kmem_cache_cpu *c;
2771 	struct slub_flush_work *sfw;
2772 
2773 	sfw = container_of(w, struct slub_flush_work, work);
2774 
2775 	s = sfw->s;
2776 	c = this_cpu_ptr(s->cpu_slab);
2777 
2778 	if (c->slab)
2779 		flush_slab(s, c);
2780 
2781 	unfreeze_partials(s);
2782 }
2783 
2784 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2785 {
2786 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2787 
2788 	return c->slab || slub_percpu_partial(c);
2789 }
2790 
2791 static DEFINE_MUTEX(flush_lock);
2792 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2793 
2794 static void flush_all_cpus_locked(struct kmem_cache *s)
2795 {
2796 	struct slub_flush_work *sfw;
2797 	unsigned int cpu;
2798 
2799 	lockdep_assert_cpus_held();
2800 	mutex_lock(&flush_lock);
2801 
2802 	for_each_online_cpu(cpu) {
2803 		sfw = &per_cpu(slub_flush, cpu);
2804 		if (!has_cpu_slab(cpu, s)) {
2805 			sfw->skip = true;
2806 			continue;
2807 		}
2808 		INIT_WORK(&sfw->work, flush_cpu_slab);
2809 		sfw->skip = false;
2810 		sfw->s = s;
2811 		queue_work_on(cpu, flushwq, &sfw->work);
2812 	}
2813 
2814 	for_each_online_cpu(cpu) {
2815 		sfw = &per_cpu(slub_flush, cpu);
2816 		if (sfw->skip)
2817 			continue;
2818 		flush_work(&sfw->work);
2819 	}
2820 
2821 	mutex_unlock(&flush_lock);
2822 }
2823 
2824 static void flush_all(struct kmem_cache *s)
2825 {
2826 	cpus_read_lock();
2827 	flush_all_cpus_locked(s);
2828 	cpus_read_unlock();
2829 }
2830 
2831 /*
2832  * Use the cpu notifier to insure that the cpu slabs are flushed when
2833  * necessary.
2834  */
2835 static int slub_cpu_dead(unsigned int cpu)
2836 {
2837 	struct kmem_cache *s;
2838 
2839 	mutex_lock(&slab_mutex);
2840 	list_for_each_entry(s, &slab_caches, list)
2841 		__flush_cpu_slab(s, cpu);
2842 	mutex_unlock(&slab_mutex);
2843 	return 0;
2844 }
2845 
2846 #else /* CONFIG_SLUB_TINY */
2847 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
2848 static inline void flush_all(struct kmem_cache *s) { }
2849 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
2850 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
2851 #endif /* CONFIG_SLUB_TINY */
2852 
2853 /*
2854  * Check if the objects in a per cpu structure fit numa
2855  * locality expectations.
2856  */
2857 static inline int node_match(struct slab *slab, int node)
2858 {
2859 #ifdef CONFIG_NUMA
2860 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2861 		return 0;
2862 #endif
2863 	return 1;
2864 }
2865 
2866 #ifdef CONFIG_SLUB_DEBUG
2867 static int count_free(struct slab *slab)
2868 {
2869 	return slab->objects - slab->inuse;
2870 }
2871 
2872 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2873 {
2874 	return atomic_long_read(&n->total_objects);
2875 }
2876 
2877 /* Supports checking bulk free of a constructed freelist */
2878 static inline bool free_debug_processing(struct kmem_cache *s,
2879 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
2880 	unsigned long addr, depot_stack_handle_t handle)
2881 {
2882 	bool checks_ok = false;
2883 	void *object = head;
2884 	int cnt = 0;
2885 
2886 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2887 		if (!check_slab(s, slab))
2888 			goto out;
2889 	}
2890 
2891 	if (slab->inuse < *bulk_cnt) {
2892 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
2893 			 slab->inuse, *bulk_cnt);
2894 		goto out;
2895 	}
2896 
2897 next_object:
2898 
2899 	if (++cnt > *bulk_cnt)
2900 		goto out_cnt;
2901 
2902 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2903 		if (!free_consistency_checks(s, slab, object, addr))
2904 			goto out;
2905 	}
2906 
2907 	if (s->flags & SLAB_STORE_USER)
2908 		set_track_update(s, object, TRACK_FREE, addr, handle);
2909 	trace(s, slab, object, 0);
2910 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
2911 	init_object(s, object, SLUB_RED_INACTIVE);
2912 
2913 	/* Reached end of constructed freelist yet? */
2914 	if (object != tail) {
2915 		object = get_freepointer(s, object);
2916 		goto next_object;
2917 	}
2918 	checks_ok = true;
2919 
2920 out_cnt:
2921 	if (cnt != *bulk_cnt) {
2922 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
2923 			 *bulk_cnt, cnt);
2924 		*bulk_cnt = cnt;
2925 	}
2926 
2927 out:
2928 
2929 	if (!checks_ok)
2930 		slab_fix(s, "Object at 0x%p not freed", object);
2931 
2932 	return checks_ok;
2933 }
2934 #endif /* CONFIG_SLUB_DEBUG */
2935 
2936 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
2937 static unsigned long count_partial(struct kmem_cache_node *n,
2938 					int (*get_count)(struct slab *))
2939 {
2940 	unsigned long flags;
2941 	unsigned long x = 0;
2942 	struct slab *slab;
2943 
2944 	spin_lock_irqsave(&n->list_lock, flags);
2945 	list_for_each_entry(slab, &n->partial, slab_list)
2946 		x += get_count(slab);
2947 	spin_unlock_irqrestore(&n->list_lock, flags);
2948 	return x;
2949 }
2950 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
2951 
2952 #ifdef CONFIG_SLUB_DEBUG
2953 static noinline void
2954 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2955 {
2956 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2957 				      DEFAULT_RATELIMIT_BURST);
2958 	int node;
2959 	struct kmem_cache_node *n;
2960 
2961 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2962 		return;
2963 
2964 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2965 		nid, gfpflags, &gfpflags);
2966 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2967 		s->name, s->object_size, s->size, oo_order(s->oo),
2968 		oo_order(s->min));
2969 
2970 	if (oo_order(s->min) > get_order(s->object_size))
2971 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2972 			s->name);
2973 
2974 	for_each_kmem_cache_node(s, node, n) {
2975 		unsigned long nr_slabs;
2976 		unsigned long nr_objs;
2977 		unsigned long nr_free;
2978 
2979 		nr_free  = count_partial(n, count_free);
2980 		nr_slabs = node_nr_slabs(n);
2981 		nr_objs  = node_nr_objs(n);
2982 
2983 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2984 			node, nr_slabs, nr_objs, nr_free);
2985 	}
2986 }
2987 #else /* CONFIG_SLUB_DEBUG */
2988 static inline void
2989 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
2990 #endif
2991 
2992 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
2993 {
2994 	if (unlikely(slab_test_pfmemalloc(slab)))
2995 		return gfp_pfmemalloc_allowed(gfpflags);
2996 
2997 	return true;
2998 }
2999 
3000 #ifndef CONFIG_SLUB_TINY
3001 /*
3002  * Check the slab->freelist and either transfer the freelist to the
3003  * per cpu freelist or deactivate the slab.
3004  *
3005  * The slab is still frozen if the return value is not NULL.
3006  *
3007  * If this function returns NULL then the slab has been unfrozen.
3008  */
3009 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3010 {
3011 	struct slab new;
3012 	unsigned long counters;
3013 	void *freelist;
3014 
3015 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3016 
3017 	do {
3018 		freelist = slab->freelist;
3019 		counters = slab->counters;
3020 
3021 		new.counters = counters;
3022 		VM_BUG_ON(!new.frozen);
3023 
3024 		new.inuse = slab->objects;
3025 		new.frozen = freelist != NULL;
3026 
3027 	} while (!__cmpxchg_double_slab(s, slab,
3028 		freelist, counters,
3029 		NULL, new.counters,
3030 		"get_freelist"));
3031 
3032 	return freelist;
3033 }
3034 
3035 /*
3036  * Slow path. The lockless freelist is empty or we need to perform
3037  * debugging duties.
3038  *
3039  * Processing is still very fast if new objects have been freed to the
3040  * regular freelist. In that case we simply take over the regular freelist
3041  * as the lockless freelist and zap the regular freelist.
3042  *
3043  * If that is not working then we fall back to the partial lists. We take the
3044  * first element of the freelist as the object to allocate now and move the
3045  * rest of the freelist to the lockless freelist.
3046  *
3047  * And if we were unable to get a new slab from the partial slab lists then
3048  * we need to allocate a new slab. This is the slowest path since it involves
3049  * a call to the page allocator and the setup of a new slab.
3050  *
3051  * Version of __slab_alloc to use when we know that preemption is
3052  * already disabled (which is the case for bulk allocation).
3053  */
3054 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3055 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3056 {
3057 	void *freelist;
3058 	struct slab *slab;
3059 	unsigned long flags;
3060 	struct partial_context pc;
3061 
3062 	stat(s, ALLOC_SLOWPATH);
3063 
3064 reread_slab:
3065 
3066 	slab = READ_ONCE(c->slab);
3067 	if (!slab) {
3068 		/*
3069 		 * if the node is not online or has no normal memory, just
3070 		 * ignore the node constraint
3071 		 */
3072 		if (unlikely(node != NUMA_NO_NODE &&
3073 			     !node_isset(node, slab_nodes)))
3074 			node = NUMA_NO_NODE;
3075 		goto new_slab;
3076 	}
3077 redo:
3078 
3079 	if (unlikely(!node_match(slab, node))) {
3080 		/*
3081 		 * same as above but node_match() being false already
3082 		 * implies node != NUMA_NO_NODE
3083 		 */
3084 		if (!node_isset(node, slab_nodes)) {
3085 			node = NUMA_NO_NODE;
3086 		} else {
3087 			stat(s, ALLOC_NODE_MISMATCH);
3088 			goto deactivate_slab;
3089 		}
3090 	}
3091 
3092 	/*
3093 	 * By rights, we should be searching for a slab page that was
3094 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3095 	 * information when the page leaves the per-cpu allocator
3096 	 */
3097 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3098 		goto deactivate_slab;
3099 
3100 	/* must check again c->slab in case we got preempted and it changed */
3101 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3102 	if (unlikely(slab != c->slab)) {
3103 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3104 		goto reread_slab;
3105 	}
3106 	freelist = c->freelist;
3107 	if (freelist)
3108 		goto load_freelist;
3109 
3110 	freelist = get_freelist(s, slab);
3111 
3112 	if (!freelist) {
3113 		c->slab = NULL;
3114 		c->tid = next_tid(c->tid);
3115 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3116 		stat(s, DEACTIVATE_BYPASS);
3117 		goto new_slab;
3118 	}
3119 
3120 	stat(s, ALLOC_REFILL);
3121 
3122 load_freelist:
3123 
3124 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3125 
3126 	/*
3127 	 * freelist is pointing to the list of objects to be used.
3128 	 * slab is pointing to the slab from which the objects are obtained.
3129 	 * That slab must be frozen for per cpu allocations to work.
3130 	 */
3131 	VM_BUG_ON(!c->slab->frozen);
3132 	c->freelist = get_freepointer(s, freelist);
3133 	c->tid = next_tid(c->tid);
3134 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3135 	return freelist;
3136 
3137 deactivate_slab:
3138 
3139 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3140 	if (slab != c->slab) {
3141 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3142 		goto reread_slab;
3143 	}
3144 	freelist = c->freelist;
3145 	c->slab = NULL;
3146 	c->freelist = NULL;
3147 	c->tid = next_tid(c->tid);
3148 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3149 	deactivate_slab(s, slab, freelist);
3150 
3151 new_slab:
3152 
3153 	if (slub_percpu_partial(c)) {
3154 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3155 		if (unlikely(c->slab)) {
3156 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3157 			goto reread_slab;
3158 		}
3159 		if (unlikely(!slub_percpu_partial(c))) {
3160 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3161 			/* we were preempted and partial list got empty */
3162 			goto new_objects;
3163 		}
3164 
3165 		slab = c->slab = slub_percpu_partial(c);
3166 		slub_set_percpu_partial(c, slab);
3167 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3168 		stat(s, CPU_PARTIAL_ALLOC);
3169 		goto redo;
3170 	}
3171 
3172 new_objects:
3173 
3174 	pc.flags = gfpflags;
3175 	pc.slab = &slab;
3176 	pc.orig_size = orig_size;
3177 	freelist = get_partial(s, node, &pc);
3178 	if (freelist)
3179 		goto check_new_slab;
3180 
3181 	slub_put_cpu_ptr(s->cpu_slab);
3182 	slab = new_slab(s, gfpflags, node);
3183 	c = slub_get_cpu_ptr(s->cpu_slab);
3184 
3185 	if (unlikely(!slab)) {
3186 		slab_out_of_memory(s, gfpflags, node);
3187 		return NULL;
3188 	}
3189 
3190 	stat(s, ALLOC_SLAB);
3191 
3192 	if (kmem_cache_debug(s)) {
3193 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3194 
3195 		if (unlikely(!freelist))
3196 			goto new_objects;
3197 
3198 		if (s->flags & SLAB_STORE_USER)
3199 			set_track(s, freelist, TRACK_ALLOC, addr);
3200 
3201 		return freelist;
3202 	}
3203 
3204 	/*
3205 	 * No other reference to the slab yet so we can
3206 	 * muck around with it freely without cmpxchg
3207 	 */
3208 	freelist = slab->freelist;
3209 	slab->freelist = NULL;
3210 	slab->inuse = slab->objects;
3211 	slab->frozen = 1;
3212 
3213 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3214 
3215 check_new_slab:
3216 
3217 	if (kmem_cache_debug(s)) {
3218 		/*
3219 		 * For debug caches here we had to go through
3220 		 * alloc_single_from_partial() so just store the tracking info
3221 		 * and return the object
3222 		 */
3223 		if (s->flags & SLAB_STORE_USER)
3224 			set_track(s, freelist, TRACK_ALLOC, addr);
3225 
3226 		return freelist;
3227 	}
3228 
3229 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3230 		/*
3231 		 * For !pfmemalloc_match() case we don't load freelist so that
3232 		 * we don't make further mismatched allocations easier.
3233 		 */
3234 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3235 		return freelist;
3236 	}
3237 
3238 retry_load_slab:
3239 
3240 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3241 	if (unlikely(c->slab)) {
3242 		void *flush_freelist = c->freelist;
3243 		struct slab *flush_slab = c->slab;
3244 
3245 		c->slab = NULL;
3246 		c->freelist = NULL;
3247 		c->tid = next_tid(c->tid);
3248 
3249 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3250 
3251 		deactivate_slab(s, flush_slab, flush_freelist);
3252 
3253 		stat(s, CPUSLAB_FLUSH);
3254 
3255 		goto retry_load_slab;
3256 	}
3257 	c->slab = slab;
3258 
3259 	goto load_freelist;
3260 }
3261 
3262 /*
3263  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3264  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3265  * pointer.
3266  */
3267 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3268 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3269 {
3270 	void *p;
3271 
3272 #ifdef CONFIG_PREEMPT_COUNT
3273 	/*
3274 	 * We may have been preempted and rescheduled on a different
3275 	 * cpu before disabling preemption. Need to reload cpu area
3276 	 * pointer.
3277 	 */
3278 	c = slub_get_cpu_ptr(s->cpu_slab);
3279 #endif
3280 
3281 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3282 #ifdef CONFIG_PREEMPT_COUNT
3283 	slub_put_cpu_ptr(s->cpu_slab);
3284 #endif
3285 	return p;
3286 }
3287 
3288 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3289 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3290 {
3291 	struct kmem_cache_cpu *c;
3292 	struct slab *slab;
3293 	unsigned long tid;
3294 	void *object;
3295 
3296 redo:
3297 	/*
3298 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3299 	 * enabled. We may switch back and forth between cpus while
3300 	 * reading from one cpu area. That does not matter as long
3301 	 * as we end up on the original cpu again when doing the cmpxchg.
3302 	 *
3303 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3304 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3305 	 * the tid. If we are preempted and switched to another cpu between the
3306 	 * two reads, it's OK as the two are still associated with the same cpu
3307 	 * and cmpxchg later will validate the cpu.
3308 	 */
3309 	c = raw_cpu_ptr(s->cpu_slab);
3310 	tid = READ_ONCE(c->tid);
3311 
3312 	/*
3313 	 * Irqless object alloc/free algorithm used here depends on sequence
3314 	 * of fetching cpu_slab's data. tid should be fetched before anything
3315 	 * on c to guarantee that object and slab associated with previous tid
3316 	 * won't be used with current tid. If we fetch tid first, object and
3317 	 * slab could be one associated with next tid and our alloc/free
3318 	 * request will be failed. In this case, we will retry. So, no problem.
3319 	 */
3320 	barrier();
3321 
3322 	/*
3323 	 * The transaction ids are globally unique per cpu and per operation on
3324 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3325 	 * occurs on the right processor and that there was no operation on the
3326 	 * linked list in between.
3327 	 */
3328 
3329 	object = c->freelist;
3330 	slab = c->slab;
3331 
3332 	if (!USE_LOCKLESS_FAST_PATH() ||
3333 	    unlikely(!object || !slab || !node_match(slab, node))) {
3334 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3335 	} else {
3336 		void *next_object = get_freepointer_safe(s, object);
3337 
3338 		/*
3339 		 * The cmpxchg will only match if there was no additional
3340 		 * operation and if we are on the right processor.
3341 		 *
3342 		 * The cmpxchg does the following atomically (without lock
3343 		 * semantics!)
3344 		 * 1. Relocate first pointer to the current per cpu area.
3345 		 * 2. Verify that tid and freelist have not been changed
3346 		 * 3. If they were not changed replace tid and freelist
3347 		 *
3348 		 * Since this is without lock semantics the protection is only
3349 		 * against code executing on this cpu *not* from access by
3350 		 * other cpus.
3351 		 */
3352 		if (unlikely(!this_cpu_cmpxchg_double(
3353 				s->cpu_slab->freelist, s->cpu_slab->tid,
3354 				object, tid,
3355 				next_object, next_tid(tid)))) {
3356 
3357 			note_cmpxchg_failure("slab_alloc", s, tid);
3358 			goto redo;
3359 		}
3360 		prefetch_freepointer(s, next_object);
3361 		stat(s, ALLOC_FASTPATH);
3362 	}
3363 
3364 	return object;
3365 }
3366 #else /* CONFIG_SLUB_TINY */
3367 static void *__slab_alloc_node(struct kmem_cache *s,
3368 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3369 {
3370 	struct partial_context pc;
3371 	struct slab *slab;
3372 	void *object;
3373 
3374 	pc.flags = gfpflags;
3375 	pc.slab = &slab;
3376 	pc.orig_size = orig_size;
3377 	object = get_partial(s, node, &pc);
3378 
3379 	if (object)
3380 		return object;
3381 
3382 	slab = new_slab(s, gfpflags, node);
3383 	if (unlikely(!slab)) {
3384 		slab_out_of_memory(s, gfpflags, node);
3385 		return NULL;
3386 	}
3387 
3388 	object = alloc_single_from_new_slab(s, slab, orig_size);
3389 
3390 	return object;
3391 }
3392 #endif /* CONFIG_SLUB_TINY */
3393 
3394 /*
3395  * If the object has been wiped upon free, make sure it's fully initialized by
3396  * zeroing out freelist pointer.
3397  */
3398 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3399 						   void *obj)
3400 {
3401 	if (unlikely(slab_want_init_on_free(s)) && obj)
3402 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3403 			0, sizeof(void *));
3404 }
3405 
3406 /*
3407  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3408  * have the fastpath folded into their functions. So no function call
3409  * overhead for requests that can be satisfied on the fastpath.
3410  *
3411  * The fastpath works by first checking if the lockless freelist can be used.
3412  * If not then __slab_alloc is called for slow processing.
3413  *
3414  * Otherwise we can simply pick the next object from the lockless free list.
3415  */
3416 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3417 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3418 {
3419 	void *object;
3420 	struct obj_cgroup *objcg = NULL;
3421 	bool init = false;
3422 
3423 	s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3424 	if (!s)
3425 		return NULL;
3426 
3427 	object = kfence_alloc(s, orig_size, gfpflags);
3428 	if (unlikely(object))
3429 		goto out;
3430 
3431 	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3432 
3433 	maybe_wipe_obj_freeptr(s, object);
3434 	init = slab_want_init_on_alloc(gfpflags, s);
3435 
3436 out:
3437 	/*
3438 	 * When init equals 'true', like for kzalloc() family, only
3439 	 * @orig_size bytes might be zeroed instead of s->object_size
3440 	 */
3441 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
3442 
3443 	return object;
3444 }
3445 
3446 static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3447 		gfp_t gfpflags, unsigned long addr, size_t orig_size)
3448 {
3449 	return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3450 }
3451 
3452 static __fastpath_inline
3453 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3454 			     gfp_t gfpflags)
3455 {
3456 	void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3457 
3458 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3459 
3460 	return ret;
3461 }
3462 
3463 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3464 {
3465 	return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3466 }
3467 EXPORT_SYMBOL(kmem_cache_alloc);
3468 
3469 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3470 			   gfp_t gfpflags)
3471 {
3472 	return __kmem_cache_alloc_lru(s, lru, gfpflags);
3473 }
3474 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3475 
3476 void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
3477 			      int node, size_t orig_size,
3478 			      unsigned long caller)
3479 {
3480 	return slab_alloc_node(s, NULL, gfpflags, node,
3481 			       caller, orig_size);
3482 }
3483 
3484 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3485 {
3486 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3487 
3488 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
3489 
3490 	return ret;
3491 }
3492 EXPORT_SYMBOL(kmem_cache_alloc_node);
3493 
3494 static noinline void free_to_partial_list(
3495 	struct kmem_cache *s, struct slab *slab,
3496 	void *head, void *tail, int bulk_cnt,
3497 	unsigned long addr)
3498 {
3499 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3500 	struct slab *slab_free = NULL;
3501 	int cnt = bulk_cnt;
3502 	unsigned long flags;
3503 	depot_stack_handle_t handle = 0;
3504 
3505 	if (s->flags & SLAB_STORE_USER)
3506 		handle = set_track_prepare();
3507 
3508 	spin_lock_irqsave(&n->list_lock, flags);
3509 
3510 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
3511 		void *prior = slab->freelist;
3512 
3513 		/* Perform the actual freeing while we still hold the locks */
3514 		slab->inuse -= cnt;
3515 		set_freepointer(s, tail, prior);
3516 		slab->freelist = head;
3517 
3518 		/*
3519 		 * If the slab is empty, and node's partial list is full,
3520 		 * it should be discarded anyway no matter it's on full or
3521 		 * partial list.
3522 		 */
3523 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
3524 			slab_free = slab;
3525 
3526 		if (!prior) {
3527 			/* was on full list */
3528 			remove_full(s, n, slab);
3529 			if (!slab_free) {
3530 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
3531 				stat(s, FREE_ADD_PARTIAL);
3532 			}
3533 		} else if (slab_free) {
3534 			remove_partial(n, slab);
3535 			stat(s, FREE_REMOVE_PARTIAL);
3536 		}
3537 	}
3538 
3539 	if (slab_free) {
3540 		/*
3541 		 * Update the counters while still holding n->list_lock to
3542 		 * prevent spurious validation warnings
3543 		 */
3544 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
3545 	}
3546 
3547 	spin_unlock_irqrestore(&n->list_lock, flags);
3548 
3549 	if (slab_free) {
3550 		stat(s, FREE_SLAB);
3551 		free_slab(s, slab_free);
3552 	}
3553 }
3554 
3555 /*
3556  * Slow path handling. This may still be called frequently since objects
3557  * have a longer lifetime than the cpu slabs in most processing loads.
3558  *
3559  * So we still attempt to reduce cache line usage. Just take the slab
3560  * lock and free the item. If there is no additional partial slab
3561  * handling required then we can return immediately.
3562  */
3563 static void __slab_free(struct kmem_cache *s, struct slab *slab,
3564 			void *head, void *tail, int cnt,
3565 			unsigned long addr)
3566 
3567 {
3568 	void *prior;
3569 	int was_frozen;
3570 	struct slab new;
3571 	unsigned long counters;
3572 	struct kmem_cache_node *n = NULL;
3573 	unsigned long flags;
3574 
3575 	stat(s, FREE_SLOWPATH);
3576 
3577 	if (kfence_free(head))
3578 		return;
3579 
3580 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
3581 		free_to_partial_list(s, slab, head, tail, cnt, addr);
3582 		return;
3583 	}
3584 
3585 	do {
3586 		if (unlikely(n)) {
3587 			spin_unlock_irqrestore(&n->list_lock, flags);
3588 			n = NULL;
3589 		}
3590 		prior = slab->freelist;
3591 		counters = slab->counters;
3592 		set_freepointer(s, tail, prior);
3593 		new.counters = counters;
3594 		was_frozen = new.frozen;
3595 		new.inuse -= cnt;
3596 		if ((!new.inuse || !prior) && !was_frozen) {
3597 
3598 			if (kmem_cache_has_cpu_partial(s) && !prior) {
3599 
3600 				/*
3601 				 * Slab was on no list before and will be
3602 				 * partially empty
3603 				 * We can defer the list move and instead
3604 				 * freeze it.
3605 				 */
3606 				new.frozen = 1;
3607 
3608 			} else { /* Needs to be taken off a list */
3609 
3610 				n = get_node(s, slab_nid(slab));
3611 				/*
3612 				 * Speculatively acquire the list_lock.
3613 				 * If the cmpxchg does not succeed then we may
3614 				 * drop the list_lock without any processing.
3615 				 *
3616 				 * Otherwise the list_lock will synchronize with
3617 				 * other processors updating the list of slabs.
3618 				 */
3619 				spin_lock_irqsave(&n->list_lock, flags);
3620 
3621 			}
3622 		}
3623 
3624 	} while (!cmpxchg_double_slab(s, slab,
3625 		prior, counters,
3626 		head, new.counters,
3627 		"__slab_free"));
3628 
3629 	if (likely(!n)) {
3630 
3631 		if (likely(was_frozen)) {
3632 			/*
3633 			 * The list lock was not taken therefore no list
3634 			 * activity can be necessary.
3635 			 */
3636 			stat(s, FREE_FROZEN);
3637 		} else if (new.frozen) {
3638 			/*
3639 			 * If we just froze the slab then put it onto the
3640 			 * per cpu partial list.
3641 			 */
3642 			put_cpu_partial(s, slab, 1);
3643 			stat(s, CPU_PARTIAL_FREE);
3644 		}
3645 
3646 		return;
3647 	}
3648 
3649 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3650 		goto slab_empty;
3651 
3652 	/*
3653 	 * Objects left in the slab. If it was not on the partial list before
3654 	 * then add it.
3655 	 */
3656 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3657 		remove_full(s, n, slab);
3658 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
3659 		stat(s, FREE_ADD_PARTIAL);
3660 	}
3661 	spin_unlock_irqrestore(&n->list_lock, flags);
3662 	return;
3663 
3664 slab_empty:
3665 	if (prior) {
3666 		/*
3667 		 * Slab on the partial list.
3668 		 */
3669 		remove_partial(n, slab);
3670 		stat(s, FREE_REMOVE_PARTIAL);
3671 	} else {
3672 		/* Slab must be on the full list */
3673 		remove_full(s, n, slab);
3674 	}
3675 
3676 	spin_unlock_irqrestore(&n->list_lock, flags);
3677 	stat(s, FREE_SLAB);
3678 	discard_slab(s, slab);
3679 }
3680 
3681 #ifndef CONFIG_SLUB_TINY
3682 /*
3683  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3684  * can perform fastpath freeing without additional function calls.
3685  *
3686  * The fastpath is only possible if we are freeing to the current cpu slab
3687  * of this processor. This typically the case if we have just allocated
3688  * the item before.
3689  *
3690  * If fastpath is not possible then fall back to __slab_free where we deal
3691  * with all sorts of special processing.
3692  *
3693  * Bulk free of a freelist with several objects (all pointing to the
3694  * same slab) possible by specifying head and tail ptr, plus objects
3695  * count (cnt). Bulk free indicated by tail pointer being set.
3696  */
3697 static __always_inline void do_slab_free(struct kmem_cache *s,
3698 				struct slab *slab, void *head, void *tail,
3699 				int cnt, unsigned long addr)
3700 {
3701 	void *tail_obj = tail ? : head;
3702 	struct kmem_cache_cpu *c;
3703 	unsigned long tid;
3704 	void **freelist;
3705 
3706 redo:
3707 	/*
3708 	 * Determine the currently cpus per cpu slab.
3709 	 * The cpu may change afterward. However that does not matter since
3710 	 * data is retrieved via this pointer. If we are on the same cpu
3711 	 * during the cmpxchg then the free will succeed.
3712 	 */
3713 	c = raw_cpu_ptr(s->cpu_slab);
3714 	tid = READ_ONCE(c->tid);
3715 
3716 	/* Same with comment on barrier() in slab_alloc_node() */
3717 	barrier();
3718 
3719 	if (unlikely(slab != c->slab)) {
3720 		__slab_free(s, slab, head, tail_obj, cnt, addr);
3721 		return;
3722 	}
3723 
3724 	if (USE_LOCKLESS_FAST_PATH()) {
3725 		freelist = READ_ONCE(c->freelist);
3726 
3727 		set_freepointer(s, tail_obj, freelist);
3728 
3729 		if (unlikely(!this_cpu_cmpxchg_double(
3730 				s->cpu_slab->freelist, s->cpu_slab->tid,
3731 				freelist, tid,
3732 				head, next_tid(tid)))) {
3733 
3734 			note_cmpxchg_failure("slab_free", s, tid);
3735 			goto redo;
3736 		}
3737 	} else {
3738 		/* Update the free list under the local lock */
3739 		local_lock(&s->cpu_slab->lock);
3740 		c = this_cpu_ptr(s->cpu_slab);
3741 		if (unlikely(slab != c->slab)) {
3742 			local_unlock(&s->cpu_slab->lock);
3743 			goto redo;
3744 		}
3745 		tid = c->tid;
3746 		freelist = c->freelist;
3747 
3748 		set_freepointer(s, tail_obj, freelist);
3749 		c->freelist = head;
3750 		c->tid = next_tid(tid);
3751 
3752 		local_unlock(&s->cpu_slab->lock);
3753 	}
3754 	stat(s, FREE_FASTPATH);
3755 }
3756 #else /* CONFIG_SLUB_TINY */
3757 static void do_slab_free(struct kmem_cache *s,
3758 				struct slab *slab, void *head, void *tail,
3759 				int cnt, unsigned long addr)
3760 {
3761 	void *tail_obj = tail ? : head;
3762 
3763 	__slab_free(s, slab, head, tail_obj, cnt, addr);
3764 }
3765 #endif /* CONFIG_SLUB_TINY */
3766 
3767 static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3768 				      void *head, void *tail, void **p, int cnt,
3769 				      unsigned long addr)
3770 {
3771 	memcg_slab_free_hook(s, slab, p, cnt);
3772 	/*
3773 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3774 	 * to remove objects, whose reuse must be delayed.
3775 	 */
3776 	if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3777 		do_slab_free(s, slab, head, tail, cnt, addr);
3778 }
3779 
3780 #ifdef CONFIG_KASAN_GENERIC
3781 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3782 {
3783 	do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3784 }
3785 #endif
3786 
3787 void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller)
3788 {
3789 	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller);
3790 }
3791 
3792 void kmem_cache_free(struct kmem_cache *s, void *x)
3793 {
3794 	s = cache_from_obj(s, x);
3795 	if (!s)
3796 		return;
3797 	trace_kmem_cache_free(_RET_IP_, x, s);
3798 	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
3799 }
3800 EXPORT_SYMBOL(kmem_cache_free);
3801 
3802 struct detached_freelist {
3803 	struct slab *slab;
3804 	void *tail;
3805 	void *freelist;
3806 	int cnt;
3807 	struct kmem_cache *s;
3808 };
3809 
3810 /*
3811  * This function progressively scans the array with free objects (with
3812  * a limited look ahead) and extract objects belonging to the same
3813  * slab.  It builds a detached freelist directly within the given
3814  * slab/objects.  This can happen without any need for
3815  * synchronization, because the objects are owned by running process.
3816  * The freelist is build up as a single linked list in the objects.
3817  * The idea is, that this detached freelist can then be bulk
3818  * transferred to the real freelist(s), but only requiring a single
3819  * synchronization primitive.  Look ahead in the array is limited due
3820  * to performance reasons.
3821  */
3822 static inline
3823 int build_detached_freelist(struct kmem_cache *s, size_t size,
3824 			    void **p, struct detached_freelist *df)
3825 {
3826 	int lookahead = 3;
3827 	void *object;
3828 	struct folio *folio;
3829 	size_t same;
3830 
3831 	object = p[--size];
3832 	folio = virt_to_folio(object);
3833 	if (!s) {
3834 		/* Handle kalloc'ed objects */
3835 		if (unlikely(!folio_test_slab(folio))) {
3836 			free_large_kmalloc(folio, object);
3837 			df->slab = NULL;
3838 			return size;
3839 		}
3840 		/* Derive kmem_cache from object */
3841 		df->slab = folio_slab(folio);
3842 		df->s = df->slab->slab_cache;
3843 	} else {
3844 		df->slab = folio_slab(folio);
3845 		df->s = cache_from_obj(s, object); /* Support for memcg */
3846 	}
3847 
3848 	/* Start new detached freelist */
3849 	df->tail = object;
3850 	df->freelist = object;
3851 	df->cnt = 1;
3852 
3853 	if (is_kfence_address(object))
3854 		return size;
3855 
3856 	set_freepointer(df->s, object, NULL);
3857 
3858 	same = size;
3859 	while (size) {
3860 		object = p[--size];
3861 		/* df->slab is always set at this point */
3862 		if (df->slab == virt_to_slab(object)) {
3863 			/* Opportunity build freelist */
3864 			set_freepointer(df->s, object, df->freelist);
3865 			df->freelist = object;
3866 			df->cnt++;
3867 			same--;
3868 			if (size != same)
3869 				swap(p[size], p[same]);
3870 			continue;
3871 		}
3872 
3873 		/* Limit look ahead search */
3874 		if (!--lookahead)
3875 			break;
3876 	}
3877 
3878 	return same;
3879 }
3880 
3881 /* Note that interrupts must be enabled when calling this function. */
3882 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3883 {
3884 	if (!size)
3885 		return;
3886 
3887 	do {
3888 		struct detached_freelist df;
3889 
3890 		size = build_detached_freelist(s, size, p, &df);
3891 		if (!df.slab)
3892 			continue;
3893 
3894 		slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3895 			  _RET_IP_);
3896 	} while (likely(size));
3897 }
3898 EXPORT_SYMBOL(kmem_cache_free_bulk);
3899 
3900 #ifndef CONFIG_SLUB_TINY
3901 static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3902 			size_t size, void **p, struct obj_cgroup *objcg)
3903 {
3904 	struct kmem_cache_cpu *c;
3905 	unsigned long irqflags;
3906 	int i;
3907 
3908 	/*
3909 	 * Drain objects in the per cpu slab, while disabling local
3910 	 * IRQs, which protects against PREEMPT and interrupts
3911 	 * handlers invoking normal fastpath.
3912 	 */
3913 	c = slub_get_cpu_ptr(s->cpu_slab);
3914 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3915 
3916 	for (i = 0; i < size; i++) {
3917 		void *object = kfence_alloc(s, s->object_size, flags);
3918 
3919 		if (unlikely(object)) {
3920 			p[i] = object;
3921 			continue;
3922 		}
3923 
3924 		object = c->freelist;
3925 		if (unlikely(!object)) {
3926 			/*
3927 			 * We may have removed an object from c->freelist using
3928 			 * the fastpath in the previous iteration; in that case,
3929 			 * c->tid has not been bumped yet.
3930 			 * Since ___slab_alloc() may reenable interrupts while
3931 			 * allocating memory, we should bump c->tid now.
3932 			 */
3933 			c->tid = next_tid(c->tid);
3934 
3935 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3936 
3937 			/*
3938 			 * Invoking slow path likely have side-effect
3939 			 * of re-populating per CPU c->freelist
3940 			 */
3941 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3942 					    _RET_IP_, c, s->object_size);
3943 			if (unlikely(!p[i]))
3944 				goto error;
3945 
3946 			c = this_cpu_ptr(s->cpu_slab);
3947 			maybe_wipe_obj_freeptr(s, p[i]);
3948 
3949 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3950 
3951 			continue; /* goto for-loop */
3952 		}
3953 		c->freelist = get_freepointer(s, object);
3954 		p[i] = object;
3955 		maybe_wipe_obj_freeptr(s, p[i]);
3956 	}
3957 	c->tid = next_tid(c->tid);
3958 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3959 	slub_put_cpu_ptr(s->cpu_slab);
3960 
3961 	return i;
3962 
3963 error:
3964 	slub_put_cpu_ptr(s->cpu_slab);
3965 	slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
3966 	kmem_cache_free_bulk(s, i, p);
3967 	return 0;
3968 
3969 }
3970 #else /* CONFIG_SLUB_TINY */
3971 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3972 			size_t size, void **p, struct obj_cgroup *objcg)
3973 {
3974 	int i;
3975 
3976 	for (i = 0; i < size; i++) {
3977 		void *object = kfence_alloc(s, s->object_size, flags);
3978 
3979 		if (unlikely(object)) {
3980 			p[i] = object;
3981 			continue;
3982 		}
3983 
3984 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
3985 					 _RET_IP_, s->object_size);
3986 		if (unlikely(!p[i]))
3987 			goto error;
3988 
3989 		maybe_wipe_obj_freeptr(s, p[i]);
3990 	}
3991 
3992 	return i;
3993 
3994 error:
3995 	slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
3996 	kmem_cache_free_bulk(s, i, p);
3997 	return 0;
3998 }
3999 #endif /* CONFIG_SLUB_TINY */
4000 
4001 /* Note that interrupts must be enabled when calling this function. */
4002 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4003 			  void **p)
4004 {
4005 	int i;
4006 	struct obj_cgroup *objcg = NULL;
4007 
4008 	if (!size)
4009 		return 0;
4010 
4011 	/* memcg and kmem_cache debug support */
4012 	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4013 	if (unlikely(!s))
4014 		return 0;
4015 
4016 	i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg);
4017 
4018 	/*
4019 	 * memcg and kmem_cache debug support and memory initialization.
4020 	 * Done outside of the IRQ disabled fastpath loop.
4021 	 */
4022 	if (i != 0)
4023 		slab_post_alloc_hook(s, objcg, flags, size, p,
4024 			slab_want_init_on_alloc(flags, s), s->object_size);
4025 	return i;
4026 }
4027 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4028 
4029 
4030 /*
4031  * Object placement in a slab is made very easy because we always start at
4032  * offset 0. If we tune the size of the object to the alignment then we can
4033  * get the required alignment by putting one properly sized object after
4034  * another.
4035  *
4036  * Notice that the allocation order determines the sizes of the per cpu
4037  * caches. Each processor has always one slab available for allocations.
4038  * Increasing the allocation order reduces the number of times that slabs
4039  * must be moved on and off the partial lists and is therefore a factor in
4040  * locking overhead.
4041  */
4042 
4043 /*
4044  * Minimum / Maximum order of slab pages. This influences locking overhead
4045  * and slab fragmentation. A higher order reduces the number of partial slabs
4046  * and increases the number of allocations possible without having to
4047  * take the list_lock.
4048  */
4049 static unsigned int slub_min_order;
4050 static unsigned int slub_max_order =
4051 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4052 static unsigned int slub_min_objects;
4053 
4054 /*
4055  * Calculate the order of allocation given an slab object size.
4056  *
4057  * The order of allocation has significant impact on performance and other
4058  * system components. Generally order 0 allocations should be preferred since
4059  * order 0 does not cause fragmentation in the page allocator. Larger objects
4060  * be problematic to put into order 0 slabs because there may be too much
4061  * unused space left. We go to a higher order if more than 1/16th of the slab
4062  * would be wasted.
4063  *
4064  * In order to reach satisfactory performance we must ensure that a minimum
4065  * number of objects is in one slab. Otherwise we may generate too much
4066  * activity on the partial lists which requires taking the list_lock. This is
4067  * less a concern for large slabs though which are rarely used.
4068  *
4069  * slub_max_order specifies the order where we begin to stop considering the
4070  * number of objects in a slab as critical. If we reach slub_max_order then
4071  * we try to keep the page order as low as possible. So we accept more waste
4072  * of space in favor of a small page order.
4073  *
4074  * Higher order allocations also allow the placement of more objects in a
4075  * slab and thereby reduce object handling overhead. If the user has
4076  * requested a higher minimum order then we start with that one instead of
4077  * the smallest order which will fit the object.
4078  */
4079 static inline unsigned int calc_slab_order(unsigned int size,
4080 		unsigned int min_objects, unsigned int max_order,
4081 		unsigned int fract_leftover)
4082 {
4083 	unsigned int min_order = slub_min_order;
4084 	unsigned int order;
4085 
4086 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4087 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4088 
4089 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
4090 			order <= max_order; order++) {
4091 
4092 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4093 		unsigned int rem;
4094 
4095 		rem = slab_size % size;
4096 
4097 		if (rem <= slab_size / fract_leftover)
4098 			break;
4099 	}
4100 
4101 	return order;
4102 }
4103 
4104 static inline int calculate_order(unsigned int size)
4105 {
4106 	unsigned int order;
4107 	unsigned int min_objects;
4108 	unsigned int max_objects;
4109 	unsigned int nr_cpus;
4110 
4111 	/*
4112 	 * Attempt to find best configuration for a slab. This
4113 	 * works by first attempting to generate a layout with
4114 	 * the best configuration and backing off gradually.
4115 	 *
4116 	 * First we increase the acceptable waste in a slab. Then
4117 	 * we reduce the minimum objects required in a slab.
4118 	 */
4119 	min_objects = slub_min_objects;
4120 	if (!min_objects) {
4121 		/*
4122 		 * Some architectures will only update present cpus when
4123 		 * onlining them, so don't trust the number if it's just 1. But
4124 		 * we also don't want to use nr_cpu_ids always, as on some other
4125 		 * architectures, there can be many possible cpus, but never
4126 		 * onlined. Here we compromise between trying to avoid too high
4127 		 * order on systems that appear larger than they are, and too
4128 		 * low order on systems that appear smaller than they are.
4129 		 */
4130 		nr_cpus = num_present_cpus();
4131 		if (nr_cpus <= 1)
4132 			nr_cpus = nr_cpu_ids;
4133 		min_objects = 4 * (fls(nr_cpus) + 1);
4134 	}
4135 	max_objects = order_objects(slub_max_order, size);
4136 	min_objects = min(min_objects, max_objects);
4137 
4138 	while (min_objects > 1) {
4139 		unsigned int fraction;
4140 
4141 		fraction = 16;
4142 		while (fraction >= 4) {
4143 			order = calc_slab_order(size, min_objects,
4144 					slub_max_order, fraction);
4145 			if (order <= slub_max_order)
4146 				return order;
4147 			fraction /= 2;
4148 		}
4149 		min_objects--;
4150 	}
4151 
4152 	/*
4153 	 * We were unable to place multiple objects in a slab. Now
4154 	 * lets see if we can place a single object there.
4155 	 */
4156 	order = calc_slab_order(size, 1, slub_max_order, 1);
4157 	if (order <= slub_max_order)
4158 		return order;
4159 
4160 	/*
4161 	 * Doh this slab cannot be placed using slub_max_order.
4162 	 */
4163 	order = calc_slab_order(size, 1, MAX_ORDER, 1);
4164 	if (order <= MAX_ORDER)
4165 		return order;
4166 	return -ENOSYS;
4167 }
4168 
4169 static void
4170 init_kmem_cache_node(struct kmem_cache_node *n)
4171 {
4172 	n->nr_partial = 0;
4173 	spin_lock_init(&n->list_lock);
4174 	INIT_LIST_HEAD(&n->partial);
4175 #ifdef CONFIG_SLUB_DEBUG
4176 	atomic_long_set(&n->nr_slabs, 0);
4177 	atomic_long_set(&n->total_objects, 0);
4178 	INIT_LIST_HEAD(&n->full);
4179 #endif
4180 }
4181 
4182 #ifndef CONFIG_SLUB_TINY
4183 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4184 {
4185 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4186 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4187 			sizeof(struct kmem_cache_cpu));
4188 
4189 	/*
4190 	 * Must align to double word boundary for the double cmpxchg
4191 	 * instructions to work; see __pcpu_double_call_return_bool().
4192 	 */
4193 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4194 				     2 * sizeof(void *));
4195 
4196 	if (!s->cpu_slab)
4197 		return 0;
4198 
4199 	init_kmem_cache_cpus(s);
4200 
4201 	return 1;
4202 }
4203 #else
4204 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4205 {
4206 	return 1;
4207 }
4208 #endif /* CONFIG_SLUB_TINY */
4209 
4210 static struct kmem_cache *kmem_cache_node;
4211 
4212 /*
4213  * No kmalloc_node yet so do it by hand. We know that this is the first
4214  * slab on the node for this slabcache. There are no concurrent accesses
4215  * possible.
4216  *
4217  * Note that this function only works on the kmem_cache_node
4218  * when allocating for the kmem_cache_node. This is used for bootstrapping
4219  * memory on a fresh node that has no slab structures yet.
4220  */
4221 static void early_kmem_cache_node_alloc(int node)
4222 {
4223 	struct slab *slab;
4224 	struct kmem_cache_node *n;
4225 
4226 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4227 
4228 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4229 
4230 	BUG_ON(!slab);
4231 	inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
4232 	if (slab_nid(slab) != node) {
4233 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4234 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
4235 	}
4236 
4237 	n = slab->freelist;
4238 	BUG_ON(!n);
4239 #ifdef CONFIG_SLUB_DEBUG
4240 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4241 	init_tracking(kmem_cache_node, n);
4242 #endif
4243 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4244 	slab->freelist = get_freepointer(kmem_cache_node, n);
4245 	slab->inuse = 1;
4246 	kmem_cache_node->node[node] = n;
4247 	init_kmem_cache_node(n);
4248 	inc_slabs_node(kmem_cache_node, node, slab->objects);
4249 
4250 	/*
4251 	 * No locks need to be taken here as it has just been
4252 	 * initialized and there is no concurrent access.
4253 	 */
4254 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
4255 }
4256 
4257 static void free_kmem_cache_nodes(struct kmem_cache *s)
4258 {
4259 	int node;
4260 	struct kmem_cache_node *n;
4261 
4262 	for_each_kmem_cache_node(s, node, n) {
4263 		s->node[node] = NULL;
4264 		kmem_cache_free(kmem_cache_node, n);
4265 	}
4266 }
4267 
4268 void __kmem_cache_release(struct kmem_cache *s)
4269 {
4270 	cache_random_seq_destroy(s);
4271 #ifndef CONFIG_SLUB_TINY
4272 	free_percpu(s->cpu_slab);
4273 #endif
4274 	free_kmem_cache_nodes(s);
4275 }
4276 
4277 static int init_kmem_cache_nodes(struct kmem_cache *s)
4278 {
4279 	int node;
4280 
4281 	for_each_node_mask(node, slab_nodes) {
4282 		struct kmem_cache_node *n;
4283 
4284 		if (slab_state == DOWN) {
4285 			early_kmem_cache_node_alloc(node);
4286 			continue;
4287 		}
4288 		n = kmem_cache_alloc_node(kmem_cache_node,
4289 						GFP_KERNEL, node);
4290 
4291 		if (!n) {
4292 			free_kmem_cache_nodes(s);
4293 			return 0;
4294 		}
4295 
4296 		init_kmem_cache_node(n);
4297 		s->node[node] = n;
4298 	}
4299 	return 1;
4300 }
4301 
4302 static void set_cpu_partial(struct kmem_cache *s)
4303 {
4304 #ifdef CONFIG_SLUB_CPU_PARTIAL
4305 	unsigned int nr_objects;
4306 
4307 	/*
4308 	 * cpu_partial determined the maximum number of objects kept in the
4309 	 * per cpu partial lists of a processor.
4310 	 *
4311 	 * Per cpu partial lists mainly contain slabs that just have one
4312 	 * object freed. If they are used for allocation then they can be
4313 	 * filled up again with minimal effort. The slab will never hit the
4314 	 * per node partial lists and therefore no locking will be required.
4315 	 *
4316 	 * For backwards compatibility reasons, this is determined as number
4317 	 * of objects, even though we now limit maximum number of pages, see
4318 	 * slub_set_cpu_partial()
4319 	 */
4320 	if (!kmem_cache_has_cpu_partial(s))
4321 		nr_objects = 0;
4322 	else if (s->size >= PAGE_SIZE)
4323 		nr_objects = 6;
4324 	else if (s->size >= 1024)
4325 		nr_objects = 24;
4326 	else if (s->size >= 256)
4327 		nr_objects = 52;
4328 	else
4329 		nr_objects = 120;
4330 
4331 	slub_set_cpu_partial(s, nr_objects);
4332 #endif
4333 }
4334 
4335 /*
4336  * calculate_sizes() determines the order and the distribution of data within
4337  * a slab object.
4338  */
4339 static int calculate_sizes(struct kmem_cache *s)
4340 {
4341 	slab_flags_t flags = s->flags;
4342 	unsigned int size = s->object_size;
4343 	unsigned int order;
4344 
4345 	/*
4346 	 * Round up object size to the next word boundary. We can only
4347 	 * place the free pointer at word boundaries and this determines
4348 	 * the possible location of the free pointer.
4349 	 */
4350 	size = ALIGN(size, sizeof(void *));
4351 
4352 #ifdef CONFIG_SLUB_DEBUG
4353 	/*
4354 	 * Determine if we can poison the object itself. If the user of
4355 	 * the slab may touch the object after free or before allocation
4356 	 * then we should never poison the object itself.
4357 	 */
4358 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4359 			!s->ctor)
4360 		s->flags |= __OBJECT_POISON;
4361 	else
4362 		s->flags &= ~__OBJECT_POISON;
4363 
4364 
4365 	/*
4366 	 * If we are Redzoning then check if there is some space between the
4367 	 * end of the object and the free pointer. If not then add an
4368 	 * additional word to have some bytes to store Redzone information.
4369 	 */
4370 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4371 		size += sizeof(void *);
4372 #endif
4373 
4374 	/*
4375 	 * With that we have determined the number of bytes in actual use
4376 	 * by the object and redzoning.
4377 	 */
4378 	s->inuse = size;
4379 
4380 	if (slub_debug_orig_size(s) ||
4381 	    (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4382 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4383 	    s->ctor) {
4384 		/*
4385 		 * Relocate free pointer after the object if it is not
4386 		 * permitted to overwrite the first word of the object on
4387 		 * kmem_cache_free.
4388 		 *
4389 		 * This is the case if we do RCU, have a constructor or
4390 		 * destructor, are poisoning the objects, or are
4391 		 * redzoning an object smaller than sizeof(void *).
4392 		 *
4393 		 * The assumption that s->offset >= s->inuse means free
4394 		 * pointer is outside of the object is used in the
4395 		 * freeptr_outside_object() function. If that is no
4396 		 * longer true, the function needs to be modified.
4397 		 */
4398 		s->offset = size;
4399 		size += sizeof(void *);
4400 	} else {
4401 		/*
4402 		 * Store freelist pointer near middle of object to keep
4403 		 * it away from the edges of the object to avoid small
4404 		 * sized over/underflows from neighboring allocations.
4405 		 */
4406 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4407 	}
4408 
4409 #ifdef CONFIG_SLUB_DEBUG
4410 	if (flags & SLAB_STORE_USER) {
4411 		/*
4412 		 * Need to store information about allocs and frees after
4413 		 * the object.
4414 		 */
4415 		size += 2 * sizeof(struct track);
4416 
4417 		/* Save the original kmalloc request size */
4418 		if (flags & SLAB_KMALLOC)
4419 			size += sizeof(unsigned int);
4420 	}
4421 #endif
4422 
4423 	kasan_cache_create(s, &size, &s->flags);
4424 #ifdef CONFIG_SLUB_DEBUG
4425 	if (flags & SLAB_RED_ZONE) {
4426 		/*
4427 		 * Add some empty padding so that we can catch
4428 		 * overwrites from earlier objects rather than let
4429 		 * tracking information or the free pointer be
4430 		 * corrupted if a user writes before the start
4431 		 * of the object.
4432 		 */
4433 		size += sizeof(void *);
4434 
4435 		s->red_left_pad = sizeof(void *);
4436 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4437 		size += s->red_left_pad;
4438 	}
4439 #endif
4440 
4441 	/*
4442 	 * SLUB stores one object immediately after another beginning from
4443 	 * offset 0. In order to align the objects we have to simply size
4444 	 * each object to conform to the alignment.
4445 	 */
4446 	size = ALIGN(size, s->align);
4447 	s->size = size;
4448 	s->reciprocal_size = reciprocal_value(size);
4449 	order = calculate_order(size);
4450 
4451 	if ((int)order < 0)
4452 		return 0;
4453 
4454 	s->allocflags = 0;
4455 	if (order)
4456 		s->allocflags |= __GFP_COMP;
4457 
4458 	if (s->flags & SLAB_CACHE_DMA)
4459 		s->allocflags |= GFP_DMA;
4460 
4461 	if (s->flags & SLAB_CACHE_DMA32)
4462 		s->allocflags |= GFP_DMA32;
4463 
4464 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4465 		s->allocflags |= __GFP_RECLAIMABLE;
4466 
4467 	/*
4468 	 * Determine the number of objects per slab
4469 	 */
4470 	s->oo = oo_make(order, size);
4471 	s->min = oo_make(get_order(size), size);
4472 
4473 	return !!oo_objects(s->oo);
4474 }
4475 
4476 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4477 {
4478 	s->flags = kmem_cache_flags(s->size, flags, s->name);
4479 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4480 	s->random = get_random_long();
4481 #endif
4482 
4483 	if (!calculate_sizes(s))
4484 		goto error;
4485 	if (disable_higher_order_debug) {
4486 		/*
4487 		 * Disable debugging flags that store metadata if the min slab
4488 		 * order increased.
4489 		 */
4490 		if (get_order(s->size) > get_order(s->object_size)) {
4491 			s->flags &= ~DEBUG_METADATA_FLAGS;
4492 			s->offset = 0;
4493 			if (!calculate_sizes(s))
4494 				goto error;
4495 		}
4496 	}
4497 
4498 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4499     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
4500 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
4501 		/* Enable fast mode */
4502 		s->flags |= __CMPXCHG_DOUBLE;
4503 #endif
4504 
4505 	/*
4506 	 * The larger the object size is, the more slabs we want on the partial
4507 	 * list to avoid pounding the page allocator excessively.
4508 	 */
4509 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4510 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4511 
4512 	set_cpu_partial(s);
4513 
4514 #ifdef CONFIG_NUMA
4515 	s->remote_node_defrag_ratio = 1000;
4516 #endif
4517 
4518 	/* Initialize the pre-computed randomized freelist if slab is up */
4519 	if (slab_state >= UP) {
4520 		if (init_cache_random_seq(s))
4521 			goto error;
4522 	}
4523 
4524 	if (!init_kmem_cache_nodes(s))
4525 		goto error;
4526 
4527 	if (alloc_kmem_cache_cpus(s))
4528 		return 0;
4529 
4530 error:
4531 	__kmem_cache_release(s);
4532 	return -EINVAL;
4533 }
4534 
4535 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4536 			      const char *text)
4537 {
4538 #ifdef CONFIG_SLUB_DEBUG
4539 	void *addr = slab_address(slab);
4540 	void *p;
4541 
4542 	slab_err(s, slab, text, s->name);
4543 
4544 	spin_lock(&object_map_lock);
4545 	__fill_map(object_map, s, slab);
4546 
4547 	for_each_object(p, s, addr, slab->objects) {
4548 
4549 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
4550 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4551 			print_tracking(s, p);
4552 		}
4553 	}
4554 	spin_unlock(&object_map_lock);
4555 #endif
4556 }
4557 
4558 /*
4559  * Attempt to free all partial slabs on a node.
4560  * This is called from __kmem_cache_shutdown(). We must take list_lock
4561  * because sysfs file might still access partial list after the shutdowning.
4562  */
4563 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4564 {
4565 	LIST_HEAD(discard);
4566 	struct slab *slab, *h;
4567 
4568 	BUG_ON(irqs_disabled());
4569 	spin_lock_irq(&n->list_lock);
4570 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4571 		if (!slab->inuse) {
4572 			remove_partial(n, slab);
4573 			list_add(&slab->slab_list, &discard);
4574 		} else {
4575 			list_slab_objects(s, slab,
4576 			  "Objects remaining in %s on __kmem_cache_shutdown()");
4577 		}
4578 	}
4579 	spin_unlock_irq(&n->list_lock);
4580 
4581 	list_for_each_entry_safe(slab, h, &discard, slab_list)
4582 		discard_slab(s, slab);
4583 }
4584 
4585 bool __kmem_cache_empty(struct kmem_cache *s)
4586 {
4587 	int node;
4588 	struct kmem_cache_node *n;
4589 
4590 	for_each_kmem_cache_node(s, node, n)
4591 		if (n->nr_partial || node_nr_slabs(n))
4592 			return false;
4593 	return true;
4594 }
4595 
4596 /*
4597  * Release all resources used by a slab cache.
4598  */
4599 int __kmem_cache_shutdown(struct kmem_cache *s)
4600 {
4601 	int node;
4602 	struct kmem_cache_node *n;
4603 
4604 	flush_all_cpus_locked(s);
4605 	/* Attempt to free all objects */
4606 	for_each_kmem_cache_node(s, node, n) {
4607 		free_partial(s, n);
4608 		if (n->nr_partial || node_nr_slabs(n))
4609 			return 1;
4610 	}
4611 	return 0;
4612 }
4613 
4614 #ifdef CONFIG_PRINTK
4615 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4616 {
4617 	void *base;
4618 	int __maybe_unused i;
4619 	unsigned int objnr;
4620 	void *objp;
4621 	void *objp0;
4622 	struct kmem_cache *s = slab->slab_cache;
4623 	struct track __maybe_unused *trackp;
4624 
4625 	kpp->kp_ptr = object;
4626 	kpp->kp_slab = slab;
4627 	kpp->kp_slab_cache = s;
4628 	base = slab_address(slab);
4629 	objp0 = kasan_reset_tag(object);
4630 #ifdef CONFIG_SLUB_DEBUG
4631 	objp = restore_red_left(s, objp0);
4632 #else
4633 	objp = objp0;
4634 #endif
4635 	objnr = obj_to_index(s, slab, objp);
4636 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4637 	objp = base + s->size * objnr;
4638 	kpp->kp_objp = objp;
4639 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4640 			 || (objp - base) % s->size) ||
4641 	    !(s->flags & SLAB_STORE_USER))
4642 		return;
4643 #ifdef CONFIG_SLUB_DEBUG
4644 	objp = fixup_red_left(s, objp);
4645 	trackp = get_track(s, objp, TRACK_ALLOC);
4646 	kpp->kp_ret = (void *)trackp->addr;
4647 #ifdef CONFIG_STACKDEPOT
4648 	{
4649 		depot_stack_handle_t handle;
4650 		unsigned long *entries;
4651 		unsigned int nr_entries;
4652 
4653 		handle = READ_ONCE(trackp->handle);
4654 		if (handle) {
4655 			nr_entries = stack_depot_fetch(handle, &entries);
4656 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4657 				kpp->kp_stack[i] = (void *)entries[i];
4658 		}
4659 
4660 		trackp = get_track(s, objp, TRACK_FREE);
4661 		handle = READ_ONCE(trackp->handle);
4662 		if (handle) {
4663 			nr_entries = stack_depot_fetch(handle, &entries);
4664 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4665 				kpp->kp_free_stack[i] = (void *)entries[i];
4666 		}
4667 	}
4668 #endif
4669 #endif
4670 }
4671 #endif
4672 
4673 /********************************************************************
4674  *		Kmalloc subsystem
4675  *******************************************************************/
4676 
4677 static int __init setup_slub_min_order(char *str)
4678 {
4679 	get_option(&str, (int *)&slub_min_order);
4680 
4681 	return 1;
4682 }
4683 
4684 __setup("slub_min_order=", setup_slub_min_order);
4685 
4686 static int __init setup_slub_max_order(char *str)
4687 {
4688 	get_option(&str, (int *)&slub_max_order);
4689 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_ORDER);
4690 
4691 	return 1;
4692 }
4693 
4694 __setup("slub_max_order=", setup_slub_max_order);
4695 
4696 static int __init setup_slub_min_objects(char *str)
4697 {
4698 	get_option(&str, (int *)&slub_min_objects);
4699 
4700 	return 1;
4701 }
4702 
4703 __setup("slub_min_objects=", setup_slub_min_objects);
4704 
4705 #ifdef CONFIG_HARDENED_USERCOPY
4706 /*
4707  * Rejects incorrectly sized objects and objects that are to be copied
4708  * to/from userspace but do not fall entirely within the containing slab
4709  * cache's usercopy region.
4710  *
4711  * Returns NULL if check passes, otherwise const char * to name of cache
4712  * to indicate an error.
4713  */
4714 void __check_heap_object(const void *ptr, unsigned long n,
4715 			 const struct slab *slab, bool to_user)
4716 {
4717 	struct kmem_cache *s;
4718 	unsigned int offset;
4719 	bool is_kfence = is_kfence_address(ptr);
4720 
4721 	ptr = kasan_reset_tag(ptr);
4722 
4723 	/* Find object and usable object size. */
4724 	s = slab->slab_cache;
4725 
4726 	/* Reject impossible pointers. */
4727 	if (ptr < slab_address(slab))
4728 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4729 			       to_user, 0, n);
4730 
4731 	/* Find offset within object. */
4732 	if (is_kfence)
4733 		offset = ptr - kfence_object_start(ptr);
4734 	else
4735 		offset = (ptr - slab_address(slab)) % s->size;
4736 
4737 	/* Adjust for redzone and reject if within the redzone. */
4738 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4739 		if (offset < s->red_left_pad)
4740 			usercopy_abort("SLUB object in left red zone",
4741 				       s->name, to_user, offset, n);
4742 		offset -= s->red_left_pad;
4743 	}
4744 
4745 	/* Allow address range falling entirely within usercopy region. */
4746 	if (offset >= s->useroffset &&
4747 	    offset - s->useroffset <= s->usersize &&
4748 	    n <= s->useroffset - offset + s->usersize)
4749 		return;
4750 
4751 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4752 }
4753 #endif /* CONFIG_HARDENED_USERCOPY */
4754 
4755 #define SHRINK_PROMOTE_MAX 32
4756 
4757 /*
4758  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4759  * up most to the head of the partial lists. New allocations will then
4760  * fill those up and thus they can be removed from the partial lists.
4761  *
4762  * The slabs with the least items are placed last. This results in them
4763  * being allocated from last increasing the chance that the last objects
4764  * are freed in them.
4765  */
4766 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4767 {
4768 	int node;
4769 	int i;
4770 	struct kmem_cache_node *n;
4771 	struct slab *slab;
4772 	struct slab *t;
4773 	struct list_head discard;
4774 	struct list_head promote[SHRINK_PROMOTE_MAX];
4775 	unsigned long flags;
4776 	int ret = 0;
4777 
4778 	for_each_kmem_cache_node(s, node, n) {
4779 		INIT_LIST_HEAD(&discard);
4780 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4781 			INIT_LIST_HEAD(promote + i);
4782 
4783 		spin_lock_irqsave(&n->list_lock, flags);
4784 
4785 		/*
4786 		 * Build lists of slabs to discard or promote.
4787 		 *
4788 		 * Note that concurrent frees may occur while we hold the
4789 		 * list_lock. slab->inuse here is the upper limit.
4790 		 */
4791 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4792 			int free = slab->objects - slab->inuse;
4793 
4794 			/* Do not reread slab->inuse */
4795 			barrier();
4796 
4797 			/* We do not keep full slabs on the list */
4798 			BUG_ON(free <= 0);
4799 
4800 			if (free == slab->objects) {
4801 				list_move(&slab->slab_list, &discard);
4802 				n->nr_partial--;
4803 				dec_slabs_node(s, node, slab->objects);
4804 			} else if (free <= SHRINK_PROMOTE_MAX)
4805 				list_move(&slab->slab_list, promote + free - 1);
4806 		}
4807 
4808 		/*
4809 		 * Promote the slabs filled up most to the head of the
4810 		 * partial list.
4811 		 */
4812 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4813 			list_splice(promote + i, &n->partial);
4814 
4815 		spin_unlock_irqrestore(&n->list_lock, flags);
4816 
4817 		/* Release empty slabs */
4818 		list_for_each_entry_safe(slab, t, &discard, slab_list)
4819 			free_slab(s, slab);
4820 
4821 		if (node_nr_slabs(n))
4822 			ret = 1;
4823 	}
4824 
4825 	return ret;
4826 }
4827 
4828 int __kmem_cache_shrink(struct kmem_cache *s)
4829 {
4830 	flush_all(s);
4831 	return __kmem_cache_do_shrink(s);
4832 }
4833 
4834 static int slab_mem_going_offline_callback(void *arg)
4835 {
4836 	struct kmem_cache *s;
4837 
4838 	mutex_lock(&slab_mutex);
4839 	list_for_each_entry(s, &slab_caches, list) {
4840 		flush_all_cpus_locked(s);
4841 		__kmem_cache_do_shrink(s);
4842 	}
4843 	mutex_unlock(&slab_mutex);
4844 
4845 	return 0;
4846 }
4847 
4848 static void slab_mem_offline_callback(void *arg)
4849 {
4850 	struct memory_notify *marg = arg;
4851 	int offline_node;
4852 
4853 	offline_node = marg->status_change_nid_normal;
4854 
4855 	/*
4856 	 * If the node still has available memory. we need kmem_cache_node
4857 	 * for it yet.
4858 	 */
4859 	if (offline_node < 0)
4860 		return;
4861 
4862 	mutex_lock(&slab_mutex);
4863 	node_clear(offline_node, slab_nodes);
4864 	/*
4865 	 * We no longer free kmem_cache_node structures here, as it would be
4866 	 * racy with all get_node() users, and infeasible to protect them with
4867 	 * slab_mutex.
4868 	 */
4869 	mutex_unlock(&slab_mutex);
4870 }
4871 
4872 static int slab_mem_going_online_callback(void *arg)
4873 {
4874 	struct kmem_cache_node *n;
4875 	struct kmem_cache *s;
4876 	struct memory_notify *marg = arg;
4877 	int nid = marg->status_change_nid_normal;
4878 	int ret = 0;
4879 
4880 	/*
4881 	 * If the node's memory is already available, then kmem_cache_node is
4882 	 * already created. Nothing to do.
4883 	 */
4884 	if (nid < 0)
4885 		return 0;
4886 
4887 	/*
4888 	 * We are bringing a node online. No memory is available yet. We must
4889 	 * allocate a kmem_cache_node structure in order to bring the node
4890 	 * online.
4891 	 */
4892 	mutex_lock(&slab_mutex);
4893 	list_for_each_entry(s, &slab_caches, list) {
4894 		/*
4895 		 * The structure may already exist if the node was previously
4896 		 * onlined and offlined.
4897 		 */
4898 		if (get_node(s, nid))
4899 			continue;
4900 		/*
4901 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4902 		 *      since memory is not yet available from the node that
4903 		 *      is brought up.
4904 		 */
4905 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4906 		if (!n) {
4907 			ret = -ENOMEM;
4908 			goto out;
4909 		}
4910 		init_kmem_cache_node(n);
4911 		s->node[nid] = n;
4912 	}
4913 	/*
4914 	 * Any cache created after this point will also have kmem_cache_node
4915 	 * initialized for the new node.
4916 	 */
4917 	node_set(nid, slab_nodes);
4918 out:
4919 	mutex_unlock(&slab_mutex);
4920 	return ret;
4921 }
4922 
4923 static int slab_memory_callback(struct notifier_block *self,
4924 				unsigned long action, void *arg)
4925 {
4926 	int ret = 0;
4927 
4928 	switch (action) {
4929 	case MEM_GOING_ONLINE:
4930 		ret = slab_mem_going_online_callback(arg);
4931 		break;
4932 	case MEM_GOING_OFFLINE:
4933 		ret = slab_mem_going_offline_callback(arg);
4934 		break;
4935 	case MEM_OFFLINE:
4936 	case MEM_CANCEL_ONLINE:
4937 		slab_mem_offline_callback(arg);
4938 		break;
4939 	case MEM_ONLINE:
4940 	case MEM_CANCEL_OFFLINE:
4941 		break;
4942 	}
4943 	if (ret)
4944 		ret = notifier_from_errno(ret);
4945 	else
4946 		ret = NOTIFY_OK;
4947 	return ret;
4948 }
4949 
4950 /********************************************************************
4951  *			Basic setup of slabs
4952  *******************************************************************/
4953 
4954 /*
4955  * Used for early kmem_cache structures that were allocated using
4956  * the page allocator. Allocate them properly then fix up the pointers
4957  * that may be pointing to the wrong kmem_cache structure.
4958  */
4959 
4960 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4961 {
4962 	int node;
4963 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4964 	struct kmem_cache_node *n;
4965 
4966 	memcpy(s, static_cache, kmem_cache->object_size);
4967 
4968 	/*
4969 	 * This runs very early, and only the boot processor is supposed to be
4970 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4971 	 * IPIs around.
4972 	 */
4973 	__flush_cpu_slab(s, smp_processor_id());
4974 	for_each_kmem_cache_node(s, node, n) {
4975 		struct slab *p;
4976 
4977 		list_for_each_entry(p, &n->partial, slab_list)
4978 			p->slab_cache = s;
4979 
4980 #ifdef CONFIG_SLUB_DEBUG
4981 		list_for_each_entry(p, &n->full, slab_list)
4982 			p->slab_cache = s;
4983 #endif
4984 	}
4985 	list_add(&s->list, &slab_caches);
4986 	return s;
4987 }
4988 
4989 void __init kmem_cache_init(void)
4990 {
4991 	static __initdata struct kmem_cache boot_kmem_cache,
4992 		boot_kmem_cache_node;
4993 	int node;
4994 
4995 	if (debug_guardpage_minorder())
4996 		slub_max_order = 0;
4997 
4998 	/* Print slub debugging pointers without hashing */
4999 	if (__slub_debug_enabled())
5000 		no_hash_pointers_enable(NULL);
5001 
5002 	kmem_cache_node = &boot_kmem_cache_node;
5003 	kmem_cache = &boot_kmem_cache;
5004 
5005 	/*
5006 	 * Initialize the nodemask for which we will allocate per node
5007 	 * structures. Here we don't need taking slab_mutex yet.
5008 	 */
5009 	for_each_node_state(node, N_NORMAL_MEMORY)
5010 		node_set(node, slab_nodes);
5011 
5012 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
5013 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
5014 
5015 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5016 
5017 	/* Able to allocate the per node structures */
5018 	slab_state = PARTIAL;
5019 
5020 	create_boot_cache(kmem_cache, "kmem_cache",
5021 			offsetof(struct kmem_cache, node) +
5022 				nr_node_ids * sizeof(struct kmem_cache_node *),
5023 		       SLAB_HWCACHE_ALIGN, 0, 0);
5024 
5025 	kmem_cache = bootstrap(&boot_kmem_cache);
5026 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5027 
5028 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
5029 	setup_kmalloc_cache_index_table();
5030 	create_kmalloc_caches(0);
5031 
5032 	/* Setup random freelists for each cache */
5033 	init_freelist_randomization();
5034 
5035 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5036 				  slub_cpu_dead);
5037 
5038 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5039 		cache_line_size(),
5040 		slub_min_order, slub_max_order, slub_min_objects,
5041 		nr_cpu_ids, nr_node_ids);
5042 }
5043 
5044 void __init kmem_cache_init_late(void)
5045 {
5046 #ifndef CONFIG_SLUB_TINY
5047 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5048 	WARN_ON(!flushwq);
5049 #endif
5050 }
5051 
5052 struct kmem_cache *
5053 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5054 		   slab_flags_t flags, void (*ctor)(void *))
5055 {
5056 	struct kmem_cache *s;
5057 
5058 	s = find_mergeable(size, align, flags, name, ctor);
5059 	if (s) {
5060 		if (sysfs_slab_alias(s, name))
5061 			return NULL;
5062 
5063 		s->refcount++;
5064 
5065 		/*
5066 		 * Adjust the object sizes so that we clear
5067 		 * the complete object on kzalloc.
5068 		 */
5069 		s->object_size = max(s->object_size, size);
5070 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5071 	}
5072 
5073 	return s;
5074 }
5075 
5076 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5077 {
5078 	int err;
5079 
5080 	err = kmem_cache_open(s, flags);
5081 	if (err)
5082 		return err;
5083 
5084 	/* Mutex is not taken during early boot */
5085 	if (slab_state <= UP)
5086 		return 0;
5087 
5088 	err = sysfs_slab_add(s);
5089 	if (err) {
5090 		__kmem_cache_release(s);
5091 		return err;
5092 	}
5093 
5094 	if (s->flags & SLAB_STORE_USER)
5095 		debugfs_slab_add(s);
5096 
5097 	return 0;
5098 }
5099 
5100 #ifdef SLAB_SUPPORTS_SYSFS
5101 static int count_inuse(struct slab *slab)
5102 {
5103 	return slab->inuse;
5104 }
5105 
5106 static int count_total(struct slab *slab)
5107 {
5108 	return slab->objects;
5109 }
5110 #endif
5111 
5112 #ifdef CONFIG_SLUB_DEBUG
5113 static void validate_slab(struct kmem_cache *s, struct slab *slab,
5114 			  unsigned long *obj_map)
5115 {
5116 	void *p;
5117 	void *addr = slab_address(slab);
5118 
5119 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5120 		return;
5121 
5122 	/* Now we know that a valid freelist exists */
5123 	__fill_map(obj_map, s, slab);
5124 	for_each_object(p, s, addr, slab->objects) {
5125 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5126 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5127 
5128 		if (!check_object(s, slab, p, val))
5129 			break;
5130 	}
5131 }
5132 
5133 static int validate_slab_node(struct kmem_cache *s,
5134 		struct kmem_cache_node *n, unsigned long *obj_map)
5135 {
5136 	unsigned long count = 0;
5137 	struct slab *slab;
5138 	unsigned long flags;
5139 
5140 	spin_lock_irqsave(&n->list_lock, flags);
5141 
5142 	list_for_each_entry(slab, &n->partial, slab_list) {
5143 		validate_slab(s, slab, obj_map);
5144 		count++;
5145 	}
5146 	if (count != n->nr_partial) {
5147 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5148 		       s->name, count, n->nr_partial);
5149 		slab_add_kunit_errors();
5150 	}
5151 
5152 	if (!(s->flags & SLAB_STORE_USER))
5153 		goto out;
5154 
5155 	list_for_each_entry(slab, &n->full, slab_list) {
5156 		validate_slab(s, slab, obj_map);
5157 		count++;
5158 	}
5159 	if (count != atomic_long_read(&n->nr_slabs)) {
5160 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5161 		       s->name, count, atomic_long_read(&n->nr_slabs));
5162 		slab_add_kunit_errors();
5163 	}
5164 
5165 out:
5166 	spin_unlock_irqrestore(&n->list_lock, flags);
5167 	return count;
5168 }
5169 
5170 long validate_slab_cache(struct kmem_cache *s)
5171 {
5172 	int node;
5173 	unsigned long count = 0;
5174 	struct kmem_cache_node *n;
5175 	unsigned long *obj_map;
5176 
5177 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5178 	if (!obj_map)
5179 		return -ENOMEM;
5180 
5181 	flush_all(s);
5182 	for_each_kmem_cache_node(s, node, n)
5183 		count += validate_slab_node(s, n, obj_map);
5184 
5185 	bitmap_free(obj_map);
5186 
5187 	return count;
5188 }
5189 EXPORT_SYMBOL(validate_slab_cache);
5190 
5191 #ifdef CONFIG_DEBUG_FS
5192 /*
5193  * Generate lists of code addresses where slabcache objects are allocated
5194  * and freed.
5195  */
5196 
5197 struct location {
5198 	depot_stack_handle_t handle;
5199 	unsigned long count;
5200 	unsigned long addr;
5201 	unsigned long waste;
5202 	long long sum_time;
5203 	long min_time;
5204 	long max_time;
5205 	long min_pid;
5206 	long max_pid;
5207 	DECLARE_BITMAP(cpus, NR_CPUS);
5208 	nodemask_t nodes;
5209 };
5210 
5211 struct loc_track {
5212 	unsigned long max;
5213 	unsigned long count;
5214 	struct location *loc;
5215 	loff_t idx;
5216 };
5217 
5218 static struct dentry *slab_debugfs_root;
5219 
5220 static void free_loc_track(struct loc_track *t)
5221 {
5222 	if (t->max)
5223 		free_pages((unsigned long)t->loc,
5224 			get_order(sizeof(struct location) * t->max));
5225 }
5226 
5227 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5228 {
5229 	struct location *l;
5230 	int order;
5231 
5232 	order = get_order(sizeof(struct location) * max);
5233 
5234 	l = (void *)__get_free_pages(flags, order);
5235 	if (!l)
5236 		return 0;
5237 
5238 	if (t->count) {
5239 		memcpy(l, t->loc, sizeof(struct location) * t->count);
5240 		free_loc_track(t);
5241 	}
5242 	t->max = max;
5243 	t->loc = l;
5244 	return 1;
5245 }
5246 
5247 static int add_location(struct loc_track *t, struct kmem_cache *s,
5248 				const struct track *track,
5249 				unsigned int orig_size)
5250 {
5251 	long start, end, pos;
5252 	struct location *l;
5253 	unsigned long caddr, chandle, cwaste;
5254 	unsigned long age = jiffies - track->when;
5255 	depot_stack_handle_t handle = 0;
5256 	unsigned int waste = s->object_size - orig_size;
5257 
5258 #ifdef CONFIG_STACKDEPOT
5259 	handle = READ_ONCE(track->handle);
5260 #endif
5261 	start = -1;
5262 	end = t->count;
5263 
5264 	for ( ; ; ) {
5265 		pos = start + (end - start + 1) / 2;
5266 
5267 		/*
5268 		 * There is nothing at "end". If we end up there
5269 		 * we need to add something to before end.
5270 		 */
5271 		if (pos == end)
5272 			break;
5273 
5274 		l = &t->loc[pos];
5275 		caddr = l->addr;
5276 		chandle = l->handle;
5277 		cwaste = l->waste;
5278 		if ((track->addr == caddr) && (handle == chandle) &&
5279 			(waste == cwaste)) {
5280 
5281 			l->count++;
5282 			if (track->when) {
5283 				l->sum_time += age;
5284 				if (age < l->min_time)
5285 					l->min_time = age;
5286 				if (age > l->max_time)
5287 					l->max_time = age;
5288 
5289 				if (track->pid < l->min_pid)
5290 					l->min_pid = track->pid;
5291 				if (track->pid > l->max_pid)
5292 					l->max_pid = track->pid;
5293 
5294 				cpumask_set_cpu(track->cpu,
5295 						to_cpumask(l->cpus));
5296 			}
5297 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
5298 			return 1;
5299 		}
5300 
5301 		if (track->addr < caddr)
5302 			end = pos;
5303 		else if (track->addr == caddr && handle < chandle)
5304 			end = pos;
5305 		else if (track->addr == caddr && handle == chandle &&
5306 				waste < cwaste)
5307 			end = pos;
5308 		else
5309 			start = pos;
5310 	}
5311 
5312 	/*
5313 	 * Not found. Insert new tracking element.
5314 	 */
5315 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5316 		return 0;
5317 
5318 	l = t->loc + pos;
5319 	if (pos < t->count)
5320 		memmove(l + 1, l,
5321 			(t->count - pos) * sizeof(struct location));
5322 	t->count++;
5323 	l->count = 1;
5324 	l->addr = track->addr;
5325 	l->sum_time = age;
5326 	l->min_time = age;
5327 	l->max_time = age;
5328 	l->min_pid = track->pid;
5329 	l->max_pid = track->pid;
5330 	l->handle = handle;
5331 	l->waste = waste;
5332 	cpumask_clear(to_cpumask(l->cpus));
5333 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5334 	nodes_clear(l->nodes);
5335 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
5336 	return 1;
5337 }
5338 
5339 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5340 		struct slab *slab, enum track_item alloc,
5341 		unsigned long *obj_map)
5342 {
5343 	void *addr = slab_address(slab);
5344 	bool is_alloc = (alloc == TRACK_ALLOC);
5345 	void *p;
5346 
5347 	__fill_map(obj_map, s, slab);
5348 
5349 	for_each_object(p, s, addr, slab->objects)
5350 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5351 			add_location(t, s, get_track(s, p, alloc),
5352 				     is_alloc ? get_orig_size(s, p) :
5353 						s->object_size);
5354 }
5355 #endif  /* CONFIG_DEBUG_FS   */
5356 #endif	/* CONFIG_SLUB_DEBUG */
5357 
5358 #ifdef SLAB_SUPPORTS_SYSFS
5359 enum slab_stat_type {
5360 	SL_ALL,			/* All slabs */
5361 	SL_PARTIAL,		/* Only partially allocated slabs */
5362 	SL_CPU,			/* Only slabs used for cpu caches */
5363 	SL_OBJECTS,		/* Determine allocated objects not slabs */
5364 	SL_TOTAL		/* Determine object capacity not slabs */
5365 };
5366 
5367 #define SO_ALL		(1 << SL_ALL)
5368 #define SO_PARTIAL	(1 << SL_PARTIAL)
5369 #define SO_CPU		(1 << SL_CPU)
5370 #define SO_OBJECTS	(1 << SL_OBJECTS)
5371 #define SO_TOTAL	(1 << SL_TOTAL)
5372 
5373 static ssize_t show_slab_objects(struct kmem_cache *s,
5374 				 char *buf, unsigned long flags)
5375 {
5376 	unsigned long total = 0;
5377 	int node;
5378 	int x;
5379 	unsigned long *nodes;
5380 	int len = 0;
5381 
5382 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5383 	if (!nodes)
5384 		return -ENOMEM;
5385 
5386 	if (flags & SO_CPU) {
5387 		int cpu;
5388 
5389 		for_each_possible_cpu(cpu) {
5390 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5391 							       cpu);
5392 			int node;
5393 			struct slab *slab;
5394 
5395 			slab = READ_ONCE(c->slab);
5396 			if (!slab)
5397 				continue;
5398 
5399 			node = slab_nid(slab);
5400 			if (flags & SO_TOTAL)
5401 				x = slab->objects;
5402 			else if (flags & SO_OBJECTS)
5403 				x = slab->inuse;
5404 			else
5405 				x = 1;
5406 
5407 			total += x;
5408 			nodes[node] += x;
5409 
5410 #ifdef CONFIG_SLUB_CPU_PARTIAL
5411 			slab = slub_percpu_partial_read_once(c);
5412 			if (slab) {
5413 				node = slab_nid(slab);
5414 				if (flags & SO_TOTAL)
5415 					WARN_ON_ONCE(1);
5416 				else if (flags & SO_OBJECTS)
5417 					WARN_ON_ONCE(1);
5418 				else
5419 					x = slab->slabs;
5420 				total += x;
5421 				nodes[node] += x;
5422 			}
5423 #endif
5424 		}
5425 	}
5426 
5427 	/*
5428 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5429 	 * already held which will conflict with an existing lock order:
5430 	 *
5431 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5432 	 *
5433 	 * We don't really need mem_hotplug_lock (to hold off
5434 	 * slab_mem_going_offline_callback) here because slab's memory hot
5435 	 * unplug code doesn't destroy the kmem_cache->node[] data.
5436 	 */
5437 
5438 #ifdef CONFIG_SLUB_DEBUG
5439 	if (flags & SO_ALL) {
5440 		struct kmem_cache_node *n;
5441 
5442 		for_each_kmem_cache_node(s, node, n) {
5443 
5444 			if (flags & SO_TOTAL)
5445 				x = atomic_long_read(&n->total_objects);
5446 			else if (flags & SO_OBJECTS)
5447 				x = atomic_long_read(&n->total_objects) -
5448 					count_partial(n, count_free);
5449 			else
5450 				x = atomic_long_read(&n->nr_slabs);
5451 			total += x;
5452 			nodes[node] += x;
5453 		}
5454 
5455 	} else
5456 #endif
5457 	if (flags & SO_PARTIAL) {
5458 		struct kmem_cache_node *n;
5459 
5460 		for_each_kmem_cache_node(s, node, n) {
5461 			if (flags & SO_TOTAL)
5462 				x = count_partial(n, count_total);
5463 			else if (flags & SO_OBJECTS)
5464 				x = count_partial(n, count_inuse);
5465 			else
5466 				x = n->nr_partial;
5467 			total += x;
5468 			nodes[node] += x;
5469 		}
5470 	}
5471 
5472 	len += sysfs_emit_at(buf, len, "%lu", total);
5473 #ifdef CONFIG_NUMA
5474 	for (node = 0; node < nr_node_ids; node++) {
5475 		if (nodes[node])
5476 			len += sysfs_emit_at(buf, len, " N%d=%lu",
5477 					     node, nodes[node]);
5478 	}
5479 #endif
5480 	len += sysfs_emit_at(buf, len, "\n");
5481 	kfree(nodes);
5482 
5483 	return len;
5484 }
5485 
5486 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5487 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5488 
5489 struct slab_attribute {
5490 	struct attribute attr;
5491 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5492 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5493 };
5494 
5495 #define SLAB_ATTR_RO(_name) \
5496 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
5497 
5498 #define SLAB_ATTR(_name) \
5499 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
5500 
5501 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5502 {
5503 	return sysfs_emit(buf, "%u\n", s->size);
5504 }
5505 SLAB_ATTR_RO(slab_size);
5506 
5507 static ssize_t align_show(struct kmem_cache *s, char *buf)
5508 {
5509 	return sysfs_emit(buf, "%u\n", s->align);
5510 }
5511 SLAB_ATTR_RO(align);
5512 
5513 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5514 {
5515 	return sysfs_emit(buf, "%u\n", s->object_size);
5516 }
5517 SLAB_ATTR_RO(object_size);
5518 
5519 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5520 {
5521 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5522 }
5523 SLAB_ATTR_RO(objs_per_slab);
5524 
5525 static ssize_t order_show(struct kmem_cache *s, char *buf)
5526 {
5527 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5528 }
5529 SLAB_ATTR_RO(order);
5530 
5531 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5532 {
5533 	return sysfs_emit(buf, "%lu\n", s->min_partial);
5534 }
5535 
5536 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5537 				 size_t length)
5538 {
5539 	unsigned long min;
5540 	int err;
5541 
5542 	err = kstrtoul(buf, 10, &min);
5543 	if (err)
5544 		return err;
5545 
5546 	s->min_partial = min;
5547 	return length;
5548 }
5549 SLAB_ATTR(min_partial);
5550 
5551 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5552 {
5553 	unsigned int nr_partial = 0;
5554 #ifdef CONFIG_SLUB_CPU_PARTIAL
5555 	nr_partial = s->cpu_partial;
5556 #endif
5557 
5558 	return sysfs_emit(buf, "%u\n", nr_partial);
5559 }
5560 
5561 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5562 				 size_t length)
5563 {
5564 	unsigned int objects;
5565 	int err;
5566 
5567 	err = kstrtouint(buf, 10, &objects);
5568 	if (err)
5569 		return err;
5570 	if (objects && !kmem_cache_has_cpu_partial(s))
5571 		return -EINVAL;
5572 
5573 	slub_set_cpu_partial(s, objects);
5574 	flush_all(s);
5575 	return length;
5576 }
5577 SLAB_ATTR(cpu_partial);
5578 
5579 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5580 {
5581 	if (!s->ctor)
5582 		return 0;
5583 	return sysfs_emit(buf, "%pS\n", s->ctor);
5584 }
5585 SLAB_ATTR_RO(ctor);
5586 
5587 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5588 {
5589 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5590 }
5591 SLAB_ATTR_RO(aliases);
5592 
5593 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5594 {
5595 	return show_slab_objects(s, buf, SO_PARTIAL);
5596 }
5597 SLAB_ATTR_RO(partial);
5598 
5599 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5600 {
5601 	return show_slab_objects(s, buf, SO_CPU);
5602 }
5603 SLAB_ATTR_RO(cpu_slabs);
5604 
5605 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5606 {
5607 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5608 }
5609 SLAB_ATTR_RO(objects_partial);
5610 
5611 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5612 {
5613 	int objects = 0;
5614 	int slabs = 0;
5615 	int cpu __maybe_unused;
5616 	int len = 0;
5617 
5618 #ifdef CONFIG_SLUB_CPU_PARTIAL
5619 	for_each_online_cpu(cpu) {
5620 		struct slab *slab;
5621 
5622 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5623 
5624 		if (slab)
5625 			slabs += slab->slabs;
5626 	}
5627 #endif
5628 
5629 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
5630 	objects = (slabs * oo_objects(s->oo)) / 2;
5631 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5632 
5633 #ifdef CONFIG_SLUB_CPU_PARTIAL
5634 	for_each_online_cpu(cpu) {
5635 		struct slab *slab;
5636 
5637 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5638 		if (slab) {
5639 			slabs = READ_ONCE(slab->slabs);
5640 			objects = (slabs * oo_objects(s->oo)) / 2;
5641 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5642 					     cpu, objects, slabs);
5643 		}
5644 	}
5645 #endif
5646 	len += sysfs_emit_at(buf, len, "\n");
5647 
5648 	return len;
5649 }
5650 SLAB_ATTR_RO(slabs_cpu_partial);
5651 
5652 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5653 {
5654 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5655 }
5656 SLAB_ATTR_RO(reclaim_account);
5657 
5658 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5659 {
5660 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5661 }
5662 SLAB_ATTR_RO(hwcache_align);
5663 
5664 #ifdef CONFIG_ZONE_DMA
5665 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5666 {
5667 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5668 }
5669 SLAB_ATTR_RO(cache_dma);
5670 #endif
5671 
5672 #ifdef CONFIG_HARDENED_USERCOPY
5673 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5674 {
5675 	return sysfs_emit(buf, "%u\n", s->usersize);
5676 }
5677 SLAB_ATTR_RO(usersize);
5678 #endif
5679 
5680 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5681 {
5682 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5683 }
5684 SLAB_ATTR_RO(destroy_by_rcu);
5685 
5686 #ifdef CONFIG_SLUB_DEBUG
5687 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5688 {
5689 	return show_slab_objects(s, buf, SO_ALL);
5690 }
5691 SLAB_ATTR_RO(slabs);
5692 
5693 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5694 {
5695 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5696 }
5697 SLAB_ATTR_RO(total_objects);
5698 
5699 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5700 {
5701 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5702 }
5703 SLAB_ATTR_RO(objects);
5704 
5705 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5706 {
5707 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5708 }
5709 SLAB_ATTR_RO(sanity_checks);
5710 
5711 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5712 {
5713 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5714 }
5715 SLAB_ATTR_RO(trace);
5716 
5717 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5718 {
5719 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5720 }
5721 
5722 SLAB_ATTR_RO(red_zone);
5723 
5724 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5725 {
5726 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5727 }
5728 
5729 SLAB_ATTR_RO(poison);
5730 
5731 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5732 {
5733 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5734 }
5735 
5736 SLAB_ATTR_RO(store_user);
5737 
5738 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5739 {
5740 	return 0;
5741 }
5742 
5743 static ssize_t validate_store(struct kmem_cache *s,
5744 			const char *buf, size_t length)
5745 {
5746 	int ret = -EINVAL;
5747 
5748 	if (buf[0] == '1' && kmem_cache_debug(s)) {
5749 		ret = validate_slab_cache(s);
5750 		if (ret >= 0)
5751 			ret = length;
5752 	}
5753 	return ret;
5754 }
5755 SLAB_ATTR(validate);
5756 
5757 #endif /* CONFIG_SLUB_DEBUG */
5758 
5759 #ifdef CONFIG_FAILSLAB
5760 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5761 {
5762 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5763 }
5764 
5765 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5766 				size_t length)
5767 {
5768 	if (s->refcount > 1)
5769 		return -EINVAL;
5770 
5771 	if (buf[0] == '1')
5772 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
5773 	else
5774 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
5775 
5776 	return length;
5777 }
5778 SLAB_ATTR(failslab);
5779 #endif
5780 
5781 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5782 {
5783 	return 0;
5784 }
5785 
5786 static ssize_t shrink_store(struct kmem_cache *s,
5787 			const char *buf, size_t length)
5788 {
5789 	if (buf[0] == '1')
5790 		kmem_cache_shrink(s);
5791 	else
5792 		return -EINVAL;
5793 	return length;
5794 }
5795 SLAB_ATTR(shrink);
5796 
5797 #ifdef CONFIG_NUMA
5798 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5799 {
5800 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5801 }
5802 
5803 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5804 				const char *buf, size_t length)
5805 {
5806 	unsigned int ratio;
5807 	int err;
5808 
5809 	err = kstrtouint(buf, 10, &ratio);
5810 	if (err)
5811 		return err;
5812 	if (ratio > 100)
5813 		return -ERANGE;
5814 
5815 	s->remote_node_defrag_ratio = ratio * 10;
5816 
5817 	return length;
5818 }
5819 SLAB_ATTR(remote_node_defrag_ratio);
5820 #endif
5821 
5822 #ifdef CONFIG_SLUB_STATS
5823 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5824 {
5825 	unsigned long sum  = 0;
5826 	int cpu;
5827 	int len = 0;
5828 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5829 
5830 	if (!data)
5831 		return -ENOMEM;
5832 
5833 	for_each_online_cpu(cpu) {
5834 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5835 
5836 		data[cpu] = x;
5837 		sum += x;
5838 	}
5839 
5840 	len += sysfs_emit_at(buf, len, "%lu", sum);
5841 
5842 #ifdef CONFIG_SMP
5843 	for_each_online_cpu(cpu) {
5844 		if (data[cpu])
5845 			len += sysfs_emit_at(buf, len, " C%d=%u",
5846 					     cpu, data[cpu]);
5847 	}
5848 #endif
5849 	kfree(data);
5850 	len += sysfs_emit_at(buf, len, "\n");
5851 
5852 	return len;
5853 }
5854 
5855 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5856 {
5857 	int cpu;
5858 
5859 	for_each_online_cpu(cpu)
5860 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5861 }
5862 
5863 #define STAT_ATTR(si, text) 					\
5864 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5865 {								\
5866 	return show_stat(s, buf, si);				\
5867 }								\
5868 static ssize_t text##_store(struct kmem_cache *s,		\
5869 				const char *buf, size_t length)	\
5870 {								\
5871 	if (buf[0] != '0')					\
5872 		return -EINVAL;					\
5873 	clear_stat(s, si);					\
5874 	return length;						\
5875 }								\
5876 SLAB_ATTR(text);						\
5877 
5878 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5879 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5880 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5881 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5882 STAT_ATTR(FREE_FROZEN, free_frozen);
5883 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5884 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5885 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5886 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5887 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5888 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5889 STAT_ATTR(FREE_SLAB, free_slab);
5890 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5891 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5892 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5893 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5894 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5895 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5896 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5897 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5898 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5899 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5900 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5901 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5902 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5903 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5904 #endif	/* CONFIG_SLUB_STATS */
5905 
5906 #ifdef CONFIG_KFENCE
5907 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
5908 {
5909 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
5910 }
5911 
5912 static ssize_t skip_kfence_store(struct kmem_cache *s,
5913 			const char *buf, size_t length)
5914 {
5915 	int ret = length;
5916 
5917 	if (buf[0] == '0')
5918 		s->flags &= ~SLAB_SKIP_KFENCE;
5919 	else if (buf[0] == '1')
5920 		s->flags |= SLAB_SKIP_KFENCE;
5921 	else
5922 		ret = -EINVAL;
5923 
5924 	return ret;
5925 }
5926 SLAB_ATTR(skip_kfence);
5927 #endif
5928 
5929 static struct attribute *slab_attrs[] = {
5930 	&slab_size_attr.attr,
5931 	&object_size_attr.attr,
5932 	&objs_per_slab_attr.attr,
5933 	&order_attr.attr,
5934 	&min_partial_attr.attr,
5935 	&cpu_partial_attr.attr,
5936 	&objects_partial_attr.attr,
5937 	&partial_attr.attr,
5938 	&cpu_slabs_attr.attr,
5939 	&ctor_attr.attr,
5940 	&aliases_attr.attr,
5941 	&align_attr.attr,
5942 	&hwcache_align_attr.attr,
5943 	&reclaim_account_attr.attr,
5944 	&destroy_by_rcu_attr.attr,
5945 	&shrink_attr.attr,
5946 	&slabs_cpu_partial_attr.attr,
5947 #ifdef CONFIG_SLUB_DEBUG
5948 	&total_objects_attr.attr,
5949 	&objects_attr.attr,
5950 	&slabs_attr.attr,
5951 	&sanity_checks_attr.attr,
5952 	&trace_attr.attr,
5953 	&red_zone_attr.attr,
5954 	&poison_attr.attr,
5955 	&store_user_attr.attr,
5956 	&validate_attr.attr,
5957 #endif
5958 #ifdef CONFIG_ZONE_DMA
5959 	&cache_dma_attr.attr,
5960 #endif
5961 #ifdef CONFIG_NUMA
5962 	&remote_node_defrag_ratio_attr.attr,
5963 #endif
5964 #ifdef CONFIG_SLUB_STATS
5965 	&alloc_fastpath_attr.attr,
5966 	&alloc_slowpath_attr.attr,
5967 	&free_fastpath_attr.attr,
5968 	&free_slowpath_attr.attr,
5969 	&free_frozen_attr.attr,
5970 	&free_add_partial_attr.attr,
5971 	&free_remove_partial_attr.attr,
5972 	&alloc_from_partial_attr.attr,
5973 	&alloc_slab_attr.attr,
5974 	&alloc_refill_attr.attr,
5975 	&alloc_node_mismatch_attr.attr,
5976 	&free_slab_attr.attr,
5977 	&cpuslab_flush_attr.attr,
5978 	&deactivate_full_attr.attr,
5979 	&deactivate_empty_attr.attr,
5980 	&deactivate_to_head_attr.attr,
5981 	&deactivate_to_tail_attr.attr,
5982 	&deactivate_remote_frees_attr.attr,
5983 	&deactivate_bypass_attr.attr,
5984 	&order_fallback_attr.attr,
5985 	&cmpxchg_double_fail_attr.attr,
5986 	&cmpxchg_double_cpu_fail_attr.attr,
5987 	&cpu_partial_alloc_attr.attr,
5988 	&cpu_partial_free_attr.attr,
5989 	&cpu_partial_node_attr.attr,
5990 	&cpu_partial_drain_attr.attr,
5991 #endif
5992 #ifdef CONFIG_FAILSLAB
5993 	&failslab_attr.attr,
5994 #endif
5995 #ifdef CONFIG_HARDENED_USERCOPY
5996 	&usersize_attr.attr,
5997 #endif
5998 #ifdef CONFIG_KFENCE
5999 	&skip_kfence_attr.attr,
6000 #endif
6001 
6002 	NULL
6003 };
6004 
6005 static const struct attribute_group slab_attr_group = {
6006 	.attrs = slab_attrs,
6007 };
6008 
6009 static ssize_t slab_attr_show(struct kobject *kobj,
6010 				struct attribute *attr,
6011 				char *buf)
6012 {
6013 	struct slab_attribute *attribute;
6014 	struct kmem_cache *s;
6015 
6016 	attribute = to_slab_attr(attr);
6017 	s = to_slab(kobj);
6018 
6019 	if (!attribute->show)
6020 		return -EIO;
6021 
6022 	return attribute->show(s, buf);
6023 }
6024 
6025 static ssize_t slab_attr_store(struct kobject *kobj,
6026 				struct attribute *attr,
6027 				const char *buf, size_t len)
6028 {
6029 	struct slab_attribute *attribute;
6030 	struct kmem_cache *s;
6031 
6032 	attribute = to_slab_attr(attr);
6033 	s = to_slab(kobj);
6034 
6035 	if (!attribute->store)
6036 		return -EIO;
6037 
6038 	return attribute->store(s, buf, len);
6039 }
6040 
6041 static void kmem_cache_release(struct kobject *k)
6042 {
6043 	slab_kmem_cache_release(to_slab(k));
6044 }
6045 
6046 static const struct sysfs_ops slab_sysfs_ops = {
6047 	.show = slab_attr_show,
6048 	.store = slab_attr_store,
6049 };
6050 
6051 static const struct kobj_type slab_ktype = {
6052 	.sysfs_ops = &slab_sysfs_ops,
6053 	.release = kmem_cache_release,
6054 };
6055 
6056 static struct kset *slab_kset;
6057 
6058 static inline struct kset *cache_kset(struct kmem_cache *s)
6059 {
6060 	return slab_kset;
6061 }
6062 
6063 #define ID_STR_LENGTH 32
6064 
6065 /* Create a unique string id for a slab cache:
6066  *
6067  * Format	:[flags-]size
6068  */
6069 static char *create_unique_id(struct kmem_cache *s)
6070 {
6071 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6072 	char *p = name;
6073 
6074 	if (!name)
6075 		return ERR_PTR(-ENOMEM);
6076 
6077 	*p++ = ':';
6078 	/*
6079 	 * First flags affecting slabcache operations. We will only
6080 	 * get here for aliasable slabs so we do not need to support
6081 	 * too many flags. The flags here must cover all flags that
6082 	 * are matched during merging to guarantee that the id is
6083 	 * unique.
6084 	 */
6085 	if (s->flags & SLAB_CACHE_DMA)
6086 		*p++ = 'd';
6087 	if (s->flags & SLAB_CACHE_DMA32)
6088 		*p++ = 'D';
6089 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
6090 		*p++ = 'a';
6091 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
6092 		*p++ = 'F';
6093 	if (s->flags & SLAB_ACCOUNT)
6094 		*p++ = 'A';
6095 	if (p != name + 1)
6096 		*p++ = '-';
6097 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6098 
6099 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6100 		kfree(name);
6101 		return ERR_PTR(-EINVAL);
6102 	}
6103 	kmsan_unpoison_memory(name, p - name);
6104 	return name;
6105 }
6106 
6107 static int sysfs_slab_add(struct kmem_cache *s)
6108 {
6109 	int err;
6110 	const char *name;
6111 	struct kset *kset = cache_kset(s);
6112 	int unmergeable = slab_unmergeable(s);
6113 
6114 	if (!unmergeable && disable_higher_order_debug &&
6115 			(slub_debug & DEBUG_METADATA_FLAGS))
6116 		unmergeable = 1;
6117 
6118 	if (unmergeable) {
6119 		/*
6120 		 * Slabcache can never be merged so we can use the name proper.
6121 		 * This is typically the case for debug situations. In that
6122 		 * case we can catch duplicate names easily.
6123 		 */
6124 		sysfs_remove_link(&slab_kset->kobj, s->name);
6125 		name = s->name;
6126 	} else {
6127 		/*
6128 		 * Create a unique name for the slab as a target
6129 		 * for the symlinks.
6130 		 */
6131 		name = create_unique_id(s);
6132 		if (IS_ERR(name))
6133 			return PTR_ERR(name);
6134 	}
6135 
6136 	s->kobj.kset = kset;
6137 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6138 	if (err)
6139 		goto out;
6140 
6141 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
6142 	if (err)
6143 		goto out_del_kobj;
6144 
6145 	if (!unmergeable) {
6146 		/* Setup first alias */
6147 		sysfs_slab_alias(s, s->name);
6148 	}
6149 out:
6150 	if (!unmergeable)
6151 		kfree(name);
6152 	return err;
6153 out_del_kobj:
6154 	kobject_del(&s->kobj);
6155 	goto out;
6156 }
6157 
6158 void sysfs_slab_unlink(struct kmem_cache *s)
6159 {
6160 	if (slab_state >= FULL)
6161 		kobject_del(&s->kobj);
6162 }
6163 
6164 void sysfs_slab_release(struct kmem_cache *s)
6165 {
6166 	if (slab_state >= FULL)
6167 		kobject_put(&s->kobj);
6168 }
6169 
6170 /*
6171  * Need to buffer aliases during bootup until sysfs becomes
6172  * available lest we lose that information.
6173  */
6174 struct saved_alias {
6175 	struct kmem_cache *s;
6176 	const char *name;
6177 	struct saved_alias *next;
6178 };
6179 
6180 static struct saved_alias *alias_list;
6181 
6182 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6183 {
6184 	struct saved_alias *al;
6185 
6186 	if (slab_state == FULL) {
6187 		/*
6188 		 * If we have a leftover link then remove it.
6189 		 */
6190 		sysfs_remove_link(&slab_kset->kobj, name);
6191 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6192 	}
6193 
6194 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6195 	if (!al)
6196 		return -ENOMEM;
6197 
6198 	al->s = s;
6199 	al->name = name;
6200 	al->next = alias_list;
6201 	alias_list = al;
6202 	kmsan_unpoison_memory(al, sizeof(*al));
6203 	return 0;
6204 }
6205 
6206 static int __init slab_sysfs_init(void)
6207 {
6208 	struct kmem_cache *s;
6209 	int err;
6210 
6211 	mutex_lock(&slab_mutex);
6212 
6213 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6214 	if (!slab_kset) {
6215 		mutex_unlock(&slab_mutex);
6216 		pr_err("Cannot register slab subsystem.\n");
6217 		return -ENOMEM;
6218 	}
6219 
6220 	slab_state = FULL;
6221 
6222 	list_for_each_entry(s, &slab_caches, list) {
6223 		err = sysfs_slab_add(s);
6224 		if (err)
6225 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6226 			       s->name);
6227 	}
6228 
6229 	while (alias_list) {
6230 		struct saved_alias *al = alias_list;
6231 
6232 		alias_list = alias_list->next;
6233 		err = sysfs_slab_alias(al->s, al->name);
6234 		if (err)
6235 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6236 			       al->name);
6237 		kfree(al);
6238 	}
6239 
6240 	mutex_unlock(&slab_mutex);
6241 	return 0;
6242 }
6243 late_initcall(slab_sysfs_init);
6244 #endif /* SLAB_SUPPORTS_SYSFS */
6245 
6246 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6247 static int slab_debugfs_show(struct seq_file *seq, void *v)
6248 {
6249 	struct loc_track *t = seq->private;
6250 	struct location *l;
6251 	unsigned long idx;
6252 
6253 	idx = (unsigned long) t->idx;
6254 	if (idx < t->count) {
6255 		l = &t->loc[idx];
6256 
6257 		seq_printf(seq, "%7ld ", l->count);
6258 
6259 		if (l->addr)
6260 			seq_printf(seq, "%pS", (void *)l->addr);
6261 		else
6262 			seq_puts(seq, "<not-available>");
6263 
6264 		if (l->waste)
6265 			seq_printf(seq, " waste=%lu/%lu",
6266 				l->count * l->waste, l->waste);
6267 
6268 		if (l->sum_time != l->min_time) {
6269 			seq_printf(seq, " age=%ld/%llu/%ld",
6270 				l->min_time, div_u64(l->sum_time, l->count),
6271 				l->max_time);
6272 		} else
6273 			seq_printf(seq, " age=%ld", l->min_time);
6274 
6275 		if (l->min_pid != l->max_pid)
6276 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6277 		else
6278 			seq_printf(seq, " pid=%ld",
6279 				l->min_pid);
6280 
6281 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6282 			seq_printf(seq, " cpus=%*pbl",
6283 				 cpumask_pr_args(to_cpumask(l->cpus)));
6284 
6285 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6286 			seq_printf(seq, " nodes=%*pbl",
6287 				 nodemask_pr_args(&l->nodes));
6288 
6289 #ifdef CONFIG_STACKDEPOT
6290 		{
6291 			depot_stack_handle_t handle;
6292 			unsigned long *entries;
6293 			unsigned int nr_entries, j;
6294 
6295 			handle = READ_ONCE(l->handle);
6296 			if (handle) {
6297 				nr_entries = stack_depot_fetch(handle, &entries);
6298 				seq_puts(seq, "\n");
6299 				for (j = 0; j < nr_entries; j++)
6300 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
6301 			}
6302 		}
6303 #endif
6304 		seq_puts(seq, "\n");
6305 	}
6306 
6307 	if (!idx && !t->count)
6308 		seq_puts(seq, "No data\n");
6309 
6310 	return 0;
6311 }
6312 
6313 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6314 {
6315 }
6316 
6317 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6318 {
6319 	struct loc_track *t = seq->private;
6320 
6321 	t->idx = ++(*ppos);
6322 	if (*ppos <= t->count)
6323 		return ppos;
6324 
6325 	return NULL;
6326 }
6327 
6328 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6329 {
6330 	struct location *loc1 = (struct location *)a;
6331 	struct location *loc2 = (struct location *)b;
6332 
6333 	if (loc1->count > loc2->count)
6334 		return -1;
6335 	else
6336 		return 1;
6337 }
6338 
6339 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6340 {
6341 	struct loc_track *t = seq->private;
6342 
6343 	t->idx = *ppos;
6344 	return ppos;
6345 }
6346 
6347 static const struct seq_operations slab_debugfs_sops = {
6348 	.start  = slab_debugfs_start,
6349 	.next   = slab_debugfs_next,
6350 	.stop   = slab_debugfs_stop,
6351 	.show   = slab_debugfs_show,
6352 };
6353 
6354 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6355 {
6356 
6357 	struct kmem_cache_node *n;
6358 	enum track_item alloc;
6359 	int node;
6360 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6361 						sizeof(struct loc_track));
6362 	struct kmem_cache *s = file_inode(filep)->i_private;
6363 	unsigned long *obj_map;
6364 
6365 	if (!t)
6366 		return -ENOMEM;
6367 
6368 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6369 	if (!obj_map) {
6370 		seq_release_private(inode, filep);
6371 		return -ENOMEM;
6372 	}
6373 
6374 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6375 		alloc = TRACK_ALLOC;
6376 	else
6377 		alloc = TRACK_FREE;
6378 
6379 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6380 		bitmap_free(obj_map);
6381 		seq_release_private(inode, filep);
6382 		return -ENOMEM;
6383 	}
6384 
6385 	for_each_kmem_cache_node(s, node, n) {
6386 		unsigned long flags;
6387 		struct slab *slab;
6388 
6389 		if (!atomic_long_read(&n->nr_slabs))
6390 			continue;
6391 
6392 		spin_lock_irqsave(&n->list_lock, flags);
6393 		list_for_each_entry(slab, &n->partial, slab_list)
6394 			process_slab(t, s, slab, alloc, obj_map);
6395 		list_for_each_entry(slab, &n->full, slab_list)
6396 			process_slab(t, s, slab, alloc, obj_map);
6397 		spin_unlock_irqrestore(&n->list_lock, flags);
6398 	}
6399 
6400 	/* Sort locations by count */
6401 	sort_r(t->loc, t->count, sizeof(struct location),
6402 		cmp_loc_by_count, NULL, NULL);
6403 
6404 	bitmap_free(obj_map);
6405 	return 0;
6406 }
6407 
6408 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6409 {
6410 	struct seq_file *seq = file->private_data;
6411 	struct loc_track *t = seq->private;
6412 
6413 	free_loc_track(t);
6414 	return seq_release_private(inode, file);
6415 }
6416 
6417 static const struct file_operations slab_debugfs_fops = {
6418 	.open    = slab_debug_trace_open,
6419 	.read    = seq_read,
6420 	.llseek  = seq_lseek,
6421 	.release = slab_debug_trace_release,
6422 };
6423 
6424 static void debugfs_slab_add(struct kmem_cache *s)
6425 {
6426 	struct dentry *slab_cache_dir;
6427 
6428 	if (unlikely(!slab_debugfs_root))
6429 		return;
6430 
6431 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6432 
6433 	debugfs_create_file("alloc_traces", 0400,
6434 		slab_cache_dir, s, &slab_debugfs_fops);
6435 
6436 	debugfs_create_file("free_traces", 0400,
6437 		slab_cache_dir, s, &slab_debugfs_fops);
6438 }
6439 
6440 void debugfs_slab_release(struct kmem_cache *s)
6441 {
6442 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
6443 }
6444 
6445 static int __init slab_debugfs_init(void)
6446 {
6447 	struct kmem_cache *s;
6448 
6449 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
6450 
6451 	list_for_each_entry(s, &slab_caches, list)
6452 		if (s->flags & SLAB_STORE_USER)
6453 			debugfs_slab_add(s);
6454 
6455 	return 0;
6456 
6457 }
6458 __initcall(slab_debugfs_init);
6459 #endif
6460 /*
6461  * The /proc/slabinfo ABI
6462  */
6463 #ifdef CONFIG_SLUB_DEBUG
6464 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6465 {
6466 	unsigned long nr_slabs = 0;
6467 	unsigned long nr_objs = 0;
6468 	unsigned long nr_free = 0;
6469 	int node;
6470 	struct kmem_cache_node *n;
6471 
6472 	for_each_kmem_cache_node(s, node, n) {
6473 		nr_slabs += node_nr_slabs(n);
6474 		nr_objs += node_nr_objs(n);
6475 		nr_free += count_partial(n, count_free);
6476 	}
6477 
6478 	sinfo->active_objs = nr_objs - nr_free;
6479 	sinfo->num_objs = nr_objs;
6480 	sinfo->active_slabs = nr_slabs;
6481 	sinfo->num_slabs = nr_slabs;
6482 	sinfo->objects_per_slab = oo_objects(s->oo);
6483 	sinfo->cache_order = oo_order(s->oo);
6484 }
6485 
6486 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6487 {
6488 }
6489 
6490 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6491 		       size_t count, loff_t *ppos)
6492 {
6493 	return -EIO;
6494 }
6495 #endif /* CONFIG_SLUB_DEBUG */
6496