xref: /openbmc/linux/mm/slab.h (revision 26a9630c72ebac7c564db305a6aee54a8edde70e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef MM_SLAB_H
3 #define MM_SLAB_H
4 /*
5  * Internal slab definitions
6  */
7 
8 #ifdef CONFIG_SLOB
9 /*
10  * Common fields provided in kmem_cache by all slab allocators
11  * This struct is either used directly by the allocator (SLOB)
12  * or the allocator must include definitions for all fields
13  * provided in kmem_cache_common in their definition of kmem_cache.
14  *
15  * Once we can do anonymous structs (C11 standard) we could put a
16  * anonymous struct definition in these allocators so that the
17  * separate allocations in the kmem_cache structure of SLAB and
18  * SLUB is no longer needed.
19  */
20 struct kmem_cache {
21 	unsigned int object_size;/* The original size of the object */
22 	unsigned int size;	/* The aligned/padded/added on size  */
23 	unsigned int align;	/* Alignment as calculated */
24 	slab_flags_t flags;	/* Active flags on the slab */
25 	unsigned int useroffset;/* Usercopy region offset */
26 	unsigned int usersize;	/* Usercopy region size */
27 	const char *name;	/* Slab name for sysfs */
28 	int refcount;		/* Use counter */
29 	void (*ctor)(void *);	/* Called on object slot creation */
30 	struct list_head list;	/* List of all slab caches on the system */
31 };
32 
33 #endif /* CONFIG_SLOB */
34 
35 #ifdef CONFIG_SLAB
36 #include <linux/slab_def.h>
37 #endif
38 
39 #ifdef CONFIG_SLUB
40 #include <linux/slub_def.h>
41 #endif
42 
43 #include <linux/memcontrol.h>
44 #include <linux/fault-inject.h>
45 #include <linux/kasan.h>
46 #include <linux/kmemleak.h>
47 #include <linux/random.h>
48 #include <linux/sched/mm.h>
49 
50 /*
51  * State of the slab allocator.
52  *
53  * This is used to describe the states of the allocator during bootup.
54  * Allocators use this to gradually bootstrap themselves. Most allocators
55  * have the problem that the structures used for managing slab caches are
56  * allocated from slab caches themselves.
57  */
58 enum slab_state {
59 	DOWN,			/* No slab functionality yet */
60 	PARTIAL,		/* SLUB: kmem_cache_node available */
61 	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
62 	UP,			/* Slab caches usable but not all extras yet */
63 	FULL			/* Everything is working */
64 };
65 
66 extern enum slab_state slab_state;
67 
68 /* The slab cache mutex protects the management structures during changes */
69 extern struct mutex slab_mutex;
70 
71 /* The list of all slab caches on the system */
72 extern struct list_head slab_caches;
73 
74 /* The slab cache that manages slab cache information */
75 extern struct kmem_cache *kmem_cache;
76 
77 /* A table of kmalloc cache names and sizes */
78 extern const struct kmalloc_info_struct {
79 	const char *name[NR_KMALLOC_TYPES];
80 	unsigned int size;
81 } kmalloc_info[];
82 
83 #ifndef CONFIG_SLOB
84 /* Kmalloc array related functions */
85 void setup_kmalloc_cache_index_table(void);
86 void create_kmalloc_caches(slab_flags_t);
87 
88 /* Find the kmalloc slab corresponding for a certain size */
89 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
90 #endif
91 
92 gfp_t kmalloc_fix_flags(gfp_t flags);
93 
94 /* Functions provided by the slab allocators */
95 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
96 
97 struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
98 			slab_flags_t flags, unsigned int useroffset,
99 			unsigned int usersize);
100 extern void create_boot_cache(struct kmem_cache *, const char *name,
101 			unsigned int size, slab_flags_t flags,
102 			unsigned int useroffset, unsigned int usersize);
103 
104 int slab_unmergeable(struct kmem_cache *s);
105 struct kmem_cache *find_mergeable(unsigned size, unsigned align,
106 		slab_flags_t flags, const char *name, void (*ctor)(void *));
107 #ifndef CONFIG_SLOB
108 struct kmem_cache *
109 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
110 		   slab_flags_t flags, void (*ctor)(void *));
111 
112 slab_flags_t kmem_cache_flags(unsigned int object_size,
113 	slab_flags_t flags, const char *name,
114 	void (*ctor)(void *));
115 #else
116 static inline struct kmem_cache *
117 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
118 		   slab_flags_t flags, void (*ctor)(void *))
119 { return NULL; }
120 
121 static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
122 	slab_flags_t flags, const char *name,
123 	void (*ctor)(void *))
124 {
125 	return flags;
126 }
127 #endif
128 
129 
130 /* Legal flag mask for kmem_cache_create(), for various configurations */
131 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
132 			 SLAB_CACHE_DMA32 | SLAB_PANIC | \
133 			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
134 
135 #if defined(CONFIG_DEBUG_SLAB)
136 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
137 #elif defined(CONFIG_SLUB_DEBUG)
138 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
139 			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
140 #else
141 #define SLAB_DEBUG_FLAGS (0)
142 #endif
143 
144 #if defined(CONFIG_SLAB)
145 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
146 			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
147 			  SLAB_ACCOUNT)
148 #elif defined(CONFIG_SLUB)
149 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
150 			  SLAB_TEMPORARY | SLAB_ACCOUNT)
151 #else
152 #define SLAB_CACHE_FLAGS (0)
153 #endif
154 
155 /* Common flags available with current configuration */
156 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
157 
158 /* Common flags permitted for kmem_cache_create */
159 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
160 			      SLAB_RED_ZONE | \
161 			      SLAB_POISON | \
162 			      SLAB_STORE_USER | \
163 			      SLAB_TRACE | \
164 			      SLAB_CONSISTENCY_CHECKS | \
165 			      SLAB_MEM_SPREAD | \
166 			      SLAB_NOLEAKTRACE | \
167 			      SLAB_RECLAIM_ACCOUNT | \
168 			      SLAB_TEMPORARY | \
169 			      SLAB_ACCOUNT)
170 
171 bool __kmem_cache_empty(struct kmem_cache *);
172 int __kmem_cache_shutdown(struct kmem_cache *);
173 void __kmem_cache_release(struct kmem_cache *);
174 int __kmem_cache_shrink(struct kmem_cache *);
175 void slab_kmem_cache_release(struct kmem_cache *);
176 
177 struct seq_file;
178 struct file;
179 
180 struct slabinfo {
181 	unsigned long active_objs;
182 	unsigned long num_objs;
183 	unsigned long active_slabs;
184 	unsigned long num_slabs;
185 	unsigned long shared_avail;
186 	unsigned int limit;
187 	unsigned int batchcount;
188 	unsigned int shared;
189 	unsigned int objects_per_slab;
190 	unsigned int cache_order;
191 };
192 
193 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
194 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
195 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
196 		       size_t count, loff_t *ppos);
197 
198 /*
199  * Generic implementation of bulk operations
200  * These are useful for situations in which the allocator cannot
201  * perform optimizations. In that case segments of the object listed
202  * may be allocated or freed using these operations.
203  */
204 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
205 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
206 
207 static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
208 {
209 	return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
210 		NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
211 }
212 
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
216 #else
217 DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
218 #endif
219 extern void print_tracking(struct kmem_cache *s, void *object);
220 #else
221 static inline void print_tracking(struct kmem_cache *s, void *object)
222 {
223 }
224 #endif
225 
226 /*
227  * Returns true if any of the specified slub_debug flags is enabled for the
228  * cache. Use only for flags parsed by setup_slub_debug() as it also enables
229  * the static key.
230  */
231 static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
232 {
233 #ifdef CONFIG_SLUB_DEBUG
234 	VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
235 	if (static_branch_unlikely(&slub_debug_enabled))
236 		return s->flags & flags;
237 #endif
238 	return false;
239 }
240 
241 #ifdef CONFIG_MEMCG_KMEM
242 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
243 				 gfp_t gfp);
244 
245 static inline void memcg_free_page_obj_cgroups(struct page *page)
246 {
247 	kfree(page_objcgs(page));
248 	page->memcg_data = 0;
249 }
250 
251 static inline size_t obj_full_size(struct kmem_cache *s)
252 {
253 	/*
254 	 * For each accounted object there is an extra space which is used
255 	 * to store obj_cgroup membership. Charge it too.
256 	 */
257 	return s->size + sizeof(struct obj_cgroup *);
258 }
259 
260 /*
261  * Returns false if the allocation should fail.
262  */
263 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
264 					     struct obj_cgroup **objcgp,
265 					     size_t objects, gfp_t flags)
266 {
267 	struct obj_cgroup *objcg;
268 
269 	if (!memcg_kmem_enabled())
270 		return true;
271 
272 	if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
273 		return true;
274 
275 	objcg = get_obj_cgroup_from_current();
276 	if (!objcg)
277 		return true;
278 
279 	if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) {
280 		obj_cgroup_put(objcg);
281 		return false;
282 	}
283 
284 	*objcgp = objcg;
285 	return true;
286 }
287 
288 static inline void mod_objcg_state(struct obj_cgroup *objcg,
289 				   struct pglist_data *pgdat,
290 				   enum node_stat_item idx, int nr)
291 {
292 	struct mem_cgroup *memcg;
293 	struct lruvec *lruvec;
294 
295 	rcu_read_lock();
296 	memcg = obj_cgroup_memcg(objcg);
297 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
298 	mod_memcg_lruvec_state(lruvec, idx, nr);
299 	rcu_read_unlock();
300 }
301 
302 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
303 					      struct obj_cgroup *objcg,
304 					      gfp_t flags, size_t size,
305 					      void **p)
306 {
307 	struct page *page;
308 	unsigned long off;
309 	size_t i;
310 
311 	if (!memcg_kmem_enabled() || !objcg)
312 		return;
313 
314 	flags &= ~__GFP_ACCOUNT;
315 	for (i = 0; i < size; i++) {
316 		if (likely(p[i])) {
317 			page = virt_to_head_page(p[i]);
318 
319 			if (!page_objcgs(page) &&
320 			    memcg_alloc_page_obj_cgroups(page, s, flags)) {
321 				obj_cgroup_uncharge(objcg, obj_full_size(s));
322 				continue;
323 			}
324 
325 			off = obj_to_index(s, page, p[i]);
326 			obj_cgroup_get(objcg);
327 			page_objcgs(page)[off] = objcg;
328 			mod_objcg_state(objcg, page_pgdat(page),
329 					cache_vmstat_idx(s), obj_full_size(s));
330 		} else {
331 			obj_cgroup_uncharge(objcg, obj_full_size(s));
332 		}
333 	}
334 	obj_cgroup_put(objcg);
335 }
336 
337 static inline void memcg_slab_free_hook(struct kmem_cache *s_orig,
338 					void **p, int objects)
339 {
340 	struct kmem_cache *s;
341 	struct obj_cgroup **objcgs;
342 	struct obj_cgroup *objcg;
343 	struct page *page;
344 	unsigned int off;
345 	int i;
346 
347 	if (!memcg_kmem_enabled())
348 		return;
349 
350 	for (i = 0; i < objects; i++) {
351 		if (unlikely(!p[i]))
352 			continue;
353 
354 		page = virt_to_head_page(p[i]);
355 		objcgs = page_objcgs(page);
356 		if (!objcgs)
357 			continue;
358 
359 		if (!s_orig)
360 			s = page->slab_cache;
361 		else
362 			s = s_orig;
363 
364 		off = obj_to_index(s, page, p[i]);
365 		objcg = objcgs[off];
366 		if (!objcg)
367 			continue;
368 
369 		objcgs[off] = NULL;
370 		obj_cgroup_uncharge(objcg, obj_full_size(s));
371 		mod_objcg_state(objcg, page_pgdat(page), cache_vmstat_idx(s),
372 				-obj_full_size(s));
373 		obj_cgroup_put(objcg);
374 	}
375 }
376 
377 #else /* CONFIG_MEMCG_KMEM */
378 static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
379 {
380 	return NULL;
381 }
382 
383 static inline int memcg_alloc_page_obj_cgroups(struct page *page,
384 					       struct kmem_cache *s, gfp_t gfp)
385 {
386 	return 0;
387 }
388 
389 static inline void memcg_free_page_obj_cgroups(struct page *page)
390 {
391 }
392 
393 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
394 					     struct obj_cgroup **objcgp,
395 					     size_t objects, gfp_t flags)
396 {
397 	return true;
398 }
399 
400 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
401 					      struct obj_cgroup *objcg,
402 					      gfp_t flags, size_t size,
403 					      void **p)
404 {
405 }
406 
407 static inline void memcg_slab_free_hook(struct kmem_cache *s,
408 					void **p, int objects)
409 {
410 }
411 #endif /* CONFIG_MEMCG_KMEM */
412 
413 static inline struct kmem_cache *virt_to_cache(const void *obj)
414 {
415 	struct page *page;
416 
417 	page = virt_to_head_page(obj);
418 	if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
419 					__func__))
420 		return NULL;
421 	return page->slab_cache;
422 }
423 
424 static __always_inline void account_slab_page(struct page *page, int order,
425 					      struct kmem_cache *s)
426 {
427 	mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
428 			    PAGE_SIZE << order);
429 }
430 
431 static __always_inline void unaccount_slab_page(struct page *page, int order,
432 						struct kmem_cache *s)
433 {
434 	if (memcg_kmem_enabled())
435 		memcg_free_page_obj_cgroups(page);
436 
437 	mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
438 			    -(PAGE_SIZE << order));
439 }
440 
441 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
442 {
443 	struct kmem_cache *cachep;
444 
445 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
446 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
447 		return s;
448 
449 	cachep = virt_to_cache(x);
450 	if (WARN(cachep && cachep != s,
451 		  "%s: Wrong slab cache. %s but object is from %s\n",
452 		  __func__, s->name, cachep->name))
453 		print_tracking(cachep, x);
454 	return cachep;
455 }
456 
457 static inline size_t slab_ksize(const struct kmem_cache *s)
458 {
459 #ifndef CONFIG_SLUB
460 	return s->object_size;
461 
462 #else /* CONFIG_SLUB */
463 # ifdef CONFIG_SLUB_DEBUG
464 	/*
465 	 * Debugging requires use of the padding between object
466 	 * and whatever may come after it.
467 	 */
468 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
469 		return s->object_size;
470 # endif
471 	if (s->flags & SLAB_KASAN)
472 		return s->object_size;
473 	/*
474 	 * If we have the need to store the freelist pointer
475 	 * back there or track user information then we can
476 	 * only use the space before that information.
477 	 */
478 	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
479 		return s->inuse;
480 	/*
481 	 * Else we can use all the padding etc for the allocation
482 	 */
483 	return s->size;
484 #endif
485 }
486 
487 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
488 						     struct obj_cgroup **objcgp,
489 						     size_t size, gfp_t flags)
490 {
491 	flags &= gfp_allowed_mask;
492 
493 	might_alloc(flags);
494 
495 	if (should_failslab(s, flags))
496 		return NULL;
497 
498 	if (!memcg_slab_pre_alloc_hook(s, objcgp, size, flags))
499 		return NULL;
500 
501 	return s;
502 }
503 
504 static inline void slab_post_alloc_hook(struct kmem_cache *s,
505 					struct obj_cgroup *objcg,
506 					gfp_t flags, size_t size, void **p)
507 {
508 	size_t i;
509 
510 	flags &= gfp_allowed_mask;
511 	for (i = 0; i < size; i++) {
512 		p[i] = kasan_slab_alloc(s, p[i], flags);
513 		/* As p[i] might get tagged, call kmemleak hook after KASAN. */
514 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
515 					 s->flags, flags);
516 	}
517 
518 	memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
519 }
520 
521 #ifndef CONFIG_SLOB
522 /*
523  * The slab lists for all objects.
524  */
525 struct kmem_cache_node {
526 	spinlock_t list_lock;
527 
528 #ifdef CONFIG_SLAB
529 	struct list_head slabs_partial;	/* partial list first, better asm code */
530 	struct list_head slabs_full;
531 	struct list_head slabs_free;
532 	unsigned long total_slabs;	/* length of all slab lists */
533 	unsigned long free_slabs;	/* length of free slab list only */
534 	unsigned long free_objects;
535 	unsigned int free_limit;
536 	unsigned int colour_next;	/* Per-node cache coloring */
537 	struct array_cache *shared;	/* shared per node */
538 	struct alien_cache **alien;	/* on other nodes */
539 	unsigned long next_reap;	/* updated without locking */
540 	int free_touched;		/* updated without locking */
541 #endif
542 
543 #ifdef CONFIG_SLUB
544 	unsigned long nr_partial;
545 	struct list_head partial;
546 #ifdef CONFIG_SLUB_DEBUG
547 	atomic_long_t nr_slabs;
548 	atomic_long_t total_objects;
549 	struct list_head full;
550 #endif
551 #endif
552 
553 };
554 
555 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
556 {
557 	return s->node[node];
558 }
559 
560 /*
561  * Iterator over all nodes. The body will be executed for each node that has
562  * a kmem_cache_node structure allocated (which is true for all online nodes)
563  */
564 #define for_each_kmem_cache_node(__s, __node, __n) \
565 	for (__node = 0; __node < nr_node_ids; __node++) \
566 		 if ((__n = get_node(__s, __node)))
567 
568 #endif
569 
570 void *slab_start(struct seq_file *m, loff_t *pos);
571 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
572 void slab_stop(struct seq_file *m, void *p);
573 int memcg_slab_show(struct seq_file *m, void *p);
574 
575 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
576 void dump_unreclaimable_slab(void);
577 #else
578 static inline void dump_unreclaimable_slab(void)
579 {
580 }
581 #endif
582 
583 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
584 
585 #ifdef CONFIG_SLAB_FREELIST_RANDOM
586 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
587 			gfp_t gfp);
588 void cache_random_seq_destroy(struct kmem_cache *cachep);
589 #else
590 static inline int cache_random_seq_create(struct kmem_cache *cachep,
591 					unsigned int count, gfp_t gfp)
592 {
593 	return 0;
594 }
595 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
596 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
597 
598 static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
599 {
600 	if (static_branch_unlikely(&init_on_alloc)) {
601 		if (c->ctor)
602 			return false;
603 		if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
604 			return flags & __GFP_ZERO;
605 		return true;
606 	}
607 	return flags & __GFP_ZERO;
608 }
609 
610 static inline bool slab_want_init_on_free(struct kmem_cache *c)
611 {
612 	if (static_branch_unlikely(&init_on_free))
613 		return !(c->ctor ||
614 			 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
615 	return false;
616 }
617 
618 #define KS_ADDRS_COUNT 16
619 struct kmem_obj_info {
620 	void *kp_ptr;
621 	struct page *kp_page;
622 	void *kp_objp;
623 	unsigned long kp_data_offset;
624 	struct kmem_cache *kp_slab_cache;
625 	void *kp_ret;
626 	void *kp_stack[KS_ADDRS_COUNT];
627 };
628 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page);
629 
630 #endif /* MM_SLAB_H */
631