1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/proc_fs.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/kmsan.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ctype.h> 30 #include <linux/stackdepot.h> 31 #include <linux/debugobjects.h> 32 #include <linux/kallsyms.h> 33 #include <linux/kfence.h> 34 #include <linux/memory.h> 35 #include <linux/math64.h> 36 #include <linux/fault-inject.h> 37 #include <linux/stacktrace.h> 38 #include <linux/prefetch.h> 39 #include <linux/memcontrol.h> 40 #include <linux/random.h> 41 #include <kunit/test.h> 42 #include <kunit/test-bug.h> 43 #include <linux/sort.h> 44 45 #include <linux/debugfs.h> 46 #include <trace/events/kmem.h> 47 48 #include "internal.h" 49 50 /* 51 * Lock order: 52 * 1. slab_mutex (Global Mutex) 53 * 2. node->list_lock (Spinlock) 54 * 3. kmem_cache->cpu_slab->lock (Local lock) 55 * 4. slab_lock(slab) (Only on some arches) 56 * 5. object_map_lock (Only for debugging) 57 * 58 * slab_mutex 59 * 60 * The role of the slab_mutex is to protect the list of all the slabs 61 * and to synchronize major metadata changes to slab cache structures. 62 * Also synchronizes memory hotplug callbacks. 63 * 64 * slab_lock 65 * 66 * The slab_lock is a wrapper around the page lock, thus it is a bit 67 * spinlock. 68 * 69 * The slab_lock is only used on arches that do not have the ability 70 * to do a cmpxchg_double. It only protects: 71 * 72 * A. slab->freelist -> List of free objects in a slab 73 * B. slab->inuse -> Number of objects in use 74 * C. slab->objects -> Number of objects in slab 75 * D. slab->frozen -> frozen state 76 * 77 * Frozen slabs 78 * 79 * If a slab is frozen then it is exempt from list management. It is not 80 * on any list except per cpu partial list. The processor that froze the 81 * slab is the one who can perform list operations on the slab. Other 82 * processors may put objects onto the freelist but the processor that 83 * froze the slab is the only one that can retrieve the objects from the 84 * slab's freelist. 85 * 86 * list_lock 87 * 88 * The list_lock protects the partial and full list on each node and 89 * the partial slab counter. If taken then no new slabs may be added or 90 * removed from the lists nor make the number of partial slabs be modified. 91 * (Note that the total number of slabs is an atomic value that may be 92 * modified without taking the list lock). 93 * 94 * The list_lock is a centralized lock and thus we avoid taking it as 95 * much as possible. As long as SLUB does not have to handle partial 96 * slabs, operations can continue without any centralized lock. F.e. 97 * allocating a long series of objects that fill up slabs does not require 98 * the list lock. 99 * 100 * For debug caches, all allocations are forced to go through a list_lock 101 * protected region to serialize against concurrent validation. 102 * 103 * cpu_slab->lock local lock 104 * 105 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 106 * except the stat counters. This is a percpu structure manipulated only by 107 * the local cpu, so the lock protects against being preempted or interrupted 108 * by an irq. Fast path operations rely on lockless operations instead. 109 * 110 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption 111 * which means the lockless fastpath cannot be used as it might interfere with 112 * an in-progress slow path operations. In this case the local lock is always 113 * taken but it still utilizes the freelist for the common operations. 114 * 115 * lockless fastpaths 116 * 117 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 118 * are fully lockless when satisfied from the percpu slab (and when 119 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 120 * They also don't disable preemption or migration or irqs. They rely on 121 * the transaction id (tid) field to detect being preempted or moved to 122 * another cpu. 123 * 124 * irq, preemption, migration considerations 125 * 126 * Interrupts are disabled as part of list_lock or local_lock operations, or 127 * around the slab_lock operation, in order to make the slab allocator safe 128 * to use in the context of an irq. 129 * 130 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 131 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 132 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 133 * doesn't have to be revalidated in each section protected by the local lock. 134 * 135 * SLUB assigns one slab for allocation to each processor. 136 * Allocations only occur from these slabs called cpu slabs. 137 * 138 * Slabs with free elements are kept on a partial list and during regular 139 * operations no list for full slabs is used. If an object in a full slab is 140 * freed then the slab will show up again on the partial lists. 141 * We track full slabs for debugging purposes though because otherwise we 142 * cannot scan all objects. 143 * 144 * Slabs are freed when they become empty. Teardown and setup is 145 * minimal so we rely on the page allocators per cpu caches for 146 * fast frees and allocs. 147 * 148 * slab->frozen The slab is frozen and exempt from list processing. 149 * This means that the slab is dedicated to a purpose 150 * such as satisfying allocations for a specific 151 * processor. Objects may be freed in the slab while 152 * it is frozen but slab_free will then skip the usual 153 * list operations. It is up to the processor holding 154 * the slab to integrate the slab into the slab lists 155 * when the slab is no longer needed. 156 * 157 * One use of this flag is to mark slabs that are 158 * used for allocations. Then such a slab becomes a cpu 159 * slab. The cpu slab may be equipped with an additional 160 * freelist that allows lockless access to 161 * free objects in addition to the regular freelist 162 * that requires the slab lock. 163 * 164 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 165 * options set. This moves slab handling out of 166 * the fast path and disables lockless freelists. 167 */ 168 169 /* 170 * We could simply use migrate_disable()/enable() but as long as it's a 171 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 172 */ 173 #ifndef CONFIG_PREEMPT_RT 174 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 175 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 176 #define USE_LOCKLESS_FAST_PATH() (true) 177 #else 178 #define slub_get_cpu_ptr(var) \ 179 ({ \ 180 migrate_disable(); \ 181 this_cpu_ptr(var); \ 182 }) 183 #define slub_put_cpu_ptr(var) \ 184 do { \ 185 (void)(var); \ 186 migrate_enable(); \ 187 } while (0) 188 #define USE_LOCKLESS_FAST_PATH() (false) 189 #endif 190 191 #ifndef CONFIG_SLUB_TINY 192 #define __fastpath_inline __always_inline 193 #else 194 #define __fastpath_inline 195 #endif 196 197 #ifdef CONFIG_SLUB_DEBUG 198 #ifdef CONFIG_SLUB_DEBUG_ON 199 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 200 #else 201 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 202 #endif 203 #endif /* CONFIG_SLUB_DEBUG */ 204 205 /* Structure holding parameters for get_partial() call chain */ 206 struct partial_context { 207 struct slab **slab; 208 gfp_t flags; 209 unsigned int orig_size; 210 }; 211 212 static inline bool kmem_cache_debug(struct kmem_cache *s) 213 { 214 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 215 } 216 217 static inline bool slub_debug_orig_size(struct kmem_cache *s) 218 { 219 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) && 220 (s->flags & SLAB_KMALLOC)); 221 } 222 223 void *fixup_red_left(struct kmem_cache *s, void *p) 224 { 225 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 226 p += s->red_left_pad; 227 228 return p; 229 } 230 231 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 232 { 233 #ifdef CONFIG_SLUB_CPU_PARTIAL 234 return !kmem_cache_debug(s); 235 #else 236 return false; 237 #endif 238 } 239 240 /* 241 * Issues still to be resolved: 242 * 243 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 244 * 245 * - Variable sizing of the per node arrays 246 */ 247 248 /* Enable to log cmpxchg failures */ 249 #undef SLUB_DEBUG_CMPXCHG 250 251 #ifndef CONFIG_SLUB_TINY 252 /* 253 * Minimum number of partial slabs. These will be left on the partial 254 * lists even if they are empty. kmem_cache_shrink may reclaim them. 255 */ 256 #define MIN_PARTIAL 5 257 258 /* 259 * Maximum number of desirable partial slabs. 260 * The existence of more partial slabs makes kmem_cache_shrink 261 * sort the partial list by the number of objects in use. 262 */ 263 #define MAX_PARTIAL 10 264 #else 265 #define MIN_PARTIAL 0 266 #define MAX_PARTIAL 0 267 #endif 268 269 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 270 SLAB_POISON | SLAB_STORE_USER) 271 272 /* 273 * These debug flags cannot use CMPXCHG because there might be consistency 274 * issues when checking or reading debug information 275 */ 276 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 277 SLAB_TRACE) 278 279 280 /* 281 * Debugging flags that require metadata to be stored in the slab. These get 282 * disabled when slub_debug=O is used and a cache's min order increases with 283 * metadata. 284 */ 285 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 286 287 #define OO_SHIFT 16 288 #define OO_MASK ((1 << OO_SHIFT) - 1) 289 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 290 291 /* Internal SLUB flags */ 292 /* Poison object */ 293 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 294 /* Use cmpxchg_double */ 295 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 296 297 /* 298 * Tracking user of a slab. 299 */ 300 #define TRACK_ADDRS_COUNT 16 301 struct track { 302 unsigned long addr; /* Called from address */ 303 #ifdef CONFIG_STACKDEPOT 304 depot_stack_handle_t handle; 305 #endif 306 int cpu; /* Was running on cpu */ 307 int pid; /* Pid context */ 308 unsigned long when; /* When did the operation occur */ 309 }; 310 311 enum track_item { TRACK_ALLOC, TRACK_FREE }; 312 313 #ifdef SLAB_SUPPORTS_SYSFS 314 static int sysfs_slab_add(struct kmem_cache *); 315 static int sysfs_slab_alias(struct kmem_cache *, const char *); 316 #else 317 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 318 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 319 { return 0; } 320 #endif 321 322 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 323 static void debugfs_slab_add(struct kmem_cache *); 324 #else 325 static inline void debugfs_slab_add(struct kmem_cache *s) { } 326 #endif 327 328 static inline void stat(const struct kmem_cache *s, enum stat_item si) 329 { 330 #ifdef CONFIG_SLUB_STATS 331 /* 332 * The rmw is racy on a preemptible kernel but this is acceptable, so 333 * avoid this_cpu_add()'s irq-disable overhead. 334 */ 335 raw_cpu_inc(s->cpu_slab->stat[si]); 336 #endif 337 } 338 339 /* 340 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 341 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 342 * differ during memory hotplug/hotremove operations. 343 * Protected by slab_mutex. 344 */ 345 static nodemask_t slab_nodes; 346 347 #ifndef CONFIG_SLUB_TINY 348 /* 349 * Workqueue used for flush_cpu_slab(). 350 */ 351 static struct workqueue_struct *flushwq; 352 #endif 353 354 /******************************************************************** 355 * Core slab cache functions 356 *******************************************************************/ 357 358 /* 359 * Returns freelist pointer (ptr). With hardening, this is obfuscated 360 * with an XOR of the address where the pointer is held and a per-cache 361 * random number. 362 */ 363 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 364 unsigned long ptr_addr) 365 { 366 #ifdef CONFIG_SLAB_FREELIST_HARDENED 367 /* 368 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged. 369 * Normally, this doesn't cause any issues, as both set_freepointer() 370 * and get_freepointer() are called with a pointer with the same tag. 371 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 372 * example, when __free_slub() iterates over objects in a cache, it 373 * passes untagged pointers to check_object(). check_object() in turns 374 * calls get_freepointer() with an untagged pointer, which causes the 375 * freepointer to be restored incorrectly. 376 */ 377 return (void *)((unsigned long)ptr ^ s->random ^ 378 swab((unsigned long)kasan_reset_tag((void *)ptr_addr))); 379 #else 380 return ptr; 381 #endif 382 } 383 384 /* Returns the freelist pointer recorded at location ptr_addr. */ 385 static inline void *freelist_dereference(const struct kmem_cache *s, 386 void *ptr_addr) 387 { 388 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 389 (unsigned long)ptr_addr); 390 } 391 392 static inline void *get_freepointer(struct kmem_cache *s, void *object) 393 { 394 object = kasan_reset_tag(object); 395 return freelist_dereference(s, object + s->offset); 396 } 397 398 #ifndef CONFIG_SLUB_TINY 399 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 400 { 401 prefetchw(object + s->offset); 402 } 403 #endif 404 405 /* 406 * When running under KMSAN, get_freepointer_safe() may return an uninitialized 407 * pointer value in the case the current thread loses the race for the next 408 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in 409 * slab_alloc_node() will fail, so the uninitialized value won't be used, but 410 * KMSAN will still check all arguments of cmpxchg because of imperfect 411 * handling of inline assembly. 412 * To work around this problem, we apply __no_kmsan_checks to ensure that 413 * get_freepointer_safe() returns initialized memory. 414 */ 415 __no_kmsan_checks 416 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 417 { 418 unsigned long freepointer_addr; 419 void *p; 420 421 if (!debug_pagealloc_enabled_static()) 422 return get_freepointer(s, object); 423 424 object = kasan_reset_tag(object); 425 freepointer_addr = (unsigned long)object + s->offset; 426 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p)); 427 return freelist_ptr(s, p, freepointer_addr); 428 } 429 430 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 431 { 432 unsigned long freeptr_addr = (unsigned long)object + s->offset; 433 434 #ifdef CONFIG_SLAB_FREELIST_HARDENED 435 BUG_ON(object == fp); /* naive detection of double free or corruption */ 436 #endif 437 438 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 439 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 440 } 441 442 /* Loop over all objects in a slab */ 443 #define for_each_object(__p, __s, __addr, __objects) \ 444 for (__p = fixup_red_left(__s, __addr); \ 445 __p < (__addr) + (__objects) * (__s)->size; \ 446 __p += (__s)->size) 447 448 static inline unsigned int order_objects(unsigned int order, unsigned int size) 449 { 450 return ((unsigned int)PAGE_SIZE << order) / size; 451 } 452 453 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 454 unsigned int size) 455 { 456 struct kmem_cache_order_objects x = { 457 (order << OO_SHIFT) + order_objects(order, size) 458 }; 459 460 return x; 461 } 462 463 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 464 { 465 return x.x >> OO_SHIFT; 466 } 467 468 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 469 { 470 return x.x & OO_MASK; 471 } 472 473 #ifdef CONFIG_SLUB_CPU_PARTIAL 474 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 475 { 476 unsigned int nr_slabs; 477 478 s->cpu_partial = nr_objects; 479 480 /* 481 * We take the number of objects but actually limit the number of 482 * slabs on the per cpu partial list, in order to limit excessive 483 * growth of the list. For simplicity we assume that the slabs will 484 * be half-full. 485 */ 486 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); 487 s->cpu_partial_slabs = nr_slabs; 488 } 489 #else 490 static inline void 491 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 492 { 493 } 494 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 495 496 /* 497 * Per slab locking using the pagelock 498 */ 499 static __always_inline void slab_lock(struct slab *slab) 500 { 501 struct page *page = slab_page(slab); 502 503 VM_BUG_ON_PAGE(PageTail(page), page); 504 bit_spin_lock(PG_locked, &page->flags); 505 } 506 507 static __always_inline void slab_unlock(struct slab *slab) 508 { 509 struct page *page = slab_page(slab); 510 511 VM_BUG_ON_PAGE(PageTail(page), page); 512 __bit_spin_unlock(PG_locked, &page->flags); 513 } 514 515 /* 516 * Interrupts must be disabled (for the fallback code to work right), typically 517 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is 518 * part of bit_spin_lock(), is sufficient because the policy is not to allow any 519 * allocation/ free operation in hardirq context. Therefore nothing can 520 * interrupt the operation. 521 */ 522 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab, 523 void *freelist_old, unsigned long counters_old, 524 void *freelist_new, unsigned long counters_new, 525 const char *n) 526 { 527 if (USE_LOCKLESS_FAST_PATH()) 528 lockdep_assert_irqs_disabled(); 529 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 530 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 531 if (s->flags & __CMPXCHG_DOUBLE) { 532 if (cmpxchg_double(&slab->freelist, &slab->counters, 533 freelist_old, counters_old, 534 freelist_new, counters_new)) 535 return true; 536 } else 537 #endif 538 { 539 slab_lock(slab); 540 if (slab->freelist == freelist_old && 541 slab->counters == counters_old) { 542 slab->freelist = freelist_new; 543 slab->counters = counters_new; 544 slab_unlock(slab); 545 return true; 546 } 547 slab_unlock(slab); 548 } 549 550 cpu_relax(); 551 stat(s, CMPXCHG_DOUBLE_FAIL); 552 553 #ifdef SLUB_DEBUG_CMPXCHG 554 pr_info("%s %s: cmpxchg double redo ", n, s->name); 555 #endif 556 557 return false; 558 } 559 560 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab, 561 void *freelist_old, unsigned long counters_old, 562 void *freelist_new, unsigned long counters_new, 563 const char *n) 564 { 565 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 566 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 567 if (s->flags & __CMPXCHG_DOUBLE) { 568 if (cmpxchg_double(&slab->freelist, &slab->counters, 569 freelist_old, counters_old, 570 freelist_new, counters_new)) 571 return true; 572 } else 573 #endif 574 { 575 unsigned long flags; 576 577 local_irq_save(flags); 578 slab_lock(slab); 579 if (slab->freelist == freelist_old && 580 slab->counters == counters_old) { 581 slab->freelist = freelist_new; 582 slab->counters = counters_new; 583 slab_unlock(slab); 584 local_irq_restore(flags); 585 return true; 586 } 587 slab_unlock(slab); 588 local_irq_restore(flags); 589 } 590 591 cpu_relax(); 592 stat(s, CMPXCHG_DOUBLE_FAIL); 593 594 #ifdef SLUB_DEBUG_CMPXCHG 595 pr_info("%s %s: cmpxchg double redo ", n, s->name); 596 #endif 597 598 return false; 599 } 600 601 #ifdef CONFIG_SLUB_DEBUG 602 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 603 static DEFINE_SPINLOCK(object_map_lock); 604 605 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 606 struct slab *slab) 607 { 608 void *addr = slab_address(slab); 609 void *p; 610 611 bitmap_zero(obj_map, slab->objects); 612 613 for (p = slab->freelist; p; p = get_freepointer(s, p)) 614 set_bit(__obj_to_index(s, addr, p), obj_map); 615 } 616 617 #if IS_ENABLED(CONFIG_KUNIT) 618 static bool slab_add_kunit_errors(void) 619 { 620 struct kunit_resource *resource; 621 622 if (!kunit_get_current_test()) 623 return false; 624 625 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 626 if (!resource) 627 return false; 628 629 (*(int *)resource->data)++; 630 kunit_put_resource(resource); 631 return true; 632 } 633 #else 634 static inline bool slab_add_kunit_errors(void) { return false; } 635 #endif 636 637 static inline unsigned int size_from_object(struct kmem_cache *s) 638 { 639 if (s->flags & SLAB_RED_ZONE) 640 return s->size - s->red_left_pad; 641 642 return s->size; 643 } 644 645 static inline void *restore_red_left(struct kmem_cache *s, void *p) 646 { 647 if (s->flags & SLAB_RED_ZONE) 648 p -= s->red_left_pad; 649 650 return p; 651 } 652 653 /* 654 * Debug settings: 655 */ 656 #if defined(CONFIG_SLUB_DEBUG_ON) 657 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 658 #else 659 static slab_flags_t slub_debug; 660 #endif 661 662 static char *slub_debug_string; 663 static int disable_higher_order_debug; 664 665 /* 666 * slub is about to manipulate internal object metadata. This memory lies 667 * outside the range of the allocated object, so accessing it would normally 668 * be reported by kasan as a bounds error. metadata_access_enable() is used 669 * to tell kasan that these accesses are OK. 670 */ 671 static inline void metadata_access_enable(void) 672 { 673 kasan_disable_current(); 674 } 675 676 static inline void metadata_access_disable(void) 677 { 678 kasan_enable_current(); 679 } 680 681 /* 682 * Object debugging 683 */ 684 685 /* Verify that a pointer has an address that is valid within a slab page */ 686 static inline int check_valid_pointer(struct kmem_cache *s, 687 struct slab *slab, void *object) 688 { 689 void *base; 690 691 if (!object) 692 return 1; 693 694 base = slab_address(slab); 695 object = kasan_reset_tag(object); 696 object = restore_red_left(s, object); 697 if (object < base || object >= base + slab->objects * s->size || 698 (object - base) % s->size) { 699 return 0; 700 } 701 702 return 1; 703 } 704 705 static void print_section(char *level, char *text, u8 *addr, 706 unsigned int length) 707 { 708 metadata_access_enable(); 709 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 710 16, 1, kasan_reset_tag((void *)addr), length, 1); 711 metadata_access_disable(); 712 } 713 714 /* 715 * See comment in calculate_sizes(). 716 */ 717 static inline bool freeptr_outside_object(struct kmem_cache *s) 718 { 719 return s->offset >= s->inuse; 720 } 721 722 /* 723 * Return offset of the end of info block which is inuse + free pointer if 724 * not overlapping with object. 725 */ 726 static inline unsigned int get_info_end(struct kmem_cache *s) 727 { 728 if (freeptr_outside_object(s)) 729 return s->inuse + sizeof(void *); 730 else 731 return s->inuse; 732 } 733 734 static struct track *get_track(struct kmem_cache *s, void *object, 735 enum track_item alloc) 736 { 737 struct track *p; 738 739 p = object + get_info_end(s); 740 741 return kasan_reset_tag(p + alloc); 742 } 743 744 #ifdef CONFIG_STACKDEPOT 745 static noinline depot_stack_handle_t set_track_prepare(void) 746 { 747 depot_stack_handle_t handle; 748 unsigned long entries[TRACK_ADDRS_COUNT]; 749 unsigned int nr_entries; 750 751 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 752 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 753 754 return handle; 755 } 756 #else 757 static inline depot_stack_handle_t set_track_prepare(void) 758 { 759 return 0; 760 } 761 #endif 762 763 static void set_track_update(struct kmem_cache *s, void *object, 764 enum track_item alloc, unsigned long addr, 765 depot_stack_handle_t handle) 766 { 767 struct track *p = get_track(s, object, alloc); 768 769 #ifdef CONFIG_STACKDEPOT 770 p->handle = handle; 771 #endif 772 p->addr = addr; 773 p->cpu = smp_processor_id(); 774 p->pid = current->pid; 775 p->when = jiffies; 776 } 777 778 static __always_inline void set_track(struct kmem_cache *s, void *object, 779 enum track_item alloc, unsigned long addr) 780 { 781 depot_stack_handle_t handle = set_track_prepare(); 782 783 set_track_update(s, object, alloc, addr, handle); 784 } 785 786 static void init_tracking(struct kmem_cache *s, void *object) 787 { 788 struct track *p; 789 790 if (!(s->flags & SLAB_STORE_USER)) 791 return; 792 793 p = get_track(s, object, TRACK_ALLOC); 794 memset(p, 0, 2*sizeof(struct track)); 795 } 796 797 static void print_track(const char *s, struct track *t, unsigned long pr_time) 798 { 799 depot_stack_handle_t handle __maybe_unused; 800 801 if (!t->addr) 802 return; 803 804 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 805 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 806 #ifdef CONFIG_STACKDEPOT 807 handle = READ_ONCE(t->handle); 808 if (handle) 809 stack_depot_print(handle); 810 else 811 pr_err("object allocation/free stack trace missing\n"); 812 #endif 813 } 814 815 void print_tracking(struct kmem_cache *s, void *object) 816 { 817 unsigned long pr_time = jiffies; 818 if (!(s->flags & SLAB_STORE_USER)) 819 return; 820 821 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 822 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 823 } 824 825 static void print_slab_info(const struct slab *slab) 826 { 827 struct folio *folio = (struct folio *)slab_folio(slab); 828 829 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 830 slab, slab->objects, slab->inuse, slab->freelist, 831 folio_flags(folio, 0)); 832 } 833 834 /* 835 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API 836 * family will round up the real request size to these fixed ones, so 837 * there could be an extra area than what is requested. Save the original 838 * request size in the meta data area, for better debug and sanity check. 839 */ 840 static inline void set_orig_size(struct kmem_cache *s, 841 void *object, unsigned int orig_size) 842 { 843 void *p = kasan_reset_tag(object); 844 845 if (!slub_debug_orig_size(s)) 846 return; 847 848 #ifdef CONFIG_KASAN_GENERIC 849 /* 850 * KASAN could save its free meta data in object's data area at 851 * offset 0, if the size is larger than 'orig_size', it will 852 * overlap the data redzone in [orig_size+1, object_size], and 853 * the check should be skipped. 854 */ 855 if (kasan_metadata_size(s, true) > orig_size) 856 orig_size = s->object_size; 857 #endif 858 859 p += get_info_end(s); 860 p += sizeof(struct track) * 2; 861 862 *(unsigned int *)p = orig_size; 863 } 864 865 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object) 866 { 867 void *p = kasan_reset_tag(object); 868 869 if (!slub_debug_orig_size(s)) 870 return s->object_size; 871 872 p += get_info_end(s); 873 p += sizeof(struct track) * 2; 874 875 return *(unsigned int *)p; 876 } 877 878 void skip_orig_size_check(struct kmem_cache *s, const void *object) 879 { 880 set_orig_size(s, (void *)object, s->object_size); 881 } 882 883 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 884 { 885 struct va_format vaf; 886 va_list args; 887 888 va_start(args, fmt); 889 vaf.fmt = fmt; 890 vaf.va = &args; 891 pr_err("=============================================================================\n"); 892 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 893 pr_err("-----------------------------------------------------------------------------\n\n"); 894 va_end(args); 895 } 896 897 __printf(2, 3) 898 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 899 { 900 struct va_format vaf; 901 va_list args; 902 903 if (slab_add_kunit_errors()) 904 return; 905 906 va_start(args, fmt); 907 vaf.fmt = fmt; 908 vaf.va = &args; 909 pr_err("FIX %s: %pV\n", s->name, &vaf); 910 va_end(args); 911 } 912 913 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 914 { 915 unsigned int off; /* Offset of last byte */ 916 u8 *addr = slab_address(slab); 917 918 print_tracking(s, p); 919 920 print_slab_info(slab); 921 922 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 923 p, p - addr, get_freepointer(s, p)); 924 925 if (s->flags & SLAB_RED_ZONE) 926 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 927 s->red_left_pad); 928 else if (p > addr + 16) 929 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 930 931 print_section(KERN_ERR, "Object ", p, 932 min_t(unsigned int, s->object_size, PAGE_SIZE)); 933 if (s->flags & SLAB_RED_ZONE) 934 print_section(KERN_ERR, "Redzone ", p + s->object_size, 935 s->inuse - s->object_size); 936 937 off = get_info_end(s); 938 939 if (s->flags & SLAB_STORE_USER) 940 off += 2 * sizeof(struct track); 941 942 if (slub_debug_orig_size(s)) 943 off += sizeof(unsigned int); 944 945 off += kasan_metadata_size(s, false); 946 947 if (off != size_from_object(s)) 948 /* Beginning of the filler is the free pointer */ 949 print_section(KERN_ERR, "Padding ", p + off, 950 size_from_object(s) - off); 951 952 dump_stack(); 953 } 954 955 static void object_err(struct kmem_cache *s, struct slab *slab, 956 u8 *object, char *reason) 957 { 958 if (slab_add_kunit_errors()) 959 return; 960 961 slab_bug(s, "%s", reason); 962 print_trailer(s, slab, object); 963 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 964 } 965 966 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 967 void **freelist, void *nextfree) 968 { 969 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 970 !check_valid_pointer(s, slab, nextfree) && freelist) { 971 object_err(s, slab, *freelist, "Freechain corrupt"); 972 *freelist = NULL; 973 slab_fix(s, "Isolate corrupted freechain"); 974 return true; 975 } 976 977 return false; 978 } 979 980 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 981 const char *fmt, ...) 982 { 983 va_list args; 984 char buf[100]; 985 986 if (slab_add_kunit_errors()) 987 return; 988 989 va_start(args, fmt); 990 vsnprintf(buf, sizeof(buf), fmt, args); 991 va_end(args); 992 slab_bug(s, "%s", buf); 993 print_slab_info(slab); 994 dump_stack(); 995 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 996 } 997 998 static void init_object(struct kmem_cache *s, void *object, u8 val) 999 { 1000 u8 *p = kasan_reset_tag(object); 1001 unsigned int poison_size = s->object_size; 1002 1003 if (s->flags & SLAB_RED_ZONE) { 1004 memset(p - s->red_left_pad, val, s->red_left_pad); 1005 1006 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1007 /* 1008 * Redzone the extra allocated space by kmalloc than 1009 * requested, and the poison size will be limited to 1010 * the original request size accordingly. 1011 */ 1012 poison_size = get_orig_size(s, object); 1013 } 1014 } 1015 1016 if (s->flags & __OBJECT_POISON) { 1017 memset(p, POISON_FREE, poison_size - 1); 1018 p[poison_size - 1] = POISON_END; 1019 } 1020 1021 if (s->flags & SLAB_RED_ZONE) 1022 memset(p + poison_size, val, s->inuse - poison_size); 1023 } 1024 1025 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 1026 void *from, void *to) 1027 { 1028 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 1029 memset(from, data, to - from); 1030 } 1031 1032 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 1033 u8 *object, char *what, 1034 u8 *start, unsigned int value, unsigned int bytes) 1035 { 1036 u8 *fault; 1037 u8 *end; 1038 u8 *addr = slab_address(slab); 1039 1040 metadata_access_enable(); 1041 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 1042 metadata_access_disable(); 1043 if (!fault) 1044 return 1; 1045 1046 end = start + bytes; 1047 while (end > fault && end[-1] == value) 1048 end--; 1049 1050 if (slab_add_kunit_errors()) 1051 goto skip_bug_print; 1052 1053 slab_bug(s, "%s overwritten", what); 1054 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 1055 fault, end - 1, fault - addr, 1056 fault[0], value); 1057 print_trailer(s, slab, object); 1058 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1059 1060 skip_bug_print: 1061 restore_bytes(s, what, value, fault, end); 1062 return 0; 1063 } 1064 1065 /* 1066 * Object layout: 1067 * 1068 * object address 1069 * Bytes of the object to be managed. 1070 * If the freepointer may overlay the object then the free 1071 * pointer is at the middle of the object. 1072 * 1073 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 1074 * 0xa5 (POISON_END) 1075 * 1076 * object + s->object_size 1077 * Padding to reach word boundary. This is also used for Redzoning. 1078 * Padding is extended by another word if Redzoning is enabled and 1079 * object_size == inuse. 1080 * 1081 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 1082 * 0xcc (RED_ACTIVE) for objects in use. 1083 * 1084 * object + s->inuse 1085 * Meta data starts here. 1086 * 1087 * A. Free pointer (if we cannot overwrite object on free) 1088 * B. Tracking data for SLAB_STORE_USER 1089 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled) 1090 * D. Padding to reach required alignment boundary or at minimum 1091 * one word if debugging is on to be able to detect writes 1092 * before the word boundary. 1093 * 1094 * Padding is done using 0x5a (POISON_INUSE) 1095 * 1096 * object + s->size 1097 * Nothing is used beyond s->size. 1098 * 1099 * If slabcaches are merged then the object_size and inuse boundaries are mostly 1100 * ignored. And therefore no slab options that rely on these boundaries 1101 * may be used with merged slabcaches. 1102 */ 1103 1104 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1105 { 1106 unsigned long off = get_info_end(s); /* The end of info */ 1107 1108 if (s->flags & SLAB_STORE_USER) { 1109 /* We also have user information there */ 1110 off += 2 * sizeof(struct track); 1111 1112 if (s->flags & SLAB_KMALLOC) 1113 off += sizeof(unsigned int); 1114 } 1115 1116 off += kasan_metadata_size(s, false); 1117 1118 if (size_from_object(s) == off) 1119 return 1; 1120 1121 return check_bytes_and_report(s, slab, p, "Object padding", 1122 p + off, POISON_INUSE, size_from_object(s) - off); 1123 } 1124 1125 /* Check the pad bytes at the end of a slab page */ 1126 static void slab_pad_check(struct kmem_cache *s, struct slab *slab) 1127 { 1128 u8 *start; 1129 u8 *fault; 1130 u8 *end; 1131 u8 *pad; 1132 int length; 1133 int remainder; 1134 1135 if (!(s->flags & SLAB_POISON)) 1136 return; 1137 1138 start = slab_address(slab); 1139 length = slab_size(slab); 1140 end = start + length; 1141 remainder = length % s->size; 1142 if (!remainder) 1143 return; 1144 1145 pad = end - remainder; 1146 metadata_access_enable(); 1147 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1148 metadata_access_disable(); 1149 if (!fault) 1150 return; 1151 while (end > fault && end[-1] == POISON_INUSE) 1152 end--; 1153 1154 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1155 fault, end - 1, fault - start); 1156 print_section(KERN_ERR, "Padding ", pad, remainder); 1157 1158 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1159 } 1160 1161 static int check_object(struct kmem_cache *s, struct slab *slab, 1162 void *object, u8 val) 1163 { 1164 u8 *p = object; 1165 u8 *endobject = object + s->object_size; 1166 unsigned int orig_size; 1167 1168 if (s->flags & SLAB_RED_ZONE) { 1169 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1170 object - s->red_left_pad, val, s->red_left_pad)) 1171 return 0; 1172 1173 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1174 endobject, val, s->inuse - s->object_size)) 1175 return 0; 1176 1177 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1178 orig_size = get_orig_size(s, object); 1179 1180 if (s->object_size > orig_size && 1181 !check_bytes_and_report(s, slab, object, 1182 "kmalloc Redzone", p + orig_size, 1183 val, s->object_size - orig_size)) { 1184 return 0; 1185 } 1186 } 1187 } else { 1188 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1189 check_bytes_and_report(s, slab, p, "Alignment padding", 1190 endobject, POISON_INUSE, 1191 s->inuse - s->object_size); 1192 } 1193 } 1194 1195 if (s->flags & SLAB_POISON) { 1196 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 1197 (!check_bytes_and_report(s, slab, p, "Poison", p, 1198 POISON_FREE, s->object_size - 1) || 1199 !check_bytes_and_report(s, slab, p, "End Poison", 1200 p + s->object_size - 1, POISON_END, 1))) 1201 return 0; 1202 /* 1203 * check_pad_bytes cleans up on its own. 1204 */ 1205 check_pad_bytes(s, slab, p); 1206 } 1207 1208 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) 1209 /* 1210 * Object and freepointer overlap. Cannot check 1211 * freepointer while object is allocated. 1212 */ 1213 return 1; 1214 1215 /* Check free pointer validity */ 1216 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) { 1217 object_err(s, slab, p, "Freepointer corrupt"); 1218 /* 1219 * No choice but to zap it and thus lose the remainder 1220 * of the free objects in this slab. May cause 1221 * another error because the object count is now wrong. 1222 */ 1223 set_freepointer(s, p, NULL); 1224 return 0; 1225 } 1226 return 1; 1227 } 1228 1229 static int check_slab(struct kmem_cache *s, struct slab *slab) 1230 { 1231 int maxobj; 1232 1233 if (!folio_test_slab(slab_folio(slab))) { 1234 slab_err(s, slab, "Not a valid slab page"); 1235 return 0; 1236 } 1237 1238 maxobj = order_objects(slab_order(slab), s->size); 1239 if (slab->objects > maxobj) { 1240 slab_err(s, slab, "objects %u > max %u", 1241 slab->objects, maxobj); 1242 return 0; 1243 } 1244 if (slab->inuse > slab->objects) { 1245 slab_err(s, slab, "inuse %u > max %u", 1246 slab->inuse, slab->objects); 1247 return 0; 1248 } 1249 /* Slab_pad_check fixes things up after itself */ 1250 slab_pad_check(s, slab); 1251 return 1; 1252 } 1253 1254 /* 1255 * Determine if a certain object in a slab is on the freelist. Must hold the 1256 * slab lock to guarantee that the chains are in a consistent state. 1257 */ 1258 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1259 { 1260 int nr = 0; 1261 void *fp; 1262 void *object = NULL; 1263 int max_objects; 1264 1265 fp = slab->freelist; 1266 while (fp && nr <= slab->objects) { 1267 if (fp == search) 1268 return 1; 1269 if (!check_valid_pointer(s, slab, fp)) { 1270 if (object) { 1271 object_err(s, slab, object, 1272 "Freechain corrupt"); 1273 set_freepointer(s, object, NULL); 1274 } else { 1275 slab_err(s, slab, "Freepointer corrupt"); 1276 slab->freelist = NULL; 1277 slab->inuse = slab->objects; 1278 slab_fix(s, "Freelist cleared"); 1279 return 0; 1280 } 1281 break; 1282 } 1283 object = fp; 1284 fp = get_freepointer(s, object); 1285 nr++; 1286 } 1287 1288 max_objects = order_objects(slab_order(slab), s->size); 1289 if (max_objects > MAX_OBJS_PER_PAGE) 1290 max_objects = MAX_OBJS_PER_PAGE; 1291 1292 if (slab->objects != max_objects) { 1293 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1294 slab->objects, max_objects); 1295 slab->objects = max_objects; 1296 slab_fix(s, "Number of objects adjusted"); 1297 } 1298 if (slab->inuse != slab->objects - nr) { 1299 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1300 slab->inuse, slab->objects - nr); 1301 slab->inuse = slab->objects - nr; 1302 slab_fix(s, "Object count adjusted"); 1303 } 1304 return search == NULL; 1305 } 1306 1307 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1308 int alloc) 1309 { 1310 if (s->flags & SLAB_TRACE) { 1311 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1312 s->name, 1313 alloc ? "alloc" : "free", 1314 object, slab->inuse, 1315 slab->freelist); 1316 1317 if (!alloc) 1318 print_section(KERN_INFO, "Object ", (void *)object, 1319 s->object_size); 1320 1321 dump_stack(); 1322 } 1323 } 1324 1325 /* 1326 * Tracking of fully allocated slabs for debugging purposes. 1327 */ 1328 static void add_full(struct kmem_cache *s, 1329 struct kmem_cache_node *n, struct slab *slab) 1330 { 1331 if (!(s->flags & SLAB_STORE_USER)) 1332 return; 1333 1334 lockdep_assert_held(&n->list_lock); 1335 list_add(&slab->slab_list, &n->full); 1336 } 1337 1338 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1339 { 1340 if (!(s->flags & SLAB_STORE_USER)) 1341 return; 1342 1343 lockdep_assert_held(&n->list_lock); 1344 list_del(&slab->slab_list); 1345 } 1346 1347 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1348 { 1349 return atomic_long_read(&n->nr_slabs); 1350 } 1351 1352 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1353 { 1354 struct kmem_cache_node *n = get_node(s, node); 1355 1356 /* 1357 * May be called early in order to allocate a slab for the 1358 * kmem_cache_node structure. Solve the chicken-egg 1359 * dilemma by deferring the increment of the count during 1360 * bootstrap (see early_kmem_cache_node_alloc). 1361 */ 1362 if (likely(n)) { 1363 atomic_long_inc(&n->nr_slabs); 1364 atomic_long_add(objects, &n->total_objects); 1365 } 1366 } 1367 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1368 { 1369 struct kmem_cache_node *n = get_node(s, node); 1370 1371 atomic_long_dec(&n->nr_slabs); 1372 atomic_long_sub(objects, &n->total_objects); 1373 } 1374 1375 /* Object debug checks for alloc/free paths */ 1376 static void setup_object_debug(struct kmem_cache *s, void *object) 1377 { 1378 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1379 return; 1380 1381 init_object(s, object, SLUB_RED_INACTIVE); 1382 init_tracking(s, object); 1383 } 1384 1385 static 1386 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1387 { 1388 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1389 return; 1390 1391 metadata_access_enable(); 1392 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1393 metadata_access_disable(); 1394 } 1395 1396 static inline int alloc_consistency_checks(struct kmem_cache *s, 1397 struct slab *slab, void *object) 1398 { 1399 if (!check_slab(s, slab)) 1400 return 0; 1401 1402 if (!check_valid_pointer(s, slab, object)) { 1403 object_err(s, slab, object, "Freelist Pointer check fails"); 1404 return 0; 1405 } 1406 1407 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1408 return 0; 1409 1410 return 1; 1411 } 1412 1413 static noinline bool alloc_debug_processing(struct kmem_cache *s, 1414 struct slab *slab, void *object, int orig_size) 1415 { 1416 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1417 if (!alloc_consistency_checks(s, slab, object)) 1418 goto bad; 1419 } 1420 1421 /* Success. Perform special debug activities for allocs */ 1422 trace(s, slab, object, 1); 1423 set_orig_size(s, object, orig_size); 1424 init_object(s, object, SLUB_RED_ACTIVE); 1425 return true; 1426 1427 bad: 1428 if (folio_test_slab(slab_folio(slab))) { 1429 /* 1430 * If this is a slab page then lets do the best we can 1431 * to avoid issues in the future. Marking all objects 1432 * as used avoids touching the remaining objects. 1433 */ 1434 slab_fix(s, "Marking all objects used"); 1435 slab->inuse = slab->objects; 1436 slab->freelist = NULL; 1437 } 1438 return false; 1439 } 1440 1441 static inline int free_consistency_checks(struct kmem_cache *s, 1442 struct slab *slab, void *object, unsigned long addr) 1443 { 1444 if (!check_valid_pointer(s, slab, object)) { 1445 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1446 return 0; 1447 } 1448 1449 if (on_freelist(s, slab, object)) { 1450 object_err(s, slab, object, "Object already free"); 1451 return 0; 1452 } 1453 1454 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1455 return 0; 1456 1457 if (unlikely(s != slab->slab_cache)) { 1458 if (!folio_test_slab(slab_folio(slab))) { 1459 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", 1460 object); 1461 } else if (!slab->slab_cache) { 1462 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1463 object); 1464 dump_stack(); 1465 } else 1466 object_err(s, slab, object, 1467 "page slab pointer corrupt."); 1468 return 0; 1469 } 1470 return 1; 1471 } 1472 1473 /* 1474 * Parse a block of slub_debug options. Blocks are delimited by ';' 1475 * 1476 * @str: start of block 1477 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1478 * @slabs: return start of list of slabs, or NULL when there's no list 1479 * @init: assume this is initial parsing and not per-kmem-create parsing 1480 * 1481 * returns the start of next block if there's any, or NULL 1482 */ 1483 static char * 1484 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1485 { 1486 bool higher_order_disable = false; 1487 1488 /* Skip any completely empty blocks */ 1489 while (*str && *str == ';') 1490 str++; 1491 1492 if (*str == ',') { 1493 /* 1494 * No options but restriction on slabs. This means full 1495 * debugging for slabs matching a pattern. 1496 */ 1497 *flags = DEBUG_DEFAULT_FLAGS; 1498 goto check_slabs; 1499 } 1500 *flags = 0; 1501 1502 /* Determine which debug features should be switched on */ 1503 for (; *str && *str != ',' && *str != ';'; str++) { 1504 switch (tolower(*str)) { 1505 case '-': 1506 *flags = 0; 1507 break; 1508 case 'f': 1509 *flags |= SLAB_CONSISTENCY_CHECKS; 1510 break; 1511 case 'z': 1512 *flags |= SLAB_RED_ZONE; 1513 break; 1514 case 'p': 1515 *flags |= SLAB_POISON; 1516 break; 1517 case 'u': 1518 *flags |= SLAB_STORE_USER; 1519 break; 1520 case 't': 1521 *flags |= SLAB_TRACE; 1522 break; 1523 case 'a': 1524 *flags |= SLAB_FAILSLAB; 1525 break; 1526 case 'o': 1527 /* 1528 * Avoid enabling debugging on caches if its minimum 1529 * order would increase as a result. 1530 */ 1531 higher_order_disable = true; 1532 break; 1533 default: 1534 if (init) 1535 pr_err("slub_debug option '%c' unknown. skipped\n", *str); 1536 } 1537 } 1538 check_slabs: 1539 if (*str == ',') 1540 *slabs = ++str; 1541 else 1542 *slabs = NULL; 1543 1544 /* Skip over the slab list */ 1545 while (*str && *str != ';') 1546 str++; 1547 1548 /* Skip any completely empty blocks */ 1549 while (*str && *str == ';') 1550 str++; 1551 1552 if (init && higher_order_disable) 1553 disable_higher_order_debug = 1; 1554 1555 if (*str) 1556 return str; 1557 else 1558 return NULL; 1559 } 1560 1561 static int __init setup_slub_debug(char *str) 1562 { 1563 slab_flags_t flags; 1564 slab_flags_t global_flags; 1565 char *saved_str; 1566 char *slab_list; 1567 bool global_slub_debug_changed = false; 1568 bool slab_list_specified = false; 1569 1570 global_flags = DEBUG_DEFAULT_FLAGS; 1571 if (*str++ != '=' || !*str) 1572 /* 1573 * No options specified. Switch on full debugging. 1574 */ 1575 goto out; 1576 1577 saved_str = str; 1578 while (str) { 1579 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1580 1581 if (!slab_list) { 1582 global_flags = flags; 1583 global_slub_debug_changed = true; 1584 } else { 1585 slab_list_specified = true; 1586 if (flags & SLAB_STORE_USER) 1587 stack_depot_request_early_init(); 1588 } 1589 } 1590 1591 /* 1592 * For backwards compatibility, a single list of flags with list of 1593 * slabs means debugging is only changed for those slabs, so the global 1594 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1595 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1596 * long as there is no option specifying flags without a slab list. 1597 */ 1598 if (slab_list_specified) { 1599 if (!global_slub_debug_changed) 1600 global_flags = slub_debug; 1601 slub_debug_string = saved_str; 1602 } 1603 out: 1604 slub_debug = global_flags; 1605 if (slub_debug & SLAB_STORE_USER) 1606 stack_depot_request_early_init(); 1607 if (slub_debug != 0 || slub_debug_string) 1608 static_branch_enable(&slub_debug_enabled); 1609 else 1610 static_branch_disable(&slub_debug_enabled); 1611 if ((static_branch_unlikely(&init_on_alloc) || 1612 static_branch_unlikely(&init_on_free)) && 1613 (slub_debug & SLAB_POISON)) 1614 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1615 return 1; 1616 } 1617 1618 __setup("slub_debug", setup_slub_debug); 1619 1620 /* 1621 * kmem_cache_flags - apply debugging options to the cache 1622 * @object_size: the size of an object without meta data 1623 * @flags: flags to set 1624 * @name: name of the cache 1625 * 1626 * Debug option(s) are applied to @flags. In addition to the debug 1627 * option(s), if a slab name (or multiple) is specified i.e. 1628 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1629 * then only the select slabs will receive the debug option(s). 1630 */ 1631 slab_flags_t kmem_cache_flags(unsigned int object_size, 1632 slab_flags_t flags, const char *name) 1633 { 1634 char *iter; 1635 size_t len; 1636 char *next_block; 1637 slab_flags_t block_flags; 1638 slab_flags_t slub_debug_local = slub_debug; 1639 1640 if (flags & SLAB_NO_USER_FLAGS) 1641 return flags; 1642 1643 /* 1644 * If the slab cache is for debugging (e.g. kmemleak) then 1645 * don't store user (stack trace) information by default, 1646 * but let the user enable it via the command line below. 1647 */ 1648 if (flags & SLAB_NOLEAKTRACE) 1649 slub_debug_local &= ~SLAB_STORE_USER; 1650 1651 len = strlen(name); 1652 next_block = slub_debug_string; 1653 /* Go through all blocks of debug options, see if any matches our slab's name */ 1654 while (next_block) { 1655 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1656 if (!iter) 1657 continue; 1658 /* Found a block that has a slab list, search it */ 1659 while (*iter) { 1660 char *end, *glob; 1661 size_t cmplen; 1662 1663 end = strchrnul(iter, ','); 1664 if (next_block && next_block < end) 1665 end = next_block - 1; 1666 1667 glob = strnchr(iter, end - iter, '*'); 1668 if (glob) 1669 cmplen = glob - iter; 1670 else 1671 cmplen = max_t(size_t, len, (end - iter)); 1672 1673 if (!strncmp(name, iter, cmplen)) { 1674 flags |= block_flags; 1675 return flags; 1676 } 1677 1678 if (!*end || *end == ';') 1679 break; 1680 iter = end + 1; 1681 } 1682 } 1683 1684 return flags | slub_debug_local; 1685 } 1686 #else /* !CONFIG_SLUB_DEBUG */ 1687 static inline void setup_object_debug(struct kmem_cache *s, void *object) {} 1688 static inline 1689 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1690 1691 static inline bool alloc_debug_processing(struct kmem_cache *s, 1692 struct slab *slab, void *object, int orig_size) { return true; } 1693 1694 static inline bool free_debug_processing(struct kmem_cache *s, 1695 struct slab *slab, void *head, void *tail, int *bulk_cnt, 1696 unsigned long addr, depot_stack_handle_t handle) { return true; } 1697 1698 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} 1699 static inline int check_object(struct kmem_cache *s, struct slab *slab, 1700 void *object, u8 val) { return 1; } 1701 static inline depot_stack_handle_t set_track_prepare(void) { return 0; } 1702 static inline void set_track(struct kmem_cache *s, void *object, 1703 enum track_item alloc, unsigned long addr) {} 1704 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1705 struct slab *slab) {} 1706 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1707 struct slab *slab) {} 1708 slab_flags_t kmem_cache_flags(unsigned int object_size, 1709 slab_flags_t flags, const char *name) 1710 { 1711 return flags; 1712 } 1713 #define slub_debug 0 1714 1715 #define disable_higher_order_debug 0 1716 1717 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1718 { return 0; } 1719 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1720 int objects) {} 1721 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1722 int objects) {} 1723 1724 #ifndef CONFIG_SLUB_TINY 1725 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1726 void **freelist, void *nextfree) 1727 { 1728 return false; 1729 } 1730 #endif 1731 #endif /* CONFIG_SLUB_DEBUG */ 1732 1733 /* 1734 * Hooks for other subsystems that check memory allocations. In a typical 1735 * production configuration these hooks all should produce no code at all. 1736 */ 1737 static __always_inline bool slab_free_hook(struct kmem_cache *s, 1738 void *x, bool init) 1739 { 1740 kmemleak_free_recursive(x, s->flags); 1741 kmsan_slab_free(s, x); 1742 1743 debug_check_no_locks_freed(x, s->object_size); 1744 1745 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1746 debug_check_no_obj_freed(x, s->object_size); 1747 1748 /* Use KCSAN to help debug racy use-after-free. */ 1749 if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) 1750 __kcsan_check_access(x, s->object_size, 1751 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 1752 1753 /* 1754 * As memory initialization might be integrated into KASAN, 1755 * kasan_slab_free and initialization memset's must be 1756 * kept together to avoid discrepancies in behavior. 1757 * 1758 * The initialization memset's clear the object and the metadata, 1759 * but don't touch the SLAB redzone. 1760 */ 1761 if (init) { 1762 int rsize; 1763 1764 if (!kasan_has_integrated_init()) 1765 memset(kasan_reset_tag(x), 0, s->object_size); 1766 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 1767 memset((char *)kasan_reset_tag(x) + s->inuse, 0, 1768 s->size - s->inuse - rsize); 1769 } 1770 /* KASAN might put x into memory quarantine, delaying its reuse. */ 1771 return kasan_slab_free(s, x, init); 1772 } 1773 1774 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1775 void **head, void **tail, 1776 int *cnt) 1777 { 1778 1779 void *object; 1780 void *next = *head; 1781 void *old_tail = *tail ? *tail : *head; 1782 1783 if (is_kfence_address(next)) { 1784 slab_free_hook(s, next, false); 1785 return true; 1786 } 1787 1788 /* Head and tail of the reconstructed freelist */ 1789 *head = NULL; 1790 *tail = NULL; 1791 1792 do { 1793 object = next; 1794 next = get_freepointer(s, object); 1795 1796 /* If object's reuse doesn't have to be delayed */ 1797 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) { 1798 /* Move object to the new freelist */ 1799 set_freepointer(s, object, *head); 1800 *head = object; 1801 if (!*tail) 1802 *tail = object; 1803 } else { 1804 /* 1805 * Adjust the reconstructed freelist depth 1806 * accordingly if object's reuse is delayed. 1807 */ 1808 --(*cnt); 1809 } 1810 } while (object != old_tail); 1811 1812 if (*head == *tail) 1813 *tail = NULL; 1814 1815 return *head != NULL; 1816 } 1817 1818 static void *setup_object(struct kmem_cache *s, void *object) 1819 { 1820 setup_object_debug(s, object); 1821 object = kasan_init_slab_obj(s, object); 1822 if (unlikely(s->ctor)) { 1823 kasan_unpoison_object_data(s, object); 1824 s->ctor(object); 1825 kasan_poison_object_data(s, object); 1826 } 1827 return object; 1828 } 1829 1830 /* 1831 * Slab allocation and freeing 1832 */ 1833 static inline struct slab *alloc_slab_page(gfp_t flags, int node, 1834 struct kmem_cache_order_objects oo) 1835 { 1836 struct folio *folio; 1837 struct slab *slab; 1838 unsigned int order = oo_order(oo); 1839 1840 if (node == NUMA_NO_NODE) 1841 folio = (struct folio *)alloc_pages(flags, order); 1842 else 1843 folio = (struct folio *)__alloc_pages_node(node, flags, order); 1844 1845 if (!folio) 1846 return NULL; 1847 1848 slab = folio_slab(folio); 1849 __folio_set_slab(folio); 1850 /* Make the flag visible before any changes to folio->mapping */ 1851 smp_wmb(); 1852 if (folio_is_pfmemalloc(folio)) 1853 slab_set_pfmemalloc(slab); 1854 1855 return slab; 1856 } 1857 1858 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1859 /* Pre-initialize the random sequence cache */ 1860 static int init_cache_random_seq(struct kmem_cache *s) 1861 { 1862 unsigned int count = oo_objects(s->oo); 1863 int err; 1864 1865 /* Bailout if already initialised */ 1866 if (s->random_seq) 1867 return 0; 1868 1869 err = cache_random_seq_create(s, count, GFP_KERNEL); 1870 if (err) { 1871 pr_err("SLUB: Unable to initialize free list for %s\n", 1872 s->name); 1873 return err; 1874 } 1875 1876 /* Transform to an offset on the set of pages */ 1877 if (s->random_seq) { 1878 unsigned int i; 1879 1880 for (i = 0; i < count; i++) 1881 s->random_seq[i] *= s->size; 1882 } 1883 return 0; 1884 } 1885 1886 /* Initialize each random sequence freelist per cache */ 1887 static void __init init_freelist_randomization(void) 1888 { 1889 struct kmem_cache *s; 1890 1891 mutex_lock(&slab_mutex); 1892 1893 list_for_each_entry(s, &slab_caches, list) 1894 init_cache_random_seq(s); 1895 1896 mutex_unlock(&slab_mutex); 1897 } 1898 1899 /* Get the next entry on the pre-computed freelist randomized */ 1900 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab, 1901 unsigned long *pos, void *start, 1902 unsigned long page_limit, 1903 unsigned long freelist_count) 1904 { 1905 unsigned int idx; 1906 1907 /* 1908 * If the target page allocation failed, the number of objects on the 1909 * page might be smaller than the usual size defined by the cache. 1910 */ 1911 do { 1912 idx = s->random_seq[*pos]; 1913 *pos += 1; 1914 if (*pos >= freelist_count) 1915 *pos = 0; 1916 } while (unlikely(idx >= page_limit)); 1917 1918 return (char *)start + idx; 1919 } 1920 1921 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1922 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 1923 { 1924 void *start; 1925 void *cur; 1926 void *next; 1927 unsigned long idx, pos, page_limit, freelist_count; 1928 1929 if (slab->objects < 2 || !s->random_seq) 1930 return false; 1931 1932 freelist_count = oo_objects(s->oo); 1933 pos = get_random_u32_below(freelist_count); 1934 1935 page_limit = slab->objects * s->size; 1936 start = fixup_red_left(s, slab_address(slab)); 1937 1938 /* First entry is used as the base of the freelist */ 1939 cur = next_freelist_entry(s, slab, &pos, start, page_limit, 1940 freelist_count); 1941 cur = setup_object(s, cur); 1942 slab->freelist = cur; 1943 1944 for (idx = 1; idx < slab->objects; idx++) { 1945 next = next_freelist_entry(s, slab, &pos, start, page_limit, 1946 freelist_count); 1947 next = setup_object(s, next); 1948 set_freepointer(s, cur, next); 1949 cur = next; 1950 } 1951 set_freepointer(s, cur, NULL); 1952 1953 return true; 1954 } 1955 #else 1956 static inline int init_cache_random_seq(struct kmem_cache *s) 1957 { 1958 return 0; 1959 } 1960 static inline void init_freelist_randomization(void) { } 1961 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 1962 { 1963 return false; 1964 } 1965 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1966 1967 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1968 { 1969 struct slab *slab; 1970 struct kmem_cache_order_objects oo = s->oo; 1971 gfp_t alloc_gfp; 1972 void *start, *p, *next; 1973 int idx; 1974 bool shuffle; 1975 1976 flags &= gfp_allowed_mask; 1977 1978 flags |= s->allocflags; 1979 1980 /* 1981 * Let the initial higher-order allocation fail under memory pressure 1982 * so we fall-back to the minimum order allocation. 1983 */ 1984 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1985 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1986 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; 1987 1988 slab = alloc_slab_page(alloc_gfp, node, oo); 1989 if (unlikely(!slab)) { 1990 oo = s->min; 1991 alloc_gfp = flags; 1992 /* 1993 * Allocation may have failed due to fragmentation. 1994 * Try a lower order alloc if possible 1995 */ 1996 slab = alloc_slab_page(alloc_gfp, node, oo); 1997 if (unlikely(!slab)) 1998 return NULL; 1999 stat(s, ORDER_FALLBACK); 2000 } 2001 2002 slab->objects = oo_objects(oo); 2003 slab->inuse = 0; 2004 slab->frozen = 0; 2005 2006 account_slab(slab, oo_order(oo), s, flags); 2007 2008 slab->slab_cache = s; 2009 2010 kasan_poison_slab(slab); 2011 2012 start = slab_address(slab); 2013 2014 setup_slab_debug(s, slab, start); 2015 2016 shuffle = shuffle_freelist(s, slab); 2017 2018 if (!shuffle) { 2019 start = fixup_red_left(s, start); 2020 start = setup_object(s, start); 2021 slab->freelist = start; 2022 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 2023 next = p + s->size; 2024 next = setup_object(s, next); 2025 set_freepointer(s, p, next); 2026 p = next; 2027 } 2028 set_freepointer(s, p, NULL); 2029 } 2030 2031 return slab; 2032 } 2033 2034 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 2035 { 2036 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2037 flags = kmalloc_fix_flags(flags); 2038 2039 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2040 2041 return allocate_slab(s, 2042 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 2043 } 2044 2045 static void __free_slab(struct kmem_cache *s, struct slab *slab) 2046 { 2047 struct folio *folio = slab_folio(slab); 2048 int order = folio_order(folio); 2049 int pages = 1 << order; 2050 2051 __slab_clear_pfmemalloc(slab); 2052 folio->mapping = NULL; 2053 /* Make the mapping reset visible before clearing the flag */ 2054 smp_wmb(); 2055 __folio_clear_slab(folio); 2056 mm_account_reclaimed_pages(pages); 2057 unaccount_slab(slab, order, s); 2058 __free_pages(&folio->page, order); 2059 } 2060 2061 static void rcu_free_slab(struct rcu_head *h) 2062 { 2063 struct slab *slab = container_of(h, struct slab, rcu_head); 2064 2065 __free_slab(slab->slab_cache, slab); 2066 } 2067 2068 static void free_slab(struct kmem_cache *s, struct slab *slab) 2069 { 2070 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 2071 void *p; 2072 2073 slab_pad_check(s, slab); 2074 for_each_object(p, s, slab_address(slab), slab->objects) 2075 check_object(s, slab, p, SLUB_RED_INACTIVE); 2076 } 2077 2078 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) 2079 call_rcu(&slab->rcu_head, rcu_free_slab); 2080 else 2081 __free_slab(s, slab); 2082 } 2083 2084 static void discard_slab(struct kmem_cache *s, struct slab *slab) 2085 { 2086 dec_slabs_node(s, slab_nid(slab), slab->objects); 2087 free_slab(s, slab); 2088 } 2089 2090 /* 2091 * Management of partially allocated slabs. 2092 */ 2093 static inline void 2094 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) 2095 { 2096 n->nr_partial++; 2097 if (tail == DEACTIVATE_TO_TAIL) 2098 list_add_tail(&slab->slab_list, &n->partial); 2099 else 2100 list_add(&slab->slab_list, &n->partial); 2101 } 2102 2103 static inline void add_partial(struct kmem_cache_node *n, 2104 struct slab *slab, int tail) 2105 { 2106 lockdep_assert_held(&n->list_lock); 2107 __add_partial(n, slab, tail); 2108 } 2109 2110 static inline void remove_partial(struct kmem_cache_node *n, 2111 struct slab *slab) 2112 { 2113 lockdep_assert_held(&n->list_lock); 2114 list_del(&slab->slab_list); 2115 n->nr_partial--; 2116 } 2117 2118 /* 2119 * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a 2120 * slab from the n->partial list. Remove only a single object from the slab, do 2121 * the alloc_debug_processing() checks and leave the slab on the list, or move 2122 * it to full list if it was the last free object. 2123 */ 2124 static void *alloc_single_from_partial(struct kmem_cache *s, 2125 struct kmem_cache_node *n, struct slab *slab, int orig_size) 2126 { 2127 void *object; 2128 2129 lockdep_assert_held(&n->list_lock); 2130 2131 object = slab->freelist; 2132 slab->freelist = get_freepointer(s, object); 2133 slab->inuse++; 2134 2135 if (!alloc_debug_processing(s, slab, object, orig_size)) { 2136 remove_partial(n, slab); 2137 return NULL; 2138 } 2139 2140 if (slab->inuse == slab->objects) { 2141 remove_partial(n, slab); 2142 add_full(s, n, slab); 2143 } 2144 2145 return object; 2146 } 2147 2148 /* 2149 * Called only for kmem_cache_debug() caches to allocate from a freshly 2150 * allocated slab. Allocate a single object instead of whole freelist 2151 * and put the slab to the partial (or full) list. 2152 */ 2153 static void *alloc_single_from_new_slab(struct kmem_cache *s, 2154 struct slab *slab, int orig_size) 2155 { 2156 int nid = slab_nid(slab); 2157 struct kmem_cache_node *n = get_node(s, nid); 2158 unsigned long flags; 2159 void *object; 2160 2161 2162 object = slab->freelist; 2163 slab->freelist = get_freepointer(s, object); 2164 slab->inuse = 1; 2165 2166 if (!alloc_debug_processing(s, slab, object, orig_size)) 2167 /* 2168 * It's not really expected that this would fail on a 2169 * freshly allocated slab, but a concurrent memory 2170 * corruption in theory could cause that. 2171 */ 2172 return NULL; 2173 2174 spin_lock_irqsave(&n->list_lock, flags); 2175 2176 if (slab->inuse == slab->objects) 2177 add_full(s, n, slab); 2178 else 2179 add_partial(n, slab, DEACTIVATE_TO_HEAD); 2180 2181 inc_slabs_node(s, nid, slab->objects); 2182 spin_unlock_irqrestore(&n->list_lock, flags); 2183 2184 return object; 2185 } 2186 2187 /* 2188 * Remove slab from the partial list, freeze it and 2189 * return the pointer to the freelist. 2190 * 2191 * Returns a list of objects or NULL if it fails. 2192 */ 2193 static inline void *acquire_slab(struct kmem_cache *s, 2194 struct kmem_cache_node *n, struct slab *slab, 2195 int mode) 2196 { 2197 void *freelist; 2198 unsigned long counters; 2199 struct slab new; 2200 2201 lockdep_assert_held(&n->list_lock); 2202 2203 /* 2204 * Zap the freelist and set the frozen bit. 2205 * The old freelist is the list of objects for the 2206 * per cpu allocation list. 2207 */ 2208 freelist = slab->freelist; 2209 counters = slab->counters; 2210 new.counters = counters; 2211 if (mode) { 2212 new.inuse = slab->objects; 2213 new.freelist = NULL; 2214 } else { 2215 new.freelist = freelist; 2216 } 2217 2218 VM_BUG_ON(new.frozen); 2219 new.frozen = 1; 2220 2221 if (!__cmpxchg_double_slab(s, slab, 2222 freelist, counters, 2223 new.freelist, new.counters, 2224 "acquire_slab")) 2225 return NULL; 2226 2227 remove_partial(n, slab); 2228 WARN_ON(!freelist); 2229 return freelist; 2230 } 2231 2232 #ifdef CONFIG_SLUB_CPU_PARTIAL 2233 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); 2234 #else 2235 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, 2236 int drain) { } 2237 #endif 2238 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 2239 2240 /* 2241 * Try to allocate a partial slab from a specific node. 2242 */ 2243 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 2244 struct partial_context *pc) 2245 { 2246 struct slab *slab, *slab2; 2247 void *object = NULL; 2248 unsigned long flags; 2249 unsigned int partial_slabs = 0; 2250 2251 /* 2252 * Racy check. If we mistakenly see no partial slabs then we 2253 * just allocate an empty slab. If we mistakenly try to get a 2254 * partial slab and there is none available then get_partial() 2255 * will return NULL. 2256 */ 2257 if (!n || !n->nr_partial) 2258 return NULL; 2259 2260 spin_lock_irqsave(&n->list_lock, flags); 2261 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 2262 void *t; 2263 2264 if (!pfmemalloc_match(slab, pc->flags)) 2265 continue; 2266 2267 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 2268 object = alloc_single_from_partial(s, n, slab, 2269 pc->orig_size); 2270 if (object) 2271 break; 2272 continue; 2273 } 2274 2275 t = acquire_slab(s, n, slab, object == NULL); 2276 if (!t) 2277 break; 2278 2279 if (!object) { 2280 *pc->slab = slab; 2281 stat(s, ALLOC_FROM_PARTIAL); 2282 object = t; 2283 } else { 2284 put_cpu_partial(s, slab, 0); 2285 stat(s, CPU_PARTIAL_NODE); 2286 partial_slabs++; 2287 } 2288 #ifdef CONFIG_SLUB_CPU_PARTIAL 2289 if (!kmem_cache_has_cpu_partial(s) 2290 || partial_slabs > s->cpu_partial_slabs / 2) 2291 break; 2292 #else 2293 break; 2294 #endif 2295 2296 } 2297 spin_unlock_irqrestore(&n->list_lock, flags); 2298 return object; 2299 } 2300 2301 /* 2302 * Get a slab from somewhere. Search in increasing NUMA distances. 2303 */ 2304 static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc) 2305 { 2306 #ifdef CONFIG_NUMA 2307 struct zonelist *zonelist; 2308 struct zoneref *z; 2309 struct zone *zone; 2310 enum zone_type highest_zoneidx = gfp_zone(pc->flags); 2311 void *object; 2312 unsigned int cpuset_mems_cookie; 2313 2314 /* 2315 * The defrag ratio allows a configuration of the tradeoffs between 2316 * inter node defragmentation and node local allocations. A lower 2317 * defrag_ratio increases the tendency to do local allocations 2318 * instead of attempting to obtain partial slabs from other nodes. 2319 * 2320 * If the defrag_ratio is set to 0 then kmalloc() always 2321 * returns node local objects. If the ratio is higher then kmalloc() 2322 * may return off node objects because partial slabs are obtained 2323 * from other nodes and filled up. 2324 * 2325 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2326 * (which makes defrag_ratio = 1000) then every (well almost) 2327 * allocation will first attempt to defrag slab caches on other nodes. 2328 * This means scanning over all nodes to look for partial slabs which 2329 * may be expensive if we do it every time we are trying to find a slab 2330 * with available objects. 2331 */ 2332 if (!s->remote_node_defrag_ratio || 2333 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2334 return NULL; 2335 2336 do { 2337 cpuset_mems_cookie = read_mems_allowed_begin(); 2338 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags); 2339 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2340 struct kmem_cache_node *n; 2341 2342 n = get_node(s, zone_to_nid(zone)); 2343 2344 if (n && cpuset_zone_allowed(zone, pc->flags) && 2345 n->nr_partial > s->min_partial) { 2346 object = get_partial_node(s, n, pc); 2347 if (object) { 2348 /* 2349 * Don't check read_mems_allowed_retry() 2350 * here - if mems_allowed was updated in 2351 * parallel, that was a harmless race 2352 * between allocation and the cpuset 2353 * update 2354 */ 2355 return object; 2356 } 2357 } 2358 } 2359 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2360 #endif /* CONFIG_NUMA */ 2361 return NULL; 2362 } 2363 2364 /* 2365 * Get a partial slab, lock it and return it. 2366 */ 2367 static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc) 2368 { 2369 void *object; 2370 int searchnode = node; 2371 2372 if (node == NUMA_NO_NODE) 2373 searchnode = numa_mem_id(); 2374 2375 object = get_partial_node(s, get_node(s, searchnode), pc); 2376 if (object || node != NUMA_NO_NODE) 2377 return object; 2378 2379 return get_any_partial(s, pc); 2380 } 2381 2382 #ifndef CONFIG_SLUB_TINY 2383 2384 #ifdef CONFIG_PREEMPTION 2385 /* 2386 * Calculate the next globally unique transaction for disambiguation 2387 * during cmpxchg. The transactions start with the cpu number and are then 2388 * incremented by CONFIG_NR_CPUS. 2389 */ 2390 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2391 #else 2392 /* 2393 * No preemption supported therefore also no need to check for 2394 * different cpus. 2395 */ 2396 #define TID_STEP 1 2397 #endif /* CONFIG_PREEMPTION */ 2398 2399 static inline unsigned long next_tid(unsigned long tid) 2400 { 2401 return tid + TID_STEP; 2402 } 2403 2404 #ifdef SLUB_DEBUG_CMPXCHG 2405 static inline unsigned int tid_to_cpu(unsigned long tid) 2406 { 2407 return tid % TID_STEP; 2408 } 2409 2410 static inline unsigned long tid_to_event(unsigned long tid) 2411 { 2412 return tid / TID_STEP; 2413 } 2414 #endif 2415 2416 static inline unsigned int init_tid(int cpu) 2417 { 2418 return cpu; 2419 } 2420 2421 static inline void note_cmpxchg_failure(const char *n, 2422 const struct kmem_cache *s, unsigned long tid) 2423 { 2424 #ifdef SLUB_DEBUG_CMPXCHG 2425 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2426 2427 pr_info("%s %s: cmpxchg redo ", n, s->name); 2428 2429 #ifdef CONFIG_PREEMPTION 2430 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2431 pr_warn("due to cpu change %d -> %d\n", 2432 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2433 else 2434 #endif 2435 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2436 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2437 tid_to_event(tid), tid_to_event(actual_tid)); 2438 else 2439 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2440 actual_tid, tid, next_tid(tid)); 2441 #endif 2442 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2443 } 2444 2445 static void init_kmem_cache_cpus(struct kmem_cache *s) 2446 { 2447 int cpu; 2448 struct kmem_cache_cpu *c; 2449 2450 for_each_possible_cpu(cpu) { 2451 c = per_cpu_ptr(s->cpu_slab, cpu); 2452 local_lock_init(&c->lock); 2453 c->tid = init_tid(cpu); 2454 } 2455 } 2456 2457 /* 2458 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, 2459 * unfreezes the slabs and puts it on the proper list. 2460 * Assumes the slab has been already safely taken away from kmem_cache_cpu 2461 * by the caller. 2462 */ 2463 static void deactivate_slab(struct kmem_cache *s, struct slab *slab, 2464 void *freelist) 2465 { 2466 enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST }; 2467 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 2468 int free_delta = 0; 2469 enum slab_modes mode = M_NONE; 2470 void *nextfree, *freelist_iter, *freelist_tail; 2471 int tail = DEACTIVATE_TO_HEAD; 2472 unsigned long flags = 0; 2473 struct slab new; 2474 struct slab old; 2475 2476 if (slab->freelist) { 2477 stat(s, DEACTIVATE_REMOTE_FREES); 2478 tail = DEACTIVATE_TO_TAIL; 2479 } 2480 2481 /* 2482 * Stage one: Count the objects on cpu's freelist as free_delta and 2483 * remember the last object in freelist_tail for later splicing. 2484 */ 2485 freelist_tail = NULL; 2486 freelist_iter = freelist; 2487 while (freelist_iter) { 2488 nextfree = get_freepointer(s, freelist_iter); 2489 2490 /* 2491 * If 'nextfree' is invalid, it is possible that the object at 2492 * 'freelist_iter' is already corrupted. So isolate all objects 2493 * starting at 'freelist_iter' by skipping them. 2494 */ 2495 if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) 2496 break; 2497 2498 freelist_tail = freelist_iter; 2499 free_delta++; 2500 2501 freelist_iter = nextfree; 2502 } 2503 2504 /* 2505 * Stage two: Unfreeze the slab while splicing the per-cpu 2506 * freelist to the head of slab's freelist. 2507 * 2508 * Ensure that the slab is unfrozen while the list presence 2509 * reflects the actual number of objects during unfreeze. 2510 * 2511 * We first perform cmpxchg holding lock and insert to list 2512 * when it succeed. If there is mismatch then the slab is not 2513 * unfrozen and number of objects in the slab may have changed. 2514 * Then release lock and retry cmpxchg again. 2515 */ 2516 redo: 2517 2518 old.freelist = READ_ONCE(slab->freelist); 2519 old.counters = READ_ONCE(slab->counters); 2520 VM_BUG_ON(!old.frozen); 2521 2522 /* Determine target state of the slab */ 2523 new.counters = old.counters; 2524 if (freelist_tail) { 2525 new.inuse -= free_delta; 2526 set_freepointer(s, freelist_tail, old.freelist); 2527 new.freelist = freelist; 2528 } else 2529 new.freelist = old.freelist; 2530 2531 new.frozen = 0; 2532 2533 if (!new.inuse && n->nr_partial >= s->min_partial) { 2534 mode = M_FREE; 2535 } else if (new.freelist) { 2536 mode = M_PARTIAL; 2537 /* 2538 * Taking the spinlock removes the possibility that 2539 * acquire_slab() will see a slab that is frozen 2540 */ 2541 spin_lock_irqsave(&n->list_lock, flags); 2542 } else { 2543 mode = M_FULL_NOLIST; 2544 } 2545 2546 2547 if (!cmpxchg_double_slab(s, slab, 2548 old.freelist, old.counters, 2549 new.freelist, new.counters, 2550 "unfreezing slab")) { 2551 if (mode == M_PARTIAL) 2552 spin_unlock_irqrestore(&n->list_lock, flags); 2553 goto redo; 2554 } 2555 2556 2557 if (mode == M_PARTIAL) { 2558 add_partial(n, slab, tail); 2559 spin_unlock_irqrestore(&n->list_lock, flags); 2560 stat(s, tail); 2561 } else if (mode == M_FREE) { 2562 stat(s, DEACTIVATE_EMPTY); 2563 discard_slab(s, slab); 2564 stat(s, FREE_SLAB); 2565 } else if (mode == M_FULL_NOLIST) { 2566 stat(s, DEACTIVATE_FULL); 2567 } 2568 } 2569 2570 #ifdef CONFIG_SLUB_CPU_PARTIAL 2571 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab) 2572 { 2573 struct kmem_cache_node *n = NULL, *n2 = NULL; 2574 struct slab *slab, *slab_to_discard = NULL; 2575 unsigned long flags = 0; 2576 2577 while (partial_slab) { 2578 struct slab new; 2579 struct slab old; 2580 2581 slab = partial_slab; 2582 partial_slab = slab->next; 2583 2584 n2 = get_node(s, slab_nid(slab)); 2585 if (n != n2) { 2586 if (n) 2587 spin_unlock_irqrestore(&n->list_lock, flags); 2588 2589 n = n2; 2590 spin_lock_irqsave(&n->list_lock, flags); 2591 } 2592 2593 do { 2594 2595 old.freelist = slab->freelist; 2596 old.counters = slab->counters; 2597 VM_BUG_ON(!old.frozen); 2598 2599 new.counters = old.counters; 2600 new.freelist = old.freelist; 2601 2602 new.frozen = 0; 2603 2604 } while (!__cmpxchg_double_slab(s, slab, 2605 old.freelist, old.counters, 2606 new.freelist, new.counters, 2607 "unfreezing slab")); 2608 2609 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2610 slab->next = slab_to_discard; 2611 slab_to_discard = slab; 2612 } else { 2613 add_partial(n, slab, DEACTIVATE_TO_TAIL); 2614 stat(s, FREE_ADD_PARTIAL); 2615 } 2616 } 2617 2618 if (n) 2619 spin_unlock_irqrestore(&n->list_lock, flags); 2620 2621 while (slab_to_discard) { 2622 slab = slab_to_discard; 2623 slab_to_discard = slab_to_discard->next; 2624 2625 stat(s, DEACTIVATE_EMPTY); 2626 discard_slab(s, slab); 2627 stat(s, FREE_SLAB); 2628 } 2629 } 2630 2631 /* 2632 * Unfreeze all the cpu partial slabs. 2633 */ 2634 static void unfreeze_partials(struct kmem_cache *s) 2635 { 2636 struct slab *partial_slab; 2637 unsigned long flags; 2638 2639 local_lock_irqsave(&s->cpu_slab->lock, flags); 2640 partial_slab = this_cpu_read(s->cpu_slab->partial); 2641 this_cpu_write(s->cpu_slab->partial, NULL); 2642 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2643 2644 if (partial_slab) 2645 __unfreeze_partials(s, partial_slab); 2646 } 2647 2648 static void unfreeze_partials_cpu(struct kmem_cache *s, 2649 struct kmem_cache_cpu *c) 2650 { 2651 struct slab *partial_slab; 2652 2653 partial_slab = slub_percpu_partial(c); 2654 c->partial = NULL; 2655 2656 if (partial_slab) 2657 __unfreeze_partials(s, partial_slab); 2658 } 2659 2660 /* 2661 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a 2662 * partial slab slot if available. 2663 * 2664 * If we did not find a slot then simply move all the partials to the 2665 * per node partial list. 2666 */ 2667 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) 2668 { 2669 struct slab *oldslab; 2670 struct slab *slab_to_unfreeze = NULL; 2671 unsigned long flags; 2672 int slabs = 0; 2673 2674 local_lock_irqsave(&s->cpu_slab->lock, flags); 2675 2676 oldslab = this_cpu_read(s->cpu_slab->partial); 2677 2678 if (oldslab) { 2679 if (drain && oldslab->slabs >= s->cpu_partial_slabs) { 2680 /* 2681 * Partial array is full. Move the existing set to the 2682 * per node partial list. Postpone the actual unfreezing 2683 * outside of the critical section. 2684 */ 2685 slab_to_unfreeze = oldslab; 2686 oldslab = NULL; 2687 } else { 2688 slabs = oldslab->slabs; 2689 } 2690 } 2691 2692 slabs++; 2693 2694 slab->slabs = slabs; 2695 slab->next = oldslab; 2696 2697 this_cpu_write(s->cpu_slab->partial, slab); 2698 2699 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2700 2701 if (slab_to_unfreeze) { 2702 __unfreeze_partials(s, slab_to_unfreeze); 2703 stat(s, CPU_PARTIAL_DRAIN); 2704 } 2705 } 2706 2707 #else /* CONFIG_SLUB_CPU_PARTIAL */ 2708 2709 static inline void unfreeze_partials(struct kmem_cache *s) { } 2710 static inline void unfreeze_partials_cpu(struct kmem_cache *s, 2711 struct kmem_cache_cpu *c) { } 2712 2713 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2714 2715 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2716 { 2717 unsigned long flags; 2718 struct slab *slab; 2719 void *freelist; 2720 2721 local_lock_irqsave(&s->cpu_slab->lock, flags); 2722 2723 slab = c->slab; 2724 freelist = c->freelist; 2725 2726 c->slab = NULL; 2727 c->freelist = NULL; 2728 c->tid = next_tid(c->tid); 2729 2730 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2731 2732 if (slab) { 2733 deactivate_slab(s, slab, freelist); 2734 stat(s, CPUSLAB_FLUSH); 2735 } 2736 } 2737 2738 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2739 { 2740 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2741 void *freelist = c->freelist; 2742 struct slab *slab = c->slab; 2743 2744 c->slab = NULL; 2745 c->freelist = NULL; 2746 c->tid = next_tid(c->tid); 2747 2748 if (slab) { 2749 deactivate_slab(s, slab, freelist); 2750 stat(s, CPUSLAB_FLUSH); 2751 } 2752 2753 unfreeze_partials_cpu(s, c); 2754 } 2755 2756 struct slub_flush_work { 2757 struct work_struct work; 2758 struct kmem_cache *s; 2759 bool skip; 2760 }; 2761 2762 /* 2763 * Flush cpu slab. 2764 * 2765 * Called from CPU work handler with migration disabled. 2766 */ 2767 static void flush_cpu_slab(struct work_struct *w) 2768 { 2769 struct kmem_cache *s; 2770 struct kmem_cache_cpu *c; 2771 struct slub_flush_work *sfw; 2772 2773 sfw = container_of(w, struct slub_flush_work, work); 2774 2775 s = sfw->s; 2776 c = this_cpu_ptr(s->cpu_slab); 2777 2778 if (c->slab) 2779 flush_slab(s, c); 2780 2781 unfreeze_partials(s); 2782 } 2783 2784 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 2785 { 2786 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2787 2788 return c->slab || slub_percpu_partial(c); 2789 } 2790 2791 static DEFINE_MUTEX(flush_lock); 2792 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 2793 2794 static void flush_all_cpus_locked(struct kmem_cache *s) 2795 { 2796 struct slub_flush_work *sfw; 2797 unsigned int cpu; 2798 2799 lockdep_assert_cpus_held(); 2800 mutex_lock(&flush_lock); 2801 2802 for_each_online_cpu(cpu) { 2803 sfw = &per_cpu(slub_flush, cpu); 2804 if (!has_cpu_slab(cpu, s)) { 2805 sfw->skip = true; 2806 continue; 2807 } 2808 INIT_WORK(&sfw->work, flush_cpu_slab); 2809 sfw->skip = false; 2810 sfw->s = s; 2811 queue_work_on(cpu, flushwq, &sfw->work); 2812 } 2813 2814 for_each_online_cpu(cpu) { 2815 sfw = &per_cpu(slub_flush, cpu); 2816 if (sfw->skip) 2817 continue; 2818 flush_work(&sfw->work); 2819 } 2820 2821 mutex_unlock(&flush_lock); 2822 } 2823 2824 static void flush_all(struct kmem_cache *s) 2825 { 2826 cpus_read_lock(); 2827 flush_all_cpus_locked(s); 2828 cpus_read_unlock(); 2829 } 2830 2831 /* 2832 * Use the cpu notifier to insure that the cpu slabs are flushed when 2833 * necessary. 2834 */ 2835 static int slub_cpu_dead(unsigned int cpu) 2836 { 2837 struct kmem_cache *s; 2838 2839 mutex_lock(&slab_mutex); 2840 list_for_each_entry(s, &slab_caches, list) 2841 __flush_cpu_slab(s, cpu); 2842 mutex_unlock(&slab_mutex); 2843 return 0; 2844 } 2845 2846 #else /* CONFIG_SLUB_TINY */ 2847 static inline void flush_all_cpus_locked(struct kmem_cache *s) { } 2848 static inline void flush_all(struct kmem_cache *s) { } 2849 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { } 2850 static inline int slub_cpu_dead(unsigned int cpu) { return 0; } 2851 #endif /* CONFIG_SLUB_TINY */ 2852 2853 /* 2854 * Check if the objects in a per cpu structure fit numa 2855 * locality expectations. 2856 */ 2857 static inline int node_match(struct slab *slab, int node) 2858 { 2859 #ifdef CONFIG_NUMA 2860 if (node != NUMA_NO_NODE && slab_nid(slab) != node) 2861 return 0; 2862 #endif 2863 return 1; 2864 } 2865 2866 #ifdef CONFIG_SLUB_DEBUG 2867 static int count_free(struct slab *slab) 2868 { 2869 return slab->objects - slab->inuse; 2870 } 2871 2872 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2873 { 2874 return atomic_long_read(&n->total_objects); 2875 } 2876 2877 /* Supports checking bulk free of a constructed freelist */ 2878 static inline bool free_debug_processing(struct kmem_cache *s, 2879 struct slab *slab, void *head, void *tail, int *bulk_cnt, 2880 unsigned long addr, depot_stack_handle_t handle) 2881 { 2882 bool checks_ok = false; 2883 void *object = head; 2884 int cnt = 0; 2885 2886 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 2887 if (!check_slab(s, slab)) 2888 goto out; 2889 } 2890 2891 if (slab->inuse < *bulk_cnt) { 2892 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n", 2893 slab->inuse, *bulk_cnt); 2894 goto out; 2895 } 2896 2897 next_object: 2898 2899 if (++cnt > *bulk_cnt) 2900 goto out_cnt; 2901 2902 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 2903 if (!free_consistency_checks(s, slab, object, addr)) 2904 goto out; 2905 } 2906 2907 if (s->flags & SLAB_STORE_USER) 2908 set_track_update(s, object, TRACK_FREE, addr, handle); 2909 trace(s, slab, object, 0); 2910 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 2911 init_object(s, object, SLUB_RED_INACTIVE); 2912 2913 /* Reached end of constructed freelist yet? */ 2914 if (object != tail) { 2915 object = get_freepointer(s, object); 2916 goto next_object; 2917 } 2918 checks_ok = true; 2919 2920 out_cnt: 2921 if (cnt != *bulk_cnt) { 2922 slab_err(s, slab, "Bulk free expected %d objects but found %d\n", 2923 *bulk_cnt, cnt); 2924 *bulk_cnt = cnt; 2925 } 2926 2927 out: 2928 2929 if (!checks_ok) 2930 slab_fix(s, "Object at 0x%p not freed", object); 2931 2932 return checks_ok; 2933 } 2934 #endif /* CONFIG_SLUB_DEBUG */ 2935 2936 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS) 2937 static unsigned long count_partial(struct kmem_cache_node *n, 2938 int (*get_count)(struct slab *)) 2939 { 2940 unsigned long flags; 2941 unsigned long x = 0; 2942 struct slab *slab; 2943 2944 spin_lock_irqsave(&n->list_lock, flags); 2945 list_for_each_entry(slab, &n->partial, slab_list) 2946 x += get_count(slab); 2947 spin_unlock_irqrestore(&n->list_lock, flags); 2948 return x; 2949 } 2950 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */ 2951 2952 #ifdef CONFIG_SLUB_DEBUG 2953 static noinline void 2954 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2955 { 2956 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2957 DEFAULT_RATELIMIT_BURST); 2958 int node; 2959 struct kmem_cache_node *n; 2960 2961 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2962 return; 2963 2964 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2965 nid, gfpflags, &gfpflags); 2966 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2967 s->name, s->object_size, s->size, oo_order(s->oo), 2968 oo_order(s->min)); 2969 2970 if (oo_order(s->min) > get_order(s->object_size)) 2971 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2972 s->name); 2973 2974 for_each_kmem_cache_node(s, node, n) { 2975 unsigned long nr_slabs; 2976 unsigned long nr_objs; 2977 unsigned long nr_free; 2978 2979 nr_free = count_partial(n, count_free); 2980 nr_slabs = node_nr_slabs(n); 2981 nr_objs = node_nr_objs(n); 2982 2983 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2984 node, nr_slabs, nr_objs, nr_free); 2985 } 2986 } 2987 #else /* CONFIG_SLUB_DEBUG */ 2988 static inline void 2989 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { } 2990 #endif 2991 2992 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 2993 { 2994 if (unlikely(slab_test_pfmemalloc(slab))) 2995 return gfp_pfmemalloc_allowed(gfpflags); 2996 2997 return true; 2998 } 2999 3000 #ifndef CONFIG_SLUB_TINY 3001 /* 3002 * Check the slab->freelist and either transfer the freelist to the 3003 * per cpu freelist or deactivate the slab. 3004 * 3005 * The slab is still frozen if the return value is not NULL. 3006 * 3007 * If this function returns NULL then the slab has been unfrozen. 3008 */ 3009 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) 3010 { 3011 struct slab new; 3012 unsigned long counters; 3013 void *freelist; 3014 3015 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3016 3017 do { 3018 freelist = slab->freelist; 3019 counters = slab->counters; 3020 3021 new.counters = counters; 3022 VM_BUG_ON(!new.frozen); 3023 3024 new.inuse = slab->objects; 3025 new.frozen = freelist != NULL; 3026 3027 } while (!__cmpxchg_double_slab(s, slab, 3028 freelist, counters, 3029 NULL, new.counters, 3030 "get_freelist")); 3031 3032 return freelist; 3033 } 3034 3035 /* 3036 * Slow path. The lockless freelist is empty or we need to perform 3037 * debugging duties. 3038 * 3039 * Processing is still very fast if new objects have been freed to the 3040 * regular freelist. In that case we simply take over the regular freelist 3041 * as the lockless freelist and zap the regular freelist. 3042 * 3043 * If that is not working then we fall back to the partial lists. We take the 3044 * first element of the freelist as the object to allocate now and move the 3045 * rest of the freelist to the lockless freelist. 3046 * 3047 * And if we were unable to get a new slab from the partial slab lists then 3048 * we need to allocate a new slab. This is the slowest path since it involves 3049 * a call to the page allocator and the setup of a new slab. 3050 * 3051 * Version of __slab_alloc to use when we know that preemption is 3052 * already disabled (which is the case for bulk allocation). 3053 */ 3054 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3055 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3056 { 3057 void *freelist; 3058 struct slab *slab; 3059 unsigned long flags; 3060 struct partial_context pc; 3061 3062 stat(s, ALLOC_SLOWPATH); 3063 3064 reread_slab: 3065 3066 slab = READ_ONCE(c->slab); 3067 if (!slab) { 3068 /* 3069 * if the node is not online or has no normal memory, just 3070 * ignore the node constraint 3071 */ 3072 if (unlikely(node != NUMA_NO_NODE && 3073 !node_isset(node, slab_nodes))) 3074 node = NUMA_NO_NODE; 3075 goto new_slab; 3076 } 3077 redo: 3078 3079 if (unlikely(!node_match(slab, node))) { 3080 /* 3081 * same as above but node_match() being false already 3082 * implies node != NUMA_NO_NODE 3083 */ 3084 if (!node_isset(node, slab_nodes)) { 3085 node = NUMA_NO_NODE; 3086 } else { 3087 stat(s, ALLOC_NODE_MISMATCH); 3088 goto deactivate_slab; 3089 } 3090 } 3091 3092 /* 3093 * By rights, we should be searching for a slab page that was 3094 * PFMEMALLOC but right now, we are losing the pfmemalloc 3095 * information when the page leaves the per-cpu allocator 3096 */ 3097 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 3098 goto deactivate_slab; 3099 3100 /* must check again c->slab in case we got preempted and it changed */ 3101 local_lock_irqsave(&s->cpu_slab->lock, flags); 3102 if (unlikely(slab != c->slab)) { 3103 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3104 goto reread_slab; 3105 } 3106 freelist = c->freelist; 3107 if (freelist) 3108 goto load_freelist; 3109 3110 freelist = get_freelist(s, slab); 3111 3112 if (!freelist) { 3113 c->slab = NULL; 3114 c->tid = next_tid(c->tid); 3115 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3116 stat(s, DEACTIVATE_BYPASS); 3117 goto new_slab; 3118 } 3119 3120 stat(s, ALLOC_REFILL); 3121 3122 load_freelist: 3123 3124 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3125 3126 /* 3127 * freelist is pointing to the list of objects to be used. 3128 * slab is pointing to the slab from which the objects are obtained. 3129 * That slab must be frozen for per cpu allocations to work. 3130 */ 3131 VM_BUG_ON(!c->slab->frozen); 3132 c->freelist = get_freepointer(s, freelist); 3133 c->tid = next_tid(c->tid); 3134 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3135 return freelist; 3136 3137 deactivate_slab: 3138 3139 local_lock_irqsave(&s->cpu_slab->lock, flags); 3140 if (slab != c->slab) { 3141 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3142 goto reread_slab; 3143 } 3144 freelist = c->freelist; 3145 c->slab = NULL; 3146 c->freelist = NULL; 3147 c->tid = next_tid(c->tid); 3148 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3149 deactivate_slab(s, slab, freelist); 3150 3151 new_slab: 3152 3153 if (slub_percpu_partial(c)) { 3154 local_lock_irqsave(&s->cpu_slab->lock, flags); 3155 if (unlikely(c->slab)) { 3156 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3157 goto reread_slab; 3158 } 3159 if (unlikely(!slub_percpu_partial(c))) { 3160 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3161 /* we were preempted and partial list got empty */ 3162 goto new_objects; 3163 } 3164 3165 slab = c->slab = slub_percpu_partial(c); 3166 slub_set_percpu_partial(c, slab); 3167 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3168 stat(s, CPU_PARTIAL_ALLOC); 3169 goto redo; 3170 } 3171 3172 new_objects: 3173 3174 pc.flags = gfpflags; 3175 pc.slab = &slab; 3176 pc.orig_size = orig_size; 3177 freelist = get_partial(s, node, &pc); 3178 if (freelist) 3179 goto check_new_slab; 3180 3181 slub_put_cpu_ptr(s->cpu_slab); 3182 slab = new_slab(s, gfpflags, node); 3183 c = slub_get_cpu_ptr(s->cpu_slab); 3184 3185 if (unlikely(!slab)) { 3186 slab_out_of_memory(s, gfpflags, node); 3187 return NULL; 3188 } 3189 3190 stat(s, ALLOC_SLAB); 3191 3192 if (kmem_cache_debug(s)) { 3193 freelist = alloc_single_from_new_slab(s, slab, orig_size); 3194 3195 if (unlikely(!freelist)) 3196 goto new_objects; 3197 3198 if (s->flags & SLAB_STORE_USER) 3199 set_track(s, freelist, TRACK_ALLOC, addr); 3200 3201 return freelist; 3202 } 3203 3204 /* 3205 * No other reference to the slab yet so we can 3206 * muck around with it freely without cmpxchg 3207 */ 3208 freelist = slab->freelist; 3209 slab->freelist = NULL; 3210 slab->inuse = slab->objects; 3211 slab->frozen = 1; 3212 3213 inc_slabs_node(s, slab_nid(slab), slab->objects); 3214 3215 check_new_slab: 3216 3217 if (kmem_cache_debug(s)) { 3218 /* 3219 * For debug caches here we had to go through 3220 * alloc_single_from_partial() so just store the tracking info 3221 * and return the object 3222 */ 3223 if (s->flags & SLAB_STORE_USER) 3224 set_track(s, freelist, TRACK_ALLOC, addr); 3225 3226 return freelist; 3227 } 3228 3229 if (unlikely(!pfmemalloc_match(slab, gfpflags))) { 3230 /* 3231 * For !pfmemalloc_match() case we don't load freelist so that 3232 * we don't make further mismatched allocations easier. 3233 */ 3234 deactivate_slab(s, slab, get_freepointer(s, freelist)); 3235 return freelist; 3236 } 3237 3238 retry_load_slab: 3239 3240 local_lock_irqsave(&s->cpu_slab->lock, flags); 3241 if (unlikely(c->slab)) { 3242 void *flush_freelist = c->freelist; 3243 struct slab *flush_slab = c->slab; 3244 3245 c->slab = NULL; 3246 c->freelist = NULL; 3247 c->tid = next_tid(c->tid); 3248 3249 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3250 3251 deactivate_slab(s, flush_slab, flush_freelist); 3252 3253 stat(s, CPUSLAB_FLUSH); 3254 3255 goto retry_load_slab; 3256 } 3257 c->slab = slab; 3258 3259 goto load_freelist; 3260 } 3261 3262 /* 3263 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 3264 * disabled. Compensates for possible cpu changes by refetching the per cpu area 3265 * pointer. 3266 */ 3267 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3268 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3269 { 3270 void *p; 3271 3272 #ifdef CONFIG_PREEMPT_COUNT 3273 /* 3274 * We may have been preempted and rescheduled on a different 3275 * cpu before disabling preemption. Need to reload cpu area 3276 * pointer. 3277 */ 3278 c = slub_get_cpu_ptr(s->cpu_slab); 3279 #endif 3280 3281 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size); 3282 #ifdef CONFIG_PREEMPT_COUNT 3283 slub_put_cpu_ptr(s->cpu_slab); 3284 #endif 3285 return p; 3286 } 3287 3288 static __always_inline void *__slab_alloc_node(struct kmem_cache *s, 3289 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3290 { 3291 struct kmem_cache_cpu *c; 3292 struct slab *slab; 3293 unsigned long tid; 3294 void *object; 3295 3296 redo: 3297 /* 3298 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 3299 * enabled. We may switch back and forth between cpus while 3300 * reading from one cpu area. That does not matter as long 3301 * as we end up on the original cpu again when doing the cmpxchg. 3302 * 3303 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 3304 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 3305 * the tid. If we are preempted and switched to another cpu between the 3306 * two reads, it's OK as the two are still associated with the same cpu 3307 * and cmpxchg later will validate the cpu. 3308 */ 3309 c = raw_cpu_ptr(s->cpu_slab); 3310 tid = READ_ONCE(c->tid); 3311 3312 /* 3313 * Irqless object alloc/free algorithm used here depends on sequence 3314 * of fetching cpu_slab's data. tid should be fetched before anything 3315 * on c to guarantee that object and slab associated with previous tid 3316 * won't be used with current tid. If we fetch tid first, object and 3317 * slab could be one associated with next tid and our alloc/free 3318 * request will be failed. In this case, we will retry. So, no problem. 3319 */ 3320 barrier(); 3321 3322 /* 3323 * The transaction ids are globally unique per cpu and per operation on 3324 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 3325 * occurs on the right processor and that there was no operation on the 3326 * linked list in between. 3327 */ 3328 3329 object = c->freelist; 3330 slab = c->slab; 3331 3332 if (!USE_LOCKLESS_FAST_PATH() || 3333 unlikely(!object || !slab || !node_match(slab, node))) { 3334 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size); 3335 } else { 3336 void *next_object = get_freepointer_safe(s, object); 3337 3338 /* 3339 * The cmpxchg will only match if there was no additional 3340 * operation and if we are on the right processor. 3341 * 3342 * The cmpxchg does the following atomically (without lock 3343 * semantics!) 3344 * 1. Relocate first pointer to the current per cpu area. 3345 * 2. Verify that tid and freelist have not been changed 3346 * 3. If they were not changed replace tid and freelist 3347 * 3348 * Since this is without lock semantics the protection is only 3349 * against code executing on this cpu *not* from access by 3350 * other cpus. 3351 */ 3352 if (unlikely(!this_cpu_cmpxchg_double( 3353 s->cpu_slab->freelist, s->cpu_slab->tid, 3354 object, tid, 3355 next_object, next_tid(tid)))) { 3356 3357 note_cmpxchg_failure("slab_alloc", s, tid); 3358 goto redo; 3359 } 3360 prefetch_freepointer(s, next_object); 3361 stat(s, ALLOC_FASTPATH); 3362 } 3363 3364 return object; 3365 } 3366 #else /* CONFIG_SLUB_TINY */ 3367 static void *__slab_alloc_node(struct kmem_cache *s, 3368 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3369 { 3370 struct partial_context pc; 3371 struct slab *slab; 3372 void *object; 3373 3374 pc.flags = gfpflags; 3375 pc.slab = &slab; 3376 pc.orig_size = orig_size; 3377 object = get_partial(s, node, &pc); 3378 3379 if (object) 3380 return object; 3381 3382 slab = new_slab(s, gfpflags, node); 3383 if (unlikely(!slab)) { 3384 slab_out_of_memory(s, gfpflags, node); 3385 return NULL; 3386 } 3387 3388 object = alloc_single_from_new_slab(s, slab, orig_size); 3389 3390 return object; 3391 } 3392 #endif /* CONFIG_SLUB_TINY */ 3393 3394 /* 3395 * If the object has been wiped upon free, make sure it's fully initialized by 3396 * zeroing out freelist pointer. 3397 */ 3398 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 3399 void *obj) 3400 { 3401 if (unlikely(slab_want_init_on_free(s)) && obj) 3402 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 3403 0, sizeof(void *)); 3404 } 3405 3406 /* 3407 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 3408 * have the fastpath folded into their functions. So no function call 3409 * overhead for requests that can be satisfied on the fastpath. 3410 * 3411 * The fastpath works by first checking if the lockless freelist can be used. 3412 * If not then __slab_alloc is called for slow processing. 3413 * 3414 * Otherwise we can simply pick the next object from the lockless free list. 3415 */ 3416 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, 3417 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3418 { 3419 void *object; 3420 struct obj_cgroup *objcg = NULL; 3421 bool init = false; 3422 3423 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags); 3424 if (!s) 3425 return NULL; 3426 3427 object = kfence_alloc(s, orig_size, gfpflags); 3428 if (unlikely(object)) 3429 goto out; 3430 3431 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size); 3432 3433 maybe_wipe_obj_freeptr(s, object); 3434 init = slab_want_init_on_alloc(gfpflags, s); 3435 3436 out: 3437 /* 3438 * When init equals 'true', like for kzalloc() family, only 3439 * @orig_size bytes might be zeroed instead of s->object_size 3440 */ 3441 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size); 3442 3443 return object; 3444 } 3445 3446 static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru, 3447 gfp_t gfpflags, unsigned long addr, size_t orig_size) 3448 { 3449 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size); 3450 } 3451 3452 static __fastpath_inline 3453 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 3454 gfp_t gfpflags) 3455 { 3456 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size); 3457 3458 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 3459 3460 return ret; 3461 } 3462 3463 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 3464 { 3465 return __kmem_cache_alloc_lru(s, NULL, gfpflags); 3466 } 3467 EXPORT_SYMBOL(kmem_cache_alloc); 3468 3469 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 3470 gfp_t gfpflags) 3471 { 3472 return __kmem_cache_alloc_lru(s, lru, gfpflags); 3473 } 3474 EXPORT_SYMBOL(kmem_cache_alloc_lru); 3475 3476 void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, 3477 int node, size_t orig_size, 3478 unsigned long caller) 3479 { 3480 return slab_alloc_node(s, NULL, gfpflags, node, 3481 caller, orig_size); 3482 } 3483 3484 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 3485 { 3486 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); 3487 3488 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); 3489 3490 return ret; 3491 } 3492 EXPORT_SYMBOL(kmem_cache_alloc_node); 3493 3494 static noinline void free_to_partial_list( 3495 struct kmem_cache *s, struct slab *slab, 3496 void *head, void *tail, int bulk_cnt, 3497 unsigned long addr) 3498 { 3499 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 3500 struct slab *slab_free = NULL; 3501 int cnt = bulk_cnt; 3502 unsigned long flags; 3503 depot_stack_handle_t handle = 0; 3504 3505 if (s->flags & SLAB_STORE_USER) 3506 handle = set_track_prepare(); 3507 3508 spin_lock_irqsave(&n->list_lock, flags); 3509 3510 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) { 3511 void *prior = slab->freelist; 3512 3513 /* Perform the actual freeing while we still hold the locks */ 3514 slab->inuse -= cnt; 3515 set_freepointer(s, tail, prior); 3516 slab->freelist = head; 3517 3518 /* 3519 * If the slab is empty, and node's partial list is full, 3520 * it should be discarded anyway no matter it's on full or 3521 * partial list. 3522 */ 3523 if (slab->inuse == 0 && n->nr_partial >= s->min_partial) 3524 slab_free = slab; 3525 3526 if (!prior) { 3527 /* was on full list */ 3528 remove_full(s, n, slab); 3529 if (!slab_free) { 3530 add_partial(n, slab, DEACTIVATE_TO_TAIL); 3531 stat(s, FREE_ADD_PARTIAL); 3532 } 3533 } else if (slab_free) { 3534 remove_partial(n, slab); 3535 stat(s, FREE_REMOVE_PARTIAL); 3536 } 3537 } 3538 3539 if (slab_free) { 3540 /* 3541 * Update the counters while still holding n->list_lock to 3542 * prevent spurious validation warnings 3543 */ 3544 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects); 3545 } 3546 3547 spin_unlock_irqrestore(&n->list_lock, flags); 3548 3549 if (slab_free) { 3550 stat(s, FREE_SLAB); 3551 free_slab(s, slab_free); 3552 } 3553 } 3554 3555 /* 3556 * Slow path handling. This may still be called frequently since objects 3557 * have a longer lifetime than the cpu slabs in most processing loads. 3558 * 3559 * So we still attempt to reduce cache line usage. Just take the slab 3560 * lock and free the item. If there is no additional partial slab 3561 * handling required then we can return immediately. 3562 */ 3563 static void __slab_free(struct kmem_cache *s, struct slab *slab, 3564 void *head, void *tail, int cnt, 3565 unsigned long addr) 3566 3567 { 3568 void *prior; 3569 int was_frozen; 3570 struct slab new; 3571 unsigned long counters; 3572 struct kmem_cache_node *n = NULL; 3573 unsigned long flags; 3574 3575 stat(s, FREE_SLOWPATH); 3576 3577 if (kfence_free(head)) 3578 return; 3579 3580 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 3581 free_to_partial_list(s, slab, head, tail, cnt, addr); 3582 return; 3583 } 3584 3585 do { 3586 if (unlikely(n)) { 3587 spin_unlock_irqrestore(&n->list_lock, flags); 3588 n = NULL; 3589 } 3590 prior = slab->freelist; 3591 counters = slab->counters; 3592 set_freepointer(s, tail, prior); 3593 new.counters = counters; 3594 was_frozen = new.frozen; 3595 new.inuse -= cnt; 3596 if ((!new.inuse || !prior) && !was_frozen) { 3597 3598 if (kmem_cache_has_cpu_partial(s) && !prior) { 3599 3600 /* 3601 * Slab was on no list before and will be 3602 * partially empty 3603 * We can defer the list move and instead 3604 * freeze it. 3605 */ 3606 new.frozen = 1; 3607 3608 } else { /* Needs to be taken off a list */ 3609 3610 n = get_node(s, slab_nid(slab)); 3611 /* 3612 * Speculatively acquire the list_lock. 3613 * If the cmpxchg does not succeed then we may 3614 * drop the list_lock without any processing. 3615 * 3616 * Otherwise the list_lock will synchronize with 3617 * other processors updating the list of slabs. 3618 */ 3619 spin_lock_irqsave(&n->list_lock, flags); 3620 3621 } 3622 } 3623 3624 } while (!cmpxchg_double_slab(s, slab, 3625 prior, counters, 3626 head, new.counters, 3627 "__slab_free")); 3628 3629 if (likely(!n)) { 3630 3631 if (likely(was_frozen)) { 3632 /* 3633 * The list lock was not taken therefore no list 3634 * activity can be necessary. 3635 */ 3636 stat(s, FREE_FROZEN); 3637 } else if (new.frozen) { 3638 /* 3639 * If we just froze the slab then put it onto the 3640 * per cpu partial list. 3641 */ 3642 put_cpu_partial(s, slab, 1); 3643 stat(s, CPU_PARTIAL_FREE); 3644 } 3645 3646 return; 3647 } 3648 3649 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 3650 goto slab_empty; 3651 3652 /* 3653 * Objects left in the slab. If it was not on the partial list before 3654 * then add it. 3655 */ 3656 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 3657 remove_full(s, n, slab); 3658 add_partial(n, slab, DEACTIVATE_TO_TAIL); 3659 stat(s, FREE_ADD_PARTIAL); 3660 } 3661 spin_unlock_irqrestore(&n->list_lock, flags); 3662 return; 3663 3664 slab_empty: 3665 if (prior) { 3666 /* 3667 * Slab on the partial list. 3668 */ 3669 remove_partial(n, slab); 3670 stat(s, FREE_REMOVE_PARTIAL); 3671 } else { 3672 /* Slab must be on the full list */ 3673 remove_full(s, n, slab); 3674 } 3675 3676 spin_unlock_irqrestore(&n->list_lock, flags); 3677 stat(s, FREE_SLAB); 3678 discard_slab(s, slab); 3679 } 3680 3681 #ifndef CONFIG_SLUB_TINY 3682 /* 3683 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 3684 * can perform fastpath freeing without additional function calls. 3685 * 3686 * The fastpath is only possible if we are freeing to the current cpu slab 3687 * of this processor. This typically the case if we have just allocated 3688 * the item before. 3689 * 3690 * If fastpath is not possible then fall back to __slab_free where we deal 3691 * with all sorts of special processing. 3692 * 3693 * Bulk free of a freelist with several objects (all pointing to the 3694 * same slab) possible by specifying head and tail ptr, plus objects 3695 * count (cnt). Bulk free indicated by tail pointer being set. 3696 */ 3697 static __always_inline void do_slab_free(struct kmem_cache *s, 3698 struct slab *slab, void *head, void *tail, 3699 int cnt, unsigned long addr) 3700 { 3701 void *tail_obj = tail ? : head; 3702 struct kmem_cache_cpu *c; 3703 unsigned long tid; 3704 void **freelist; 3705 3706 redo: 3707 /* 3708 * Determine the currently cpus per cpu slab. 3709 * The cpu may change afterward. However that does not matter since 3710 * data is retrieved via this pointer. If we are on the same cpu 3711 * during the cmpxchg then the free will succeed. 3712 */ 3713 c = raw_cpu_ptr(s->cpu_slab); 3714 tid = READ_ONCE(c->tid); 3715 3716 /* Same with comment on barrier() in slab_alloc_node() */ 3717 barrier(); 3718 3719 if (unlikely(slab != c->slab)) { 3720 __slab_free(s, slab, head, tail_obj, cnt, addr); 3721 return; 3722 } 3723 3724 if (USE_LOCKLESS_FAST_PATH()) { 3725 freelist = READ_ONCE(c->freelist); 3726 3727 set_freepointer(s, tail_obj, freelist); 3728 3729 if (unlikely(!this_cpu_cmpxchg_double( 3730 s->cpu_slab->freelist, s->cpu_slab->tid, 3731 freelist, tid, 3732 head, next_tid(tid)))) { 3733 3734 note_cmpxchg_failure("slab_free", s, tid); 3735 goto redo; 3736 } 3737 } else { 3738 /* Update the free list under the local lock */ 3739 local_lock(&s->cpu_slab->lock); 3740 c = this_cpu_ptr(s->cpu_slab); 3741 if (unlikely(slab != c->slab)) { 3742 local_unlock(&s->cpu_slab->lock); 3743 goto redo; 3744 } 3745 tid = c->tid; 3746 freelist = c->freelist; 3747 3748 set_freepointer(s, tail_obj, freelist); 3749 c->freelist = head; 3750 c->tid = next_tid(tid); 3751 3752 local_unlock(&s->cpu_slab->lock); 3753 } 3754 stat(s, FREE_FASTPATH); 3755 } 3756 #else /* CONFIG_SLUB_TINY */ 3757 static void do_slab_free(struct kmem_cache *s, 3758 struct slab *slab, void *head, void *tail, 3759 int cnt, unsigned long addr) 3760 { 3761 void *tail_obj = tail ? : head; 3762 3763 __slab_free(s, slab, head, tail_obj, cnt, addr); 3764 } 3765 #endif /* CONFIG_SLUB_TINY */ 3766 3767 static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab, 3768 void *head, void *tail, void **p, int cnt, 3769 unsigned long addr) 3770 { 3771 memcg_slab_free_hook(s, slab, p, cnt); 3772 /* 3773 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3774 * to remove objects, whose reuse must be delayed. 3775 */ 3776 if (slab_free_freelist_hook(s, &head, &tail, &cnt)) 3777 do_slab_free(s, slab, head, tail, cnt, addr); 3778 } 3779 3780 #ifdef CONFIG_KASAN_GENERIC 3781 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3782 { 3783 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr); 3784 } 3785 #endif 3786 3787 void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller) 3788 { 3789 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller); 3790 } 3791 3792 void kmem_cache_free(struct kmem_cache *s, void *x) 3793 { 3794 s = cache_from_obj(s, x); 3795 if (!s) 3796 return; 3797 trace_kmem_cache_free(_RET_IP_, x, s); 3798 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_); 3799 } 3800 EXPORT_SYMBOL(kmem_cache_free); 3801 3802 struct detached_freelist { 3803 struct slab *slab; 3804 void *tail; 3805 void *freelist; 3806 int cnt; 3807 struct kmem_cache *s; 3808 }; 3809 3810 /* 3811 * This function progressively scans the array with free objects (with 3812 * a limited look ahead) and extract objects belonging to the same 3813 * slab. It builds a detached freelist directly within the given 3814 * slab/objects. This can happen without any need for 3815 * synchronization, because the objects are owned by running process. 3816 * The freelist is build up as a single linked list in the objects. 3817 * The idea is, that this detached freelist can then be bulk 3818 * transferred to the real freelist(s), but only requiring a single 3819 * synchronization primitive. Look ahead in the array is limited due 3820 * to performance reasons. 3821 */ 3822 static inline 3823 int build_detached_freelist(struct kmem_cache *s, size_t size, 3824 void **p, struct detached_freelist *df) 3825 { 3826 int lookahead = 3; 3827 void *object; 3828 struct folio *folio; 3829 size_t same; 3830 3831 object = p[--size]; 3832 folio = virt_to_folio(object); 3833 if (!s) { 3834 /* Handle kalloc'ed objects */ 3835 if (unlikely(!folio_test_slab(folio))) { 3836 free_large_kmalloc(folio, object); 3837 df->slab = NULL; 3838 return size; 3839 } 3840 /* Derive kmem_cache from object */ 3841 df->slab = folio_slab(folio); 3842 df->s = df->slab->slab_cache; 3843 } else { 3844 df->slab = folio_slab(folio); 3845 df->s = cache_from_obj(s, object); /* Support for memcg */ 3846 } 3847 3848 /* Start new detached freelist */ 3849 df->tail = object; 3850 df->freelist = object; 3851 df->cnt = 1; 3852 3853 if (is_kfence_address(object)) 3854 return size; 3855 3856 set_freepointer(df->s, object, NULL); 3857 3858 same = size; 3859 while (size) { 3860 object = p[--size]; 3861 /* df->slab is always set at this point */ 3862 if (df->slab == virt_to_slab(object)) { 3863 /* Opportunity build freelist */ 3864 set_freepointer(df->s, object, df->freelist); 3865 df->freelist = object; 3866 df->cnt++; 3867 same--; 3868 if (size != same) 3869 swap(p[size], p[same]); 3870 continue; 3871 } 3872 3873 /* Limit look ahead search */ 3874 if (!--lookahead) 3875 break; 3876 } 3877 3878 return same; 3879 } 3880 3881 /* Note that interrupts must be enabled when calling this function. */ 3882 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3883 { 3884 if (!size) 3885 return; 3886 3887 do { 3888 struct detached_freelist df; 3889 3890 size = build_detached_freelist(s, size, p, &df); 3891 if (!df.slab) 3892 continue; 3893 3894 slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt, 3895 _RET_IP_); 3896 } while (likely(size)); 3897 } 3898 EXPORT_SYMBOL(kmem_cache_free_bulk); 3899 3900 #ifndef CONFIG_SLUB_TINY 3901 static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, 3902 size_t size, void **p, struct obj_cgroup *objcg) 3903 { 3904 struct kmem_cache_cpu *c; 3905 unsigned long irqflags; 3906 int i; 3907 3908 /* 3909 * Drain objects in the per cpu slab, while disabling local 3910 * IRQs, which protects against PREEMPT and interrupts 3911 * handlers invoking normal fastpath. 3912 */ 3913 c = slub_get_cpu_ptr(s->cpu_slab); 3914 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 3915 3916 for (i = 0; i < size; i++) { 3917 void *object = kfence_alloc(s, s->object_size, flags); 3918 3919 if (unlikely(object)) { 3920 p[i] = object; 3921 continue; 3922 } 3923 3924 object = c->freelist; 3925 if (unlikely(!object)) { 3926 /* 3927 * We may have removed an object from c->freelist using 3928 * the fastpath in the previous iteration; in that case, 3929 * c->tid has not been bumped yet. 3930 * Since ___slab_alloc() may reenable interrupts while 3931 * allocating memory, we should bump c->tid now. 3932 */ 3933 c->tid = next_tid(c->tid); 3934 3935 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 3936 3937 /* 3938 * Invoking slow path likely have side-effect 3939 * of re-populating per CPU c->freelist 3940 */ 3941 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3942 _RET_IP_, c, s->object_size); 3943 if (unlikely(!p[i])) 3944 goto error; 3945 3946 c = this_cpu_ptr(s->cpu_slab); 3947 maybe_wipe_obj_freeptr(s, p[i]); 3948 3949 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 3950 3951 continue; /* goto for-loop */ 3952 } 3953 c->freelist = get_freepointer(s, object); 3954 p[i] = object; 3955 maybe_wipe_obj_freeptr(s, p[i]); 3956 } 3957 c->tid = next_tid(c->tid); 3958 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 3959 slub_put_cpu_ptr(s->cpu_slab); 3960 3961 return i; 3962 3963 error: 3964 slub_put_cpu_ptr(s->cpu_slab); 3965 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size); 3966 kmem_cache_free_bulk(s, i, p); 3967 return 0; 3968 3969 } 3970 #else /* CONFIG_SLUB_TINY */ 3971 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, 3972 size_t size, void **p, struct obj_cgroup *objcg) 3973 { 3974 int i; 3975 3976 for (i = 0; i < size; i++) { 3977 void *object = kfence_alloc(s, s->object_size, flags); 3978 3979 if (unlikely(object)) { 3980 p[i] = object; 3981 continue; 3982 } 3983 3984 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE, 3985 _RET_IP_, s->object_size); 3986 if (unlikely(!p[i])) 3987 goto error; 3988 3989 maybe_wipe_obj_freeptr(s, p[i]); 3990 } 3991 3992 return i; 3993 3994 error: 3995 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size); 3996 kmem_cache_free_bulk(s, i, p); 3997 return 0; 3998 } 3999 #endif /* CONFIG_SLUB_TINY */ 4000 4001 /* Note that interrupts must be enabled when calling this function. */ 4002 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 4003 void **p) 4004 { 4005 int i; 4006 struct obj_cgroup *objcg = NULL; 4007 4008 if (!size) 4009 return 0; 4010 4011 /* memcg and kmem_cache debug support */ 4012 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags); 4013 if (unlikely(!s)) 4014 return 0; 4015 4016 i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg); 4017 4018 /* 4019 * memcg and kmem_cache debug support and memory initialization. 4020 * Done outside of the IRQ disabled fastpath loop. 4021 */ 4022 if (i != 0) 4023 slab_post_alloc_hook(s, objcg, flags, size, p, 4024 slab_want_init_on_alloc(flags, s), s->object_size); 4025 return i; 4026 } 4027 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 4028 4029 4030 /* 4031 * Object placement in a slab is made very easy because we always start at 4032 * offset 0. If we tune the size of the object to the alignment then we can 4033 * get the required alignment by putting one properly sized object after 4034 * another. 4035 * 4036 * Notice that the allocation order determines the sizes of the per cpu 4037 * caches. Each processor has always one slab available for allocations. 4038 * Increasing the allocation order reduces the number of times that slabs 4039 * must be moved on and off the partial lists and is therefore a factor in 4040 * locking overhead. 4041 */ 4042 4043 /* 4044 * Minimum / Maximum order of slab pages. This influences locking overhead 4045 * and slab fragmentation. A higher order reduces the number of partial slabs 4046 * and increases the number of allocations possible without having to 4047 * take the list_lock. 4048 */ 4049 static unsigned int slub_min_order; 4050 static unsigned int slub_max_order = 4051 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER; 4052 static unsigned int slub_min_objects; 4053 4054 /* 4055 * Calculate the order of allocation given an slab object size. 4056 * 4057 * The order of allocation has significant impact on performance and other 4058 * system components. Generally order 0 allocations should be preferred since 4059 * order 0 does not cause fragmentation in the page allocator. Larger objects 4060 * be problematic to put into order 0 slabs because there may be too much 4061 * unused space left. We go to a higher order if more than 1/16th of the slab 4062 * would be wasted. 4063 * 4064 * In order to reach satisfactory performance we must ensure that a minimum 4065 * number of objects is in one slab. Otherwise we may generate too much 4066 * activity on the partial lists which requires taking the list_lock. This is 4067 * less a concern for large slabs though which are rarely used. 4068 * 4069 * slub_max_order specifies the order where we begin to stop considering the 4070 * number of objects in a slab as critical. If we reach slub_max_order then 4071 * we try to keep the page order as low as possible. So we accept more waste 4072 * of space in favor of a small page order. 4073 * 4074 * Higher order allocations also allow the placement of more objects in a 4075 * slab and thereby reduce object handling overhead. If the user has 4076 * requested a higher minimum order then we start with that one instead of 4077 * the smallest order which will fit the object. 4078 */ 4079 static inline unsigned int calc_slab_order(unsigned int size, 4080 unsigned int min_objects, unsigned int max_order, 4081 unsigned int fract_leftover) 4082 { 4083 unsigned int min_order = slub_min_order; 4084 unsigned int order; 4085 4086 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 4087 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 4088 4089 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 4090 order <= max_order; order++) { 4091 4092 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 4093 unsigned int rem; 4094 4095 rem = slab_size % size; 4096 4097 if (rem <= slab_size / fract_leftover) 4098 break; 4099 } 4100 4101 return order; 4102 } 4103 4104 static inline int calculate_order(unsigned int size) 4105 { 4106 unsigned int order; 4107 unsigned int min_objects; 4108 unsigned int max_objects; 4109 unsigned int nr_cpus; 4110 4111 /* 4112 * Attempt to find best configuration for a slab. This 4113 * works by first attempting to generate a layout with 4114 * the best configuration and backing off gradually. 4115 * 4116 * First we increase the acceptable waste in a slab. Then 4117 * we reduce the minimum objects required in a slab. 4118 */ 4119 min_objects = slub_min_objects; 4120 if (!min_objects) { 4121 /* 4122 * Some architectures will only update present cpus when 4123 * onlining them, so don't trust the number if it's just 1. But 4124 * we also don't want to use nr_cpu_ids always, as on some other 4125 * architectures, there can be many possible cpus, but never 4126 * onlined. Here we compromise between trying to avoid too high 4127 * order on systems that appear larger than they are, and too 4128 * low order on systems that appear smaller than they are. 4129 */ 4130 nr_cpus = num_present_cpus(); 4131 if (nr_cpus <= 1) 4132 nr_cpus = nr_cpu_ids; 4133 min_objects = 4 * (fls(nr_cpus) + 1); 4134 } 4135 max_objects = order_objects(slub_max_order, size); 4136 min_objects = min(min_objects, max_objects); 4137 4138 while (min_objects > 1) { 4139 unsigned int fraction; 4140 4141 fraction = 16; 4142 while (fraction >= 4) { 4143 order = calc_slab_order(size, min_objects, 4144 slub_max_order, fraction); 4145 if (order <= slub_max_order) 4146 return order; 4147 fraction /= 2; 4148 } 4149 min_objects--; 4150 } 4151 4152 /* 4153 * We were unable to place multiple objects in a slab. Now 4154 * lets see if we can place a single object there. 4155 */ 4156 order = calc_slab_order(size, 1, slub_max_order, 1); 4157 if (order <= slub_max_order) 4158 return order; 4159 4160 /* 4161 * Doh this slab cannot be placed using slub_max_order. 4162 */ 4163 order = calc_slab_order(size, 1, MAX_ORDER, 1); 4164 if (order <= MAX_ORDER) 4165 return order; 4166 return -ENOSYS; 4167 } 4168 4169 static void 4170 init_kmem_cache_node(struct kmem_cache_node *n) 4171 { 4172 n->nr_partial = 0; 4173 spin_lock_init(&n->list_lock); 4174 INIT_LIST_HEAD(&n->partial); 4175 #ifdef CONFIG_SLUB_DEBUG 4176 atomic_long_set(&n->nr_slabs, 0); 4177 atomic_long_set(&n->total_objects, 0); 4178 INIT_LIST_HEAD(&n->full); 4179 #endif 4180 } 4181 4182 #ifndef CONFIG_SLUB_TINY 4183 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 4184 { 4185 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 4186 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH * 4187 sizeof(struct kmem_cache_cpu)); 4188 4189 /* 4190 * Must align to double word boundary for the double cmpxchg 4191 * instructions to work; see __pcpu_double_call_return_bool(). 4192 */ 4193 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 4194 2 * sizeof(void *)); 4195 4196 if (!s->cpu_slab) 4197 return 0; 4198 4199 init_kmem_cache_cpus(s); 4200 4201 return 1; 4202 } 4203 #else 4204 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 4205 { 4206 return 1; 4207 } 4208 #endif /* CONFIG_SLUB_TINY */ 4209 4210 static struct kmem_cache *kmem_cache_node; 4211 4212 /* 4213 * No kmalloc_node yet so do it by hand. We know that this is the first 4214 * slab on the node for this slabcache. There are no concurrent accesses 4215 * possible. 4216 * 4217 * Note that this function only works on the kmem_cache_node 4218 * when allocating for the kmem_cache_node. This is used for bootstrapping 4219 * memory on a fresh node that has no slab structures yet. 4220 */ 4221 static void early_kmem_cache_node_alloc(int node) 4222 { 4223 struct slab *slab; 4224 struct kmem_cache_node *n; 4225 4226 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 4227 4228 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 4229 4230 BUG_ON(!slab); 4231 inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects); 4232 if (slab_nid(slab) != node) { 4233 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 4234 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 4235 } 4236 4237 n = slab->freelist; 4238 BUG_ON(!n); 4239 #ifdef CONFIG_SLUB_DEBUG 4240 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 4241 init_tracking(kmem_cache_node, n); 4242 #endif 4243 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 4244 slab->freelist = get_freepointer(kmem_cache_node, n); 4245 slab->inuse = 1; 4246 kmem_cache_node->node[node] = n; 4247 init_kmem_cache_node(n); 4248 inc_slabs_node(kmem_cache_node, node, slab->objects); 4249 4250 /* 4251 * No locks need to be taken here as it has just been 4252 * initialized and there is no concurrent access. 4253 */ 4254 __add_partial(n, slab, DEACTIVATE_TO_HEAD); 4255 } 4256 4257 static void free_kmem_cache_nodes(struct kmem_cache *s) 4258 { 4259 int node; 4260 struct kmem_cache_node *n; 4261 4262 for_each_kmem_cache_node(s, node, n) { 4263 s->node[node] = NULL; 4264 kmem_cache_free(kmem_cache_node, n); 4265 } 4266 } 4267 4268 void __kmem_cache_release(struct kmem_cache *s) 4269 { 4270 cache_random_seq_destroy(s); 4271 #ifndef CONFIG_SLUB_TINY 4272 free_percpu(s->cpu_slab); 4273 #endif 4274 free_kmem_cache_nodes(s); 4275 } 4276 4277 static int init_kmem_cache_nodes(struct kmem_cache *s) 4278 { 4279 int node; 4280 4281 for_each_node_mask(node, slab_nodes) { 4282 struct kmem_cache_node *n; 4283 4284 if (slab_state == DOWN) { 4285 early_kmem_cache_node_alloc(node); 4286 continue; 4287 } 4288 n = kmem_cache_alloc_node(kmem_cache_node, 4289 GFP_KERNEL, node); 4290 4291 if (!n) { 4292 free_kmem_cache_nodes(s); 4293 return 0; 4294 } 4295 4296 init_kmem_cache_node(n); 4297 s->node[node] = n; 4298 } 4299 return 1; 4300 } 4301 4302 static void set_cpu_partial(struct kmem_cache *s) 4303 { 4304 #ifdef CONFIG_SLUB_CPU_PARTIAL 4305 unsigned int nr_objects; 4306 4307 /* 4308 * cpu_partial determined the maximum number of objects kept in the 4309 * per cpu partial lists of a processor. 4310 * 4311 * Per cpu partial lists mainly contain slabs that just have one 4312 * object freed. If they are used for allocation then they can be 4313 * filled up again with minimal effort. The slab will never hit the 4314 * per node partial lists and therefore no locking will be required. 4315 * 4316 * For backwards compatibility reasons, this is determined as number 4317 * of objects, even though we now limit maximum number of pages, see 4318 * slub_set_cpu_partial() 4319 */ 4320 if (!kmem_cache_has_cpu_partial(s)) 4321 nr_objects = 0; 4322 else if (s->size >= PAGE_SIZE) 4323 nr_objects = 6; 4324 else if (s->size >= 1024) 4325 nr_objects = 24; 4326 else if (s->size >= 256) 4327 nr_objects = 52; 4328 else 4329 nr_objects = 120; 4330 4331 slub_set_cpu_partial(s, nr_objects); 4332 #endif 4333 } 4334 4335 /* 4336 * calculate_sizes() determines the order and the distribution of data within 4337 * a slab object. 4338 */ 4339 static int calculate_sizes(struct kmem_cache *s) 4340 { 4341 slab_flags_t flags = s->flags; 4342 unsigned int size = s->object_size; 4343 unsigned int order; 4344 4345 /* 4346 * Round up object size to the next word boundary. We can only 4347 * place the free pointer at word boundaries and this determines 4348 * the possible location of the free pointer. 4349 */ 4350 size = ALIGN(size, sizeof(void *)); 4351 4352 #ifdef CONFIG_SLUB_DEBUG 4353 /* 4354 * Determine if we can poison the object itself. If the user of 4355 * the slab may touch the object after free or before allocation 4356 * then we should never poison the object itself. 4357 */ 4358 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 4359 !s->ctor) 4360 s->flags |= __OBJECT_POISON; 4361 else 4362 s->flags &= ~__OBJECT_POISON; 4363 4364 4365 /* 4366 * If we are Redzoning then check if there is some space between the 4367 * end of the object and the free pointer. If not then add an 4368 * additional word to have some bytes to store Redzone information. 4369 */ 4370 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 4371 size += sizeof(void *); 4372 #endif 4373 4374 /* 4375 * With that we have determined the number of bytes in actual use 4376 * by the object and redzoning. 4377 */ 4378 s->inuse = size; 4379 4380 if (slub_debug_orig_size(s) || 4381 (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 4382 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) || 4383 s->ctor) { 4384 /* 4385 * Relocate free pointer after the object if it is not 4386 * permitted to overwrite the first word of the object on 4387 * kmem_cache_free. 4388 * 4389 * This is the case if we do RCU, have a constructor or 4390 * destructor, are poisoning the objects, or are 4391 * redzoning an object smaller than sizeof(void *). 4392 * 4393 * The assumption that s->offset >= s->inuse means free 4394 * pointer is outside of the object is used in the 4395 * freeptr_outside_object() function. If that is no 4396 * longer true, the function needs to be modified. 4397 */ 4398 s->offset = size; 4399 size += sizeof(void *); 4400 } else { 4401 /* 4402 * Store freelist pointer near middle of object to keep 4403 * it away from the edges of the object to avoid small 4404 * sized over/underflows from neighboring allocations. 4405 */ 4406 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 4407 } 4408 4409 #ifdef CONFIG_SLUB_DEBUG 4410 if (flags & SLAB_STORE_USER) { 4411 /* 4412 * Need to store information about allocs and frees after 4413 * the object. 4414 */ 4415 size += 2 * sizeof(struct track); 4416 4417 /* Save the original kmalloc request size */ 4418 if (flags & SLAB_KMALLOC) 4419 size += sizeof(unsigned int); 4420 } 4421 #endif 4422 4423 kasan_cache_create(s, &size, &s->flags); 4424 #ifdef CONFIG_SLUB_DEBUG 4425 if (flags & SLAB_RED_ZONE) { 4426 /* 4427 * Add some empty padding so that we can catch 4428 * overwrites from earlier objects rather than let 4429 * tracking information or the free pointer be 4430 * corrupted if a user writes before the start 4431 * of the object. 4432 */ 4433 size += sizeof(void *); 4434 4435 s->red_left_pad = sizeof(void *); 4436 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 4437 size += s->red_left_pad; 4438 } 4439 #endif 4440 4441 /* 4442 * SLUB stores one object immediately after another beginning from 4443 * offset 0. In order to align the objects we have to simply size 4444 * each object to conform to the alignment. 4445 */ 4446 size = ALIGN(size, s->align); 4447 s->size = size; 4448 s->reciprocal_size = reciprocal_value(size); 4449 order = calculate_order(size); 4450 4451 if ((int)order < 0) 4452 return 0; 4453 4454 s->allocflags = 0; 4455 if (order) 4456 s->allocflags |= __GFP_COMP; 4457 4458 if (s->flags & SLAB_CACHE_DMA) 4459 s->allocflags |= GFP_DMA; 4460 4461 if (s->flags & SLAB_CACHE_DMA32) 4462 s->allocflags |= GFP_DMA32; 4463 4464 if (s->flags & SLAB_RECLAIM_ACCOUNT) 4465 s->allocflags |= __GFP_RECLAIMABLE; 4466 4467 /* 4468 * Determine the number of objects per slab 4469 */ 4470 s->oo = oo_make(order, size); 4471 s->min = oo_make(get_order(size), size); 4472 4473 return !!oo_objects(s->oo); 4474 } 4475 4476 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 4477 { 4478 s->flags = kmem_cache_flags(s->size, flags, s->name); 4479 #ifdef CONFIG_SLAB_FREELIST_HARDENED 4480 s->random = get_random_long(); 4481 #endif 4482 4483 if (!calculate_sizes(s)) 4484 goto error; 4485 if (disable_higher_order_debug) { 4486 /* 4487 * Disable debugging flags that store metadata if the min slab 4488 * order increased. 4489 */ 4490 if (get_order(s->size) > get_order(s->object_size)) { 4491 s->flags &= ~DEBUG_METADATA_FLAGS; 4492 s->offset = 0; 4493 if (!calculate_sizes(s)) 4494 goto error; 4495 } 4496 } 4497 4498 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 4499 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 4500 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 4501 /* Enable fast mode */ 4502 s->flags |= __CMPXCHG_DOUBLE; 4503 #endif 4504 4505 /* 4506 * The larger the object size is, the more slabs we want on the partial 4507 * list to avoid pounding the page allocator excessively. 4508 */ 4509 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); 4510 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); 4511 4512 set_cpu_partial(s); 4513 4514 #ifdef CONFIG_NUMA 4515 s->remote_node_defrag_ratio = 1000; 4516 #endif 4517 4518 /* Initialize the pre-computed randomized freelist if slab is up */ 4519 if (slab_state >= UP) { 4520 if (init_cache_random_seq(s)) 4521 goto error; 4522 } 4523 4524 if (!init_kmem_cache_nodes(s)) 4525 goto error; 4526 4527 if (alloc_kmem_cache_cpus(s)) 4528 return 0; 4529 4530 error: 4531 __kmem_cache_release(s); 4532 return -EINVAL; 4533 } 4534 4535 static void list_slab_objects(struct kmem_cache *s, struct slab *slab, 4536 const char *text) 4537 { 4538 #ifdef CONFIG_SLUB_DEBUG 4539 void *addr = slab_address(slab); 4540 void *p; 4541 4542 slab_err(s, slab, text, s->name); 4543 4544 spin_lock(&object_map_lock); 4545 __fill_map(object_map, s, slab); 4546 4547 for_each_object(p, s, addr, slab->objects) { 4548 4549 if (!test_bit(__obj_to_index(s, addr, p), object_map)) { 4550 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 4551 print_tracking(s, p); 4552 } 4553 } 4554 spin_unlock(&object_map_lock); 4555 #endif 4556 } 4557 4558 /* 4559 * Attempt to free all partial slabs on a node. 4560 * This is called from __kmem_cache_shutdown(). We must take list_lock 4561 * because sysfs file might still access partial list after the shutdowning. 4562 */ 4563 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 4564 { 4565 LIST_HEAD(discard); 4566 struct slab *slab, *h; 4567 4568 BUG_ON(irqs_disabled()); 4569 spin_lock_irq(&n->list_lock); 4570 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 4571 if (!slab->inuse) { 4572 remove_partial(n, slab); 4573 list_add(&slab->slab_list, &discard); 4574 } else { 4575 list_slab_objects(s, slab, 4576 "Objects remaining in %s on __kmem_cache_shutdown()"); 4577 } 4578 } 4579 spin_unlock_irq(&n->list_lock); 4580 4581 list_for_each_entry_safe(slab, h, &discard, slab_list) 4582 discard_slab(s, slab); 4583 } 4584 4585 bool __kmem_cache_empty(struct kmem_cache *s) 4586 { 4587 int node; 4588 struct kmem_cache_node *n; 4589 4590 for_each_kmem_cache_node(s, node, n) 4591 if (n->nr_partial || node_nr_slabs(n)) 4592 return false; 4593 return true; 4594 } 4595 4596 /* 4597 * Release all resources used by a slab cache. 4598 */ 4599 int __kmem_cache_shutdown(struct kmem_cache *s) 4600 { 4601 int node; 4602 struct kmem_cache_node *n; 4603 4604 flush_all_cpus_locked(s); 4605 /* Attempt to free all objects */ 4606 for_each_kmem_cache_node(s, node, n) { 4607 free_partial(s, n); 4608 if (n->nr_partial || node_nr_slabs(n)) 4609 return 1; 4610 } 4611 return 0; 4612 } 4613 4614 #ifdef CONFIG_PRINTK 4615 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 4616 { 4617 void *base; 4618 int __maybe_unused i; 4619 unsigned int objnr; 4620 void *objp; 4621 void *objp0; 4622 struct kmem_cache *s = slab->slab_cache; 4623 struct track __maybe_unused *trackp; 4624 4625 kpp->kp_ptr = object; 4626 kpp->kp_slab = slab; 4627 kpp->kp_slab_cache = s; 4628 base = slab_address(slab); 4629 objp0 = kasan_reset_tag(object); 4630 #ifdef CONFIG_SLUB_DEBUG 4631 objp = restore_red_left(s, objp0); 4632 #else 4633 objp = objp0; 4634 #endif 4635 objnr = obj_to_index(s, slab, objp); 4636 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 4637 objp = base + s->size * objnr; 4638 kpp->kp_objp = objp; 4639 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 4640 || (objp - base) % s->size) || 4641 !(s->flags & SLAB_STORE_USER)) 4642 return; 4643 #ifdef CONFIG_SLUB_DEBUG 4644 objp = fixup_red_left(s, objp); 4645 trackp = get_track(s, objp, TRACK_ALLOC); 4646 kpp->kp_ret = (void *)trackp->addr; 4647 #ifdef CONFIG_STACKDEPOT 4648 { 4649 depot_stack_handle_t handle; 4650 unsigned long *entries; 4651 unsigned int nr_entries; 4652 4653 handle = READ_ONCE(trackp->handle); 4654 if (handle) { 4655 nr_entries = stack_depot_fetch(handle, &entries); 4656 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 4657 kpp->kp_stack[i] = (void *)entries[i]; 4658 } 4659 4660 trackp = get_track(s, objp, TRACK_FREE); 4661 handle = READ_ONCE(trackp->handle); 4662 if (handle) { 4663 nr_entries = stack_depot_fetch(handle, &entries); 4664 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 4665 kpp->kp_free_stack[i] = (void *)entries[i]; 4666 } 4667 } 4668 #endif 4669 #endif 4670 } 4671 #endif 4672 4673 /******************************************************************** 4674 * Kmalloc subsystem 4675 *******************************************************************/ 4676 4677 static int __init setup_slub_min_order(char *str) 4678 { 4679 get_option(&str, (int *)&slub_min_order); 4680 4681 return 1; 4682 } 4683 4684 __setup("slub_min_order=", setup_slub_min_order); 4685 4686 static int __init setup_slub_max_order(char *str) 4687 { 4688 get_option(&str, (int *)&slub_max_order); 4689 slub_max_order = min_t(unsigned int, slub_max_order, MAX_ORDER); 4690 4691 return 1; 4692 } 4693 4694 __setup("slub_max_order=", setup_slub_max_order); 4695 4696 static int __init setup_slub_min_objects(char *str) 4697 { 4698 get_option(&str, (int *)&slub_min_objects); 4699 4700 return 1; 4701 } 4702 4703 __setup("slub_min_objects=", setup_slub_min_objects); 4704 4705 #ifdef CONFIG_HARDENED_USERCOPY 4706 /* 4707 * Rejects incorrectly sized objects and objects that are to be copied 4708 * to/from userspace but do not fall entirely within the containing slab 4709 * cache's usercopy region. 4710 * 4711 * Returns NULL if check passes, otherwise const char * to name of cache 4712 * to indicate an error. 4713 */ 4714 void __check_heap_object(const void *ptr, unsigned long n, 4715 const struct slab *slab, bool to_user) 4716 { 4717 struct kmem_cache *s; 4718 unsigned int offset; 4719 bool is_kfence = is_kfence_address(ptr); 4720 4721 ptr = kasan_reset_tag(ptr); 4722 4723 /* Find object and usable object size. */ 4724 s = slab->slab_cache; 4725 4726 /* Reject impossible pointers. */ 4727 if (ptr < slab_address(slab)) 4728 usercopy_abort("SLUB object not in SLUB page?!", NULL, 4729 to_user, 0, n); 4730 4731 /* Find offset within object. */ 4732 if (is_kfence) 4733 offset = ptr - kfence_object_start(ptr); 4734 else 4735 offset = (ptr - slab_address(slab)) % s->size; 4736 4737 /* Adjust for redzone and reject if within the redzone. */ 4738 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 4739 if (offset < s->red_left_pad) 4740 usercopy_abort("SLUB object in left red zone", 4741 s->name, to_user, offset, n); 4742 offset -= s->red_left_pad; 4743 } 4744 4745 /* Allow address range falling entirely within usercopy region. */ 4746 if (offset >= s->useroffset && 4747 offset - s->useroffset <= s->usersize && 4748 n <= s->useroffset - offset + s->usersize) 4749 return; 4750 4751 usercopy_abort("SLUB object", s->name, to_user, offset, n); 4752 } 4753 #endif /* CONFIG_HARDENED_USERCOPY */ 4754 4755 #define SHRINK_PROMOTE_MAX 32 4756 4757 /* 4758 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 4759 * up most to the head of the partial lists. New allocations will then 4760 * fill those up and thus they can be removed from the partial lists. 4761 * 4762 * The slabs with the least items are placed last. This results in them 4763 * being allocated from last increasing the chance that the last objects 4764 * are freed in them. 4765 */ 4766 static int __kmem_cache_do_shrink(struct kmem_cache *s) 4767 { 4768 int node; 4769 int i; 4770 struct kmem_cache_node *n; 4771 struct slab *slab; 4772 struct slab *t; 4773 struct list_head discard; 4774 struct list_head promote[SHRINK_PROMOTE_MAX]; 4775 unsigned long flags; 4776 int ret = 0; 4777 4778 for_each_kmem_cache_node(s, node, n) { 4779 INIT_LIST_HEAD(&discard); 4780 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 4781 INIT_LIST_HEAD(promote + i); 4782 4783 spin_lock_irqsave(&n->list_lock, flags); 4784 4785 /* 4786 * Build lists of slabs to discard or promote. 4787 * 4788 * Note that concurrent frees may occur while we hold the 4789 * list_lock. slab->inuse here is the upper limit. 4790 */ 4791 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 4792 int free = slab->objects - slab->inuse; 4793 4794 /* Do not reread slab->inuse */ 4795 barrier(); 4796 4797 /* We do not keep full slabs on the list */ 4798 BUG_ON(free <= 0); 4799 4800 if (free == slab->objects) { 4801 list_move(&slab->slab_list, &discard); 4802 n->nr_partial--; 4803 dec_slabs_node(s, node, slab->objects); 4804 } else if (free <= SHRINK_PROMOTE_MAX) 4805 list_move(&slab->slab_list, promote + free - 1); 4806 } 4807 4808 /* 4809 * Promote the slabs filled up most to the head of the 4810 * partial list. 4811 */ 4812 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4813 list_splice(promote + i, &n->partial); 4814 4815 spin_unlock_irqrestore(&n->list_lock, flags); 4816 4817 /* Release empty slabs */ 4818 list_for_each_entry_safe(slab, t, &discard, slab_list) 4819 free_slab(s, slab); 4820 4821 if (node_nr_slabs(n)) 4822 ret = 1; 4823 } 4824 4825 return ret; 4826 } 4827 4828 int __kmem_cache_shrink(struct kmem_cache *s) 4829 { 4830 flush_all(s); 4831 return __kmem_cache_do_shrink(s); 4832 } 4833 4834 static int slab_mem_going_offline_callback(void *arg) 4835 { 4836 struct kmem_cache *s; 4837 4838 mutex_lock(&slab_mutex); 4839 list_for_each_entry(s, &slab_caches, list) { 4840 flush_all_cpus_locked(s); 4841 __kmem_cache_do_shrink(s); 4842 } 4843 mutex_unlock(&slab_mutex); 4844 4845 return 0; 4846 } 4847 4848 static void slab_mem_offline_callback(void *arg) 4849 { 4850 struct memory_notify *marg = arg; 4851 int offline_node; 4852 4853 offline_node = marg->status_change_nid_normal; 4854 4855 /* 4856 * If the node still has available memory. we need kmem_cache_node 4857 * for it yet. 4858 */ 4859 if (offline_node < 0) 4860 return; 4861 4862 mutex_lock(&slab_mutex); 4863 node_clear(offline_node, slab_nodes); 4864 /* 4865 * We no longer free kmem_cache_node structures here, as it would be 4866 * racy with all get_node() users, and infeasible to protect them with 4867 * slab_mutex. 4868 */ 4869 mutex_unlock(&slab_mutex); 4870 } 4871 4872 static int slab_mem_going_online_callback(void *arg) 4873 { 4874 struct kmem_cache_node *n; 4875 struct kmem_cache *s; 4876 struct memory_notify *marg = arg; 4877 int nid = marg->status_change_nid_normal; 4878 int ret = 0; 4879 4880 /* 4881 * If the node's memory is already available, then kmem_cache_node is 4882 * already created. Nothing to do. 4883 */ 4884 if (nid < 0) 4885 return 0; 4886 4887 /* 4888 * We are bringing a node online. No memory is available yet. We must 4889 * allocate a kmem_cache_node structure in order to bring the node 4890 * online. 4891 */ 4892 mutex_lock(&slab_mutex); 4893 list_for_each_entry(s, &slab_caches, list) { 4894 /* 4895 * The structure may already exist if the node was previously 4896 * onlined and offlined. 4897 */ 4898 if (get_node(s, nid)) 4899 continue; 4900 /* 4901 * XXX: kmem_cache_alloc_node will fallback to other nodes 4902 * since memory is not yet available from the node that 4903 * is brought up. 4904 */ 4905 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4906 if (!n) { 4907 ret = -ENOMEM; 4908 goto out; 4909 } 4910 init_kmem_cache_node(n); 4911 s->node[nid] = n; 4912 } 4913 /* 4914 * Any cache created after this point will also have kmem_cache_node 4915 * initialized for the new node. 4916 */ 4917 node_set(nid, slab_nodes); 4918 out: 4919 mutex_unlock(&slab_mutex); 4920 return ret; 4921 } 4922 4923 static int slab_memory_callback(struct notifier_block *self, 4924 unsigned long action, void *arg) 4925 { 4926 int ret = 0; 4927 4928 switch (action) { 4929 case MEM_GOING_ONLINE: 4930 ret = slab_mem_going_online_callback(arg); 4931 break; 4932 case MEM_GOING_OFFLINE: 4933 ret = slab_mem_going_offline_callback(arg); 4934 break; 4935 case MEM_OFFLINE: 4936 case MEM_CANCEL_ONLINE: 4937 slab_mem_offline_callback(arg); 4938 break; 4939 case MEM_ONLINE: 4940 case MEM_CANCEL_OFFLINE: 4941 break; 4942 } 4943 if (ret) 4944 ret = notifier_from_errno(ret); 4945 else 4946 ret = NOTIFY_OK; 4947 return ret; 4948 } 4949 4950 /******************************************************************** 4951 * Basic setup of slabs 4952 *******************************************************************/ 4953 4954 /* 4955 * Used for early kmem_cache structures that were allocated using 4956 * the page allocator. Allocate them properly then fix up the pointers 4957 * that may be pointing to the wrong kmem_cache structure. 4958 */ 4959 4960 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4961 { 4962 int node; 4963 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4964 struct kmem_cache_node *n; 4965 4966 memcpy(s, static_cache, kmem_cache->object_size); 4967 4968 /* 4969 * This runs very early, and only the boot processor is supposed to be 4970 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4971 * IPIs around. 4972 */ 4973 __flush_cpu_slab(s, smp_processor_id()); 4974 for_each_kmem_cache_node(s, node, n) { 4975 struct slab *p; 4976 4977 list_for_each_entry(p, &n->partial, slab_list) 4978 p->slab_cache = s; 4979 4980 #ifdef CONFIG_SLUB_DEBUG 4981 list_for_each_entry(p, &n->full, slab_list) 4982 p->slab_cache = s; 4983 #endif 4984 } 4985 list_add(&s->list, &slab_caches); 4986 return s; 4987 } 4988 4989 void __init kmem_cache_init(void) 4990 { 4991 static __initdata struct kmem_cache boot_kmem_cache, 4992 boot_kmem_cache_node; 4993 int node; 4994 4995 if (debug_guardpage_minorder()) 4996 slub_max_order = 0; 4997 4998 /* Print slub debugging pointers without hashing */ 4999 if (__slub_debug_enabled()) 5000 no_hash_pointers_enable(NULL); 5001 5002 kmem_cache_node = &boot_kmem_cache_node; 5003 kmem_cache = &boot_kmem_cache; 5004 5005 /* 5006 * Initialize the nodemask for which we will allocate per node 5007 * structures. Here we don't need taking slab_mutex yet. 5008 */ 5009 for_each_node_state(node, N_NORMAL_MEMORY) 5010 node_set(node, slab_nodes); 5011 5012 create_boot_cache(kmem_cache_node, "kmem_cache_node", 5013 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 5014 5015 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 5016 5017 /* Able to allocate the per node structures */ 5018 slab_state = PARTIAL; 5019 5020 create_boot_cache(kmem_cache, "kmem_cache", 5021 offsetof(struct kmem_cache, node) + 5022 nr_node_ids * sizeof(struct kmem_cache_node *), 5023 SLAB_HWCACHE_ALIGN, 0, 0); 5024 5025 kmem_cache = bootstrap(&boot_kmem_cache); 5026 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 5027 5028 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 5029 setup_kmalloc_cache_index_table(); 5030 create_kmalloc_caches(0); 5031 5032 /* Setup random freelists for each cache */ 5033 init_freelist_randomization(); 5034 5035 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 5036 slub_cpu_dead); 5037 5038 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 5039 cache_line_size(), 5040 slub_min_order, slub_max_order, slub_min_objects, 5041 nr_cpu_ids, nr_node_ids); 5042 } 5043 5044 void __init kmem_cache_init_late(void) 5045 { 5046 #ifndef CONFIG_SLUB_TINY 5047 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); 5048 WARN_ON(!flushwq); 5049 #endif 5050 } 5051 5052 struct kmem_cache * 5053 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 5054 slab_flags_t flags, void (*ctor)(void *)) 5055 { 5056 struct kmem_cache *s; 5057 5058 s = find_mergeable(size, align, flags, name, ctor); 5059 if (s) { 5060 if (sysfs_slab_alias(s, name)) 5061 return NULL; 5062 5063 s->refcount++; 5064 5065 /* 5066 * Adjust the object sizes so that we clear 5067 * the complete object on kzalloc. 5068 */ 5069 s->object_size = max(s->object_size, size); 5070 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 5071 } 5072 5073 return s; 5074 } 5075 5076 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 5077 { 5078 int err; 5079 5080 err = kmem_cache_open(s, flags); 5081 if (err) 5082 return err; 5083 5084 /* Mutex is not taken during early boot */ 5085 if (slab_state <= UP) 5086 return 0; 5087 5088 err = sysfs_slab_add(s); 5089 if (err) { 5090 __kmem_cache_release(s); 5091 return err; 5092 } 5093 5094 if (s->flags & SLAB_STORE_USER) 5095 debugfs_slab_add(s); 5096 5097 return 0; 5098 } 5099 5100 #ifdef SLAB_SUPPORTS_SYSFS 5101 static int count_inuse(struct slab *slab) 5102 { 5103 return slab->inuse; 5104 } 5105 5106 static int count_total(struct slab *slab) 5107 { 5108 return slab->objects; 5109 } 5110 #endif 5111 5112 #ifdef CONFIG_SLUB_DEBUG 5113 static void validate_slab(struct kmem_cache *s, struct slab *slab, 5114 unsigned long *obj_map) 5115 { 5116 void *p; 5117 void *addr = slab_address(slab); 5118 5119 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 5120 return; 5121 5122 /* Now we know that a valid freelist exists */ 5123 __fill_map(obj_map, s, slab); 5124 for_each_object(p, s, addr, slab->objects) { 5125 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 5126 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 5127 5128 if (!check_object(s, slab, p, val)) 5129 break; 5130 } 5131 } 5132 5133 static int validate_slab_node(struct kmem_cache *s, 5134 struct kmem_cache_node *n, unsigned long *obj_map) 5135 { 5136 unsigned long count = 0; 5137 struct slab *slab; 5138 unsigned long flags; 5139 5140 spin_lock_irqsave(&n->list_lock, flags); 5141 5142 list_for_each_entry(slab, &n->partial, slab_list) { 5143 validate_slab(s, slab, obj_map); 5144 count++; 5145 } 5146 if (count != n->nr_partial) { 5147 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 5148 s->name, count, n->nr_partial); 5149 slab_add_kunit_errors(); 5150 } 5151 5152 if (!(s->flags & SLAB_STORE_USER)) 5153 goto out; 5154 5155 list_for_each_entry(slab, &n->full, slab_list) { 5156 validate_slab(s, slab, obj_map); 5157 count++; 5158 } 5159 if (count != atomic_long_read(&n->nr_slabs)) { 5160 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 5161 s->name, count, atomic_long_read(&n->nr_slabs)); 5162 slab_add_kunit_errors(); 5163 } 5164 5165 out: 5166 spin_unlock_irqrestore(&n->list_lock, flags); 5167 return count; 5168 } 5169 5170 long validate_slab_cache(struct kmem_cache *s) 5171 { 5172 int node; 5173 unsigned long count = 0; 5174 struct kmem_cache_node *n; 5175 unsigned long *obj_map; 5176 5177 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 5178 if (!obj_map) 5179 return -ENOMEM; 5180 5181 flush_all(s); 5182 for_each_kmem_cache_node(s, node, n) 5183 count += validate_slab_node(s, n, obj_map); 5184 5185 bitmap_free(obj_map); 5186 5187 return count; 5188 } 5189 EXPORT_SYMBOL(validate_slab_cache); 5190 5191 #ifdef CONFIG_DEBUG_FS 5192 /* 5193 * Generate lists of code addresses where slabcache objects are allocated 5194 * and freed. 5195 */ 5196 5197 struct location { 5198 depot_stack_handle_t handle; 5199 unsigned long count; 5200 unsigned long addr; 5201 unsigned long waste; 5202 long long sum_time; 5203 long min_time; 5204 long max_time; 5205 long min_pid; 5206 long max_pid; 5207 DECLARE_BITMAP(cpus, NR_CPUS); 5208 nodemask_t nodes; 5209 }; 5210 5211 struct loc_track { 5212 unsigned long max; 5213 unsigned long count; 5214 struct location *loc; 5215 loff_t idx; 5216 }; 5217 5218 static struct dentry *slab_debugfs_root; 5219 5220 static void free_loc_track(struct loc_track *t) 5221 { 5222 if (t->max) 5223 free_pages((unsigned long)t->loc, 5224 get_order(sizeof(struct location) * t->max)); 5225 } 5226 5227 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 5228 { 5229 struct location *l; 5230 int order; 5231 5232 order = get_order(sizeof(struct location) * max); 5233 5234 l = (void *)__get_free_pages(flags, order); 5235 if (!l) 5236 return 0; 5237 5238 if (t->count) { 5239 memcpy(l, t->loc, sizeof(struct location) * t->count); 5240 free_loc_track(t); 5241 } 5242 t->max = max; 5243 t->loc = l; 5244 return 1; 5245 } 5246 5247 static int add_location(struct loc_track *t, struct kmem_cache *s, 5248 const struct track *track, 5249 unsigned int orig_size) 5250 { 5251 long start, end, pos; 5252 struct location *l; 5253 unsigned long caddr, chandle, cwaste; 5254 unsigned long age = jiffies - track->when; 5255 depot_stack_handle_t handle = 0; 5256 unsigned int waste = s->object_size - orig_size; 5257 5258 #ifdef CONFIG_STACKDEPOT 5259 handle = READ_ONCE(track->handle); 5260 #endif 5261 start = -1; 5262 end = t->count; 5263 5264 for ( ; ; ) { 5265 pos = start + (end - start + 1) / 2; 5266 5267 /* 5268 * There is nothing at "end". If we end up there 5269 * we need to add something to before end. 5270 */ 5271 if (pos == end) 5272 break; 5273 5274 l = &t->loc[pos]; 5275 caddr = l->addr; 5276 chandle = l->handle; 5277 cwaste = l->waste; 5278 if ((track->addr == caddr) && (handle == chandle) && 5279 (waste == cwaste)) { 5280 5281 l->count++; 5282 if (track->when) { 5283 l->sum_time += age; 5284 if (age < l->min_time) 5285 l->min_time = age; 5286 if (age > l->max_time) 5287 l->max_time = age; 5288 5289 if (track->pid < l->min_pid) 5290 l->min_pid = track->pid; 5291 if (track->pid > l->max_pid) 5292 l->max_pid = track->pid; 5293 5294 cpumask_set_cpu(track->cpu, 5295 to_cpumask(l->cpus)); 5296 } 5297 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5298 return 1; 5299 } 5300 5301 if (track->addr < caddr) 5302 end = pos; 5303 else if (track->addr == caddr && handle < chandle) 5304 end = pos; 5305 else if (track->addr == caddr && handle == chandle && 5306 waste < cwaste) 5307 end = pos; 5308 else 5309 start = pos; 5310 } 5311 5312 /* 5313 * Not found. Insert new tracking element. 5314 */ 5315 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 5316 return 0; 5317 5318 l = t->loc + pos; 5319 if (pos < t->count) 5320 memmove(l + 1, l, 5321 (t->count - pos) * sizeof(struct location)); 5322 t->count++; 5323 l->count = 1; 5324 l->addr = track->addr; 5325 l->sum_time = age; 5326 l->min_time = age; 5327 l->max_time = age; 5328 l->min_pid = track->pid; 5329 l->max_pid = track->pid; 5330 l->handle = handle; 5331 l->waste = waste; 5332 cpumask_clear(to_cpumask(l->cpus)); 5333 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 5334 nodes_clear(l->nodes); 5335 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5336 return 1; 5337 } 5338 5339 static void process_slab(struct loc_track *t, struct kmem_cache *s, 5340 struct slab *slab, enum track_item alloc, 5341 unsigned long *obj_map) 5342 { 5343 void *addr = slab_address(slab); 5344 bool is_alloc = (alloc == TRACK_ALLOC); 5345 void *p; 5346 5347 __fill_map(obj_map, s, slab); 5348 5349 for_each_object(p, s, addr, slab->objects) 5350 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 5351 add_location(t, s, get_track(s, p, alloc), 5352 is_alloc ? get_orig_size(s, p) : 5353 s->object_size); 5354 } 5355 #endif /* CONFIG_DEBUG_FS */ 5356 #endif /* CONFIG_SLUB_DEBUG */ 5357 5358 #ifdef SLAB_SUPPORTS_SYSFS 5359 enum slab_stat_type { 5360 SL_ALL, /* All slabs */ 5361 SL_PARTIAL, /* Only partially allocated slabs */ 5362 SL_CPU, /* Only slabs used for cpu caches */ 5363 SL_OBJECTS, /* Determine allocated objects not slabs */ 5364 SL_TOTAL /* Determine object capacity not slabs */ 5365 }; 5366 5367 #define SO_ALL (1 << SL_ALL) 5368 #define SO_PARTIAL (1 << SL_PARTIAL) 5369 #define SO_CPU (1 << SL_CPU) 5370 #define SO_OBJECTS (1 << SL_OBJECTS) 5371 #define SO_TOTAL (1 << SL_TOTAL) 5372 5373 static ssize_t show_slab_objects(struct kmem_cache *s, 5374 char *buf, unsigned long flags) 5375 { 5376 unsigned long total = 0; 5377 int node; 5378 int x; 5379 unsigned long *nodes; 5380 int len = 0; 5381 5382 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 5383 if (!nodes) 5384 return -ENOMEM; 5385 5386 if (flags & SO_CPU) { 5387 int cpu; 5388 5389 for_each_possible_cpu(cpu) { 5390 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 5391 cpu); 5392 int node; 5393 struct slab *slab; 5394 5395 slab = READ_ONCE(c->slab); 5396 if (!slab) 5397 continue; 5398 5399 node = slab_nid(slab); 5400 if (flags & SO_TOTAL) 5401 x = slab->objects; 5402 else if (flags & SO_OBJECTS) 5403 x = slab->inuse; 5404 else 5405 x = 1; 5406 5407 total += x; 5408 nodes[node] += x; 5409 5410 #ifdef CONFIG_SLUB_CPU_PARTIAL 5411 slab = slub_percpu_partial_read_once(c); 5412 if (slab) { 5413 node = slab_nid(slab); 5414 if (flags & SO_TOTAL) 5415 WARN_ON_ONCE(1); 5416 else if (flags & SO_OBJECTS) 5417 WARN_ON_ONCE(1); 5418 else 5419 x = slab->slabs; 5420 total += x; 5421 nodes[node] += x; 5422 } 5423 #endif 5424 } 5425 } 5426 5427 /* 5428 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 5429 * already held which will conflict with an existing lock order: 5430 * 5431 * mem_hotplug_lock->slab_mutex->kernfs_mutex 5432 * 5433 * We don't really need mem_hotplug_lock (to hold off 5434 * slab_mem_going_offline_callback) here because slab's memory hot 5435 * unplug code doesn't destroy the kmem_cache->node[] data. 5436 */ 5437 5438 #ifdef CONFIG_SLUB_DEBUG 5439 if (flags & SO_ALL) { 5440 struct kmem_cache_node *n; 5441 5442 for_each_kmem_cache_node(s, node, n) { 5443 5444 if (flags & SO_TOTAL) 5445 x = atomic_long_read(&n->total_objects); 5446 else if (flags & SO_OBJECTS) 5447 x = atomic_long_read(&n->total_objects) - 5448 count_partial(n, count_free); 5449 else 5450 x = atomic_long_read(&n->nr_slabs); 5451 total += x; 5452 nodes[node] += x; 5453 } 5454 5455 } else 5456 #endif 5457 if (flags & SO_PARTIAL) { 5458 struct kmem_cache_node *n; 5459 5460 for_each_kmem_cache_node(s, node, n) { 5461 if (flags & SO_TOTAL) 5462 x = count_partial(n, count_total); 5463 else if (flags & SO_OBJECTS) 5464 x = count_partial(n, count_inuse); 5465 else 5466 x = n->nr_partial; 5467 total += x; 5468 nodes[node] += x; 5469 } 5470 } 5471 5472 len += sysfs_emit_at(buf, len, "%lu", total); 5473 #ifdef CONFIG_NUMA 5474 for (node = 0; node < nr_node_ids; node++) { 5475 if (nodes[node]) 5476 len += sysfs_emit_at(buf, len, " N%d=%lu", 5477 node, nodes[node]); 5478 } 5479 #endif 5480 len += sysfs_emit_at(buf, len, "\n"); 5481 kfree(nodes); 5482 5483 return len; 5484 } 5485 5486 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 5487 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 5488 5489 struct slab_attribute { 5490 struct attribute attr; 5491 ssize_t (*show)(struct kmem_cache *s, char *buf); 5492 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 5493 }; 5494 5495 #define SLAB_ATTR_RO(_name) \ 5496 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) 5497 5498 #define SLAB_ATTR(_name) \ 5499 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) 5500 5501 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 5502 { 5503 return sysfs_emit(buf, "%u\n", s->size); 5504 } 5505 SLAB_ATTR_RO(slab_size); 5506 5507 static ssize_t align_show(struct kmem_cache *s, char *buf) 5508 { 5509 return sysfs_emit(buf, "%u\n", s->align); 5510 } 5511 SLAB_ATTR_RO(align); 5512 5513 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 5514 { 5515 return sysfs_emit(buf, "%u\n", s->object_size); 5516 } 5517 SLAB_ATTR_RO(object_size); 5518 5519 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 5520 { 5521 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 5522 } 5523 SLAB_ATTR_RO(objs_per_slab); 5524 5525 static ssize_t order_show(struct kmem_cache *s, char *buf) 5526 { 5527 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 5528 } 5529 SLAB_ATTR_RO(order); 5530 5531 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 5532 { 5533 return sysfs_emit(buf, "%lu\n", s->min_partial); 5534 } 5535 5536 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 5537 size_t length) 5538 { 5539 unsigned long min; 5540 int err; 5541 5542 err = kstrtoul(buf, 10, &min); 5543 if (err) 5544 return err; 5545 5546 s->min_partial = min; 5547 return length; 5548 } 5549 SLAB_ATTR(min_partial); 5550 5551 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 5552 { 5553 unsigned int nr_partial = 0; 5554 #ifdef CONFIG_SLUB_CPU_PARTIAL 5555 nr_partial = s->cpu_partial; 5556 #endif 5557 5558 return sysfs_emit(buf, "%u\n", nr_partial); 5559 } 5560 5561 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 5562 size_t length) 5563 { 5564 unsigned int objects; 5565 int err; 5566 5567 err = kstrtouint(buf, 10, &objects); 5568 if (err) 5569 return err; 5570 if (objects && !kmem_cache_has_cpu_partial(s)) 5571 return -EINVAL; 5572 5573 slub_set_cpu_partial(s, objects); 5574 flush_all(s); 5575 return length; 5576 } 5577 SLAB_ATTR(cpu_partial); 5578 5579 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5580 { 5581 if (!s->ctor) 5582 return 0; 5583 return sysfs_emit(buf, "%pS\n", s->ctor); 5584 } 5585 SLAB_ATTR_RO(ctor); 5586 5587 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5588 { 5589 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5590 } 5591 SLAB_ATTR_RO(aliases); 5592 5593 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5594 { 5595 return show_slab_objects(s, buf, SO_PARTIAL); 5596 } 5597 SLAB_ATTR_RO(partial); 5598 5599 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5600 { 5601 return show_slab_objects(s, buf, SO_CPU); 5602 } 5603 SLAB_ATTR_RO(cpu_slabs); 5604 5605 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5606 { 5607 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5608 } 5609 SLAB_ATTR_RO(objects_partial); 5610 5611 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5612 { 5613 int objects = 0; 5614 int slabs = 0; 5615 int cpu __maybe_unused; 5616 int len = 0; 5617 5618 #ifdef CONFIG_SLUB_CPU_PARTIAL 5619 for_each_online_cpu(cpu) { 5620 struct slab *slab; 5621 5622 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5623 5624 if (slab) 5625 slabs += slab->slabs; 5626 } 5627 #endif 5628 5629 /* Approximate half-full slabs, see slub_set_cpu_partial() */ 5630 objects = (slabs * oo_objects(s->oo)) / 2; 5631 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); 5632 5633 #ifdef CONFIG_SLUB_CPU_PARTIAL 5634 for_each_online_cpu(cpu) { 5635 struct slab *slab; 5636 5637 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5638 if (slab) { 5639 slabs = READ_ONCE(slab->slabs); 5640 objects = (slabs * oo_objects(s->oo)) / 2; 5641 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 5642 cpu, objects, slabs); 5643 } 5644 } 5645 #endif 5646 len += sysfs_emit_at(buf, len, "\n"); 5647 5648 return len; 5649 } 5650 SLAB_ATTR_RO(slabs_cpu_partial); 5651 5652 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5653 { 5654 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5655 } 5656 SLAB_ATTR_RO(reclaim_account); 5657 5658 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5659 { 5660 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5661 } 5662 SLAB_ATTR_RO(hwcache_align); 5663 5664 #ifdef CONFIG_ZONE_DMA 5665 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5666 { 5667 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5668 } 5669 SLAB_ATTR_RO(cache_dma); 5670 #endif 5671 5672 #ifdef CONFIG_HARDENED_USERCOPY 5673 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5674 { 5675 return sysfs_emit(buf, "%u\n", s->usersize); 5676 } 5677 SLAB_ATTR_RO(usersize); 5678 #endif 5679 5680 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5681 { 5682 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5683 } 5684 SLAB_ATTR_RO(destroy_by_rcu); 5685 5686 #ifdef CONFIG_SLUB_DEBUG 5687 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5688 { 5689 return show_slab_objects(s, buf, SO_ALL); 5690 } 5691 SLAB_ATTR_RO(slabs); 5692 5693 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5694 { 5695 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5696 } 5697 SLAB_ATTR_RO(total_objects); 5698 5699 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5700 { 5701 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5702 } 5703 SLAB_ATTR_RO(objects); 5704 5705 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5706 { 5707 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5708 } 5709 SLAB_ATTR_RO(sanity_checks); 5710 5711 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5712 { 5713 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5714 } 5715 SLAB_ATTR_RO(trace); 5716 5717 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5718 { 5719 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5720 } 5721 5722 SLAB_ATTR_RO(red_zone); 5723 5724 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5725 { 5726 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5727 } 5728 5729 SLAB_ATTR_RO(poison); 5730 5731 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5732 { 5733 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5734 } 5735 5736 SLAB_ATTR_RO(store_user); 5737 5738 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5739 { 5740 return 0; 5741 } 5742 5743 static ssize_t validate_store(struct kmem_cache *s, 5744 const char *buf, size_t length) 5745 { 5746 int ret = -EINVAL; 5747 5748 if (buf[0] == '1' && kmem_cache_debug(s)) { 5749 ret = validate_slab_cache(s); 5750 if (ret >= 0) 5751 ret = length; 5752 } 5753 return ret; 5754 } 5755 SLAB_ATTR(validate); 5756 5757 #endif /* CONFIG_SLUB_DEBUG */ 5758 5759 #ifdef CONFIG_FAILSLAB 5760 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5761 { 5762 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5763 } 5764 5765 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5766 size_t length) 5767 { 5768 if (s->refcount > 1) 5769 return -EINVAL; 5770 5771 if (buf[0] == '1') 5772 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB); 5773 else 5774 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB); 5775 5776 return length; 5777 } 5778 SLAB_ATTR(failslab); 5779 #endif 5780 5781 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5782 { 5783 return 0; 5784 } 5785 5786 static ssize_t shrink_store(struct kmem_cache *s, 5787 const char *buf, size_t length) 5788 { 5789 if (buf[0] == '1') 5790 kmem_cache_shrink(s); 5791 else 5792 return -EINVAL; 5793 return length; 5794 } 5795 SLAB_ATTR(shrink); 5796 5797 #ifdef CONFIG_NUMA 5798 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5799 { 5800 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5801 } 5802 5803 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5804 const char *buf, size_t length) 5805 { 5806 unsigned int ratio; 5807 int err; 5808 5809 err = kstrtouint(buf, 10, &ratio); 5810 if (err) 5811 return err; 5812 if (ratio > 100) 5813 return -ERANGE; 5814 5815 s->remote_node_defrag_ratio = ratio * 10; 5816 5817 return length; 5818 } 5819 SLAB_ATTR(remote_node_defrag_ratio); 5820 #endif 5821 5822 #ifdef CONFIG_SLUB_STATS 5823 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5824 { 5825 unsigned long sum = 0; 5826 int cpu; 5827 int len = 0; 5828 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5829 5830 if (!data) 5831 return -ENOMEM; 5832 5833 for_each_online_cpu(cpu) { 5834 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5835 5836 data[cpu] = x; 5837 sum += x; 5838 } 5839 5840 len += sysfs_emit_at(buf, len, "%lu", sum); 5841 5842 #ifdef CONFIG_SMP 5843 for_each_online_cpu(cpu) { 5844 if (data[cpu]) 5845 len += sysfs_emit_at(buf, len, " C%d=%u", 5846 cpu, data[cpu]); 5847 } 5848 #endif 5849 kfree(data); 5850 len += sysfs_emit_at(buf, len, "\n"); 5851 5852 return len; 5853 } 5854 5855 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5856 { 5857 int cpu; 5858 5859 for_each_online_cpu(cpu) 5860 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5861 } 5862 5863 #define STAT_ATTR(si, text) \ 5864 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5865 { \ 5866 return show_stat(s, buf, si); \ 5867 } \ 5868 static ssize_t text##_store(struct kmem_cache *s, \ 5869 const char *buf, size_t length) \ 5870 { \ 5871 if (buf[0] != '0') \ 5872 return -EINVAL; \ 5873 clear_stat(s, si); \ 5874 return length; \ 5875 } \ 5876 SLAB_ATTR(text); \ 5877 5878 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5879 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5880 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5881 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5882 STAT_ATTR(FREE_FROZEN, free_frozen); 5883 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5884 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5885 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5886 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5887 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5888 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5889 STAT_ATTR(FREE_SLAB, free_slab); 5890 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5891 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5892 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5893 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5894 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5895 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5896 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5897 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5898 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5899 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5900 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5901 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5902 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5903 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5904 #endif /* CONFIG_SLUB_STATS */ 5905 5906 #ifdef CONFIG_KFENCE 5907 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf) 5908 { 5909 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE)); 5910 } 5911 5912 static ssize_t skip_kfence_store(struct kmem_cache *s, 5913 const char *buf, size_t length) 5914 { 5915 int ret = length; 5916 5917 if (buf[0] == '0') 5918 s->flags &= ~SLAB_SKIP_KFENCE; 5919 else if (buf[0] == '1') 5920 s->flags |= SLAB_SKIP_KFENCE; 5921 else 5922 ret = -EINVAL; 5923 5924 return ret; 5925 } 5926 SLAB_ATTR(skip_kfence); 5927 #endif 5928 5929 static struct attribute *slab_attrs[] = { 5930 &slab_size_attr.attr, 5931 &object_size_attr.attr, 5932 &objs_per_slab_attr.attr, 5933 &order_attr.attr, 5934 &min_partial_attr.attr, 5935 &cpu_partial_attr.attr, 5936 &objects_partial_attr.attr, 5937 &partial_attr.attr, 5938 &cpu_slabs_attr.attr, 5939 &ctor_attr.attr, 5940 &aliases_attr.attr, 5941 &align_attr.attr, 5942 &hwcache_align_attr.attr, 5943 &reclaim_account_attr.attr, 5944 &destroy_by_rcu_attr.attr, 5945 &shrink_attr.attr, 5946 &slabs_cpu_partial_attr.attr, 5947 #ifdef CONFIG_SLUB_DEBUG 5948 &total_objects_attr.attr, 5949 &objects_attr.attr, 5950 &slabs_attr.attr, 5951 &sanity_checks_attr.attr, 5952 &trace_attr.attr, 5953 &red_zone_attr.attr, 5954 &poison_attr.attr, 5955 &store_user_attr.attr, 5956 &validate_attr.attr, 5957 #endif 5958 #ifdef CONFIG_ZONE_DMA 5959 &cache_dma_attr.attr, 5960 #endif 5961 #ifdef CONFIG_NUMA 5962 &remote_node_defrag_ratio_attr.attr, 5963 #endif 5964 #ifdef CONFIG_SLUB_STATS 5965 &alloc_fastpath_attr.attr, 5966 &alloc_slowpath_attr.attr, 5967 &free_fastpath_attr.attr, 5968 &free_slowpath_attr.attr, 5969 &free_frozen_attr.attr, 5970 &free_add_partial_attr.attr, 5971 &free_remove_partial_attr.attr, 5972 &alloc_from_partial_attr.attr, 5973 &alloc_slab_attr.attr, 5974 &alloc_refill_attr.attr, 5975 &alloc_node_mismatch_attr.attr, 5976 &free_slab_attr.attr, 5977 &cpuslab_flush_attr.attr, 5978 &deactivate_full_attr.attr, 5979 &deactivate_empty_attr.attr, 5980 &deactivate_to_head_attr.attr, 5981 &deactivate_to_tail_attr.attr, 5982 &deactivate_remote_frees_attr.attr, 5983 &deactivate_bypass_attr.attr, 5984 &order_fallback_attr.attr, 5985 &cmpxchg_double_fail_attr.attr, 5986 &cmpxchg_double_cpu_fail_attr.attr, 5987 &cpu_partial_alloc_attr.attr, 5988 &cpu_partial_free_attr.attr, 5989 &cpu_partial_node_attr.attr, 5990 &cpu_partial_drain_attr.attr, 5991 #endif 5992 #ifdef CONFIG_FAILSLAB 5993 &failslab_attr.attr, 5994 #endif 5995 #ifdef CONFIG_HARDENED_USERCOPY 5996 &usersize_attr.attr, 5997 #endif 5998 #ifdef CONFIG_KFENCE 5999 &skip_kfence_attr.attr, 6000 #endif 6001 6002 NULL 6003 }; 6004 6005 static const struct attribute_group slab_attr_group = { 6006 .attrs = slab_attrs, 6007 }; 6008 6009 static ssize_t slab_attr_show(struct kobject *kobj, 6010 struct attribute *attr, 6011 char *buf) 6012 { 6013 struct slab_attribute *attribute; 6014 struct kmem_cache *s; 6015 6016 attribute = to_slab_attr(attr); 6017 s = to_slab(kobj); 6018 6019 if (!attribute->show) 6020 return -EIO; 6021 6022 return attribute->show(s, buf); 6023 } 6024 6025 static ssize_t slab_attr_store(struct kobject *kobj, 6026 struct attribute *attr, 6027 const char *buf, size_t len) 6028 { 6029 struct slab_attribute *attribute; 6030 struct kmem_cache *s; 6031 6032 attribute = to_slab_attr(attr); 6033 s = to_slab(kobj); 6034 6035 if (!attribute->store) 6036 return -EIO; 6037 6038 return attribute->store(s, buf, len); 6039 } 6040 6041 static void kmem_cache_release(struct kobject *k) 6042 { 6043 slab_kmem_cache_release(to_slab(k)); 6044 } 6045 6046 static const struct sysfs_ops slab_sysfs_ops = { 6047 .show = slab_attr_show, 6048 .store = slab_attr_store, 6049 }; 6050 6051 static const struct kobj_type slab_ktype = { 6052 .sysfs_ops = &slab_sysfs_ops, 6053 .release = kmem_cache_release, 6054 }; 6055 6056 static struct kset *slab_kset; 6057 6058 static inline struct kset *cache_kset(struct kmem_cache *s) 6059 { 6060 return slab_kset; 6061 } 6062 6063 #define ID_STR_LENGTH 32 6064 6065 /* Create a unique string id for a slab cache: 6066 * 6067 * Format :[flags-]size 6068 */ 6069 static char *create_unique_id(struct kmem_cache *s) 6070 { 6071 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 6072 char *p = name; 6073 6074 if (!name) 6075 return ERR_PTR(-ENOMEM); 6076 6077 *p++ = ':'; 6078 /* 6079 * First flags affecting slabcache operations. We will only 6080 * get here for aliasable slabs so we do not need to support 6081 * too many flags. The flags here must cover all flags that 6082 * are matched during merging to guarantee that the id is 6083 * unique. 6084 */ 6085 if (s->flags & SLAB_CACHE_DMA) 6086 *p++ = 'd'; 6087 if (s->flags & SLAB_CACHE_DMA32) 6088 *p++ = 'D'; 6089 if (s->flags & SLAB_RECLAIM_ACCOUNT) 6090 *p++ = 'a'; 6091 if (s->flags & SLAB_CONSISTENCY_CHECKS) 6092 *p++ = 'F'; 6093 if (s->flags & SLAB_ACCOUNT) 6094 *p++ = 'A'; 6095 if (p != name + 1) 6096 *p++ = '-'; 6097 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size); 6098 6099 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) { 6100 kfree(name); 6101 return ERR_PTR(-EINVAL); 6102 } 6103 kmsan_unpoison_memory(name, p - name); 6104 return name; 6105 } 6106 6107 static int sysfs_slab_add(struct kmem_cache *s) 6108 { 6109 int err; 6110 const char *name; 6111 struct kset *kset = cache_kset(s); 6112 int unmergeable = slab_unmergeable(s); 6113 6114 if (!unmergeable && disable_higher_order_debug && 6115 (slub_debug & DEBUG_METADATA_FLAGS)) 6116 unmergeable = 1; 6117 6118 if (unmergeable) { 6119 /* 6120 * Slabcache can never be merged so we can use the name proper. 6121 * This is typically the case for debug situations. In that 6122 * case we can catch duplicate names easily. 6123 */ 6124 sysfs_remove_link(&slab_kset->kobj, s->name); 6125 name = s->name; 6126 } else { 6127 /* 6128 * Create a unique name for the slab as a target 6129 * for the symlinks. 6130 */ 6131 name = create_unique_id(s); 6132 if (IS_ERR(name)) 6133 return PTR_ERR(name); 6134 } 6135 6136 s->kobj.kset = kset; 6137 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 6138 if (err) 6139 goto out; 6140 6141 err = sysfs_create_group(&s->kobj, &slab_attr_group); 6142 if (err) 6143 goto out_del_kobj; 6144 6145 if (!unmergeable) { 6146 /* Setup first alias */ 6147 sysfs_slab_alias(s, s->name); 6148 } 6149 out: 6150 if (!unmergeable) 6151 kfree(name); 6152 return err; 6153 out_del_kobj: 6154 kobject_del(&s->kobj); 6155 goto out; 6156 } 6157 6158 void sysfs_slab_unlink(struct kmem_cache *s) 6159 { 6160 if (slab_state >= FULL) 6161 kobject_del(&s->kobj); 6162 } 6163 6164 void sysfs_slab_release(struct kmem_cache *s) 6165 { 6166 if (slab_state >= FULL) 6167 kobject_put(&s->kobj); 6168 } 6169 6170 /* 6171 * Need to buffer aliases during bootup until sysfs becomes 6172 * available lest we lose that information. 6173 */ 6174 struct saved_alias { 6175 struct kmem_cache *s; 6176 const char *name; 6177 struct saved_alias *next; 6178 }; 6179 6180 static struct saved_alias *alias_list; 6181 6182 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 6183 { 6184 struct saved_alias *al; 6185 6186 if (slab_state == FULL) { 6187 /* 6188 * If we have a leftover link then remove it. 6189 */ 6190 sysfs_remove_link(&slab_kset->kobj, name); 6191 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 6192 } 6193 6194 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 6195 if (!al) 6196 return -ENOMEM; 6197 6198 al->s = s; 6199 al->name = name; 6200 al->next = alias_list; 6201 alias_list = al; 6202 kmsan_unpoison_memory(al, sizeof(*al)); 6203 return 0; 6204 } 6205 6206 static int __init slab_sysfs_init(void) 6207 { 6208 struct kmem_cache *s; 6209 int err; 6210 6211 mutex_lock(&slab_mutex); 6212 6213 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 6214 if (!slab_kset) { 6215 mutex_unlock(&slab_mutex); 6216 pr_err("Cannot register slab subsystem.\n"); 6217 return -ENOMEM; 6218 } 6219 6220 slab_state = FULL; 6221 6222 list_for_each_entry(s, &slab_caches, list) { 6223 err = sysfs_slab_add(s); 6224 if (err) 6225 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 6226 s->name); 6227 } 6228 6229 while (alias_list) { 6230 struct saved_alias *al = alias_list; 6231 6232 alias_list = alias_list->next; 6233 err = sysfs_slab_alias(al->s, al->name); 6234 if (err) 6235 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 6236 al->name); 6237 kfree(al); 6238 } 6239 6240 mutex_unlock(&slab_mutex); 6241 return 0; 6242 } 6243 late_initcall(slab_sysfs_init); 6244 #endif /* SLAB_SUPPORTS_SYSFS */ 6245 6246 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 6247 static int slab_debugfs_show(struct seq_file *seq, void *v) 6248 { 6249 struct loc_track *t = seq->private; 6250 struct location *l; 6251 unsigned long idx; 6252 6253 idx = (unsigned long) t->idx; 6254 if (idx < t->count) { 6255 l = &t->loc[idx]; 6256 6257 seq_printf(seq, "%7ld ", l->count); 6258 6259 if (l->addr) 6260 seq_printf(seq, "%pS", (void *)l->addr); 6261 else 6262 seq_puts(seq, "<not-available>"); 6263 6264 if (l->waste) 6265 seq_printf(seq, " waste=%lu/%lu", 6266 l->count * l->waste, l->waste); 6267 6268 if (l->sum_time != l->min_time) { 6269 seq_printf(seq, " age=%ld/%llu/%ld", 6270 l->min_time, div_u64(l->sum_time, l->count), 6271 l->max_time); 6272 } else 6273 seq_printf(seq, " age=%ld", l->min_time); 6274 6275 if (l->min_pid != l->max_pid) 6276 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 6277 else 6278 seq_printf(seq, " pid=%ld", 6279 l->min_pid); 6280 6281 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 6282 seq_printf(seq, " cpus=%*pbl", 6283 cpumask_pr_args(to_cpumask(l->cpus))); 6284 6285 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 6286 seq_printf(seq, " nodes=%*pbl", 6287 nodemask_pr_args(&l->nodes)); 6288 6289 #ifdef CONFIG_STACKDEPOT 6290 { 6291 depot_stack_handle_t handle; 6292 unsigned long *entries; 6293 unsigned int nr_entries, j; 6294 6295 handle = READ_ONCE(l->handle); 6296 if (handle) { 6297 nr_entries = stack_depot_fetch(handle, &entries); 6298 seq_puts(seq, "\n"); 6299 for (j = 0; j < nr_entries; j++) 6300 seq_printf(seq, " %pS\n", (void *)entries[j]); 6301 } 6302 } 6303 #endif 6304 seq_puts(seq, "\n"); 6305 } 6306 6307 if (!idx && !t->count) 6308 seq_puts(seq, "No data\n"); 6309 6310 return 0; 6311 } 6312 6313 static void slab_debugfs_stop(struct seq_file *seq, void *v) 6314 { 6315 } 6316 6317 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 6318 { 6319 struct loc_track *t = seq->private; 6320 6321 t->idx = ++(*ppos); 6322 if (*ppos <= t->count) 6323 return ppos; 6324 6325 return NULL; 6326 } 6327 6328 static int cmp_loc_by_count(const void *a, const void *b, const void *data) 6329 { 6330 struct location *loc1 = (struct location *)a; 6331 struct location *loc2 = (struct location *)b; 6332 6333 if (loc1->count > loc2->count) 6334 return -1; 6335 else 6336 return 1; 6337 } 6338 6339 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 6340 { 6341 struct loc_track *t = seq->private; 6342 6343 t->idx = *ppos; 6344 return ppos; 6345 } 6346 6347 static const struct seq_operations slab_debugfs_sops = { 6348 .start = slab_debugfs_start, 6349 .next = slab_debugfs_next, 6350 .stop = slab_debugfs_stop, 6351 .show = slab_debugfs_show, 6352 }; 6353 6354 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 6355 { 6356 6357 struct kmem_cache_node *n; 6358 enum track_item alloc; 6359 int node; 6360 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 6361 sizeof(struct loc_track)); 6362 struct kmem_cache *s = file_inode(filep)->i_private; 6363 unsigned long *obj_map; 6364 6365 if (!t) 6366 return -ENOMEM; 6367 6368 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 6369 if (!obj_map) { 6370 seq_release_private(inode, filep); 6371 return -ENOMEM; 6372 } 6373 6374 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) 6375 alloc = TRACK_ALLOC; 6376 else 6377 alloc = TRACK_FREE; 6378 6379 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 6380 bitmap_free(obj_map); 6381 seq_release_private(inode, filep); 6382 return -ENOMEM; 6383 } 6384 6385 for_each_kmem_cache_node(s, node, n) { 6386 unsigned long flags; 6387 struct slab *slab; 6388 6389 if (!atomic_long_read(&n->nr_slabs)) 6390 continue; 6391 6392 spin_lock_irqsave(&n->list_lock, flags); 6393 list_for_each_entry(slab, &n->partial, slab_list) 6394 process_slab(t, s, slab, alloc, obj_map); 6395 list_for_each_entry(slab, &n->full, slab_list) 6396 process_slab(t, s, slab, alloc, obj_map); 6397 spin_unlock_irqrestore(&n->list_lock, flags); 6398 } 6399 6400 /* Sort locations by count */ 6401 sort_r(t->loc, t->count, sizeof(struct location), 6402 cmp_loc_by_count, NULL, NULL); 6403 6404 bitmap_free(obj_map); 6405 return 0; 6406 } 6407 6408 static int slab_debug_trace_release(struct inode *inode, struct file *file) 6409 { 6410 struct seq_file *seq = file->private_data; 6411 struct loc_track *t = seq->private; 6412 6413 free_loc_track(t); 6414 return seq_release_private(inode, file); 6415 } 6416 6417 static const struct file_operations slab_debugfs_fops = { 6418 .open = slab_debug_trace_open, 6419 .read = seq_read, 6420 .llseek = seq_lseek, 6421 .release = slab_debug_trace_release, 6422 }; 6423 6424 static void debugfs_slab_add(struct kmem_cache *s) 6425 { 6426 struct dentry *slab_cache_dir; 6427 6428 if (unlikely(!slab_debugfs_root)) 6429 return; 6430 6431 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 6432 6433 debugfs_create_file("alloc_traces", 0400, 6434 slab_cache_dir, s, &slab_debugfs_fops); 6435 6436 debugfs_create_file("free_traces", 0400, 6437 slab_cache_dir, s, &slab_debugfs_fops); 6438 } 6439 6440 void debugfs_slab_release(struct kmem_cache *s) 6441 { 6442 debugfs_lookup_and_remove(s->name, slab_debugfs_root); 6443 } 6444 6445 static int __init slab_debugfs_init(void) 6446 { 6447 struct kmem_cache *s; 6448 6449 slab_debugfs_root = debugfs_create_dir("slab", NULL); 6450 6451 list_for_each_entry(s, &slab_caches, list) 6452 if (s->flags & SLAB_STORE_USER) 6453 debugfs_slab_add(s); 6454 6455 return 0; 6456 6457 } 6458 __initcall(slab_debugfs_init); 6459 #endif 6460 /* 6461 * The /proc/slabinfo ABI 6462 */ 6463 #ifdef CONFIG_SLUB_DEBUG 6464 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 6465 { 6466 unsigned long nr_slabs = 0; 6467 unsigned long nr_objs = 0; 6468 unsigned long nr_free = 0; 6469 int node; 6470 struct kmem_cache_node *n; 6471 6472 for_each_kmem_cache_node(s, node, n) { 6473 nr_slabs += node_nr_slabs(n); 6474 nr_objs += node_nr_objs(n); 6475 nr_free += count_partial(n, count_free); 6476 } 6477 6478 sinfo->active_objs = nr_objs - nr_free; 6479 sinfo->num_objs = nr_objs; 6480 sinfo->active_slabs = nr_slabs; 6481 sinfo->num_slabs = nr_slabs; 6482 sinfo->objects_per_slab = oo_objects(s->oo); 6483 sinfo->cache_order = oo_order(s->oo); 6484 } 6485 6486 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 6487 { 6488 } 6489 6490 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 6491 size_t count, loff_t *ppos) 6492 { 6493 return -EIO; 6494 } 6495 #endif /* CONFIG_SLUB_DEBUG */ 6496