xref: /openbmc/linux/mm/slub.c (revision 26a40990ba052e6f553256f9d0f112452b992a38)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/stackdepot.h>
30 #include <linux/debugobjects.h>
31 #include <linux/kallsyms.h>
32 #include <linux/kfence.h>
33 #include <linux/memory.h>
34 #include <linux/math64.h>
35 #include <linux/fault-inject.h>
36 #include <linux/stacktrace.h>
37 #include <linux/prefetch.h>
38 #include <linux/memcontrol.h>
39 #include <linux/random.h>
40 #include <kunit/test.h>
41 #include <linux/sort.h>
42 
43 #include <linux/debugfs.h>
44 #include <trace/events/kmem.h>
45 
46 #include "internal.h"
47 
48 /*
49  * Lock order:
50  *   1. slab_mutex (Global Mutex)
51  *   2. node->list_lock (Spinlock)
52  *   3. kmem_cache->cpu_slab->lock (Local lock)
53  *   4. slab_lock(slab) (Only on some arches or for debugging)
54  *   5. object_map_lock (Only for debugging)
55  *
56  *   slab_mutex
57  *
58  *   The role of the slab_mutex is to protect the list of all the slabs
59  *   and to synchronize major metadata changes to slab cache structures.
60  *   Also synchronizes memory hotplug callbacks.
61  *
62  *   slab_lock
63  *
64  *   The slab_lock is a wrapper around the page lock, thus it is a bit
65  *   spinlock.
66  *
67  *   The slab_lock is only used for debugging and on arches that do not
68  *   have the ability to do a cmpxchg_double. It only protects:
69  *	A. slab->freelist	-> List of free objects in a slab
70  *	B. slab->inuse		-> Number of objects in use
71  *	C. slab->objects	-> Number of objects in slab
72  *	D. slab->frozen		-> frozen state
73  *
74  *   Frozen slabs
75  *
76  *   If a slab is frozen then it is exempt from list management. It is not
77  *   on any list except per cpu partial list. The processor that froze the
78  *   slab is the one who can perform list operations on the slab. Other
79  *   processors may put objects onto the freelist but the processor that
80  *   froze the slab is the only one that can retrieve the objects from the
81  *   slab's freelist.
82  *
83  *   list_lock
84  *
85  *   The list_lock protects the partial and full list on each node and
86  *   the partial slab counter. If taken then no new slabs may be added or
87  *   removed from the lists nor make the number of partial slabs be modified.
88  *   (Note that the total number of slabs is an atomic value that may be
89  *   modified without taking the list lock).
90  *
91  *   The list_lock is a centralized lock and thus we avoid taking it as
92  *   much as possible. As long as SLUB does not have to handle partial
93  *   slabs, operations can continue without any centralized lock. F.e.
94  *   allocating a long series of objects that fill up slabs does not require
95  *   the list lock.
96  *
97  *   cpu_slab->lock local lock
98  *
99  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
100  *   except the stat counters. This is a percpu structure manipulated only by
101  *   the local cpu, so the lock protects against being preempted or interrupted
102  *   by an irq. Fast path operations rely on lockless operations instead.
103  *   On PREEMPT_RT, the local lock does not actually disable irqs (and thus
104  *   prevent the lockless operations), so fastpath operations also need to take
105  *   the lock and are no longer lockless.
106  *
107  *   lockless fastpaths
108  *
109  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
110  *   are fully lockless when satisfied from the percpu slab (and when
111  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
112  *   They also don't disable preemption or migration or irqs. They rely on
113  *   the transaction id (tid) field to detect being preempted or moved to
114  *   another cpu.
115  *
116  *   irq, preemption, migration considerations
117  *
118  *   Interrupts are disabled as part of list_lock or local_lock operations, or
119  *   around the slab_lock operation, in order to make the slab allocator safe
120  *   to use in the context of an irq.
121  *
122  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
123  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
124  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
125  *   doesn't have to be revalidated in each section protected by the local lock.
126  *
127  * SLUB assigns one slab for allocation to each processor.
128  * Allocations only occur from these slabs called cpu slabs.
129  *
130  * Slabs with free elements are kept on a partial list and during regular
131  * operations no list for full slabs is used. If an object in a full slab is
132  * freed then the slab will show up again on the partial lists.
133  * We track full slabs for debugging purposes though because otherwise we
134  * cannot scan all objects.
135  *
136  * Slabs are freed when they become empty. Teardown and setup is
137  * minimal so we rely on the page allocators per cpu caches for
138  * fast frees and allocs.
139  *
140  * slab->frozen		The slab is frozen and exempt from list processing.
141  * 			This means that the slab is dedicated to a purpose
142  * 			such as satisfying allocations for a specific
143  * 			processor. Objects may be freed in the slab while
144  * 			it is frozen but slab_free will then skip the usual
145  * 			list operations. It is up to the processor holding
146  * 			the slab to integrate the slab into the slab lists
147  * 			when the slab is no longer needed.
148  *
149  * 			One use of this flag is to mark slabs that are
150  * 			used for allocations. Then such a slab becomes a cpu
151  * 			slab. The cpu slab may be equipped with an additional
152  * 			freelist that allows lockless access to
153  * 			free objects in addition to the regular freelist
154  * 			that requires the slab lock.
155  *
156  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
157  * 			options set. This moves	slab handling out of
158  * 			the fast path and disables lockless freelists.
159  */
160 
161 /*
162  * We could simply use migrate_disable()/enable() but as long as it's a
163  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
164  */
165 #ifndef CONFIG_PREEMPT_RT
166 #define slub_get_cpu_ptr(var)	get_cpu_ptr(var)
167 #define slub_put_cpu_ptr(var)	put_cpu_ptr(var)
168 #else
169 #define slub_get_cpu_ptr(var)		\
170 ({					\
171 	migrate_disable();		\
172 	this_cpu_ptr(var);		\
173 })
174 #define slub_put_cpu_ptr(var)		\
175 do {					\
176 	(void)(var);			\
177 	migrate_enable();		\
178 } while (0)
179 #endif
180 
181 #ifdef CONFIG_SLUB_DEBUG
182 #ifdef CONFIG_SLUB_DEBUG_ON
183 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
184 #else
185 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
186 #endif
187 #endif		/* CONFIG_SLUB_DEBUG */
188 
189 static inline bool kmem_cache_debug(struct kmem_cache *s)
190 {
191 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
192 }
193 
194 void *fixup_red_left(struct kmem_cache *s, void *p)
195 {
196 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
197 		p += s->red_left_pad;
198 
199 	return p;
200 }
201 
202 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
203 {
204 #ifdef CONFIG_SLUB_CPU_PARTIAL
205 	return !kmem_cache_debug(s);
206 #else
207 	return false;
208 #endif
209 }
210 
211 /*
212  * Issues still to be resolved:
213  *
214  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
215  *
216  * - Variable sizing of the per node arrays
217  */
218 
219 /* Enable to log cmpxchg failures */
220 #undef SLUB_DEBUG_CMPXCHG
221 
222 /*
223  * Minimum number of partial slabs. These will be left on the partial
224  * lists even if they are empty. kmem_cache_shrink may reclaim them.
225  */
226 #define MIN_PARTIAL 5
227 
228 /*
229  * Maximum number of desirable partial slabs.
230  * The existence of more partial slabs makes kmem_cache_shrink
231  * sort the partial list by the number of objects in use.
232  */
233 #define MAX_PARTIAL 10
234 
235 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
236 				SLAB_POISON | SLAB_STORE_USER)
237 
238 /*
239  * These debug flags cannot use CMPXCHG because there might be consistency
240  * issues when checking or reading debug information
241  */
242 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
243 				SLAB_TRACE)
244 
245 
246 /*
247  * Debugging flags that require metadata to be stored in the slab.  These get
248  * disabled when slub_debug=O is used and a cache's min order increases with
249  * metadata.
250  */
251 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
252 
253 #define OO_SHIFT	16
254 #define OO_MASK		((1 << OO_SHIFT) - 1)
255 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
256 
257 /* Internal SLUB flags */
258 /* Poison object */
259 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
260 /* Use cmpxchg_double */
261 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
262 
263 /*
264  * Tracking user of a slab.
265  */
266 #define TRACK_ADDRS_COUNT 16
267 struct track {
268 	unsigned long addr;	/* Called from address */
269 #ifdef CONFIG_STACKDEPOT
270 	depot_stack_handle_t handle;
271 #endif
272 	int cpu;		/* Was running on cpu */
273 	int pid;		/* Pid context */
274 	unsigned long when;	/* When did the operation occur */
275 };
276 
277 enum track_item { TRACK_ALLOC, TRACK_FREE };
278 
279 #ifdef CONFIG_SYSFS
280 static int sysfs_slab_add(struct kmem_cache *);
281 static int sysfs_slab_alias(struct kmem_cache *, const char *);
282 #else
283 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
284 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
285 							{ return 0; }
286 #endif
287 
288 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
289 static void debugfs_slab_add(struct kmem_cache *);
290 #else
291 static inline void debugfs_slab_add(struct kmem_cache *s) { }
292 #endif
293 
294 static inline void stat(const struct kmem_cache *s, enum stat_item si)
295 {
296 #ifdef CONFIG_SLUB_STATS
297 	/*
298 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
299 	 * avoid this_cpu_add()'s irq-disable overhead.
300 	 */
301 	raw_cpu_inc(s->cpu_slab->stat[si]);
302 #endif
303 }
304 
305 /*
306  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
307  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
308  * differ during memory hotplug/hotremove operations.
309  * Protected by slab_mutex.
310  */
311 static nodemask_t slab_nodes;
312 
313 /********************************************************************
314  * 			Core slab cache functions
315  *******************************************************************/
316 
317 /*
318  * Returns freelist pointer (ptr). With hardening, this is obfuscated
319  * with an XOR of the address where the pointer is held and a per-cache
320  * random number.
321  */
322 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
323 				 unsigned long ptr_addr)
324 {
325 #ifdef CONFIG_SLAB_FREELIST_HARDENED
326 	/*
327 	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
328 	 * Normally, this doesn't cause any issues, as both set_freepointer()
329 	 * and get_freepointer() are called with a pointer with the same tag.
330 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
331 	 * example, when __free_slub() iterates over objects in a cache, it
332 	 * passes untagged pointers to check_object(). check_object() in turns
333 	 * calls get_freepointer() with an untagged pointer, which causes the
334 	 * freepointer to be restored incorrectly.
335 	 */
336 	return (void *)((unsigned long)ptr ^ s->random ^
337 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
338 #else
339 	return ptr;
340 #endif
341 }
342 
343 /* Returns the freelist pointer recorded at location ptr_addr. */
344 static inline void *freelist_dereference(const struct kmem_cache *s,
345 					 void *ptr_addr)
346 {
347 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
348 			    (unsigned long)ptr_addr);
349 }
350 
351 static inline void *get_freepointer(struct kmem_cache *s, void *object)
352 {
353 	object = kasan_reset_tag(object);
354 	return freelist_dereference(s, object + s->offset);
355 }
356 
357 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
358 {
359 	prefetchw(object + s->offset);
360 }
361 
362 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
363 {
364 	unsigned long freepointer_addr;
365 	void *p;
366 
367 	if (!debug_pagealloc_enabled_static())
368 		return get_freepointer(s, object);
369 
370 	object = kasan_reset_tag(object);
371 	freepointer_addr = (unsigned long)object + s->offset;
372 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
373 	return freelist_ptr(s, p, freepointer_addr);
374 }
375 
376 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
377 {
378 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
379 
380 #ifdef CONFIG_SLAB_FREELIST_HARDENED
381 	BUG_ON(object == fp); /* naive detection of double free or corruption */
382 #endif
383 
384 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
385 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
386 }
387 
388 /* Loop over all objects in a slab */
389 #define for_each_object(__p, __s, __addr, __objects) \
390 	for (__p = fixup_red_left(__s, __addr); \
391 		__p < (__addr) + (__objects) * (__s)->size; \
392 		__p += (__s)->size)
393 
394 static inline unsigned int order_objects(unsigned int order, unsigned int size)
395 {
396 	return ((unsigned int)PAGE_SIZE << order) / size;
397 }
398 
399 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
400 		unsigned int size)
401 {
402 	struct kmem_cache_order_objects x = {
403 		(order << OO_SHIFT) + order_objects(order, size)
404 	};
405 
406 	return x;
407 }
408 
409 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
410 {
411 	return x.x >> OO_SHIFT;
412 }
413 
414 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
415 {
416 	return x.x & OO_MASK;
417 }
418 
419 #ifdef CONFIG_SLUB_CPU_PARTIAL
420 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
421 {
422 	unsigned int nr_slabs;
423 
424 	s->cpu_partial = nr_objects;
425 
426 	/*
427 	 * We take the number of objects but actually limit the number of
428 	 * slabs on the per cpu partial list, in order to limit excessive
429 	 * growth of the list. For simplicity we assume that the slabs will
430 	 * be half-full.
431 	 */
432 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
433 	s->cpu_partial_slabs = nr_slabs;
434 }
435 #else
436 static inline void
437 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
438 {
439 }
440 #endif /* CONFIG_SLUB_CPU_PARTIAL */
441 
442 /*
443  * Per slab locking using the pagelock
444  */
445 static __always_inline void __slab_lock(struct slab *slab)
446 {
447 	struct page *page = slab_page(slab);
448 
449 	VM_BUG_ON_PAGE(PageTail(page), page);
450 	bit_spin_lock(PG_locked, &page->flags);
451 }
452 
453 static __always_inline void __slab_unlock(struct slab *slab)
454 {
455 	struct page *page = slab_page(slab);
456 
457 	VM_BUG_ON_PAGE(PageTail(page), page);
458 	__bit_spin_unlock(PG_locked, &page->flags);
459 }
460 
461 static __always_inline void slab_lock(struct slab *slab, unsigned long *flags)
462 {
463 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
464 		local_irq_save(*flags);
465 	__slab_lock(slab);
466 }
467 
468 static __always_inline void slab_unlock(struct slab *slab, unsigned long *flags)
469 {
470 	__slab_unlock(slab);
471 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
472 		local_irq_restore(*flags);
473 }
474 
475 /*
476  * Interrupts must be disabled (for the fallback code to work right), typically
477  * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different
478  * so we disable interrupts as part of slab_[un]lock().
479  */
480 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
481 		void *freelist_old, unsigned long counters_old,
482 		void *freelist_new, unsigned long counters_new,
483 		const char *n)
484 {
485 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
486 		lockdep_assert_irqs_disabled();
487 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
488     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
489 	if (s->flags & __CMPXCHG_DOUBLE) {
490 		if (cmpxchg_double(&slab->freelist, &slab->counters,
491 				   freelist_old, counters_old,
492 				   freelist_new, counters_new))
493 			return true;
494 	} else
495 #endif
496 	{
497 		/* init to 0 to prevent spurious warnings */
498 		unsigned long flags = 0;
499 
500 		slab_lock(slab, &flags);
501 		if (slab->freelist == freelist_old &&
502 					slab->counters == counters_old) {
503 			slab->freelist = freelist_new;
504 			slab->counters = counters_new;
505 			slab_unlock(slab, &flags);
506 			return true;
507 		}
508 		slab_unlock(slab, &flags);
509 	}
510 
511 	cpu_relax();
512 	stat(s, CMPXCHG_DOUBLE_FAIL);
513 
514 #ifdef SLUB_DEBUG_CMPXCHG
515 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
516 #endif
517 
518 	return false;
519 }
520 
521 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
522 		void *freelist_old, unsigned long counters_old,
523 		void *freelist_new, unsigned long counters_new,
524 		const char *n)
525 {
526 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
527     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
528 	if (s->flags & __CMPXCHG_DOUBLE) {
529 		if (cmpxchg_double(&slab->freelist, &slab->counters,
530 				   freelist_old, counters_old,
531 				   freelist_new, counters_new))
532 			return true;
533 	} else
534 #endif
535 	{
536 		unsigned long flags;
537 
538 		local_irq_save(flags);
539 		__slab_lock(slab);
540 		if (slab->freelist == freelist_old &&
541 					slab->counters == counters_old) {
542 			slab->freelist = freelist_new;
543 			slab->counters = counters_new;
544 			__slab_unlock(slab);
545 			local_irq_restore(flags);
546 			return true;
547 		}
548 		__slab_unlock(slab);
549 		local_irq_restore(flags);
550 	}
551 
552 	cpu_relax();
553 	stat(s, CMPXCHG_DOUBLE_FAIL);
554 
555 #ifdef SLUB_DEBUG_CMPXCHG
556 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
557 #endif
558 
559 	return false;
560 }
561 
562 #ifdef CONFIG_SLUB_DEBUG
563 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
564 static DEFINE_RAW_SPINLOCK(object_map_lock);
565 
566 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
567 		       struct slab *slab)
568 {
569 	void *addr = slab_address(slab);
570 	void *p;
571 
572 	bitmap_zero(obj_map, slab->objects);
573 
574 	for (p = slab->freelist; p; p = get_freepointer(s, p))
575 		set_bit(__obj_to_index(s, addr, p), obj_map);
576 }
577 
578 #if IS_ENABLED(CONFIG_KUNIT)
579 static bool slab_add_kunit_errors(void)
580 {
581 	struct kunit_resource *resource;
582 
583 	if (likely(!current->kunit_test))
584 		return false;
585 
586 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
587 	if (!resource)
588 		return false;
589 
590 	(*(int *)resource->data)++;
591 	kunit_put_resource(resource);
592 	return true;
593 }
594 #else
595 static inline bool slab_add_kunit_errors(void) { return false; }
596 #endif
597 
598 /*
599  * Determine a map of objects in use in a slab.
600  *
601  * Node listlock must be held to guarantee that the slab does
602  * not vanish from under us.
603  */
604 static unsigned long *get_map(struct kmem_cache *s, struct slab *slab)
605 	__acquires(&object_map_lock)
606 {
607 	VM_BUG_ON(!irqs_disabled());
608 
609 	raw_spin_lock(&object_map_lock);
610 
611 	__fill_map(object_map, s, slab);
612 
613 	return object_map;
614 }
615 
616 static void put_map(unsigned long *map) __releases(&object_map_lock)
617 {
618 	VM_BUG_ON(map != object_map);
619 	raw_spin_unlock(&object_map_lock);
620 }
621 
622 static inline unsigned int size_from_object(struct kmem_cache *s)
623 {
624 	if (s->flags & SLAB_RED_ZONE)
625 		return s->size - s->red_left_pad;
626 
627 	return s->size;
628 }
629 
630 static inline void *restore_red_left(struct kmem_cache *s, void *p)
631 {
632 	if (s->flags & SLAB_RED_ZONE)
633 		p -= s->red_left_pad;
634 
635 	return p;
636 }
637 
638 /*
639  * Debug settings:
640  */
641 #if defined(CONFIG_SLUB_DEBUG_ON)
642 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
643 #else
644 static slab_flags_t slub_debug;
645 #endif
646 
647 static char *slub_debug_string;
648 static int disable_higher_order_debug;
649 
650 /*
651  * slub is about to manipulate internal object metadata.  This memory lies
652  * outside the range of the allocated object, so accessing it would normally
653  * be reported by kasan as a bounds error.  metadata_access_enable() is used
654  * to tell kasan that these accesses are OK.
655  */
656 static inline void metadata_access_enable(void)
657 {
658 	kasan_disable_current();
659 }
660 
661 static inline void metadata_access_disable(void)
662 {
663 	kasan_enable_current();
664 }
665 
666 /*
667  * Object debugging
668  */
669 
670 /* Verify that a pointer has an address that is valid within a slab page */
671 static inline int check_valid_pointer(struct kmem_cache *s,
672 				struct slab *slab, void *object)
673 {
674 	void *base;
675 
676 	if (!object)
677 		return 1;
678 
679 	base = slab_address(slab);
680 	object = kasan_reset_tag(object);
681 	object = restore_red_left(s, object);
682 	if (object < base || object >= base + slab->objects * s->size ||
683 		(object - base) % s->size) {
684 		return 0;
685 	}
686 
687 	return 1;
688 }
689 
690 static void print_section(char *level, char *text, u8 *addr,
691 			  unsigned int length)
692 {
693 	metadata_access_enable();
694 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
695 			16, 1, kasan_reset_tag((void *)addr), length, 1);
696 	metadata_access_disable();
697 }
698 
699 /*
700  * See comment in calculate_sizes().
701  */
702 static inline bool freeptr_outside_object(struct kmem_cache *s)
703 {
704 	return s->offset >= s->inuse;
705 }
706 
707 /*
708  * Return offset of the end of info block which is inuse + free pointer if
709  * not overlapping with object.
710  */
711 static inline unsigned int get_info_end(struct kmem_cache *s)
712 {
713 	if (freeptr_outside_object(s))
714 		return s->inuse + sizeof(void *);
715 	else
716 		return s->inuse;
717 }
718 
719 static struct track *get_track(struct kmem_cache *s, void *object,
720 	enum track_item alloc)
721 {
722 	struct track *p;
723 
724 	p = object + get_info_end(s);
725 
726 	return kasan_reset_tag(p + alloc);
727 }
728 
729 #ifdef CONFIG_STACKDEPOT
730 static noinline depot_stack_handle_t set_track_prepare(void)
731 {
732 	depot_stack_handle_t handle;
733 	unsigned long entries[TRACK_ADDRS_COUNT];
734 	unsigned int nr_entries;
735 
736 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
737 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
738 
739 	return handle;
740 }
741 #else
742 static inline depot_stack_handle_t set_track_prepare(void)
743 {
744 	return 0;
745 }
746 #endif
747 
748 static void set_track_update(struct kmem_cache *s, void *object,
749 			     enum track_item alloc, unsigned long addr,
750 			     depot_stack_handle_t handle)
751 {
752 	struct track *p = get_track(s, object, alloc);
753 
754 #ifdef CONFIG_STACKDEPOT
755 	p->handle = handle;
756 #endif
757 	p->addr = addr;
758 	p->cpu = smp_processor_id();
759 	p->pid = current->pid;
760 	p->when = jiffies;
761 }
762 
763 static __always_inline void set_track(struct kmem_cache *s, void *object,
764 				      enum track_item alloc, unsigned long addr)
765 {
766 	depot_stack_handle_t handle = set_track_prepare();
767 
768 	set_track_update(s, object, alloc, addr, handle);
769 }
770 
771 static void init_tracking(struct kmem_cache *s, void *object)
772 {
773 	struct track *p;
774 
775 	if (!(s->flags & SLAB_STORE_USER))
776 		return;
777 
778 	p = get_track(s, object, TRACK_ALLOC);
779 	memset(p, 0, 2*sizeof(struct track));
780 }
781 
782 static void print_track(const char *s, struct track *t, unsigned long pr_time)
783 {
784 	depot_stack_handle_t handle __maybe_unused;
785 
786 	if (!t->addr)
787 		return;
788 
789 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
790 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
791 #ifdef CONFIG_STACKDEPOT
792 	handle = READ_ONCE(t->handle);
793 	if (handle)
794 		stack_depot_print(handle);
795 	else
796 		pr_err("object allocation/free stack trace missing\n");
797 #endif
798 }
799 
800 void print_tracking(struct kmem_cache *s, void *object)
801 {
802 	unsigned long pr_time = jiffies;
803 	if (!(s->flags & SLAB_STORE_USER))
804 		return;
805 
806 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
807 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
808 }
809 
810 static void print_slab_info(const struct slab *slab)
811 {
812 	struct folio *folio = (struct folio *)slab_folio(slab);
813 
814 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
815 	       slab, slab->objects, slab->inuse, slab->freelist,
816 	       folio_flags(folio, 0));
817 }
818 
819 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
820 {
821 	struct va_format vaf;
822 	va_list args;
823 
824 	va_start(args, fmt);
825 	vaf.fmt = fmt;
826 	vaf.va = &args;
827 	pr_err("=============================================================================\n");
828 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
829 	pr_err("-----------------------------------------------------------------------------\n\n");
830 	va_end(args);
831 }
832 
833 __printf(2, 3)
834 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
835 {
836 	struct va_format vaf;
837 	va_list args;
838 
839 	if (slab_add_kunit_errors())
840 		return;
841 
842 	va_start(args, fmt);
843 	vaf.fmt = fmt;
844 	vaf.va = &args;
845 	pr_err("FIX %s: %pV\n", s->name, &vaf);
846 	va_end(args);
847 }
848 
849 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
850 {
851 	unsigned int off;	/* Offset of last byte */
852 	u8 *addr = slab_address(slab);
853 
854 	print_tracking(s, p);
855 
856 	print_slab_info(slab);
857 
858 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
859 	       p, p - addr, get_freepointer(s, p));
860 
861 	if (s->flags & SLAB_RED_ZONE)
862 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
863 			      s->red_left_pad);
864 	else if (p > addr + 16)
865 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
866 
867 	print_section(KERN_ERR,         "Object   ", p,
868 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
869 	if (s->flags & SLAB_RED_ZONE)
870 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
871 			s->inuse - s->object_size);
872 
873 	off = get_info_end(s);
874 
875 	if (s->flags & SLAB_STORE_USER)
876 		off += 2 * sizeof(struct track);
877 
878 	off += kasan_metadata_size(s);
879 
880 	if (off != size_from_object(s))
881 		/* Beginning of the filler is the free pointer */
882 		print_section(KERN_ERR, "Padding  ", p + off,
883 			      size_from_object(s) - off);
884 
885 	dump_stack();
886 }
887 
888 static void object_err(struct kmem_cache *s, struct slab *slab,
889 			u8 *object, char *reason)
890 {
891 	if (slab_add_kunit_errors())
892 		return;
893 
894 	slab_bug(s, "%s", reason);
895 	print_trailer(s, slab, object);
896 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
897 }
898 
899 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
900 			       void **freelist, void *nextfree)
901 {
902 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
903 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
904 		object_err(s, slab, *freelist, "Freechain corrupt");
905 		*freelist = NULL;
906 		slab_fix(s, "Isolate corrupted freechain");
907 		return true;
908 	}
909 
910 	return false;
911 }
912 
913 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
914 			const char *fmt, ...)
915 {
916 	va_list args;
917 	char buf[100];
918 
919 	if (slab_add_kunit_errors())
920 		return;
921 
922 	va_start(args, fmt);
923 	vsnprintf(buf, sizeof(buf), fmt, args);
924 	va_end(args);
925 	slab_bug(s, "%s", buf);
926 	print_slab_info(slab);
927 	dump_stack();
928 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
929 }
930 
931 static void init_object(struct kmem_cache *s, void *object, u8 val)
932 {
933 	u8 *p = kasan_reset_tag(object);
934 
935 	if (s->flags & SLAB_RED_ZONE)
936 		memset(p - s->red_left_pad, val, s->red_left_pad);
937 
938 	if (s->flags & __OBJECT_POISON) {
939 		memset(p, POISON_FREE, s->object_size - 1);
940 		p[s->object_size - 1] = POISON_END;
941 	}
942 
943 	if (s->flags & SLAB_RED_ZONE)
944 		memset(p + s->object_size, val, s->inuse - s->object_size);
945 }
946 
947 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
948 						void *from, void *to)
949 {
950 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
951 	memset(from, data, to - from);
952 }
953 
954 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
955 			u8 *object, char *what,
956 			u8 *start, unsigned int value, unsigned int bytes)
957 {
958 	u8 *fault;
959 	u8 *end;
960 	u8 *addr = slab_address(slab);
961 
962 	metadata_access_enable();
963 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
964 	metadata_access_disable();
965 	if (!fault)
966 		return 1;
967 
968 	end = start + bytes;
969 	while (end > fault && end[-1] == value)
970 		end--;
971 
972 	if (slab_add_kunit_errors())
973 		goto skip_bug_print;
974 
975 	slab_bug(s, "%s overwritten", what);
976 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
977 					fault, end - 1, fault - addr,
978 					fault[0], value);
979 	print_trailer(s, slab, object);
980 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
981 
982 skip_bug_print:
983 	restore_bytes(s, what, value, fault, end);
984 	return 0;
985 }
986 
987 /*
988  * Object layout:
989  *
990  * object address
991  * 	Bytes of the object to be managed.
992  * 	If the freepointer may overlay the object then the free
993  *	pointer is at the middle of the object.
994  *
995  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
996  * 	0xa5 (POISON_END)
997  *
998  * object + s->object_size
999  * 	Padding to reach word boundary. This is also used for Redzoning.
1000  * 	Padding is extended by another word if Redzoning is enabled and
1001  * 	object_size == inuse.
1002  *
1003  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1004  * 	0xcc (RED_ACTIVE) for objects in use.
1005  *
1006  * object + s->inuse
1007  * 	Meta data starts here.
1008  *
1009  * 	A. Free pointer (if we cannot overwrite object on free)
1010  * 	B. Tracking data for SLAB_STORE_USER
1011  *	C. Padding to reach required alignment boundary or at minimum
1012  * 		one word if debugging is on to be able to detect writes
1013  * 		before the word boundary.
1014  *
1015  *	Padding is done using 0x5a (POISON_INUSE)
1016  *
1017  * object + s->size
1018  * 	Nothing is used beyond s->size.
1019  *
1020  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1021  * ignored. And therefore no slab options that rely on these boundaries
1022  * may be used with merged slabcaches.
1023  */
1024 
1025 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1026 {
1027 	unsigned long off = get_info_end(s);	/* The end of info */
1028 
1029 	if (s->flags & SLAB_STORE_USER)
1030 		/* We also have user information there */
1031 		off += 2 * sizeof(struct track);
1032 
1033 	off += kasan_metadata_size(s);
1034 
1035 	if (size_from_object(s) == off)
1036 		return 1;
1037 
1038 	return check_bytes_and_report(s, slab, p, "Object padding",
1039 			p + off, POISON_INUSE, size_from_object(s) - off);
1040 }
1041 
1042 /* Check the pad bytes at the end of a slab page */
1043 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1044 {
1045 	u8 *start;
1046 	u8 *fault;
1047 	u8 *end;
1048 	u8 *pad;
1049 	int length;
1050 	int remainder;
1051 
1052 	if (!(s->flags & SLAB_POISON))
1053 		return;
1054 
1055 	start = slab_address(slab);
1056 	length = slab_size(slab);
1057 	end = start + length;
1058 	remainder = length % s->size;
1059 	if (!remainder)
1060 		return;
1061 
1062 	pad = end - remainder;
1063 	metadata_access_enable();
1064 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1065 	metadata_access_disable();
1066 	if (!fault)
1067 		return;
1068 	while (end > fault && end[-1] == POISON_INUSE)
1069 		end--;
1070 
1071 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1072 			fault, end - 1, fault - start);
1073 	print_section(KERN_ERR, "Padding ", pad, remainder);
1074 
1075 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1076 }
1077 
1078 static int check_object(struct kmem_cache *s, struct slab *slab,
1079 					void *object, u8 val)
1080 {
1081 	u8 *p = object;
1082 	u8 *endobject = object + s->object_size;
1083 
1084 	if (s->flags & SLAB_RED_ZONE) {
1085 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1086 			object - s->red_left_pad, val, s->red_left_pad))
1087 			return 0;
1088 
1089 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1090 			endobject, val, s->inuse - s->object_size))
1091 			return 0;
1092 	} else {
1093 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1094 			check_bytes_and_report(s, slab, p, "Alignment padding",
1095 				endobject, POISON_INUSE,
1096 				s->inuse - s->object_size);
1097 		}
1098 	}
1099 
1100 	if (s->flags & SLAB_POISON) {
1101 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1102 			(!check_bytes_and_report(s, slab, p, "Poison", p,
1103 					POISON_FREE, s->object_size - 1) ||
1104 			 !check_bytes_and_report(s, slab, p, "End Poison",
1105 				p + s->object_size - 1, POISON_END, 1)))
1106 			return 0;
1107 		/*
1108 		 * check_pad_bytes cleans up on its own.
1109 		 */
1110 		check_pad_bytes(s, slab, p);
1111 	}
1112 
1113 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1114 		/*
1115 		 * Object and freepointer overlap. Cannot check
1116 		 * freepointer while object is allocated.
1117 		 */
1118 		return 1;
1119 
1120 	/* Check free pointer validity */
1121 	if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1122 		object_err(s, slab, p, "Freepointer corrupt");
1123 		/*
1124 		 * No choice but to zap it and thus lose the remainder
1125 		 * of the free objects in this slab. May cause
1126 		 * another error because the object count is now wrong.
1127 		 */
1128 		set_freepointer(s, p, NULL);
1129 		return 0;
1130 	}
1131 	return 1;
1132 }
1133 
1134 static int check_slab(struct kmem_cache *s, struct slab *slab)
1135 {
1136 	int maxobj;
1137 
1138 	if (!folio_test_slab(slab_folio(slab))) {
1139 		slab_err(s, slab, "Not a valid slab page");
1140 		return 0;
1141 	}
1142 
1143 	maxobj = order_objects(slab_order(slab), s->size);
1144 	if (slab->objects > maxobj) {
1145 		slab_err(s, slab, "objects %u > max %u",
1146 			slab->objects, maxobj);
1147 		return 0;
1148 	}
1149 	if (slab->inuse > slab->objects) {
1150 		slab_err(s, slab, "inuse %u > max %u",
1151 			slab->inuse, slab->objects);
1152 		return 0;
1153 	}
1154 	/* Slab_pad_check fixes things up after itself */
1155 	slab_pad_check(s, slab);
1156 	return 1;
1157 }
1158 
1159 /*
1160  * Determine if a certain object in a slab is on the freelist. Must hold the
1161  * slab lock to guarantee that the chains are in a consistent state.
1162  */
1163 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1164 {
1165 	int nr = 0;
1166 	void *fp;
1167 	void *object = NULL;
1168 	int max_objects;
1169 
1170 	fp = slab->freelist;
1171 	while (fp && nr <= slab->objects) {
1172 		if (fp == search)
1173 			return 1;
1174 		if (!check_valid_pointer(s, slab, fp)) {
1175 			if (object) {
1176 				object_err(s, slab, object,
1177 					"Freechain corrupt");
1178 				set_freepointer(s, object, NULL);
1179 			} else {
1180 				slab_err(s, slab, "Freepointer corrupt");
1181 				slab->freelist = NULL;
1182 				slab->inuse = slab->objects;
1183 				slab_fix(s, "Freelist cleared");
1184 				return 0;
1185 			}
1186 			break;
1187 		}
1188 		object = fp;
1189 		fp = get_freepointer(s, object);
1190 		nr++;
1191 	}
1192 
1193 	max_objects = order_objects(slab_order(slab), s->size);
1194 	if (max_objects > MAX_OBJS_PER_PAGE)
1195 		max_objects = MAX_OBJS_PER_PAGE;
1196 
1197 	if (slab->objects != max_objects) {
1198 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1199 			 slab->objects, max_objects);
1200 		slab->objects = max_objects;
1201 		slab_fix(s, "Number of objects adjusted");
1202 	}
1203 	if (slab->inuse != slab->objects - nr) {
1204 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1205 			 slab->inuse, slab->objects - nr);
1206 		slab->inuse = slab->objects - nr;
1207 		slab_fix(s, "Object count adjusted");
1208 	}
1209 	return search == NULL;
1210 }
1211 
1212 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1213 								int alloc)
1214 {
1215 	if (s->flags & SLAB_TRACE) {
1216 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1217 			s->name,
1218 			alloc ? "alloc" : "free",
1219 			object, slab->inuse,
1220 			slab->freelist);
1221 
1222 		if (!alloc)
1223 			print_section(KERN_INFO, "Object ", (void *)object,
1224 					s->object_size);
1225 
1226 		dump_stack();
1227 	}
1228 }
1229 
1230 /*
1231  * Tracking of fully allocated slabs for debugging purposes.
1232  */
1233 static void add_full(struct kmem_cache *s,
1234 	struct kmem_cache_node *n, struct slab *slab)
1235 {
1236 	if (!(s->flags & SLAB_STORE_USER))
1237 		return;
1238 
1239 	lockdep_assert_held(&n->list_lock);
1240 	list_add(&slab->slab_list, &n->full);
1241 }
1242 
1243 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1244 {
1245 	if (!(s->flags & SLAB_STORE_USER))
1246 		return;
1247 
1248 	lockdep_assert_held(&n->list_lock);
1249 	list_del(&slab->slab_list);
1250 }
1251 
1252 /* Tracking of the number of slabs for debugging purposes */
1253 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1254 {
1255 	struct kmem_cache_node *n = get_node(s, node);
1256 
1257 	return atomic_long_read(&n->nr_slabs);
1258 }
1259 
1260 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1261 {
1262 	return atomic_long_read(&n->nr_slabs);
1263 }
1264 
1265 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1266 {
1267 	struct kmem_cache_node *n = get_node(s, node);
1268 
1269 	/*
1270 	 * May be called early in order to allocate a slab for the
1271 	 * kmem_cache_node structure. Solve the chicken-egg
1272 	 * dilemma by deferring the increment of the count during
1273 	 * bootstrap (see early_kmem_cache_node_alloc).
1274 	 */
1275 	if (likely(n)) {
1276 		atomic_long_inc(&n->nr_slabs);
1277 		atomic_long_add(objects, &n->total_objects);
1278 	}
1279 }
1280 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1281 {
1282 	struct kmem_cache_node *n = get_node(s, node);
1283 
1284 	atomic_long_dec(&n->nr_slabs);
1285 	atomic_long_sub(objects, &n->total_objects);
1286 }
1287 
1288 /* Object debug checks for alloc/free paths */
1289 static void setup_object_debug(struct kmem_cache *s, void *object)
1290 {
1291 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1292 		return;
1293 
1294 	init_object(s, object, SLUB_RED_INACTIVE);
1295 	init_tracking(s, object);
1296 }
1297 
1298 static
1299 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1300 {
1301 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1302 		return;
1303 
1304 	metadata_access_enable();
1305 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1306 	metadata_access_disable();
1307 }
1308 
1309 static inline int alloc_consistency_checks(struct kmem_cache *s,
1310 					struct slab *slab, void *object)
1311 {
1312 	if (!check_slab(s, slab))
1313 		return 0;
1314 
1315 	if (!check_valid_pointer(s, slab, object)) {
1316 		object_err(s, slab, object, "Freelist Pointer check fails");
1317 		return 0;
1318 	}
1319 
1320 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1321 		return 0;
1322 
1323 	return 1;
1324 }
1325 
1326 static noinline int alloc_debug_processing(struct kmem_cache *s,
1327 					struct slab *slab,
1328 					void *object, unsigned long addr)
1329 {
1330 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1331 		if (!alloc_consistency_checks(s, slab, object))
1332 			goto bad;
1333 	}
1334 
1335 	/* Success perform special debug activities for allocs */
1336 	if (s->flags & SLAB_STORE_USER)
1337 		set_track(s, object, TRACK_ALLOC, addr);
1338 	trace(s, slab, object, 1);
1339 	init_object(s, object, SLUB_RED_ACTIVE);
1340 	return 1;
1341 
1342 bad:
1343 	if (folio_test_slab(slab_folio(slab))) {
1344 		/*
1345 		 * If this is a slab page then lets do the best we can
1346 		 * to avoid issues in the future. Marking all objects
1347 		 * as used avoids touching the remaining objects.
1348 		 */
1349 		slab_fix(s, "Marking all objects used");
1350 		slab->inuse = slab->objects;
1351 		slab->freelist = NULL;
1352 	}
1353 	return 0;
1354 }
1355 
1356 static inline int free_consistency_checks(struct kmem_cache *s,
1357 		struct slab *slab, void *object, unsigned long addr)
1358 {
1359 	if (!check_valid_pointer(s, slab, object)) {
1360 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1361 		return 0;
1362 	}
1363 
1364 	if (on_freelist(s, slab, object)) {
1365 		object_err(s, slab, object, "Object already free");
1366 		return 0;
1367 	}
1368 
1369 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1370 		return 0;
1371 
1372 	if (unlikely(s != slab->slab_cache)) {
1373 		if (!folio_test_slab(slab_folio(slab))) {
1374 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1375 				 object);
1376 		} else if (!slab->slab_cache) {
1377 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1378 			       object);
1379 			dump_stack();
1380 		} else
1381 			object_err(s, slab, object,
1382 					"page slab pointer corrupt.");
1383 		return 0;
1384 	}
1385 	return 1;
1386 }
1387 
1388 /* Supports checking bulk free of a constructed freelist */
1389 static noinline int free_debug_processing(
1390 	struct kmem_cache *s, struct slab *slab,
1391 	void *head, void *tail, int bulk_cnt,
1392 	unsigned long addr)
1393 {
1394 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
1395 	void *object = head;
1396 	int cnt = 0;
1397 	unsigned long flags, flags2;
1398 	int ret = 0;
1399 	depot_stack_handle_t handle = 0;
1400 
1401 	if (s->flags & SLAB_STORE_USER)
1402 		handle = set_track_prepare();
1403 
1404 	spin_lock_irqsave(&n->list_lock, flags);
1405 	slab_lock(slab, &flags2);
1406 
1407 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1408 		if (!check_slab(s, slab))
1409 			goto out;
1410 	}
1411 
1412 next_object:
1413 	cnt++;
1414 
1415 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1416 		if (!free_consistency_checks(s, slab, object, addr))
1417 			goto out;
1418 	}
1419 
1420 	if (s->flags & SLAB_STORE_USER)
1421 		set_track_update(s, object, TRACK_FREE, addr, handle);
1422 	trace(s, slab, object, 0);
1423 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1424 	init_object(s, object, SLUB_RED_INACTIVE);
1425 
1426 	/* Reached end of constructed freelist yet? */
1427 	if (object != tail) {
1428 		object = get_freepointer(s, object);
1429 		goto next_object;
1430 	}
1431 	ret = 1;
1432 
1433 out:
1434 	if (cnt != bulk_cnt)
1435 		slab_err(s, slab, "Bulk freelist count(%d) invalid(%d)\n",
1436 			 bulk_cnt, cnt);
1437 
1438 	slab_unlock(slab, &flags2);
1439 	spin_unlock_irqrestore(&n->list_lock, flags);
1440 	if (!ret)
1441 		slab_fix(s, "Object at 0x%p not freed", object);
1442 	return ret;
1443 }
1444 
1445 /*
1446  * Parse a block of slub_debug options. Blocks are delimited by ';'
1447  *
1448  * @str:    start of block
1449  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1450  * @slabs:  return start of list of slabs, or NULL when there's no list
1451  * @init:   assume this is initial parsing and not per-kmem-create parsing
1452  *
1453  * returns the start of next block if there's any, or NULL
1454  */
1455 static char *
1456 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1457 {
1458 	bool higher_order_disable = false;
1459 
1460 	/* Skip any completely empty blocks */
1461 	while (*str && *str == ';')
1462 		str++;
1463 
1464 	if (*str == ',') {
1465 		/*
1466 		 * No options but restriction on slabs. This means full
1467 		 * debugging for slabs matching a pattern.
1468 		 */
1469 		*flags = DEBUG_DEFAULT_FLAGS;
1470 		goto check_slabs;
1471 	}
1472 	*flags = 0;
1473 
1474 	/* Determine which debug features should be switched on */
1475 	for (; *str && *str != ',' && *str != ';'; str++) {
1476 		switch (tolower(*str)) {
1477 		case '-':
1478 			*flags = 0;
1479 			break;
1480 		case 'f':
1481 			*flags |= SLAB_CONSISTENCY_CHECKS;
1482 			break;
1483 		case 'z':
1484 			*flags |= SLAB_RED_ZONE;
1485 			break;
1486 		case 'p':
1487 			*flags |= SLAB_POISON;
1488 			break;
1489 		case 'u':
1490 			*flags |= SLAB_STORE_USER;
1491 			break;
1492 		case 't':
1493 			*flags |= SLAB_TRACE;
1494 			break;
1495 		case 'a':
1496 			*flags |= SLAB_FAILSLAB;
1497 			break;
1498 		case 'o':
1499 			/*
1500 			 * Avoid enabling debugging on caches if its minimum
1501 			 * order would increase as a result.
1502 			 */
1503 			higher_order_disable = true;
1504 			break;
1505 		default:
1506 			if (init)
1507 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1508 		}
1509 	}
1510 check_slabs:
1511 	if (*str == ',')
1512 		*slabs = ++str;
1513 	else
1514 		*slabs = NULL;
1515 
1516 	/* Skip over the slab list */
1517 	while (*str && *str != ';')
1518 		str++;
1519 
1520 	/* Skip any completely empty blocks */
1521 	while (*str && *str == ';')
1522 		str++;
1523 
1524 	if (init && higher_order_disable)
1525 		disable_higher_order_debug = 1;
1526 
1527 	if (*str)
1528 		return str;
1529 	else
1530 		return NULL;
1531 }
1532 
1533 static int __init setup_slub_debug(char *str)
1534 {
1535 	slab_flags_t flags;
1536 	slab_flags_t global_flags;
1537 	char *saved_str;
1538 	char *slab_list;
1539 	bool global_slub_debug_changed = false;
1540 	bool slab_list_specified = false;
1541 
1542 	global_flags = DEBUG_DEFAULT_FLAGS;
1543 	if (*str++ != '=' || !*str)
1544 		/*
1545 		 * No options specified. Switch on full debugging.
1546 		 */
1547 		goto out;
1548 
1549 	saved_str = str;
1550 	while (str) {
1551 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1552 
1553 		if (!slab_list) {
1554 			global_flags = flags;
1555 			global_slub_debug_changed = true;
1556 		} else {
1557 			slab_list_specified = true;
1558 			if (flags & SLAB_STORE_USER)
1559 				stack_depot_want_early_init();
1560 		}
1561 	}
1562 
1563 	/*
1564 	 * For backwards compatibility, a single list of flags with list of
1565 	 * slabs means debugging is only changed for those slabs, so the global
1566 	 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1567 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1568 	 * long as there is no option specifying flags without a slab list.
1569 	 */
1570 	if (slab_list_specified) {
1571 		if (!global_slub_debug_changed)
1572 			global_flags = slub_debug;
1573 		slub_debug_string = saved_str;
1574 	}
1575 out:
1576 	slub_debug = global_flags;
1577 	if (slub_debug & SLAB_STORE_USER)
1578 		stack_depot_want_early_init();
1579 	if (slub_debug != 0 || slub_debug_string)
1580 		static_branch_enable(&slub_debug_enabled);
1581 	else
1582 		static_branch_disable(&slub_debug_enabled);
1583 	if ((static_branch_unlikely(&init_on_alloc) ||
1584 	     static_branch_unlikely(&init_on_free)) &&
1585 	    (slub_debug & SLAB_POISON))
1586 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1587 	return 1;
1588 }
1589 
1590 __setup("slub_debug", setup_slub_debug);
1591 
1592 /*
1593  * kmem_cache_flags - apply debugging options to the cache
1594  * @object_size:	the size of an object without meta data
1595  * @flags:		flags to set
1596  * @name:		name of the cache
1597  *
1598  * Debug option(s) are applied to @flags. In addition to the debug
1599  * option(s), if a slab name (or multiple) is specified i.e.
1600  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1601  * then only the select slabs will receive the debug option(s).
1602  */
1603 slab_flags_t kmem_cache_flags(unsigned int object_size,
1604 	slab_flags_t flags, const char *name)
1605 {
1606 	char *iter;
1607 	size_t len;
1608 	char *next_block;
1609 	slab_flags_t block_flags;
1610 	slab_flags_t slub_debug_local = slub_debug;
1611 
1612 	if (flags & SLAB_NO_USER_FLAGS)
1613 		return flags;
1614 
1615 	/*
1616 	 * If the slab cache is for debugging (e.g. kmemleak) then
1617 	 * don't store user (stack trace) information by default,
1618 	 * but let the user enable it via the command line below.
1619 	 */
1620 	if (flags & SLAB_NOLEAKTRACE)
1621 		slub_debug_local &= ~SLAB_STORE_USER;
1622 
1623 	len = strlen(name);
1624 	next_block = slub_debug_string;
1625 	/* Go through all blocks of debug options, see if any matches our slab's name */
1626 	while (next_block) {
1627 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1628 		if (!iter)
1629 			continue;
1630 		/* Found a block that has a slab list, search it */
1631 		while (*iter) {
1632 			char *end, *glob;
1633 			size_t cmplen;
1634 
1635 			end = strchrnul(iter, ',');
1636 			if (next_block && next_block < end)
1637 				end = next_block - 1;
1638 
1639 			glob = strnchr(iter, end - iter, '*');
1640 			if (glob)
1641 				cmplen = glob - iter;
1642 			else
1643 				cmplen = max_t(size_t, len, (end - iter));
1644 
1645 			if (!strncmp(name, iter, cmplen)) {
1646 				flags |= block_flags;
1647 				return flags;
1648 			}
1649 
1650 			if (!*end || *end == ';')
1651 				break;
1652 			iter = end + 1;
1653 		}
1654 	}
1655 
1656 	return flags | slub_debug_local;
1657 }
1658 #else /* !CONFIG_SLUB_DEBUG */
1659 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1660 static inline
1661 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1662 
1663 static inline int alloc_debug_processing(struct kmem_cache *s,
1664 	struct slab *slab, void *object, unsigned long addr) { return 0; }
1665 
1666 static inline int free_debug_processing(
1667 	struct kmem_cache *s, struct slab *slab,
1668 	void *head, void *tail, int bulk_cnt,
1669 	unsigned long addr) { return 0; }
1670 
1671 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1672 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1673 			void *object, u8 val) { return 1; }
1674 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1675 					struct slab *slab) {}
1676 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1677 					struct slab *slab) {}
1678 slab_flags_t kmem_cache_flags(unsigned int object_size,
1679 	slab_flags_t flags, const char *name)
1680 {
1681 	return flags;
1682 }
1683 #define slub_debug 0
1684 
1685 #define disable_higher_order_debug 0
1686 
1687 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1688 							{ return 0; }
1689 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1690 							{ return 0; }
1691 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1692 							int objects) {}
1693 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1694 							int objects) {}
1695 
1696 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1697 			       void **freelist, void *nextfree)
1698 {
1699 	return false;
1700 }
1701 #endif /* CONFIG_SLUB_DEBUG */
1702 
1703 /*
1704  * Hooks for other subsystems that check memory allocations. In a typical
1705  * production configuration these hooks all should produce no code at all.
1706  */
1707 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1708 						void *x, bool init)
1709 {
1710 	kmemleak_free_recursive(x, s->flags);
1711 
1712 	debug_check_no_locks_freed(x, s->object_size);
1713 
1714 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1715 		debug_check_no_obj_freed(x, s->object_size);
1716 
1717 	/* Use KCSAN to help debug racy use-after-free. */
1718 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1719 		__kcsan_check_access(x, s->object_size,
1720 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1721 
1722 	/*
1723 	 * As memory initialization might be integrated into KASAN,
1724 	 * kasan_slab_free and initialization memset's must be
1725 	 * kept together to avoid discrepancies in behavior.
1726 	 *
1727 	 * The initialization memset's clear the object and the metadata,
1728 	 * but don't touch the SLAB redzone.
1729 	 */
1730 	if (init) {
1731 		int rsize;
1732 
1733 		if (!kasan_has_integrated_init())
1734 			memset(kasan_reset_tag(x), 0, s->object_size);
1735 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1736 		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1737 		       s->size - s->inuse - rsize);
1738 	}
1739 	/* KASAN might put x into memory quarantine, delaying its reuse. */
1740 	return kasan_slab_free(s, x, init);
1741 }
1742 
1743 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1744 					   void **head, void **tail,
1745 					   int *cnt)
1746 {
1747 
1748 	void *object;
1749 	void *next = *head;
1750 	void *old_tail = *tail ? *tail : *head;
1751 
1752 	if (is_kfence_address(next)) {
1753 		slab_free_hook(s, next, false);
1754 		return true;
1755 	}
1756 
1757 	/* Head and tail of the reconstructed freelist */
1758 	*head = NULL;
1759 	*tail = NULL;
1760 
1761 	do {
1762 		object = next;
1763 		next = get_freepointer(s, object);
1764 
1765 		/* If object's reuse doesn't have to be delayed */
1766 		if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1767 			/* Move object to the new freelist */
1768 			set_freepointer(s, object, *head);
1769 			*head = object;
1770 			if (!*tail)
1771 				*tail = object;
1772 		} else {
1773 			/*
1774 			 * Adjust the reconstructed freelist depth
1775 			 * accordingly if object's reuse is delayed.
1776 			 */
1777 			--(*cnt);
1778 		}
1779 	} while (object != old_tail);
1780 
1781 	if (*head == *tail)
1782 		*tail = NULL;
1783 
1784 	return *head != NULL;
1785 }
1786 
1787 static void *setup_object(struct kmem_cache *s, void *object)
1788 {
1789 	setup_object_debug(s, object);
1790 	object = kasan_init_slab_obj(s, object);
1791 	if (unlikely(s->ctor)) {
1792 		kasan_unpoison_object_data(s, object);
1793 		s->ctor(object);
1794 		kasan_poison_object_data(s, object);
1795 	}
1796 	return object;
1797 }
1798 
1799 /*
1800  * Slab allocation and freeing
1801  */
1802 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1803 		struct kmem_cache_order_objects oo)
1804 {
1805 	struct folio *folio;
1806 	struct slab *slab;
1807 	unsigned int order = oo_order(oo);
1808 
1809 	if (node == NUMA_NO_NODE)
1810 		folio = (struct folio *)alloc_pages(flags, order);
1811 	else
1812 		folio = (struct folio *)__alloc_pages_node(node, flags, order);
1813 
1814 	if (!folio)
1815 		return NULL;
1816 
1817 	slab = folio_slab(folio);
1818 	__folio_set_slab(folio);
1819 	if (page_is_pfmemalloc(folio_page(folio, 0)))
1820 		slab_set_pfmemalloc(slab);
1821 
1822 	return slab;
1823 }
1824 
1825 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1826 /* Pre-initialize the random sequence cache */
1827 static int init_cache_random_seq(struct kmem_cache *s)
1828 {
1829 	unsigned int count = oo_objects(s->oo);
1830 	int err;
1831 
1832 	/* Bailout if already initialised */
1833 	if (s->random_seq)
1834 		return 0;
1835 
1836 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1837 	if (err) {
1838 		pr_err("SLUB: Unable to initialize free list for %s\n",
1839 			s->name);
1840 		return err;
1841 	}
1842 
1843 	/* Transform to an offset on the set of pages */
1844 	if (s->random_seq) {
1845 		unsigned int i;
1846 
1847 		for (i = 0; i < count; i++)
1848 			s->random_seq[i] *= s->size;
1849 	}
1850 	return 0;
1851 }
1852 
1853 /* Initialize each random sequence freelist per cache */
1854 static void __init init_freelist_randomization(void)
1855 {
1856 	struct kmem_cache *s;
1857 
1858 	mutex_lock(&slab_mutex);
1859 
1860 	list_for_each_entry(s, &slab_caches, list)
1861 		init_cache_random_seq(s);
1862 
1863 	mutex_unlock(&slab_mutex);
1864 }
1865 
1866 /* Get the next entry on the pre-computed freelist randomized */
1867 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1868 				unsigned long *pos, void *start,
1869 				unsigned long page_limit,
1870 				unsigned long freelist_count)
1871 {
1872 	unsigned int idx;
1873 
1874 	/*
1875 	 * If the target page allocation failed, the number of objects on the
1876 	 * page might be smaller than the usual size defined by the cache.
1877 	 */
1878 	do {
1879 		idx = s->random_seq[*pos];
1880 		*pos += 1;
1881 		if (*pos >= freelist_count)
1882 			*pos = 0;
1883 	} while (unlikely(idx >= page_limit));
1884 
1885 	return (char *)start + idx;
1886 }
1887 
1888 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1889 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1890 {
1891 	void *start;
1892 	void *cur;
1893 	void *next;
1894 	unsigned long idx, pos, page_limit, freelist_count;
1895 
1896 	if (slab->objects < 2 || !s->random_seq)
1897 		return false;
1898 
1899 	freelist_count = oo_objects(s->oo);
1900 	pos = get_random_int() % freelist_count;
1901 
1902 	page_limit = slab->objects * s->size;
1903 	start = fixup_red_left(s, slab_address(slab));
1904 
1905 	/* First entry is used as the base of the freelist */
1906 	cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1907 				freelist_count);
1908 	cur = setup_object(s, cur);
1909 	slab->freelist = cur;
1910 
1911 	for (idx = 1; idx < slab->objects; idx++) {
1912 		next = next_freelist_entry(s, slab, &pos, start, page_limit,
1913 			freelist_count);
1914 		next = setup_object(s, next);
1915 		set_freepointer(s, cur, next);
1916 		cur = next;
1917 	}
1918 	set_freepointer(s, cur, NULL);
1919 
1920 	return true;
1921 }
1922 #else
1923 static inline int init_cache_random_seq(struct kmem_cache *s)
1924 {
1925 	return 0;
1926 }
1927 static inline void init_freelist_randomization(void) { }
1928 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1929 {
1930 	return false;
1931 }
1932 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1933 
1934 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1935 {
1936 	struct slab *slab;
1937 	struct kmem_cache_order_objects oo = s->oo;
1938 	gfp_t alloc_gfp;
1939 	void *start, *p, *next;
1940 	int idx;
1941 	bool shuffle;
1942 
1943 	flags &= gfp_allowed_mask;
1944 
1945 	flags |= s->allocflags;
1946 
1947 	/*
1948 	 * Let the initial higher-order allocation fail under memory pressure
1949 	 * so we fall-back to the minimum order allocation.
1950 	 */
1951 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1952 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1953 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
1954 
1955 	slab = alloc_slab_page(alloc_gfp, node, oo);
1956 	if (unlikely(!slab)) {
1957 		oo = s->min;
1958 		alloc_gfp = flags;
1959 		/*
1960 		 * Allocation may have failed due to fragmentation.
1961 		 * Try a lower order alloc if possible
1962 		 */
1963 		slab = alloc_slab_page(alloc_gfp, node, oo);
1964 		if (unlikely(!slab))
1965 			goto out;
1966 		stat(s, ORDER_FALLBACK);
1967 	}
1968 
1969 	slab->objects = oo_objects(oo);
1970 
1971 	account_slab(slab, oo_order(oo), s, flags);
1972 
1973 	slab->slab_cache = s;
1974 
1975 	kasan_poison_slab(slab);
1976 
1977 	start = slab_address(slab);
1978 
1979 	setup_slab_debug(s, slab, start);
1980 
1981 	shuffle = shuffle_freelist(s, slab);
1982 
1983 	if (!shuffle) {
1984 		start = fixup_red_left(s, start);
1985 		start = setup_object(s, start);
1986 		slab->freelist = start;
1987 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
1988 			next = p + s->size;
1989 			next = setup_object(s, next);
1990 			set_freepointer(s, p, next);
1991 			p = next;
1992 		}
1993 		set_freepointer(s, p, NULL);
1994 	}
1995 
1996 	slab->inuse = slab->objects;
1997 	slab->frozen = 1;
1998 
1999 out:
2000 	if (!slab)
2001 		return NULL;
2002 
2003 	inc_slabs_node(s, slab_nid(slab), slab->objects);
2004 
2005 	return slab;
2006 }
2007 
2008 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2009 {
2010 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2011 		flags = kmalloc_fix_flags(flags);
2012 
2013 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2014 
2015 	return allocate_slab(s,
2016 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2017 }
2018 
2019 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2020 {
2021 	struct folio *folio = slab_folio(slab);
2022 	int order = folio_order(folio);
2023 	int pages = 1 << order;
2024 
2025 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2026 		void *p;
2027 
2028 		slab_pad_check(s, slab);
2029 		for_each_object(p, s, slab_address(slab), slab->objects)
2030 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2031 	}
2032 
2033 	__slab_clear_pfmemalloc(slab);
2034 	__folio_clear_slab(folio);
2035 	folio->mapping = NULL;
2036 	if (current->reclaim_state)
2037 		current->reclaim_state->reclaimed_slab += pages;
2038 	unaccount_slab(slab, order, s);
2039 	__free_pages(folio_page(folio, 0), order);
2040 }
2041 
2042 static void rcu_free_slab(struct rcu_head *h)
2043 {
2044 	struct slab *slab = container_of(h, struct slab, rcu_head);
2045 
2046 	__free_slab(slab->slab_cache, slab);
2047 }
2048 
2049 static void free_slab(struct kmem_cache *s, struct slab *slab)
2050 {
2051 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
2052 		call_rcu(&slab->rcu_head, rcu_free_slab);
2053 	} else
2054 		__free_slab(s, slab);
2055 }
2056 
2057 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2058 {
2059 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2060 	free_slab(s, slab);
2061 }
2062 
2063 /*
2064  * Management of partially allocated slabs.
2065  */
2066 static inline void
2067 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2068 {
2069 	n->nr_partial++;
2070 	if (tail == DEACTIVATE_TO_TAIL)
2071 		list_add_tail(&slab->slab_list, &n->partial);
2072 	else
2073 		list_add(&slab->slab_list, &n->partial);
2074 }
2075 
2076 static inline void add_partial(struct kmem_cache_node *n,
2077 				struct slab *slab, int tail)
2078 {
2079 	lockdep_assert_held(&n->list_lock);
2080 	__add_partial(n, slab, tail);
2081 }
2082 
2083 static inline void remove_partial(struct kmem_cache_node *n,
2084 					struct slab *slab)
2085 {
2086 	lockdep_assert_held(&n->list_lock);
2087 	list_del(&slab->slab_list);
2088 	n->nr_partial--;
2089 }
2090 
2091 /*
2092  * Remove slab from the partial list, freeze it and
2093  * return the pointer to the freelist.
2094  *
2095  * Returns a list of objects or NULL if it fails.
2096  */
2097 static inline void *acquire_slab(struct kmem_cache *s,
2098 		struct kmem_cache_node *n, struct slab *slab,
2099 		int mode)
2100 {
2101 	void *freelist;
2102 	unsigned long counters;
2103 	struct slab new;
2104 
2105 	lockdep_assert_held(&n->list_lock);
2106 
2107 	/*
2108 	 * Zap the freelist and set the frozen bit.
2109 	 * The old freelist is the list of objects for the
2110 	 * per cpu allocation list.
2111 	 */
2112 	freelist = slab->freelist;
2113 	counters = slab->counters;
2114 	new.counters = counters;
2115 	if (mode) {
2116 		new.inuse = slab->objects;
2117 		new.freelist = NULL;
2118 	} else {
2119 		new.freelist = freelist;
2120 	}
2121 
2122 	VM_BUG_ON(new.frozen);
2123 	new.frozen = 1;
2124 
2125 	if (!__cmpxchg_double_slab(s, slab,
2126 			freelist, counters,
2127 			new.freelist, new.counters,
2128 			"acquire_slab"))
2129 		return NULL;
2130 
2131 	remove_partial(n, slab);
2132 	WARN_ON(!freelist);
2133 	return freelist;
2134 }
2135 
2136 #ifdef CONFIG_SLUB_CPU_PARTIAL
2137 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2138 #else
2139 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2140 				   int drain) { }
2141 #endif
2142 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2143 
2144 /*
2145  * Try to allocate a partial slab from a specific node.
2146  */
2147 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2148 			      struct slab **ret_slab, gfp_t gfpflags)
2149 {
2150 	struct slab *slab, *slab2;
2151 	void *object = NULL;
2152 	unsigned long flags;
2153 	unsigned int partial_slabs = 0;
2154 
2155 	/*
2156 	 * Racy check. If we mistakenly see no partial slabs then we
2157 	 * just allocate an empty slab. If we mistakenly try to get a
2158 	 * partial slab and there is none available then get_partial()
2159 	 * will return NULL.
2160 	 */
2161 	if (!n || !n->nr_partial)
2162 		return NULL;
2163 
2164 	spin_lock_irqsave(&n->list_lock, flags);
2165 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2166 		void *t;
2167 
2168 		if (!pfmemalloc_match(slab, gfpflags))
2169 			continue;
2170 
2171 		t = acquire_slab(s, n, slab, object == NULL);
2172 		if (!t)
2173 			break;
2174 
2175 		if (!object) {
2176 			*ret_slab = slab;
2177 			stat(s, ALLOC_FROM_PARTIAL);
2178 			object = t;
2179 		} else {
2180 			put_cpu_partial(s, slab, 0);
2181 			stat(s, CPU_PARTIAL_NODE);
2182 			partial_slabs++;
2183 		}
2184 #ifdef CONFIG_SLUB_CPU_PARTIAL
2185 		if (!kmem_cache_has_cpu_partial(s)
2186 			|| partial_slabs > s->cpu_partial_slabs / 2)
2187 			break;
2188 #else
2189 		break;
2190 #endif
2191 
2192 	}
2193 	spin_unlock_irqrestore(&n->list_lock, flags);
2194 	return object;
2195 }
2196 
2197 /*
2198  * Get a slab from somewhere. Search in increasing NUMA distances.
2199  */
2200 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2201 			     struct slab **ret_slab)
2202 {
2203 #ifdef CONFIG_NUMA
2204 	struct zonelist *zonelist;
2205 	struct zoneref *z;
2206 	struct zone *zone;
2207 	enum zone_type highest_zoneidx = gfp_zone(flags);
2208 	void *object;
2209 	unsigned int cpuset_mems_cookie;
2210 
2211 	/*
2212 	 * The defrag ratio allows a configuration of the tradeoffs between
2213 	 * inter node defragmentation and node local allocations. A lower
2214 	 * defrag_ratio increases the tendency to do local allocations
2215 	 * instead of attempting to obtain partial slabs from other nodes.
2216 	 *
2217 	 * If the defrag_ratio is set to 0 then kmalloc() always
2218 	 * returns node local objects. If the ratio is higher then kmalloc()
2219 	 * may return off node objects because partial slabs are obtained
2220 	 * from other nodes and filled up.
2221 	 *
2222 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2223 	 * (which makes defrag_ratio = 1000) then every (well almost)
2224 	 * allocation will first attempt to defrag slab caches on other nodes.
2225 	 * This means scanning over all nodes to look for partial slabs which
2226 	 * may be expensive if we do it every time we are trying to find a slab
2227 	 * with available objects.
2228 	 */
2229 	if (!s->remote_node_defrag_ratio ||
2230 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2231 		return NULL;
2232 
2233 	do {
2234 		cpuset_mems_cookie = read_mems_allowed_begin();
2235 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
2236 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2237 			struct kmem_cache_node *n;
2238 
2239 			n = get_node(s, zone_to_nid(zone));
2240 
2241 			if (n && cpuset_zone_allowed(zone, flags) &&
2242 					n->nr_partial > s->min_partial) {
2243 				object = get_partial_node(s, n, ret_slab, flags);
2244 				if (object) {
2245 					/*
2246 					 * Don't check read_mems_allowed_retry()
2247 					 * here - if mems_allowed was updated in
2248 					 * parallel, that was a harmless race
2249 					 * between allocation and the cpuset
2250 					 * update
2251 					 */
2252 					return object;
2253 				}
2254 			}
2255 		}
2256 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2257 #endif	/* CONFIG_NUMA */
2258 	return NULL;
2259 }
2260 
2261 /*
2262  * Get a partial slab, lock it and return it.
2263  */
2264 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2265 			 struct slab **ret_slab)
2266 {
2267 	void *object;
2268 	int searchnode = node;
2269 
2270 	if (node == NUMA_NO_NODE)
2271 		searchnode = numa_mem_id();
2272 
2273 	object = get_partial_node(s, get_node(s, searchnode), ret_slab, flags);
2274 	if (object || node != NUMA_NO_NODE)
2275 		return object;
2276 
2277 	return get_any_partial(s, flags, ret_slab);
2278 }
2279 
2280 #ifdef CONFIG_PREEMPTION
2281 /*
2282  * Calculate the next globally unique transaction for disambiguation
2283  * during cmpxchg. The transactions start with the cpu number and are then
2284  * incremented by CONFIG_NR_CPUS.
2285  */
2286 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2287 #else
2288 /*
2289  * No preemption supported therefore also no need to check for
2290  * different cpus.
2291  */
2292 #define TID_STEP 1
2293 #endif
2294 
2295 static inline unsigned long next_tid(unsigned long tid)
2296 {
2297 	return tid + TID_STEP;
2298 }
2299 
2300 #ifdef SLUB_DEBUG_CMPXCHG
2301 static inline unsigned int tid_to_cpu(unsigned long tid)
2302 {
2303 	return tid % TID_STEP;
2304 }
2305 
2306 static inline unsigned long tid_to_event(unsigned long tid)
2307 {
2308 	return tid / TID_STEP;
2309 }
2310 #endif
2311 
2312 static inline unsigned int init_tid(int cpu)
2313 {
2314 	return cpu;
2315 }
2316 
2317 static inline void note_cmpxchg_failure(const char *n,
2318 		const struct kmem_cache *s, unsigned long tid)
2319 {
2320 #ifdef SLUB_DEBUG_CMPXCHG
2321 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2322 
2323 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2324 
2325 #ifdef CONFIG_PREEMPTION
2326 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2327 		pr_warn("due to cpu change %d -> %d\n",
2328 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2329 	else
2330 #endif
2331 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2332 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2333 			tid_to_event(tid), tid_to_event(actual_tid));
2334 	else
2335 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2336 			actual_tid, tid, next_tid(tid));
2337 #endif
2338 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2339 }
2340 
2341 static void init_kmem_cache_cpus(struct kmem_cache *s)
2342 {
2343 	int cpu;
2344 	struct kmem_cache_cpu *c;
2345 
2346 	for_each_possible_cpu(cpu) {
2347 		c = per_cpu_ptr(s->cpu_slab, cpu);
2348 		local_lock_init(&c->lock);
2349 		c->tid = init_tid(cpu);
2350 	}
2351 }
2352 
2353 /*
2354  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2355  * unfreezes the slabs and puts it on the proper list.
2356  * Assumes the slab has been already safely taken away from kmem_cache_cpu
2357  * by the caller.
2358  */
2359 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2360 			    void *freelist)
2361 {
2362 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE, M_FULL_NOLIST };
2363 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2364 	int free_delta = 0;
2365 	enum slab_modes mode = M_NONE;
2366 	void *nextfree, *freelist_iter, *freelist_tail;
2367 	int tail = DEACTIVATE_TO_HEAD;
2368 	unsigned long flags = 0;
2369 	struct slab new;
2370 	struct slab old;
2371 
2372 	if (slab->freelist) {
2373 		stat(s, DEACTIVATE_REMOTE_FREES);
2374 		tail = DEACTIVATE_TO_TAIL;
2375 	}
2376 
2377 	/*
2378 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2379 	 * remember the last object in freelist_tail for later splicing.
2380 	 */
2381 	freelist_tail = NULL;
2382 	freelist_iter = freelist;
2383 	while (freelist_iter) {
2384 		nextfree = get_freepointer(s, freelist_iter);
2385 
2386 		/*
2387 		 * If 'nextfree' is invalid, it is possible that the object at
2388 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2389 		 * starting at 'freelist_iter' by skipping them.
2390 		 */
2391 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2392 			break;
2393 
2394 		freelist_tail = freelist_iter;
2395 		free_delta++;
2396 
2397 		freelist_iter = nextfree;
2398 	}
2399 
2400 	/*
2401 	 * Stage two: Unfreeze the slab while splicing the per-cpu
2402 	 * freelist to the head of slab's freelist.
2403 	 *
2404 	 * Ensure that the slab is unfrozen while the list presence
2405 	 * reflects the actual number of objects during unfreeze.
2406 	 *
2407 	 * We first perform cmpxchg holding lock and insert to list
2408 	 * when it succeed. If there is mismatch then the slab is not
2409 	 * unfrozen and number of objects in the slab may have changed.
2410 	 * Then release lock and retry cmpxchg again.
2411 	 */
2412 redo:
2413 
2414 	old.freelist = READ_ONCE(slab->freelist);
2415 	old.counters = READ_ONCE(slab->counters);
2416 	VM_BUG_ON(!old.frozen);
2417 
2418 	/* Determine target state of the slab */
2419 	new.counters = old.counters;
2420 	if (freelist_tail) {
2421 		new.inuse -= free_delta;
2422 		set_freepointer(s, freelist_tail, old.freelist);
2423 		new.freelist = freelist;
2424 	} else
2425 		new.freelist = old.freelist;
2426 
2427 	new.frozen = 0;
2428 
2429 	if (!new.inuse && n->nr_partial >= s->min_partial) {
2430 		mode = M_FREE;
2431 	} else if (new.freelist) {
2432 		mode = M_PARTIAL;
2433 		/*
2434 		 * Taking the spinlock removes the possibility that
2435 		 * acquire_slab() will see a slab that is frozen
2436 		 */
2437 		spin_lock_irqsave(&n->list_lock, flags);
2438 	} else if (kmem_cache_debug_flags(s, SLAB_STORE_USER)) {
2439 		mode = M_FULL;
2440 		/*
2441 		 * This also ensures that the scanning of full
2442 		 * slabs from diagnostic functions will not see
2443 		 * any frozen slabs.
2444 		 */
2445 		spin_lock_irqsave(&n->list_lock, flags);
2446 	} else {
2447 		mode = M_FULL_NOLIST;
2448 	}
2449 
2450 
2451 	if (!cmpxchg_double_slab(s, slab,
2452 				old.freelist, old.counters,
2453 				new.freelist, new.counters,
2454 				"unfreezing slab")) {
2455 		if (mode == M_PARTIAL || mode == M_FULL)
2456 			spin_unlock_irqrestore(&n->list_lock, flags);
2457 		goto redo;
2458 	}
2459 
2460 
2461 	if (mode == M_PARTIAL) {
2462 		add_partial(n, slab, tail);
2463 		spin_unlock_irqrestore(&n->list_lock, flags);
2464 		stat(s, tail);
2465 	} else if (mode == M_FREE) {
2466 		stat(s, DEACTIVATE_EMPTY);
2467 		discard_slab(s, slab);
2468 		stat(s, FREE_SLAB);
2469 	} else if (mode == M_FULL) {
2470 		add_full(s, n, slab);
2471 		spin_unlock_irqrestore(&n->list_lock, flags);
2472 		stat(s, DEACTIVATE_FULL);
2473 	} else if (mode == M_FULL_NOLIST) {
2474 		stat(s, DEACTIVATE_FULL);
2475 	}
2476 }
2477 
2478 #ifdef CONFIG_SLUB_CPU_PARTIAL
2479 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2480 {
2481 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2482 	struct slab *slab, *slab_to_discard = NULL;
2483 	unsigned long flags = 0;
2484 
2485 	while (partial_slab) {
2486 		struct slab new;
2487 		struct slab old;
2488 
2489 		slab = partial_slab;
2490 		partial_slab = slab->next;
2491 
2492 		n2 = get_node(s, slab_nid(slab));
2493 		if (n != n2) {
2494 			if (n)
2495 				spin_unlock_irqrestore(&n->list_lock, flags);
2496 
2497 			n = n2;
2498 			spin_lock_irqsave(&n->list_lock, flags);
2499 		}
2500 
2501 		do {
2502 
2503 			old.freelist = slab->freelist;
2504 			old.counters = slab->counters;
2505 			VM_BUG_ON(!old.frozen);
2506 
2507 			new.counters = old.counters;
2508 			new.freelist = old.freelist;
2509 
2510 			new.frozen = 0;
2511 
2512 		} while (!__cmpxchg_double_slab(s, slab,
2513 				old.freelist, old.counters,
2514 				new.freelist, new.counters,
2515 				"unfreezing slab"));
2516 
2517 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2518 			slab->next = slab_to_discard;
2519 			slab_to_discard = slab;
2520 		} else {
2521 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
2522 			stat(s, FREE_ADD_PARTIAL);
2523 		}
2524 	}
2525 
2526 	if (n)
2527 		spin_unlock_irqrestore(&n->list_lock, flags);
2528 
2529 	while (slab_to_discard) {
2530 		slab = slab_to_discard;
2531 		slab_to_discard = slab_to_discard->next;
2532 
2533 		stat(s, DEACTIVATE_EMPTY);
2534 		discard_slab(s, slab);
2535 		stat(s, FREE_SLAB);
2536 	}
2537 }
2538 
2539 /*
2540  * Unfreeze all the cpu partial slabs.
2541  */
2542 static void unfreeze_partials(struct kmem_cache *s)
2543 {
2544 	struct slab *partial_slab;
2545 	unsigned long flags;
2546 
2547 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2548 	partial_slab = this_cpu_read(s->cpu_slab->partial);
2549 	this_cpu_write(s->cpu_slab->partial, NULL);
2550 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2551 
2552 	if (partial_slab)
2553 		__unfreeze_partials(s, partial_slab);
2554 }
2555 
2556 static void unfreeze_partials_cpu(struct kmem_cache *s,
2557 				  struct kmem_cache_cpu *c)
2558 {
2559 	struct slab *partial_slab;
2560 
2561 	partial_slab = slub_percpu_partial(c);
2562 	c->partial = NULL;
2563 
2564 	if (partial_slab)
2565 		__unfreeze_partials(s, partial_slab);
2566 }
2567 
2568 /*
2569  * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2570  * partial slab slot if available.
2571  *
2572  * If we did not find a slot then simply move all the partials to the
2573  * per node partial list.
2574  */
2575 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2576 {
2577 	struct slab *oldslab;
2578 	struct slab *slab_to_unfreeze = NULL;
2579 	unsigned long flags;
2580 	int slabs = 0;
2581 
2582 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2583 
2584 	oldslab = this_cpu_read(s->cpu_slab->partial);
2585 
2586 	if (oldslab) {
2587 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2588 			/*
2589 			 * Partial array is full. Move the existing set to the
2590 			 * per node partial list. Postpone the actual unfreezing
2591 			 * outside of the critical section.
2592 			 */
2593 			slab_to_unfreeze = oldslab;
2594 			oldslab = NULL;
2595 		} else {
2596 			slabs = oldslab->slabs;
2597 		}
2598 	}
2599 
2600 	slabs++;
2601 
2602 	slab->slabs = slabs;
2603 	slab->next = oldslab;
2604 
2605 	this_cpu_write(s->cpu_slab->partial, slab);
2606 
2607 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2608 
2609 	if (slab_to_unfreeze) {
2610 		__unfreeze_partials(s, slab_to_unfreeze);
2611 		stat(s, CPU_PARTIAL_DRAIN);
2612 	}
2613 }
2614 
2615 #else	/* CONFIG_SLUB_CPU_PARTIAL */
2616 
2617 static inline void unfreeze_partials(struct kmem_cache *s) { }
2618 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2619 				  struct kmem_cache_cpu *c) { }
2620 
2621 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2622 
2623 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2624 {
2625 	unsigned long flags;
2626 	struct slab *slab;
2627 	void *freelist;
2628 
2629 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2630 
2631 	slab = c->slab;
2632 	freelist = c->freelist;
2633 
2634 	c->slab = NULL;
2635 	c->freelist = NULL;
2636 	c->tid = next_tid(c->tid);
2637 
2638 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2639 
2640 	if (slab) {
2641 		deactivate_slab(s, slab, freelist);
2642 		stat(s, CPUSLAB_FLUSH);
2643 	}
2644 }
2645 
2646 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2647 {
2648 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2649 	void *freelist = c->freelist;
2650 	struct slab *slab = c->slab;
2651 
2652 	c->slab = NULL;
2653 	c->freelist = NULL;
2654 	c->tid = next_tid(c->tid);
2655 
2656 	if (slab) {
2657 		deactivate_slab(s, slab, freelist);
2658 		stat(s, CPUSLAB_FLUSH);
2659 	}
2660 
2661 	unfreeze_partials_cpu(s, c);
2662 }
2663 
2664 struct slub_flush_work {
2665 	struct work_struct work;
2666 	struct kmem_cache *s;
2667 	bool skip;
2668 };
2669 
2670 /*
2671  * Flush cpu slab.
2672  *
2673  * Called from CPU work handler with migration disabled.
2674  */
2675 static void flush_cpu_slab(struct work_struct *w)
2676 {
2677 	struct kmem_cache *s;
2678 	struct kmem_cache_cpu *c;
2679 	struct slub_flush_work *sfw;
2680 
2681 	sfw = container_of(w, struct slub_flush_work, work);
2682 
2683 	s = sfw->s;
2684 	c = this_cpu_ptr(s->cpu_slab);
2685 
2686 	if (c->slab)
2687 		flush_slab(s, c);
2688 
2689 	unfreeze_partials(s);
2690 }
2691 
2692 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2693 {
2694 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2695 
2696 	return c->slab || slub_percpu_partial(c);
2697 }
2698 
2699 static DEFINE_MUTEX(flush_lock);
2700 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2701 
2702 static void flush_all_cpus_locked(struct kmem_cache *s)
2703 {
2704 	struct slub_flush_work *sfw;
2705 	unsigned int cpu;
2706 
2707 	lockdep_assert_cpus_held();
2708 	mutex_lock(&flush_lock);
2709 
2710 	for_each_online_cpu(cpu) {
2711 		sfw = &per_cpu(slub_flush, cpu);
2712 		if (!has_cpu_slab(cpu, s)) {
2713 			sfw->skip = true;
2714 			continue;
2715 		}
2716 		INIT_WORK(&sfw->work, flush_cpu_slab);
2717 		sfw->skip = false;
2718 		sfw->s = s;
2719 		schedule_work_on(cpu, &sfw->work);
2720 	}
2721 
2722 	for_each_online_cpu(cpu) {
2723 		sfw = &per_cpu(slub_flush, cpu);
2724 		if (sfw->skip)
2725 			continue;
2726 		flush_work(&sfw->work);
2727 	}
2728 
2729 	mutex_unlock(&flush_lock);
2730 }
2731 
2732 static void flush_all(struct kmem_cache *s)
2733 {
2734 	cpus_read_lock();
2735 	flush_all_cpus_locked(s);
2736 	cpus_read_unlock();
2737 }
2738 
2739 /*
2740  * Use the cpu notifier to insure that the cpu slabs are flushed when
2741  * necessary.
2742  */
2743 static int slub_cpu_dead(unsigned int cpu)
2744 {
2745 	struct kmem_cache *s;
2746 
2747 	mutex_lock(&slab_mutex);
2748 	list_for_each_entry(s, &slab_caches, list)
2749 		__flush_cpu_slab(s, cpu);
2750 	mutex_unlock(&slab_mutex);
2751 	return 0;
2752 }
2753 
2754 /*
2755  * Check if the objects in a per cpu structure fit numa
2756  * locality expectations.
2757  */
2758 static inline int node_match(struct slab *slab, int node)
2759 {
2760 #ifdef CONFIG_NUMA
2761 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2762 		return 0;
2763 #endif
2764 	return 1;
2765 }
2766 
2767 #ifdef CONFIG_SLUB_DEBUG
2768 static int count_free(struct slab *slab)
2769 {
2770 	return slab->objects - slab->inuse;
2771 }
2772 
2773 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2774 {
2775 	return atomic_long_read(&n->total_objects);
2776 }
2777 #endif /* CONFIG_SLUB_DEBUG */
2778 
2779 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2780 static unsigned long count_partial(struct kmem_cache_node *n,
2781 					int (*get_count)(struct slab *))
2782 {
2783 	unsigned long flags;
2784 	unsigned long x = 0;
2785 	struct slab *slab;
2786 
2787 	spin_lock_irqsave(&n->list_lock, flags);
2788 	list_for_each_entry(slab, &n->partial, slab_list)
2789 		x += get_count(slab);
2790 	spin_unlock_irqrestore(&n->list_lock, flags);
2791 	return x;
2792 }
2793 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2794 
2795 static noinline void
2796 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2797 {
2798 #ifdef CONFIG_SLUB_DEBUG
2799 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2800 				      DEFAULT_RATELIMIT_BURST);
2801 	int node;
2802 	struct kmem_cache_node *n;
2803 
2804 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2805 		return;
2806 
2807 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2808 		nid, gfpflags, &gfpflags);
2809 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2810 		s->name, s->object_size, s->size, oo_order(s->oo),
2811 		oo_order(s->min));
2812 
2813 	if (oo_order(s->min) > get_order(s->object_size))
2814 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2815 			s->name);
2816 
2817 	for_each_kmem_cache_node(s, node, n) {
2818 		unsigned long nr_slabs;
2819 		unsigned long nr_objs;
2820 		unsigned long nr_free;
2821 
2822 		nr_free  = count_partial(n, count_free);
2823 		nr_slabs = node_nr_slabs(n);
2824 		nr_objs  = node_nr_objs(n);
2825 
2826 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2827 			node, nr_slabs, nr_objs, nr_free);
2828 	}
2829 #endif
2830 }
2831 
2832 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
2833 {
2834 	if (unlikely(slab_test_pfmemalloc(slab)))
2835 		return gfp_pfmemalloc_allowed(gfpflags);
2836 
2837 	return true;
2838 }
2839 
2840 /*
2841  * Check the slab->freelist and either transfer the freelist to the
2842  * per cpu freelist or deactivate the slab.
2843  *
2844  * The slab is still frozen if the return value is not NULL.
2845  *
2846  * If this function returns NULL then the slab has been unfrozen.
2847  */
2848 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
2849 {
2850 	struct slab new;
2851 	unsigned long counters;
2852 	void *freelist;
2853 
2854 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2855 
2856 	do {
2857 		freelist = slab->freelist;
2858 		counters = slab->counters;
2859 
2860 		new.counters = counters;
2861 		VM_BUG_ON(!new.frozen);
2862 
2863 		new.inuse = slab->objects;
2864 		new.frozen = freelist != NULL;
2865 
2866 	} while (!__cmpxchg_double_slab(s, slab,
2867 		freelist, counters,
2868 		NULL, new.counters,
2869 		"get_freelist"));
2870 
2871 	return freelist;
2872 }
2873 
2874 /*
2875  * Slow path. The lockless freelist is empty or we need to perform
2876  * debugging duties.
2877  *
2878  * Processing is still very fast if new objects have been freed to the
2879  * regular freelist. In that case we simply take over the regular freelist
2880  * as the lockless freelist and zap the regular freelist.
2881  *
2882  * If that is not working then we fall back to the partial lists. We take the
2883  * first element of the freelist as the object to allocate now and move the
2884  * rest of the freelist to the lockless freelist.
2885  *
2886  * And if we were unable to get a new slab from the partial slab lists then
2887  * we need to allocate a new slab. This is the slowest path since it involves
2888  * a call to the page allocator and the setup of a new slab.
2889  *
2890  * Version of __slab_alloc to use when we know that preemption is
2891  * already disabled (which is the case for bulk allocation).
2892  */
2893 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2894 			  unsigned long addr, struct kmem_cache_cpu *c)
2895 {
2896 	void *freelist;
2897 	struct slab *slab;
2898 	unsigned long flags;
2899 
2900 	stat(s, ALLOC_SLOWPATH);
2901 
2902 reread_slab:
2903 
2904 	slab = READ_ONCE(c->slab);
2905 	if (!slab) {
2906 		/*
2907 		 * if the node is not online or has no normal memory, just
2908 		 * ignore the node constraint
2909 		 */
2910 		if (unlikely(node != NUMA_NO_NODE &&
2911 			     !node_isset(node, slab_nodes)))
2912 			node = NUMA_NO_NODE;
2913 		goto new_slab;
2914 	}
2915 redo:
2916 
2917 	if (unlikely(!node_match(slab, node))) {
2918 		/*
2919 		 * same as above but node_match() being false already
2920 		 * implies node != NUMA_NO_NODE
2921 		 */
2922 		if (!node_isset(node, slab_nodes)) {
2923 			node = NUMA_NO_NODE;
2924 		} else {
2925 			stat(s, ALLOC_NODE_MISMATCH);
2926 			goto deactivate_slab;
2927 		}
2928 	}
2929 
2930 	/*
2931 	 * By rights, we should be searching for a slab page that was
2932 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2933 	 * information when the page leaves the per-cpu allocator
2934 	 */
2935 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
2936 		goto deactivate_slab;
2937 
2938 	/* must check again c->slab in case we got preempted and it changed */
2939 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2940 	if (unlikely(slab != c->slab)) {
2941 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2942 		goto reread_slab;
2943 	}
2944 	freelist = c->freelist;
2945 	if (freelist)
2946 		goto load_freelist;
2947 
2948 	freelist = get_freelist(s, slab);
2949 
2950 	if (!freelist) {
2951 		c->slab = NULL;
2952 		c->tid = next_tid(c->tid);
2953 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2954 		stat(s, DEACTIVATE_BYPASS);
2955 		goto new_slab;
2956 	}
2957 
2958 	stat(s, ALLOC_REFILL);
2959 
2960 load_freelist:
2961 
2962 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2963 
2964 	/*
2965 	 * freelist is pointing to the list of objects to be used.
2966 	 * slab is pointing to the slab from which the objects are obtained.
2967 	 * That slab must be frozen for per cpu allocations to work.
2968 	 */
2969 	VM_BUG_ON(!c->slab->frozen);
2970 	c->freelist = get_freepointer(s, freelist);
2971 	c->tid = next_tid(c->tid);
2972 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2973 	return freelist;
2974 
2975 deactivate_slab:
2976 
2977 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2978 	if (slab != c->slab) {
2979 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2980 		goto reread_slab;
2981 	}
2982 	freelist = c->freelist;
2983 	c->slab = NULL;
2984 	c->freelist = NULL;
2985 	c->tid = next_tid(c->tid);
2986 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2987 	deactivate_slab(s, slab, freelist);
2988 
2989 new_slab:
2990 
2991 	if (slub_percpu_partial(c)) {
2992 		local_lock_irqsave(&s->cpu_slab->lock, flags);
2993 		if (unlikely(c->slab)) {
2994 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2995 			goto reread_slab;
2996 		}
2997 		if (unlikely(!slub_percpu_partial(c))) {
2998 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2999 			/* we were preempted and partial list got empty */
3000 			goto new_objects;
3001 		}
3002 
3003 		slab = c->slab = slub_percpu_partial(c);
3004 		slub_set_percpu_partial(c, slab);
3005 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3006 		stat(s, CPU_PARTIAL_ALLOC);
3007 		goto redo;
3008 	}
3009 
3010 new_objects:
3011 
3012 	freelist = get_partial(s, gfpflags, node, &slab);
3013 	if (freelist)
3014 		goto check_new_slab;
3015 
3016 	slub_put_cpu_ptr(s->cpu_slab);
3017 	slab = new_slab(s, gfpflags, node);
3018 	c = slub_get_cpu_ptr(s->cpu_slab);
3019 
3020 	if (unlikely(!slab)) {
3021 		slab_out_of_memory(s, gfpflags, node);
3022 		return NULL;
3023 	}
3024 
3025 	/*
3026 	 * No other reference to the slab yet so we can
3027 	 * muck around with it freely without cmpxchg
3028 	 */
3029 	freelist = slab->freelist;
3030 	slab->freelist = NULL;
3031 
3032 	stat(s, ALLOC_SLAB);
3033 
3034 check_new_slab:
3035 
3036 	if (kmem_cache_debug(s)) {
3037 		if (!alloc_debug_processing(s, slab, freelist, addr)) {
3038 			/* Slab failed checks. Next slab needed */
3039 			goto new_slab;
3040 		} else {
3041 			/*
3042 			 * For debug case, we don't load freelist so that all
3043 			 * allocations go through alloc_debug_processing()
3044 			 */
3045 			goto return_single;
3046 		}
3047 	}
3048 
3049 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3050 		/*
3051 		 * For !pfmemalloc_match() case we don't load freelist so that
3052 		 * we don't make further mismatched allocations easier.
3053 		 */
3054 		goto return_single;
3055 
3056 retry_load_slab:
3057 
3058 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3059 	if (unlikely(c->slab)) {
3060 		void *flush_freelist = c->freelist;
3061 		struct slab *flush_slab = c->slab;
3062 
3063 		c->slab = NULL;
3064 		c->freelist = NULL;
3065 		c->tid = next_tid(c->tid);
3066 
3067 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3068 
3069 		deactivate_slab(s, flush_slab, flush_freelist);
3070 
3071 		stat(s, CPUSLAB_FLUSH);
3072 
3073 		goto retry_load_slab;
3074 	}
3075 	c->slab = slab;
3076 
3077 	goto load_freelist;
3078 
3079 return_single:
3080 
3081 	deactivate_slab(s, slab, get_freepointer(s, freelist));
3082 	return freelist;
3083 }
3084 
3085 /*
3086  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3087  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3088  * pointer.
3089  */
3090 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3091 			  unsigned long addr, struct kmem_cache_cpu *c)
3092 {
3093 	void *p;
3094 
3095 #ifdef CONFIG_PREEMPT_COUNT
3096 	/*
3097 	 * We may have been preempted and rescheduled on a different
3098 	 * cpu before disabling preemption. Need to reload cpu area
3099 	 * pointer.
3100 	 */
3101 	c = slub_get_cpu_ptr(s->cpu_slab);
3102 #endif
3103 
3104 	p = ___slab_alloc(s, gfpflags, node, addr, c);
3105 #ifdef CONFIG_PREEMPT_COUNT
3106 	slub_put_cpu_ptr(s->cpu_slab);
3107 #endif
3108 	return p;
3109 }
3110 
3111 /*
3112  * If the object has been wiped upon free, make sure it's fully initialized by
3113  * zeroing out freelist pointer.
3114  */
3115 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3116 						   void *obj)
3117 {
3118 	if (unlikely(slab_want_init_on_free(s)) && obj)
3119 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3120 			0, sizeof(void *));
3121 }
3122 
3123 /*
3124  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3125  * have the fastpath folded into their functions. So no function call
3126  * overhead for requests that can be satisfied on the fastpath.
3127  *
3128  * The fastpath works by first checking if the lockless freelist can be used.
3129  * If not then __slab_alloc is called for slow processing.
3130  *
3131  * Otherwise we can simply pick the next object from the lockless free list.
3132  */
3133 static __always_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3134 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3135 {
3136 	void *object;
3137 	struct kmem_cache_cpu *c;
3138 	struct slab *slab;
3139 	unsigned long tid;
3140 	struct obj_cgroup *objcg = NULL;
3141 	bool init = false;
3142 
3143 	s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3144 	if (!s)
3145 		return NULL;
3146 
3147 	object = kfence_alloc(s, orig_size, gfpflags);
3148 	if (unlikely(object))
3149 		goto out;
3150 
3151 redo:
3152 	/*
3153 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3154 	 * enabled. We may switch back and forth between cpus while
3155 	 * reading from one cpu area. That does not matter as long
3156 	 * as we end up on the original cpu again when doing the cmpxchg.
3157 	 *
3158 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3159 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3160 	 * the tid. If we are preempted and switched to another cpu between the
3161 	 * two reads, it's OK as the two are still associated with the same cpu
3162 	 * and cmpxchg later will validate the cpu.
3163 	 */
3164 	c = raw_cpu_ptr(s->cpu_slab);
3165 	tid = READ_ONCE(c->tid);
3166 
3167 	/*
3168 	 * Irqless object alloc/free algorithm used here depends on sequence
3169 	 * of fetching cpu_slab's data. tid should be fetched before anything
3170 	 * on c to guarantee that object and slab associated with previous tid
3171 	 * won't be used with current tid. If we fetch tid first, object and
3172 	 * slab could be one associated with next tid and our alloc/free
3173 	 * request will be failed. In this case, we will retry. So, no problem.
3174 	 */
3175 	barrier();
3176 
3177 	/*
3178 	 * The transaction ids are globally unique per cpu and per operation on
3179 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3180 	 * occurs on the right processor and that there was no operation on the
3181 	 * linked list in between.
3182 	 */
3183 
3184 	object = c->freelist;
3185 	slab = c->slab;
3186 	/*
3187 	 * We cannot use the lockless fastpath on PREEMPT_RT because if a
3188 	 * slowpath has taken the local_lock_irqsave(), it is not protected
3189 	 * against a fast path operation in an irq handler. So we need to take
3190 	 * the slow path which uses local_lock. It is still relatively fast if
3191 	 * there is a suitable cpu freelist.
3192 	 */
3193 	if (IS_ENABLED(CONFIG_PREEMPT_RT) ||
3194 	    unlikely(!object || !slab || !node_match(slab, node))) {
3195 		object = __slab_alloc(s, gfpflags, node, addr, c);
3196 	} else {
3197 		void *next_object = get_freepointer_safe(s, object);
3198 
3199 		/*
3200 		 * The cmpxchg will only match if there was no additional
3201 		 * operation and if we are on the right processor.
3202 		 *
3203 		 * The cmpxchg does the following atomically (without lock
3204 		 * semantics!)
3205 		 * 1. Relocate first pointer to the current per cpu area.
3206 		 * 2. Verify that tid and freelist have not been changed
3207 		 * 3. If they were not changed replace tid and freelist
3208 		 *
3209 		 * Since this is without lock semantics the protection is only
3210 		 * against code executing on this cpu *not* from access by
3211 		 * other cpus.
3212 		 */
3213 		if (unlikely(!this_cpu_cmpxchg_double(
3214 				s->cpu_slab->freelist, s->cpu_slab->tid,
3215 				object, tid,
3216 				next_object, next_tid(tid)))) {
3217 
3218 			note_cmpxchg_failure("slab_alloc", s, tid);
3219 			goto redo;
3220 		}
3221 		prefetch_freepointer(s, next_object);
3222 		stat(s, ALLOC_FASTPATH);
3223 	}
3224 
3225 	maybe_wipe_obj_freeptr(s, object);
3226 	init = slab_want_init_on_alloc(gfpflags, s);
3227 
3228 out:
3229 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
3230 
3231 	return object;
3232 }
3233 
3234 static __always_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3235 		gfp_t gfpflags, unsigned long addr, size_t orig_size)
3236 {
3237 	return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3238 }
3239 
3240 static __always_inline
3241 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3242 			     gfp_t gfpflags)
3243 {
3244 	void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3245 
3246 	trace_kmem_cache_alloc(_RET_IP_, ret, s, s->object_size,
3247 				s->size, gfpflags);
3248 
3249 	return ret;
3250 }
3251 
3252 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3253 {
3254 	return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3255 }
3256 EXPORT_SYMBOL(kmem_cache_alloc);
3257 
3258 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3259 			   gfp_t gfpflags)
3260 {
3261 	return __kmem_cache_alloc_lru(s, lru, gfpflags);
3262 }
3263 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3264 
3265 void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
3266 			      int node, size_t orig_size,
3267 			      unsigned long caller)
3268 {
3269 	return slab_alloc_node(s, NULL, gfpflags, node,
3270 			       caller, orig_size);
3271 }
3272 
3273 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3274 {
3275 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3276 
3277 	trace_kmem_cache_alloc_node(_RET_IP_, ret, s,
3278 				    s->object_size, s->size, gfpflags, node);
3279 
3280 	return ret;
3281 }
3282 EXPORT_SYMBOL(kmem_cache_alloc_node);
3283 
3284 /*
3285  * Slow path handling. This may still be called frequently since objects
3286  * have a longer lifetime than the cpu slabs in most processing loads.
3287  *
3288  * So we still attempt to reduce cache line usage. Just take the slab
3289  * lock and free the item. If there is no additional partial slab
3290  * handling required then we can return immediately.
3291  */
3292 static void __slab_free(struct kmem_cache *s, struct slab *slab,
3293 			void *head, void *tail, int cnt,
3294 			unsigned long addr)
3295 
3296 {
3297 	void *prior;
3298 	int was_frozen;
3299 	struct slab new;
3300 	unsigned long counters;
3301 	struct kmem_cache_node *n = NULL;
3302 	unsigned long flags;
3303 
3304 	stat(s, FREE_SLOWPATH);
3305 
3306 	if (kfence_free(head))
3307 		return;
3308 
3309 	if (kmem_cache_debug(s) &&
3310 	    !free_debug_processing(s, slab, head, tail, cnt, addr))
3311 		return;
3312 
3313 	do {
3314 		if (unlikely(n)) {
3315 			spin_unlock_irqrestore(&n->list_lock, flags);
3316 			n = NULL;
3317 		}
3318 		prior = slab->freelist;
3319 		counters = slab->counters;
3320 		set_freepointer(s, tail, prior);
3321 		new.counters = counters;
3322 		was_frozen = new.frozen;
3323 		new.inuse -= cnt;
3324 		if ((!new.inuse || !prior) && !was_frozen) {
3325 
3326 			if (kmem_cache_has_cpu_partial(s) && !prior) {
3327 
3328 				/*
3329 				 * Slab was on no list before and will be
3330 				 * partially empty
3331 				 * We can defer the list move and instead
3332 				 * freeze it.
3333 				 */
3334 				new.frozen = 1;
3335 
3336 			} else { /* Needs to be taken off a list */
3337 
3338 				n = get_node(s, slab_nid(slab));
3339 				/*
3340 				 * Speculatively acquire the list_lock.
3341 				 * If the cmpxchg does not succeed then we may
3342 				 * drop the list_lock without any processing.
3343 				 *
3344 				 * Otherwise the list_lock will synchronize with
3345 				 * other processors updating the list of slabs.
3346 				 */
3347 				spin_lock_irqsave(&n->list_lock, flags);
3348 
3349 			}
3350 		}
3351 
3352 	} while (!cmpxchg_double_slab(s, slab,
3353 		prior, counters,
3354 		head, new.counters,
3355 		"__slab_free"));
3356 
3357 	if (likely(!n)) {
3358 
3359 		if (likely(was_frozen)) {
3360 			/*
3361 			 * The list lock was not taken therefore no list
3362 			 * activity can be necessary.
3363 			 */
3364 			stat(s, FREE_FROZEN);
3365 		} else if (new.frozen) {
3366 			/*
3367 			 * If we just froze the slab then put it onto the
3368 			 * per cpu partial list.
3369 			 */
3370 			put_cpu_partial(s, slab, 1);
3371 			stat(s, CPU_PARTIAL_FREE);
3372 		}
3373 
3374 		return;
3375 	}
3376 
3377 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3378 		goto slab_empty;
3379 
3380 	/*
3381 	 * Objects left in the slab. If it was not on the partial list before
3382 	 * then add it.
3383 	 */
3384 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3385 		remove_full(s, n, slab);
3386 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
3387 		stat(s, FREE_ADD_PARTIAL);
3388 	}
3389 	spin_unlock_irqrestore(&n->list_lock, flags);
3390 	return;
3391 
3392 slab_empty:
3393 	if (prior) {
3394 		/*
3395 		 * Slab on the partial list.
3396 		 */
3397 		remove_partial(n, slab);
3398 		stat(s, FREE_REMOVE_PARTIAL);
3399 	} else {
3400 		/* Slab must be on the full list */
3401 		remove_full(s, n, slab);
3402 	}
3403 
3404 	spin_unlock_irqrestore(&n->list_lock, flags);
3405 	stat(s, FREE_SLAB);
3406 	discard_slab(s, slab);
3407 }
3408 
3409 /*
3410  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3411  * can perform fastpath freeing without additional function calls.
3412  *
3413  * The fastpath is only possible if we are freeing to the current cpu slab
3414  * of this processor. This typically the case if we have just allocated
3415  * the item before.
3416  *
3417  * If fastpath is not possible then fall back to __slab_free where we deal
3418  * with all sorts of special processing.
3419  *
3420  * Bulk free of a freelist with several objects (all pointing to the
3421  * same slab) possible by specifying head and tail ptr, plus objects
3422  * count (cnt). Bulk free indicated by tail pointer being set.
3423  */
3424 static __always_inline void do_slab_free(struct kmem_cache *s,
3425 				struct slab *slab, void *head, void *tail,
3426 				int cnt, unsigned long addr)
3427 {
3428 	void *tail_obj = tail ? : head;
3429 	struct kmem_cache_cpu *c;
3430 	unsigned long tid;
3431 
3432 redo:
3433 	/*
3434 	 * Determine the currently cpus per cpu slab.
3435 	 * The cpu may change afterward. However that does not matter since
3436 	 * data is retrieved via this pointer. If we are on the same cpu
3437 	 * during the cmpxchg then the free will succeed.
3438 	 */
3439 	c = raw_cpu_ptr(s->cpu_slab);
3440 	tid = READ_ONCE(c->tid);
3441 
3442 	/* Same with comment on barrier() in slab_alloc_node() */
3443 	barrier();
3444 
3445 	if (likely(slab == c->slab)) {
3446 #ifndef CONFIG_PREEMPT_RT
3447 		void **freelist = READ_ONCE(c->freelist);
3448 
3449 		set_freepointer(s, tail_obj, freelist);
3450 
3451 		if (unlikely(!this_cpu_cmpxchg_double(
3452 				s->cpu_slab->freelist, s->cpu_slab->tid,
3453 				freelist, tid,
3454 				head, next_tid(tid)))) {
3455 
3456 			note_cmpxchg_failure("slab_free", s, tid);
3457 			goto redo;
3458 		}
3459 #else /* CONFIG_PREEMPT_RT */
3460 		/*
3461 		 * We cannot use the lockless fastpath on PREEMPT_RT because if
3462 		 * a slowpath has taken the local_lock_irqsave(), it is not
3463 		 * protected against a fast path operation in an irq handler. So
3464 		 * we need to take the local_lock. We shouldn't simply defer to
3465 		 * __slab_free() as that wouldn't use the cpu freelist at all.
3466 		 */
3467 		void **freelist;
3468 
3469 		local_lock(&s->cpu_slab->lock);
3470 		c = this_cpu_ptr(s->cpu_slab);
3471 		if (unlikely(slab != c->slab)) {
3472 			local_unlock(&s->cpu_slab->lock);
3473 			goto redo;
3474 		}
3475 		tid = c->tid;
3476 		freelist = c->freelist;
3477 
3478 		set_freepointer(s, tail_obj, freelist);
3479 		c->freelist = head;
3480 		c->tid = next_tid(tid);
3481 
3482 		local_unlock(&s->cpu_slab->lock);
3483 #endif
3484 		stat(s, FREE_FASTPATH);
3485 	} else
3486 		__slab_free(s, slab, head, tail_obj, cnt, addr);
3487 
3488 }
3489 
3490 static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3491 				      void *head, void *tail, void **p, int cnt,
3492 				      unsigned long addr)
3493 {
3494 	memcg_slab_free_hook(s, slab, p, cnt);
3495 	/*
3496 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3497 	 * to remove objects, whose reuse must be delayed.
3498 	 */
3499 	if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3500 		do_slab_free(s, slab, head, tail, cnt, addr);
3501 }
3502 
3503 #ifdef CONFIG_KASAN_GENERIC
3504 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3505 {
3506 	do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3507 }
3508 #endif
3509 
3510 void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller)
3511 {
3512 	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller);
3513 }
3514 
3515 void kmem_cache_free(struct kmem_cache *s, void *x)
3516 {
3517 	s = cache_from_obj(s, x);
3518 	if (!s)
3519 		return;
3520 	trace_kmem_cache_free(_RET_IP_, x, s->name);
3521 	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
3522 }
3523 EXPORT_SYMBOL(kmem_cache_free);
3524 
3525 struct detached_freelist {
3526 	struct slab *slab;
3527 	void *tail;
3528 	void *freelist;
3529 	int cnt;
3530 	struct kmem_cache *s;
3531 };
3532 
3533 /*
3534  * This function progressively scans the array with free objects (with
3535  * a limited look ahead) and extract objects belonging to the same
3536  * slab.  It builds a detached freelist directly within the given
3537  * slab/objects.  This can happen without any need for
3538  * synchronization, because the objects are owned by running process.
3539  * The freelist is build up as a single linked list in the objects.
3540  * The idea is, that this detached freelist can then be bulk
3541  * transferred to the real freelist(s), but only requiring a single
3542  * synchronization primitive.  Look ahead in the array is limited due
3543  * to performance reasons.
3544  */
3545 static inline
3546 int build_detached_freelist(struct kmem_cache *s, size_t size,
3547 			    void **p, struct detached_freelist *df)
3548 {
3549 	int lookahead = 3;
3550 	void *object;
3551 	struct folio *folio;
3552 	size_t same;
3553 
3554 	object = p[--size];
3555 	folio = virt_to_folio(object);
3556 	if (!s) {
3557 		/* Handle kalloc'ed objects */
3558 		if (unlikely(!folio_test_slab(folio))) {
3559 			free_large_kmalloc(folio, object);
3560 			df->slab = NULL;
3561 			return size;
3562 		}
3563 		/* Derive kmem_cache from object */
3564 		df->slab = folio_slab(folio);
3565 		df->s = df->slab->slab_cache;
3566 	} else {
3567 		df->slab = folio_slab(folio);
3568 		df->s = cache_from_obj(s, object); /* Support for memcg */
3569 	}
3570 
3571 	/* Start new detached freelist */
3572 	df->tail = object;
3573 	df->freelist = object;
3574 	df->cnt = 1;
3575 
3576 	if (is_kfence_address(object))
3577 		return size;
3578 
3579 	set_freepointer(df->s, object, NULL);
3580 
3581 	same = size;
3582 	while (size) {
3583 		object = p[--size];
3584 		/* df->slab is always set at this point */
3585 		if (df->slab == virt_to_slab(object)) {
3586 			/* Opportunity build freelist */
3587 			set_freepointer(df->s, object, df->freelist);
3588 			df->freelist = object;
3589 			df->cnt++;
3590 			same--;
3591 			if (size != same)
3592 				swap(p[size], p[same]);
3593 			continue;
3594 		}
3595 
3596 		/* Limit look ahead search */
3597 		if (!--lookahead)
3598 			break;
3599 	}
3600 
3601 	return same;
3602 }
3603 
3604 /* Note that interrupts must be enabled when calling this function. */
3605 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3606 {
3607 	if (!size)
3608 		return;
3609 
3610 	do {
3611 		struct detached_freelist df;
3612 
3613 		size = build_detached_freelist(s, size, p, &df);
3614 		if (!df.slab)
3615 			continue;
3616 
3617 		slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3618 			  _RET_IP_);
3619 	} while (likely(size));
3620 }
3621 EXPORT_SYMBOL(kmem_cache_free_bulk);
3622 
3623 /* Note that interrupts must be enabled when calling this function. */
3624 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3625 			  void **p)
3626 {
3627 	struct kmem_cache_cpu *c;
3628 	int i;
3629 	struct obj_cgroup *objcg = NULL;
3630 
3631 	/* memcg and kmem_cache debug support */
3632 	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
3633 	if (unlikely(!s))
3634 		return false;
3635 	/*
3636 	 * Drain objects in the per cpu slab, while disabling local
3637 	 * IRQs, which protects against PREEMPT and interrupts
3638 	 * handlers invoking normal fastpath.
3639 	 */
3640 	c = slub_get_cpu_ptr(s->cpu_slab);
3641 	local_lock_irq(&s->cpu_slab->lock);
3642 
3643 	for (i = 0; i < size; i++) {
3644 		void *object = kfence_alloc(s, s->object_size, flags);
3645 
3646 		if (unlikely(object)) {
3647 			p[i] = object;
3648 			continue;
3649 		}
3650 
3651 		object = c->freelist;
3652 		if (unlikely(!object)) {
3653 			/*
3654 			 * We may have removed an object from c->freelist using
3655 			 * the fastpath in the previous iteration; in that case,
3656 			 * c->tid has not been bumped yet.
3657 			 * Since ___slab_alloc() may reenable interrupts while
3658 			 * allocating memory, we should bump c->tid now.
3659 			 */
3660 			c->tid = next_tid(c->tid);
3661 
3662 			local_unlock_irq(&s->cpu_slab->lock);
3663 
3664 			/*
3665 			 * Invoking slow path likely have side-effect
3666 			 * of re-populating per CPU c->freelist
3667 			 */
3668 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3669 					    _RET_IP_, c);
3670 			if (unlikely(!p[i]))
3671 				goto error;
3672 
3673 			c = this_cpu_ptr(s->cpu_slab);
3674 			maybe_wipe_obj_freeptr(s, p[i]);
3675 
3676 			local_lock_irq(&s->cpu_slab->lock);
3677 
3678 			continue; /* goto for-loop */
3679 		}
3680 		c->freelist = get_freepointer(s, object);
3681 		p[i] = object;
3682 		maybe_wipe_obj_freeptr(s, p[i]);
3683 	}
3684 	c->tid = next_tid(c->tid);
3685 	local_unlock_irq(&s->cpu_slab->lock);
3686 	slub_put_cpu_ptr(s->cpu_slab);
3687 
3688 	/*
3689 	 * memcg and kmem_cache debug support and memory initialization.
3690 	 * Done outside of the IRQ disabled fastpath loop.
3691 	 */
3692 	slab_post_alloc_hook(s, objcg, flags, size, p,
3693 				slab_want_init_on_alloc(flags, s));
3694 	return i;
3695 error:
3696 	slub_put_cpu_ptr(s->cpu_slab);
3697 	slab_post_alloc_hook(s, objcg, flags, i, p, false);
3698 	kmem_cache_free_bulk(s, i, p);
3699 	return 0;
3700 }
3701 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3702 
3703 
3704 /*
3705  * Object placement in a slab is made very easy because we always start at
3706  * offset 0. If we tune the size of the object to the alignment then we can
3707  * get the required alignment by putting one properly sized object after
3708  * another.
3709  *
3710  * Notice that the allocation order determines the sizes of the per cpu
3711  * caches. Each processor has always one slab available for allocations.
3712  * Increasing the allocation order reduces the number of times that slabs
3713  * must be moved on and off the partial lists and is therefore a factor in
3714  * locking overhead.
3715  */
3716 
3717 /*
3718  * Minimum / Maximum order of slab pages. This influences locking overhead
3719  * and slab fragmentation. A higher order reduces the number of partial slabs
3720  * and increases the number of allocations possible without having to
3721  * take the list_lock.
3722  */
3723 static unsigned int slub_min_order;
3724 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3725 static unsigned int slub_min_objects;
3726 
3727 /*
3728  * Calculate the order of allocation given an slab object size.
3729  *
3730  * The order of allocation has significant impact on performance and other
3731  * system components. Generally order 0 allocations should be preferred since
3732  * order 0 does not cause fragmentation in the page allocator. Larger objects
3733  * be problematic to put into order 0 slabs because there may be too much
3734  * unused space left. We go to a higher order if more than 1/16th of the slab
3735  * would be wasted.
3736  *
3737  * In order to reach satisfactory performance we must ensure that a minimum
3738  * number of objects is in one slab. Otherwise we may generate too much
3739  * activity on the partial lists which requires taking the list_lock. This is
3740  * less a concern for large slabs though which are rarely used.
3741  *
3742  * slub_max_order specifies the order where we begin to stop considering the
3743  * number of objects in a slab as critical. If we reach slub_max_order then
3744  * we try to keep the page order as low as possible. So we accept more waste
3745  * of space in favor of a small page order.
3746  *
3747  * Higher order allocations also allow the placement of more objects in a
3748  * slab and thereby reduce object handling overhead. If the user has
3749  * requested a higher minimum order then we start with that one instead of
3750  * the smallest order which will fit the object.
3751  */
3752 static inline unsigned int calc_slab_order(unsigned int size,
3753 		unsigned int min_objects, unsigned int max_order,
3754 		unsigned int fract_leftover)
3755 {
3756 	unsigned int min_order = slub_min_order;
3757 	unsigned int order;
3758 
3759 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3760 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3761 
3762 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3763 			order <= max_order; order++) {
3764 
3765 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3766 		unsigned int rem;
3767 
3768 		rem = slab_size % size;
3769 
3770 		if (rem <= slab_size / fract_leftover)
3771 			break;
3772 	}
3773 
3774 	return order;
3775 }
3776 
3777 static inline int calculate_order(unsigned int size)
3778 {
3779 	unsigned int order;
3780 	unsigned int min_objects;
3781 	unsigned int max_objects;
3782 	unsigned int nr_cpus;
3783 
3784 	/*
3785 	 * Attempt to find best configuration for a slab. This
3786 	 * works by first attempting to generate a layout with
3787 	 * the best configuration and backing off gradually.
3788 	 *
3789 	 * First we increase the acceptable waste in a slab. Then
3790 	 * we reduce the minimum objects required in a slab.
3791 	 */
3792 	min_objects = slub_min_objects;
3793 	if (!min_objects) {
3794 		/*
3795 		 * Some architectures will only update present cpus when
3796 		 * onlining them, so don't trust the number if it's just 1. But
3797 		 * we also don't want to use nr_cpu_ids always, as on some other
3798 		 * architectures, there can be many possible cpus, but never
3799 		 * onlined. Here we compromise between trying to avoid too high
3800 		 * order on systems that appear larger than they are, and too
3801 		 * low order on systems that appear smaller than they are.
3802 		 */
3803 		nr_cpus = num_present_cpus();
3804 		if (nr_cpus <= 1)
3805 			nr_cpus = nr_cpu_ids;
3806 		min_objects = 4 * (fls(nr_cpus) + 1);
3807 	}
3808 	max_objects = order_objects(slub_max_order, size);
3809 	min_objects = min(min_objects, max_objects);
3810 
3811 	while (min_objects > 1) {
3812 		unsigned int fraction;
3813 
3814 		fraction = 16;
3815 		while (fraction >= 4) {
3816 			order = calc_slab_order(size, min_objects,
3817 					slub_max_order, fraction);
3818 			if (order <= slub_max_order)
3819 				return order;
3820 			fraction /= 2;
3821 		}
3822 		min_objects--;
3823 	}
3824 
3825 	/*
3826 	 * We were unable to place multiple objects in a slab. Now
3827 	 * lets see if we can place a single object there.
3828 	 */
3829 	order = calc_slab_order(size, 1, slub_max_order, 1);
3830 	if (order <= slub_max_order)
3831 		return order;
3832 
3833 	/*
3834 	 * Doh this slab cannot be placed using slub_max_order.
3835 	 */
3836 	order = calc_slab_order(size, 1, MAX_ORDER, 1);
3837 	if (order < MAX_ORDER)
3838 		return order;
3839 	return -ENOSYS;
3840 }
3841 
3842 static void
3843 init_kmem_cache_node(struct kmem_cache_node *n)
3844 {
3845 	n->nr_partial = 0;
3846 	spin_lock_init(&n->list_lock);
3847 	INIT_LIST_HEAD(&n->partial);
3848 #ifdef CONFIG_SLUB_DEBUG
3849 	atomic_long_set(&n->nr_slabs, 0);
3850 	atomic_long_set(&n->total_objects, 0);
3851 	INIT_LIST_HEAD(&n->full);
3852 #endif
3853 }
3854 
3855 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3856 {
3857 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3858 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3859 
3860 	/*
3861 	 * Must align to double word boundary for the double cmpxchg
3862 	 * instructions to work; see __pcpu_double_call_return_bool().
3863 	 */
3864 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3865 				     2 * sizeof(void *));
3866 
3867 	if (!s->cpu_slab)
3868 		return 0;
3869 
3870 	init_kmem_cache_cpus(s);
3871 
3872 	return 1;
3873 }
3874 
3875 static struct kmem_cache *kmem_cache_node;
3876 
3877 /*
3878  * No kmalloc_node yet so do it by hand. We know that this is the first
3879  * slab on the node for this slabcache. There are no concurrent accesses
3880  * possible.
3881  *
3882  * Note that this function only works on the kmem_cache_node
3883  * when allocating for the kmem_cache_node. This is used for bootstrapping
3884  * memory on a fresh node that has no slab structures yet.
3885  */
3886 static void early_kmem_cache_node_alloc(int node)
3887 {
3888 	struct slab *slab;
3889 	struct kmem_cache_node *n;
3890 
3891 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3892 
3893 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3894 
3895 	BUG_ON(!slab);
3896 	if (slab_nid(slab) != node) {
3897 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3898 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3899 	}
3900 
3901 	n = slab->freelist;
3902 	BUG_ON(!n);
3903 #ifdef CONFIG_SLUB_DEBUG
3904 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3905 	init_tracking(kmem_cache_node, n);
3906 #endif
3907 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
3908 	slab->freelist = get_freepointer(kmem_cache_node, n);
3909 	slab->inuse = 1;
3910 	slab->frozen = 0;
3911 	kmem_cache_node->node[node] = n;
3912 	init_kmem_cache_node(n);
3913 	inc_slabs_node(kmem_cache_node, node, slab->objects);
3914 
3915 	/*
3916 	 * No locks need to be taken here as it has just been
3917 	 * initialized and there is no concurrent access.
3918 	 */
3919 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
3920 }
3921 
3922 static void free_kmem_cache_nodes(struct kmem_cache *s)
3923 {
3924 	int node;
3925 	struct kmem_cache_node *n;
3926 
3927 	for_each_kmem_cache_node(s, node, n) {
3928 		s->node[node] = NULL;
3929 		kmem_cache_free(kmem_cache_node, n);
3930 	}
3931 }
3932 
3933 void __kmem_cache_release(struct kmem_cache *s)
3934 {
3935 	cache_random_seq_destroy(s);
3936 	free_percpu(s->cpu_slab);
3937 	free_kmem_cache_nodes(s);
3938 }
3939 
3940 static int init_kmem_cache_nodes(struct kmem_cache *s)
3941 {
3942 	int node;
3943 
3944 	for_each_node_mask(node, slab_nodes) {
3945 		struct kmem_cache_node *n;
3946 
3947 		if (slab_state == DOWN) {
3948 			early_kmem_cache_node_alloc(node);
3949 			continue;
3950 		}
3951 		n = kmem_cache_alloc_node(kmem_cache_node,
3952 						GFP_KERNEL, node);
3953 
3954 		if (!n) {
3955 			free_kmem_cache_nodes(s);
3956 			return 0;
3957 		}
3958 
3959 		init_kmem_cache_node(n);
3960 		s->node[node] = n;
3961 	}
3962 	return 1;
3963 }
3964 
3965 static void set_cpu_partial(struct kmem_cache *s)
3966 {
3967 #ifdef CONFIG_SLUB_CPU_PARTIAL
3968 	unsigned int nr_objects;
3969 
3970 	/*
3971 	 * cpu_partial determined the maximum number of objects kept in the
3972 	 * per cpu partial lists of a processor.
3973 	 *
3974 	 * Per cpu partial lists mainly contain slabs that just have one
3975 	 * object freed. If they are used for allocation then they can be
3976 	 * filled up again with minimal effort. The slab will never hit the
3977 	 * per node partial lists and therefore no locking will be required.
3978 	 *
3979 	 * For backwards compatibility reasons, this is determined as number
3980 	 * of objects, even though we now limit maximum number of pages, see
3981 	 * slub_set_cpu_partial()
3982 	 */
3983 	if (!kmem_cache_has_cpu_partial(s))
3984 		nr_objects = 0;
3985 	else if (s->size >= PAGE_SIZE)
3986 		nr_objects = 6;
3987 	else if (s->size >= 1024)
3988 		nr_objects = 24;
3989 	else if (s->size >= 256)
3990 		nr_objects = 52;
3991 	else
3992 		nr_objects = 120;
3993 
3994 	slub_set_cpu_partial(s, nr_objects);
3995 #endif
3996 }
3997 
3998 /*
3999  * calculate_sizes() determines the order and the distribution of data within
4000  * a slab object.
4001  */
4002 static int calculate_sizes(struct kmem_cache *s)
4003 {
4004 	slab_flags_t flags = s->flags;
4005 	unsigned int size = s->object_size;
4006 	unsigned int order;
4007 
4008 	/*
4009 	 * Round up object size to the next word boundary. We can only
4010 	 * place the free pointer at word boundaries and this determines
4011 	 * the possible location of the free pointer.
4012 	 */
4013 	size = ALIGN(size, sizeof(void *));
4014 
4015 #ifdef CONFIG_SLUB_DEBUG
4016 	/*
4017 	 * Determine if we can poison the object itself. If the user of
4018 	 * the slab may touch the object after free or before allocation
4019 	 * then we should never poison the object itself.
4020 	 */
4021 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4022 			!s->ctor)
4023 		s->flags |= __OBJECT_POISON;
4024 	else
4025 		s->flags &= ~__OBJECT_POISON;
4026 
4027 
4028 	/*
4029 	 * If we are Redzoning then check if there is some space between the
4030 	 * end of the object and the free pointer. If not then add an
4031 	 * additional word to have some bytes to store Redzone information.
4032 	 */
4033 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4034 		size += sizeof(void *);
4035 #endif
4036 
4037 	/*
4038 	 * With that we have determined the number of bytes in actual use
4039 	 * by the object and redzoning.
4040 	 */
4041 	s->inuse = size;
4042 
4043 	if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4044 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4045 	    s->ctor) {
4046 		/*
4047 		 * Relocate free pointer after the object if it is not
4048 		 * permitted to overwrite the first word of the object on
4049 		 * kmem_cache_free.
4050 		 *
4051 		 * This is the case if we do RCU, have a constructor or
4052 		 * destructor, are poisoning the objects, or are
4053 		 * redzoning an object smaller than sizeof(void *).
4054 		 *
4055 		 * The assumption that s->offset >= s->inuse means free
4056 		 * pointer is outside of the object is used in the
4057 		 * freeptr_outside_object() function. If that is no
4058 		 * longer true, the function needs to be modified.
4059 		 */
4060 		s->offset = size;
4061 		size += sizeof(void *);
4062 	} else {
4063 		/*
4064 		 * Store freelist pointer near middle of object to keep
4065 		 * it away from the edges of the object to avoid small
4066 		 * sized over/underflows from neighboring allocations.
4067 		 */
4068 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4069 	}
4070 
4071 #ifdef CONFIG_SLUB_DEBUG
4072 	if (flags & SLAB_STORE_USER)
4073 		/*
4074 		 * Need to store information about allocs and frees after
4075 		 * the object.
4076 		 */
4077 		size += 2 * sizeof(struct track);
4078 #endif
4079 
4080 	kasan_cache_create(s, &size, &s->flags);
4081 #ifdef CONFIG_SLUB_DEBUG
4082 	if (flags & SLAB_RED_ZONE) {
4083 		/*
4084 		 * Add some empty padding so that we can catch
4085 		 * overwrites from earlier objects rather than let
4086 		 * tracking information or the free pointer be
4087 		 * corrupted if a user writes before the start
4088 		 * of the object.
4089 		 */
4090 		size += sizeof(void *);
4091 
4092 		s->red_left_pad = sizeof(void *);
4093 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4094 		size += s->red_left_pad;
4095 	}
4096 #endif
4097 
4098 	/*
4099 	 * SLUB stores one object immediately after another beginning from
4100 	 * offset 0. In order to align the objects we have to simply size
4101 	 * each object to conform to the alignment.
4102 	 */
4103 	size = ALIGN(size, s->align);
4104 	s->size = size;
4105 	s->reciprocal_size = reciprocal_value(size);
4106 	order = calculate_order(size);
4107 
4108 	if ((int)order < 0)
4109 		return 0;
4110 
4111 	s->allocflags = 0;
4112 	if (order)
4113 		s->allocflags |= __GFP_COMP;
4114 
4115 	if (s->flags & SLAB_CACHE_DMA)
4116 		s->allocflags |= GFP_DMA;
4117 
4118 	if (s->flags & SLAB_CACHE_DMA32)
4119 		s->allocflags |= GFP_DMA32;
4120 
4121 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4122 		s->allocflags |= __GFP_RECLAIMABLE;
4123 
4124 	/*
4125 	 * Determine the number of objects per slab
4126 	 */
4127 	s->oo = oo_make(order, size);
4128 	s->min = oo_make(get_order(size), size);
4129 
4130 	return !!oo_objects(s->oo);
4131 }
4132 
4133 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4134 {
4135 	s->flags = kmem_cache_flags(s->size, flags, s->name);
4136 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4137 	s->random = get_random_long();
4138 #endif
4139 
4140 	if (!calculate_sizes(s))
4141 		goto error;
4142 	if (disable_higher_order_debug) {
4143 		/*
4144 		 * Disable debugging flags that store metadata if the min slab
4145 		 * order increased.
4146 		 */
4147 		if (get_order(s->size) > get_order(s->object_size)) {
4148 			s->flags &= ~DEBUG_METADATA_FLAGS;
4149 			s->offset = 0;
4150 			if (!calculate_sizes(s))
4151 				goto error;
4152 		}
4153 	}
4154 
4155 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4156     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
4157 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
4158 		/* Enable fast mode */
4159 		s->flags |= __CMPXCHG_DOUBLE;
4160 #endif
4161 
4162 	/*
4163 	 * The larger the object size is, the more slabs we want on the partial
4164 	 * list to avoid pounding the page allocator excessively.
4165 	 */
4166 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4167 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4168 
4169 	set_cpu_partial(s);
4170 
4171 #ifdef CONFIG_NUMA
4172 	s->remote_node_defrag_ratio = 1000;
4173 #endif
4174 
4175 	/* Initialize the pre-computed randomized freelist if slab is up */
4176 	if (slab_state >= UP) {
4177 		if (init_cache_random_seq(s))
4178 			goto error;
4179 	}
4180 
4181 	if (!init_kmem_cache_nodes(s))
4182 		goto error;
4183 
4184 	if (alloc_kmem_cache_cpus(s))
4185 		return 0;
4186 
4187 error:
4188 	__kmem_cache_release(s);
4189 	return -EINVAL;
4190 }
4191 
4192 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4193 			      const char *text)
4194 {
4195 #ifdef CONFIG_SLUB_DEBUG
4196 	void *addr = slab_address(slab);
4197 	unsigned long flags;
4198 	unsigned long *map;
4199 	void *p;
4200 
4201 	slab_err(s, slab, text, s->name);
4202 	slab_lock(slab, &flags);
4203 
4204 	map = get_map(s, slab);
4205 	for_each_object(p, s, addr, slab->objects) {
4206 
4207 		if (!test_bit(__obj_to_index(s, addr, p), map)) {
4208 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4209 			print_tracking(s, p);
4210 		}
4211 	}
4212 	put_map(map);
4213 	slab_unlock(slab, &flags);
4214 #endif
4215 }
4216 
4217 /*
4218  * Attempt to free all partial slabs on a node.
4219  * This is called from __kmem_cache_shutdown(). We must take list_lock
4220  * because sysfs file might still access partial list after the shutdowning.
4221  */
4222 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4223 {
4224 	LIST_HEAD(discard);
4225 	struct slab *slab, *h;
4226 
4227 	BUG_ON(irqs_disabled());
4228 	spin_lock_irq(&n->list_lock);
4229 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4230 		if (!slab->inuse) {
4231 			remove_partial(n, slab);
4232 			list_add(&slab->slab_list, &discard);
4233 		} else {
4234 			list_slab_objects(s, slab,
4235 			  "Objects remaining in %s on __kmem_cache_shutdown()");
4236 		}
4237 	}
4238 	spin_unlock_irq(&n->list_lock);
4239 
4240 	list_for_each_entry_safe(slab, h, &discard, slab_list)
4241 		discard_slab(s, slab);
4242 }
4243 
4244 bool __kmem_cache_empty(struct kmem_cache *s)
4245 {
4246 	int node;
4247 	struct kmem_cache_node *n;
4248 
4249 	for_each_kmem_cache_node(s, node, n)
4250 		if (n->nr_partial || slabs_node(s, node))
4251 			return false;
4252 	return true;
4253 }
4254 
4255 /*
4256  * Release all resources used by a slab cache.
4257  */
4258 int __kmem_cache_shutdown(struct kmem_cache *s)
4259 {
4260 	int node;
4261 	struct kmem_cache_node *n;
4262 
4263 	flush_all_cpus_locked(s);
4264 	/* Attempt to free all objects */
4265 	for_each_kmem_cache_node(s, node, n) {
4266 		free_partial(s, n);
4267 		if (n->nr_partial || slabs_node(s, node))
4268 			return 1;
4269 	}
4270 	return 0;
4271 }
4272 
4273 #ifdef CONFIG_PRINTK
4274 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4275 {
4276 	void *base;
4277 	int __maybe_unused i;
4278 	unsigned int objnr;
4279 	void *objp;
4280 	void *objp0;
4281 	struct kmem_cache *s = slab->slab_cache;
4282 	struct track __maybe_unused *trackp;
4283 
4284 	kpp->kp_ptr = object;
4285 	kpp->kp_slab = slab;
4286 	kpp->kp_slab_cache = s;
4287 	base = slab_address(slab);
4288 	objp0 = kasan_reset_tag(object);
4289 #ifdef CONFIG_SLUB_DEBUG
4290 	objp = restore_red_left(s, objp0);
4291 #else
4292 	objp = objp0;
4293 #endif
4294 	objnr = obj_to_index(s, slab, objp);
4295 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4296 	objp = base + s->size * objnr;
4297 	kpp->kp_objp = objp;
4298 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4299 			 || (objp - base) % s->size) ||
4300 	    !(s->flags & SLAB_STORE_USER))
4301 		return;
4302 #ifdef CONFIG_SLUB_DEBUG
4303 	objp = fixup_red_left(s, objp);
4304 	trackp = get_track(s, objp, TRACK_ALLOC);
4305 	kpp->kp_ret = (void *)trackp->addr;
4306 #ifdef CONFIG_STACKDEPOT
4307 	{
4308 		depot_stack_handle_t handle;
4309 		unsigned long *entries;
4310 		unsigned int nr_entries;
4311 
4312 		handle = READ_ONCE(trackp->handle);
4313 		if (handle) {
4314 			nr_entries = stack_depot_fetch(handle, &entries);
4315 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4316 				kpp->kp_stack[i] = (void *)entries[i];
4317 		}
4318 
4319 		trackp = get_track(s, objp, TRACK_FREE);
4320 		handle = READ_ONCE(trackp->handle);
4321 		if (handle) {
4322 			nr_entries = stack_depot_fetch(handle, &entries);
4323 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4324 				kpp->kp_free_stack[i] = (void *)entries[i];
4325 		}
4326 	}
4327 #endif
4328 #endif
4329 }
4330 #endif
4331 
4332 /********************************************************************
4333  *		Kmalloc subsystem
4334  *******************************************************************/
4335 
4336 static int __init setup_slub_min_order(char *str)
4337 {
4338 	get_option(&str, (int *)&slub_min_order);
4339 
4340 	return 1;
4341 }
4342 
4343 __setup("slub_min_order=", setup_slub_min_order);
4344 
4345 static int __init setup_slub_max_order(char *str)
4346 {
4347 	get_option(&str, (int *)&slub_max_order);
4348 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4349 
4350 	return 1;
4351 }
4352 
4353 __setup("slub_max_order=", setup_slub_max_order);
4354 
4355 static int __init setup_slub_min_objects(char *str)
4356 {
4357 	get_option(&str, (int *)&slub_min_objects);
4358 
4359 	return 1;
4360 }
4361 
4362 __setup("slub_min_objects=", setup_slub_min_objects);
4363 
4364 #ifdef CONFIG_HARDENED_USERCOPY
4365 /*
4366  * Rejects incorrectly sized objects and objects that are to be copied
4367  * to/from userspace but do not fall entirely within the containing slab
4368  * cache's usercopy region.
4369  *
4370  * Returns NULL if check passes, otherwise const char * to name of cache
4371  * to indicate an error.
4372  */
4373 void __check_heap_object(const void *ptr, unsigned long n,
4374 			 const struct slab *slab, bool to_user)
4375 {
4376 	struct kmem_cache *s;
4377 	unsigned int offset;
4378 	bool is_kfence = is_kfence_address(ptr);
4379 
4380 	ptr = kasan_reset_tag(ptr);
4381 
4382 	/* Find object and usable object size. */
4383 	s = slab->slab_cache;
4384 
4385 	/* Reject impossible pointers. */
4386 	if (ptr < slab_address(slab))
4387 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4388 			       to_user, 0, n);
4389 
4390 	/* Find offset within object. */
4391 	if (is_kfence)
4392 		offset = ptr - kfence_object_start(ptr);
4393 	else
4394 		offset = (ptr - slab_address(slab)) % s->size;
4395 
4396 	/* Adjust for redzone and reject if within the redzone. */
4397 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4398 		if (offset < s->red_left_pad)
4399 			usercopy_abort("SLUB object in left red zone",
4400 				       s->name, to_user, offset, n);
4401 		offset -= s->red_left_pad;
4402 	}
4403 
4404 	/* Allow address range falling entirely within usercopy region. */
4405 	if (offset >= s->useroffset &&
4406 	    offset - s->useroffset <= s->usersize &&
4407 	    n <= s->useroffset - offset + s->usersize)
4408 		return;
4409 
4410 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4411 }
4412 #endif /* CONFIG_HARDENED_USERCOPY */
4413 
4414 #define SHRINK_PROMOTE_MAX 32
4415 
4416 /*
4417  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4418  * up most to the head of the partial lists. New allocations will then
4419  * fill those up and thus they can be removed from the partial lists.
4420  *
4421  * The slabs with the least items are placed last. This results in them
4422  * being allocated from last increasing the chance that the last objects
4423  * are freed in them.
4424  */
4425 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4426 {
4427 	int node;
4428 	int i;
4429 	struct kmem_cache_node *n;
4430 	struct slab *slab;
4431 	struct slab *t;
4432 	struct list_head discard;
4433 	struct list_head promote[SHRINK_PROMOTE_MAX];
4434 	unsigned long flags;
4435 	int ret = 0;
4436 
4437 	for_each_kmem_cache_node(s, node, n) {
4438 		INIT_LIST_HEAD(&discard);
4439 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4440 			INIT_LIST_HEAD(promote + i);
4441 
4442 		spin_lock_irqsave(&n->list_lock, flags);
4443 
4444 		/*
4445 		 * Build lists of slabs to discard or promote.
4446 		 *
4447 		 * Note that concurrent frees may occur while we hold the
4448 		 * list_lock. slab->inuse here is the upper limit.
4449 		 */
4450 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4451 			int free = slab->objects - slab->inuse;
4452 
4453 			/* Do not reread slab->inuse */
4454 			barrier();
4455 
4456 			/* We do not keep full slabs on the list */
4457 			BUG_ON(free <= 0);
4458 
4459 			if (free == slab->objects) {
4460 				list_move(&slab->slab_list, &discard);
4461 				n->nr_partial--;
4462 			} else if (free <= SHRINK_PROMOTE_MAX)
4463 				list_move(&slab->slab_list, promote + free - 1);
4464 		}
4465 
4466 		/*
4467 		 * Promote the slabs filled up most to the head of the
4468 		 * partial list.
4469 		 */
4470 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4471 			list_splice(promote + i, &n->partial);
4472 
4473 		spin_unlock_irqrestore(&n->list_lock, flags);
4474 
4475 		/* Release empty slabs */
4476 		list_for_each_entry_safe(slab, t, &discard, slab_list)
4477 			discard_slab(s, slab);
4478 
4479 		if (slabs_node(s, node))
4480 			ret = 1;
4481 	}
4482 
4483 	return ret;
4484 }
4485 
4486 int __kmem_cache_shrink(struct kmem_cache *s)
4487 {
4488 	flush_all(s);
4489 	return __kmem_cache_do_shrink(s);
4490 }
4491 
4492 static int slab_mem_going_offline_callback(void *arg)
4493 {
4494 	struct kmem_cache *s;
4495 
4496 	mutex_lock(&slab_mutex);
4497 	list_for_each_entry(s, &slab_caches, list) {
4498 		flush_all_cpus_locked(s);
4499 		__kmem_cache_do_shrink(s);
4500 	}
4501 	mutex_unlock(&slab_mutex);
4502 
4503 	return 0;
4504 }
4505 
4506 static void slab_mem_offline_callback(void *arg)
4507 {
4508 	struct memory_notify *marg = arg;
4509 	int offline_node;
4510 
4511 	offline_node = marg->status_change_nid_normal;
4512 
4513 	/*
4514 	 * If the node still has available memory. we need kmem_cache_node
4515 	 * for it yet.
4516 	 */
4517 	if (offline_node < 0)
4518 		return;
4519 
4520 	mutex_lock(&slab_mutex);
4521 	node_clear(offline_node, slab_nodes);
4522 	/*
4523 	 * We no longer free kmem_cache_node structures here, as it would be
4524 	 * racy with all get_node() users, and infeasible to protect them with
4525 	 * slab_mutex.
4526 	 */
4527 	mutex_unlock(&slab_mutex);
4528 }
4529 
4530 static int slab_mem_going_online_callback(void *arg)
4531 {
4532 	struct kmem_cache_node *n;
4533 	struct kmem_cache *s;
4534 	struct memory_notify *marg = arg;
4535 	int nid = marg->status_change_nid_normal;
4536 	int ret = 0;
4537 
4538 	/*
4539 	 * If the node's memory is already available, then kmem_cache_node is
4540 	 * already created. Nothing to do.
4541 	 */
4542 	if (nid < 0)
4543 		return 0;
4544 
4545 	/*
4546 	 * We are bringing a node online. No memory is available yet. We must
4547 	 * allocate a kmem_cache_node structure in order to bring the node
4548 	 * online.
4549 	 */
4550 	mutex_lock(&slab_mutex);
4551 	list_for_each_entry(s, &slab_caches, list) {
4552 		/*
4553 		 * The structure may already exist if the node was previously
4554 		 * onlined and offlined.
4555 		 */
4556 		if (get_node(s, nid))
4557 			continue;
4558 		/*
4559 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4560 		 *      since memory is not yet available from the node that
4561 		 *      is brought up.
4562 		 */
4563 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4564 		if (!n) {
4565 			ret = -ENOMEM;
4566 			goto out;
4567 		}
4568 		init_kmem_cache_node(n);
4569 		s->node[nid] = n;
4570 	}
4571 	/*
4572 	 * Any cache created after this point will also have kmem_cache_node
4573 	 * initialized for the new node.
4574 	 */
4575 	node_set(nid, slab_nodes);
4576 out:
4577 	mutex_unlock(&slab_mutex);
4578 	return ret;
4579 }
4580 
4581 static int slab_memory_callback(struct notifier_block *self,
4582 				unsigned long action, void *arg)
4583 {
4584 	int ret = 0;
4585 
4586 	switch (action) {
4587 	case MEM_GOING_ONLINE:
4588 		ret = slab_mem_going_online_callback(arg);
4589 		break;
4590 	case MEM_GOING_OFFLINE:
4591 		ret = slab_mem_going_offline_callback(arg);
4592 		break;
4593 	case MEM_OFFLINE:
4594 	case MEM_CANCEL_ONLINE:
4595 		slab_mem_offline_callback(arg);
4596 		break;
4597 	case MEM_ONLINE:
4598 	case MEM_CANCEL_OFFLINE:
4599 		break;
4600 	}
4601 	if (ret)
4602 		ret = notifier_from_errno(ret);
4603 	else
4604 		ret = NOTIFY_OK;
4605 	return ret;
4606 }
4607 
4608 static struct notifier_block slab_memory_callback_nb = {
4609 	.notifier_call = slab_memory_callback,
4610 	.priority = SLAB_CALLBACK_PRI,
4611 };
4612 
4613 /********************************************************************
4614  *			Basic setup of slabs
4615  *******************************************************************/
4616 
4617 /*
4618  * Used for early kmem_cache structures that were allocated using
4619  * the page allocator. Allocate them properly then fix up the pointers
4620  * that may be pointing to the wrong kmem_cache structure.
4621  */
4622 
4623 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4624 {
4625 	int node;
4626 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4627 	struct kmem_cache_node *n;
4628 
4629 	memcpy(s, static_cache, kmem_cache->object_size);
4630 
4631 	/*
4632 	 * This runs very early, and only the boot processor is supposed to be
4633 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4634 	 * IPIs around.
4635 	 */
4636 	__flush_cpu_slab(s, smp_processor_id());
4637 	for_each_kmem_cache_node(s, node, n) {
4638 		struct slab *p;
4639 
4640 		list_for_each_entry(p, &n->partial, slab_list)
4641 			p->slab_cache = s;
4642 
4643 #ifdef CONFIG_SLUB_DEBUG
4644 		list_for_each_entry(p, &n->full, slab_list)
4645 			p->slab_cache = s;
4646 #endif
4647 	}
4648 	list_add(&s->list, &slab_caches);
4649 	return s;
4650 }
4651 
4652 void __init kmem_cache_init(void)
4653 {
4654 	static __initdata struct kmem_cache boot_kmem_cache,
4655 		boot_kmem_cache_node;
4656 	int node;
4657 
4658 	if (debug_guardpage_minorder())
4659 		slub_max_order = 0;
4660 
4661 	/* Print slub debugging pointers without hashing */
4662 	if (__slub_debug_enabled())
4663 		no_hash_pointers_enable(NULL);
4664 
4665 	kmem_cache_node = &boot_kmem_cache_node;
4666 	kmem_cache = &boot_kmem_cache;
4667 
4668 	/*
4669 	 * Initialize the nodemask for which we will allocate per node
4670 	 * structures. Here we don't need taking slab_mutex yet.
4671 	 */
4672 	for_each_node_state(node, N_NORMAL_MEMORY)
4673 		node_set(node, slab_nodes);
4674 
4675 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4676 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4677 
4678 	register_hotmemory_notifier(&slab_memory_callback_nb);
4679 
4680 	/* Able to allocate the per node structures */
4681 	slab_state = PARTIAL;
4682 
4683 	create_boot_cache(kmem_cache, "kmem_cache",
4684 			offsetof(struct kmem_cache, node) +
4685 				nr_node_ids * sizeof(struct kmem_cache_node *),
4686 		       SLAB_HWCACHE_ALIGN, 0, 0);
4687 
4688 	kmem_cache = bootstrap(&boot_kmem_cache);
4689 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4690 
4691 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4692 	setup_kmalloc_cache_index_table();
4693 	create_kmalloc_caches(0);
4694 
4695 	/* Setup random freelists for each cache */
4696 	init_freelist_randomization();
4697 
4698 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4699 				  slub_cpu_dead);
4700 
4701 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4702 		cache_line_size(),
4703 		slub_min_order, slub_max_order, slub_min_objects,
4704 		nr_cpu_ids, nr_node_ids);
4705 }
4706 
4707 void __init kmem_cache_init_late(void)
4708 {
4709 }
4710 
4711 struct kmem_cache *
4712 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4713 		   slab_flags_t flags, void (*ctor)(void *))
4714 {
4715 	struct kmem_cache *s;
4716 
4717 	s = find_mergeable(size, align, flags, name, ctor);
4718 	if (s) {
4719 		if (sysfs_slab_alias(s, name))
4720 			return NULL;
4721 
4722 		s->refcount++;
4723 
4724 		/*
4725 		 * Adjust the object sizes so that we clear
4726 		 * the complete object on kzalloc.
4727 		 */
4728 		s->object_size = max(s->object_size, size);
4729 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4730 	}
4731 
4732 	return s;
4733 }
4734 
4735 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4736 {
4737 	int err;
4738 
4739 	err = kmem_cache_open(s, flags);
4740 	if (err)
4741 		return err;
4742 
4743 	/* Mutex is not taken during early boot */
4744 	if (slab_state <= UP)
4745 		return 0;
4746 
4747 	err = sysfs_slab_add(s);
4748 	if (err) {
4749 		__kmem_cache_release(s);
4750 		return err;
4751 	}
4752 
4753 	if (s->flags & SLAB_STORE_USER)
4754 		debugfs_slab_add(s);
4755 
4756 	return 0;
4757 }
4758 
4759 #ifdef CONFIG_SYSFS
4760 static int count_inuse(struct slab *slab)
4761 {
4762 	return slab->inuse;
4763 }
4764 
4765 static int count_total(struct slab *slab)
4766 {
4767 	return slab->objects;
4768 }
4769 #endif
4770 
4771 #ifdef CONFIG_SLUB_DEBUG
4772 static void validate_slab(struct kmem_cache *s, struct slab *slab,
4773 			  unsigned long *obj_map)
4774 {
4775 	void *p;
4776 	void *addr = slab_address(slab);
4777 	unsigned long flags;
4778 
4779 	slab_lock(slab, &flags);
4780 
4781 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
4782 		goto unlock;
4783 
4784 	/* Now we know that a valid freelist exists */
4785 	__fill_map(obj_map, s, slab);
4786 	for_each_object(p, s, addr, slab->objects) {
4787 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
4788 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4789 
4790 		if (!check_object(s, slab, p, val))
4791 			break;
4792 	}
4793 unlock:
4794 	slab_unlock(slab, &flags);
4795 }
4796 
4797 static int validate_slab_node(struct kmem_cache *s,
4798 		struct kmem_cache_node *n, unsigned long *obj_map)
4799 {
4800 	unsigned long count = 0;
4801 	struct slab *slab;
4802 	unsigned long flags;
4803 
4804 	spin_lock_irqsave(&n->list_lock, flags);
4805 
4806 	list_for_each_entry(slab, &n->partial, slab_list) {
4807 		validate_slab(s, slab, obj_map);
4808 		count++;
4809 	}
4810 	if (count != n->nr_partial) {
4811 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4812 		       s->name, count, n->nr_partial);
4813 		slab_add_kunit_errors();
4814 	}
4815 
4816 	if (!(s->flags & SLAB_STORE_USER))
4817 		goto out;
4818 
4819 	list_for_each_entry(slab, &n->full, slab_list) {
4820 		validate_slab(s, slab, obj_map);
4821 		count++;
4822 	}
4823 	if (count != atomic_long_read(&n->nr_slabs)) {
4824 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4825 		       s->name, count, atomic_long_read(&n->nr_slabs));
4826 		slab_add_kunit_errors();
4827 	}
4828 
4829 out:
4830 	spin_unlock_irqrestore(&n->list_lock, flags);
4831 	return count;
4832 }
4833 
4834 long validate_slab_cache(struct kmem_cache *s)
4835 {
4836 	int node;
4837 	unsigned long count = 0;
4838 	struct kmem_cache_node *n;
4839 	unsigned long *obj_map;
4840 
4841 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
4842 	if (!obj_map)
4843 		return -ENOMEM;
4844 
4845 	flush_all(s);
4846 	for_each_kmem_cache_node(s, node, n)
4847 		count += validate_slab_node(s, n, obj_map);
4848 
4849 	bitmap_free(obj_map);
4850 
4851 	return count;
4852 }
4853 EXPORT_SYMBOL(validate_slab_cache);
4854 
4855 #ifdef CONFIG_DEBUG_FS
4856 /*
4857  * Generate lists of code addresses where slabcache objects are allocated
4858  * and freed.
4859  */
4860 
4861 struct location {
4862 	depot_stack_handle_t handle;
4863 	unsigned long count;
4864 	unsigned long addr;
4865 	long long sum_time;
4866 	long min_time;
4867 	long max_time;
4868 	long min_pid;
4869 	long max_pid;
4870 	DECLARE_BITMAP(cpus, NR_CPUS);
4871 	nodemask_t nodes;
4872 };
4873 
4874 struct loc_track {
4875 	unsigned long max;
4876 	unsigned long count;
4877 	struct location *loc;
4878 	loff_t idx;
4879 };
4880 
4881 static struct dentry *slab_debugfs_root;
4882 
4883 static void free_loc_track(struct loc_track *t)
4884 {
4885 	if (t->max)
4886 		free_pages((unsigned long)t->loc,
4887 			get_order(sizeof(struct location) * t->max));
4888 }
4889 
4890 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4891 {
4892 	struct location *l;
4893 	int order;
4894 
4895 	order = get_order(sizeof(struct location) * max);
4896 
4897 	l = (void *)__get_free_pages(flags, order);
4898 	if (!l)
4899 		return 0;
4900 
4901 	if (t->count) {
4902 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4903 		free_loc_track(t);
4904 	}
4905 	t->max = max;
4906 	t->loc = l;
4907 	return 1;
4908 }
4909 
4910 static int add_location(struct loc_track *t, struct kmem_cache *s,
4911 				const struct track *track)
4912 {
4913 	long start, end, pos;
4914 	struct location *l;
4915 	unsigned long caddr, chandle;
4916 	unsigned long age = jiffies - track->when;
4917 	depot_stack_handle_t handle = 0;
4918 
4919 #ifdef CONFIG_STACKDEPOT
4920 	handle = READ_ONCE(track->handle);
4921 #endif
4922 	start = -1;
4923 	end = t->count;
4924 
4925 	for ( ; ; ) {
4926 		pos = start + (end - start + 1) / 2;
4927 
4928 		/*
4929 		 * There is nothing at "end". If we end up there
4930 		 * we need to add something to before end.
4931 		 */
4932 		if (pos == end)
4933 			break;
4934 
4935 		caddr = t->loc[pos].addr;
4936 		chandle = t->loc[pos].handle;
4937 		if ((track->addr == caddr) && (handle == chandle)) {
4938 
4939 			l = &t->loc[pos];
4940 			l->count++;
4941 			if (track->when) {
4942 				l->sum_time += age;
4943 				if (age < l->min_time)
4944 					l->min_time = age;
4945 				if (age > l->max_time)
4946 					l->max_time = age;
4947 
4948 				if (track->pid < l->min_pid)
4949 					l->min_pid = track->pid;
4950 				if (track->pid > l->max_pid)
4951 					l->max_pid = track->pid;
4952 
4953 				cpumask_set_cpu(track->cpu,
4954 						to_cpumask(l->cpus));
4955 			}
4956 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4957 			return 1;
4958 		}
4959 
4960 		if (track->addr < caddr)
4961 			end = pos;
4962 		else if (track->addr == caddr && handle < chandle)
4963 			end = pos;
4964 		else
4965 			start = pos;
4966 	}
4967 
4968 	/*
4969 	 * Not found. Insert new tracking element.
4970 	 */
4971 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4972 		return 0;
4973 
4974 	l = t->loc + pos;
4975 	if (pos < t->count)
4976 		memmove(l + 1, l,
4977 			(t->count - pos) * sizeof(struct location));
4978 	t->count++;
4979 	l->count = 1;
4980 	l->addr = track->addr;
4981 	l->sum_time = age;
4982 	l->min_time = age;
4983 	l->max_time = age;
4984 	l->min_pid = track->pid;
4985 	l->max_pid = track->pid;
4986 	l->handle = handle;
4987 	cpumask_clear(to_cpumask(l->cpus));
4988 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4989 	nodes_clear(l->nodes);
4990 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4991 	return 1;
4992 }
4993 
4994 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4995 		struct slab *slab, enum track_item alloc,
4996 		unsigned long *obj_map)
4997 {
4998 	void *addr = slab_address(slab);
4999 	void *p;
5000 
5001 	__fill_map(obj_map, s, slab);
5002 
5003 	for_each_object(p, s, addr, slab->objects)
5004 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5005 			add_location(t, s, get_track(s, p, alloc));
5006 }
5007 #endif  /* CONFIG_DEBUG_FS   */
5008 #endif	/* CONFIG_SLUB_DEBUG */
5009 
5010 #ifdef CONFIG_SYSFS
5011 enum slab_stat_type {
5012 	SL_ALL,			/* All slabs */
5013 	SL_PARTIAL,		/* Only partially allocated slabs */
5014 	SL_CPU,			/* Only slabs used for cpu caches */
5015 	SL_OBJECTS,		/* Determine allocated objects not slabs */
5016 	SL_TOTAL		/* Determine object capacity not slabs */
5017 };
5018 
5019 #define SO_ALL		(1 << SL_ALL)
5020 #define SO_PARTIAL	(1 << SL_PARTIAL)
5021 #define SO_CPU		(1 << SL_CPU)
5022 #define SO_OBJECTS	(1 << SL_OBJECTS)
5023 #define SO_TOTAL	(1 << SL_TOTAL)
5024 
5025 static ssize_t show_slab_objects(struct kmem_cache *s,
5026 				 char *buf, unsigned long flags)
5027 {
5028 	unsigned long total = 0;
5029 	int node;
5030 	int x;
5031 	unsigned long *nodes;
5032 	int len = 0;
5033 
5034 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5035 	if (!nodes)
5036 		return -ENOMEM;
5037 
5038 	if (flags & SO_CPU) {
5039 		int cpu;
5040 
5041 		for_each_possible_cpu(cpu) {
5042 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5043 							       cpu);
5044 			int node;
5045 			struct slab *slab;
5046 
5047 			slab = READ_ONCE(c->slab);
5048 			if (!slab)
5049 				continue;
5050 
5051 			node = slab_nid(slab);
5052 			if (flags & SO_TOTAL)
5053 				x = slab->objects;
5054 			else if (flags & SO_OBJECTS)
5055 				x = slab->inuse;
5056 			else
5057 				x = 1;
5058 
5059 			total += x;
5060 			nodes[node] += x;
5061 
5062 #ifdef CONFIG_SLUB_CPU_PARTIAL
5063 			slab = slub_percpu_partial_read_once(c);
5064 			if (slab) {
5065 				node = slab_nid(slab);
5066 				if (flags & SO_TOTAL)
5067 					WARN_ON_ONCE(1);
5068 				else if (flags & SO_OBJECTS)
5069 					WARN_ON_ONCE(1);
5070 				else
5071 					x = slab->slabs;
5072 				total += x;
5073 				nodes[node] += x;
5074 			}
5075 #endif
5076 		}
5077 	}
5078 
5079 	/*
5080 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5081 	 * already held which will conflict with an existing lock order:
5082 	 *
5083 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5084 	 *
5085 	 * We don't really need mem_hotplug_lock (to hold off
5086 	 * slab_mem_going_offline_callback) here because slab's memory hot
5087 	 * unplug code doesn't destroy the kmem_cache->node[] data.
5088 	 */
5089 
5090 #ifdef CONFIG_SLUB_DEBUG
5091 	if (flags & SO_ALL) {
5092 		struct kmem_cache_node *n;
5093 
5094 		for_each_kmem_cache_node(s, node, n) {
5095 
5096 			if (flags & SO_TOTAL)
5097 				x = atomic_long_read(&n->total_objects);
5098 			else if (flags & SO_OBJECTS)
5099 				x = atomic_long_read(&n->total_objects) -
5100 					count_partial(n, count_free);
5101 			else
5102 				x = atomic_long_read(&n->nr_slabs);
5103 			total += x;
5104 			nodes[node] += x;
5105 		}
5106 
5107 	} else
5108 #endif
5109 	if (flags & SO_PARTIAL) {
5110 		struct kmem_cache_node *n;
5111 
5112 		for_each_kmem_cache_node(s, node, n) {
5113 			if (flags & SO_TOTAL)
5114 				x = count_partial(n, count_total);
5115 			else if (flags & SO_OBJECTS)
5116 				x = count_partial(n, count_inuse);
5117 			else
5118 				x = n->nr_partial;
5119 			total += x;
5120 			nodes[node] += x;
5121 		}
5122 	}
5123 
5124 	len += sysfs_emit_at(buf, len, "%lu", total);
5125 #ifdef CONFIG_NUMA
5126 	for (node = 0; node < nr_node_ids; node++) {
5127 		if (nodes[node])
5128 			len += sysfs_emit_at(buf, len, " N%d=%lu",
5129 					     node, nodes[node]);
5130 	}
5131 #endif
5132 	len += sysfs_emit_at(buf, len, "\n");
5133 	kfree(nodes);
5134 
5135 	return len;
5136 }
5137 
5138 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5139 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5140 
5141 struct slab_attribute {
5142 	struct attribute attr;
5143 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5144 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5145 };
5146 
5147 #define SLAB_ATTR_RO(_name) \
5148 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
5149 
5150 #define SLAB_ATTR(_name) \
5151 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
5152 
5153 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5154 {
5155 	return sysfs_emit(buf, "%u\n", s->size);
5156 }
5157 SLAB_ATTR_RO(slab_size);
5158 
5159 static ssize_t align_show(struct kmem_cache *s, char *buf)
5160 {
5161 	return sysfs_emit(buf, "%u\n", s->align);
5162 }
5163 SLAB_ATTR_RO(align);
5164 
5165 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5166 {
5167 	return sysfs_emit(buf, "%u\n", s->object_size);
5168 }
5169 SLAB_ATTR_RO(object_size);
5170 
5171 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5172 {
5173 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5174 }
5175 SLAB_ATTR_RO(objs_per_slab);
5176 
5177 static ssize_t order_show(struct kmem_cache *s, char *buf)
5178 {
5179 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5180 }
5181 SLAB_ATTR_RO(order);
5182 
5183 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5184 {
5185 	return sysfs_emit(buf, "%lu\n", s->min_partial);
5186 }
5187 
5188 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5189 				 size_t length)
5190 {
5191 	unsigned long min;
5192 	int err;
5193 
5194 	err = kstrtoul(buf, 10, &min);
5195 	if (err)
5196 		return err;
5197 
5198 	s->min_partial = min;
5199 	return length;
5200 }
5201 SLAB_ATTR(min_partial);
5202 
5203 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5204 {
5205 	unsigned int nr_partial = 0;
5206 #ifdef CONFIG_SLUB_CPU_PARTIAL
5207 	nr_partial = s->cpu_partial;
5208 #endif
5209 
5210 	return sysfs_emit(buf, "%u\n", nr_partial);
5211 }
5212 
5213 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5214 				 size_t length)
5215 {
5216 	unsigned int objects;
5217 	int err;
5218 
5219 	err = kstrtouint(buf, 10, &objects);
5220 	if (err)
5221 		return err;
5222 	if (objects && !kmem_cache_has_cpu_partial(s))
5223 		return -EINVAL;
5224 
5225 	slub_set_cpu_partial(s, objects);
5226 	flush_all(s);
5227 	return length;
5228 }
5229 SLAB_ATTR(cpu_partial);
5230 
5231 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5232 {
5233 	if (!s->ctor)
5234 		return 0;
5235 	return sysfs_emit(buf, "%pS\n", s->ctor);
5236 }
5237 SLAB_ATTR_RO(ctor);
5238 
5239 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5240 {
5241 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5242 }
5243 SLAB_ATTR_RO(aliases);
5244 
5245 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5246 {
5247 	return show_slab_objects(s, buf, SO_PARTIAL);
5248 }
5249 SLAB_ATTR_RO(partial);
5250 
5251 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5252 {
5253 	return show_slab_objects(s, buf, SO_CPU);
5254 }
5255 SLAB_ATTR_RO(cpu_slabs);
5256 
5257 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5258 {
5259 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5260 }
5261 SLAB_ATTR_RO(objects);
5262 
5263 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5264 {
5265 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5266 }
5267 SLAB_ATTR_RO(objects_partial);
5268 
5269 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5270 {
5271 	int objects = 0;
5272 	int slabs = 0;
5273 	int cpu __maybe_unused;
5274 	int len = 0;
5275 
5276 #ifdef CONFIG_SLUB_CPU_PARTIAL
5277 	for_each_online_cpu(cpu) {
5278 		struct slab *slab;
5279 
5280 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5281 
5282 		if (slab)
5283 			slabs += slab->slabs;
5284 	}
5285 #endif
5286 
5287 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
5288 	objects = (slabs * oo_objects(s->oo)) / 2;
5289 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5290 
5291 #if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP)
5292 	for_each_online_cpu(cpu) {
5293 		struct slab *slab;
5294 
5295 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5296 		if (slab) {
5297 			slabs = READ_ONCE(slab->slabs);
5298 			objects = (slabs * oo_objects(s->oo)) / 2;
5299 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5300 					     cpu, objects, slabs);
5301 		}
5302 	}
5303 #endif
5304 	len += sysfs_emit_at(buf, len, "\n");
5305 
5306 	return len;
5307 }
5308 SLAB_ATTR_RO(slabs_cpu_partial);
5309 
5310 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5311 {
5312 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5313 }
5314 SLAB_ATTR_RO(reclaim_account);
5315 
5316 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5317 {
5318 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5319 }
5320 SLAB_ATTR_RO(hwcache_align);
5321 
5322 #ifdef CONFIG_ZONE_DMA
5323 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5324 {
5325 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5326 }
5327 SLAB_ATTR_RO(cache_dma);
5328 #endif
5329 
5330 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5331 {
5332 	return sysfs_emit(buf, "%u\n", s->usersize);
5333 }
5334 SLAB_ATTR_RO(usersize);
5335 
5336 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5337 {
5338 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5339 }
5340 SLAB_ATTR_RO(destroy_by_rcu);
5341 
5342 #ifdef CONFIG_SLUB_DEBUG
5343 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5344 {
5345 	return show_slab_objects(s, buf, SO_ALL);
5346 }
5347 SLAB_ATTR_RO(slabs);
5348 
5349 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5350 {
5351 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5352 }
5353 SLAB_ATTR_RO(total_objects);
5354 
5355 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5356 {
5357 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5358 }
5359 SLAB_ATTR_RO(sanity_checks);
5360 
5361 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5362 {
5363 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5364 }
5365 SLAB_ATTR_RO(trace);
5366 
5367 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5368 {
5369 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5370 }
5371 
5372 SLAB_ATTR_RO(red_zone);
5373 
5374 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5375 {
5376 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5377 }
5378 
5379 SLAB_ATTR_RO(poison);
5380 
5381 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5382 {
5383 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5384 }
5385 
5386 SLAB_ATTR_RO(store_user);
5387 
5388 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5389 {
5390 	return 0;
5391 }
5392 
5393 static ssize_t validate_store(struct kmem_cache *s,
5394 			const char *buf, size_t length)
5395 {
5396 	int ret = -EINVAL;
5397 
5398 	if (buf[0] == '1') {
5399 		ret = validate_slab_cache(s);
5400 		if (ret >= 0)
5401 			ret = length;
5402 	}
5403 	return ret;
5404 }
5405 SLAB_ATTR(validate);
5406 
5407 #endif /* CONFIG_SLUB_DEBUG */
5408 
5409 #ifdef CONFIG_FAILSLAB
5410 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5411 {
5412 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5413 }
5414 SLAB_ATTR_RO(failslab);
5415 #endif
5416 
5417 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5418 {
5419 	return 0;
5420 }
5421 
5422 static ssize_t shrink_store(struct kmem_cache *s,
5423 			const char *buf, size_t length)
5424 {
5425 	if (buf[0] == '1')
5426 		kmem_cache_shrink(s);
5427 	else
5428 		return -EINVAL;
5429 	return length;
5430 }
5431 SLAB_ATTR(shrink);
5432 
5433 #ifdef CONFIG_NUMA
5434 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5435 {
5436 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5437 }
5438 
5439 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5440 				const char *buf, size_t length)
5441 {
5442 	unsigned int ratio;
5443 	int err;
5444 
5445 	err = kstrtouint(buf, 10, &ratio);
5446 	if (err)
5447 		return err;
5448 	if (ratio > 100)
5449 		return -ERANGE;
5450 
5451 	s->remote_node_defrag_ratio = ratio * 10;
5452 
5453 	return length;
5454 }
5455 SLAB_ATTR(remote_node_defrag_ratio);
5456 #endif
5457 
5458 #ifdef CONFIG_SLUB_STATS
5459 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5460 {
5461 	unsigned long sum  = 0;
5462 	int cpu;
5463 	int len = 0;
5464 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5465 
5466 	if (!data)
5467 		return -ENOMEM;
5468 
5469 	for_each_online_cpu(cpu) {
5470 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5471 
5472 		data[cpu] = x;
5473 		sum += x;
5474 	}
5475 
5476 	len += sysfs_emit_at(buf, len, "%lu", sum);
5477 
5478 #ifdef CONFIG_SMP
5479 	for_each_online_cpu(cpu) {
5480 		if (data[cpu])
5481 			len += sysfs_emit_at(buf, len, " C%d=%u",
5482 					     cpu, data[cpu]);
5483 	}
5484 #endif
5485 	kfree(data);
5486 	len += sysfs_emit_at(buf, len, "\n");
5487 
5488 	return len;
5489 }
5490 
5491 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5492 {
5493 	int cpu;
5494 
5495 	for_each_online_cpu(cpu)
5496 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5497 }
5498 
5499 #define STAT_ATTR(si, text) 					\
5500 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5501 {								\
5502 	return show_stat(s, buf, si);				\
5503 }								\
5504 static ssize_t text##_store(struct kmem_cache *s,		\
5505 				const char *buf, size_t length)	\
5506 {								\
5507 	if (buf[0] != '0')					\
5508 		return -EINVAL;					\
5509 	clear_stat(s, si);					\
5510 	return length;						\
5511 }								\
5512 SLAB_ATTR(text);						\
5513 
5514 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5515 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5516 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5517 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5518 STAT_ATTR(FREE_FROZEN, free_frozen);
5519 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5520 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5521 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5522 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5523 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5524 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5525 STAT_ATTR(FREE_SLAB, free_slab);
5526 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5527 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5528 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5529 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5530 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5531 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5532 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5533 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5534 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5535 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5536 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5537 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5538 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5539 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5540 #endif	/* CONFIG_SLUB_STATS */
5541 
5542 static struct attribute *slab_attrs[] = {
5543 	&slab_size_attr.attr,
5544 	&object_size_attr.attr,
5545 	&objs_per_slab_attr.attr,
5546 	&order_attr.attr,
5547 	&min_partial_attr.attr,
5548 	&cpu_partial_attr.attr,
5549 	&objects_attr.attr,
5550 	&objects_partial_attr.attr,
5551 	&partial_attr.attr,
5552 	&cpu_slabs_attr.attr,
5553 	&ctor_attr.attr,
5554 	&aliases_attr.attr,
5555 	&align_attr.attr,
5556 	&hwcache_align_attr.attr,
5557 	&reclaim_account_attr.attr,
5558 	&destroy_by_rcu_attr.attr,
5559 	&shrink_attr.attr,
5560 	&slabs_cpu_partial_attr.attr,
5561 #ifdef CONFIG_SLUB_DEBUG
5562 	&total_objects_attr.attr,
5563 	&slabs_attr.attr,
5564 	&sanity_checks_attr.attr,
5565 	&trace_attr.attr,
5566 	&red_zone_attr.attr,
5567 	&poison_attr.attr,
5568 	&store_user_attr.attr,
5569 	&validate_attr.attr,
5570 #endif
5571 #ifdef CONFIG_ZONE_DMA
5572 	&cache_dma_attr.attr,
5573 #endif
5574 #ifdef CONFIG_NUMA
5575 	&remote_node_defrag_ratio_attr.attr,
5576 #endif
5577 #ifdef CONFIG_SLUB_STATS
5578 	&alloc_fastpath_attr.attr,
5579 	&alloc_slowpath_attr.attr,
5580 	&free_fastpath_attr.attr,
5581 	&free_slowpath_attr.attr,
5582 	&free_frozen_attr.attr,
5583 	&free_add_partial_attr.attr,
5584 	&free_remove_partial_attr.attr,
5585 	&alloc_from_partial_attr.attr,
5586 	&alloc_slab_attr.attr,
5587 	&alloc_refill_attr.attr,
5588 	&alloc_node_mismatch_attr.attr,
5589 	&free_slab_attr.attr,
5590 	&cpuslab_flush_attr.attr,
5591 	&deactivate_full_attr.attr,
5592 	&deactivate_empty_attr.attr,
5593 	&deactivate_to_head_attr.attr,
5594 	&deactivate_to_tail_attr.attr,
5595 	&deactivate_remote_frees_attr.attr,
5596 	&deactivate_bypass_attr.attr,
5597 	&order_fallback_attr.attr,
5598 	&cmpxchg_double_fail_attr.attr,
5599 	&cmpxchg_double_cpu_fail_attr.attr,
5600 	&cpu_partial_alloc_attr.attr,
5601 	&cpu_partial_free_attr.attr,
5602 	&cpu_partial_node_attr.attr,
5603 	&cpu_partial_drain_attr.attr,
5604 #endif
5605 #ifdef CONFIG_FAILSLAB
5606 	&failslab_attr.attr,
5607 #endif
5608 	&usersize_attr.attr,
5609 
5610 	NULL
5611 };
5612 
5613 static const struct attribute_group slab_attr_group = {
5614 	.attrs = slab_attrs,
5615 };
5616 
5617 static ssize_t slab_attr_show(struct kobject *kobj,
5618 				struct attribute *attr,
5619 				char *buf)
5620 {
5621 	struct slab_attribute *attribute;
5622 	struct kmem_cache *s;
5623 	int err;
5624 
5625 	attribute = to_slab_attr(attr);
5626 	s = to_slab(kobj);
5627 
5628 	if (!attribute->show)
5629 		return -EIO;
5630 
5631 	err = attribute->show(s, buf);
5632 
5633 	return err;
5634 }
5635 
5636 static ssize_t slab_attr_store(struct kobject *kobj,
5637 				struct attribute *attr,
5638 				const char *buf, size_t len)
5639 {
5640 	struct slab_attribute *attribute;
5641 	struct kmem_cache *s;
5642 	int err;
5643 
5644 	attribute = to_slab_attr(attr);
5645 	s = to_slab(kobj);
5646 
5647 	if (!attribute->store)
5648 		return -EIO;
5649 
5650 	err = attribute->store(s, buf, len);
5651 	return err;
5652 }
5653 
5654 static void kmem_cache_release(struct kobject *k)
5655 {
5656 	slab_kmem_cache_release(to_slab(k));
5657 }
5658 
5659 static const struct sysfs_ops slab_sysfs_ops = {
5660 	.show = slab_attr_show,
5661 	.store = slab_attr_store,
5662 };
5663 
5664 static struct kobj_type slab_ktype = {
5665 	.sysfs_ops = &slab_sysfs_ops,
5666 	.release = kmem_cache_release,
5667 };
5668 
5669 static struct kset *slab_kset;
5670 
5671 static inline struct kset *cache_kset(struct kmem_cache *s)
5672 {
5673 	return slab_kset;
5674 }
5675 
5676 #define ID_STR_LENGTH 64
5677 
5678 /* Create a unique string id for a slab cache:
5679  *
5680  * Format	:[flags-]size
5681  */
5682 static char *create_unique_id(struct kmem_cache *s)
5683 {
5684 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5685 	char *p = name;
5686 
5687 	BUG_ON(!name);
5688 
5689 	*p++ = ':';
5690 	/*
5691 	 * First flags affecting slabcache operations. We will only
5692 	 * get here for aliasable slabs so we do not need to support
5693 	 * too many flags. The flags here must cover all flags that
5694 	 * are matched during merging to guarantee that the id is
5695 	 * unique.
5696 	 */
5697 	if (s->flags & SLAB_CACHE_DMA)
5698 		*p++ = 'd';
5699 	if (s->flags & SLAB_CACHE_DMA32)
5700 		*p++ = 'D';
5701 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5702 		*p++ = 'a';
5703 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5704 		*p++ = 'F';
5705 	if (s->flags & SLAB_ACCOUNT)
5706 		*p++ = 'A';
5707 	if (p != name + 1)
5708 		*p++ = '-';
5709 	p += sprintf(p, "%07u", s->size);
5710 
5711 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5712 	return name;
5713 }
5714 
5715 static int sysfs_slab_add(struct kmem_cache *s)
5716 {
5717 	int err;
5718 	const char *name;
5719 	struct kset *kset = cache_kset(s);
5720 	int unmergeable = slab_unmergeable(s);
5721 
5722 	if (!kset) {
5723 		kobject_init(&s->kobj, &slab_ktype);
5724 		return 0;
5725 	}
5726 
5727 	if (!unmergeable && disable_higher_order_debug &&
5728 			(slub_debug & DEBUG_METADATA_FLAGS))
5729 		unmergeable = 1;
5730 
5731 	if (unmergeable) {
5732 		/*
5733 		 * Slabcache can never be merged so we can use the name proper.
5734 		 * This is typically the case for debug situations. In that
5735 		 * case we can catch duplicate names easily.
5736 		 */
5737 		sysfs_remove_link(&slab_kset->kobj, s->name);
5738 		name = s->name;
5739 	} else {
5740 		/*
5741 		 * Create a unique name for the slab as a target
5742 		 * for the symlinks.
5743 		 */
5744 		name = create_unique_id(s);
5745 	}
5746 
5747 	s->kobj.kset = kset;
5748 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5749 	if (err)
5750 		goto out;
5751 
5752 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5753 	if (err)
5754 		goto out_del_kobj;
5755 
5756 	if (!unmergeable) {
5757 		/* Setup first alias */
5758 		sysfs_slab_alias(s, s->name);
5759 	}
5760 out:
5761 	if (!unmergeable)
5762 		kfree(name);
5763 	return err;
5764 out_del_kobj:
5765 	kobject_del(&s->kobj);
5766 	goto out;
5767 }
5768 
5769 void sysfs_slab_unlink(struct kmem_cache *s)
5770 {
5771 	if (slab_state >= FULL)
5772 		kobject_del(&s->kobj);
5773 }
5774 
5775 void sysfs_slab_release(struct kmem_cache *s)
5776 {
5777 	if (slab_state >= FULL)
5778 		kobject_put(&s->kobj);
5779 }
5780 
5781 /*
5782  * Need to buffer aliases during bootup until sysfs becomes
5783  * available lest we lose that information.
5784  */
5785 struct saved_alias {
5786 	struct kmem_cache *s;
5787 	const char *name;
5788 	struct saved_alias *next;
5789 };
5790 
5791 static struct saved_alias *alias_list;
5792 
5793 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5794 {
5795 	struct saved_alias *al;
5796 
5797 	if (slab_state == FULL) {
5798 		/*
5799 		 * If we have a leftover link then remove it.
5800 		 */
5801 		sysfs_remove_link(&slab_kset->kobj, name);
5802 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5803 	}
5804 
5805 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5806 	if (!al)
5807 		return -ENOMEM;
5808 
5809 	al->s = s;
5810 	al->name = name;
5811 	al->next = alias_list;
5812 	alias_list = al;
5813 	return 0;
5814 }
5815 
5816 static int __init slab_sysfs_init(void)
5817 {
5818 	struct kmem_cache *s;
5819 	int err;
5820 
5821 	mutex_lock(&slab_mutex);
5822 
5823 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5824 	if (!slab_kset) {
5825 		mutex_unlock(&slab_mutex);
5826 		pr_err("Cannot register slab subsystem.\n");
5827 		return -ENOSYS;
5828 	}
5829 
5830 	slab_state = FULL;
5831 
5832 	list_for_each_entry(s, &slab_caches, list) {
5833 		err = sysfs_slab_add(s);
5834 		if (err)
5835 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5836 			       s->name);
5837 	}
5838 
5839 	while (alias_list) {
5840 		struct saved_alias *al = alias_list;
5841 
5842 		alias_list = alias_list->next;
5843 		err = sysfs_slab_alias(al->s, al->name);
5844 		if (err)
5845 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5846 			       al->name);
5847 		kfree(al);
5848 	}
5849 
5850 	mutex_unlock(&slab_mutex);
5851 	return 0;
5852 }
5853 
5854 __initcall(slab_sysfs_init);
5855 #endif /* CONFIG_SYSFS */
5856 
5857 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
5858 static int slab_debugfs_show(struct seq_file *seq, void *v)
5859 {
5860 	struct loc_track *t = seq->private;
5861 	struct location *l;
5862 	unsigned long idx;
5863 
5864 	idx = (unsigned long) t->idx;
5865 	if (idx < t->count) {
5866 		l = &t->loc[idx];
5867 
5868 		seq_printf(seq, "%7ld ", l->count);
5869 
5870 		if (l->addr)
5871 			seq_printf(seq, "%pS", (void *)l->addr);
5872 		else
5873 			seq_puts(seq, "<not-available>");
5874 
5875 		if (l->sum_time != l->min_time) {
5876 			seq_printf(seq, " age=%ld/%llu/%ld",
5877 				l->min_time, div_u64(l->sum_time, l->count),
5878 				l->max_time);
5879 		} else
5880 			seq_printf(seq, " age=%ld", l->min_time);
5881 
5882 		if (l->min_pid != l->max_pid)
5883 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
5884 		else
5885 			seq_printf(seq, " pid=%ld",
5886 				l->min_pid);
5887 
5888 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
5889 			seq_printf(seq, " cpus=%*pbl",
5890 				 cpumask_pr_args(to_cpumask(l->cpus)));
5891 
5892 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
5893 			seq_printf(seq, " nodes=%*pbl",
5894 				 nodemask_pr_args(&l->nodes));
5895 
5896 #ifdef CONFIG_STACKDEPOT
5897 		{
5898 			depot_stack_handle_t handle;
5899 			unsigned long *entries;
5900 			unsigned int nr_entries, j;
5901 
5902 			handle = READ_ONCE(l->handle);
5903 			if (handle) {
5904 				nr_entries = stack_depot_fetch(handle, &entries);
5905 				seq_puts(seq, "\n");
5906 				for (j = 0; j < nr_entries; j++)
5907 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
5908 			}
5909 		}
5910 #endif
5911 		seq_puts(seq, "\n");
5912 	}
5913 
5914 	if (!idx && !t->count)
5915 		seq_puts(seq, "No data\n");
5916 
5917 	return 0;
5918 }
5919 
5920 static void slab_debugfs_stop(struct seq_file *seq, void *v)
5921 {
5922 }
5923 
5924 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
5925 {
5926 	struct loc_track *t = seq->private;
5927 
5928 	t->idx = ++(*ppos);
5929 	if (*ppos <= t->count)
5930 		return ppos;
5931 
5932 	return NULL;
5933 }
5934 
5935 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
5936 {
5937 	struct location *loc1 = (struct location *)a;
5938 	struct location *loc2 = (struct location *)b;
5939 
5940 	if (loc1->count > loc2->count)
5941 		return -1;
5942 	else
5943 		return 1;
5944 }
5945 
5946 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
5947 {
5948 	struct loc_track *t = seq->private;
5949 
5950 	t->idx = *ppos;
5951 	return ppos;
5952 }
5953 
5954 static const struct seq_operations slab_debugfs_sops = {
5955 	.start  = slab_debugfs_start,
5956 	.next   = slab_debugfs_next,
5957 	.stop   = slab_debugfs_stop,
5958 	.show   = slab_debugfs_show,
5959 };
5960 
5961 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
5962 {
5963 
5964 	struct kmem_cache_node *n;
5965 	enum track_item alloc;
5966 	int node;
5967 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
5968 						sizeof(struct loc_track));
5969 	struct kmem_cache *s = file_inode(filep)->i_private;
5970 	unsigned long *obj_map;
5971 
5972 	if (!t)
5973 		return -ENOMEM;
5974 
5975 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5976 	if (!obj_map) {
5977 		seq_release_private(inode, filep);
5978 		return -ENOMEM;
5979 	}
5980 
5981 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
5982 		alloc = TRACK_ALLOC;
5983 	else
5984 		alloc = TRACK_FREE;
5985 
5986 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
5987 		bitmap_free(obj_map);
5988 		seq_release_private(inode, filep);
5989 		return -ENOMEM;
5990 	}
5991 
5992 	for_each_kmem_cache_node(s, node, n) {
5993 		unsigned long flags;
5994 		struct slab *slab;
5995 
5996 		if (!atomic_long_read(&n->nr_slabs))
5997 			continue;
5998 
5999 		spin_lock_irqsave(&n->list_lock, flags);
6000 		list_for_each_entry(slab, &n->partial, slab_list)
6001 			process_slab(t, s, slab, alloc, obj_map);
6002 		list_for_each_entry(slab, &n->full, slab_list)
6003 			process_slab(t, s, slab, alloc, obj_map);
6004 		spin_unlock_irqrestore(&n->list_lock, flags);
6005 	}
6006 
6007 	/* Sort locations by count */
6008 	sort_r(t->loc, t->count, sizeof(struct location),
6009 		cmp_loc_by_count, NULL, NULL);
6010 
6011 	bitmap_free(obj_map);
6012 	return 0;
6013 }
6014 
6015 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6016 {
6017 	struct seq_file *seq = file->private_data;
6018 	struct loc_track *t = seq->private;
6019 
6020 	free_loc_track(t);
6021 	return seq_release_private(inode, file);
6022 }
6023 
6024 static const struct file_operations slab_debugfs_fops = {
6025 	.open    = slab_debug_trace_open,
6026 	.read    = seq_read,
6027 	.llseek  = seq_lseek,
6028 	.release = slab_debug_trace_release,
6029 };
6030 
6031 static void debugfs_slab_add(struct kmem_cache *s)
6032 {
6033 	struct dentry *slab_cache_dir;
6034 
6035 	if (unlikely(!slab_debugfs_root))
6036 		return;
6037 
6038 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6039 
6040 	debugfs_create_file("alloc_traces", 0400,
6041 		slab_cache_dir, s, &slab_debugfs_fops);
6042 
6043 	debugfs_create_file("free_traces", 0400,
6044 		slab_cache_dir, s, &slab_debugfs_fops);
6045 }
6046 
6047 void debugfs_slab_release(struct kmem_cache *s)
6048 {
6049 	debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
6050 }
6051 
6052 static int __init slab_debugfs_init(void)
6053 {
6054 	struct kmem_cache *s;
6055 
6056 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
6057 
6058 	list_for_each_entry(s, &slab_caches, list)
6059 		if (s->flags & SLAB_STORE_USER)
6060 			debugfs_slab_add(s);
6061 
6062 	return 0;
6063 
6064 }
6065 __initcall(slab_debugfs_init);
6066 #endif
6067 /*
6068  * The /proc/slabinfo ABI
6069  */
6070 #ifdef CONFIG_SLUB_DEBUG
6071 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6072 {
6073 	unsigned long nr_slabs = 0;
6074 	unsigned long nr_objs = 0;
6075 	unsigned long nr_free = 0;
6076 	int node;
6077 	struct kmem_cache_node *n;
6078 
6079 	for_each_kmem_cache_node(s, node, n) {
6080 		nr_slabs += node_nr_slabs(n);
6081 		nr_objs += node_nr_objs(n);
6082 		nr_free += count_partial(n, count_free);
6083 	}
6084 
6085 	sinfo->active_objs = nr_objs - nr_free;
6086 	sinfo->num_objs = nr_objs;
6087 	sinfo->active_slabs = nr_slabs;
6088 	sinfo->num_slabs = nr_slabs;
6089 	sinfo->objects_per_slab = oo_objects(s->oo);
6090 	sinfo->cache_order = oo_order(s->oo);
6091 }
6092 
6093 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6094 {
6095 }
6096 
6097 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6098 		       size_t count, loff_t *ppos)
6099 {
6100 	return -EIO;
6101 }
6102 #endif /* CONFIG_SLUB_DEBUG */
6103