xref: /openbmc/linux/mm/slub.c (revision 44f6a42d4935028ffd788e7cf9114e4a1f8d6d3a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/stacktrace.h>
38 #include <linux/prefetch.h>
39 #include <linux/memcontrol.h>
40 #include <linux/random.h>
41 #include <kunit/test.h>
42 #include <kunit/test-bug.h>
43 #include <linux/sort.h>
44 
45 #include <linux/debugfs.h>
46 #include <trace/events/kmem.h>
47 
48 #include "internal.h"
49 
50 /*
51  * Lock order:
52  *   1. slab_mutex (Global Mutex)
53  *   2. node->list_lock (Spinlock)
54  *   3. kmem_cache->cpu_slab->lock (Local lock)
55  *   4. slab_lock(slab) (Only on some arches)
56  *   5. object_map_lock (Only for debugging)
57  *
58  *   slab_mutex
59  *
60  *   The role of the slab_mutex is to protect the list of all the slabs
61  *   and to synchronize major metadata changes to slab cache structures.
62  *   Also synchronizes memory hotplug callbacks.
63  *
64  *   slab_lock
65  *
66  *   The slab_lock is a wrapper around the page lock, thus it is a bit
67  *   spinlock.
68  *
69  *   The slab_lock is only used on arches that do not have the ability
70  *   to do a cmpxchg_double. It only protects:
71  *
72  *	A. slab->freelist	-> List of free objects in a slab
73  *	B. slab->inuse		-> Number of objects in use
74  *	C. slab->objects	-> Number of objects in slab
75  *	D. slab->frozen		-> frozen state
76  *
77  *   Frozen slabs
78  *
79  *   If a slab is frozen then it is exempt from list management. It is not
80  *   on any list except per cpu partial list. The processor that froze the
81  *   slab is the one who can perform list operations on the slab. Other
82  *   processors may put objects onto the freelist but the processor that
83  *   froze the slab is the only one that can retrieve the objects from the
84  *   slab's freelist.
85  *
86  *   list_lock
87  *
88  *   The list_lock protects the partial and full list on each node and
89  *   the partial slab counter. If taken then no new slabs may be added or
90  *   removed from the lists nor make the number of partial slabs be modified.
91  *   (Note that the total number of slabs is an atomic value that may be
92  *   modified without taking the list lock).
93  *
94  *   The list_lock is a centralized lock and thus we avoid taking it as
95  *   much as possible. As long as SLUB does not have to handle partial
96  *   slabs, operations can continue without any centralized lock. F.e.
97  *   allocating a long series of objects that fill up slabs does not require
98  *   the list lock.
99  *
100  *   For debug caches, all allocations are forced to go through a list_lock
101  *   protected region to serialize against concurrent validation.
102  *
103  *   cpu_slab->lock local lock
104  *
105  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
106  *   except the stat counters. This is a percpu structure manipulated only by
107  *   the local cpu, so the lock protects against being preempted or interrupted
108  *   by an irq. Fast path operations rely on lockless operations instead.
109  *
110  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
111  *   which means the lockless fastpath cannot be used as it might interfere with
112  *   an in-progress slow path operations. In this case the local lock is always
113  *   taken but it still utilizes the freelist for the common operations.
114  *
115  *   lockless fastpaths
116  *
117  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
118  *   are fully lockless when satisfied from the percpu slab (and when
119  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
120  *   They also don't disable preemption or migration or irqs. They rely on
121  *   the transaction id (tid) field to detect being preempted or moved to
122  *   another cpu.
123  *
124  *   irq, preemption, migration considerations
125  *
126  *   Interrupts are disabled as part of list_lock or local_lock operations, or
127  *   around the slab_lock operation, in order to make the slab allocator safe
128  *   to use in the context of an irq.
129  *
130  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
131  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
132  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
133  *   doesn't have to be revalidated in each section protected by the local lock.
134  *
135  * SLUB assigns one slab for allocation to each processor.
136  * Allocations only occur from these slabs called cpu slabs.
137  *
138  * Slabs with free elements are kept on a partial list and during regular
139  * operations no list for full slabs is used. If an object in a full slab is
140  * freed then the slab will show up again on the partial lists.
141  * We track full slabs for debugging purposes though because otherwise we
142  * cannot scan all objects.
143  *
144  * Slabs are freed when they become empty. Teardown and setup is
145  * minimal so we rely on the page allocators per cpu caches for
146  * fast frees and allocs.
147  *
148  * slab->frozen		The slab is frozen and exempt from list processing.
149  * 			This means that the slab is dedicated to a purpose
150  * 			such as satisfying allocations for a specific
151  * 			processor. Objects may be freed in the slab while
152  * 			it is frozen but slab_free will then skip the usual
153  * 			list operations. It is up to the processor holding
154  * 			the slab to integrate the slab into the slab lists
155  * 			when the slab is no longer needed.
156  *
157  * 			One use of this flag is to mark slabs that are
158  * 			used for allocations. Then such a slab becomes a cpu
159  * 			slab. The cpu slab may be equipped with an additional
160  * 			freelist that allows lockless access to
161  * 			free objects in addition to the regular freelist
162  * 			that requires the slab lock.
163  *
164  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
165  * 			options set. This moves	slab handling out of
166  * 			the fast path and disables lockless freelists.
167  */
168 
169 /*
170  * We could simply use migrate_disable()/enable() but as long as it's a
171  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
172  */
173 #ifndef CONFIG_PREEMPT_RT
174 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
175 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
176 #define USE_LOCKLESS_FAST_PATH()	(true)
177 #else
178 #define slub_get_cpu_ptr(var)		\
179 ({					\
180 	migrate_disable();		\
181 	this_cpu_ptr(var);		\
182 })
183 #define slub_put_cpu_ptr(var)		\
184 do {					\
185 	(void)(var);			\
186 	migrate_enable();		\
187 } while (0)
188 #define USE_LOCKLESS_FAST_PATH()	(false)
189 #endif
190 
191 #ifndef CONFIG_SLUB_TINY
192 #define __fastpath_inline __always_inline
193 #else
194 #define __fastpath_inline
195 #endif
196 
197 #ifdef CONFIG_SLUB_DEBUG
198 #ifdef CONFIG_SLUB_DEBUG_ON
199 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
200 #else
201 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
202 #endif
203 #endif		/* CONFIG_SLUB_DEBUG */
204 
205 /* Structure holding parameters for get_partial() call chain */
206 struct partial_context {
207 	struct slab **slab;
208 	gfp_t flags;
209 	unsigned int orig_size;
210 };
211 
212 static inline bool kmem_cache_debug(struct kmem_cache *s)
213 {
214 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
215 }
216 
217 static inline bool slub_debug_orig_size(struct kmem_cache *s)
218 {
219 	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
220 			(s->flags & SLAB_KMALLOC));
221 }
222 
223 void *fixup_red_left(struct kmem_cache *s, void *p)
224 {
225 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
226 		p += s->red_left_pad;
227 
228 	return p;
229 }
230 
231 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
232 {
233 #ifdef CONFIG_SLUB_CPU_PARTIAL
234 	return !kmem_cache_debug(s);
235 #else
236 	return false;
237 #endif
238 }
239 
240 /*
241  * Issues still to be resolved:
242  *
243  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
244  *
245  * - Variable sizing of the per node arrays
246  */
247 
248 /* Enable to log cmpxchg failures */
249 #undef SLUB_DEBUG_CMPXCHG
250 
251 #ifndef CONFIG_SLUB_TINY
252 /*
253  * Minimum number of partial slabs. These will be left on the partial
254  * lists even if they are empty. kmem_cache_shrink may reclaim them.
255  */
256 #define MIN_PARTIAL 5
257 
258 /*
259  * Maximum number of desirable partial slabs.
260  * The existence of more partial slabs makes kmem_cache_shrink
261  * sort the partial list by the number of objects in use.
262  */
263 #define MAX_PARTIAL 10
264 #else
265 #define MIN_PARTIAL 0
266 #define MAX_PARTIAL 0
267 #endif
268 
269 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
270 				SLAB_POISON | SLAB_STORE_USER)
271 
272 /*
273  * These debug flags cannot use CMPXCHG because there might be consistency
274  * issues when checking or reading debug information
275  */
276 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
277 				SLAB_TRACE)
278 
279 
280 /*
281  * Debugging flags that require metadata to be stored in the slab.  These get
282  * disabled when slub_debug=O is used and a cache's min order increases with
283  * metadata.
284  */
285 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
286 
287 #define OO_SHIFT	16
288 #define OO_MASK		((1 << OO_SHIFT) - 1)
289 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
290 
291 /* Internal SLUB flags */
292 /* Poison object */
293 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
294 /* Use cmpxchg_double */
295 
296 #ifdef system_has_freelist_aba
297 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
298 #else
299 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0U)
300 #endif
301 
302 /*
303  * Tracking user of a slab.
304  */
305 #define TRACK_ADDRS_COUNT 16
306 struct track {
307 	unsigned long addr;	/* Called from address */
308 #ifdef CONFIG_STACKDEPOT
309 	depot_stack_handle_t handle;
310 #endif
311 	int cpu;		/* Was running on cpu */
312 	int pid;		/* Pid context */
313 	unsigned long when;	/* When did the operation occur */
314 };
315 
316 enum track_item { TRACK_ALLOC, TRACK_FREE };
317 
318 #ifdef SLAB_SUPPORTS_SYSFS
319 static int sysfs_slab_add(struct kmem_cache *);
320 static int sysfs_slab_alias(struct kmem_cache *, const char *);
321 #else
322 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
323 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
324 							{ return 0; }
325 #endif
326 
327 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
328 static void debugfs_slab_add(struct kmem_cache *);
329 #else
330 static inline void debugfs_slab_add(struct kmem_cache *s) { }
331 #endif
332 
333 static inline void stat(const struct kmem_cache *s, enum stat_item si)
334 {
335 #ifdef CONFIG_SLUB_STATS
336 	/*
337 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
338 	 * avoid this_cpu_add()'s irq-disable overhead.
339 	 */
340 	raw_cpu_inc(s->cpu_slab->stat[si]);
341 #endif
342 }
343 
344 /*
345  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
346  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
347  * differ during memory hotplug/hotremove operations.
348  * Protected by slab_mutex.
349  */
350 static nodemask_t slab_nodes;
351 
352 #ifndef CONFIG_SLUB_TINY
353 /*
354  * Workqueue used for flush_cpu_slab().
355  */
356 static struct workqueue_struct *flushwq;
357 #endif
358 
359 /********************************************************************
360  * 			Core slab cache functions
361  *******************************************************************/
362 
363 /*
364  * freeptr_t represents a SLUB freelist pointer, which might be encoded
365  * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
366  */
367 typedef struct { unsigned long v; } freeptr_t;
368 
369 /*
370  * Returns freelist pointer (ptr). With hardening, this is obfuscated
371  * with an XOR of the address where the pointer is held and a per-cache
372  * random number.
373  */
374 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
375 					    void *ptr, unsigned long ptr_addr)
376 {
377 #ifdef CONFIG_SLAB_FREELIST_HARDENED
378 	/*
379 	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
380 	 * Normally, this doesn't cause any issues, as both set_freepointer()
381 	 * and get_freepointer() are called with a pointer with the same tag.
382 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
383 	 * example, when __free_slub() iterates over objects in a cache, it
384 	 * passes untagged pointers to check_object(). check_object() in turns
385 	 * calls get_freepointer() with an untagged pointer, which causes the
386 	 * freepointer to be restored incorrectly.
387 	 */
388 	return (freeptr_t){.v = (unsigned long)ptr ^ s->random ^
389 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr))};
390 #else
391 	return (freeptr_t){.v = (unsigned long)ptr};
392 #endif
393 }
394 
395 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
396 					freeptr_t ptr, unsigned long ptr_addr)
397 {
398 	void *decoded;
399 
400 #ifdef CONFIG_SLAB_FREELIST_HARDENED
401 	/* See the comment in freelist_ptr_encode */
402 	decoded = (void *)(ptr.v ^ s->random ^
403 		swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
404 #else
405 	decoded = (void *)ptr.v;
406 #endif
407 	return decoded;
408 }
409 
410 /* Returns the freelist pointer recorded at location ptr_addr. */
411 static inline void *freelist_dereference(const struct kmem_cache *s,
412 					 void *ptr_addr)
413 {
414 	return freelist_ptr_decode(s, *(freeptr_t *)(ptr_addr),
415 			    (unsigned long)ptr_addr);
416 }
417 
418 static inline void *get_freepointer(struct kmem_cache *s, void *object)
419 {
420 	object = kasan_reset_tag(object);
421 	return freelist_dereference(s, (freeptr_t *)(object + s->offset));
422 }
423 
424 #ifndef CONFIG_SLUB_TINY
425 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
426 {
427 	prefetchw(object + s->offset);
428 }
429 #endif
430 
431 /*
432  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
433  * pointer value in the case the current thread loses the race for the next
434  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
435  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
436  * KMSAN will still check all arguments of cmpxchg because of imperfect
437  * handling of inline assembly.
438  * To work around this problem, we apply __no_kmsan_checks to ensure that
439  * get_freepointer_safe() returns initialized memory.
440  */
441 __no_kmsan_checks
442 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
443 {
444 	unsigned long freepointer_addr;
445 	freeptr_t p;
446 
447 	if (!debug_pagealloc_enabled_static())
448 		return get_freepointer(s, object);
449 
450 	object = kasan_reset_tag(object);
451 	freepointer_addr = (unsigned long)object + s->offset;
452 	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
453 	return freelist_ptr_decode(s, p, freepointer_addr);
454 }
455 
456 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
457 {
458 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
459 
460 #ifdef CONFIG_SLAB_FREELIST_HARDENED
461 	BUG_ON(object == fp); /* naive detection of double free or corruption */
462 #endif
463 
464 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
465 	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
466 }
467 
468 /* Loop over all objects in a slab */
469 #define for_each_object(__p, __s, __addr, __objects) \
470 	for (__p = fixup_red_left(__s, __addr); \
471 		__p < (__addr) + (__objects) * (__s)->size; \
472 		__p += (__s)->size)
473 
474 static inline unsigned int order_objects(unsigned int order, unsigned int size)
475 {
476 	return ((unsigned int)PAGE_SIZE << order) / size;
477 }
478 
479 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
480 		unsigned int size)
481 {
482 	struct kmem_cache_order_objects x = {
483 		(order << OO_SHIFT) + order_objects(order, size)
484 	};
485 
486 	return x;
487 }
488 
489 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
490 {
491 	return x.x >> OO_SHIFT;
492 }
493 
494 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
495 {
496 	return x.x & OO_MASK;
497 }
498 
499 #ifdef CONFIG_SLUB_CPU_PARTIAL
500 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
501 {
502 	unsigned int nr_slabs;
503 
504 	s->cpu_partial = nr_objects;
505 
506 	/*
507 	 * We take the number of objects but actually limit the number of
508 	 * slabs on the per cpu partial list, in order to limit excessive
509 	 * growth of the list. For simplicity we assume that the slabs will
510 	 * be half-full.
511 	 */
512 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
513 	s->cpu_partial_slabs = nr_slabs;
514 }
515 #else
516 static inline void
517 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
518 {
519 }
520 #endif /* CONFIG_SLUB_CPU_PARTIAL */
521 
522 /*
523  * Per slab locking using the pagelock
524  */
525 static __always_inline void slab_lock(struct slab *slab)
526 {
527 	struct page *page = slab_page(slab);
528 
529 	VM_BUG_ON_PAGE(PageTail(page), page);
530 	bit_spin_lock(PG_locked, &page->flags);
531 }
532 
533 static __always_inline void slab_unlock(struct slab *slab)
534 {
535 	struct page *page = slab_page(slab);
536 
537 	VM_BUG_ON_PAGE(PageTail(page), page);
538 	__bit_spin_unlock(PG_locked, &page->flags);
539 }
540 
541 static inline bool
542 __update_freelist_fast(struct slab *slab,
543 		      void *freelist_old, unsigned long counters_old,
544 		      void *freelist_new, unsigned long counters_new)
545 {
546 #ifdef system_has_freelist_aba
547 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
548 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
549 
550 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
551 #else
552 	return false;
553 #endif
554 }
555 
556 static inline bool
557 __update_freelist_slow(struct slab *slab,
558 		      void *freelist_old, unsigned long counters_old,
559 		      void *freelist_new, unsigned long counters_new)
560 {
561 	bool ret = false;
562 
563 	slab_lock(slab);
564 	if (slab->freelist == freelist_old &&
565 	    slab->counters == counters_old) {
566 		slab->freelist = freelist_new;
567 		slab->counters = counters_new;
568 		ret = true;
569 	}
570 	slab_unlock(slab);
571 
572 	return ret;
573 }
574 
575 /*
576  * Interrupts must be disabled (for the fallback code to work right), typically
577  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
578  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
579  * allocation/ free operation in hardirq context. Therefore nothing can
580  * interrupt the operation.
581  */
582 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
583 		void *freelist_old, unsigned long counters_old,
584 		void *freelist_new, unsigned long counters_new,
585 		const char *n)
586 {
587 	bool ret;
588 
589 	if (USE_LOCKLESS_FAST_PATH())
590 		lockdep_assert_irqs_disabled();
591 
592 	if (s->flags & __CMPXCHG_DOUBLE) {
593 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
594 				            freelist_new, counters_new);
595 	} else {
596 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
597 				            freelist_new, counters_new);
598 	}
599 	if (likely(ret))
600 		return true;
601 
602 	cpu_relax();
603 	stat(s, CMPXCHG_DOUBLE_FAIL);
604 
605 #ifdef SLUB_DEBUG_CMPXCHG
606 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
607 #endif
608 
609 	return false;
610 }
611 
612 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
613 		void *freelist_old, unsigned long counters_old,
614 		void *freelist_new, unsigned long counters_new,
615 		const char *n)
616 {
617 	bool ret;
618 
619 	if (s->flags & __CMPXCHG_DOUBLE) {
620 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
621 				            freelist_new, counters_new);
622 	} else {
623 		unsigned long flags;
624 
625 		local_irq_save(flags);
626 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
627 				            freelist_new, counters_new);
628 		local_irq_restore(flags);
629 	}
630 	if (likely(ret))
631 		return true;
632 
633 	cpu_relax();
634 	stat(s, CMPXCHG_DOUBLE_FAIL);
635 
636 #ifdef SLUB_DEBUG_CMPXCHG
637 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
638 #endif
639 
640 	return false;
641 }
642 
643 #ifdef CONFIG_SLUB_DEBUG
644 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
645 static DEFINE_SPINLOCK(object_map_lock);
646 
647 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
648 		       struct slab *slab)
649 {
650 	void *addr = slab_address(slab);
651 	void *p;
652 
653 	bitmap_zero(obj_map, slab->objects);
654 
655 	for (p = slab->freelist; p; p = get_freepointer(s, p))
656 		set_bit(__obj_to_index(s, addr, p), obj_map);
657 }
658 
659 #if IS_ENABLED(CONFIG_KUNIT)
660 static bool slab_add_kunit_errors(void)
661 {
662 	struct kunit_resource *resource;
663 
664 	if (!kunit_get_current_test())
665 		return false;
666 
667 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
668 	if (!resource)
669 		return false;
670 
671 	(*(int *)resource->data)++;
672 	kunit_put_resource(resource);
673 	return true;
674 }
675 #else
676 static inline bool slab_add_kunit_errors(void) { return false; }
677 #endif
678 
679 static inline unsigned int size_from_object(struct kmem_cache *s)
680 {
681 	if (s->flags & SLAB_RED_ZONE)
682 		return s->size - s->red_left_pad;
683 
684 	return s->size;
685 }
686 
687 static inline void *restore_red_left(struct kmem_cache *s, void *p)
688 {
689 	if (s->flags & SLAB_RED_ZONE)
690 		p -= s->red_left_pad;
691 
692 	return p;
693 }
694 
695 /*
696  * Debug settings:
697  */
698 #if defined(CONFIG_SLUB_DEBUG_ON)
699 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
700 #else
701 static slab_flags_t slub_debug;
702 #endif
703 
704 static char *slub_debug_string;
705 static int disable_higher_order_debug;
706 
707 /*
708  * slub is about to manipulate internal object metadata.  This memory lies
709  * outside the range of the allocated object, so accessing it would normally
710  * be reported by kasan as a bounds error.  metadata_access_enable() is used
711  * to tell kasan that these accesses are OK.
712  */
713 static inline void metadata_access_enable(void)
714 {
715 	kasan_disable_current();
716 }
717 
718 static inline void metadata_access_disable(void)
719 {
720 	kasan_enable_current();
721 }
722 
723 /*
724  * Object debugging
725  */
726 
727 /* Verify that a pointer has an address that is valid within a slab page */
728 static inline int check_valid_pointer(struct kmem_cache *s,
729 				struct slab *slab, void *object)
730 {
731 	void *base;
732 
733 	if (!object)
734 		return 1;
735 
736 	base = slab_address(slab);
737 	object = kasan_reset_tag(object);
738 	object = restore_red_left(s, object);
739 	if (object < base || object >= base + slab->objects * s->size ||
740 		(object - base) % s->size) {
741 		return 0;
742 	}
743 
744 	return 1;
745 }
746 
747 static void print_section(char *level, char *text, u8 *addr,
748 			  unsigned int length)
749 {
750 	metadata_access_enable();
751 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
752 			16, 1, kasan_reset_tag((void *)addr), length, 1);
753 	metadata_access_disable();
754 }
755 
756 /*
757  * See comment in calculate_sizes().
758  */
759 static inline bool freeptr_outside_object(struct kmem_cache *s)
760 {
761 	return s->offset >= s->inuse;
762 }
763 
764 /*
765  * Return offset of the end of info block which is inuse + free pointer if
766  * not overlapping with object.
767  */
768 static inline unsigned int get_info_end(struct kmem_cache *s)
769 {
770 	if (freeptr_outside_object(s))
771 		return s->inuse + sizeof(void *);
772 	else
773 		return s->inuse;
774 }
775 
776 static struct track *get_track(struct kmem_cache *s, void *object,
777 	enum track_item alloc)
778 {
779 	struct track *p;
780 
781 	p = object + get_info_end(s);
782 
783 	return kasan_reset_tag(p + alloc);
784 }
785 
786 #ifdef CONFIG_STACKDEPOT
787 static noinline depot_stack_handle_t set_track_prepare(void)
788 {
789 	depot_stack_handle_t handle;
790 	unsigned long entries[TRACK_ADDRS_COUNT];
791 	unsigned int nr_entries;
792 
793 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
794 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
795 
796 	return handle;
797 }
798 #else
799 static inline depot_stack_handle_t set_track_prepare(void)
800 {
801 	return 0;
802 }
803 #endif
804 
805 static void set_track_update(struct kmem_cache *s, void *object,
806 			     enum track_item alloc, unsigned long addr,
807 			     depot_stack_handle_t handle)
808 {
809 	struct track *p = get_track(s, object, alloc);
810 
811 #ifdef CONFIG_STACKDEPOT
812 	p->handle = handle;
813 #endif
814 	p->addr = addr;
815 	p->cpu = smp_processor_id();
816 	p->pid = current->pid;
817 	p->when = jiffies;
818 }
819 
820 static __always_inline void set_track(struct kmem_cache *s, void *object,
821 				      enum track_item alloc, unsigned long addr)
822 {
823 	depot_stack_handle_t handle = set_track_prepare();
824 
825 	set_track_update(s, object, alloc, addr, handle);
826 }
827 
828 static void init_tracking(struct kmem_cache *s, void *object)
829 {
830 	struct track *p;
831 
832 	if (!(s->flags & SLAB_STORE_USER))
833 		return;
834 
835 	p = get_track(s, object, TRACK_ALLOC);
836 	memset(p, 0, 2*sizeof(struct track));
837 }
838 
839 static void print_track(const char *s, struct track *t, unsigned long pr_time)
840 {
841 	depot_stack_handle_t handle __maybe_unused;
842 
843 	if (!t->addr)
844 		return;
845 
846 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
847 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
848 #ifdef CONFIG_STACKDEPOT
849 	handle = READ_ONCE(t->handle);
850 	if (handle)
851 		stack_depot_print(handle);
852 	else
853 		pr_err("object allocation/free stack trace missing\n");
854 #endif
855 }
856 
857 void print_tracking(struct kmem_cache *s, void *object)
858 {
859 	unsigned long pr_time = jiffies;
860 	if (!(s->flags & SLAB_STORE_USER))
861 		return;
862 
863 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
864 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
865 }
866 
867 static void print_slab_info(const struct slab *slab)
868 {
869 	struct folio *folio = (struct folio *)slab_folio(slab);
870 
871 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
872 	       slab, slab->objects, slab->inuse, slab->freelist,
873 	       folio_flags(folio, 0));
874 }
875 
876 /*
877  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
878  * family will round up the real request size to these fixed ones, so
879  * there could be an extra area than what is requested. Save the original
880  * request size in the meta data area, for better debug and sanity check.
881  */
882 static inline void set_orig_size(struct kmem_cache *s,
883 				void *object, unsigned int orig_size)
884 {
885 	void *p = kasan_reset_tag(object);
886 
887 	if (!slub_debug_orig_size(s))
888 		return;
889 
890 #ifdef CONFIG_KASAN_GENERIC
891 	/*
892 	 * KASAN could save its free meta data in object's data area at
893 	 * offset 0, if the size is larger than 'orig_size', it will
894 	 * overlap the data redzone in [orig_size+1, object_size], and
895 	 * the check should be skipped.
896 	 */
897 	if (kasan_metadata_size(s, true) > orig_size)
898 		orig_size = s->object_size;
899 #endif
900 
901 	p += get_info_end(s);
902 	p += sizeof(struct track) * 2;
903 
904 	*(unsigned int *)p = orig_size;
905 }
906 
907 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
908 {
909 	void *p = kasan_reset_tag(object);
910 
911 	if (!slub_debug_orig_size(s))
912 		return s->object_size;
913 
914 	p += get_info_end(s);
915 	p += sizeof(struct track) * 2;
916 
917 	return *(unsigned int *)p;
918 }
919 
920 void skip_orig_size_check(struct kmem_cache *s, const void *object)
921 {
922 	set_orig_size(s, (void *)object, s->object_size);
923 }
924 
925 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
926 {
927 	struct va_format vaf;
928 	va_list args;
929 
930 	va_start(args, fmt);
931 	vaf.fmt = fmt;
932 	vaf.va = &args;
933 	pr_err("=============================================================================\n");
934 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
935 	pr_err("-----------------------------------------------------------------------------\n\n");
936 	va_end(args);
937 }
938 
939 __printf(2, 3)
940 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
941 {
942 	struct va_format vaf;
943 	va_list args;
944 
945 	if (slab_add_kunit_errors())
946 		return;
947 
948 	va_start(args, fmt);
949 	vaf.fmt = fmt;
950 	vaf.va = &args;
951 	pr_err("FIX %s: %pV\n", s->name, &vaf);
952 	va_end(args);
953 }
954 
955 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
956 {
957 	unsigned int off;	/* Offset of last byte */
958 	u8 *addr = slab_address(slab);
959 
960 	print_tracking(s, p);
961 
962 	print_slab_info(slab);
963 
964 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
965 	       p, p - addr, get_freepointer(s, p));
966 
967 	if (s->flags & SLAB_RED_ZONE)
968 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
969 			      s->red_left_pad);
970 	else if (p > addr + 16)
971 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
972 
973 	print_section(KERN_ERR,         "Object   ", p,
974 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
975 	if (s->flags & SLAB_RED_ZONE)
976 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
977 			s->inuse - s->object_size);
978 
979 	off = get_info_end(s);
980 
981 	if (s->flags & SLAB_STORE_USER)
982 		off += 2 * sizeof(struct track);
983 
984 	if (slub_debug_orig_size(s))
985 		off += sizeof(unsigned int);
986 
987 	off += kasan_metadata_size(s, false);
988 
989 	if (off != size_from_object(s))
990 		/* Beginning of the filler is the free pointer */
991 		print_section(KERN_ERR, "Padding  ", p + off,
992 			      size_from_object(s) - off);
993 
994 	dump_stack();
995 }
996 
997 static void object_err(struct kmem_cache *s, struct slab *slab,
998 			u8 *object, char *reason)
999 {
1000 	if (slab_add_kunit_errors())
1001 		return;
1002 
1003 	slab_bug(s, "%s", reason);
1004 	print_trailer(s, slab, object);
1005 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1006 }
1007 
1008 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1009 			       void **freelist, void *nextfree)
1010 {
1011 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1012 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1013 		object_err(s, slab, *freelist, "Freechain corrupt");
1014 		*freelist = NULL;
1015 		slab_fix(s, "Isolate corrupted freechain");
1016 		return true;
1017 	}
1018 
1019 	return false;
1020 }
1021 
1022 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1023 			const char *fmt, ...)
1024 {
1025 	va_list args;
1026 	char buf[100];
1027 
1028 	if (slab_add_kunit_errors())
1029 		return;
1030 
1031 	va_start(args, fmt);
1032 	vsnprintf(buf, sizeof(buf), fmt, args);
1033 	va_end(args);
1034 	slab_bug(s, "%s", buf);
1035 	print_slab_info(slab);
1036 	dump_stack();
1037 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1038 }
1039 
1040 static void init_object(struct kmem_cache *s, void *object, u8 val)
1041 {
1042 	u8 *p = kasan_reset_tag(object);
1043 	unsigned int poison_size = s->object_size;
1044 
1045 	if (s->flags & SLAB_RED_ZONE) {
1046 		memset(p - s->red_left_pad, val, s->red_left_pad);
1047 
1048 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1049 			/*
1050 			 * Redzone the extra allocated space by kmalloc than
1051 			 * requested, and the poison size will be limited to
1052 			 * the original request size accordingly.
1053 			 */
1054 			poison_size = get_orig_size(s, object);
1055 		}
1056 	}
1057 
1058 	if (s->flags & __OBJECT_POISON) {
1059 		memset(p, POISON_FREE, poison_size - 1);
1060 		p[poison_size - 1] = POISON_END;
1061 	}
1062 
1063 	if (s->flags & SLAB_RED_ZONE)
1064 		memset(p + poison_size, val, s->inuse - poison_size);
1065 }
1066 
1067 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1068 						void *from, void *to)
1069 {
1070 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1071 	memset(from, data, to - from);
1072 }
1073 
1074 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1075 			u8 *object, char *what,
1076 			u8 *start, unsigned int value, unsigned int bytes)
1077 {
1078 	u8 *fault;
1079 	u8 *end;
1080 	u8 *addr = slab_address(slab);
1081 
1082 	metadata_access_enable();
1083 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1084 	metadata_access_disable();
1085 	if (!fault)
1086 		return 1;
1087 
1088 	end = start + bytes;
1089 	while (end > fault && end[-1] == value)
1090 		end--;
1091 
1092 	if (slab_add_kunit_errors())
1093 		goto skip_bug_print;
1094 
1095 	slab_bug(s, "%s overwritten", what);
1096 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1097 					fault, end - 1, fault - addr,
1098 					fault[0], value);
1099 	print_trailer(s, slab, object);
1100 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1101 
1102 skip_bug_print:
1103 	restore_bytes(s, what, value, fault, end);
1104 	return 0;
1105 }
1106 
1107 /*
1108  * Object layout:
1109  *
1110  * object address
1111  * 	Bytes of the object to be managed.
1112  * 	If the freepointer may overlay the object then the free
1113  *	pointer is at the middle of the object.
1114  *
1115  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1116  * 	0xa5 (POISON_END)
1117  *
1118  * object + s->object_size
1119  * 	Padding to reach word boundary. This is also used for Redzoning.
1120  * 	Padding is extended by another word if Redzoning is enabled and
1121  * 	object_size == inuse.
1122  *
1123  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1124  * 	0xcc (RED_ACTIVE) for objects in use.
1125  *
1126  * object + s->inuse
1127  * 	Meta data starts here.
1128  *
1129  * 	A. Free pointer (if we cannot overwrite object on free)
1130  * 	B. Tracking data for SLAB_STORE_USER
1131  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1132  *	D. Padding to reach required alignment boundary or at minimum
1133  * 		one word if debugging is on to be able to detect writes
1134  * 		before the word boundary.
1135  *
1136  *	Padding is done using 0x5a (POISON_INUSE)
1137  *
1138  * object + s->size
1139  * 	Nothing is used beyond s->size.
1140  *
1141  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1142  * ignored. And therefore no slab options that rely on these boundaries
1143  * may be used with merged slabcaches.
1144  */
1145 
1146 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1147 {
1148 	unsigned long off = get_info_end(s);	/* The end of info */
1149 
1150 	if (s->flags & SLAB_STORE_USER) {
1151 		/* We also have user information there */
1152 		off += 2 * sizeof(struct track);
1153 
1154 		if (s->flags & SLAB_KMALLOC)
1155 			off += sizeof(unsigned int);
1156 	}
1157 
1158 	off += kasan_metadata_size(s, false);
1159 
1160 	if (size_from_object(s) == off)
1161 		return 1;
1162 
1163 	return check_bytes_and_report(s, slab, p, "Object padding",
1164 			p + off, POISON_INUSE, size_from_object(s) - off);
1165 }
1166 
1167 /* Check the pad bytes at the end of a slab page */
1168 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1169 {
1170 	u8 *start;
1171 	u8 *fault;
1172 	u8 *end;
1173 	u8 *pad;
1174 	int length;
1175 	int remainder;
1176 
1177 	if (!(s->flags & SLAB_POISON))
1178 		return;
1179 
1180 	start = slab_address(slab);
1181 	length = slab_size(slab);
1182 	end = start + length;
1183 	remainder = length % s->size;
1184 	if (!remainder)
1185 		return;
1186 
1187 	pad = end - remainder;
1188 	metadata_access_enable();
1189 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1190 	metadata_access_disable();
1191 	if (!fault)
1192 		return;
1193 	while (end > fault && end[-1] == POISON_INUSE)
1194 		end--;
1195 
1196 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1197 			fault, end - 1, fault - start);
1198 	print_section(KERN_ERR, "Padding ", pad, remainder);
1199 
1200 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1201 }
1202 
1203 static int check_object(struct kmem_cache *s, struct slab *slab,
1204 					void *object, u8 val)
1205 {
1206 	u8 *p = object;
1207 	u8 *endobject = object + s->object_size;
1208 	unsigned int orig_size;
1209 
1210 	if (s->flags & SLAB_RED_ZONE) {
1211 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1212 			object - s->red_left_pad, val, s->red_left_pad))
1213 			return 0;
1214 
1215 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1216 			endobject, val, s->inuse - s->object_size))
1217 			return 0;
1218 
1219 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1220 			orig_size = get_orig_size(s, object);
1221 
1222 			if (s->object_size > orig_size  &&
1223 				!check_bytes_and_report(s, slab, object,
1224 					"kmalloc Redzone", p + orig_size,
1225 					val, s->object_size - orig_size)) {
1226 				return 0;
1227 			}
1228 		}
1229 	} else {
1230 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1231 			check_bytes_and_report(s, slab, p, "Alignment padding",
1232 				endobject, POISON_INUSE,
1233 				s->inuse - s->object_size);
1234 		}
1235 	}
1236 
1237 	if (s->flags & SLAB_POISON) {
1238 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1239 			(!check_bytes_and_report(s, slab, p, "Poison", p,
1240 					POISON_FREE, s->object_size - 1) ||
1241 			 !check_bytes_and_report(s, slab, p, "End Poison",
1242 				p + s->object_size - 1, POISON_END, 1)))
1243 			return 0;
1244 		/*
1245 		 * check_pad_bytes cleans up on its own.
1246 		 */
1247 		check_pad_bytes(s, slab, p);
1248 	}
1249 
1250 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1251 		/*
1252 		 * Object and freepointer overlap. Cannot check
1253 		 * freepointer while object is allocated.
1254 		 */
1255 		return 1;
1256 
1257 	/* Check free pointer validity */
1258 	if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1259 		object_err(s, slab, p, "Freepointer corrupt");
1260 		/*
1261 		 * No choice but to zap it and thus lose the remainder
1262 		 * of the free objects in this slab. May cause
1263 		 * another error because the object count is now wrong.
1264 		 */
1265 		set_freepointer(s, p, NULL);
1266 		return 0;
1267 	}
1268 	return 1;
1269 }
1270 
1271 static int check_slab(struct kmem_cache *s, struct slab *slab)
1272 {
1273 	int maxobj;
1274 
1275 	if (!folio_test_slab(slab_folio(slab))) {
1276 		slab_err(s, slab, "Not a valid slab page");
1277 		return 0;
1278 	}
1279 
1280 	maxobj = order_objects(slab_order(slab), s->size);
1281 	if (slab->objects > maxobj) {
1282 		slab_err(s, slab, "objects %u > max %u",
1283 			slab->objects, maxobj);
1284 		return 0;
1285 	}
1286 	if (slab->inuse > slab->objects) {
1287 		slab_err(s, slab, "inuse %u > max %u",
1288 			slab->inuse, slab->objects);
1289 		return 0;
1290 	}
1291 	/* Slab_pad_check fixes things up after itself */
1292 	slab_pad_check(s, slab);
1293 	return 1;
1294 }
1295 
1296 /*
1297  * Determine if a certain object in a slab is on the freelist. Must hold the
1298  * slab lock to guarantee that the chains are in a consistent state.
1299  */
1300 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1301 {
1302 	int nr = 0;
1303 	void *fp;
1304 	void *object = NULL;
1305 	int max_objects;
1306 
1307 	fp = slab->freelist;
1308 	while (fp && nr <= slab->objects) {
1309 		if (fp == search)
1310 			return 1;
1311 		if (!check_valid_pointer(s, slab, fp)) {
1312 			if (object) {
1313 				object_err(s, slab, object,
1314 					"Freechain corrupt");
1315 				set_freepointer(s, object, NULL);
1316 			} else {
1317 				slab_err(s, slab, "Freepointer corrupt");
1318 				slab->freelist = NULL;
1319 				slab->inuse = slab->objects;
1320 				slab_fix(s, "Freelist cleared");
1321 				return 0;
1322 			}
1323 			break;
1324 		}
1325 		object = fp;
1326 		fp = get_freepointer(s, object);
1327 		nr++;
1328 	}
1329 
1330 	max_objects = order_objects(slab_order(slab), s->size);
1331 	if (max_objects > MAX_OBJS_PER_PAGE)
1332 		max_objects = MAX_OBJS_PER_PAGE;
1333 
1334 	if (slab->objects != max_objects) {
1335 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1336 			 slab->objects, max_objects);
1337 		slab->objects = max_objects;
1338 		slab_fix(s, "Number of objects adjusted");
1339 	}
1340 	if (slab->inuse != slab->objects - nr) {
1341 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1342 			 slab->inuse, slab->objects - nr);
1343 		slab->inuse = slab->objects - nr;
1344 		slab_fix(s, "Object count adjusted");
1345 	}
1346 	return search == NULL;
1347 }
1348 
1349 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1350 								int alloc)
1351 {
1352 	if (s->flags & SLAB_TRACE) {
1353 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1354 			s->name,
1355 			alloc ? "alloc" : "free",
1356 			object, slab->inuse,
1357 			slab->freelist);
1358 
1359 		if (!alloc)
1360 			print_section(KERN_INFO, "Object ", (void *)object,
1361 					s->object_size);
1362 
1363 		dump_stack();
1364 	}
1365 }
1366 
1367 /*
1368  * Tracking of fully allocated slabs for debugging purposes.
1369  */
1370 static void add_full(struct kmem_cache *s,
1371 	struct kmem_cache_node *n, struct slab *slab)
1372 {
1373 	if (!(s->flags & SLAB_STORE_USER))
1374 		return;
1375 
1376 	lockdep_assert_held(&n->list_lock);
1377 	list_add(&slab->slab_list, &n->full);
1378 }
1379 
1380 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1381 {
1382 	if (!(s->flags & SLAB_STORE_USER))
1383 		return;
1384 
1385 	lockdep_assert_held(&n->list_lock);
1386 	list_del(&slab->slab_list);
1387 }
1388 
1389 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1390 {
1391 	return atomic_long_read(&n->nr_slabs);
1392 }
1393 
1394 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1395 {
1396 	struct kmem_cache_node *n = get_node(s, node);
1397 
1398 	/*
1399 	 * May be called early in order to allocate a slab for the
1400 	 * kmem_cache_node structure. Solve the chicken-egg
1401 	 * dilemma by deferring the increment of the count during
1402 	 * bootstrap (see early_kmem_cache_node_alloc).
1403 	 */
1404 	if (likely(n)) {
1405 		atomic_long_inc(&n->nr_slabs);
1406 		atomic_long_add(objects, &n->total_objects);
1407 	}
1408 }
1409 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1410 {
1411 	struct kmem_cache_node *n = get_node(s, node);
1412 
1413 	atomic_long_dec(&n->nr_slabs);
1414 	atomic_long_sub(objects, &n->total_objects);
1415 }
1416 
1417 /* Object debug checks for alloc/free paths */
1418 static void setup_object_debug(struct kmem_cache *s, void *object)
1419 {
1420 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1421 		return;
1422 
1423 	init_object(s, object, SLUB_RED_INACTIVE);
1424 	init_tracking(s, object);
1425 }
1426 
1427 static
1428 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1429 {
1430 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1431 		return;
1432 
1433 	metadata_access_enable();
1434 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1435 	metadata_access_disable();
1436 }
1437 
1438 static inline int alloc_consistency_checks(struct kmem_cache *s,
1439 					struct slab *slab, void *object)
1440 {
1441 	if (!check_slab(s, slab))
1442 		return 0;
1443 
1444 	if (!check_valid_pointer(s, slab, object)) {
1445 		object_err(s, slab, object, "Freelist Pointer check fails");
1446 		return 0;
1447 	}
1448 
1449 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1450 		return 0;
1451 
1452 	return 1;
1453 }
1454 
1455 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1456 			struct slab *slab, void *object, int orig_size)
1457 {
1458 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1459 		if (!alloc_consistency_checks(s, slab, object))
1460 			goto bad;
1461 	}
1462 
1463 	/* Success. Perform special debug activities for allocs */
1464 	trace(s, slab, object, 1);
1465 	set_orig_size(s, object, orig_size);
1466 	init_object(s, object, SLUB_RED_ACTIVE);
1467 	return true;
1468 
1469 bad:
1470 	if (folio_test_slab(slab_folio(slab))) {
1471 		/*
1472 		 * If this is a slab page then lets do the best we can
1473 		 * to avoid issues in the future. Marking all objects
1474 		 * as used avoids touching the remaining objects.
1475 		 */
1476 		slab_fix(s, "Marking all objects used");
1477 		slab->inuse = slab->objects;
1478 		slab->freelist = NULL;
1479 	}
1480 	return false;
1481 }
1482 
1483 static inline int free_consistency_checks(struct kmem_cache *s,
1484 		struct slab *slab, void *object, unsigned long addr)
1485 {
1486 	if (!check_valid_pointer(s, slab, object)) {
1487 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1488 		return 0;
1489 	}
1490 
1491 	if (on_freelist(s, slab, object)) {
1492 		object_err(s, slab, object, "Object already free");
1493 		return 0;
1494 	}
1495 
1496 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1497 		return 0;
1498 
1499 	if (unlikely(s != slab->slab_cache)) {
1500 		if (!folio_test_slab(slab_folio(slab))) {
1501 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1502 				 object);
1503 		} else if (!slab->slab_cache) {
1504 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1505 			       object);
1506 			dump_stack();
1507 		} else
1508 			object_err(s, slab, object,
1509 					"page slab pointer corrupt.");
1510 		return 0;
1511 	}
1512 	return 1;
1513 }
1514 
1515 /*
1516  * Parse a block of slub_debug options. Blocks are delimited by ';'
1517  *
1518  * @str:    start of block
1519  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1520  * @slabs:  return start of list of slabs, or NULL when there's no list
1521  * @init:   assume this is initial parsing and not per-kmem-create parsing
1522  *
1523  * returns the start of next block if there's any, or NULL
1524  */
1525 static char *
1526 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1527 {
1528 	bool higher_order_disable = false;
1529 
1530 	/* Skip any completely empty blocks */
1531 	while (*str && *str == ';')
1532 		str++;
1533 
1534 	if (*str == ',') {
1535 		/*
1536 		 * No options but restriction on slabs. This means full
1537 		 * debugging for slabs matching a pattern.
1538 		 */
1539 		*flags = DEBUG_DEFAULT_FLAGS;
1540 		goto check_slabs;
1541 	}
1542 	*flags = 0;
1543 
1544 	/* Determine which debug features should be switched on */
1545 	for (; *str && *str != ',' && *str != ';'; str++) {
1546 		switch (tolower(*str)) {
1547 		case '-':
1548 			*flags = 0;
1549 			break;
1550 		case 'f':
1551 			*flags |= SLAB_CONSISTENCY_CHECKS;
1552 			break;
1553 		case 'z':
1554 			*flags |= SLAB_RED_ZONE;
1555 			break;
1556 		case 'p':
1557 			*flags |= SLAB_POISON;
1558 			break;
1559 		case 'u':
1560 			*flags |= SLAB_STORE_USER;
1561 			break;
1562 		case 't':
1563 			*flags |= SLAB_TRACE;
1564 			break;
1565 		case 'a':
1566 			*flags |= SLAB_FAILSLAB;
1567 			break;
1568 		case 'o':
1569 			/*
1570 			 * Avoid enabling debugging on caches if its minimum
1571 			 * order would increase as a result.
1572 			 */
1573 			higher_order_disable = true;
1574 			break;
1575 		default:
1576 			if (init)
1577 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1578 		}
1579 	}
1580 check_slabs:
1581 	if (*str == ',')
1582 		*slabs = ++str;
1583 	else
1584 		*slabs = NULL;
1585 
1586 	/* Skip over the slab list */
1587 	while (*str && *str != ';')
1588 		str++;
1589 
1590 	/* Skip any completely empty blocks */
1591 	while (*str && *str == ';')
1592 		str++;
1593 
1594 	if (init && higher_order_disable)
1595 		disable_higher_order_debug = 1;
1596 
1597 	if (*str)
1598 		return str;
1599 	else
1600 		return NULL;
1601 }
1602 
1603 static int __init setup_slub_debug(char *str)
1604 {
1605 	slab_flags_t flags;
1606 	slab_flags_t global_flags;
1607 	char *saved_str;
1608 	char *slab_list;
1609 	bool global_slub_debug_changed = false;
1610 	bool slab_list_specified = false;
1611 
1612 	global_flags = DEBUG_DEFAULT_FLAGS;
1613 	if (*str++ != '=' || !*str)
1614 		/*
1615 		 * No options specified. Switch on full debugging.
1616 		 */
1617 		goto out;
1618 
1619 	saved_str = str;
1620 	while (str) {
1621 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1622 
1623 		if (!slab_list) {
1624 			global_flags = flags;
1625 			global_slub_debug_changed = true;
1626 		} else {
1627 			slab_list_specified = true;
1628 			if (flags & SLAB_STORE_USER)
1629 				stack_depot_request_early_init();
1630 		}
1631 	}
1632 
1633 	/*
1634 	 * For backwards compatibility, a single list of flags with list of
1635 	 * slabs means debugging is only changed for those slabs, so the global
1636 	 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1637 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1638 	 * long as there is no option specifying flags without a slab list.
1639 	 */
1640 	if (slab_list_specified) {
1641 		if (!global_slub_debug_changed)
1642 			global_flags = slub_debug;
1643 		slub_debug_string = saved_str;
1644 	}
1645 out:
1646 	slub_debug = global_flags;
1647 	if (slub_debug & SLAB_STORE_USER)
1648 		stack_depot_request_early_init();
1649 	if (slub_debug != 0 || slub_debug_string)
1650 		static_branch_enable(&slub_debug_enabled);
1651 	else
1652 		static_branch_disable(&slub_debug_enabled);
1653 	if ((static_branch_unlikely(&init_on_alloc) ||
1654 	     static_branch_unlikely(&init_on_free)) &&
1655 	    (slub_debug & SLAB_POISON))
1656 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1657 	return 1;
1658 }
1659 
1660 __setup("slub_debug", setup_slub_debug);
1661 
1662 /*
1663  * kmem_cache_flags - apply debugging options to the cache
1664  * @object_size:	the size of an object without meta data
1665  * @flags:		flags to set
1666  * @name:		name of the cache
1667  *
1668  * Debug option(s) are applied to @flags. In addition to the debug
1669  * option(s), if a slab name (or multiple) is specified i.e.
1670  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1671  * then only the select slabs will receive the debug option(s).
1672  */
1673 slab_flags_t kmem_cache_flags(unsigned int object_size,
1674 	slab_flags_t flags, const char *name)
1675 {
1676 	char *iter;
1677 	size_t len;
1678 	char *next_block;
1679 	slab_flags_t block_flags;
1680 	slab_flags_t slub_debug_local = slub_debug;
1681 
1682 	if (flags & SLAB_NO_USER_FLAGS)
1683 		return flags;
1684 
1685 	/*
1686 	 * If the slab cache is for debugging (e.g. kmemleak) then
1687 	 * don't store user (stack trace) information by default,
1688 	 * but let the user enable it via the command line below.
1689 	 */
1690 	if (flags & SLAB_NOLEAKTRACE)
1691 		slub_debug_local &= ~SLAB_STORE_USER;
1692 
1693 	len = strlen(name);
1694 	next_block = slub_debug_string;
1695 	/* Go through all blocks of debug options, see if any matches our slab's name */
1696 	while (next_block) {
1697 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1698 		if (!iter)
1699 			continue;
1700 		/* Found a block that has a slab list, search it */
1701 		while (*iter) {
1702 			char *end, *glob;
1703 			size_t cmplen;
1704 
1705 			end = strchrnul(iter, ',');
1706 			if (next_block && next_block < end)
1707 				end = next_block - 1;
1708 
1709 			glob = strnchr(iter, end - iter, '*');
1710 			if (glob)
1711 				cmplen = glob - iter;
1712 			else
1713 				cmplen = max_t(size_t, len, (end - iter));
1714 
1715 			if (!strncmp(name, iter, cmplen)) {
1716 				flags |= block_flags;
1717 				return flags;
1718 			}
1719 
1720 			if (!*end || *end == ';')
1721 				break;
1722 			iter = end + 1;
1723 		}
1724 	}
1725 
1726 	return flags | slub_debug_local;
1727 }
1728 #else /* !CONFIG_SLUB_DEBUG */
1729 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1730 static inline
1731 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1732 
1733 static inline bool alloc_debug_processing(struct kmem_cache *s,
1734 	struct slab *slab, void *object, int orig_size) { return true; }
1735 
1736 static inline bool free_debug_processing(struct kmem_cache *s,
1737 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1738 	unsigned long addr, depot_stack_handle_t handle) { return true; }
1739 
1740 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1741 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1742 			void *object, u8 val) { return 1; }
1743 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1744 static inline void set_track(struct kmem_cache *s, void *object,
1745 			     enum track_item alloc, unsigned long addr) {}
1746 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1747 					struct slab *slab) {}
1748 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1749 					struct slab *slab) {}
1750 slab_flags_t kmem_cache_flags(unsigned int object_size,
1751 	slab_flags_t flags, const char *name)
1752 {
1753 	return flags;
1754 }
1755 #define slub_debug 0
1756 
1757 #define disable_higher_order_debug 0
1758 
1759 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1760 							{ return 0; }
1761 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1762 							int objects) {}
1763 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1764 							int objects) {}
1765 
1766 #ifndef CONFIG_SLUB_TINY
1767 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1768 			       void **freelist, void *nextfree)
1769 {
1770 	return false;
1771 }
1772 #endif
1773 #endif /* CONFIG_SLUB_DEBUG */
1774 
1775 /*
1776  * Hooks for other subsystems that check memory allocations. In a typical
1777  * production configuration these hooks all should produce no code at all.
1778  */
1779 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1780 						void *x, bool init)
1781 {
1782 	kmemleak_free_recursive(x, s->flags);
1783 	kmsan_slab_free(s, x);
1784 
1785 	debug_check_no_locks_freed(x, s->object_size);
1786 
1787 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1788 		debug_check_no_obj_freed(x, s->object_size);
1789 
1790 	/* Use KCSAN to help debug racy use-after-free. */
1791 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1792 		__kcsan_check_access(x, s->object_size,
1793 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1794 
1795 	/*
1796 	 * As memory initialization might be integrated into KASAN,
1797 	 * kasan_slab_free and initialization memset's must be
1798 	 * kept together to avoid discrepancies in behavior.
1799 	 *
1800 	 * The initialization memset's clear the object and the metadata,
1801 	 * but don't touch the SLAB redzone.
1802 	 */
1803 	if (init) {
1804 		int rsize;
1805 
1806 		if (!kasan_has_integrated_init())
1807 			memset(kasan_reset_tag(x), 0, s->object_size);
1808 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1809 		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1810 		       s->size - s->inuse - rsize);
1811 	}
1812 	/* KASAN might put x into memory quarantine, delaying its reuse. */
1813 	return kasan_slab_free(s, x, init);
1814 }
1815 
1816 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1817 					   void **head, void **tail,
1818 					   int *cnt)
1819 {
1820 
1821 	void *object;
1822 	void *next = *head;
1823 	void *old_tail = *tail ? *tail : *head;
1824 
1825 	if (is_kfence_address(next)) {
1826 		slab_free_hook(s, next, false);
1827 		return true;
1828 	}
1829 
1830 	/* Head and tail of the reconstructed freelist */
1831 	*head = NULL;
1832 	*tail = NULL;
1833 
1834 	do {
1835 		object = next;
1836 		next = get_freepointer(s, object);
1837 
1838 		/* If object's reuse doesn't have to be delayed */
1839 		if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1840 			/* Move object to the new freelist */
1841 			set_freepointer(s, object, *head);
1842 			*head = object;
1843 			if (!*tail)
1844 				*tail = object;
1845 		} else {
1846 			/*
1847 			 * Adjust the reconstructed freelist depth
1848 			 * accordingly if object's reuse is delayed.
1849 			 */
1850 			--(*cnt);
1851 		}
1852 	} while (object != old_tail);
1853 
1854 	if (*head == *tail)
1855 		*tail = NULL;
1856 
1857 	return *head != NULL;
1858 }
1859 
1860 static void *setup_object(struct kmem_cache *s, void *object)
1861 {
1862 	setup_object_debug(s, object);
1863 	object = kasan_init_slab_obj(s, object);
1864 	if (unlikely(s->ctor)) {
1865 		kasan_unpoison_object_data(s, object);
1866 		s->ctor(object);
1867 		kasan_poison_object_data(s, object);
1868 	}
1869 	return object;
1870 }
1871 
1872 /*
1873  * Slab allocation and freeing
1874  */
1875 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1876 		struct kmem_cache_order_objects oo)
1877 {
1878 	struct folio *folio;
1879 	struct slab *slab;
1880 	unsigned int order = oo_order(oo);
1881 
1882 	if (node == NUMA_NO_NODE)
1883 		folio = (struct folio *)alloc_pages(flags, order);
1884 	else
1885 		folio = (struct folio *)__alloc_pages_node(node, flags, order);
1886 
1887 	if (!folio)
1888 		return NULL;
1889 
1890 	slab = folio_slab(folio);
1891 	__folio_set_slab(folio);
1892 	/* Make the flag visible before any changes to folio->mapping */
1893 	smp_wmb();
1894 	if (folio_is_pfmemalloc(folio))
1895 		slab_set_pfmemalloc(slab);
1896 
1897 	return slab;
1898 }
1899 
1900 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1901 /* Pre-initialize the random sequence cache */
1902 static int init_cache_random_seq(struct kmem_cache *s)
1903 {
1904 	unsigned int count = oo_objects(s->oo);
1905 	int err;
1906 
1907 	/* Bailout if already initialised */
1908 	if (s->random_seq)
1909 		return 0;
1910 
1911 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1912 	if (err) {
1913 		pr_err("SLUB: Unable to initialize free list for %s\n",
1914 			s->name);
1915 		return err;
1916 	}
1917 
1918 	/* Transform to an offset on the set of pages */
1919 	if (s->random_seq) {
1920 		unsigned int i;
1921 
1922 		for (i = 0; i < count; i++)
1923 			s->random_seq[i] *= s->size;
1924 	}
1925 	return 0;
1926 }
1927 
1928 /* Initialize each random sequence freelist per cache */
1929 static void __init init_freelist_randomization(void)
1930 {
1931 	struct kmem_cache *s;
1932 
1933 	mutex_lock(&slab_mutex);
1934 
1935 	list_for_each_entry(s, &slab_caches, list)
1936 		init_cache_random_seq(s);
1937 
1938 	mutex_unlock(&slab_mutex);
1939 }
1940 
1941 /* Get the next entry on the pre-computed freelist randomized */
1942 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1943 				unsigned long *pos, void *start,
1944 				unsigned long page_limit,
1945 				unsigned long freelist_count)
1946 {
1947 	unsigned int idx;
1948 
1949 	/*
1950 	 * If the target page allocation failed, the number of objects on the
1951 	 * page might be smaller than the usual size defined by the cache.
1952 	 */
1953 	do {
1954 		idx = s->random_seq[*pos];
1955 		*pos += 1;
1956 		if (*pos >= freelist_count)
1957 			*pos = 0;
1958 	} while (unlikely(idx >= page_limit));
1959 
1960 	return (char *)start + idx;
1961 }
1962 
1963 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1964 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1965 {
1966 	void *start;
1967 	void *cur;
1968 	void *next;
1969 	unsigned long idx, pos, page_limit, freelist_count;
1970 
1971 	if (slab->objects < 2 || !s->random_seq)
1972 		return false;
1973 
1974 	freelist_count = oo_objects(s->oo);
1975 	pos = get_random_u32_below(freelist_count);
1976 
1977 	page_limit = slab->objects * s->size;
1978 	start = fixup_red_left(s, slab_address(slab));
1979 
1980 	/* First entry is used as the base of the freelist */
1981 	cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1982 				freelist_count);
1983 	cur = setup_object(s, cur);
1984 	slab->freelist = cur;
1985 
1986 	for (idx = 1; idx < slab->objects; idx++) {
1987 		next = next_freelist_entry(s, slab, &pos, start, page_limit,
1988 			freelist_count);
1989 		next = setup_object(s, next);
1990 		set_freepointer(s, cur, next);
1991 		cur = next;
1992 	}
1993 	set_freepointer(s, cur, NULL);
1994 
1995 	return true;
1996 }
1997 #else
1998 static inline int init_cache_random_seq(struct kmem_cache *s)
1999 {
2000 	return 0;
2001 }
2002 static inline void init_freelist_randomization(void) { }
2003 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2004 {
2005 	return false;
2006 }
2007 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2008 
2009 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2010 {
2011 	struct slab *slab;
2012 	struct kmem_cache_order_objects oo = s->oo;
2013 	gfp_t alloc_gfp;
2014 	void *start, *p, *next;
2015 	int idx;
2016 	bool shuffle;
2017 
2018 	flags &= gfp_allowed_mask;
2019 
2020 	flags |= s->allocflags;
2021 
2022 	/*
2023 	 * Let the initial higher-order allocation fail under memory pressure
2024 	 * so we fall-back to the minimum order allocation.
2025 	 */
2026 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2027 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2028 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2029 
2030 	slab = alloc_slab_page(alloc_gfp, node, oo);
2031 	if (unlikely(!slab)) {
2032 		oo = s->min;
2033 		alloc_gfp = flags;
2034 		/*
2035 		 * Allocation may have failed due to fragmentation.
2036 		 * Try a lower order alloc if possible
2037 		 */
2038 		slab = alloc_slab_page(alloc_gfp, node, oo);
2039 		if (unlikely(!slab))
2040 			return NULL;
2041 		stat(s, ORDER_FALLBACK);
2042 	}
2043 
2044 	slab->objects = oo_objects(oo);
2045 	slab->inuse = 0;
2046 	slab->frozen = 0;
2047 
2048 	account_slab(slab, oo_order(oo), s, flags);
2049 
2050 	slab->slab_cache = s;
2051 
2052 	kasan_poison_slab(slab);
2053 
2054 	start = slab_address(slab);
2055 
2056 	setup_slab_debug(s, slab, start);
2057 
2058 	shuffle = shuffle_freelist(s, slab);
2059 
2060 	if (!shuffle) {
2061 		start = fixup_red_left(s, start);
2062 		start = setup_object(s, start);
2063 		slab->freelist = start;
2064 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2065 			next = p + s->size;
2066 			next = setup_object(s, next);
2067 			set_freepointer(s, p, next);
2068 			p = next;
2069 		}
2070 		set_freepointer(s, p, NULL);
2071 	}
2072 
2073 	return slab;
2074 }
2075 
2076 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2077 {
2078 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2079 		flags = kmalloc_fix_flags(flags);
2080 
2081 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2082 
2083 	return allocate_slab(s,
2084 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2085 }
2086 
2087 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2088 {
2089 	struct folio *folio = slab_folio(slab);
2090 	int order = folio_order(folio);
2091 	int pages = 1 << order;
2092 
2093 	__slab_clear_pfmemalloc(slab);
2094 	folio->mapping = NULL;
2095 	/* Make the mapping reset visible before clearing the flag */
2096 	smp_wmb();
2097 	__folio_clear_slab(folio);
2098 	mm_account_reclaimed_pages(pages);
2099 	unaccount_slab(slab, order, s);
2100 	__free_pages(&folio->page, order);
2101 }
2102 
2103 static void rcu_free_slab(struct rcu_head *h)
2104 {
2105 	struct slab *slab = container_of(h, struct slab, rcu_head);
2106 
2107 	__free_slab(slab->slab_cache, slab);
2108 }
2109 
2110 static void free_slab(struct kmem_cache *s, struct slab *slab)
2111 {
2112 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2113 		void *p;
2114 
2115 		slab_pad_check(s, slab);
2116 		for_each_object(p, s, slab_address(slab), slab->objects)
2117 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2118 	}
2119 
2120 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2121 		call_rcu(&slab->rcu_head, rcu_free_slab);
2122 	else
2123 		__free_slab(s, slab);
2124 }
2125 
2126 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2127 {
2128 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2129 	free_slab(s, slab);
2130 }
2131 
2132 /*
2133  * Management of partially allocated slabs.
2134  */
2135 static inline void
2136 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2137 {
2138 	n->nr_partial++;
2139 	if (tail == DEACTIVATE_TO_TAIL)
2140 		list_add_tail(&slab->slab_list, &n->partial);
2141 	else
2142 		list_add(&slab->slab_list, &n->partial);
2143 }
2144 
2145 static inline void add_partial(struct kmem_cache_node *n,
2146 				struct slab *slab, int tail)
2147 {
2148 	lockdep_assert_held(&n->list_lock);
2149 	__add_partial(n, slab, tail);
2150 }
2151 
2152 static inline void remove_partial(struct kmem_cache_node *n,
2153 					struct slab *slab)
2154 {
2155 	lockdep_assert_held(&n->list_lock);
2156 	list_del(&slab->slab_list);
2157 	n->nr_partial--;
2158 }
2159 
2160 /*
2161  * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a
2162  * slab from the n->partial list. Remove only a single object from the slab, do
2163  * the alloc_debug_processing() checks and leave the slab on the list, or move
2164  * it to full list if it was the last free object.
2165  */
2166 static void *alloc_single_from_partial(struct kmem_cache *s,
2167 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2168 {
2169 	void *object;
2170 
2171 	lockdep_assert_held(&n->list_lock);
2172 
2173 	object = slab->freelist;
2174 	slab->freelist = get_freepointer(s, object);
2175 	slab->inuse++;
2176 
2177 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2178 		remove_partial(n, slab);
2179 		return NULL;
2180 	}
2181 
2182 	if (slab->inuse == slab->objects) {
2183 		remove_partial(n, slab);
2184 		add_full(s, n, slab);
2185 	}
2186 
2187 	return object;
2188 }
2189 
2190 /*
2191  * Called only for kmem_cache_debug() caches to allocate from a freshly
2192  * allocated slab. Allocate a single object instead of whole freelist
2193  * and put the slab to the partial (or full) list.
2194  */
2195 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2196 					struct slab *slab, int orig_size)
2197 {
2198 	int nid = slab_nid(slab);
2199 	struct kmem_cache_node *n = get_node(s, nid);
2200 	unsigned long flags;
2201 	void *object;
2202 
2203 
2204 	object = slab->freelist;
2205 	slab->freelist = get_freepointer(s, object);
2206 	slab->inuse = 1;
2207 
2208 	if (!alloc_debug_processing(s, slab, object, orig_size))
2209 		/*
2210 		 * It's not really expected that this would fail on a
2211 		 * freshly allocated slab, but a concurrent memory
2212 		 * corruption in theory could cause that.
2213 		 */
2214 		return NULL;
2215 
2216 	spin_lock_irqsave(&n->list_lock, flags);
2217 
2218 	if (slab->inuse == slab->objects)
2219 		add_full(s, n, slab);
2220 	else
2221 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2222 
2223 	inc_slabs_node(s, nid, slab->objects);
2224 	spin_unlock_irqrestore(&n->list_lock, flags);
2225 
2226 	return object;
2227 }
2228 
2229 /*
2230  * Remove slab from the partial list, freeze it and
2231  * return the pointer to the freelist.
2232  *
2233  * Returns a list of objects or NULL if it fails.
2234  */
2235 static inline void *acquire_slab(struct kmem_cache *s,
2236 		struct kmem_cache_node *n, struct slab *slab,
2237 		int mode)
2238 {
2239 	void *freelist;
2240 	unsigned long counters;
2241 	struct slab new;
2242 
2243 	lockdep_assert_held(&n->list_lock);
2244 
2245 	/*
2246 	 * Zap the freelist and set the frozen bit.
2247 	 * The old freelist is the list of objects for the
2248 	 * per cpu allocation list.
2249 	 */
2250 	freelist = slab->freelist;
2251 	counters = slab->counters;
2252 	new.counters = counters;
2253 	if (mode) {
2254 		new.inuse = slab->objects;
2255 		new.freelist = NULL;
2256 	} else {
2257 		new.freelist = freelist;
2258 	}
2259 
2260 	VM_BUG_ON(new.frozen);
2261 	new.frozen = 1;
2262 
2263 	if (!__slab_update_freelist(s, slab,
2264 			freelist, counters,
2265 			new.freelist, new.counters,
2266 			"acquire_slab"))
2267 		return NULL;
2268 
2269 	remove_partial(n, slab);
2270 	WARN_ON(!freelist);
2271 	return freelist;
2272 }
2273 
2274 #ifdef CONFIG_SLUB_CPU_PARTIAL
2275 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2276 #else
2277 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2278 				   int drain) { }
2279 #endif
2280 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2281 
2282 /*
2283  * Try to allocate a partial slab from a specific node.
2284  */
2285 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2286 			      struct partial_context *pc)
2287 {
2288 	struct slab *slab, *slab2;
2289 	void *object = NULL;
2290 	unsigned long flags;
2291 	unsigned int partial_slabs = 0;
2292 
2293 	/*
2294 	 * Racy check. If we mistakenly see no partial slabs then we
2295 	 * just allocate an empty slab. If we mistakenly try to get a
2296 	 * partial slab and there is none available then get_partial()
2297 	 * will return NULL.
2298 	 */
2299 	if (!n || !n->nr_partial)
2300 		return NULL;
2301 
2302 	spin_lock_irqsave(&n->list_lock, flags);
2303 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2304 		void *t;
2305 
2306 		if (!pfmemalloc_match(slab, pc->flags))
2307 			continue;
2308 
2309 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2310 			object = alloc_single_from_partial(s, n, slab,
2311 							pc->orig_size);
2312 			if (object)
2313 				break;
2314 			continue;
2315 		}
2316 
2317 		t = acquire_slab(s, n, slab, object == NULL);
2318 		if (!t)
2319 			break;
2320 
2321 		if (!object) {
2322 			*pc->slab = slab;
2323 			stat(s, ALLOC_FROM_PARTIAL);
2324 			object = t;
2325 		} else {
2326 			put_cpu_partial(s, slab, 0);
2327 			stat(s, CPU_PARTIAL_NODE);
2328 			partial_slabs++;
2329 		}
2330 #ifdef CONFIG_SLUB_CPU_PARTIAL
2331 		if (!kmem_cache_has_cpu_partial(s)
2332 			|| partial_slabs > s->cpu_partial_slabs / 2)
2333 			break;
2334 #else
2335 		break;
2336 #endif
2337 
2338 	}
2339 	spin_unlock_irqrestore(&n->list_lock, flags);
2340 	return object;
2341 }
2342 
2343 /*
2344  * Get a slab from somewhere. Search in increasing NUMA distances.
2345  */
2346 static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc)
2347 {
2348 #ifdef CONFIG_NUMA
2349 	struct zonelist *zonelist;
2350 	struct zoneref *z;
2351 	struct zone *zone;
2352 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2353 	void *object;
2354 	unsigned int cpuset_mems_cookie;
2355 
2356 	/*
2357 	 * The defrag ratio allows a configuration of the tradeoffs between
2358 	 * inter node defragmentation and node local allocations. A lower
2359 	 * defrag_ratio increases the tendency to do local allocations
2360 	 * instead of attempting to obtain partial slabs from other nodes.
2361 	 *
2362 	 * If the defrag_ratio is set to 0 then kmalloc() always
2363 	 * returns node local objects. If the ratio is higher then kmalloc()
2364 	 * may return off node objects because partial slabs are obtained
2365 	 * from other nodes and filled up.
2366 	 *
2367 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2368 	 * (which makes defrag_ratio = 1000) then every (well almost)
2369 	 * allocation will first attempt to defrag slab caches on other nodes.
2370 	 * This means scanning over all nodes to look for partial slabs which
2371 	 * may be expensive if we do it every time we are trying to find a slab
2372 	 * with available objects.
2373 	 */
2374 	if (!s->remote_node_defrag_ratio ||
2375 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2376 		return NULL;
2377 
2378 	do {
2379 		cpuset_mems_cookie = read_mems_allowed_begin();
2380 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2381 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2382 			struct kmem_cache_node *n;
2383 
2384 			n = get_node(s, zone_to_nid(zone));
2385 
2386 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2387 					n->nr_partial > s->min_partial) {
2388 				object = get_partial_node(s, n, pc);
2389 				if (object) {
2390 					/*
2391 					 * Don't check read_mems_allowed_retry()
2392 					 * here - if mems_allowed was updated in
2393 					 * parallel, that was a harmless race
2394 					 * between allocation and the cpuset
2395 					 * update
2396 					 */
2397 					return object;
2398 				}
2399 			}
2400 		}
2401 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2402 #endif	/* CONFIG_NUMA */
2403 	return NULL;
2404 }
2405 
2406 /*
2407  * Get a partial slab, lock it and return it.
2408  */
2409 static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc)
2410 {
2411 	void *object;
2412 	int searchnode = node;
2413 
2414 	if (node == NUMA_NO_NODE)
2415 		searchnode = numa_mem_id();
2416 
2417 	object = get_partial_node(s, get_node(s, searchnode), pc);
2418 	if (object || node != NUMA_NO_NODE)
2419 		return object;
2420 
2421 	return get_any_partial(s, pc);
2422 }
2423 
2424 #ifndef CONFIG_SLUB_TINY
2425 
2426 #ifdef CONFIG_PREEMPTION
2427 /*
2428  * Calculate the next globally unique transaction for disambiguation
2429  * during cmpxchg. The transactions start with the cpu number and are then
2430  * incremented by CONFIG_NR_CPUS.
2431  */
2432 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2433 #else
2434 /*
2435  * No preemption supported therefore also no need to check for
2436  * different cpus.
2437  */
2438 #define TID_STEP 1
2439 #endif /* CONFIG_PREEMPTION */
2440 
2441 static inline unsigned long next_tid(unsigned long tid)
2442 {
2443 	return tid + TID_STEP;
2444 }
2445 
2446 #ifdef SLUB_DEBUG_CMPXCHG
2447 static inline unsigned int tid_to_cpu(unsigned long tid)
2448 {
2449 	return tid % TID_STEP;
2450 }
2451 
2452 static inline unsigned long tid_to_event(unsigned long tid)
2453 {
2454 	return tid / TID_STEP;
2455 }
2456 #endif
2457 
2458 static inline unsigned int init_tid(int cpu)
2459 {
2460 	return cpu;
2461 }
2462 
2463 static inline void note_cmpxchg_failure(const char *n,
2464 		const struct kmem_cache *s, unsigned long tid)
2465 {
2466 #ifdef SLUB_DEBUG_CMPXCHG
2467 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2468 
2469 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2470 
2471 #ifdef CONFIG_PREEMPTION
2472 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2473 		pr_warn("due to cpu change %d -> %d\n",
2474 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2475 	else
2476 #endif
2477 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2478 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2479 			tid_to_event(tid), tid_to_event(actual_tid));
2480 	else
2481 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2482 			actual_tid, tid, next_tid(tid));
2483 #endif
2484 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2485 }
2486 
2487 static void init_kmem_cache_cpus(struct kmem_cache *s)
2488 {
2489 	int cpu;
2490 	struct kmem_cache_cpu *c;
2491 
2492 	for_each_possible_cpu(cpu) {
2493 		c = per_cpu_ptr(s->cpu_slab, cpu);
2494 		local_lock_init(&c->lock);
2495 		c->tid = init_tid(cpu);
2496 	}
2497 }
2498 
2499 /*
2500  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2501  * unfreezes the slabs and puts it on the proper list.
2502  * Assumes the slab has been already safely taken away from kmem_cache_cpu
2503  * by the caller.
2504  */
2505 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2506 			    void *freelist)
2507 {
2508 	enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST };
2509 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2510 	int free_delta = 0;
2511 	enum slab_modes mode = M_NONE;
2512 	void *nextfree, *freelist_iter, *freelist_tail;
2513 	int tail = DEACTIVATE_TO_HEAD;
2514 	unsigned long flags = 0;
2515 	struct slab new;
2516 	struct slab old;
2517 
2518 	if (slab->freelist) {
2519 		stat(s, DEACTIVATE_REMOTE_FREES);
2520 		tail = DEACTIVATE_TO_TAIL;
2521 	}
2522 
2523 	/*
2524 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2525 	 * remember the last object in freelist_tail for later splicing.
2526 	 */
2527 	freelist_tail = NULL;
2528 	freelist_iter = freelist;
2529 	while (freelist_iter) {
2530 		nextfree = get_freepointer(s, freelist_iter);
2531 
2532 		/*
2533 		 * If 'nextfree' is invalid, it is possible that the object at
2534 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2535 		 * starting at 'freelist_iter' by skipping them.
2536 		 */
2537 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2538 			break;
2539 
2540 		freelist_tail = freelist_iter;
2541 		free_delta++;
2542 
2543 		freelist_iter = nextfree;
2544 	}
2545 
2546 	/*
2547 	 * Stage two: Unfreeze the slab while splicing the per-cpu
2548 	 * freelist to the head of slab's freelist.
2549 	 *
2550 	 * Ensure that the slab is unfrozen while the list presence
2551 	 * reflects the actual number of objects during unfreeze.
2552 	 *
2553 	 * We first perform cmpxchg holding lock and insert to list
2554 	 * when it succeed. If there is mismatch then the slab is not
2555 	 * unfrozen and number of objects in the slab may have changed.
2556 	 * Then release lock and retry cmpxchg again.
2557 	 */
2558 redo:
2559 
2560 	old.freelist = READ_ONCE(slab->freelist);
2561 	old.counters = READ_ONCE(slab->counters);
2562 	VM_BUG_ON(!old.frozen);
2563 
2564 	/* Determine target state of the slab */
2565 	new.counters = old.counters;
2566 	if (freelist_tail) {
2567 		new.inuse -= free_delta;
2568 		set_freepointer(s, freelist_tail, old.freelist);
2569 		new.freelist = freelist;
2570 	} else
2571 		new.freelist = old.freelist;
2572 
2573 	new.frozen = 0;
2574 
2575 	if (!new.inuse && n->nr_partial >= s->min_partial) {
2576 		mode = M_FREE;
2577 	} else if (new.freelist) {
2578 		mode = M_PARTIAL;
2579 		/*
2580 		 * Taking the spinlock removes the possibility that
2581 		 * acquire_slab() will see a slab that is frozen
2582 		 */
2583 		spin_lock_irqsave(&n->list_lock, flags);
2584 	} else {
2585 		mode = M_FULL_NOLIST;
2586 	}
2587 
2588 
2589 	if (!slab_update_freelist(s, slab,
2590 				old.freelist, old.counters,
2591 				new.freelist, new.counters,
2592 				"unfreezing slab")) {
2593 		if (mode == M_PARTIAL)
2594 			spin_unlock_irqrestore(&n->list_lock, flags);
2595 		goto redo;
2596 	}
2597 
2598 
2599 	if (mode == M_PARTIAL) {
2600 		add_partial(n, slab, tail);
2601 		spin_unlock_irqrestore(&n->list_lock, flags);
2602 		stat(s, tail);
2603 	} else if (mode == M_FREE) {
2604 		stat(s, DEACTIVATE_EMPTY);
2605 		discard_slab(s, slab);
2606 		stat(s, FREE_SLAB);
2607 	} else if (mode == M_FULL_NOLIST) {
2608 		stat(s, DEACTIVATE_FULL);
2609 	}
2610 }
2611 
2612 #ifdef CONFIG_SLUB_CPU_PARTIAL
2613 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2614 {
2615 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2616 	struct slab *slab, *slab_to_discard = NULL;
2617 	unsigned long flags = 0;
2618 
2619 	while (partial_slab) {
2620 		struct slab new;
2621 		struct slab old;
2622 
2623 		slab = partial_slab;
2624 		partial_slab = slab->next;
2625 
2626 		n2 = get_node(s, slab_nid(slab));
2627 		if (n != n2) {
2628 			if (n)
2629 				spin_unlock_irqrestore(&n->list_lock, flags);
2630 
2631 			n = n2;
2632 			spin_lock_irqsave(&n->list_lock, flags);
2633 		}
2634 
2635 		do {
2636 
2637 			old.freelist = slab->freelist;
2638 			old.counters = slab->counters;
2639 			VM_BUG_ON(!old.frozen);
2640 
2641 			new.counters = old.counters;
2642 			new.freelist = old.freelist;
2643 
2644 			new.frozen = 0;
2645 
2646 		} while (!__slab_update_freelist(s, slab,
2647 				old.freelist, old.counters,
2648 				new.freelist, new.counters,
2649 				"unfreezing slab"));
2650 
2651 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2652 			slab->next = slab_to_discard;
2653 			slab_to_discard = slab;
2654 		} else {
2655 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
2656 			stat(s, FREE_ADD_PARTIAL);
2657 		}
2658 	}
2659 
2660 	if (n)
2661 		spin_unlock_irqrestore(&n->list_lock, flags);
2662 
2663 	while (slab_to_discard) {
2664 		slab = slab_to_discard;
2665 		slab_to_discard = slab_to_discard->next;
2666 
2667 		stat(s, DEACTIVATE_EMPTY);
2668 		discard_slab(s, slab);
2669 		stat(s, FREE_SLAB);
2670 	}
2671 }
2672 
2673 /*
2674  * Unfreeze all the cpu partial slabs.
2675  */
2676 static void unfreeze_partials(struct kmem_cache *s)
2677 {
2678 	struct slab *partial_slab;
2679 	unsigned long flags;
2680 
2681 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2682 	partial_slab = this_cpu_read(s->cpu_slab->partial);
2683 	this_cpu_write(s->cpu_slab->partial, NULL);
2684 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2685 
2686 	if (partial_slab)
2687 		__unfreeze_partials(s, partial_slab);
2688 }
2689 
2690 static void unfreeze_partials_cpu(struct kmem_cache *s,
2691 				  struct kmem_cache_cpu *c)
2692 {
2693 	struct slab *partial_slab;
2694 
2695 	partial_slab = slub_percpu_partial(c);
2696 	c->partial = NULL;
2697 
2698 	if (partial_slab)
2699 		__unfreeze_partials(s, partial_slab);
2700 }
2701 
2702 /*
2703  * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2704  * partial slab slot if available.
2705  *
2706  * If we did not find a slot then simply move all the partials to the
2707  * per node partial list.
2708  */
2709 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2710 {
2711 	struct slab *oldslab;
2712 	struct slab *slab_to_unfreeze = NULL;
2713 	unsigned long flags;
2714 	int slabs = 0;
2715 
2716 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2717 
2718 	oldslab = this_cpu_read(s->cpu_slab->partial);
2719 
2720 	if (oldslab) {
2721 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2722 			/*
2723 			 * Partial array is full. Move the existing set to the
2724 			 * per node partial list. Postpone the actual unfreezing
2725 			 * outside of the critical section.
2726 			 */
2727 			slab_to_unfreeze = oldslab;
2728 			oldslab = NULL;
2729 		} else {
2730 			slabs = oldslab->slabs;
2731 		}
2732 	}
2733 
2734 	slabs++;
2735 
2736 	slab->slabs = slabs;
2737 	slab->next = oldslab;
2738 
2739 	this_cpu_write(s->cpu_slab->partial, slab);
2740 
2741 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2742 
2743 	if (slab_to_unfreeze) {
2744 		__unfreeze_partials(s, slab_to_unfreeze);
2745 		stat(s, CPU_PARTIAL_DRAIN);
2746 	}
2747 }
2748 
2749 #else	/* CONFIG_SLUB_CPU_PARTIAL */
2750 
2751 static inline void unfreeze_partials(struct kmem_cache *s) { }
2752 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2753 				  struct kmem_cache_cpu *c) { }
2754 
2755 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2756 
2757 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2758 {
2759 	unsigned long flags;
2760 	struct slab *slab;
2761 	void *freelist;
2762 
2763 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2764 
2765 	slab = c->slab;
2766 	freelist = c->freelist;
2767 
2768 	c->slab = NULL;
2769 	c->freelist = NULL;
2770 	c->tid = next_tid(c->tid);
2771 
2772 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2773 
2774 	if (slab) {
2775 		deactivate_slab(s, slab, freelist);
2776 		stat(s, CPUSLAB_FLUSH);
2777 	}
2778 }
2779 
2780 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2781 {
2782 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2783 	void *freelist = c->freelist;
2784 	struct slab *slab = c->slab;
2785 
2786 	c->slab = NULL;
2787 	c->freelist = NULL;
2788 	c->tid = next_tid(c->tid);
2789 
2790 	if (slab) {
2791 		deactivate_slab(s, slab, freelist);
2792 		stat(s, CPUSLAB_FLUSH);
2793 	}
2794 
2795 	unfreeze_partials_cpu(s, c);
2796 }
2797 
2798 struct slub_flush_work {
2799 	struct work_struct work;
2800 	struct kmem_cache *s;
2801 	bool skip;
2802 };
2803 
2804 /*
2805  * Flush cpu slab.
2806  *
2807  * Called from CPU work handler with migration disabled.
2808  */
2809 static void flush_cpu_slab(struct work_struct *w)
2810 {
2811 	struct kmem_cache *s;
2812 	struct kmem_cache_cpu *c;
2813 	struct slub_flush_work *sfw;
2814 
2815 	sfw = container_of(w, struct slub_flush_work, work);
2816 
2817 	s = sfw->s;
2818 	c = this_cpu_ptr(s->cpu_slab);
2819 
2820 	if (c->slab)
2821 		flush_slab(s, c);
2822 
2823 	unfreeze_partials(s);
2824 }
2825 
2826 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2827 {
2828 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2829 
2830 	return c->slab || slub_percpu_partial(c);
2831 }
2832 
2833 static DEFINE_MUTEX(flush_lock);
2834 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2835 
2836 static void flush_all_cpus_locked(struct kmem_cache *s)
2837 {
2838 	struct slub_flush_work *sfw;
2839 	unsigned int cpu;
2840 
2841 	lockdep_assert_cpus_held();
2842 	mutex_lock(&flush_lock);
2843 
2844 	for_each_online_cpu(cpu) {
2845 		sfw = &per_cpu(slub_flush, cpu);
2846 		if (!has_cpu_slab(cpu, s)) {
2847 			sfw->skip = true;
2848 			continue;
2849 		}
2850 		INIT_WORK(&sfw->work, flush_cpu_slab);
2851 		sfw->skip = false;
2852 		sfw->s = s;
2853 		queue_work_on(cpu, flushwq, &sfw->work);
2854 	}
2855 
2856 	for_each_online_cpu(cpu) {
2857 		sfw = &per_cpu(slub_flush, cpu);
2858 		if (sfw->skip)
2859 			continue;
2860 		flush_work(&sfw->work);
2861 	}
2862 
2863 	mutex_unlock(&flush_lock);
2864 }
2865 
2866 static void flush_all(struct kmem_cache *s)
2867 {
2868 	cpus_read_lock();
2869 	flush_all_cpus_locked(s);
2870 	cpus_read_unlock();
2871 }
2872 
2873 /*
2874  * Use the cpu notifier to insure that the cpu slabs are flushed when
2875  * necessary.
2876  */
2877 static int slub_cpu_dead(unsigned int cpu)
2878 {
2879 	struct kmem_cache *s;
2880 
2881 	mutex_lock(&slab_mutex);
2882 	list_for_each_entry(s, &slab_caches, list)
2883 		__flush_cpu_slab(s, cpu);
2884 	mutex_unlock(&slab_mutex);
2885 	return 0;
2886 }
2887 
2888 #else /* CONFIG_SLUB_TINY */
2889 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
2890 static inline void flush_all(struct kmem_cache *s) { }
2891 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
2892 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
2893 #endif /* CONFIG_SLUB_TINY */
2894 
2895 /*
2896  * Check if the objects in a per cpu structure fit numa
2897  * locality expectations.
2898  */
2899 static inline int node_match(struct slab *slab, int node)
2900 {
2901 #ifdef CONFIG_NUMA
2902 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2903 		return 0;
2904 #endif
2905 	return 1;
2906 }
2907 
2908 #ifdef CONFIG_SLUB_DEBUG
2909 static int count_free(struct slab *slab)
2910 {
2911 	return slab->objects - slab->inuse;
2912 }
2913 
2914 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2915 {
2916 	return atomic_long_read(&n->total_objects);
2917 }
2918 
2919 /* Supports checking bulk free of a constructed freelist */
2920 static inline bool free_debug_processing(struct kmem_cache *s,
2921 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
2922 	unsigned long addr, depot_stack_handle_t handle)
2923 {
2924 	bool checks_ok = false;
2925 	void *object = head;
2926 	int cnt = 0;
2927 
2928 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2929 		if (!check_slab(s, slab))
2930 			goto out;
2931 	}
2932 
2933 	if (slab->inuse < *bulk_cnt) {
2934 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
2935 			 slab->inuse, *bulk_cnt);
2936 		goto out;
2937 	}
2938 
2939 next_object:
2940 
2941 	if (++cnt > *bulk_cnt)
2942 		goto out_cnt;
2943 
2944 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2945 		if (!free_consistency_checks(s, slab, object, addr))
2946 			goto out;
2947 	}
2948 
2949 	if (s->flags & SLAB_STORE_USER)
2950 		set_track_update(s, object, TRACK_FREE, addr, handle);
2951 	trace(s, slab, object, 0);
2952 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
2953 	init_object(s, object, SLUB_RED_INACTIVE);
2954 
2955 	/* Reached end of constructed freelist yet? */
2956 	if (object != tail) {
2957 		object = get_freepointer(s, object);
2958 		goto next_object;
2959 	}
2960 	checks_ok = true;
2961 
2962 out_cnt:
2963 	if (cnt != *bulk_cnt) {
2964 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
2965 			 *bulk_cnt, cnt);
2966 		*bulk_cnt = cnt;
2967 	}
2968 
2969 out:
2970 
2971 	if (!checks_ok)
2972 		slab_fix(s, "Object at 0x%p not freed", object);
2973 
2974 	return checks_ok;
2975 }
2976 #endif /* CONFIG_SLUB_DEBUG */
2977 
2978 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
2979 static unsigned long count_partial(struct kmem_cache_node *n,
2980 					int (*get_count)(struct slab *))
2981 {
2982 	unsigned long flags;
2983 	unsigned long x = 0;
2984 	struct slab *slab;
2985 
2986 	spin_lock_irqsave(&n->list_lock, flags);
2987 	list_for_each_entry(slab, &n->partial, slab_list)
2988 		x += get_count(slab);
2989 	spin_unlock_irqrestore(&n->list_lock, flags);
2990 	return x;
2991 }
2992 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
2993 
2994 #ifdef CONFIG_SLUB_DEBUG
2995 static noinline void
2996 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2997 {
2998 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2999 				      DEFAULT_RATELIMIT_BURST);
3000 	int node;
3001 	struct kmem_cache_node *n;
3002 
3003 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3004 		return;
3005 
3006 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
3007 		nid, gfpflags, &gfpflags);
3008 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3009 		s->name, s->object_size, s->size, oo_order(s->oo),
3010 		oo_order(s->min));
3011 
3012 	if (oo_order(s->min) > get_order(s->object_size))
3013 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
3014 			s->name);
3015 
3016 	for_each_kmem_cache_node(s, node, n) {
3017 		unsigned long nr_slabs;
3018 		unsigned long nr_objs;
3019 		unsigned long nr_free;
3020 
3021 		nr_free  = count_partial(n, count_free);
3022 		nr_slabs = node_nr_slabs(n);
3023 		nr_objs  = node_nr_objs(n);
3024 
3025 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
3026 			node, nr_slabs, nr_objs, nr_free);
3027 	}
3028 }
3029 #else /* CONFIG_SLUB_DEBUG */
3030 static inline void
3031 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3032 #endif
3033 
3034 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3035 {
3036 	if (unlikely(slab_test_pfmemalloc(slab)))
3037 		return gfp_pfmemalloc_allowed(gfpflags);
3038 
3039 	return true;
3040 }
3041 
3042 #ifndef CONFIG_SLUB_TINY
3043 static inline bool
3044 __update_cpu_freelist_fast(struct kmem_cache *s,
3045 			   void *freelist_old, void *freelist_new,
3046 			   unsigned long tid)
3047 {
3048 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3049 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3050 
3051 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3052 					     &old.full, new.full);
3053 }
3054 
3055 /*
3056  * Check the slab->freelist and either transfer the freelist to the
3057  * per cpu freelist or deactivate the slab.
3058  *
3059  * The slab is still frozen if the return value is not NULL.
3060  *
3061  * If this function returns NULL then the slab has been unfrozen.
3062  */
3063 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3064 {
3065 	struct slab new;
3066 	unsigned long counters;
3067 	void *freelist;
3068 
3069 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3070 
3071 	do {
3072 		freelist = slab->freelist;
3073 		counters = slab->counters;
3074 
3075 		new.counters = counters;
3076 		VM_BUG_ON(!new.frozen);
3077 
3078 		new.inuse = slab->objects;
3079 		new.frozen = freelist != NULL;
3080 
3081 	} while (!__slab_update_freelist(s, slab,
3082 		freelist, counters,
3083 		NULL, new.counters,
3084 		"get_freelist"));
3085 
3086 	return freelist;
3087 }
3088 
3089 /*
3090  * Slow path. The lockless freelist is empty or we need to perform
3091  * debugging duties.
3092  *
3093  * Processing is still very fast if new objects have been freed to the
3094  * regular freelist. In that case we simply take over the regular freelist
3095  * as the lockless freelist and zap the regular freelist.
3096  *
3097  * If that is not working then we fall back to the partial lists. We take the
3098  * first element of the freelist as the object to allocate now and move the
3099  * rest of the freelist to the lockless freelist.
3100  *
3101  * And if we were unable to get a new slab from the partial slab lists then
3102  * we need to allocate a new slab. This is the slowest path since it involves
3103  * a call to the page allocator and the setup of a new slab.
3104  *
3105  * Version of __slab_alloc to use when we know that preemption is
3106  * already disabled (which is the case for bulk allocation).
3107  */
3108 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3109 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3110 {
3111 	void *freelist;
3112 	struct slab *slab;
3113 	unsigned long flags;
3114 	struct partial_context pc;
3115 
3116 	stat(s, ALLOC_SLOWPATH);
3117 
3118 reread_slab:
3119 
3120 	slab = READ_ONCE(c->slab);
3121 	if (!slab) {
3122 		/*
3123 		 * if the node is not online or has no normal memory, just
3124 		 * ignore the node constraint
3125 		 */
3126 		if (unlikely(node != NUMA_NO_NODE &&
3127 			     !node_isset(node, slab_nodes)))
3128 			node = NUMA_NO_NODE;
3129 		goto new_slab;
3130 	}
3131 redo:
3132 
3133 	if (unlikely(!node_match(slab, node))) {
3134 		/*
3135 		 * same as above but node_match() being false already
3136 		 * implies node != NUMA_NO_NODE
3137 		 */
3138 		if (!node_isset(node, slab_nodes)) {
3139 			node = NUMA_NO_NODE;
3140 		} else {
3141 			stat(s, ALLOC_NODE_MISMATCH);
3142 			goto deactivate_slab;
3143 		}
3144 	}
3145 
3146 	/*
3147 	 * By rights, we should be searching for a slab page that was
3148 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3149 	 * information when the page leaves the per-cpu allocator
3150 	 */
3151 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3152 		goto deactivate_slab;
3153 
3154 	/* must check again c->slab in case we got preempted and it changed */
3155 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3156 	if (unlikely(slab != c->slab)) {
3157 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3158 		goto reread_slab;
3159 	}
3160 	freelist = c->freelist;
3161 	if (freelist)
3162 		goto load_freelist;
3163 
3164 	freelist = get_freelist(s, slab);
3165 
3166 	if (!freelist) {
3167 		c->slab = NULL;
3168 		c->tid = next_tid(c->tid);
3169 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3170 		stat(s, DEACTIVATE_BYPASS);
3171 		goto new_slab;
3172 	}
3173 
3174 	stat(s, ALLOC_REFILL);
3175 
3176 load_freelist:
3177 
3178 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3179 
3180 	/*
3181 	 * freelist is pointing to the list of objects to be used.
3182 	 * slab is pointing to the slab from which the objects are obtained.
3183 	 * That slab must be frozen for per cpu allocations to work.
3184 	 */
3185 	VM_BUG_ON(!c->slab->frozen);
3186 	c->freelist = get_freepointer(s, freelist);
3187 	c->tid = next_tid(c->tid);
3188 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3189 	return freelist;
3190 
3191 deactivate_slab:
3192 
3193 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3194 	if (slab != c->slab) {
3195 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3196 		goto reread_slab;
3197 	}
3198 	freelist = c->freelist;
3199 	c->slab = NULL;
3200 	c->freelist = NULL;
3201 	c->tid = next_tid(c->tid);
3202 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3203 	deactivate_slab(s, slab, freelist);
3204 
3205 new_slab:
3206 
3207 	if (slub_percpu_partial(c)) {
3208 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3209 		if (unlikely(c->slab)) {
3210 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3211 			goto reread_slab;
3212 		}
3213 		if (unlikely(!slub_percpu_partial(c))) {
3214 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3215 			/* we were preempted and partial list got empty */
3216 			goto new_objects;
3217 		}
3218 
3219 		slab = c->slab = slub_percpu_partial(c);
3220 		slub_set_percpu_partial(c, slab);
3221 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3222 		stat(s, CPU_PARTIAL_ALLOC);
3223 		goto redo;
3224 	}
3225 
3226 new_objects:
3227 
3228 	pc.flags = gfpflags;
3229 	pc.slab = &slab;
3230 	pc.orig_size = orig_size;
3231 	freelist = get_partial(s, node, &pc);
3232 	if (freelist)
3233 		goto check_new_slab;
3234 
3235 	slub_put_cpu_ptr(s->cpu_slab);
3236 	slab = new_slab(s, gfpflags, node);
3237 	c = slub_get_cpu_ptr(s->cpu_slab);
3238 
3239 	if (unlikely(!slab)) {
3240 		slab_out_of_memory(s, gfpflags, node);
3241 		return NULL;
3242 	}
3243 
3244 	stat(s, ALLOC_SLAB);
3245 
3246 	if (kmem_cache_debug(s)) {
3247 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3248 
3249 		if (unlikely(!freelist))
3250 			goto new_objects;
3251 
3252 		if (s->flags & SLAB_STORE_USER)
3253 			set_track(s, freelist, TRACK_ALLOC, addr);
3254 
3255 		return freelist;
3256 	}
3257 
3258 	/*
3259 	 * No other reference to the slab yet so we can
3260 	 * muck around with it freely without cmpxchg
3261 	 */
3262 	freelist = slab->freelist;
3263 	slab->freelist = NULL;
3264 	slab->inuse = slab->objects;
3265 	slab->frozen = 1;
3266 
3267 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3268 
3269 check_new_slab:
3270 
3271 	if (kmem_cache_debug(s)) {
3272 		/*
3273 		 * For debug caches here we had to go through
3274 		 * alloc_single_from_partial() so just store the tracking info
3275 		 * and return the object
3276 		 */
3277 		if (s->flags & SLAB_STORE_USER)
3278 			set_track(s, freelist, TRACK_ALLOC, addr);
3279 
3280 		return freelist;
3281 	}
3282 
3283 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3284 		/*
3285 		 * For !pfmemalloc_match() case we don't load freelist so that
3286 		 * we don't make further mismatched allocations easier.
3287 		 */
3288 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3289 		return freelist;
3290 	}
3291 
3292 retry_load_slab:
3293 
3294 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3295 	if (unlikely(c->slab)) {
3296 		void *flush_freelist = c->freelist;
3297 		struct slab *flush_slab = c->slab;
3298 
3299 		c->slab = NULL;
3300 		c->freelist = NULL;
3301 		c->tid = next_tid(c->tid);
3302 
3303 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3304 
3305 		deactivate_slab(s, flush_slab, flush_freelist);
3306 
3307 		stat(s, CPUSLAB_FLUSH);
3308 
3309 		goto retry_load_slab;
3310 	}
3311 	c->slab = slab;
3312 
3313 	goto load_freelist;
3314 }
3315 
3316 /*
3317  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3318  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3319  * pointer.
3320  */
3321 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3322 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3323 {
3324 	void *p;
3325 
3326 #ifdef CONFIG_PREEMPT_COUNT
3327 	/*
3328 	 * We may have been preempted and rescheduled on a different
3329 	 * cpu before disabling preemption. Need to reload cpu area
3330 	 * pointer.
3331 	 */
3332 	c = slub_get_cpu_ptr(s->cpu_slab);
3333 #endif
3334 
3335 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3336 #ifdef CONFIG_PREEMPT_COUNT
3337 	slub_put_cpu_ptr(s->cpu_slab);
3338 #endif
3339 	return p;
3340 }
3341 
3342 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3343 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3344 {
3345 	struct kmem_cache_cpu *c;
3346 	struct slab *slab;
3347 	unsigned long tid;
3348 	void *object;
3349 
3350 redo:
3351 	/*
3352 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3353 	 * enabled. We may switch back and forth between cpus while
3354 	 * reading from one cpu area. That does not matter as long
3355 	 * as we end up on the original cpu again when doing the cmpxchg.
3356 	 *
3357 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3358 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3359 	 * the tid. If we are preempted and switched to another cpu between the
3360 	 * two reads, it's OK as the two are still associated with the same cpu
3361 	 * and cmpxchg later will validate the cpu.
3362 	 */
3363 	c = raw_cpu_ptr(s->cpu_slab);
3364 	tid = READ_ONCE(c->tid);
3365 
3366 	/*
3367 	 * Irqless object alloc/free algorithm used here depends on sequence
3368 	 * of fetching cpu_slab's data. tid should be fetched before anything
3369 	 * on c to guarantee that object and slab associated with previous tid
3370 	 * won't be used with current tid. If we fetch tid first, object and
3371 	 * slab could be one associated with next tid and our alloc/free
3372 	 * request will be failed. In this case, we will retry. So, no problem.
3373 	 */
3374 	barrier();
3375 
3376 	/*
3377 	 * The transaction ids are globally unique per cpu and per operation on
3378 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3379 	 * occurs on the right processor and that there was no operation on the
3380 	 * linked list in between.
3381 	 */
3382 
3383 	object = c->freelist;
3384 	slab = c->slab;
3385 
3386 	if (!USE_LOCKLESS_FAST_PATH() ||
3387 	    unlikely(!object || !slab || !node_match(slab, node))) {
3388 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3389 	} else {
3390 		void *next_object = get_freepointer_safe(s, object);
3391 
3392 		/*
3393 		 * The cmpxchg will only match if there was no additional
3394 		 * operation and if we are on the right processor.
3395 		 *
3396 		 * The cmpxchg does the following atomically (without lock
3397 		 * semantics!)
3398 		 * 1. Relocate first pointer to the current per cpu area.
3399 		 * 2. Verify that tid and freelist have not been changed
3400 		 * 3. If they were not changed replace tid and freelist
3401 		 *
3402 		 * Since this is without lock semantics the protection is only
3403 		 * against code executing on this cpu *not* from access by
3404 		 * other cpus.
3405 		 */
3406 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3407 			note_cmpxchg_failure("slab_alloc", s, tid);
3408 			goto redo;
3409 		}
3410 		prefetch_freepointer(s, next_object);
3411 		stat(s, ALLOC_FASTPATH);
3412 	}
3413 
3414 	return object;
3415 }
3416 #else /* CONFIG_SLUB_TINY */
3417 static void *__slab_alloc_node(struct kmem_cache *s,
3418 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3419 {
3420 	struct partial_context pc;
3421 	struct slab *slab;
3422 	void *object;
3423 
3424 	pc.flags = gfpflags;
3425 	pc.slab = &slab;
3426 	pc.orig_size = orig_size;
3427 	object = get_partial(s, node, &pc);
3428 
3429 	if (object)
3430 		return object;
3431 
3432 	slab = new_slab(s, gfpflags, node);
3433 	if (unlikely(!slab)) {
3434 		slab_out_of_memory(s, gfpflags, node);
3435 		return NULL;
3436 	}
3437 
3438 	object = alloc_single_from_new_slab(s, slab, orig_size);
3439 
3440 	return object;
3441 }
3442 #endif /* CONFIG_SLUB_TINY */
3443 
3444 /*
3445  * If the object has been wiped upon free, make sure it's fully initialized by
3446  * zeroing out freelist pointer.
3447  */
3448 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3449 						   void *obj)
3450 {
3451 	if (unlikely(slab_want_init_on_free(s)) && obj)
3452 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3453 			0, sizeof(void *));
3454 }
3455 
3456 /*
3457  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3458  * have the fastpath folded into their functions. So no function call
3459  * overhead for requests that can be satisfied on the fastpath.
3460  *
3461  * The fastpath works by first checking if the lockless freelist can be used.
3462  * If not then __slab_alloc is called for slow processing.
3463  *
3464  * Otherwise we can simply pick the next object from the lockless free list.
3465  */
3466 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3467 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3468 {
3469 	void *object;
3470 	struct obj_cgroup *objcg = NULL;
3471 	bool init = false;
3472 
3473 	s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3474 	if (!s)
3475 		return NULL;
3476 
3477 	object = kfence_alloc(s, orig_size, gfpflags);
3478 	if (unlikely(object))
3479 		goto out;
3480 
3481 	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3482 
3483 	maybe_wipe_obj_freeptr(s, object);
3484 	init = slab_want_init_on_alloc(gfpflags, s);
3485 
3486 out:
3487 	/*
3488 	 * When init equals 'true', like for kzalloc() family, only
3489 	 * @orig_size bytes might be zeroed instead of s->object_size
3490 	 */
3491 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
3492 
3493 	return object;
3494 }
3495 
3496 static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3497 		gfp_t gfpflags, unsigned long addr, size_t orig_size)
3498 {
3499 	return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3500 }
3501 
3502 static __fastpath_inline
3503 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3504 			     gfp_t gfpflags)
3505 {
3506 	void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3507 
3508 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3509 
3510 	return ret;
3511 }
3512 
3513 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3514 {
3515 	return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3516 }
3517 EXPORT_SYMBOL(kmem_cache_alloc);
3518 
3519 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3520 			   gfp_t gfpflags)
3521 {
3522 	return __kmem_cache_alloc_lru(s, lru, gfpflags);
3523 }
3524 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3525 
3526 void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
3527 			      int node, size_t orig_size,
3528 			      unsigned long caller)
3529 {
3530 	return slab_alloc_node(s, NULL, gfpflags, node,
3531 			       caller, orig_size);
3532 }
3533 
3534 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3535 {
3536 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3537 
3538 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
3539 
3540 	return ret;
3541 }
3542 EXPORT_SYMBOL(kmem_cache_alloc_node);
3543 
3544 static noinline void free_to_partial_list(
3545 	struct kmem_cache *s, struct slab *slab,
3546 	void *head, void *tail, int bulk_cnt,
3547 	unsigned long addr)
3548 {
3549 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3550 	struct slab *slab_free = NULL;
3551 	int cnt = bulk_cnt;
3552 	unsigned long flags;
3553 	depot_stack_handle_t handle = 0;
3554 
3555 	if (s->flags & SLAB_STORE_USER)
3556 		handle = set_track_prepare();
3557 
3558 	spin_lock_irqsave(&n->list_lock, flags);
3559 
3560 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
3561 		void *prior = slab->freelist;
3562 
3563 		/* Perform the actual freeing while we still hold the locks */
3564 		slab->inuse -= cnt;
3565 		set_freepointer(s, tail, prior);
3566 		slab->freelist = head;
3567 
3568 		/*
3569 		 * If the slab is empty, and node's partial list is full,
3570 		 * it should be discarded anyway no matter it's on full or
3571 		 * partial list.
3572 		 */
3573 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
3574 			slab_free = slab;
3575 
3576 		if (!prior) {
3577 			/* was on full list */
3578 			remove_full(s, n, slab);
3579 			if (!slab_free) {
3580 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
3581 				stat(s, FREE_ADD_PARTIAL);
3582 			}
3583 		} else if (slab_free) {
3584 			remove_partial(n, slab);
3585 			stat(s, FREE_REMOVE_PARTIAL);
3586 		}
3587 	}
3588 
3589 	if (slab_free) {
3590 		/*
3591 		 * Update the counters while still holding n->list_lock to
3592 		 * prevent spurious validation warnings
3593 		 */
3594 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
3595 	}
3596 
3597 	spin_unlock_irqrestore(&n->list_lock, flags);
3598 
3599 	if (slab_free) {
3600 		stat(s, FREE_SLAB);
3601 		free_slab(s, slab_free);
3602 	}
3603 }
3604 
3605 /*
3606  * Slow path handling. This may still be called frequently since objects
3607  * have a longer lifetime than the cpu slabs in most processing loads.
3608  *
3609  * So we still attempt to reduce cache line usage. Just take the slab
3610  * lock and free the item. If there is no additional partial slab
3611  * handling required then we can return immediately.
3612  */
3613 static void __slab_free(struct kmem_cache *s, struct slab *slab,
3614 			void *head, void *tail, int cnt,
3615 			unsigned long addr)
3616 
3617 {
3618 	void *prior;
3619 	int was_frozen;
3620 	struct slab new;
3621 	unsigned long counters;
3622 	struct kmem_cache_node *n = NULL;
3623 	unsigned long flags;
3624 
3625 	stat(s, FREE_SLOWPATH);
3626 
3627 	if (kfence_free(head))
3628 		return;
3629 
3630 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
3631 		free_to_partial_list(s, slab, head, tail, cnt, addr);
3632 		return;
3633 	}
3634 
3635 	do {
3636 		if (unlikely(n)) {
3637 			spin_unlock_irqrestore(&n->list_lock, flags);
3638 			n = NULL;
3639 		}
3640 		prior = slab->freelist;
3641 		counters = slab->counters;
3642 		set_freepointer(s, tail, prior);
3643 		new.counters = counters;
3644 		was_frozen = new.frozen;
3645 		new.inuse -= cnt;
3646 		if ((!new.inuse || !prior) && !was_frozen) {
3647 
3648 			if (kmem_cache_has_cpu_partial(s) && !prior) {
3649 
3650 				/*
3651 				 * Slab was on no list before and will be
3652 				 * partially empty
3653 				 * We can defer the list move and instead
3654 				 * freeze it.
3655 				 */
3656 				new.frozen = 1;
3657 
3658 			} else { /* Needs to be taken off a list */
3659 
3660 				n = get_node(s, slab_nid(slab));
3661 				/*
3662 				 * Speculatively acquire the list_lock.
3663 				 * If the cmpxchg does not succeed then we may
3664 				 * drop the list_lock without any processing.
3665 				 *
3666 				 * Otherwise the list_lock will synchronize with
3667 				 * other processors updating the list of slabs.
3668 				 */
3669 				spin_lock_irqsave(&n->list_lock, flags);
3670 
3671 			}
3672 		}
3673 
3674 	} while (!slab_update_freelist(s, slab,
3675 		prior, counters,
3676 		head, new.counters,
3677 		"__slab_free"));
3678 
3679 	if (likely(!n)) {
3680 
3681 		if (likely(was_frozen)) {
3682 			/*
3683 			 * The list lock was not taken therefore no list
3684 			 * activity can be necessary.
3685 			 */
3686 			stat(s, FREE_FROZEN);
3687 		} else if (new.frozen) {
3688 			/*
3689 			 * If we just froze the slab then put it onto the
3690 			 * per cpu partial list.
3691 			 */
3692 			put_cpu_partial(s, slab, 1);
3693 			stat(s, CPU_PARTIAL_FREE);
3694 		}
3695 
3696 		return;
3697 	}
3698 
3699 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3700 		goto slab_empty;
3701 
3702 	/*
3703 	 * Objects left in the slab. If it was not on the partial list before
3704 	 * then add it.
3705 	 */
3706 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3707 		remove_full(s, n, slab);
3708 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
3709 		stat(s, FREE_ADD_PARTIAL);
3710 	}
3711 	spin_unlock_irqrestore(&n->list_lock, flags);
3712 	return;
3713 
3714 slab_empty:
3715 	if (prior) {
3716 		/*
3717 		 * Slab on the partial list.
3718 		 */
3719 		remove_partial(n, slab);
3720 		stat(s, FREE_REMOVE_PARTIAL);
3721 	} else {
3722 		/* Slab must be on the full list */
3723 		remove_full(s, n, slab);
3724 	}
3725 
3726 	spin_unlock_irqrestore(&n->list_lock, flags);
3727 	stat(s, FREE_SLAB);
3728 	discard_slab(s, slab);
3729 }
3730 
3731 #ifndef CONFIG_SLUB_TINY
3732 /*
3733  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3734  * can perform fastpath freeing without additional function calls.
3735  *
3736  * The fastpath is only possible if we are freeing to the current cpu slab
3737  * of this processor. This typically the case if we have just allocated
3738  * the item before.
3739  *
3740  * If fastpath is not possible then fall back to __slab_free where we deal
3741  * with all sorts of special processing.
3742  *
3743  * Bulk free of a freelist with several objects (all pointing to the
3744  * same slab) possible by specifying head and tail ptr, plus objects
3745  * count (cnt). Bulk free indicated by tail pointer being set.
3746  */
3747 static __always_inline void do_slab_free(struct kmem_cache *s,
3748 				struct slab *slab, void *head, void *tail,
3749 				int cnt, unsigned long addr)
3750 {
3751 	void *tail_obj = tail ? : head;
3752 	struct kmem_cache_cpu *c;
3753 	unsigned long tid;
3754 	void **freelist;
3755 
3756 redo:
3757 	/*
3758 	 * Determine the currently cpus per cpu slab.
3759 	 * The cpu may change afterward. However that does not matter since
3760 	 * data is retrieved via this pointer. If we are on the same cpu
3761 	 * during the cmpxchg then the free will succeed.
3762 	 */
3763 	c = raw_cpu_ptr(s->cpu_slab);
3764 	tid = READ_ONCE(c->tid);
3765 
3766 	/* Same with comment on barrier() in slab_alloc_node() */
3767 	barrier();
3768 
3769 	if (unlikely(slab != c->slab)) {
3770 		__slab_free(s, slab, head, tail_obj, cnt, addr);
3771 		return;
3772 	}
3773 
3774 	if (USE_LOCKLESS_FAST_PATH()) {
3775 		freelist = READ_ONCE(c->freelist);
3776 
3777 		set_freepointer(s, tail_obj, freelist);
3778 
3779 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
3780 			note_cmpxchg_failure("slab_free", s, tid);
3781 			goto redo;
3782 		}
3783 	} else {
3784 		/* Update the free list under the local lock */
3785 		local_lock(&s->cpu_slab->lock);
3786 		c = this_cpu_ptr(s->cpu_slab);
3787 		if (unlikely(slab != c->slab)) {
3788 			local_unlock(&s->cpu_slab->lock);
3789 			goto redo;
3790 		}
3791 		tid = c->tid;
3792 		freelist = c->freelist;
3793 
3794 		set_freepointer(s, tail_obj, freelist);
3795 		c->freelist = head;
3796 		c->tid = next_tid(tid);
3797 
3798 		local_unlock(&s->cpu_slab->lock);
3799 	}
3800 	stat(s, FREE_FASTPATH);
3801 }
3802 #else /* CONFIG_SLUB_TINY */
3803 static void do_slab_free(struct kmem_cache *s,
3804 				struct slab *slab, void *head, void *tail,
3805 				int cnt, unsigned long addr)
3806 {
3807 	void *tail_obj = tail ? : head;
3808 
3809 	__slab_free(s, slab, head, tail_obj, cnt, addr);
3810 }
3811 #endif /* CONFIG_SLUB_TINY */
3812 
3813 static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3814 				      void *head, void *tail, void **p, int cnt,
3815 				      unsigned long addr)
3816 {
3817 	memcg_slab_free_hook(s, slab, p, cnt);
3818 	/*
3819 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3820 	 * to remove objects, whose reuse must be delayed.
3821 	 */
3822 	if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3823 		do_slab_free(s, slab, head, tail, cnt, addr);
3824 }
3825 
3826 #ifdef CONFIG_KASAN_GENERIC
3827 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3828 {
3829 	do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3830 }
3831 #endif
3832 
3833 void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller)
3834 {
3835 	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller);
3836 }
3837 
3838 void kmem_cache_free(struct kmem_cache *s, void *x)
3839 {
3840 	s = cache_from_obj(s, x);
3841 	if (!s)
3842 		return;
3843 	trace_kmem_cache_free(_RET_IP_, x, s);
3844 	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
3845 }
3846 EXPORT_SYMBOL(kmem_cache_free);
3847 
3848 struct detached_freelist {
3849 	struct slab *slab;
3850 	void *tail;
3851 	void *freelist;
3852 	int cnt;
3853 	struct kmem_cache *s;
3854 };
3855 
3856 /*
3857  * This function progressively scans the array with free objects (with
3858  * a limited look ahead) and extract objects belonging to the same
3859  * slab.  It builds a detached freelist directly within the given
3860  * slab/objects.  This can happen without any need for
3861  * synchronization, because the objects are owned by running process.
3862  * The freelist is build up as a single linked list in the objects.
3863  * The idea is, that this detached freelist can then be bulk
3864  * transferred to the real freelist(s), but only requiring a single
3865  * synchronization primitive.  Look ahead in the array is limited due
3866  * to performance reasons.
3867  */
3868 static inline
3869 int build_detached_freelist(struct kmem_cache *s, size_t size,
3870 			    void **p, struct detached_freelist *df)
3871 {
3872 	int lookahead = 3;
3873 	void *object;
3874 	struct folio *folio;
3875 	size_t same;
3876 
3877 	object = p[--size];
3878 	folio = virt_to_folio(object);
3879 	if (!s) {
3880 		/* Handle kalloc'ed objects */
3881 		if (unlikely(!folio_test_slab(folio))) {
3882 			free_large_kmalloc(folio, object);
3883 			df->slab = NULL;
3884 			return size;
3885 		}
3886 		/* Derive kmem_cache from object */
3887 		df->slab = folio_slab(folio);
3888 		df->s = df->slab->slab_cache;
3889 	} else {
3890 		df->slab = folio_slab(folio);
3891 		df->s = cache_from_obj(s, object); /* Support for memcg */
3892 	}
3893 
3894 	/* Start new detached freelist */
3895 	df->tail = object;
3896 	df->freelist = object;
3897 	df->cnt = 1;
3898 
3899 	if (is_kfence_address(object))
3900 		return size;
3901 
3902 	set_freepointer(df->s, object, NULL);
3903 
3904 	same = size;
3905 	while (size) {
3906 		object = p[--size];
3907 		/* df->slab is always set at this point */
3908 		if (df->slab == virt_to_slab(object)) {
3909 			/* Opportunity build freelist */
3910 			set_freepointer(df->s, object, df->freelist);
3911 			df->freelist = object;
3912 			df->cnt++;
3913 			same--;
3914 			if (size != same)
3915 				swap(p[size], p[same]);
3916 			continue;
3917 		}
3918 
3919 		/* Limit look ahead search */
3920 		if (!--lookahead)
3921 			break;
3922 	}
3923 
3924 	return same;
3925 }
3926 
3927 /* Note that interrupts must be enabled when calling this function. */
3928 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3929 {
3930 	if (!size)
3931 		return;
3932 
3933 	do {
3934 		struct detached_freelist df;
3935 
3936 		size = build_detached_freelist(s, size, p, &df);
3937 		if (!df.slab)
3938 			continue;
3939 
3940 		slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3941 			  _RET_IP_);
3942 	} while (likely(size));
3943 }
3944 EXPORT_SYMBOL(kmem_cache_free_bulk);
3945 
3946 #ifndef CONFIG_SLUB_TINY
3947 static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3948 			size_t size, void **p, struct obj_cgroup *objcg)
3949 {
3950 	struct kmem_cache_cpu *c;
3951 	unsigned long irqflags;
3952 	int i;
3953 
3954 	/*
3955 	 * Drain objects in the per cpu slab, while disabling local
3956 	 * IRQs, which protects against PREEMPT and interrupts
3957 	 * handlers invoking normal fastpath.
3958 	 */
3959 	c = slub_get_cpu_ptr(s->cpu_slab);
3960 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3961 
3962 	for (i = 0; i < size; i++) {
3963 		void *object = kfence_alloc(s, s->object_size, flags);
3964 
3965 		if (unlikely(object)) {
3966 			p[i] = object;
3967 			continue;
3968 		}
3969 
3970 		object = c->freelist;
3971 		if (unlikely(!object)) {
3972 			/*
3973 			 * We may have removed an object from c->freelist using
3974 			 * the fastpath in the previous iteration; in that case,
3975 			 * c->tid has not been bumped yet.
3976 			 * Since ___slab_alloc() may reenable interrupts while
3977 			 * allocating memory, we should bump c->tid now.
3978 			 */
3979 			c->tid = next_tid(c->tid);
3980 
3981 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3982 
3983 			/*
3984 			 * Invoking slow path likely have side-effect
3985 			 * of re-populating per CPU c->freelist
3986 			 */
3987 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3988 					    _RET_IP_, c, s->object_size);
3989 			if (unlikely(!p[i]))
3990 				goto error;
3991 
3992 			c = this_cpu_ptr(s->cpu_slab);
3993 			maybe_wipe_obj_freeptr(s, p[i]);
3994 
3995 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3996 
3997 			continue; /* goto for-loop */
3998 		}
3999 		c->freelist = get_freepointer(s, object);
4000 		p[i] = object;
4001 		maybe_wipe_obj_freeptr(s, p[i]);
4002 	}
4003 	c->tid = next_tid(c->tid);
4004 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4005 	slub_put_cpu_ptr(s->cpu_slab);
4006 
4007 	return i;
4008 
4009 error:
4010 	slub_put_cpu_ptr(s->cpu_slab);
4011 	slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
4012 	kmem_cache_free_bulk(s, i, p);
4013 	return 0;
4014 
4015 }
4016 #else /* CONFIG_SLUB_TINY */
4017 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4018 			size_t size, void **p, struct obj_cgroup *objcg)
4019 {
4020 	int i;
4021 
4022 	for (i = 0; i < size; i++) {
4023 		void *object = kfence_alloc(s, s->object_size, flags);
4024 
4025 		if (unlikely(object)) {
4026 			p[i] = object;
4027 			continue;
4028 		}
4029 
4030 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4031 					 _RET_IP_, s->object_size);
4032 		if (unlikely(!p[i]))
4033 			goto error;
4034 
4035 		maybe_wipe_obj_freeptr(s, p[i]);
4036 	}
4037 
4038 	return i;
4039 
4040 error:
4041 	slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
4042 	kmem_cache_free_bulk(s, i, p);
4043 	return 0;
4044 }
4045 #endif /* CONFIG_SLUB_TINY */
4046 
4047 /* Note that interrupts must be enabled when calling this function. */
4048 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4049 			  void **p)
4050 {
4051 	int i;
4052 	struct obj_cgroup *objcg = NULL;
4053 
4054 	if (!size)
4055 		return 0;
4056 
4057 	/* memcg and kmem_cache debug support */
4058 	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4059 	if (unlikely(!s))
4060 		return 0;
4061 
4062 	i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg);
4063 
4064 	/*
4065 	 * memcg and kmem_cache debug support and memory initialization.
4066 	 * Done outside of the IRQ disabled fastpath loop.
4067 	 */
4068 	if (i != 0)
4069 		slab_post_alloc_hook(s, objcg, flags, size, p,
4070 			slab_want_init_on_alloc(flags, s), s->object_size);
4071 	return i;
4072 }
4073 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4074 
4075 
4076 /*
4077  * Object placement in a slab is made very easy because we always start at
4078  * offset 0. If we tune the size of the object to the alignment then we can
4079  * get the required alignment by putting one properly sized object after
4080  * another.
4081  *
4082  * Notice that the allocation order determines the sizes of the per cpu
4083  * caches. Each processor has always one slab available for allocations.
4084  * Increasing the allocation order reduces the number of times that slabs
4085  * must be moved on and off the partial lists and is therefore a factor in
4086  * locking overhead.
4087  */
4088 
4089 /*
4090  * Minimum / Maximum order of slab pages. This influences locking overhead
4091  * and slab fragmentation. A higher order reduces the number of partial slabs
4092  * and increases the number of allocations possible without having to
4093  * take the list_lock.
4094  */
4095 static unsigned int slub_min_order;
4096 static unsigned int slub_max_order =
4097 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4098 static unsigned int slub_min_objects;
4099 
4100 /*
4101  * Calculate the order of allocation given an slab object size.
4102  *
4103  * The order of allocation has significant impact on performance and other
4104  * system components. Generally order 0 allocations should be preferred since
4105  * order 0 does not cause fragmentation in the page allocator. Larger objects
4106  * be problematic to put into order 0 slabs because there may be too much
4107  * unused space left. We go to a higher order if more than 1/16th of the slab
4108  * would be wasted.
4109  *
4110  * In order to reach satisfactory performance we must ensure that a minimum
4111  * number of objects is in one slab. Otherwise we may generate too much
4112  * activity on the partial lists which requires taking the list_lock. This is
4113  * less a concern for large slabs though which are rarely used.
4114  *
4115  * slub_max_order specifies the order where we begin to stop considering the
4116  * number of objects in a slab as critical. If we reach slub_max_order then
4117  * we try to keep the page order as low as possible. So we accept more waste
4118  * of space in favor of a small page order.
4119  *
4120  * Higher order allocations also allow the placement of more objects in a
4121  * slab and thereby reduce object handling overhead. If the user has
4122  * requested a higher minimum order then we start with that one instead of
4123  * the smallest order which will fit the object.
4124  */
4125 static inline unsigned int calc_slab_order(unsigned int size,
4126 		unsigned int min_objects, unsigned int max_order,
4127 		unsigned int fract_leftover)
4128 {
4129 	unsigned int min_order = slub_min_order;
4130 	unsigned int order;
4131 
4132 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4133 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4134 
4135 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
4136 			order <= max_order; order++) {
4137 
4138 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4139 		unsigned int rem;
4140 
4141 		rem = slab_size % size;
4142 
4143 		if (rem <= slab_size / fract_leftover)
4144 			break;
4145 	}
4146 
4147 	return order;
4148 }
4149 
4150 static inline int calculate_order(unsigned int size)
4151 {
4152 	unsigned int order;
4153 	unsigned int min_objects;
4154 	unsigned int max_objects;
4155 	unsigned int nr_cpus;
4156 
4157 	/*
4158 	 * Attempt to find best configuration for a slab. This
4159 	 * works by first attempting to generate a layout with
4160 	 * the best configuration and backing off gradually.
4161 	 *
4162 	 * First we increase the acceptable waste in a slab. Then
4163 	 * we reduce the minimum objects required in a slab.
4164 	 */
4165 	min_objects = slub_min_objects;
4166 	if (!min_objects) {
4167 		/*
4168 		 * Some architectures will only update present cpus when
4169 		 * onlining them, so don't trust the number if it's just 1. But
4170 		 * we also don't want to use nr_cpu_ids always, as on some other
4171 		 * architectures, there can be many possible cpus, but never
4172 		 * onlined. Here we compromise between trying to avoid too high
4173 		 * order on systems that appear larger than they are, and too
4174 		 * low order on systems that appear smaller than they are.
4175 		 */
4176 		nr_cpus = num_present_cpus();
4177 		if (nr_cpus <= 1)
4178 			nr_cpus = nr_cpu_ids;
4179 		min_objects = 4 * (fls(nr_cpus) + 1);
4180 	}
4181 	max_objects = order_objects(slub_max_order, size);
4182 	min_objects = min(min_objects, max_objects);
4183 
4184 	while (min_objects > 1) {
4185 		unsigned int fraction;
4186 
4187 		fraction = 16;
4188 		while (fraction >= 4) {
4189 			order = calc_slab_order(size, min_objects,
4190 					slub_max_order, fraction);
4191 			if (order <= slub_max_order)
4192 				return order;
4193 			fraction /= 2;
4194 		}
4195 		min_objects--;
4196 	}
4197 
4198 	/*
4199 	 * We were unable to place multiple objects in a slab. Now
4200 	 * lets see if we can place a single object there.
4201 	 */
4202 	order = calc_slab_order(size, 1, slub_max_order, 1);
4203 	if (order <= slub_max_order)
4204 		return order;
4205 
4206 	/*
4207 	 * Doh this slab cannot be placed using slub_max_order.
4208 	 */
4209 	order = calc_slab_order(size, 1, MAX_ORDER, 1);
4210 	if (order <= MAX_ORDER)
4211 		return order;
4212 	return -ENOSYS;
4213 }
4214 
4215 static void
4216 init_kmem_cache_node(struct kmem_cache_node *n)
4217 {
4218 	n->nr_partial = 0;
4219 	spin_lock_init(&n->list_lock);
4220 	INIT_LIST_HEAD(&n->partial);
4221 #ifdef CONFIG_SLUB_DEBUG
4222 	atomic_long_set(&n->nr_slabs, 0);
4223 	atomic_long_set(&n->total_objects, 0);
4224 	INIT_LIST_HEAD(&n->full);
4225 #endif
4226 }
4227 
4228 #ifndef CONFIG_SLUB_TINY
4229 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4230 {
4231 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4232 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4233 			sizeof(struct kmem_cache_cpu));
4234 
4235 	/*
4236 	 * Must align to double word boundary for the double cmpxchg
4237 	 * instructions to work; see __pcpu_double_call_return_bool().
4238 	 */
4239 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4240 				     2 * sizeof(void *));
4241 
4242 	if (!s->cpu_slab)
4243 		return 0;
4244 
4245 	init_kmem_cache_cpus(s);
4246 
4247 	return 1;
4248 }
4249 #else
4250 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4251 {
4252 	return 1;
4253 }
4254 #endif /* CONFIG_SLUB_TINY */
4255 
4256 static struct kmem_cache *kmem_cache_node;
4257 
4258 /*
4259  * No kmalloc_node yet so do it by hand. We know that this is the first
4260  * slab on the node for this slabcache. There are no concurrent accesses
4261  * possible.
4262  *
4263  * Note that this function only works on the kmem_cache_node
4264  * when allocating for the kmem_cache_node. This is used for bootstrapping
4265  * memory on a fresh node that has no slab structures yet.
4266  */
4267 static void early_kmem_cache_node_alloc(int node)
4268 {
4269 	struct slab *slab;
4270 	struct kmem_cache_node *n;
4271 
4272 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4273 
4274 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4275 
4276 	BUG_ON(!slab);
4277 	inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
4278 	if (slab_nid(slab) != node) {
4279 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4280 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
4281 	}
4282 
4283 	n = slab->freelist;
4284 	BUG_ON(!n);
4285 #ifdef CONFIG_SLUB_DEBUG
4286 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4287 	init_tracking(kmem_cache_node, n);
4288 #endif
4289 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4290 	slab->freelist = get_freepointer(kmem_cache_node, n);
4291 	slab->inuse = 1;
4292 	kmem_cache_node->node[node] = n;
4293 	init_kmem_cache_node(n);
4294 	inc_slabs_node(kmem_cache_node, node, slab->objects);
4295 
4296 	/*
4297 	 * No locks need to be taken here as it has just been
4298 	 * initialized and there is no concurrent access.
4299 	 */
4300 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
4301 }
4302 
4303 static void free_kmem_cache_nodes(struct kmem_cache *s)
4304 {
4305 	int node;
4306 	struct kmem_cache_node *n;
4307 
4308 	for_each_kmem_cache_node(s, node, n) {
4309 		s->node[node] = NULL;
4310 		kmem_cache_free(kmem_cache_node, n);
4311 	}
4312 }
4313 
4314 void __kmem_cache_release(struct kmem_cache *s)
4315 {
4316 	cache_random_seq_destroy(s);
4317 #ifndef CONFIG_SLUB_TINY
4318 	free_percpu(s->cpu_slab);
4319 #endif
4320 	free_kmem_cache_nodes(s);
4321 }
4322 
4323 static int init_kmem_cache_nodes(struct kmem_cache *s)
4324 {
4325 	int node;
4326 
4327 	for_each_node_mask(node, slab_nodes) {
4328 		struct kmem_cache_node *n;
4329 
4330 		if (slab_state == DOWN) {
4331 			early_kmem_cache_node_alloc(node);
4332 			continue;
4333 		}
4334 		n = kmem_cache_alloc_node(kmem_cache_node,
4335 						GFP_KERNEL, node);
4336 
4337 		if (!n) {
4338 			free_kmem_cache_nodes(s);
4339 			return 0;
4340 		}
4341 
4342 		init_kmem_cache_node(n);
4343 		s->node[node] = n;
4344 	}
4345 	return 1;
4346 }
4347 
4348 static void set_cpu_partial(struct kmem_cache *s)
4349 {
4350 #ifdef CONFIG_SLUB_CPU_PARTIAL
4351 	unsigned int nr_objects;
4352 
4353 	/*
4354 	 * cpu_partial determined the maximum number of objects kept in the
4355 	 * per cpu partial lists of a processor.
4356 	 *
4357 	 * Per cpu partial lists mainly contain slabs that just have one
4358 	 * object freed. If they are used for allocation then they can be
4359 	 * filled up again with minimal effort. The slab will never hit the
4360 	 * per node partial lists and therefore no locking will be required.
4361 	 *
4362 	 * For backwards compatibility reasons, this is determined as number
4363 	 * of objects, even though we now limit maximum number of pages, see
4364 	 * slub_set_cpu_partial()
4365 	 */
4366 	if (!kmem_cache_has_cpu_partial(s))
4367 		nr_objects = 0;
4368 	else if (s->size >= PAGE_SIZE)
4369 		nr_objects = 6;
4370 	else if (s->size >= 1024)
4371 		nr_objects = 24;
4372 	else if (s->size >= 256)
4373 		nr_objects = 52;
4374 	else
4375 		nr_objects = 120;
4376 
4377 	slub_set_cpu_partial(s, nr_objects);
4378 #endif
4379 }
4380 
4381 /*
4382  * calculate_sizes() determines the order and the distribution of data within
4383  * a slab object.
4384  */
4385 static int calculate_sizes(struct kmem_cache *s)
4386 {
4387 	slab_flags_t flags = s->flags;
4388 	unsigned int size = s->object_size;
4389 	unsigned int order;
4390 
4391 	/*
4392 	 * Round up object size to the next word boundary. We can only
4393 	 * place the free pointer at word boundaries and this determines
4394 	 * the possible location of the free pointer.
4395 	 */
4396 	size = ALIGN(size, sizeof(void *));
4397 
4398 #ifdef CONFIG_SLUB_DEBUG
4399 	/*
4400 	 * Determine if we can poison the object itself. If the user of
4401 	 * the slab may touch the object after free or before allocation
4402 	 * then we should never poison the object itself.
4403 	 */
4404 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4405 			!s->ctor)
4406 		s->flags |= __OBJECT_POISON;
4407 	else
4408 		s->flags &= ~__OBJECT_POISON;
4409 
4410 
4411 	/*
4412 	 * If we are Redzoning then check if there is some space between the
4413 	 * end of the object and the free pointer. If not then add an
4414 	 * additional word to have some bytes to store Redzone information.
4415 	 */
4416 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4417 		size += sizeof(void *);
4418 #endif
4419 
4420 	/*
4421 	 * With that we have determined the number of bytes in actual use
4422 	 * by the object and redzoning.
4423 	 */
4424 	s->inuse = size;
4425 
4426 	if (slub_debug_orig_size(s) ||
4427 	    (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4428 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4429 	    s->ctor) {
4430 		/*
4431 		 * Relocate free pointer after the object if it is not
4432 		 * permitted to overwrite the first word of the object on
4433 		 * kmem_cache_free.
4434 		 *
4435 		 * This is the case if we do RCU, have a constructor or
4436 		 * destructor, are poisoning the objects, or are
4437 		 * redzoning an object smaller than sizeof(void *).
4438 		 *
4439 		 * The assumption that s->offset >= s->inuse means free
4440 		 * pointer is outside of the object is used in the
4441 		 * freeptr_outside_object() function. If that is no
4442 		 * longer true, the function needs to be modified.
4443 		 */
4444 		s->offset = size;
4445 		size += sizeof(void *);
4446 	} else {
4447 		/*
4448 		 * Store freelist pointer near middle of object to keep
4449 		 * it away from the edges of the object to avoid small
4450 		 * sized over/underflows from neighboring allocations.
4451 		 */
4452 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4453 	}
4454 
4455 #ifdef CONFIG_SLUB_DEBUG
4456 	if (flags & SLAB_STORE_USER) {
4457 		/*
4458 		 * Need to store information about allocs and frees after
4459 		 * the object.
4460 		 */
4461 		size += 2 * sizeof(struct track);
4462 
4463 		/* Save the original kmalloc request size */
4464 		if (flags & SLAB_KMALLOC)
4465 			size += sizeof(unsigned int);
4466 	}
4467 #endif
4468 
4469 	kasan_cache_create(s, &size, &s->flags);
4470 #ifdef CONFIG_SLUB_DEBUG
4471 	if (flags & SLAB_RED_ZONE) {
4472 		/*
4473 		 * Add some empty padding so that we can catch
4474 		 * overwrites from earlier objects rather than let
4475 		 * tracking information or the free pointer be
4476 		 * corrupted if a user writes before the start
4477 		 * of the object.
4478 		 */
4479 		size += sizeof(void *);
4480 
4481 		s->red_left_pad = sizeof(void *);
4482 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4483 		size += s->red_left_pad;
4484 	}
4485 #endif
4486 
4487 	/*
4488 	 * SLUB stores one object immediately after another beginning from
4489 	 * offset 0. In order to align the objects we have to simply size
4490 	 * each object to conform to the alignment.
4491 	 */
4492 	size = ALIGN(size, s->align);
4493 	s->size = size;
4494 	s->reciprocal_size = reciprocal_value(size);
4495 	order = calculate_order(size);
4496 
4497 	if ((int)order < 0)
4498 		return 0;
4499 
4500 	s->allocflags = 0;
4501 	if (order)
4502 		s->allocflags |= __GFP_COMP;
4503 
4504 	if (s->flags & SLAB_CACHE_DMA)
4505 		s->allocflags |= GFP_DMA;
4506 
4507 	if (s->flags & SLAB_CACHE_DMA32)
4508 		s->allocflags |= GFP_DMA32;
4509 
4510 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4511 		s->allocflags |= __GFP_RECLAIMABLE;
4512 
4513 	/*
4514 	 * Determine the number of objects per slab
4515 	 */
4516 	s->oo = oo_make(order, size);
4517 	s->min = oo_make(get_order(size), size);
4518 
4519 	return !!oo_objects(s->oo);
4520 }
4521 
4522 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4523 {
4524 	s->flags = kmem_cache_flags(s->size, flags, s->name);
4525 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4526 	s->random = get_random_long();
4527 #endif
4528 
4529 	if (!calculate_sizes(s))
4530 		goto error;
4531 	if (disable_higher_order_debug) {
4532 		/*
4533 		 * Disable debugging flags that store metadata if the min slab
4534 		 * order increased.
4535 		 */
4536 		if (get_order(s->size) > get_order(s->object_size)) {
4537 			s->flags &= ~DEBUG_METADATA_FLAGS;
4538 			s->offset = 0;
4539 			if (!calculate_sizes(s))
4540 				goto error;
4541 		}
4542 	}
4543 
4544 #ifdef system_has_freelist_aba
4545 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
4546 		/* Enable fast mode */
4547 		s->flags |= __CMPXCHG_DOUBLE;
4548 	}
4549 #endif
4550 
4551 	/*
4552 	 * The larger the object size is, the more slabs we want on the partial
4553 	 * list to avoid pounding the page allocator excessively.
4554 	 */
4555 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4556 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4557 
4558 	set_cpu_partial(s);
4559 
4560 #ifdef CONFIG_NUMA
4561 	s->remote_node_defrag_ratio = 1000;
4562 #endif
4563 
4564 	/* Initialize the pre-computed randomized freelist if slab is up */
4565 	if (slab_state >= UP) {
4566 		if (init_cache_random_seq(s))
4567 			goto error;
4568 	}
4569 
4570 	if (!init_kmem_cache_nodes(s))
4571 		goto error;
4572 
4573 	if (alloc_kmem_cache_cpus(s))
4574 		return 0;
4575 
4576 error:
4577 	__kmem_cache_release(s);
4578 	return -EINVAL;
4579 }
4580 
4581 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4582 			      const char *text)
4583 {
4584 #ifdef CONFIG_SLUB_DEBUG
4585 	void *addr = slab_address(slab);
4586 	void *p;
4587 
4588 	slab_err(s, slab, text, s->name);
4589 
4590 	spin_lock(&object_map_lock);
4591 	__fill_map(object_map, s, slab);
4592 
4593 	for_each_object(p, s, addr, slab->objects) {
4594 
4595 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
4596 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4597 			print_tracking(s, p);
4598 		}
4599 	}
4600 	spin_unlock(&object_map_lock);
4601 #endif
4602 }
4603 
4604 /*
4605  * Attempt to free all partial slabs on a node.
4606  * This is called from __kmem_cache_shutdown(). We must take list_lock
4607  * because sysfs file might still access partial list after the shutdowning.
4608  */
4609 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4610 {
4611 	LIST_HEAD(discard);
4612 	struct slab *slab, *h;
4613 
4614 	BUG_ON(irqs_disabled());
4615 	spin_lock_irq(&n->list_lock);
4616 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4617 		if (!slab->inuse) {
4618 			remove_partial(n, slab);
4619 			list_add(&slab->slab_list, &discard);
4620 		} else {
4621 			list_slab_objects(s, slab,
4622 			  "Objects remaining in %s on __kmem_cache_shutdown()");
4623 		}
4624 	}
4625 	spin_unlock_irq(&n->list_lock);
4626 
4627 	list_for_each_entry_safe(slab, h, &discard, slab_list)
4628 		discard_slab(s, slab);
4629 }
4630 
4631 bool __kmem_cache_empty(struct kmem_cache *s)
4632 {
4633 	int node;
4634 	struct kmem_cache_node *n;
4635 
4636 	for_each_kmem_cache_node(s, node, n)
4637 		if (n->nr_partial || node_nr_slabs(n))
4638 			return false;
4639 	return true;
4640 }
4641 
4642 /*
4643  * Release all resources used by a slab cache.
4644  */
4645 int __kmem_cache_shutdown(struct kmem_cache *s)
4646 {
4647 	int node;
4648 	struct kmem_cache_node *n;
4649 
4650 	flush_all_cpus_locked(s);
4651 	/* Attempt to free all objects */
4652 	for_each_kmem_cache_node(s, node, n) {
4653 		free_partial(s, n);
4654 		if (n->nr_partial || node_nr_slabs(n))
4655 			return 1;
4656 	}
4657 	return 0;
4658 }
4659 
4660 #ifdef CONFIG_PRINTK
4661 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4662 {
4663 	void *base;
4664 	int __maybe_unused i;
4665 	unsigned int objnr;
4666 	void *objp;
4667 	void *objp0;
4668 	struct kmem_cache *s = slab->slab_cache;
4669 	struct track __maybe_unused *trackp;
4670 
4671 	kpp->kp_ptr = object;
4672 	kpp->kp_slab = slab;
4673 	kpp->kp_slab_cache = s;
4674 	base = slab_address(slab);
4675 	objp0 = kasan_reset_tag(object);
4676 #ifdef CONFIG_SLUB_DEBUG
4677 	objp = restore_red_left(s, objp0);
4678 #else
4679 	objp = objp0;
4680 #endif
4681 	objnr = obj_to_index(s, slab, objp);
4682 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4683 	objp = base + s->size * objnr;
4684 	kpp->kp_objp = objp;
4685 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4686 			 || (objp - base) % s->size) ||
4687 	    !(s->flags & SLAB_STORE_USER))
4688 		return;
4689 #ifdef CONFIG_SLUB_DEBUG
4690 	objp = fixup_red_left(s, objp);
4691 	trackp = get_track(s, objp, TRACK_ALLOC);
4692 	kpp->kp_ret = (void *)trackp->addr;
4693 #ifdef CONFIG_STACKDEPOT
4694 	{
4695 		depot_stack_handle_t handle;
4696 		unsigned long *entries;
4697 		unsigned int nr_entries;
4698 
4699 		handle = READ_ONCE(trackp->handle);
4700 		if (handle) {
4701 			nr_entries = stack_depot_fetch(handle, &entries);
4702 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4703 				kpp->kp_stack[i] = (void *)entries[i];
4704 		}
4705 
4706 		trackp = get_track(s, objp, TRACK_FREE);
4707 		handle = READ_ONCE(trackp->handle);
4708 		if (handle) {
4709 			nr_entries = stack_depot_fetch(handle, &entries);
4710 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4711 				kpp->kp_free_stack[i] = (void *)entries[i];
4712 		}
4713 	}
4714 #endif
4715 #endif
4716 }
4717 #endif
4718 
4719 /********************************************************************
4720  *		Kmalloc subsystem
4721  *******************************************************************/
4722 
4723 static int __init setup_slub_min_order(char *str)
4724 {
4725 	get_option(&str, (int *)&slub_min_order);
4726 
4727 	return 1;
4728 }
4729 
4730 __setup("slub_min_order=", setup_slub_min_order);
4731 
4732 static int __init setup_slub_max_order(char *str)
4733 {
4734 	get_option(&str, (int *)&slub_max_order);
4735 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_ORDER);
4736 
4737 	return 1;
4738 }
4739 
4740 __setup("slub_max_order=", setup_slub_max_order);
4741 
4742 static int __init setup_slub_min_objects(char *str)
4743 {
4744 	get_option(&str, (int *)&slub_min_objects);
4745 
4746 	return 1;
4747 }
4748 
4749 __setup("slub_min_objects=", setup_slub_min_objects);
4750 
4751 #ifdef CONFIG_HARDENED_USERCOPY
4752 /*
4753  * Rejects incorrectly sized objects and objects that are to be copied
4754  * to/from userspace but do not fall entirely within the containing slab
4755  * cache's usercopy region.
4756  *
4757  * Returns NULL if check passes, otherwise const char * to name of cache
4758  * to indicate an error.
4759  */
4760 void __check_heap_object(const void *ptr, unsigned long n,
4761 			 const struct slab *slab, bool to_user)
4762 {
4763 	struct kmem_cache *s;
4764 	unsigned int offset;
4765 	bool is_kfence = is_kfence_address(ptr);
4766 
4767 	ptr = kasan_reset_tag(ptr);
4768 
4769 	/* Find object and usable object size. */
4770 	s = slab->slab_cache;
4771 
4772 	/* Reject impossible pointers. */
4773 	if (ptr < slab_address(slab))
4774 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4775 			       to_user, 0, n);
4776 
4777 	/* Find offset within object. */
4778 	if (is_kfence)
4779 		offset = ptr - kfence_object_start(ptr);
4780 	else
4781 		offset = (ptr - slab_address(slab)) % s->size;
4782 
4783 	/* Adjust for redzone and reject if within the redzone. */
4784 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4785 		if (offset < s->red_left_pad)
4786 			usercopy_abort("SLUB object in left red zone",
4787 				       s->name, to_user, offset, n);
4788 		offset -= s->red_left_pad;
4789 	}
4790 
4791 	/* Allow address range falling entirely within usercopy region. */
4792 	if (offset >= s->useroffset &&
4793 	    offset - s->useroffset <= s->usersize &&
4794 	    n <= s->useroffset - offset + s->usersize)
4795 		return;
4796 
4797 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4798 }
4799 #endif /* CONFIG_HARDENED_USERCOPY */
4800 
4801 #define SHRINK_PROMOTE_MAX 32
4802 
4803 /*
4804  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4805  * up most to the head of the partial lists. New allocations will then
4806  * fill those up and thus they can be removed from the partial lists.
4807  *
4808  * The slabs with the least items are placed last. This results in them
4809  * being allocated from last increasing the chance that the last objects
4810  * are freed in them.
4811  */
4812 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4813 {
4814 	int node;
4815 	int i;
4816 	struct kmem_cache_node *n;
4817 	struct slab *slab;
4818 	struct slab *t;
4819 	struct list_head discard;
4820 	struct list_head promote[SHRINK_PROMOTE_MAX];
4821 	unsigned long flags;
4822 	int ret = 0;
4823 
4824 	for_each_kmem_cache_node(s, node, n) {
4825 		INIT_LIST_HEAD(&discard);
4826 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4827 			INIT_LIST_HEAD(promote + i);
4828 
4829 		spin_lock_irqsave(&n->list_lock, flags);
4830 
4831 		/*
4832 		 * Build lists of slabs to discard or promote.
4833 		 *
4834 		 * Note that concurrent frees may occur while we hold the
4835 		 * list_lock. slab->inuse here is the upper limit.
4836 		 */
4837 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4838 			int free = slab->objects - slab->inuse;
4839 
4840 			/* Do not reread slab->inuse */
4841 			barrier();
4842 
4843 			/* We do not keep full slabs on the list */
4844 			BUG_ON(free <= 0);
4845 
4846 			if (free == slab->objects) {
4847 				list_move(&slab->slab_list, &discard);
4848 				n->nr_partial--;
4849 				dec_slabs_node(s, node, slab->objects);
4850 			} else if (free <= SHRINK_PROMOTE_MAX)
4851 				list_move(&slab->slab_list, promote + free - 1);
4852 		}
4853 
4854 		/*
4855 		 * Promote the slabs filled up most to the head of the
4856 		 * partial list.
4857 		 */
4858 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4859 			list_splice(promote + i, &n->partial);
4860 
4861 		spin_unlock_irqrestore(&n->list_lock, flags);
4862 
4863 		/* Release empty slabs */
4864 		list_for_each_entry_safe(slab, t, &discard, slab_list)
4865 			free_slab(s, slab);
4866 
4867 		if (node_nr_slabs(n))
4868 			ret = 1;
4869 	}
4870 
4871 	return ret;
4872 }
4873 
4874 int __kmem_cache_shrink(struct kmem_cache *s)
4875 {
4876 	flush_all(s);
4877 	return __kmem_cache_do_shrink(s);
4878 }
4879 
4880 static int slab_mem_going_offline_callback(void *arg)
4881 {
4882 	struct kmem_cache *s;
4883 
4884 	mutex_lock(&slab_mutex);
4885 	list_for_each_entry(s, &slab_caches, list) {
4886 		flush_all_cpus_locked(s);
4887 		__kmem_cache_do_shrink(s);
4888 	}
4889 	mutex_unlock(&slab_mutex);
4890 
4891 	return 0;
4892 }
4893 
4894 static void slab_mem_offline_callback(void *arg)
4895 {
4896 	struct memory_notify *marg = arg;
4897 	int offline_node;
4898 
4899 	offline_node = marg->status_change_nid_normal;
4900 
4901 	/*
4902 	 * If the node still has available memory. we need kmem_cache_node
4903 	 * for it yet.
4904 	 */
4905 	if (offline_node < 0)
4906 		return;
4907 
4908 	mutex_lock(&slab_mutex);
4909 	node_clear(offline_node, slab_nodes);
4910 	/*
4911 	 * We no longer free kmem_cache_node structures here, as it would be
4912 	 * racy with all get_node() users, and infeasible to protect them with
4913 	 * slab_mutex.
4914 	 */
4915 	mutex_unlock(&slab_mutex);
4916 }
4917 
4918 static int slab_mem_going_online_callback(void *arg)
4919 {
4920 	struct kmem_cache_node *n;
4921 	struct kmem_cache *s;
4922 	struct memory_notify *marg = arg;
4923 	int nid = marg->status_change_nid_normal;
4924 	int ret = 0;
4925 
4926 	/*
4927 	 * If the node's memory is already available, then kmem_cache_node is
4928 	 * already created. Nothing to do.
4929 	 */
4930 	if (nid < 0)
4931 		return 0;
4932 
4933 	/*
4934 	 * We are bringing a node online. No memory is available yet. We must
4935 	 * allocate a kmem_cache_node structure in order to bring the node
4936 	 * online.
4937 	 */
4938 	mutex_lock(&slab_mutex);
4939 	list_for_each_entry(s, &slab_caches, list) {
4940 		/*
4941 		 * The structure may already exist if the node was previously
4942 		 * onlined and offlined.
4943 		 */
4944 		if (get_node(s, nid))
4945 			continue;
4946 		/*
4947 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4948 		 *      since memory is not yet available from the node that
4949 		 *      is brought up.
4950 		 */
4951 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4952 		if (!n) {
4953 			ret = -ENOMEM;
4954 			goto out;
4955 		}
4956 		init_kmem_cache_node(n);
4957 		s->node[nid] = n;
4958 	}
4959 	/*
4960 	 * Any cache created after this point will also have kmem_cache_node
4961 	 * initialized for the new node.
4962 	 */
4963 	node_set(nid, slab_nodes);
4964 out:
4965 	mutex_unlock(&slab_mutex);
4966 	return ret;
4967 }
4968 
4969 static int slab_memory_callback(struct notifier_block *self,
4970 				unsigned long action, void *arg)
4971 {
4972 	int ret = 0;
4973 
4974 	switch (action) {
4975 	case MEM_GOING_ONLINE:
4976 		ret = slab_mem_going_online_callback(arg);
4977 		break;
4978 	case MEM_GOING_OFFLINE:
4979 		ret = slab_mem_going_offline_callback(arg);
4980 		break;
4981 	case MEM_OFFLINE:
4982 	case MEM_CANCEL_ONLINE:
4983 		slab_mem_offline_callback(arg);
4984 		break;
4985 	case MEM_ONLINE:
4986 	case MEM_CANCEL_OFFLINE:
4987 		break;
4988 	}
4989 	if (ret)
4990 		ret = notifier_from_errno(ret);
4991 	else
4992 		ret = NOTIFY_OK;
4993 	return ret;
4994 }
4995 
4996 /********************************************************************
4997  *			Basic setup of slabs
4998  *******************************************************************/
4999 
5000 /*
5001  * Used for early kmem_cache structures that were allocated using
5002  * the page allocator. Allocate them properly then fix up the pointers
5003  * that may be pointing to the wrong kmem_cache structure.
5004  */
5005 
5006 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
5007 {
5008 	int node;
5009 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
5010 	struct kmem_cache_node *n;
5011 
5012 	memcpy(s, static_cache, kmem_cache->object_size);
5013 
5014 	/*
5015 	 * This runs very early, and only the boot processor is supposed to be
5016 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
5017 	 * IPIs around.
5018 	 */
5019 	__flush_cpu_slab(s, smp_processor_id());
5020 	for_each_kmem_cache_node(s, node, n) {
5021 		struct slab *p;
5022 
5023 		list_for_each_entry(p, &n->partial, slab_list)
5024 			p->slab_cache = s;
5025 
5026 #ifdef CONFIG_SLUB_DEBUG
5027 		list_for_each_entry(p, &n->full, slab_list)
5028 			p->slab_cache = s;
5029 #endif
5030 	}
5031 	list_add(&s->list, &slab_caches);
5032 	return s;
5033 }
5034 
5035 void __init kmem_cache_init(void)
5036 {
5037 	static __initdata struct kmem_cache boot_kmem_cache,
5038 		boot_kmem_cache_node;
5039 	int node;
5040 
5041 	if (debug_guardpage_minorder())
5042 		slub_max_order = 0;
5043 
5044 	/* Print slub debugging pointers without hashing */
5045 	if (__slub_debug_enabled())
5046 		no_hash_pointers_enable(NULL);
5047 
5048 	kmem_cache_node = &boot_kmem_cache_node;
5049 	kmem_cache = &boot_kmem_cache;
5050 
5051 	/*
5052 	 * Initialize the nodemask for which we will allocate per node
5053 	 * structures. Here we don't need taking slab_mutex yet.
5054 	 */
5055 	for_each_node_state(node, N_NORMAL_MEMORY)
5056 		node_set(node, slab_nodes);
5057 
5058 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
5059 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
5060 
5061 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5062 
5063 	/* Able to allocate the per node structures */
5064 	slab_state = PARTIAL;
5065 
5066 	create_boot_cache(kmem_cache, "kmem_cache",
5067 			offsetof(struct kmem_cache, node) +
5068 				nr_node_ids * sizeof(struct kmem_cache_node *),
5069 		       SLAB_HWCACHE_ALIGN, 0, 0);
5070 
5071 	kmem_cache = bootstrap(&boot_kmem_cache);
5072 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5073 
5074 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
5075 	setup_kmalloc_cache_index_table();
5076 	create_kmalloc_caches(0);
5077 
5078 	/* Setup random freelists for each cache */
5079 	init_freelist_randomization();
5080 
5081 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5082 				  slub_cpu_dead);
5083 
5084 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5085 		cache_line_size(),
5086 		slub_min_order, slub_max_order, slub_min_objects,
5087 		nr_cpu_ids, nr_node_ids);
5088 }
5089 
5090 void __init kmem_cache_init_late(void)
5091 {
5092 #ifndef CONFIG_SLUB_TINY
5093 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5094 	WARN_ON(!flushwq);
5095 #endif
5096 }
5097 
5098 struct kmem_cache *
5099 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5100 		   slab_flags_t flags, void (*ctor)(void *))
5101 {
5102 	struct kmem_cache *s;
5103 
5104 	s = find_mergeable(size, align, flags, name, ctor);
5105 	if (s) {
5106 		if (sysfs_slab_alias(s, name))
5107 			return NULL;
5108 
5109 		s->refcount++;
5110 
5111 		/*
5112 		 * Adjust the object sizes so that we clear
5113 		 * the complete object on kzalloc.
5114 		 */
5115 		s->object_size = max(s->object_size, size);
5116 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5117 	}
5118 
5119 	return s;
5120 }
5121 
5122 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5123 {
5124 	int err;
5125 
5126 	err = kmem_cache_open(s, flags);
5127 	if (err)
5128 		return err;
5129 
5130 	/* Mutex is not taken during early boot */
5131 	if (slab_state <= UP)
5132 		return 0;
5133 
5134 	err = sysfs_slab_add(s);
5135 	if (err) {
5136 		__kmem_cache_release(s);
5137 		return err;
5138 	}
5139 
5140 	if (s->flags & SLAB_STORE_USER)
5141 		debugfs_slab_add(s);
5142 
5143 	return 0;
5144 }
5145 
5146 #ifdef SLAB_SUPPORTS_SYSFS
5147 static int count_inuse(struct slab *slab)
5148 {
5149 	return slab->inuse;
5150 }
5151 
5152 static int count_total(struct slab *slab)
5153 {
5154 	return slab->objects;
5155 }
5156 #endif
5157 
5158 #ifdef CONFIG_SLUB_DEBUG
5159 static void validate_slab(struct kmem_cache *s, struct slab *slab,
5160 			  unsigned long *obj_map)
5161 {
5162 	void *p;
5163 	void *addr = slab_address(slab);
5164 
5165 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5166 		return;
5167 
5168 	/* Now we know that a valid freelist exists */
5169 	__fill_map(obj_map, s, slab);
5170 	for_each_object(p, s, addr, slab->objects) {
5171 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5172 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5173 
5174 		if (!check_object(s, slab, p, val))
5175 			break;
5176 	}
5177 }
5178 
5179 static int validate_slab_node(struct kmem_cache *s,
5180 		struct kmem_cache_node *n, unsigned long *obj_map)
5181 {
5182 	unsigned long count = 0;
5183 	struct slab *slab;
5184 	unsigned long flags;
5185 
5186 	spin_lock_irqsave(&n->list_lock, flags);
5187 
5188 	list_for_each_entry(slab, &n->partial, slab_list) {
5189 		validate_slab(s, slab, obj_map);
5190 		count++;
5191 	}
5192 	if (count != n->nr_partial) {
5193 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5194 		       s->name, count, n->nr_partial);
5195 		slab_add_kunit_errors();
5196 	}
5197 
5198 	if (!(s->flags & SLAB_STORE_USER))
5199 		goto out;
5200 
5201 	list_for_each_entry(slab, &n->full, slab_list) {
5202 		validate_slab(s, slab, obj_map);
5203 		count++;
5204 	}
5205 	if (count != node_nr_slabs(n)) {
5206 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5207 		       s->name, count, node_nr_slabs(n));
5208 		slab_add_kunit_errors();
5209 	}
5210 
5211 out:
5212 	spin_unlock_irqrestore(&n->list_lock, flags);
5213 	return count;
5214 }
5215 
5216 long validate_slab_cache(struct kmem_cache *s)
5217 {
5218 	int node;
5219 	unsigned long count = 0;
5220 	struct kmem_cache_node *n;
5221 	unsigned long *obj_map;
5222 
5223 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5224 	if (!obj_map)
5225 		return -ENOMEM;
5226 
5227 	flush_all(s);
5228 	for_each_kmem_cache_node(s, node, n)
5229 		count += validate_slab_node(s, n, obj_map);
5230 
5231 	bitmap_free(obj_map);
5232 
5233 	return count;
5234 }
5235 EXPORT_SYMBOL(validate_slab_cache);
5236 
5237 #ifdef CONFIG_DEBUG_FS
5238 /*
5239  * Generate lists of code addresses where slabcache objects are allocated
5240  * and freed.
5241  */
5242 
5243 struct location {
5244 	depot_stack_handle_t handle;
5245 	unsigned long count;
5246 	unsigned long addr;
5247 	unsigned long waste;
5248 	long long sum_time;
5249 	long min_time;
5250 	long max_time;
5251 	long min_pid;
5252 	long max_pid;
5253 	DECLARE_BITMAP(cpus, NR_CPUS);
5254 	nodemask_t nodes;
5255 };
5256 
5257 struct loc_track {
5258 	unsigned long max;
5259 	unsigned long count;
5260 	struct location *loc;
5261 	loff_t idx;
5262 };
5263 
5264 static struct dentry *slab_debugfs_root;
5265 
5266 static void free_loc_track(struct loc_track *t)
5267 {
5268 	if (t->max)
5269 		free_pages((unsigned long)t->loc,
5270 			get_order(sizeof(struct location) * t->max));
5271 }
5272 
5273 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5274 {
5275 	struct location *l;
5276 	int order;
5277 
5278 	order = get_order(sizeof(struct location) * max);
5279 
5280 	l = (void *)__get_free_pages(flags, order);
5281 	if (!l)
5282 		return 0;
5283 
5284 	if (t->count) {
5285 		memcpy(l, t->loc, sizeof(struct location) * t->count);
5286 		free_loc_track(t);
5287 	}
5288 	t->max = max;
5289 	t->loc = l;
5290 	return 1;
5291 }
5292 
5293 static int add_location(struct loc_track *t, struct kmem_cache *s,
5294 				const struct track *track,
5295 				unsigned int orig_size)
5296 {
5297 	long start, end, pos;
5298 	struct location *l;
5299 	unsigned long caddr, chandle, cwaste;
5300 	unsigned long age = jiffies - track->when;
5301 	depot_stack_handle_t handle = 0;
5302 	unsigned int waste = s->object_size - orig_size;
5303 
5304 #ifdef CONFIG_STACKDEPOT
5305 	handle = READ_ONCE(track->handle);
5306 #endif
5307 	start = -1;
5308 	end = t->count;
5309 
5310 	for ( ; ; ) {
5311 		pos = start + (end - start + 1) / 2;
5312 
5313 		/*
5314 		 * There is nothing at "end". If we end up there
5315 		 * we need to add something to before end.
5316 		 */
5317 		if (pos == end)
5318 			break;
5319 
5320 		l = &t->loc[pos];
5321 		caddr = l->addr;
5322 		chandle = l->handle;
5323 		cwaste = l->waste;
5324 		if ((track->addr == caddr) && (handle == chandle) &&
5325 			(waste == cwaste)) {
5326 
5327 			l->count++;
5328 			if (track->when) {
5329 				l->sum_time += age;
5330 				if (age < l->min_time)
5331 					l->min_time = age;
5332 				if (age > l->max_time)
5333 					l->max_time = age;
5334 
5335 				if (track->pid < l->min_pid)
5336 					l->min_pid = track->pid;
5337 				if (track->pid > l->max_pid)
5338 					l->max_pid = track->pid;
5339 
5340 				cpumask_set_cpu(track->cpu,
5341 						to_cpumask(l->cpus));
5342 			}
5343 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
5344 			return 1;
5345 		}
5346 
5347 		if (track->addr < caddr)
5348 			end = pos;
5349 		else if (track->addr == caddr && handle < chandle)
5350 			end = pos;
5351 		else if (track->addr == caddr && handle == chandle &&
5352 				waste < cwaste)
5353 			end = pos;
5354 		else
5355 			start = pos;
5356 	}
5357 
5358 	/*
5359 	 * Not found. Insert new tracking element.
5360 	 */
5361 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5362 		return 0;
5363 
5364 	l = t->loc + pos;
5365 	if (pos < t->count)
5366 		memmove(l + 1, l,
5367 			(t->count - pos) * sizeof(struct location));
5368 	t->count++;
5369 	l->count = 1;
5370 	l->addr = track->addr;
5371 	l->sum_time = age;
5372 	l->min_time = age;
5373 	l->max_time = age;
5374 	l->min_pid = track->pid;
5375 	l->max_pid = track->pid;
5376 	l->handle = handle;
5377 	l->waste = waste;
5378 	cpumask_clear(to_cpumask(l->cpus));
5379 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5380 	nodes_clear(l->nodes);
5381 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
5382 	return 1;
5383 }
5384 
5385 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5386 		struct slab *slab, enum track_item alloc,
5387 		unsigned long *obj_map)
5388 {
5389 	void *addr = slab_address(slab);
5390 	bool is_alloc = (alloc == TRACK_ALLOC);
5391 	void *p;
5392 
5393 	__fill_map(obj_map, s, slab);
5394 
5395 	for_each_object(p, s, addr, slab->objects)
5396 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5397 			add_location(t, s, get_track(s, p, alloc),
5398 				     is_alloc ? get_orig_size(s, p) :
5399 						s->object_size);
5400 }
5401 #endif  /* CONFIG_DEBUG_FS   */
5402 #endif	/* CONFIG_SLUB_DEBUG */
5403 
5404 #ifdef SLAB_SUPPORTS_SYSFS
5405 enum slab_stat_type {
5406 	SL_ALL,			/* All slabs */
5407 	SL_PARTIAL,		/* Only partially allocated slabs */
5408 	SL_CPU,			/* Only slabs used for cpu caches */
5409 	SL_OBJECTS,		/* Determine allocated objects not slabs */
5410 	SL_TOTAL		/* Determine object capacity not slabs */
5411 };
5412 
5413 #define SO_ALL		(1 << SL_ALL)
5414 #define SO_PARTIAL	(1 << SL_PARTIAL)
5415 #define SO_CPU		(1 << SL_CPU)
5416 #define SO_OBJECTS	(1 << SL_OBJECTS)
5417 #define SO_TOTAL	(1 << SL_TOTAL)
5418 
5419 static ssize_t show_slab_objects(struct kmem_cache *s,
5420 				 char *buf, unsigned long flags)
5421 {
5422 	unsigned long total = 0;
5423 	int node;
5424 	int x;
5425 	unsigned long *nodes;
5426 	int len = 0;
5427 
5428 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5429 	if (!nodes)
5430 		return -ENOMEM;
5431 
5432 	if (flags & SO_CPU) {
5433 		int cpu;
5434 
5435 		for_each_possible_cpu(cpu) {
5436 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5437 							       cpu);
5438 			int node;
5439 			struct slab *slab;
5440 
5441 			slab = READ_ONCE(c->slab);
5442 			if (!slab)
5443 				continue;
5444 
5445 			node = slab_nid(slab);
5446 			if (flags & SO_TOTAL)
5447 				x = slab->objects;
5448 			else if (flags & SO_OBJECTS)
5449 				x = slab->inuse;
5450 			else
5451 				x = 1;
5452 
5453 			total += x;
5454 			nodes[node] += x;
5455 
5456 #ifdef CONFIG_SLUB_CPU_PARTIAL
5457 			slab = slub_percpu_partial_read_once(c);
5458 			if (slab) {
5459 				node = slab_nid(slab);
5460 				if (flags & SO_TOTAL)
5461 					WARN_ON_ONCE(1);
5462 				else if (flags & SO_OBJECTS)
5463 					WARN_ON_ONCE(1);
5464 				else
5465 					x = slab->slabs;
5466 				total += x;
5467 				nodes[node] += x;
5468 			}
5469 #endif
5470 		}
5471 	}
5472 
5473 	/*
5474 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5475 	 * already held which will conflict with an existing lock order:
5476 	 *
5477 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5478 	 *
5479 	 * We don't really need mem_hotplug_lock (to hold off
5480 	 * slab_mem_going_offline_callback) here because slab's memory hot
5481 	 * unplug code doesn't destroy the kmem_cache->node[] data.
5482 	 */
5483 
5484 #ifdef CONFIG_SLUB_DEBUG
5485 	if (flags & SO_ALL) {
5486 		struct kmem_cache_node *n;
5487 
5488 		for_each_kmem_cache_node(s, node, n) {
5489 
5490 			if (flags & SO_TOTAL)
5491 				x = node_nr_objs(n);
5492 			else if (flags & SO_OBJECTS)
5493 				x = node_nr_objs(n) - count_partial(n, count_free);
5494 			else
5495 				x = node_nr_slabs(n);
5496 			total += x;
5497 			nodes[node] += x;
5498 		}
5499 
5500 	} else
5501 #endif
5502 	if (flags & SO_PARTIAL) {
5503 		struct kmem_cache_node *n;
5504 
5505 		for_each_kmem_cache_node(s, node, n) {
5506 			if (flags & SO_TOTAL)
5507 				x = count_partial(n, count_total);
5508 			else if (flags & SO_OBJECTS)
5509 				x = count_partial(n, count_inuse);
5510 			else
5511 				x = n->nr_partial;
5512 			total += x;
5513 			nodes[node] += x;
5514 		}
5515 	}
5516 
5517 	len += sysfs_emit_at(buf, len, "%lu", total);
5518 #ifdef CONFIG_NUMA
5519 	for (node = 0; node < nr_node_ids; node++) {
5520 		if (nodes[node])
5521 			len += sysfs_emit_at(buf, len, " N%d=%lu",
5522 					     node, nodes[node]);
5523 	}
5524 #endif
5525 	len += sysfs_emit_at(buf, len, "\n");
5526 	kfree(nodes);
5527 
5528 	return len;
5529 }
5530 
5531 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5532 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5533 
5534 struct slab_attribute {
5535 	struct attribute attr;
5536 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5537 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5538 };
5539 
5540 #define SLAB_ATTR_RO(_name) \
5541 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
5542 
5543 #define SLAB_ATTR(_name) \
5544 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
5545 
5546 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5547 {
5548 	return sysfs_emit(buf, "%u\n", s->size);
5549 }
5550 SLAB_ATTR_RO(slab_size);
5551 
5552 static ssize_t align_show(struct kmem_cache *s, char *buf)
5553 {
5554 	return sysfs_emit(buf, "%u\n", s->align);
5555 }
5556 SLAB_ATTR_RO(align);
5557 
5558 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5559 {
5560 	return sysfs_emit(buf, "%u\n", s->object_size);
5561 }
5562 SLAB_ATTR_RO(object_size);
5563 
5564 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5565 {
5566 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5567 }
5568 SLAB_ATTR_RO(objs_per_slab);
5569 
5570 static ssize_t order_show(struct kmem_cache *s, char *buf)
5571 {
5572 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5573 }
5574 SLAB_ATTR_RO(order);
5575 
5576 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5577 {
5578 	return sysfs_emit(buf, "%lu\n", s->min_partial);
5579 }
5580 
5581 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5582 				 size_t length)
5583 {
5584 	unsigned long min;
5585 	int err;
5586 
5587 	err = kstrtoul(buf, 10, &min);
5588 	if (err)
5589 		return err;
5590 
5591 	s->min_partial = min;
5592 	return length;
5593 }
5594 SLAB_ATTR(min_partial);
5595 
5596 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5597 {
5598 	unsigned int nr_partial = 0;
5599 #ifdef CONFIG_SLUB_CPU_PARTIAL
5600 	nr_partial = s->cpu_partial;
5601 #endif
5602 
5603 	return sysfs_emit(buf, "%u\n", nr_partial);
5604 }
5605 
5606 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5607 				 size_t length)
5608 {
5609 	unsigned int objects;
5610 	int err;
5611 
5612 	err = kstrtouint(buf, 10, &objects);
5613 	if (err)
5614 		return err;
5615 	if (objects && !kmem_cache_has_cpu_partial(s))
5616 		return -EINVAL;
5617 
5618 	slub_set_cpu_partial(s, objects);
5619 	flush_all(s);
5620 	return length;
5621 }
5622 SLAB_ATTR(cpu_partial);
5623 
5624 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5625 {
5626 	if (!s->ctor)
5627 		return 0;
5628 	return sysfs_emit(buf, "%pS\n", s->ctor);
5629 }
5630 SLAB_ATTR_RO(ctor);
5631 
5632 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5633 {
5634 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5635 }
5636 SLAB_ATTR_RO(aliases);
5637 
5638 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5639 {
5640 	return show_slab_objects(s, buf, SO_PARTIAL);
5641 }
5642 SLAB_ATTR_RO(partial);
5643 
5644 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5645 {
5646 	return show_slab_objects(s, buf, SO_CPU);
5647 }
5648 SLAB_ATTR_RO(cpu_slabs);
5649 
5650 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5651 {
5652 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5653 }
5654 SLAB_ATTR_RO(objects_partial);
5655 
5656 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5657 {
5658 	int objects = 0;
5659 	int slabs = 0;
5660 	int cpu __maybe_unused;
5661 	int len = 0;
5662 
5663 #ifdef CONFIG_SLUB_CPU_PARTIAL
5664 	for_each_online_cpu(cpu) {
5665 		struct slab *slab;
5666 
5667 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5668 
5669 		if (slab)
5670 			slabs += slab->slabs;
5671 	}
5672 #endif
5673 
5674 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
5675 	objects = (slabs * oo_objects(s->oo)) / 2;
5676 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5677 
5678 #ifdef CONFIG_SLUB_CPU_PARTIAL
5679 	for_each_online_cpu(cpu) {
5680 		struct slab *slab;
5681 
5682 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5683 		if (slab) {
5684 			slabs = READ_ONCE(slab->slabs);
5685 			objects = (slabs * oo_objects(s->oo)) / 2;
5686 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5687 					     cpu, objects, slabs);
5688 		}
5689 	}
5690 #endif
5691 	len += sysfs_emit_at(buf, len, "\n");
5692 
5693 	return len;
5694 }
5695 SLAB_ATTR_RO(slabs_cpu_partial);
5696 
5697 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5698 {
5699 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5700 }
5701 SLAB_ATTR_RO(reclaim_account);
5702 
5703 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5704 {
5705 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5706 }
5707 SLAB_ATTR_RO(hwcache_align);
5708 
5709 #ifdef CONFIG_ZONE_DMA
5710 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5711 {
5712 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5713 }
5714 SLAB_ATTR_RO(cache_dma);
5715 #endif
5716 
5717 #ifdef CONFIG_HARDENED_USERCOPY
5718 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5719 {
5720 	return sysfs_emit(buf, "%u\n", s->usersize);
5721 }
5722 SLAB_ATTR_RO(usersize);
5723 #endif
5724 
5725 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5726 {
5727 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5728 }
5729 SLAB_ATTR_RO(destroy_by_rcu);
5730 
5731 #ifdef CONFIG_SLUB_DEBUG
5732 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5733 {
5734 	return show_slab_objects(s, buf, SO_ALL);
5735 }
5736 SLAB_ATTR_RO(slabs);
5737 
5738 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5739 {
5740 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5741 }
5742 SLAB_ATTR_RO(total_objects);
5743 
5744 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5745 {
5746 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5747 }
5748 SLAB_ATTR_RO(objects);
5749 
5750 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5751 {
5752 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5753 }
5754 SLAB_ATTR_RO(sanity_checks);
5755 
5756 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5757 {
5758 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5759 }
5760 SLAB_ATTR_RO(trace);
5761 
5762 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5763 {
5764 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5765 }
5766 
5767 SLAB_ATTR_RO(red_zone);
5768 
5769 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5770 {
5771 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5772 }
5773 
5774 SLAB_ATTR_RO(poison);
5775 
5776 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5777 {
5778 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5779 }
5780 
5781 SLAB_ATTR_RO(store_user);
5782 
5783 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5784 {
5785 	return 0;
5786 }
5787 
5788 static ssize_t validate_store(struct kmem_cache *s,
5789 			const char *buf, size_t length)
5790 {
5791 	int ret = -EINVAL;
5792 
5793 	if (buf[0] == '1' && kmem_cache_debug(s)) {
5794 		ret = validate_slab_cache(s);
5795 		if (ret >= 0)
5796 			ret = length;
5797 	}
5798 	return ret;
5799 }
5800 SLAB_ATTR(validate);
5801 
5802 #endif /* CONFIG_SLUB_DEBUG */
5803 
5804 #ifdef CONFIG_FAILSLAB
5805 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5806 {
5807 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5808 }
5809 
5810 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5811 				size_t length)
5812 {
5813 	if (s->refcount > 1)
5814 		return -EINVAL;
5815 
5816 	if (buf[0] == '1')
5817 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
5818 	else
5819 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
5820 
5821 	return length;
5822 }
5823 SLAB_ATTR(failslab);
5824 #endif
5825 
5826 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5827 {
5828 	return 0;
5829 }
5830 
5831 static ssize_t shrink_store(struct kmem_cache *s,
5832 			const char *buf, size_t length)
5833 {
5834 	if (buf[0] == '1')
5835 		kmem_cache_shrink(s);
5836 	else
5837 		return -EINVAL;
5838 	return length;
5839 }
5840 SLAB_ATTR(shrink);
5841 
5842 #ifdef CONFIG_NUMA
5843 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5844 {
5845 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5846 }
5847 
5848 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5849 				const char *buf, size_t length)
5850 {
5851 	unsigned int ratio;
5852 	int err;
5853 
5854 	err = kstrtouint(buf, 10, &ratio);
5855 	if (err)
5856 		return err;
5857 	if (ratio > 100)
5858 		return -ERANGE;
5859 
5860 	s->remote_node_defrag_ratio = ratio * 10;
5861 
5862 	return length;
5863 }
5864 SLAB_ATTR(remote_node_defrag_ratio);
5865 #endif
5866 
5867 #ifdef CONFIG_SLUB_STATS
5868 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5869 {
5870 	unsigned long sum  = 0;
5871 	int cpu;
5872 	int len = 0;
5873 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5874 
5875 	if (!data)
5876 		return -ENOMEM;
5877 
5878 	for_each_online_cpu(cpu) {
5879 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5880 
5881 		data[cpu] = x;
5882 		sum += x;
5883 	}
5884 
5885 	len += sysfs_emit_at(buf, len, "%lu", sum);
5886 
5887 #ifdef CONFIG_SMP
5888 	for_each_online_cpu(cpu) {
5889 		if (data[cpu])
5890 			len += sysfs_emit_at(buf, len, " C%d=%u",
5891 					     cpu, data[cpu]);
5892 	}
5893 #endif
5894 	kfree(data);
5895 	len += sysfs_emit_at(buf, len, "\n");
5896 
5897 	return len;
5898 }
5899 
5900 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5901 {
5902 	int cpu;
5903 
5904 	for_each_online_cpu(cpu)
5905 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5906 }
5907 
5908 #define STAT_ATTR(si, text) 					\
5909 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5910 {								\
5911 	return show_stat(s, buf, si);				\
5912 }								\
5913 static ssize_t text##_store(struct kmem_cache *s,		\
5914 				const char *buf, size_t length)	\
5915 {								\
5916 	if (buf[0] != '0')					\
5917 		return -EINVAL;					\
5918 	clear_stat(s, si);					\
5919 	return length;						\
5920 }								\
5921 SLAB_ATTR(text);						\
5922 
5923 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5924 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5925 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5926 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5927 STAT_ATTR(FREE_FROZEN, free_frozen);
5928 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5929 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5930 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5931 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5932 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5933 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5934 STAT_ATTR(FREE_SLAB, free_slab);
5935 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5936 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5937 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5938 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5939 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5940 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5941 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5942 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5943 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5944 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5945 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5946 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5947 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5948 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5949 #endif	/* CONFIG_SLUB_STATS */
5950 
5951 #ifdef CONFIG_KFENCE
5952 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
5953 {
5954 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
5955 }
5956 
5957 static ssize_t skip_kfence_store(struct kmem_cache *s,
5958 			const char *buf, size_t length)
5959 {
5960 	int ret = length;
5961 
5962 	if (buf[0] == '0')
5963 		s->flags &= ~SLAB_SKIP_KFENCE;
5964 	else if (buf[0] == '1')
5965 		s->flags |= SLAB_SKIP_KFENCE;
5966 	else
5967 		ret = -EINVAL;
5968 
5969 	return ret;
5970 }
5971 SLAB_ATTR(skip_kfence);
5972 #endif
5973 
5974 static struct attribute *slab_attrs[] = {
5975 	&slab_size_attr.attr,
5976 	&object_size_attr.attr,
5977 	&objs_per_slab_attr.attr,
5978 	&order_attr.attr,
5979 	&min_partial_attr.attr,
5980 	&cpu_partial_attr.attr,
5981 	&objects_partial_attr.attr,
5982 	&partial_attr.attr,
5983 	&cpu_slabs_attr.attr,
5984 	&ctor_attr.attr,
5985 	&aliases_attr.attr,
5986 	&align_attr.attr,
5987 	&hwcache_align_attr.attr,
5988 	&reclaim_account_attr.attr,
5989 	&destroy_by_rcu_attr.attr,
5990 	&shrink_attr.attr,
5991 	&slabs_cpu_partial_attr.attr,
5992 #ifdef CONFIG_SLUB_DEBUG
5993 	&total_objects_attr.attr,
5994 	&objects_attr.attr,
5995 	&slabs_attr.attr,
5996 	&sanity_checks_attr.attr,
5997 	&trace_attr.attr,
5998 	&red_zone_attr.attr,
5999 	&poison_attr.attr,
6000 	&store_user_attr.attr,
6001 	&validate_attr.attr,
6002 #endif
6003 #ifdef CONFIG_ZONE_DMA
6004 	&cache_dma_attr.attr,
6005 #endif
6006 #ifdef CONFIG_NUMA
6007 	&remote_node_defrag_ratio_attr.attr,
6008 #endif
6009 #ifdef CONFIG_SLUB_STATS
6010 	&alloc_fastpath_attr.attr,
6011 	&alloc_slowpath_attr.attr,
6012 	&free_fastpath_attr.attr,
6013 	&free_slowpath_attr.attr,
6014 	&free_frozen_attr.attr,
6015 	&free_add_partial_attr.attr,
6016 	&free_remove_partial_attr.attr,
6017 	&alloc_from_partial_attr.attr,
6018 	&alloc_slab_attr.attr,
6019 	&alloc_refill_attr.attr,
6020 	&alloc_node_mismatch_attr.attr,
6021 	&free_slab_attr.attr,
6022 	&cpuslab_flush_attr.attr,
6023 	&deactivate_full_attr.attr,
6024 	&deactivate_empty_attr.attr,
6025 	&deactivate_to_head_attr.attr,
6026 	&deactivate_to_tail_attr.attr,
6027 	&deactivate_remote_frees_attr.attr,
6028 	&deactivate_bypass_attr.attr,
6029 	&order_fallback_attr.attr,
6030 	&cmpxchg_double_fail_attr.attr,
6031 	&cmpxchg_double_cpu_fail_attr.attr,
6032 	&cpu_partial_alloc_attr.attr,
6033 	&cpu_partial_free_attr.attr,
6034 	&cpu_partial_node_attr.attr,
6035 	&cpu_partial_drain_attr.attr,
6036 #endif
6037 #ifdef CONFIG_FAILSLAB
6038 	&failslab_attr.attr,
6039 #endif
6040 #ifdef CONFIG_HARDENED_USERCOPY
6041 	&usersize_attr.attr,
6042 #endif
6043 #ifdef CONFIG_KFENCE
6044 	&skip_kfence_attr.attr,
6045 #endif
6046 
6047 	NULL
6048 };
6049 
6050 static const struct attribute_group slab_attr_group = {
6051 	.attrs = slab_attrs,
6052 };
6053 
6054 static ssize_t slab_attr_show(struct kobject *kobj,
6055 				struct attribute *attr,
6056 				char *buf)
6057 {
6058 	struct slab_attribute *attribute;
6059 	struct kmem_cache *s;
6060 
6061 	attribute = to_slab_attr(attr);
6062 	s = to_slab(kobj);
6063 
6064 	if (!attribute->show)
6065 		return -EIO;
6066 
6067 	return attribute->show(s, buf);
6068 }
6069 
6070 static ssize_t slab_attr_store(struct kobject *kobj,
6071 				struct attribute *attr,
6072 				const char *buf, size_t len)
6073 {
6074 	struct slab_attribute *attribute;
6075 	struct kmem_cache *s;
6076 
6077 	attribute = to_slab_attr(attr);
6078 	s = to_slab(kobj);
6079 
6080 	if (!attribute->store)
6081 		return -EIO;
6082 
6083 	return attribute->store(s, buf, len);
6084 }
6085 
6086 static void kmem_cache_release(struct kobject *k)
6087 {
6088 	slab_kmem_cache_release(to_slab(k));
6089 }
6090 
6091 static const struct sysfs_ops slab_sysfs_ops = {
6092 	.show = slab_attr_show,
6093 	.store = slab_attr_store,
6094 };
6095 
6096 static const struct kobj_type slab_ktype = {
6097 	.sysfs_ops = &slab_sysfs_ops,
6098 	.release = kmem_cache_release,
6099 };
6100 
6101 static struct kset *slab_kset;
6102 
6103 static inline struct kset *cache_kset(struct kmem_cache *s)
6104 {
6105 	return slab_kset;
6106 }
6107 
6108 #define ID_STR_LENGTH 32
6109 
6110 /* Create a unique string id for a slab cache:
6111  *
6112  * Format	:[flags-]size
6113  */
6114 static char *create_unique_id(struct kmem_cache *s)
6115 {
6116 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6117 	char *p = name;
6118 
6119 	if (!name)
6120 		return ERR_PTR(-ENOMEM);
6121 
6122 	*p++ = ':';
6123 	/*
6124 	 * First flags affecting slabcache operations. We will only
6125 	 * get here for aliasable slabs so we do not need to support
6126 	 * too many flags. The flags here must cover all flags that
6127 	 * are matched during merging to guarantee that the id is
6128 	 * unique.
6129 	 */
6130 	if (s->flags & SLAB_CACHE_DMA)
6131 		*p++ = 'd';
6132 	if (s->flags & SLAB_CACHE_DMA32)
6133 		*p++ = 'D';
6134 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
6135 		*p++ = 'a';
6136 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
6137 		*p++ = 'F';
6138 	if (s->flags & SLAB_ACCOUNT)
6139 		*p++ = 'A';
6140 	if (p != name + 1)
6141 		*p++ = '-';
6142 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6143 
6144 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6145 		kfree(name);
6146 		return ERR_PTR(-EINVAL);
6147 	}
6148 	kmsan_unpoison_memory(name, p - name);
6149 	return name;
6150 }
6151 
6152 static int sysfs_slab_add(struct kmem_cache *s)
6153 {
6154 	int err;
6155 	const char *name;
6156 	struct kset *kset = cache_kset(s);
6157 	int unmergeable = slab_unmergeable(s);
6158 
6159 	if (!unmergeable && disable_higher_order_debug &&
6160 			(slub_debug & DEBUG_METADATA_FLAGS))
6161 		unmergeable = 1;
6162 
6163 	if (unmergeable) {
6164 		/*
6165 		 * Slabcache can never be merged so we can use the name proper.
6166 		 * This is typically the case for debug situations. In that
6167 		 * case we can catch duplicate names easily.
6168 		 */
6169 		sysfs_remove_link(&slab_kset->kobj, s->name);
6170 		name = s->name;
6171 	} else {
6172 		/*
6173 		 * Create a unique name for the slab as a target
6174 		 * for the symlinks.
6175 		 */
6176 		name = create_unique_id(s);
6177 		if (IS_ERR(name))
6178 			return PTR_ERR(name);
6179 	}
6180 
6181 	s->kobj.kset = kset;
6182 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6183 	if (err)
6184 		goto out;
6185 
6186 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
6187 	if (err)
6188 		goto out_del_kobj;
6189 
6190 	if (!unmergeable) {
6191 		/* Setup first alias */
6192 		sysfs_slab_alias(s, s->name);
6193 	}
6194 out:
6195 	if (!unmergeable)
6196 		kfree(name);
6197 	return err;
6198 out_del_kobj:
6199 	kobject_del(&s->kobj);
6200 	goto out;
6201 }
6202 
6203 void sysfs_slab_unlink(struct kmem_cache *s)
6204 {
6205 	if (slab_state >= FULL)
6206 		kobject_del(&s->kobj);
6207 }
6208 
6209 void sysfs_slab_release(struct kmem_cache *s)
6210 {
6211 	if (slab_state >= FULL)
6212 		kobject_put(&s->kobj);
6213 }
6214 
6215 /*
6216  * Need to buffer aliases during bootup until sysfs becomes
6217  * available lest we lose that information.
6218  */
6219 struct saved_alias {
6220 	struct kmem_cache *s;
6221 	const char *name;
6222 	struct saved_alias *next;
6223 };
6224 
6225 static struct saved_alias *alias_list;
6226 
6227 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6228 {
6229 	struct saved_alias *al;
6230 
6231 	if (slab_state == FULL) {
6232 		/*
6233 		 * If we have a leftover link then remove it.
6234 		 */
6235 		sysfs_remove_link(&slab_kset->kobj, name);
6236 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6237 	}
6238 
6239 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6240 	if (!al)
6241 		return -ENOMEM;
6242 
6243 	al->s = s;
6244 	al->name = name;
6245 	al->next = alias_list;
6246 	alias_list = al;
6247 	kmsan_unpoison_memory(al, sizeof(*al));
6248 	return 0;
6249 }
6250 
6251 static int __init slab_sysfs_init(void)
6252 {
6253 	struct kmem_cache *s;
6254 	int err;
6255 
6256 	mutex_lock(&slab_mutex);
6257 
6258 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6259 	if (!slab_kset) {
6260 		mutex_unlock(&slab_mutex);
6261 		pr_err("Cannot register slab subsystem.\n");
6262 		return -ENOMEM;
6263 	}
6264 
6265 	slab_state = FULL;
6266 
6267 	list_for_each_entry(s, &slab_caches, list) {
6268 		err = sysfs_slab_add(s);
6269 		if (err)
6270 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6271 			       s->name);
6272 	}
6273 
6274 	while (alias_list) {
6275 		struct saved_alias *al = alias_list;
6276 
6277 		alias_list = alias_list->next;
6278 		err = sysfs_slab_alias(al->s, al->name);
6279 		if (err)
6280 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6281 			       al->name);
6282 		kfree(al);
6283 	}
6284 
6285 	mutex_unlock(&slab_mutex);
6286 	return 0;
6287 }
6288 late_initcall(slab_sysfs_init);
6289 #endif /* SLAB_SUPPORTS_SYSFS */
6290 
6291 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6292 static int slab_debugfs_show(struct seq_file *seq, void *v)
6293 {
6294 	struct loc_track *t = seq->private;
6295 	struct location *l;
6296 	unsigned long idx;
6297 
6298 	idx = (unsigned long) t->idx;
6299 	if (idx < t->count) {
6300 		l = &t->loc[idx];
6301 
6302 		seq_printf(seq, "%7ld ", l->count);
6303 
6304 		if (l->addr)
6305 			seq_printf(seq, "%pS", (void *)l->addr);
6306 		else
6307 			seq_puts(seq, "<not-available>");
6308 
6309 		if (l->waste)
6310 			seq_printf(seq, " waste=%lu/%lu",
6311 				l->count * l->waste, l->waste);
6312 
6313 		if (l->sum_time != l->min_time) {
6314 			seq_printf(seq, " age=%ld/%llu/%ld",
6315 				l->min_time, div_u64(l->sum_time, l->count),
6316 				l->max_time);
6317 		} else
6318 			seq_printf(seq, " age=%ld", l->min_time);
6319 
6320 		if (l->min_pid != l->max_pid)
6321 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6322 		else
6323 			seq_printf(seq, " pid=%ld",
6324 				l->min_pid);
6325 
6326 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6327 			seq_printf(seq, " cpus=%*pbl",
6328 				 cpumask_pr_args(to_cpumask(l->cpus)));
6329 
6330 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6331 			seq_printf(seq, " nodes=%*pbl",
6332 				 nodemask_pr_args(&l->nodes));
6333 
6334 #ifdef CONFIG_STACKDEPOT
6335 		{
6336 			depot_stack_handle_t handle;
6337 			unsigned long *entries;
6338 			unsigned int nr_entries, j;
6339 
6340 			handle = READ_ONCE(l->handle);
6341 			if (handle) {
6342 				nr_entries = stack_depot_fetch(handle, &entries);
6343 				seq_puts(seq, "\n");
6344 				for (j = 0; j < nr_entries; j++)
6345 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
6346 			}
6347 		}
6348 #endif
6349 		seq_puts(seq, "\n");
6350 	}
6351 
6352 	if (!idx && !t->count)
6353 		seq_puts(seq, "No data\n");
6354 
6355 	return 0;
6356 }
6357 
6358 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6359 {
6360 }
6361 
6362 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6363 {
6364 	struct loc_track *t = seq->private;
6365 
6366 	t->idx = ++(*ppos);
6367 	if (*ppos <= t->count)
6368 		return ppos;
6369 
6370 	return NULL;
6371 }
6372 
6373 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6374 {
6375 	struct location *loc1 = (struct location *)a;
6376 	struct location *loc2 = (struct location *)b;
6377 
6378 	if (loc1->count > loc2->count)
6379 		return -1;
6380 	else
6381 		return 1;
6382 }
6383 
6384 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6385 {
6386 	struct loc_track *t = seq->private;
6387 
6388 	t->idx = *ppos;
6389 	return ppos;
6390 }
6391 
6392 static const struct seq_operations slab_debugfs_sops = {
6393 	.start  = slab_debugfs_start,
6394 	.next   = slab_debugfs_next,
6395 	.stop   = slab_debugfs_stop,
6396 	.show   = slab_debugfs_show,
6397 };
6398 
6399 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6400 {
6401 
6402 	struct kmem_cache_node *n;
6403 	enum track_item alloc;
6404 	int node;
6405 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6406 						sizeof(struct loc_track));
6407 	struct kmem_cache *s = file_inode(filep)->i_private;
6408 	unsigned long *obj_map;
6409 
6410 	if (!t)
6411 		return -ENOMEM;
6412 
6413 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6414 	if (!obj_map) {
6415 		seq_release_private(inode, filep);
6416 		return -ENOMEM;
6417 	}
6418 
6419 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6420 		alloc = TRACK_ALLOC;
6421 	else
6422 		alloc = TRACK_FREE;
6423 
6424 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6425 		bitmap_free(obj_map);
6426 		seq_release_private(inode, filep);
6427 		return -ENOMEM;
6428 	}
6429 
6430 	for_each_kmem_cache_node(s, node, n) {
6431 		unsigned long flags;
6432 		struct slab *slab;
6433 
6434 		if (!node_nr_slabs(n))
6435 			continue;
6436 
6437 		spin_lock_irqsave(&n->list_lock, flags);
6438 		list_for_each_entry(slab, &n->partial, slab_list)
6439 			process_slab(t, s, slab, alloc, obj_map);
6440 		list_for_each_entry(slab, &n->full, slab_list)
6441 			process_slab(t, s, slab, alloc, obj_map);
6442 		spin_unlock_irqrestore(&n->list_lock, flags);
6443 	}
6444 
6445 	/* Sort locations by count */
6446 	sort_r(t->loc, t->count, sizeof(struct location),
6447 		cmp_loc_by_count, NULL, NULL);
6448 
6449 	bitmap_free(obj_map);
6450 	return 0;
6451 }
6452 
6453 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6454 {
6455 	struct seq_file *seq = file->private_data;
6456 	struct loc_track *t = seq->private;
6457 
6458 	free_loc_track(t);
6459 	return seq_release_private(inode, file);
6460 }
6461 
6462 static const struct file_operations slab_debugfs_fops = {
6463 	.open    = slab_debug_trace_open,
6464 	.read    = seq_read,
6465 	.llseek  = seq_lseek,
6466 	.release = slab_debug_trace_release,
6467 };
6468 
6469 static void debugfs_slab_add(struct kmem_cache *s)
6470 {
6471 	struct dentry *slab_cache_dir;
6472 
6473 	if (unlikely(!slab_debugfs_root))
6474 		return;
6475 
6476 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6477 
6478 	debugfs_create_file("alloc_traces", 0400,
6479 		slab_cache_dir, s, &slab_debugfs_fops);
6480 
6481 	debugfs_create_file("free_traces", 0400,
6482 		slab_cache_dir, s, &slab_debugfs_fops);
6483 }
6484 
6485 void debugfs_slab_release(struct kmem_cache *s)
6486 {
6487 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
6488 }
6489 
6490 static int __init slab_debugfs_init(void)
6491 {
6492 	struct kmem_cache *s;
6493 
6494 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
6495 
6496 	list_for_each_entry(s, &slab_caches, list)
6497 		if (s->flags & SLAB_STORE_USER)
6498 			debugfs_slab_add(s);
6499 
6500 	return 0;
6501 
6502 }
6503 __initcall(slab_debugfs_init);
6504 #endif
6505 /*
6506  * The /proc/slabinfo ABI
6507  */
6508 #ifdef CONFIG_SLUB_DEBUG
6509 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6510 {
6511 	unsigned long nr_slabs = 0;
6512 	unsigned long nr_objs = 0;
6513 	unsigned long nr_free = 0;
6514 	int node;
6515 	struct kmem_cache_node *n;
6516 
6517 	for_each_kmem_cache_node(s, node, n) {
6518 		nr_slabs += node_nr_slabs(n);
6519 		nr_objs += node_nr_objs(n);
6520 		nr_free += count_partial(n, count_free);
6521 	}
6522 
6523 	sinfo->active_objs = nr_objs - nr_free;
6524 	sinfo->num_objs = nr_objs;
6525 	sinfo->active_slabs = nr_slabs;
6526 	sinfo->num_slabs = nr_slabs;
6527 	sinfo->objects_per_slab = oo_objects(s->oo);
6528 	sinfo->cache_order = oo_order(s->oo);
6529 }
6530 
6531 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6532 {
6533 }
6534 
6535 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6536 		       size_t count, loff_t *ppos)
6537 {
6538 	return -EIO;
6539 }
6540 #endif /* CONFIG_SLUB_DEBUG */
6541