xref: /openbmc/linux/mm/slab.c (revision 756a025f00091918d9d09ca3229defb160b409c0)
1 /*
2  * linux/mm/slab.c
3  * Written by Mark Hemment, 1996/97.
4  * (markhe@nextd.demon.co.uk)
5  *
6  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7  *
8  * Major cleanup, different bufctl logic, per-cpu arrays
9  *	(c) 2000 Manfred Spraul
10  *
11  * Cleanup, make the head arrays unconditional, preparation for NUMA
12  * 	(c) 2002 Manfred Spraul
13  *
14  * An implementation of the Slab Allocator as described in outline in;
15  *	UNIX Internals: The New Frontiers by Uresh Vahalia
16  *	Pub: Prentice Hall	ISBN 0-13-101908-2
17  * or with a little more detail in;
18  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19  *	Jeff Bonwick (Sun Microsystems).
20  *	Presented at: USENIX Summer 1994 Technical Conference
21  *
22  * The memory is organized in caches, one cache for each object type.
23  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24  * Each cache consists out of many slabs (they are small (usually one
25  * page long) and always contiguous), and each slab contains multiple
26  * initialized objects.
27  *
28  * This means, that your constructor is used only for newly allocated
29  * slabs and you must pass objects with the same initializations to
30  * kmem_cache_free.
31  *
32  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33  * normal). If you need a special memory type, then must create a new
34  * cache for that memory type.
35  *
36  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37  *   full slabs with 0 free objects
38  *   partial slabs
39  *   empty slabs with no allocated objects
40  *
41  * If partial slabs exist, then new allocations come from these slabs,
42  * otherwise from empty slabs or new slabs are allocated.
43  *
44  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46  *
47  * Each cache has a short per-cpu head array, most allocs
48  * and frees go into that array, and if that array overflows, then 1/2
49  * of the entries in the array are given back into the global cache.
50  * The head array is strictly LIFO and should improve the cache hit rates.
51  * On SMP, it additionally reduces the spinlock operations.
52  *
53  * The c_cpuarray may not be read with enabled local interrupts -
54  * it's changed with a smp_call_function().
55  *
56  * SMP synchronization:
57  *  constructors and destructors are called without any locking.
58  *  Several members in struct kmem_cache and struct slab never change, they
59  *	are accessed without any locking.
60  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61  *  	and local interrupts are disabled so slab code is preempt-safe.
62  *  The non-constant members are protected with a per-cache irq spinlock.
63  *
64  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65  * in 2000 - many ideas in the current implementation are derived from
66  * his patch.
67  *
68  * Further notes from the original documentation:
69  *
70  * 11 April '97.  Started multi-threading - markhe
71  *	The global cache-chain is protected by the mutex 'slab_mutex'.
72  *	The sem is only needed when accessing/extending the cache-chain, which
73  *	can never happen inside an interrupt (kmem_cache_create(),
74  *	kmem_cache_shrink() and kmem_cache_reap()).
75  *
76  *	At present, each engine can be growing a cache.  This should be blocked.
77  *
78  * 15 March 2005. NUMA slab allocator.
79  *	Shai Fultheim <shai@scalex86.org>.
80  *	Shobhit Dayal <shobhit@calsoftinc.com>
81  *	Alok N Kataria <alokk@calsoftinc.com>
82  *	Christoph Lameter <christoph@lameter.com>
83  *
84  *	Modified the slab allocator to be node aware on NUMA systems.
85  *	Each node has its own list of partial, free and full slabs.
86  *	All object allocations for a node occur from node specific slab lists.
87  */
88 
89 #include	<linux/slab.h>
90 #include	<linux/mm.h>
91 #include	<linux/poison.h>
92 #include	<linux/swap.h>
93 #include	<linux/cache.h>
94 #include	<linux/interrupt.h>
95 #include	<linux/init.h>
96 #include	<linux/compiler.h>
97 #include	<linux/cpuset.h>
98 #include	<linux/proc_fs.h>
99 #include	<linux/seq_file.h>
100 #include	<linux/notifier.h>
101 #include	<linux/kallsyms.h>
102 #include	<linux/cpu.h>
103 #include	<linux/sysctl.h>
104 #include	<linux/module.h>
105 #include	<linux/rcupdate.h>
106 #include	<linux/string.h>
107 #include	<linux/uaccess.h>
108 #include	<linux/nodemask.h>
109 #include	<linux/kmemleak.h>
110 #include	<linux/mempolicy.h>
111 #include	<linux/mutex.h>
112 #include	<linux/fault-inject.h>
113 #include	<linux/rtmutex.h>
114 #include	<linux/reciprocal_div.h>
115 #include	<linux/debugobjects.h>
116 #include	<linux/kmemcheck.h>
117 #include	<linux/memory.h>
118 #include	<linux/prefetch.h>
119 
120 #include	<net/sock.h>
121 
122 #include	<asm/cacheflush.h>
123 #include	<asm/tlbflush.h>
124 #include	<asm/page.h>
125 
126 #include <trace/events/kmem.h>
127 
128 #include	"internal.h"
129 
130 #include	"slab.h"
131 
132 /*
133  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134  *		  0 for faster, smaller code (especially in the critical paths).
135  *
136  * STATS	- 1 to collect stats for /proc/slabinfo.
137  *		  0 for faster, smaller code (especially in the critical paths).
138  *
139  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140  */
141 
142 #ifdef CONFIG_DEBUG_SLAB
143 #define	DEBUG		1
144 #define	STATS		1
145 #define	FORCED_DEBUG	1
146 #else
147 #define	DEBUG		0
148 #define	STATS		0
149 #define	FORCED_DEBUG	0
150 #endif
151 
152 /* Shouldn't this be in a header file somewhere? */
153 #define	BYTES_PER_WORD		sizeof(void *)
154 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
155 
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159 
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162 
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168 
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170 
171 /*
172  * struct array_cache
173  *
174  * Purpose:
175  * - LIFO ordering, to hand out cache-warm objects from _alloc
176  * - reduce the number of linked list operations
177  * - reduce spinlock operations
178  *
179  * The limit is stored in the per-cpu structure to reduce the data cache
180  * footprint.
181  *
182  */
183 struct array_cache {
184 	unsigned int avail;
185 	unsigned int limit;
186 	unsigned int batchcount;
187 	unsigned int touched;
188 	void *entry[];	/*
189 			 * Must have this definition in here for the proper
190 			 * alignment of array_cache. Also simplifies accessing
191 			 * the entries.
192 			 */
193 };
194 
195 struct alien_cache {
196 	spinlock_t lock;
197 	struct array_cache ac;
198 };
199 
200 /*
201  * Need this for bootstrapping a per node allocator.
202  */
203 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205 #define	CACHE_CACHE 0
206 #define	SIZE_NODE (MAX_NUMNODES)
207 
208 static int drain_freelist(struct kmem_cache *cache,
209 			struct kmem_cache_node *n, int tofree);
210 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 			int node, struct list_head *list);
212 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214 static void cache_reap(struct work_struct *unused);
215 
216 static int slab_early_init = 1;
217 
218 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
219 
220 static void kmem_cache_node_init(struct kmem_cache_node *parent)
221 {
222 	INIT_LIST_HEAD(&parent->slabs_full);
223 	INIT_LIST_HEAD(&parent->slabs_partial);
224 	INIT_LIST_HEAD(&parent->slabs_free);
225 	parent->shared = NULL;
226 	parent->alien = NULL;
227 	parent->colour_next = 0;
228 	spin_lock_init(&parent->list_lock);
229 	parent->free_objects = 0;
230 	parent->free_touched = 0;
231 }
232 
233 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
234 	do {								\
235 		INIT_LIST_HEAD(listp);					\
236 		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
237 	} while (0)
238 
239 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
240 	do {								\
241 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
242 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
243 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
244 	} while (0)
245 
246 #define CFLGS_OBJFREELIST_SLAB	(0x40000000UL)
247 #define CFLGS_OFF_SLAB		(0x80000000UL)
248 #define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
249 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
250 
251 #define BATCHREFILL_LIMIT	16
252 /*
253  * Optimization question: fewer reaps means less probability for unnessary
254  * cpucache drain/refill cycles.
255  *
256  * OTOH the cpuarrays can contain lots of objects,
257  * which could lock up otherwise freeable slabs.
258  */
259 #define REAPTIMEOUT_AC		(2*HZ)
260 #define REAPTIMEOUT_NODE	(4*HZ)
261 
262 #if STATS
263 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
264 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
265 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
266 #define	STATS_INC_GROWN(x)	((x)->grown++)
267 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
268 #define	STATS_SET_HIGH(x)						\
269 	do {								\
270 		if ((x)->num_active > (x)->high_mark)			\
271 			(x)->high_mark = (x)->num_active;		\
272 	} while (0)
273 #define	STATS_INC_ERR(x)	((x)->errors++)
274 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
275 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
276 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
277 #define	STATS_SET_FREEABLE(x, i)					\
278 	do {								\
279 		if ((x)->max_freeable < i)				\
280 			(x)->max_freeable = i;				\
281 	} while (0)
282 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
283 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
284 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
285 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
286 #else
287 #define	STATS_INC_ACTIVE(x)	do { } while (0)
288 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
289 #define	STATS_INC_ALLOCED(x)	do { } while (0)
290 #define	STATS_INC_GROWN(x)	do { } while (0)
291 #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
292 #define	STATS_SET_HIGH(x)	do { } while (0)
293 #define	STATS_INC_ERR(x)	do { } while (0)
294 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
295 #define	STATS_INC_NODEFREES(x)	do { } while (0)
296 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
297 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
298 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
299 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
300 #define STATS_INC_FREEHIT(x)	do { } while (0)
301 #define STATS_INC_FREEMISS(x)	do { } while (0)
302 #endif
303 
304 #if DEBUG
305 
306 /*
307  * memory layout of objects:
308  * 0		: objp
309  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
310  * 		the end of an object is aligned with the end of the real
311  * 		allocation. Catches writes behind the end of the allocation.
312  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
313  * 		redzone word.
314  * cachep->obj_offset: The real object.
315  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
316  * cachep->size - 1* BYTES_PER_WORD: last caller address
317  *					[BYTES_PER_WORD long]
318  */
319 static int obj_offset(struct kmem_cache *cachep)
320 {
321 	return cachep->obj_offset;
322 }
323 
324 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
325 {
326 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
327 	return (unsigned long long*) (objp + obj_offset(cachep) -
328 				      sizeof(unsigned long long));
329 }
330 
331 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
332 {
333 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
334 	if (cachep->flags & SLAB_STORE_USER)
335 		return (unsigned long long *)(objp + cachep->size -
336 					      sizeof(unsigned long long) -
337 					      REDZONE_ALIGN);
338 	return (unsigned long long *) (objp + cachep->size -
339 				       sizeof(unsigned long long));
340 }
341 
342 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
343 {
344 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
345 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
346 }
347 
348 #else
349 
350 #define obj_offset(x)			0
351 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
352 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
353 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
354 
355 #endif
356 
357 #ifdef CONFIG_DEBUG_SLAB_LEAK
358 
359 static inline bool is_store_user_clean(struct kmem_cache *cachep)
360 {
361 	return atomic_read(&cachep->store_user_clean) == 1;
362 }
363 
364 static inline void set_store_user_clean(struct kmem_cache *cachep)
365 {
366 	atomic_set(&cachep->store_user_clean, 1);
367 }
368 
369 static inline void set_store_user_dirty(struct kmem_cache *cachep)
370 {
371 	if (is_store_user_clean(cachep))
372 		atomic_set(&cachep->store_user_clean, 0);
373 }
374 
375 #else
376 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
377 
378 #endif
379 
380 /*
381  * Do not go above this order unless 0 objects fit into the slab or
382  * overridden on the command line.
383  */
384 #define	SLAB_MAX_ORDER_HI	1
385 #define	SLAB_MAX_ORDER_LO	0
386 static int slab_max_order = SLAB_MAX_ORDER_LO;
387 static bool slab_max_order_set __initdata;
388 
389 static inline struct kmem_cache *virt_to_cache(const void *obj)
390 {
391 	struct page *page = virt_to_head_page(obj);
392 	return page->slab_cache;
393 }
394 
395 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
396 				 unsigned int idx)
397 {
398 	return page->s_mem + cache->size * idx;
399 }
400 
401 /*
402  * We want to avoid an expensive divide : (offset / cache->size)
403  *   Using the fact that size is a constant for a particular cache,
404  *   we can replace (offset / cache->size) by
405  *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
406  */
407 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
408 					const struct page *page, void *obj)
409 {
410 	u32 offset = (obj - page->s_mem);
411 	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
412 }
413 
414 #define BOOT_CPUCACHE_ENTRIES	1
415 /* internal cache of cache description objs */
416 static struct kmem_cache kmem_cache_boot = {
417 	.batchcount = 1,
418 	.limit = BOOT_CPUCACHE_ENTRIES,
419 	.shared = 1,
420 	.size = sizeof(struct kmem_cache),
421 	.name = "kmem_cache",
422 };
423 
424 #define BAD_ALIEN_MAGIC 0x01020304ul
425 
426 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
427 
428 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
429 {
430 	return this_cpu_ptr(cachep->cpu_cache);
431 }
432 
433 /*
434  * Calculate the number of objects and left-over bytes for a given buffer size.
435  */
436 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
437 		unsigned long flags, size_t *left_over)
438 {
439 	unsigned int num;
440 	size_t slab_size = PAGE_SIZE << gfporder;
441 
442 	/*
443 	 * The slab management structure can be either off the slab or
444 	 * on it. For the latter case, the memory allocated for a
445 	 * slab is used for:
446 	 *
447 	 * - @buffer_size bytes for each object
448 	 * - One freelist_idx_t for each object
449 	 *
450 	 * We don't need to consider alignment of freelist because
451 	 * freelist will be at the end of slab page. The objects will be
452 	 * at the correct alignment.
453 	 *
454 	 * If the slab management structure is off the slab, then the
455 	 * alignment will already be calculated into the size. Because
456 	 * the slabs are all pages aligned, the objects will be at the
457 	 * correct alignment when allocated.
458 	 */
459 	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
460 		num = slab_size / buffer_size;
461 		*left_over = slab_size % buffer_size;
462 	} else {
463 		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
464 		*left_over = slab_size %
465 			(buffer_size + sizeof(freelist_idx_t));
466 	}
467 
468 	return num;
469 }
470 
471 #if DEBUG
472 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
473 
474 static void __slab_error(const char *function, struct kmem_cache *cachep,
475 			char *msg)
476 {
477 	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
478 	       function, cachep->name, msg);
479 	dump_stack();
480 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
481 }
482 #endif
483 
484 /*
485  * By default on NUMA we use alien caches to stage the freeing of
486  * objects allocated from other nodes. This causes massive memory
487  * inefficiencies when using fake NUMA setup to split memory into a
488  * large number of small nodes, so it can be disabled on the command
489  * line
490   */
491 
492 static int use_alien_caches __read_mostly = 1;
493 static int __init noaliencache_setup(char *s)
494 {
495 	use_alien_caches = 0;
496 	return 1;
497 }
498 __setup("noaliencache", noaliencache_setup);
499 
500 static int __init slab_max_order_setup(char *str)
501 {
502 	get_option(&str, &slab_max_order);
503 	slab_max_order = slab_max_order < 0 ? 0 :
504 				min(slab_max_order, MAX_ORDER - 1);
505 	slab_max_order_set = true;
506 
507 	return 1;
508 }
509 __setup("slab_max_order=", slab_max_order_setup);
510 
511 #ifdef CONFIG_NUMA
512 /*
513  * Special reaping functions for NUMA systems called from cache_reap().
514  * These take care of doing round robin flushing of alien caches (containing
515  * objects freed on different nodes from which they were allocated) and the
516  * flushing of remote pcps by calling drain_node_pages.
517  */
518 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
519 
520 static void init_reap_node(int cpu)
521 {
522 	int node;
523 
524 	node = next_node(cpu_to_mem(cpu), node_online_map);
525 	if (node == MAX_NUMNODES)
526 		node = first_node(node_online_map);
527 
528 	per_cpu(slab_reap_node, cpu) = node;
529 }
530 
531 static void next_reap_node(void)
532 {
533 	int node = __this_cpu_read(slab_reap_node);
534 
535 	node = next_node(node, node_online_map);
536 	if (unlikely(node >= MAX_NUMNODES))
537 		node = first_node(node_online_map);
538 	__this_cpu_write(slab_reap_node, node);
539 }
540 
541 #else
542 #define init_reap_node(cpu) do { } while (0)
543 #define next_reap_node(void) do { } while (0)
544 #endif
545 
546 /*
547  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
548  * via the workqueue/eventd.
549  * Add the CPU number into the expiration time to minimize the possibility of
550  * the CPUs getting into lockstep and contending for the global cache chain
551  * lock.
552  */
553 static void start_cpu_timer(int cpu)
554 {
555 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
556 
557 	/*
558 	 * When this gets called from do_initcalls via cpucache_init(),
559 	 * init_workqueues() has already run, so keventd will be setup
560 	 * at that time.
561 	 */
562 	if (keventd_up() && reap_work->work.func == NULL) {
563 		init_reap_node(cpu);
564 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
565 		schedule_delayed_work_on(cpu, reap_work,
566 					__round_jiffies_relative(HZ, cpu));
567 	}
568 }
569 
570 static void init_arraycache(struct array_cache *ac, int limit, int batch)
571 {
572 	/*
573 	 * The array_cache structures contain pointers to free object.
574 	 * However, when such objects are allocated or transferred to another
575 	 * cache the pointers are not cleared and they could be counted as
576 	 * valid references during a kmemleak scan. Therefore, kmemleak must
577 	 * not scan such objects.
578 	 */
579 	kmemleak_no_scan(ac);
580 	if (ac) {
581 		ac->avail = 0;
582 		ac->limit = limit;
583 		ac->batchcount = batch;
584 		ac->touched = 0;
585 	}
586 }
587 
588 static struct array_cache *alloc_arraycache(int node, int entries,
589 					    int batchcount, gfp_t gfp)
590 {
591 	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
592 	struct array_cache *ac = NULL;
593 
594 	ac = kmalloc_node(memsize, gfp, node);
595 	init_arraycache(ac, entries, batchcount);
596 	return ac;
597 }
598 
599 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
600 					struct page *page, void *objp)
601 {
602 	struct kmem_cache_node *n;
603 	int page_node;
604 	LIST_HEAD(list);
605 
606 	page_node = page_to_nid(page);
607 	n = get_node(cachep, page_node);
608 
609 	spin_lock(&n->list_lock);
610 	free_block(cachep, &objp, 1, page_node, &list);
611 	spin_unlock(&n->list_lock);
612 
613 	slabs_destroy(cachep, &list);
614 }
615 
616 /*
617  * Transfer objects in one arraycache to another.
618  * Locking must be handled by the caller.
619  *
620  * Return the number of entries transferred.
621  */
622 static int transfer_objects(struct array_cache *to,
623 		struct array_cache *from, unsigned int max)
624 {
625 	/* Figure out how many entries to transfer */
626 	int nr = min3(from->avail, max, to->limit - to->avail);
627 
628 	if (!nr)
629 		return 0;
630 
631 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
632 			sizeof(void *) *nr);
633 
634 	from->avail -= nr;
635 	to->avail += nr;
636 	return nr;
637 }
638 
639 #ifndef CONFIG_NUMA
640 
641 #define drain_alien_cache(cachep, alien) do { } while (0)
642 #define reap_alien(cachep, n) do { } while (0)
643 
644 static inline struct alien_cache **alloc_alien_cache(int node,
645 						int limit, gfp_t gfp)
646 {
647 	return (struct alien_cache **)BAD_ALIEN_MAGIC;
648 }
649 
650 static inline void free_alien_cache(struct alien_cache **ac_ptr)
651 {
652 }
653 
654 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
655 {
656 	return 0;
657 }
658 
659 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
660 		gfp_t flags)
661 {
662 	return NULL;
663 }
664 
665 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
666 		 gfp_t flags, int nodeid)
667 {
668 	return NULL;
669 }
670 
671 static inline gfp_t gfp_exact_node(gfp_t flags)
672 {
673 	return flags & ~__GFP_NOFAIL;
674 }
675 
676 #else	/* CONFIG_NUMA */
677 
678 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
679 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
680 
681 static struct alien_cache *__alloc_alien_cache(int node, int entries,
682 						int batch, gfp_t gfp)
683 {
684 	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
685 	struct alien_cache *alc = NULL;
686 
687 	alc = kmalloc_node(memsize, gfp, node);
688 	init_arraycache(&alc->ac, entries, batch);
689 	spin_lock_init(&alc->lock);
690 	return alc;
691 }
692 
693 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
694 {
695 	struct alien_cache **alc_ptr;
696 	size_t memsize = sizeof(void *) * nr_node_ids;
697 	int i;
698 
699 	if (limit > 1)
700 		limit = 12;
701 	alc_ptr = kzalloc_node(memsize, gfp, node);
702 	if (!alc_ptr)
703 		return NULL;
704 
705 	for_each_node(i) {
706 		if (i == node || !node_online(i))
707 			continue;
708 		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
709 		if (!alc_ptr[i]) {
710 			for (i--; i >= 0; i--)
711 				kfree(alc_ptr[i]);
712 			kfree(alc_ptr);
713 			return NULL;
714 		}
715 	}
716 	return alc_ptr;
717 }
718 
719 static void free_alien_cache(struct alien_cache **alc_ptr)
720 {
721 	int i;
722 
723 	if (!alc_ptr)
724 		return;
725 	for_each_node(i)
726 	    kfree(alc_ptr[i]);
727 	kfree(alc_ptr);
728 }
729 
730 static void __drain_alien_cache(struct kmem_cache *cachep,
731 				struct array_cache *ac, int node,
732 				struct list_head *list)
733 {
734 	struct kmem_cache_node *n = get_node(cachep, node);
735 
736 	if (ac->avail) {
737 		spin_lock(&n->list_lock);
738 		/*
739 		 * Stuff objects into the remote nodes shared array first.
740 		 * That way we could avoid the overhead of putting the objects
741 		 * into the free lists and getting them back later.
742 		 */
743 		if (n->shared)
744 			transfer_objects(n->shared, ac, ac->limit);
745 
746 		free_block(cachep, ac->entry, ac->avail, node, list);
747 		ac->avail = 0;
748 		spin_unlock(&n->list_lock);
749 	}
750 }
751 
752 /*
753  * Called from cache_reap() to regularly drain alien caches round robin.
754  */
755 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
756 {
757 	int node = __this_cpu_read(slab_reap_node);
758 
759 	if (n->alien) {
760 		struct alien_cache *alc = n->alien[node];
761 		struct array_cache *ac;
762 
763 		if (alc) {
764 			ac = &alc->ac;
765 			if (ac->avail && spin_trylock_irq(&alc->lock)) {
766 				LIST_HEAD(list);
767 
768 				__drain_alien_cache(cachep, ac, node, &list);
769 				spin_unlock_irq(&alc->lock);
770 				slabs_destroy(cachep, &list);
771 			}
772 		}
773 	}
774 }
775 
776 static void drain_alien_cache(struct kmem_cache *cachep,
777 				struct alien_cache **alien)
778 {
779 	int i = 0;
780 	struct alien_cache *alc;
781 	struct array_cache *ac;
782 	unsigned long flags;
783 
784 	for_each_online_node(i) {
785 		alc = alien[i];
786 		if (alc) {
787 			LIST_HEAD(list);
788 
789 			ac = &alc->ac;
790 			spin_lock_irqsave(&alc->lock, flags);
791 			__drain_alien_cache(cachep, ac, i, &list);
792 			spin_unlock_irqrestore(&alc->lock, flags);
793 			slabs_destroy(cachep, &list);
794 		}
795 	}
796 }
797 
798 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
799 				int node, int page_node)
800 {
801 	struct kmem_cache_node *n;
802 	struct alien_cache *alien = NULL;
803 	struct array_cache *ac;
804 	LIST_HEAD(list);
805 
806 	n = get_node(cachep, node);
807 	STATS_INC_NODEFREES(cachep);
808 	if (n->alien && n->alien[page_node]) {
809 		alien = n->alien[page_node];
810 		ac = &alien->ac;
811 		spin_lock(&alien->lock);
812 		if (unlikely(ac->avail == ac->limit)) {
813 			STATS_INC_ACOVERFLOW(cachep);
814 			__drain_alien_cache(cachep, ac, page_node, &list);
815 		}
816 		ac->entry[ac->avail++] = objp;
817 		spin_unlock(&alien->lock);
818 		slabs_destroy(cachep, &list);
819 	} else {
820 		n = get_node(cachep, page_node);
821 		spin_lock(&n->list_lock);
822 		free_block(cachep, &objp, 1, page_node, &list);
823 		spin_unlock(&n->list_lock);
824 		slabs_destroy(cachep, &list);
825 	}
826 	return 1;
827 }
828 
829 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
830 {
831 	int page_node = page_to_nid(virt_to_page(objp));
832 	int node = numa_mem_id();
833 	/*
834 	 * Make sure we are not freeing a object from another node to the array
835 	 * cache on this cpu.
836 	 */
837 	if (likely(node == page_node))
838 		return 0;
839 
840 	return __cache_free_alien(cachep, objp, node, page_node);
841 }
842 
843 /*
844  * Construct gfp mask to allocate from a specific node but do not reclaim or
845  * warn about failures.
846  */
847 static inline gfp_t gfp_exact_node(gfp_t flags)
848 {
849 	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
850 }
851 #endif
852 
853 /*
854  * Allocates and initializes node for a node on each slab cache, used for
855  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
856  * will be allocated off-node since memory is not yet online for the new node.
857  * When hotplugging memory or a cpu, existing node are not replaced if
858  * already in use.
859  *
860  * Must hold slab_mutex.
861  */
862 static int init_cache_node_node(int node)
863 {
864 	struct kmem_cache *cachep;
865 	struct kmem_cache_node *n;
866 	const size_t memsize = sizeof(struct kmem_cache_node);
867 
868 	list_for_each_entry(cachep, &slab_caches, list) {
869 		/*
870 		 * Set up the kmem_cache_node for cpu before we can
871 		 * begin anything. Make sure some other cpu on this
872 		 * node has not already allocated this
873 		 */
874 		n = get_node(cachep, node);
875 		if (!n) {
876 			n = kmalloc_node(memsize, GFP_KERNEL, node);
877 			if (!n)
878 				return -ENOMEM;
879 			kmem_cache_node_init(n);
880 			n->next_reap = jiffies + REAPTIMEOUT_NODE +
881 			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
882 
883 			/*
884 			 * The kmem_cache_nodes don't come and go as CPUs
885 			 * come and go.  slab_mutex is sufficient
886 			 * protection here.
887 			 */
888 			cachep->node[node] = n;
889 		}
890 
891 		spin_lock_irq(&n->list_lock);
892 		n->free_limit =
893 			(1 + nr_cpus_node(node)) *
894 			cachep->batchcount + cachep->num;
895 		spin_unlock_irq(&n->list_lock);
896 	}
897 	return 0;
898 }
899 
900 static inline int slabs_tofree(struct kmem_cache *cachep,
901 						struct kmem_cache_node *n)
902 {
903 	return (n->free_objects + cachep->num - 1) / cachep->num;
904 }
905 
906 static void cpuup_canceled(long cpu)
907 {
908 	struct kmem_cache *cachep;
909 	struct kmem_cache_node *n = NULL;
910 	int node = cpu_to_mem(cpu);
911 	const struct cpumask *mask = cpumask_of_node(node);
912 
913 	list_for_each_entry(cachep, &slab_caches, list) {
914 		struct array_cache *nc;
915 		struct array_cache *shared;
916 		struct alien_cache **alien;
917 		LIST_HEAD(list);
918 
919 		n = get_node(cachep, node);
920 		if (!n)
921 			continue;
922 
923 		spin_lock_irq(&n->list_lock);
924 
925 		/* Free limit for this kmem_cache_node */
926 		n->free_limit -= cachep->batchcount;
927 
928 		/* cpu is dead; no one can alloc from it. */
929 		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
930 		if (nc) {
931 			free_block(cachep, nc->entry, nc->avail, node, &list);
932 			nc->avail = 0;
933 		}
934 
935 		if (!cpumask_empty(mask)) {
936 			spin_unlock_irq(&n->list_lock);
937 			goto free_slab;
938 		}
939 
940 		shared = n->shared;
941 		if (shared) {
942 			free_block(cachep, shared->entry,
943 				   shared->avail, node, &list);
944 			n->shared = NULL;
945 		}
946 
947 		alien = n->alien;
948 		n->alien = NULL;
949 
950 		spin_unlock_irq(&n->list_lock);
951 
952 		kfree(shared);
953 		if (alien) {
954 			drain_alien_cache(cachep, alien);
955 			free_alien_cache(alien);
956 		}
957 
958 free_slab:
959 		slabs_destroy(cachep, &list);
960 	}
961 	/*
962 	 * In the previous loop, all the objects were freed to
963 	 * the respective cache's slabs,  now we can go ahead and
964 	 * shrink each nodelist to its limit.
965 	 */
966 	list_for_each_entry(cachep, &slab_caches, list) {
967 		n = get_node(cachep, node);
968 		if (!n)
969 			continue;
970 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
971 	}
972 }
973 
974 static int cpuup_prepare(long cpu)
975 {
976 	struct kmem_cache *cachep;
977 	struct kmem_cache_node *n = NULL;
978 	int node = cpu_to_mem(cpu);
979 	int err;
980 
981 	/*
982 	 * We need to do this right in the beginning since
983 	 * alloc_arraycache's are going to use this list.
984 	 * kmalloc_node allows us to add the slab to the right
985 	 * kmem_cache_node and not this cpu's kmem_cache_node
986 	 */
987 	err = init_cache_node_node(node);
988 	if (err < 0)
989 		goto bad;
990 
991 	/*
992 	 * Now we can go ahead with allocating the shared arrays and
993 	 * array caches
994 	 */
995 	list_for_each_entry(cachep, &slab_caches, list) {
996 		struct array_cache *shared = NULL;
997 		struct alien_cache **alien = NULL;
998 
999 		if (cachep->shared) {
1000 			shared = alloc_arraycache(node,
1001 				cachep->shared * cachep->batchcount,
1002 				0xbaadf00d, GFP_KERNEL);
1003 			if (!shared)
1004 				goto bad;
1005 		}
1006 		if (use_alien_caches) {
1007 			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1008 			if (!alien) {
1009 				kfree(shared);
1010 				goto bad;
1011 			}
1012 		}
1013 		n = get_node(cachep, node);
1014 		BUG_ON(!n);
1015 
1016 		spin_lock_irq(&n->list_lock);
1017 		if (!n->shared) {
1018 			/*
1019 			 * We are serialised from CPU_DEAD or
1020 			 * CPU_UP_CANCELLED by the cpucontrol lock
1021 			 */
1022 			n->shared = shared;
1023 			shared = NULL;
1024 		}
1025 #ifdef CONFIG_NUMA
1026 		if (!n->alien) {
1027 			n->alien = alien;
1028 			alien = NULL;
1029 		}
1030 #endif
1031 		spin_unlock_irq(&n->list_lock);
1032 		kfree(shared);
1033 		free_alien_cache(alien);
1034 	}
1035 
1036 	return 0;
1037 bad:
1038 	cpuup_canceled(cpu);
1039 	return -ENOMEM;
1040 }
1041 
1042 static int cpuup_callback(struct notifier_block *nfb,
1043 				    unsigned long action, void *hcpu)
1044 {
1045 	long cpu = (long)hcpu;
1046 	int err = 0;
1047 
1048 	switch (action) {
1049 	case CPU_UP_PREPARE:
1050 	case CPU_UP_PREPARE_FROZEN:
1051 		mutex_lock(&slab_mutex);
1052 		err = cpuup_prepare(cpu);
1053 		mutex_unlock(&slab_mutex);
1054 		break;
1055 	case CPU_ONLINE:
1056 	case CPU_ONLINE_FROZEN:
1057 		start_cpu_timer(cpu);
1058 		break;
1059 #ifdef CONFIG_HOTPLUG_CPU
1060   	case CPU_DOWN_PREPARE:
1061   	case CPU_DOWN_PREPARE_FROZEN:
1062 		/*
1063 		 * Shutdown cache reaper. Note that the slab_mutex is
1064 		 * held so that if cache_reap() is invoked it cannot do
1065 		 * anything expensive but will only modify reap_work
1066 		 * and reschedule the timer.
1067 		*/
1068 		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1069 		/* Now the cache_reaper is guaranteed to be not running. */
1070 		per_cpu(slab_reap_work, cpu).work.func = NULL;
1071   		break;
1072   	case CPU_DOWN_FAILED:
1073   	case CPU_DOWN_FAILED_FROZEN:
1074 		start_cpu_timer(cpu);
1075   		break;
1076 	case CPU_DEAD:
1077 	case CPU_DEAD_FROZEN:
1078 		/*
1079 		 * Even if all the cpus of a node are down, we don't free the
1080 		 * kmem_cache_node of any cache. This to avoid a race between
1081 		 * cpu_down, and a kmalloc allocation from another cpu for
1082 		 * memory from the node of the cpu going down.  The node
1083 		 * structure is usually allocated from kmem_cache_create() and
1084 		 * gets destroyed at kmem_cache_destroy().
1085 		 */
1086 		/* fall through */
1087 #endif
1088 	case CPU_UP_CANCELED:
1089 	case CPU_UP_CANCELED_FROZEN:
1090 		mutex_lock(&slab_mutex);
1091 		cpuup_canceled(cpu);
1092 		mutex_unlock(&slab_mutex);
1093 		break;
1094 	}
1095 	return notifier_from_errno(err);
1096 }
1097 
1098 static struct notifier_block cpucache_notifier = {
1099 	&cpuup_callback, NULL, 0
1100 };
1101 
1102 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1103 /*
1104  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1105  * Returns -EBUSY if all objects cannot be drained so that the node is not
1106  * removed.
1107  *
1108  * Must hold slab_mutex.
1109  */
1110 static int __meminit drain_cache_node_node(int node)
1111 {
1112 	struct kmem_cache *cachep;
1113 	int ret = 0;
1114 
1115 	list_for_each_entry(cachep, &slab_caches, list) {
1116 		struct kmem_cache_node *n;
1117 
1118 		n = get_node(cachep, node);
1119 		if (!n)
1120 			continue;
1121 
1122 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1123 
1124 		if (!list_empty(&n->slabs_full) ||
1125 		    !list_empty(&n->slabs_partial)) {
1126 			ret = -EBUSY;
1127 			break;
1128 		}
1129 	}
1130 	return ret;
1131 }
1132 
1133 static int __meminit slab_memory_callback(struct notifier_block *self,
1134 					unsigned long action, void *arg)
1135 {
1136 	struct memory_notify *mnb = arg;
1137 	int ret = 0;
1138 	int nid;
1139 
1140 	nid = mnb->status_change_nid;
1141 	if (nid < 0)
1142 		goto out;
1143 
1144 	switch (action) {
1145 	case MEM_GOING_ONLINE:
1146 		mutex_lock(&slab_mutex);
1147 		ret = init_cache_node_node(nid);
1148 		mutex_unlock(&slab_mutex);
1149 		break;
1150 	case MEM_GOING_OFFLINE:
1151 		mutex_lock(&slab_mutex);
1152 		ret = drain_cache_node_node(nid);
1153 		mutex_unlock(&slab_mutex);
1154 		break;
1155 	case MEM_ONLINE:
1156 	case MEM_OFFLINE:
1157 	case MEM_CANCEL_ONLINE:
1158 	case MEM_CANCEL_OFFLINE:
1159 		break;
1160 	}
1161 out:
1162 	return notifier_from_errno(ret);
1163 }
1164 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1165 
1166 /*
1167  * swap the static kmem_cache_node with kmalloced memory
1168  */
1169 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1170 				int nodeid)
1171 {
1172 	struct kmem_cache_node *ptr;
1173 
1174 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1175 	BUG_ON(!ptr);
1176 
1177 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1178 	/*
1179 	 * Do not assume that spinlocks can be initialized via memcpy:
1180 	 */
1181 	spin_lock_init(&ptr->list_lock);
1182 
1183 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1184 	cachep->node[nodeid] = ptr;
1185 }
1186 
1187 /*
1188  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1189  * size of kmem_cache_node.
1190  */
1191 static void __init set_up_node(struct kmem_cache *cachep, int index)
1192 {
1193 	int node;
1194 
1195 	for_each_online_node(node) {
1196 		cachep->node[node] = &init_kmem_cache_node[index + node];
1197 		cachep->node[node]->next_reap = jiffies +
1198 		    REAPTIMEOUT_NODE +
1199 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1200 	}
1201 }
1202 
1203 /*
1204  * Initialisation.  Called after the page allocator have been initialised and
1205  * before smp_init().
1206  */
1207 void __init kmem_cache_init(void)
1208 {
1209 	int i;
1210 
1211 	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1212 					sizeof(struct rcu_head));
1213 	kmem_cache = &kmem_cache_boot;
1214 
1215 	if (num_possible_nodes() == 1)
1216 		use_alien_caches = 0;
1217 
1218 	for (i = 0; i < NUM_INIT_LISTS; i++)
1219 		kmem_cache_node_init(&init_kmem_cache_node[i]);
1220 
1221 	/*
1222 	 * Fragmentation resistance on low memory - only use bigger
1223 	 * page orders on machines with more than 32MB of memory if
1224 	 * not overridden on the command line.
1225 	 */
1226 	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1227 		slab_max_order = SLAB_MAX_ORDER_HI;
1228 
1229 	/* Bootstrap is tricky, because several objects are allocated
1230 	 * from caches that do not exist yet:
1231 	 * 1) initialize the kmem_cache cache: it contains the struct
1232 	 *    kmem_cache structures of all caches, except kmem_cache itself:
1233 	 *    kmem_cache is statically allocated.
1234 	 *    Initially an __init data area is used for the head array and the
1235 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1236 	 *    array at the end of the bootstrap.
1237 	 * 2) Create the first kmalloc cache.
1238 	 *    The struct kmem_cache for the new cache is allocated normally.
1239 	 *    An __init data area is used for the head array.
1240 	 * 3) Create the remaining kmalloc caches, with minimally sized
1241 	 *    head arrays.
1242 	 * 4) Replace the __init data head arrays for kmem_cache and the first
1243 	 *    kmalloc cache with kmalloc allocated arrays.
1244 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1245 	 *    the other cache's with kmalloc allocated memory.
1246 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1247 	 */
1248 
1249 	/* 1) create the kmem_cache */
1250 
1251 	/*
1252 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1253 	 */
1254 	create_boot_cache(kmem_cache, "kmem_cache",
1255 		offsetof(struct kmem_cache, node) +
1256 				  nr_node_ids * sizeof(struct kmem_cache_node *),
1257 				  SLAB_HWCACHE_ALIGN);
1258 	list_add(&kmem_cache->list, &slab_caches);
1259 	slab_state = PARTIAL;
1260 
1261 	/*
1262 	 * Initialize the caches that provide memory for the  kmem_cache_node
1263 	 * structures first.  Without this, further allocations will bug.
1264 	 */
1265 	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1266 				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1267 	slab_state = PARTIAL_NODE;
1268 	setup_kmalloc_cache_index_table();
1269 
1270 	slab_early_init = 0;
1271 
1272 	/* 5) Replace the bootstrap kmem_cache_node */
1273 	{
1274 		int nid;
1275 
1276 		for_each_online_node(nid) {
1277 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1278 
1279 			init_list(kmalloc_caches[INDEX_NODE],
1280 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1281 		}
1282 	}
1283 
1284 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1285 }
1286 
1287 void __init kmem_cache_init_late(void)
1288 {
1289 	struct kmem_cache *cachep;
1290 
1291 	slab_state = UP;
1292 
1293 	/* 6) resize the head arrays to their final sizes */
1294 	mutex_lock(&slab_mutex);
1295 	list_for_each_entry(cachep, &slab_caches, list)
1296 		if (enable_cpucache(cachep, GFP_NOWAIT))
1297 			BUG();
1298 	mutex_unlock(&slab_mutex);
1299 
1300 	/* Done! */
1301 	slab_state = FULL;
1302 
1303 	/*
1304 	 * Register a cpu startup notifier callback that initializes
1305 	 * cpu_cache_get for all new cpus
1306 	 */
1307 	register_cpu_notifier(&cpucache_notifier);
1308 
1309 #ifdef CONFIG_NUMA
1310 	/*
1311 	 * Register a memory hotplug callback that initializes and frees
1312 	 * node.
1313 	 */
1314 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1315 #endif
1316 
1317 	/*
1318 	 * The reap timers are started later, with a module init call: That part
1319 	 * of the kernel is not yet operational.
1320 	 */
1321 }
1322 
1323 static int __init cpucache_init(void)
1324 {
1325 	int cpu;
1326 
1327 	/*
1328 	 * Register the timers that return unneeded pages to the page allocator
1329 	 */
1330 	for_each_online_cpu(cpu)
1331 		start_cpu_timer(cpu);
1332 
1333 	/* Done! */
1334 	slab_state = FULL;
1335 	return 0;
1336 }
1337 __initcall(cpucache_init);
1338 
1339 static noinline void
1340 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1341 {
1342 #if DEBUG
1343 	struct kmem_cache_node *n;
1344 	struct page *page;
1345 	unsigned long flags;
1346 	int node;
1347 	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1348 				      DEFAULT_RATELIMIT_BURST);
1349 
1350 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1351 		return;
1352 
1353 	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1354 		nodeid, gfpflags, &gfpflags);
1355 	pr_warn("  cache: %s, object size: %d, order: %d\n",
1356 		cachep->name, cachep->size, cachep->gfporder);
1357 
1358 	for_each_kmem_cache_node(cachep, node, n) {
1359 		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1360 		unsigned long active_slabs = 0, num_slabs = 0;
1361 
1362 		spin_lock_irqsave(&n->list_lock, flags);
1363 		list_for_each_entry(page, &n->slabs_full, lru) {
1364 			active_objs += cachep->num;
1365 			active_slabs++;
1366 		}
1367 		list_for_each_entry(page, &n->slabs_partial, lru) {
1368 			active_objs += page->active;
1369 			active_slabs++;
1370 		}
1371 		list_for_each_entry(page, &n->slabs_free, lru)
1372 			num_slabs++;
1373 
1374 		free_objects += n->free_objects;
1375 		spin_unlock_irqrestore(&n->list_lock, flags);
1376 
1377 		num_slabs += active_slabs;
1378 		num_objs = num_slabs * cachep->num;
1379 		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1380 			node, active_slabs, num_slabs, active_objs, num_objs,
1381 			free_objects);
1382 	}
1383 #endif
1384 }
1385 
1386 /*
1387  * Interface to system's page allocator. No need to hold the
1388  * kmem_cache_node ->list_lock.
1389  *
1390  * If we requested dmaable memory, we will get it. Even if we
1391  * did not request dmaable memory, we might get it, but that
1392  * would be relatively rare and ignorable.
1393  */
1394 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1395 								int nodeid)
1396 {
1397 	struct page *page;
1398 	int nr_pages;
1399 
1400 	flags |= cachep->allocflags;
1401 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1402 		flags |= __GFP_RECLAIMABLE;
1403 
1404 	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1405 	if (!page) {
1406 		slab_out_of_memory(cachep, flags, nodeid);
1407 		return NULL;
1408 	}
1409 
1410 	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1411 		__free_pages(page, cachep->gfporder);
1412 		return NULL;
1413 	}
1414 
1415 	nr_pages = (1 << cachep->gfporder);
1416 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1417 		add_zone_page_state(page_zone(page),
1418 			NR_SLAB_RECLAIMABLE, nr_pages);
1419 	else
1420 		add_zone_page_state(page_zone(page),
1421 			NR_SLAB_UNRECLAIMABLE, nr_pages);
1422 
1423 	__SetPageSlab(page);
1424 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1425 	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1426 		SetPageSlabPfmemalloc(page);
1427 
1428 	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1429 		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1430 
1431 		if (cachep->ctor)
1432 			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1433 		else
1434 			kmemcheck_mark_unallocated_pages(page, nr_pages);
1435 	}
1436 
1437 	return page;
1438 }
1439 
1440 /*
1441  * Interface to system's page release.
1442  */
1443 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1444 {
1445 	int order = cachep->gfporder;
1446 	unsigned long nr_freed = (1 << order);
1447 
1448 	kmemcheck_free_shadow(page, order);
1449 
1450 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1451 		sub_zone_page_state(page_zone(page),
1452 				NR_SLAB_RECLAIMABLE, nr_freed);
1453 	else
1454 		sub_zone_page_state(page_zone(page),
1455 				NR_SLAB_UNRECLAIMABLE, nr_freed);
1456 
1457 	BUG_ON(!PageSlab(page));
1458 	__ClearPageSlabPfmemalloc(page);
1459 	__ClearPageSlab(page);
1460 	page_mapcount_reset(page);
1461 	page->mapping = NULL;
1462 
1463 	if (current->reclaim_state)
1464 		current->reclaim_state->reclaimed_slab += nr_freed;
1465 	memcg_uncharge_slab(page, order, cachep);
1466 	__free_pages(page, order);
1467 }
1468 
1469 static void kmem_rcu_free(struct rcu_head *head)
1470 {
1471 	struct kmem_cache *cachep;
1472 	struct page *page;
1473 
1474 	page = container_of(head, struct page, rcu_head);
1475 	cachep = page->slab_cache;
1476 
1477 	kmem_freepages(cachep, page);
1478 }
1479 
1480 #if DEBUG
1481 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1482 {
1483 	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1484 		(cachep->size % PAGE_SIZE) == 0)
1485 		return true;
1486 
1487 	return false;
1488 }
1489 
1490 #ifdef CONFIG_DEBUG_PAGEALLOC
1491 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1492 			    unsigned long caller)
1493 {
1494 	int size = cachep->object_size;
1495 
1496 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1497 
1498 	if (size < 5 * sizeof(unsigned long))
1499 		return;
1500 
1501 	*addr++ = 0x12345678;
1502 	*addr++ = caller;
1503 	*addr++ = smp_processor_id();
1504 	size -= 3 * sizeof(unsigned long);
1505 	{
1506 		unsigned long *sptr = &caller;
1507 		unsigned long svalue;
1508 
1509 		while (!kstack_end(sptr)) {
1510 			svalue = *sptr++;
1511 			if (kernel_text_address(svalue)) {
1512 				*addr++ = svalue;
1513 				size -= sizeof(unsigned long);
1514 				if (size <= sizeof(unsigned long))
1515 					break;
1516 			}
1517 		}
1518 
1519 	}
1520 	*addr++ = 0x87654321;
1521 }
1522 
1523 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1524 				int map, unsigned long caller)
1525 {
1526 	if (!is_debug_pagealloc_cache(cachep))
1527 		return;
1528 
1529 	if (caller)
1530 		store_stackinfo(cachep, objp, caller);
1531 
1532 	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1533 }
1534 
1535 #else
1536 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1537 				int map, unsigned long caller) {}
1538 
1539 #endif
1540 
1541 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1542 {
1543 	int size = cachep->object_size;
1544 	addr = &((char *)addr)[obj_offset(cachep)];
1545 
1546 	memset(addr, val, size);
1547 	*(unsigned char *)(addr + size - 1) = POISON_END;
1548 }
1549 
1550 static void dump_line(char *data, int offset, int limit)
1551 {
1552 	int i;
1553 	unsigned char error = 0;
1554 	int bad_count = 0;
1555 
1556 	printk(KERN_ERR "%03x: ", offset);
1557 	for (i = 0; i < limit; i++) {
1558 		if (data[offset + i] != POISON_FREE) {
1559 			error = data[offset + i];
1560 			bad_count++;
1561 		}
1562 	}
1563 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1564 			&data[offset], limit, 1);
1565 
1566 	if (bad_count == 1) {
1567 		error ^= POISON_FREE;
1568 		if (!(error & (error - 1))) {
1569 			printk(KERN_ERR "Single bit error detected. Probably bad RAM.\n");
1570 #ifdef CONFIG_X86
1571 			printk(KERN_ERR "Run memtest86+ or a similar memory test tool.\n");
1572 #else
1573 			printk(KERN_ERR "Run a memory test tool.\n");
1574 #endif
1575 		}
1576 	}
1577 }
1578 #endif
1579 
1580 #if DEBUG
1581 
1582 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1583 {
1584 	int i, size;
1585 	char *realobj;
1586 
1587 	if (cachep->flags & SLAB_RED_ZONE) {
1588 		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1589 			*dbg_redzone1(cachep, objp),
1590 			*dbg_redzone2(cachep, objp));
1591 	}
1592 
1593 	if (cachep->flags & SLAB_STORE_USER) {
1594 		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1595 		       *dbg_userword(cachep, objp),
1596 		       *dbg_userword(cachep, objp));
1597 	}
1598 	realobj = (char *)objp + obj_offset(cachep);
1599 	size = cachep->object_size;
1600 	for (i = 0; i < size && lines; i += 16, lines--) {
1601 		int limit;
1602 		limit = 16;
1603 		if (i + limit > size)
1604 			limit = size - i;
1605 		dump_line(realobj, i, limit);
1606 	}
1607 }
1608 
1609 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1610 {
1611 	char *realobj;
1612 	int size, i;
1613 	int lines = 0;
1614 
1615 	if (is_debug_pagealloc_cache(cachep))
1616 		return;
1617 
1618 	realobj = (char *)objp + obj_offset(cachep);
1619 	size = cachep->object_size;
1620 
1621 	for (i = 0; i < size; i++) {
1622 		char exp = POISON_FREE;
1623 		if (i == size - 1)
1624 			exp = POISON_END;
1625 		if (realobj[i] != exp) {
1626 			int limit;
1627 			/* Mismatch ! */
1628 			/* Print header */
1629 			if (lines == 0) {
1630 				printk(KERN_ERR
1631 					"Slab corruption (%s): %s start=%p, len=%d\n",
1632 					print_tainted(), cachep->name, realobj, size);
1633 				print_objinfo(cachep, objp, 0);
1634 			}
1635 			/* Hexdump the affected line */
1636 			i = (i / 16) * 16;
1637 			limit = 16;
1638 			if (i + limit > size)
1639 				limit = size - i;
1640 			dump_line(realobj, i, limit);
1641 			i += 16;
1642 			lines++;
1643 			/* Limit to 5 lines */
1644 			if (lines > 5)
1645 				break;
1646 		}
1647 	}
1648 	if (lines != 0) {
1649 		/* Print some data about the neighboring objects, if they
1650 		 * exist:
1651 		 */
1652 		struct page *page = virt_to_head_page(objp);
1653 		unsigned int objnr;
1654 
1655 		objnr = obj_to_index(cachep, page, objp);
1656 		if (objnr) {
1657 			objp = index_to_obj(cachep, page, objnr - 1);
1658 			realobj = (char *)objp + obj_offset(cachep);
1659 			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1660 			       realobj, size);
1661 			print_objinfo(cachep, objp, 2);
1662 		}
1663 		if (objnr + 1 < cachep->num) {
1664 			objp = index_to_obj(cachep, page, objnr + 1);
1665 			realobj = (char *)objp + obj_offset(cachep);
1666 			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1667 			       realobj, size);
1668 			print_objinfo(cachep, objp, 2);
1669 		}
1670 	}
1671 }
1672 #endif
1673 
1674 #if DEBUG
1675 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1676 						struct page *page)
1677 {
1678 	int i;
1679 
1680 	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1681 		poison_obj(cachep, page->freelist - obj_offset(cachep),
1682 			POISON_FREE);
1683 	}
1684 
1685 	for (i = 0; i < cachep->num; i++) {
1686 		void *objp = index_to_obj(cachep, page, i);
1687 
1688 		if (cachep->flags & SLAB_POISON) {
1689 			check_poison_obj(cachep, objp);
1690 			slab_kernel_map(cachep, objp, 1, 0);
1691 		}
1692 		if (cachep->flags & SLAB_RED_ZONE) {
1693 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1694 				slab_error(cachep, "start of a freed object was overwritten");
1695 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1696 				slab_error(cachep, "end of a freed object was overwritten");
1697 		}
1698 	}
1699 }
1700 #else
1701 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1702 						struct page *page)
1703 {
1704 }
1705 #endif
1706 
1707 /**
1708  * slab_destroy - destroy and release all objects in a slab
1709  * @cachep: cache pointer being destroyed
1710  * @page: page pointer being destroyed
1711  *
1712  * Destroy all the objs in a slab page, and release the mem back to the system.
1713  * Before calling the slab page must have been unlinked from the cache. The
1714  * kmem_cache_node ->list_lock is not held/needed.
1715  */
1716 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1717 {
1718 	void *freelist;
1719 
1720 	freelist = page->freelist;
1721 	slab_destroy_debugcheck(cachep, page);
1722 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1723 		call_rcu(&page->rcu_head, kmem_rcu_free);
1724 	else
1725 		kmem_freepages(cachep, page);
1726 
1727 	/*
1728 	 * From now on, we don't use freelist
1729 	 * although actual page can be freed in rcu context
1730 	 */
1731 	if (OFF_SLAB(cachep))
1732 		kmem_cache_free(cachep->freelist_cache, freelist);
1733 }
1734 
1735 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1736 {
1737 	struct page *page, *n;
1738 
1739 	list_for_each_entry_safe(page, n, list, lru) {
1740 		list_del(&page->lru);
1741 		slab_destroy(cachep, page);
1742 	}
1743 }
1744 
1745 /**
1746  * calculate_slab_order - calculate size (page order) of slabs
1747  * @cachep: pointer to the cache that is being created
1748  * @size: size of objects to be created in this cache.
1749  * @flags: slab allocation flags
1750  *
1751  * Also calculates the number of objects per slab.
1752  *
1753  * This could be made much more intelligent.  For now, try to avoid using
1754  * high order pages for slabs.  When the gfp() functions are more friendly
1755  * towards high-order requests, this should be changed.
1756  */
1757 static size_t calculate_slab_order(struct kmem_cache *cachep,
1758 				size_t size, unsigned long flags)
1759 {
1760 	size_t left_over = 0;
1761 	int gfporder;
1762 
1763 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1764 		unsigned int num;
1765 		size_t remainder;
1766 
1767 		num = cache_estimate(gfporder, size, flags, &remainder);
1768 		if (!num)
1769 			continue;
1770 
1771 		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1772 		if (num > SLAB_OBJ_MAX_NUM)
1773 			break;
1774 
1775 		if (flags & CFLGS_OFF_SLAB) {
1776 			struct kmem_cache *freelist_cache;
1777 			size_t freelist_size;
1778 
1779 			freelist_size = num * sizeof(freelist_idx_t);
1780 			freelist_cache = kmalloc_slab(freelist_size, 0u);
1781 			if (!freelist_cache)
1782 				continue;
1783 
1784 			/*
1785 			 * Needed to avoid possible looping condition
1786 			 * in cache_grow()
1787 			 */
1788 			if (OFF_SLAB(freelist_cache))
1789 				continue;
1790 
1791 			/* check if off slab has enough benefit */
1792 			if (freelist_cache->size > cachep->size / 2)
1793 				continue;
1794 		}
1795 
1796 		/* Found something acceptable - save it away */
1797 		cachep->num = num;
1798 		cachep->gfporder = gfporder;
1799 		left_over = remainder;
1800 
1801 		/*
1802 		 * A VFS-reclaimable slab tends to have most allocations
1803 		 * as GFP_NOFS and we really don't want to have to be allocating
1804 		 * higher-order pages when we are unable to shrink dcache.
1805 		 */
1806 		if (flags & SLAB_RECLAIM_ACCOUNT)
1807 			break;
1808 
1809 		/*
1810 		 * Large number of objects is good, but very large slabs are
1811 		 * currently bad for the gfp()s.
1812 		 */
1813 		if (gfporder >= slab_max_order)
1814 			break;
1815 
1816 		/*
1817 		 * Acceptable internal fragmentation?
1818 		 */
1819 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1820 			break;
1821 	}
1822 	return left_over;
1823 }
1824 
1825 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1826 		struct kmem_cache *cachep, int entries, int batchcount)
1827 {
1828 	int cpu;
1829 	size_t size;
1830 	struct array_cache __percpu *cpu_cache;
1831 
1832 	size = sizeof(void *) * entries + sizeof(struct array_cache);
1833 	cpu_cache = __alloc_percpu(size, sizeof(void *));
1834 
1835 	if (!cpu_cache)
1836 		return NULL;
1837 
1838 	for_each_possible_cpu(cpu) {
1839 		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1840 				entries, batchcount);
1841 	}
1842 
1843 	return cpu_cache;
1844 }
1845 
1846 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1847 {
1848 	if (slab_state >= FULL)
1849 		return enable_cpucache(cachep, gfp);
1850 
1851 	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1852 	if (!cachep->cpu_cache)
1853 		return 1;
1854 
1855 	if (slab_state == DOWN) {
1856 		/* Creation of first cache (kmem_cache). */
1857 		set_up_node(kmem_cache, CACHE_CACHE);
1858 	} else if (slab_state == PARTIAL) {
1859 		/* For kmem_cache_node */
1860 		set_up_node(cachep, SIZE_NODE);
1861 	} else {
1862 		int node;
1863 
1864 		for_each_online_node(node) {
1865 			cachep->node[node] = kmalloc_node(
1866 				sizeof(struct kmem_cache_node), gfp, node);
1867 			BUG_ON(!cachep->node[node]);
1868 			kmem_cache_node_init(cachep->node[node]);
1869 		}
1870 	}
1871 
1872 	cachep->node[numa_mem_id()]->next_reap =
1873 			jiffies + REAPTIMEOUT_NODE +
1874 			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1875 
1876 	cpu_cache_get(cachep)->avail = 0;
1877 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1878 	cpu_cache_get(cachep)->batchcount = 1;
1879 	cpu_cache_get(cachep)->touched = 0;
1880 	cachep->batchcount = 1;
1881 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1882 	return 0;
1883 }
1884 
1885 unsigned long kmem_cache_flags(unsigned long object_size,
1886 	unsigned long flags, const char *name,
1887 	void (*ctor)(void *))
1888 {
1889 	return flags;
1890 }
1891 
1892 struct kmem_cache *
1893 __kmem_cache_alias(const char *name, size_t size, size_t align,
1894 		   unsigned long flags, void (*ctor)(void *))
1895 {
1896 	struct kmem_cache *cachep;
1897 
1898 	cachep = find_mergeable(size, align, flags, name, ctor);
1899 	if (cachep) {
1900 		cachep->refcount++;
1901 
1902 		/*
1903 		 * Adjust the object sizes so that we clear
1904 		 * the complete object on kzalloc.
1905 		 */
1906 		cachep->object_size = max_t(int, cachep->object_size, size);
1907 	}
1908 	return cachep;
1909 }
1910 
1911 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1912 			size_t size, unsigned long flags)
1913 {
1914 	size_t left;
1915 
1916 	cachep->num = 0;
1917 
1918 	if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1919 		return false;
1920 
1921 	left = calculate_slab_order(cachep, size,
1922 			flags | CFLGS_OBJFREELIST_SLAB);
1923 	if (!cachep->num)
1924 		return false;
1925 
1926 	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1927 		return false;
1928 
1929 	cachep->colour = left / cachep->colour_off;
1930 
1931 	return true;
1932 }
1933 
1934 static bool set_off_slab_cache(struct kmem_cache *cachep,
1935 			size_t size, unsigned long flags)
1936 {
1937 	size_t left;
1938 
1939 	cachep->num = 0;
1940 
1941 	/*
1942 	 * Always use on-slab management when SLAB_NOLEAKTRACE
1943 	 * to avoid recursive calls into kmemleak.
1944 	 */
1945 	if (flags & SLAB_NOLEAKTRACE)
1946 		return false;
1947 
1948 	/*
1949 	 * Size is large, assume best to place the slab management obj
1950 	 * off-slab (should allow better packing of objs).
1951 	 */
1952 	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1953 	if (!cachep->num)
1954 		return false;
1955 
1956 	/*
1957 	 * If the slab has been placed off-slab, and we have enough space then
1958 	 * move it on-slab. This is at the expense of any extra colouring.
1959 	 */
1960 	if (left >= cachep->num * sizeof(freelist_idx_t))
1961 		return false;
1962 
1963 	cachep->colour = left / cachep->colour_off;
1964 
1965 	return true;
1966 }
1967 
1968 static bool set_on_slab_cache(struct kmem_cache *cachep,
1969 			size_t size, unsigned long flags)
1970 {
1971 	size_t left;
1972 
1973 	cachep->num = 0;
1974 
1975 	left = calculate_slab_order(cachep, size, flags);
1976 	if (!cachep->num)
1977 		return false;
1978 
1979 	cachep->colour = left / cachep->colour_off;
1980 
1981 	return true;
1982 }
1983 
1984 /**
1985  * __kmem_cache_create - Create a cache.
1986  * @cachep: cache management descriptor
1987  * @flags: SLAB flags
1988  *
1989  * Returns a ptr to the cache on success, NULL on failure.
1990  * Cannot be called within a int, but can be interrupted.
1991  * The @ctor is run when new pages are allocated by the cache.
1992  *
1993  * The flags are
1994  *
1995  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1996  * to catch references to uninitialised memory.
1997  *
1998  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1999  * for buffer overruns.
2000  *
2001  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2002  * cacheline.  This can be beneficial if you're counting cycles as closely
2003  * as davem.
2004  */
2005 int
2006 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2007 {
2008 	size_t ralign = BYTES_PER_WORD;
2009 	gfp_t gfp;
2010 	int err;
2011 	size_t size = cachep->size;
2012 
2013 #if DEBUG
2014 #if FORCED_DEBUG
2015 	/*
2016 	 * Enable redzoning and last user accounting, except for caches with
2017 	 * large objects, if the increased size would increase the object size
2018 	 * above the next power of two: caches with object sizes just above a
2019 	 * power of two have a significant amount of internal fragmentation.
2020 	 */
2021 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2022 						2 * sizeof(unsigned long long)))
2023 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2024 	if (!(flags & SLAB_DESTROY_BY_RCU))
2025 		flags |= SLAB_POISON;
2026 #endif
2027 #endif
2028 
2029 	/*
2030 	 * Check that size is in terms of words.  This is needed to avoid
2031 	 * unaligned accesses for some archs when redzoning is used, and makes
2032 	 * sure any on-slab bufctl's are also correctly aligned.
2033 	 */
2034 	if (size & (BYTES_PER_WORD - 1)) {
2035 		size += (BYTES_PER_WORD - 1);
2036 		size &= ~(BYTES_PER_WORD - 1);
2037 	}
2038 
2039 	if (flags & SLAB_RED_ZONE) {
2040 		ralign = REDZONE_ALIGN;
2041 		/* If redzoning, ensure that the second redzone is suitably
2042 		 * aligned, by adjusting the object size accordingly. */
2043 		size += REDZONE_ALIGN - 1;
2044 		size &= ~(REDZONE_ALIGN - 1);
2045 	}
2046 
2047 	/* 3) caller mandated alignment */
2048 	if (ralign < cachep->align) {
2049 		ralign = cachep->align;
2050 	}
2051 	/* disable debug if necessary */
2052 	if (ralign > __alignof__(unsigned long long))
2053 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2054 	/*
2055 	 * 4) Store it.
2056 	 */
2057 	cachep->align = ralign;
2058 	cachep->colour_off = cache_line_size();
2059 	/* Offset must be a multiple of the alignment. */
2060 	if (cachep->colour_off < cachep->align)
2061 		cachep->colour_off = cachep->align;
2062 
2063 	if (slab_is_available())
2064 		gfp = GFP_KERNEL;
2065 	else
2066 		gfp = GFP_NOWAIT;
2067 
2068 #if DEBUG
2069 
2070 	/*
2071 	 * Both debugging options require word-alignment which is calculated
2072 	 * into align above.
2073 	 */
2074 	if (flags & SLAB_RED_ZONE) {
2075 		/* add space for red zone words */
2076 		cachep->obj_offset += sizeof(unsigned long long);
2077 		size += 2 * sizeof(unsigned long long);
2078 	}
2079 	if (flags & SLAB_STORE_USER) {
2080 		/* user store requires one word storage behind the end of
2081 		 * the real object. But if the second red zone needs to be
2082 		 * aligned to 64 bits, we must allow that much space.
2083 		 */
2084 		if (flags & SLAB_RED_ZONE)
2085 			size += REDZONE_ALIGN;
2086 		else
2087 			size += BYTES_PER_WORD;
2088 	}
2089 #endif
2090 
2091 	size = ALIGN(size, cachep->align);
2092 	/*
2093 	 * We should restrict the number of objects in a slab to implement
2094 	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2095 	 */
2096 	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2097 		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2098 
2099 #if DEBUG
2100 	/*
2101 	 * To activate debug pagealloc, off-slab management is necessary
2102 	 * requirement. In early phase of initialization, small sized slab
2103 	 * doesn't get initialized so it would not be possible. So, we need
2104 	 * to check size >= 256. It guarantees that all necessary small
2105 	 * sized slab is initialized in current slab initialization sequence.
2106 	 */
2107 	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2108 		size >= 256 && cachep->object_size > cache_line_size()) {
2109 		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2110 			size_t tmp_size = ALIGN(size, PAGE_SIZE);
2111 
2112 			if (set_off_slab_cache(cachep, tmp_size, flags)) {
2113 				flags |= CFLGS_OFF_SLAB;
2114 				cachep->obj_offset += tmp_size - size;
2115 				size = tmp_size;
2116 				goto done;
2117 			}
2118 		}
2119 	}
2120 #endif
2121 
2122 	if (set_objfreelist_slab_cache(cachep, size, flags)) {
2123 		flags |= CFLGS_OBJFREELIST_SLAB;
2124 		goto done;
2125 	}
2126 
2127 	if (set_off_slab_cache(cachep, size, flags)) {
2128 		flags |= CFLGS_OFF_SLAB;
2129 		goto done;
2130 	}
2131 
2132 	if (set_on_slab_cache(cachep, size, flags))
2133 		goto done;
2134 
2135 	return -E2BIG;
2136 
2137 done:
2138 	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2139 	cachep->flags = flags;
2140 	cachep->allocflags = __GFP_COMP;
2141 	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2142 		cachep->allocflags |= GFP_DMA;
2143 	cachep->size = size;
2144 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2145 
2146 #if DEBUG
2147 	/*
2148 	 * If we're going to use the generic kernel_map_pages()
2149 	 * poisoning, then it's going to smash the contents of
2150 	 * the redzone and userword anyhow, so switch them off.
2151 	 */
2152 	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2153 		(cachep->flags & SLAB_POISON) &&
2154 		is_debug_pagealloc_cache(cachep))
2155 		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2156 #endif
2157 
2158 	if (OFF_SLAB(cachep)) {
2159 		cachep->freelist_cache =
2160 			kmalloc_slab(cachep->freelist_size, 0u);
2161 	}
2162 
2163 	err = setup_cpu_cache(cachep, gfp);
2164 	if (err) {
2165 		__kmem_cache_release(cachep);
2166 		return err;
2167 	}
2168 
2169 	return 0;
2170 }
2171 
2172 #if DEBUG
2173 static void check_irq_off(void)
2174 {
2175 	BUG_ON(!irqs_disabled());
2176 }
2177 
2178 static void check_irq_on(void)
2179 {
2180 	BUG_ON(irqs_disabled());
2181 }
2182 
2183 static void check_spinlock_acquired(struct kmem_cache *cachep)
2184 {
2185 #ifdef CONFIG_SMP
2186 	check_irq_off();
2187 	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2188 #endif
2189 }
2190 
2191 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2192 {
2193 #ifdef CONFIG_SMP
2194 	check_irq_off();
2195 	assert_spin_locked(&get_node(cachep, node)->list_lock);
2196 #endif
2197 }
2198 
2199 #else
2200 #define check_irq_off()	do { } while(0)
2201 #define check_irq_on()	do { } while(0)
2202 #define check_spinlock_acquired(x) do { } while(0)
2203 #define check_spinlock_acquired_node(x, y) do { } while(0)
2204 #endif
2205 
2206 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2207 			struct array_cache *ac,
2208 			int force, int node);
2209 
2210 static void do_drain(void *arg)
2211 {
2212 	struct kmem_cache *cachep = arg;
2213 	struct array_cache *ac;
2214 	int node = numa_mem_id();
2215 	struct kmem_cache_node *n;
2216 	LIST_HEAD(list);
2217 
2218 	check_irq_off();
2219 	ac = cpu_cache_get(cachep);
2220 	n = get_node(cachep, node);
2221 	spin_lock(&n->list_lock);
2222 	free_block(cachep, ac->entry, ac->avail, node, &list);
2223 	spin_unlock(&n->list_lock);
2224 	slabs_destroy(cachep, &list);
2225 	ac->avail = 0;
2226 }
2227 
2228 static void drain_cpu_caches(struct kmem_cache *cachep)
2229 {
2230 	struct kmem_cache_node *n;
2231 	int node;
2232 
2233 	on_each_cpu(do_drain, cachep, 1);
2234 	check_irq_on();
2235 	for_each_kmem_cache_node(cachep, node, n)
2236 		if (n->alien)
2237 			drain_alien_cache(cachep, n->alien);
2238 
2239 	for_each_kmem_cache_node(cachep, node, n)
2240 		drain_array(cachep, n, n->shared, 1, node);
2241 }
2242 
2243 /*
2244  * Remove slabs from the list of free slabs.
2245  * Specify the number of slabs to drain in tofree.
2246  *
2247  * Returns the actual number of slabs released.
2248  */
2249 static int drain_freelist(struct kmem_cache *cache,
2250 			struct kmem_cache_node *n, int tofree)
2251 {
2252 	struct list_head *p;
2253 	int nr_freed;
2254 	struct page *page;
2255 
2256 	nr_freed = 0;
2257 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2258 
2259 		spin_lock_irq(&n->list_lock);
2260 		p = n->slabs_free.prev;
2261 		if (p == &n->slabs_free) {
2262 			spin_unlock_irq(&n->list_lock);
2263 			goto out;
2264 		}
2265 
2266 		page = list_entry(p, struct page, lru);
2267 		list_del(&page->lru);
2268 		/*
2269 		 * Safe to drop the lock. The slab is no longer linked
2270 		 * to the cache.
2271 		 */
2272 		n->free_objects -= cache->num;
2273 		spin_unlock_irq(&n->list_lock);
2274 		slab_destroy(cache, page);
2275 		nr_freed++;
2276 	}
2277 out:
2278 	return nr_freed;
2279 }
2280 
2281 int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2282 {
2283 	int ret = 0;
2284 	int node;
2285 	struct kmem_cache_node *n;
2286 
2287 	drain_cpu_caches(cachep);
2288 
2289 	check_irq_on();
2290 	for_each_kmem_cache_node(cachep, node, n) {
2291 		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2292 
2293 		ret += !list_empty(&n->slabs_full) ||
2294 			!list_empty(&n->slabs_partial);
2295 	}
2296 	return (ret ? 1 : 0);
2297 }
2298 
2299 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2300 {
2301 	return __kmem_cache_shrink(cachep, false);
2302 }
2303 
2304 void __kmem_cache_release(struct kmem_cache *cachep)
2305 {
2306 	int i;
2307 	struct kmem_cache_node *n;
2308 
2309 	free_percpu(cachep->cpu_cache);
2310 
2311 	/* NUMA: free the node structures */
2312 	for_each_kmem_cache_node(cachep, i, n) {
2313 		kfree(n->shared);
2314 		free_alien_cache(n->alien);
2315 		kfree(n);
2316 		cachep->node[i] = NULL;
2317 	}
2318 }
2319 
2320 /*
2321  * Get the memory for a slab management obj.
2322  *
2323  * For a slab cache when the slab descriptor is off-slab, the
2324  * slab descriptor can't come from the same cache which is being created,
2325  * Because if it is the case, that means we defer the creation of
2326  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2327  * And we eventually call down to __kmem_cache_create(), which
2328  * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2329  * This is a "chicken-and-egg" problem.
2330  *
2331  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2332  * which are all initialized during kmem_cache_init().
2333  */
2334 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2335 				   struct page *page, int colour_off,
2336 				   gfp_t local_flags, int nodeid)
2337 {
2338 	void *freelist;
2339 	void *addr = page_address(page);
2340 
2341 	page->s_mem = addr + colour_off;
2342 	page->active = 0;
2343 
2344 	if (OBJFREELIST_SLAB(cachep))
2345 		freelist = NULL;
2346 	else if (OFF_SLAB(cachep)) {
2347 		/* Slab management obj is off-slab. */
2348 		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2349 					      local_flags, nodeid);
2350 		if (!freelist)
2351 			return NULL;
2352 	} else {
2353 		/* We will use last bytes at the slab for freelist */
2354 		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2355 				cachep->freelist_size;
2356 	}
2357 
2358 	return freelist;
2359 }
2360 
2361 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2362 {
2363 	return ((freelist_idx_t *)page->freelist)[idx];
2364 }
2365 
2366 static inline void set_free_obj(struct page *page,
2367 					unsigned int idx, freelist_idx_t val)
2368 {
2369 	((freelist_idx_t *)(page->freelist))[idx] = val;
2370 }
2371 
2372 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2373 {
2374 #if DEBUG
2375 	int i;
2376 
2377 	for (i = 0; i < cachep->num; i++) {
2378 		void *objp = index_to_obj(cachep, page, i);
2379 
2380 		if (cachep->flags & SLAB_STORE_USER)
2381 			*dbg_userword(cachep, objp) = NULL;
2382 
2383 		if (cachep->flags & SLAB_RED_ZONE) {
2384 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2385 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2386 		}
2387 		/*
2388 		 * Constructors are not allowed to allocate memory from the same
2389 		 * cache which they are a constructor for.  Otherwise, deadlock.
2390 		 * They must also be threaded.
2391 		 */
2392 		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2393 			cachep->ctor(objp + obj_offset(cachep));
2394 
2395 		if (cachep->flags & SLAB_RED_ZONE) {
2396 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2397 				slab_error(cachep, "constructor overwrote the end of an object");
2398 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2399 				slab_error(cachep, "constructor overwrote the start of an object");
2400 		}
2401 		/* need to poison the objs? */
2402 		if (cachep->flags & SLAB_POISON) {
2403 			poison_obj(cachep, objp, POISON_FREE);
2404 			slab_kernel_map(cachep, objp, 0, 0);
2405 		}
2406 	}
2407 #endif
2408 }
2409 
2410 static void cache_init_objs(struct kmem_cache *cachep,
2411 			    struct page *page)
2412 {
2413 	int i;
2414 
2415 	cache_init_objs_debug(cachep, page);
2416 
2417 	if (OBJFREELIST_SLAB(cachep)) {
2418 		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2419 						obj_offset(cachep);
2420 	}
2421 
2422 	for (i = 0; i < cachep->num; i++) {
2423 		/* constructor could break poison info */
2424 		if (DEBUG == 0 && cachep->ctor)
2425 			cachep->ctor(index_to_obj(cachep, page, i));
2426 
2427 		set_free_obj(page, i, i);
2428 	}
2429 }
2430 
2431 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2432 {
2433 	if (CONFIG_ZONE_DMA_FLAG) {
2434 		if (flags & GFP_DMA)
2435 			BUG_ON(!(cachep->allocflags & GFP_DMA));
2436 		else
2437 			BUG_ON(cachep->allocflags & GFP_DMA);
2438 	}
2439 }
2440 
2441 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2442 {
2443 	void *objp;
2444 
2445 	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2446 	page->active++;
2447 
2448 #if DEBUG
2449 	if (cachep->flags & SLAB_STORE_USER)
2450 		set_store_user_dirty(cachep);
2451 #endif
2452 
2453 	return objp;
2454 }
2455 
2456 static void slab_put_obj(struct kmem_cache *cachep,
2457 			struct page *page, void *objp)
2458 {
2459 	unsigned int objnr = obj_to_index(cachep, page, objp);
2460 #if DEBUG
2461 	unsigned int i;
2462 
2463 	/* Verify double free bug */
2464 	for (i = page->active; i < cachep->num; i++) {
2465 		if (get_free_obj(page, i) == objnr) {
2466 			printk(KERN_ERR "slab: double free detected in cache '%s', objp %p\n",
2467 			       cachep->name, objp);
2468 			BUG();
2469 		}
2470 	}
2471 #endif
2472 	page->active--;
2473 	if (!page->freelist)
2474 		page->freelist = objp + obj_offset(cachep);
2475 
2476 	set_free_obj(page, page->active, objnr);
2477 }
2478 
2479 /*
2480  * Map pages beginning at addr to the given cache and slab. This is required
2481  * for the slab allocator to be able to lookup the cache and slab of a
2482  * virtual address for kfree, ksize, and slab debugging.
2483  */
2484 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2485 			   void *freelist)
2486 {
2487 	page->slab_cache = cache;
2488 	page->freelist = freelist;
2489 }
2490 
2491 /*
2492  * Grow (by 1) the number of slabs within a cache.  This is called by
2493  * kmem_cache_alloc() when there are no active objs left in a cache.
2494  */
2495 static int cache_grow(struct kmem_cache *cachep,
2496 		gfp_t flags, int nodeid, struct page *page)
2497 {
2498 	void *freelist;
2499 	size_t offset;
2500 	gfp_t local_flags;
2501 	struct kmem_cache_node *n;
2502 
2503 	/*
2504 	 * Be lazy and only check for valid flags here,  keeping it out of the
2505 	 * critical path in kmem_cache_alloc().
2506 	 */
2507 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2508 		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2509 		BUG();
2510 	}
2511 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2512 
2513 	/* Take the node list lock to change the colour_next on this node */
2514 	check_irq_off();
2515 	n = get_node(cachep, nodeid);
2516 	spin_lock(&n->list_lock);
2517 
2518 	/* Get colour for the slab, and cal the next value. */
2519 	offset = n->colour_next;
2520 	n->colour_next++;
2521 	if (n->colour_next >= cachep->colour)
2522 		n->colour_next = 0;
2523 	spin_unlock(&n->list_lock);
2524 
2525 	offset *= cachep->colour_off;
2526 
2527 	if (gfpflags_allow_blocking(local_flags))
2528 		local_irq_enable();
2529 
2530 	/*
2531 	 * The test for missing atomic flag is performed here, rather than
2532 	 * the more obvious place, simply to reduce the critical path length
2533 	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2534 	 * will eventually be caught here (where it matters).
2535 	 */
2536 	kmem_flagcheck(cachep, flags);
2537 
2538 	/*
2539 	 * Get mem for the objs.  Attempt to allocate a physical page from
2540 	 * 'nodeid'.
2541 	 */
2542 	if (!page)
2543 		page = kmem_getpages(cachep, local_flags, nodeid);
2544 	if (!page)
2545 		goto failed;
2546 
2547 	/* Get slab management. */
2548 	freelist = alloc_slabmgmt(cachep, page, offset,
2549 			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2550 	if (OFF_SLAB(cachep) && !freelist)
2551 		goto opps1;
2552 
2553 	slab_map_pages(cachep, page, freelist);
2554 
2555 	cache_init_objs(cachep, page);
2556 
2557 	if (gfpflags_allow_blocking(local_flags))
2558 		local_irq_disable();
2559 	check_irq_off();
2560 	spin_lock(&n->list_lock);
2561 
2562 	/* Make slab active. */
2563 	list_add_tail(&page->lru, &(n->slabs_free));
2564 	STATS_INC_GROWN(cachep);
2565 	n->free_objects += cachep->num;
2566 	spin_unlock(&n->list_lock);
2567 	return 1;
2568 opps1:
2569 	kmem_freepages(cachep, page);
2570 failed:
2571 	if (gfpflags_allow_blocking(local_flags))
2572 		local_irq_disable();
2573 	return 0;
2574 }
2575 
2576 #if DEBUG
2577 
2578 /*
2579  * Perform extra freeing checks:
2580  * - detect bad pointers.
2581  * - POISON/RED_ZONE checking
2582  */
2583 static void kfree_debugcheck(const void *objp)
2584 {
2585 	if (!virt_addr_valid(objp)) {
2586 		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2587 		       (unsigned long)objp);
2588 		BUG();
2589 	}
2590 }
2591 
2592 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2593 {
2594 	unsigned long long redzone1, redzone2;
2595 
2596 	redzone1 = *dbg_redzone1(cache, obj);
2597 	redzone2 = *dbg_redzone2(cache, obj);
2598 
2599 	/*
2600 	 * Redzone is ok.
2601 	 */
2602 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2603 		return;
2604 
2605 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2606 		slab_error(cache, "double free detected");
2607 	else
2608 		slab_error(cache, "memory outside object was overwritten");
2609 
2610 	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2611 			obj, redzone1, redzone2);
2612 }
2613 
2614 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2615 				   unsigned long caller)
2616 {
2617 	unsigned int objnr;
2618 	struct page *page;
2619 
2620 	BUG_ON(virt_to_cache(objp) != cachep);
2621 
2622 	objp -= obj_offset(cachep);
2623 	kfree_debugcheck(objp);
2624 	page = virt_to_head_page(objp);
2625 
2626 	if (cachep->flags & SLAB_RED_ZONE) {
2627 		verify_redzone_free(cachep, objp);
2628 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2629 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2630 	}
2631 	if (cachep->flags & SLAB_STORE_USER) {
2632 		set_store_user_dirty(cachep);
2633 		*dbg_userword(cachep, objp) = (void *)caller;
2634 	}
2635 
2636 	objnr = obj_to_index(cachep, page, objp);
2637 
2638 	BUG_ON(objnr >= cachep->num);
2639 	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2640 
2641 	if (cachep->flags & SLAB_POISON) {
2642 		poison_obj(cachep, objp, POISON_FREE);
2643 		slab_kernel_map(cachep, objp, 0, caller);
2644 	}
2645 	return objp;
2646 }
2647 
2648 #else
2649 #define kfree_debugcheck(x) do { } while(0)
2650 #define cache_free_debugcheck(x,objp,z) (objp)
2651 #endif
2652 
2653 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2654 						void **list)
2655 {
2656 #if DEBUG
2657 	void *next = *list;
2658 	void *objp;
2659 
2660 	while (next) {
2661 		objp = next - obj_offset(cachep);
2662 		next = *(void **)next;
2663 		poison_obj(cachep, objp, POISON_FREE);
2664 	}
2665 #endif
2666 }
2667 
2668 static inline void fixup_slab_list(struct kmem_cache *cachep,
2669 				struct kmem_cache_node *n, struct page *page,
2670 				void **list)
2671 {
2672 	/* move slabp to correct slabp list: */
2673 	list_del(&page->lru);
2674 	if (page->active == cachep->num) {
2675 		list_add(&page->lru, &n->slabs_full);
2676 		if (OBJFREELIST_SLAB(cachep)) {
2677 #if DEBUG
2678 			/* Poisoning will be done without holding the lock */
2679 			if (cachep->flags & SLAB_POISON) {
2680 				void **objp = page->freelist;
2681 
2682 				*objp = *list;
2683 				*list = objp;
2684 			}
2685 #endif
2686 			page->freelist = NULL;
2687 		}
2688 	} else
2689 		list_add(&page->lru, &n->slabs_partial);
2690 }
2691 
2692 /* Try to find non-pfmemalloc slab if needed */
2693 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2694 					struct page *page, bool pfmemalloc)
2695 {
2696 	if (!page)
2697 		return NULL;
2698 
2699 	if (pfmemalloc)
2700 		return page;
2701 
2702 	if (!PageSlabPfmemalloc(page))
2703 		return page;
2704 
2705 	/* No need to keep pfmemalloc slab if we have enough free objects */
2706 	if (n->free_objects > n->free_limit) {
2707 		ClearPageSlabPfmemalloc(page);
2708 		return page;
2709 	}
2710 
2711 	/* Move pfmemalloc slab to the end of list to speed up next search */
2712 	list_del(&page->lru);
2713 	if (!page->active)
2714 		list_add_tail(&page->lru, &n->slabs_free);
2715 	else
2716 		list_add_tail(&page->lru, &n->slabs_partial);
2717 
2718 	list_for_each_entry(page, &n->slabs_partial, lru) {
2719 		if (!PageSlabPfmemalloc(page))
2720 			return page;
2721 	}
2722 
2723 	list_for_each_entry(page, &n->slabs_free, lru) {
2724 		if (!PageSlabPfmemalloc(page))
2725 			return page;
2726 	}
2727 
2728 	return NULL;
2729 }
2730 
2731 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2732 {
2733 	struct page *page;
2734 
2735 	page = list_first_entry_or_null(&n->slabs_partial,
2736 			struct page, lru);
2737 	if (!page) {
2738 		n->free_touched = 1;
2739 		page = list_first_entry_or_null(&n->slabs_free,
2740 				struct page, lru);
2741 	}
2742 
2743 	if (sk_memalloc_socks())
2744 		return get_valid_first_slab(n, page, pfmemalloc);
2745 
2746 	return page;
2747 }
2748 
2749 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2750 				struct kmem_cache_node *n, gfp_t flags)
2751 {
2752 	struct page *page;
2753 	void *obj;
2754 	void *list = NULL;
2755 
2756 	if (!gfp_pfmemalloc_allowed(flags))
2757 		return NULL;
2758 
2759 	spin_lock(&n->list_lock);
2760 	page = get_first_slab(n, true);
2761 	if (!page) {
2762 		spin_unlock(&n->list_lock);
2763 		return NULL;
2764 	}
2765 
2766 	obj = slab_get_obj(cachep, page);
2767 	n->free_objects--;
2768 
2769 	fixup_slab_list(cachep, n, page, &list);
2770 
2771 	spin_unlock(&n->list_lock);
2772 	fixup_objfreelist_debug(cachep, &list);
2773 
2774 	return obj;
2775 }
2776 
2777 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2778 {
2779 	int batchcount;
2780 	struct kmem_cache_node *n;
2781 	struct array_cache *ac;
2782 	int node;
2783 	void *list = NULL;
2784 
2785 	check_irq_off();
2786 	node = numa_mem_id();
2787 
2788 retry:
2789 	ac = cpu_cache_get(cachep);
2790 	batchcount = ac->batchcount;
2791 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2792 		/*
2793 		 * If there was little recent activity on this cache, then
2794 		 * perform only a partial refill.  Otherwise we could generate
2795 		 * refill bouncing.
2796 		 */
2797 		batchcount = BATCHREFILL_LIMIT;
2798 	}
2799 	n = get_node(cachep, node);
2800 
2801 	BUG_ON(ac->avail > 0 || !n);
2802 	spin_lock(&n->list_lock);
2803 
2804 	/* See if we can refill from the shared array */
2805 	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2806 		n->shared->touched = 1;
2807 		goto alloc_done;
2808 	}
2809 
2810 	while (batchcount > 0) {
2811 		struct page *page;
2812 		/* Get slab alloc is to come from. */
2813 		page = get_first_slab(n, false);
2814 		if (!page)
2815 			goto must_grow;
2816 
2817 		check_spinlock_acquired(cachep);
2818 
2819 		/*
2820 		 * The slab was either on partial or free list so
2821 		 * there must be at least one object available for
2822 		 * allocation.
2823 		 */
2824 		BUG_ON(page->active >= cachep->num);
2825 
2826 		while (page->active < cachep->num && batchcount--) {
2827 			STATS_INC_ALLOCED(cachep);
2828 			STATS_INC_ACTIVE(cachep);
2829 			STATS_SET_HIGH(cachep);
2830 
2831 			ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2832 		}
2833 
2834 		fixup_slab_list(cachep, n, page, &list);
2835 	}
2836 
2837 must_grow:
2838 	n->free_objects -= ac->avail;
2839 alloc_done:
2840 	spin_unlock(&n->list_lock);
2841 	fixup_objfreelist_debug(cachep, &list);
2842 
2843 	if (unlikely(!ac->avail)) {
2844 		int x;
2845 
2846 		/* Check if we can use obj in pfmemalloc slab */
2847 		if (sk_memalloc_socks()) {
2848 			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2849 
2850 			if (obj)
2851 				return obj;
2852 		}
2853 
2854 		x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2855 
2856 		/* cache_grow can reenable interrupts, then ac could change. */
2857 		ac = cpu_cache_get(cachep);
2858 		node = numa_mem_id();
2859 
2860 		/* no objects in sight? abort */
2861 		if (!x && ac->avail == 0)
2862 			return NULL;
2863 
2864 		if (!ac->avail)		/* objects refilled by interrupt? */
2865 			goto retry;
2866 	}
2867 	ac->touched = 1;
2868 
2869 	return ac->entry[--ac->avail];
2870 }
2871 
2872 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2873 						gfp_t flags)
2874 {
2875 	might_sleep_if(gfpflags_allow_blocking(flags));
2876 #if DEBUG
2877 	kmem_flagcheck(cachep, flags);
2878 #endif
2879 }
2880 
2881 #if DEBUG
2882 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2883 				gfp_t flags, void *objp, unsigned long caller)
2884 {
2885 	if (!objp)
2886 		return objp;
2887 	if (cachep->flags & SLAB_POISON) {
2888 		check_poison_obj(cachep, objp);
2889 		slab_kernel_map(cachep, objp, 1, 0);
2890 		poison_obj(cachep, objp, POISON_INUSE);
2891 	}
2892 	if (cachep->flags & SLAB_STORE_USER)
2893 		*dbg_userword(cachep, objp) = (void *)caller;
2894 
2895 	if (cachep->flags & SLAB_RED_ZONE) {
2896 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2897 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2898 			slab_error(cachep, "double free, or memory outside object was overwritten");
2899 			printk(KERN_ERR
2900 				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2901 				objp, *dbg_redzone1(cachep, objp),
2902 				*dbg_redzone2(cachep, objp));
2903 		}
2904 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
2905 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
2906 	}
2907 
2908 	objp += obj_offset(cachep);
2909 	if (cachep->ctor && cachep->flags & SLAB_POISON)
2910 		cachep->ctor(objp);
2911 	if (ARCH_SLAB_MINALIGN &&
2912 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2913 		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2914 		       objp, (int)ARCH_SLAB_MINALIGN);
2915 	}
2916 	return objp;
2917 }
2918 #else
2919 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2920 #endif
2921 
2922 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2923 {
2924 	void *objp;
2925 	struct array_cache *ac;
2926 
2927 	check_irq_off();
2928 
2929 	ac = cpu_cache_get(cachep);
2930 	if (likely(ac->avail)) {
2931 		ac->touched = 1;
2932 		objp = ac->entry[--ac->avail];
2933 
2934 		STATS_INC_ALLOCHIT(cachep);
2935 		goto out;
2936 	}
2937 
2938 	STATS_INC_ALLOCMISS(cachep);
2939 	objp = cache_alloc_refill(cachep, flags);
2940 	/*
2941 	 * the 'ac' may be updated by cache_alloc_refill(),
2942 	 * and kmemleak_erase() requires its correct value.
2943 	 */
2944 	ac = cpu_cache_get(cachep);
2945 
2946 out:
2947 	/*
2948 	 * To avoid a false negative, if an object that is in one of the
2949 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2950 	 * treat the array pointers as a reference to the object.
2951 	 */
2952 	if (objp)
2953 		kmemleak_erase(&ac->entry[ac->avail]);
2954 	return objp;
2955 }
2956 
2957 #ifdef CONFIG_NUMA
2958 /*
2959  * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2960  *
2961  * If we are in_interrupt, then process context, including cpusets and
2962  * mempolicy, may not apply and should not be used for allocation policy.
2963  */
2964 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2965 {
2966 	int nid_alloc, nid_here;
2967 
2968 	if (in_interrupt() || (flags & __GFP_THISNODE))
2969 		return NULL;
2970 	nid_alloc = nid_here = numa_mem_id();
2971 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2972 		nid_alloc = cpuset_slab_spread_node();
2973 	else if (current->mempolicy)
2974 		nid_alloc = mempolicy_slab_node();
2975 	if (nid_alloc != nid_here)
2976 		return ____cache_alloc_node(cachep, flags, nid_alloc);
2977 	return NULL;
2978 }
2979 
2980 /*
2981  * Fallback function if there was no memory available and no objects on a
2982  * certain node and fall back is permitted. First we scan all the
2983  * available node for available objects. If that fails then we
2984  * perform an allocation without specifying a node. This allows the page
2985  * allocator to do its reclaim / fallback magic. We then insert the
2986  * slab into the proper nodelist and then allocate from it.
2987  */
2988 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
2989 {
2990 	struct zonelist *zonelist;
2991 	gfp_t local_flags;
2992 	struct zoneref *z;
2993 	struct zone *zone;
2994 	enum zone_type high_zoneidx = gfp_zone(flags);
2995 	void *obj = NULL;
2996 	int nid;
2997 	unsigned int cpuset_mems_cookie;
2998 
2999 	if (flags & __GFP_THISNODE)
3000 		return NULL;
3001 
3002 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3003 
3004 retry_cpuset:
3005 	cpuset_mems_cookie = read_mems_allowed_begin();
3006 	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3007 
3008 retry:
3009 	/*
3010 	 * Look through allowed nodes for objects available
3011 	 * from existing per node queues.
3012 	 */
3013 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3014 		nid = zone_to_nid(zone);
3015 
3016 		if (cpuset_zone_allowed(zone, flags) &&
3017 			get_node(cache, nid) &&
3018 			get_node(cache, nid)->free_objects) {
3019 				obj = ____cache_alloc_node(cache,
3020 					gfp_exact_node(flags), nid);
3021 				if (obj)
3022 					break;
3023 		}
3024 	}
3025 
3026 	if (!obj) {
3027 		/*
3028 		 * This allocation will be performed within the constraints
3029 		 * of the current cpuset / memory policy requirements.
3030 		 * We may trigger various forms of reclaim on the allowed
3031 		 * set and go into memory reserves if necessary.
3032 		 */
3033 		struct page *page;
3034 
3035 		if (gfpflags_allow_blocking(local_flags))
3036 			local_irq_enable();
3037 		kmem_flagcheck(cache, flags);
3038 		page = kmem_getpages(cache, local_flags, numa_mem_id());
3039 		if (gfpflags_allow_blocking(local_flags))
3040 			local_irq_disable();
3041 		if (page) {
3042 			/*
3043 			 * Insert into the appropriate per node queues
3044 			 */
3045 			nid = page_to_nid(page);
3046 			if (cache_grow(cache, flags, nid, page)) {
3047 				obj = ____cache_alloc_node(cache,
3048 					gfp_exact_node(flags), nid);
3049 				if (!obj)
3050 					/*
3051 					 * Another processor may allocate the
3052 					 * objects in the slab since we are
3053 					 * not holding any locks.
3054 					 */
3055 					goto retry;
3056 			} else {
3057 				/* cache_grow already freed obj */
3058 				obj = NULL;
3059 			}
3060 		}
3061 	}
3062 
3063 	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3064 		goto retry_cpuset;
3065 	return obj;
3066 }
3067 
3068 /*
3069  * A interface to enable slab creation on nodeid
3070  */
3071 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3072 				int nodeid)
3073 {
3074 	struct page *page;
3075 	struct kmem_cache_node *n;
3076 	void *obj;
3077 	void *list = NULL;
3078 	int x;
3079 
3080 	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3081 	n = get_node(cachep, nodeid);
3082 	BUG_ON(!n);
3083 
3084 retry:
3085 	check_irq_off();
3086 	spin_lock(&n->list_lock);
3087 	page = get_first_slab(n, false);
3088 	if (!page)
3089 		goto must_grow;
3090 
3091 	check_spinlock_acquired_node(cachep, nodeid);
3092 
3093 	STATS_INC_NODEALLOCS(cachep);
3094 	STATS_INC_ACTIVE(cachep);
3095 	STATS_SET_HIGH(cachep);
3096 
3097 	BUG_ON(page->active == cachep->num);
3098 
3099 	obj = slab_get_obj(cachep, page);
3100 	n->free_objects--;
3101 
3102 	fixup_slab_list(cachep, n, page, &list);
3103 
3104 	spin_unlock(&n->list_lock);
3105 	fixup_objfreelist_debug(cachep, &list);
3106 	goto done;
3107 
3108 must_grow:
3109 	spin_unlock(&n->list_lock);
3110 	x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3111 	if (x)
3112 		goto retry;
3113 
3114 	return fallback_alloc(cachep, flags);
3115 
3116 done:
3117 	return obj;
3118 }
3119 
3120 static __always_inline void *
3121 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3122 		   unsigned long caller)
3123 {
3124 	unsigned long save_flags;
3125 	void *ptr;
3126 	int slab_node = numa_mem_id();
3127 
3128 	flags &= gfp_allowed_mask;
3129 	cachep = slab_pre_alloc_hook(cachep, flags);
3130 	if (unlikely(!cachep))
3131 		return NULL;
3132 
3133 	cache_alloc_debugcheck_before(cachep, flags);
3134 	local_irq_save(save_flags);
3135 
3136 	if (nodeid == NUMA_NO_NODE)
3137 		nodeid = slab_node;
3138 
3139 	if (unlikely(!get_node(cachep, nodeid))) {
3140 		/* Node not bootstrapped yet */
3141 		ptr = fallback_alloc(cachep, flags);
3142 		goto out;
3143 	}
3144 
3145 	if (nodeid == slab_node) {
3146 		/*
3147 		 * Use the locally cached objects if possible.
3148 		 * However ____cache_alloc does not allow fallback
3149 		 * to other nodes. It may fail while we still have
3150 		 * objects on other nodes available.
3151 		 */
3152 		ptr = ____cache_alloc(cachep, flags);
3153 		if (ptr)
3154 			goto out;
3155 	}
3156 	/* ___cache_alloc_node can fall back to other nodes */
3157 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3158   out:
3159 	local_irq_restore(save_flags);
3160 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3161 
3162 	if (unlikely(flags & __GFP_ZERO) && ptr)
3163 		memset(ptr, 0, cachep->object_size);
3164 
3165 	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3166 	return ptr;
3167 }
3168 
3169 static __always_inline void *
3170 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3171 {
3172 	void *objp;
3173 
3174 	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3175 		objp = alternate_node_alloc(cache, flags);
3176 		if (objp)
3177 			goto out;
3178 	}
3179 	objp = ____cache_alloc(cache, flags);
3180 
3181 	/*
3182 	 * We may just have run out of memory on the local node.
3183 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3184 	 */
3185 	if (!objp)
3186 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3187 
3188   out:
3189 	return objp;
3190 }
3191 #else
3192 
3193 static __always_inline void *
3194 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3195 {
3196 	return ____cache_alloc(cachep, flags);
3197 }
3198 
3199 #endif /* CONFIG_NUMA */
3200 
3201 static __always_inline void *
3202 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3203 {
3204 	unsigned long save_flags;
3205 	void *objp;
3206 
3207 	flags &= gfp_allowed_mask;
3208 	cachep = slab_pre_alloc_hook(cachep, flags);
3209 	if (unlikely(!cachep))
3210 		return NULL;
3211 
3212 	cache_alloc_debugcheck_before(cachep, flags);
3213 	local_irq_save(save_flags);
3214 	objp = __do_cache_alloc(cachep, flags);
3215 	local_irq_restore(save_flags);
3216 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3217 	prefetchw(objp);
3218 
3219 	if (unlikely(flags & __GFP_ZERO) && objp)
3220 		memset(objp, 0, cachep->object_size);
3221 
3222 	slab_post_alloc_hook(cachep, flags, 1, &objp);
3223 	return objp;
3224 }
3225 
3226 /*
3227  * Caller needs to acquire correct kmem_cache_node's list_lock
3228  * @list: List of detached free slabs should be freed by caller
3229  */
3230 static void free_block(struct kmem_cache *cachep, void **objpp,
3231 			int nr_objects, int node, struct list_head *list)
3232 {
3233 	int i;
3234 	struct kmem_cache_node *n = get_node(cachep, node);
3235 
3236 	for (i = 0; i < nr_objects; i++) {
3237 		void *objp;
3238 		struct page *page;
3239 
3240 		objp = objpp[i];
3241 
3242 		page = virt_to_head_page(objp);
3243 		list_del(&page->lru);
3244 		check_spinlock_acquired_node(cachep, node);
3245 		slab_put_obj(cachep, page, objp);
3246 		STATS_DEC_ACTIVE(cachep);
3247 		n->free_objects++;
3248 
3249 		/* fixup slab chains */
3250 		if (page->active == 0) {
3251 			if (n->free_objects > n->free_limit) {
3252 				n->free_objects -= cachep->num;
3253 				list_add_tail(&page->lru, list);
3254 			} else {
3255 				list_add(&page->lru, &n->slabs_free);
3256 			}
3257 		} else {
3258 			/* Unconditionally move a slab to the end of the
3259 			 * partial list on free - maximum time for the
3260 			 * other objects to be freed, too.
3261 			 */
3262 			list_add_tail(&page->lru, &n->slabs_partial);
3263 		}
3264 	}
3265 }
3266 
3267 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3268 {
3269 	int batchcount;
3270 	struct kmem_cache_node *n;
3271 	int node = numa_mem_id();
3272 	LIST_HEAD(list);
3273 
3274 	batchcount = ac->batchcount;
3275 
3276 	check_irq_off();
3277 	n = get_node(cachep, node);
3278 	spin_lock(&n->list_lock);
3279 	if (n->shared) {
3280 		struct array_cache *shared_array = n->shared;
3281 		int max = shared_array->limit - shared_array->avail;
3282 		if (max) {
3283 			if (batchcount > max)
3284 				batchcount = max;
3285 			memcpy(&(shared_array->entry[shared_array->avail]),
3286 			       ac->entry, sizeof(void *) * batchcount);
3287 			shared_array->avail += batchcount;
3288 			goto free_done;
3289 		}
3290 	}
3291 
3292 	free_block(cachep, ac->entry, batchcount, node, &list);
3293 free_done:
3294 #if STATS
3295 	{
3296 		int i = 0;
3297 		struct page *page;
3298 
3299 		list_for_each_entry(page, &n->slabs_free, lru) {
3300 			BUG_ON(page->active);
3301 
3302 			i++;
3303 		}
3304 		STATS_SET_FREEABLE(cachep, i);
3305 	}
3306 #endif
3307 	spin_unlock(&n->list_lock);
3308 	slabs_destroy(cachep, &list);
3309 	ac->avail -= batchcount;
3310 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3311 }
3312 
3313 /*
3314  * Release an obj back to its cache. If the obj has a constructed state, it must
3315  * be in this state _before_ it is released.  Called with disabled ints.
3316  */
3317 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3318 				unsigned long caller)
3319 {
3320 	struct array_cache *ac = cpu_cache_get(cachep);
3321 
3322 	check_irq_off();
3323 	kmemleak_free_recursive(objp, cachep->flags);
3324 	objp = cache_free_debugcheck(cachep, objp, caller);
3325 
3326 	kmemcheck_slab_free(cachep, objp, cachep->object_size);
3327 
3328 	/*
3329 	 * Skip calling cache_free_alien() when the platform is not numa.
3330 	 * This will avoid cache misses that happen while accessing slabp (which
3331 	 * is per page memory  reference) to get nodeid. Instead use a global
3332 	 * variable to skip the call, which is mostly likely to be present in
3333 	 * the cache.
3334 	 */
3335 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3336 		return;
3337 
3338 	if (ac->avail < ac->limit) {
3339 		STATS_INC_FREEHIT(cachep);
3340 	} else {
3341 		STATS_INC_FREEMISS(cachep);
3342 		cache_flusharray(cachep, ac);
3343 	}
3344 
3345 	if (sk_memalloc_socks()) {
3346 		struct page *page = virt_to_head_page(objp);
3347 
3348 		if (unlikely(PageSlabPfmemalloc(page))) {
3349 			cache_free_pfmemalloc(cachep, page, objp);
3350 			return;
3351 		}
3352 	}
3353 
3354 	ac->entry[ac->avail++] = objp;
3355 }
3356 
3357 /**
3358  * kmem_cache_alloc - Allocate an object
3359  * @cachep: The cache to allocate from.
3360  * @flags: See kmalloc().
3361  *
3362  * Allocate an object from this cache.  The flags are only relevant
3363  * if the cache has no available objects.
3364  */
3365 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3366 {
3367 	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3368 
3369 	trace_kmem_cache_alloc(_RET_IP_, ret,
3370 			       cachep->object_size, cachep->size, flags);
3371 
3372 	return ret;
3373 }
3374 EXPORT_SYMBOL(kmem_cache_alloc);
3375 
3376 static __always_inline void
3377 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3378 				  size_t size, void **p, unsigned long caller)
3379 {
3380 	size_t i;
3381 
3382 	for (i = 0; i < size; i++)
3383 		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3384 }
3385 
3386 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3387 			  void **p)
3388 {
3389 	size_t i;
3390 
3391 	s = slab_pre_alloc_hook(s, flags);
3392 	if (!s)
3393 		return 0;
3394 
3395 	cache_alloc_debugcheck_before(s, flags);
3396 
3397 	local_irq_disable();
3398 	for (i = 0; i < size; i++) {
3399 		void *objp = __do_cache_alloc(s, flags);
3400 
3401 		if (unlikely(!objp))
3402 			goto error;
3403 		p[i] = objp;
3404 	}
3405 	local_irq_enable();
3406 
3407 	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3408 
3409 	/* Clear memory outside IRQ disabled section */
3410 	if (unlikely(flags & __GFP_ZERO))
3411 		for (i = 0; i < size; i++)
3412 			memset(p[i], 0, s->object_size);
3413 
3414 	slab_post_alloc_hook(s, flags, size, p);
3415 	/* FIXME: Trace call missing. Christoph would like a bulk variant */
3416 	return size;
3417 error:
3418 	local_irq_enable();
3419 	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3420 	slab_post_alloc_hook(s, flags, i, p);
3421 	__kmem_cache_free_bulk(s, i, p);
3422 	return 0;
3423 }
3424 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3425 
3426 #ifdef CONFIG_TRACING
3427 void *
3428 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3429 {
3430 	void *ret;
3431 
3432 	ret = slab_alloc(cachep, flags, _RET_IP_);
3433 
3434 	trace_kmalloc(_RET_IP_, ret,
3435 		      size, cachep->size, flags);
3436 	return ret;
3437 }
3438 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3439 #endif
3440 
3441 #ifdef CONFIG_NUMA
3442 /**
3443  * kmem_cache_alloc_node - Allocate an object on the specified node
3444  * @cachep: The cache to allocate from.
3445  * @flags: See kmalloc().
3446  * @nodeid: node number of the target node.
3447  *
3448  * Identical to kmem_cache_alloc but it will allocate memory on the given
3449  * node, which can improve the performance for cpu bound structures.
3450  *
3451  * Fallback to other node is possible if __GFP_THISNODE is not set.
3452  */
3453 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3454 {
3455 	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3456 
3457 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3458 				    cachep->object_size, cachep->size,
3459 				    flags, nodeid);
3460 
3461 	return ret;
3462 }
3463 EXPORT_SYMBOL(kmem_cache_alloc_node);
3464 
3465 #ifdef CONFIG_TRACING
3466 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3467 				  gfp_t flags,
3468 				  int nodeid,
3469 				  size_t size)
3470 {
3471 	void *ret;
3472 
3473 	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3474 
3475 	trace_kmalloc_node(_RET_IP_, ret,
3476 			   size, cachep->size,
3477 			   flags, nodeid);
3478 	return ret;
3479 }
3480 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3481 #endif
3482 
3483 static __always_inline void *
3484 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3485 {
3486 	struct kmem_cache *cachep;
3487 
3488 	cachep = kmalloc_slab(size, flags);
3489 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3490 		return cachep;
3491 	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3492 }
3493 
3494 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3495 {
3496 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3497 }
3498 EXPORT_SYMBOL(__kmalloc_node);
3499 
3500 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3501 		int node, unsigned long caller)
3502 {
3503 	return __do_kmalloc_node(size, flags, node, caller);
3504 }
3505 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3506 #endif /* CONFIG_NUMA */
3507 
3508 /**
3509  * __do_kmalloc - allocate memory
3510  * @size: how many bytes of memory are required.
3511  * @flags: the type of memory to allocate (see kmalloc).
3512  * @caller: function caller for debug tracking of the caller
3513  */
3514 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3515 					  unsigned long caller)
3516 {
3517 	struct kmem_cache *cachep;
3518 	void *ret;
3519 
3520 	cachep = kmalloc_slab(size, flags);
3521 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3522 		return cachep;
3523 	ret = slab_alloc(cachep, flags, caller);
3524 
3525 	trace_kmalloc(caller, ret,
3526 		      size, cachep->size, flags);
3527 
3528 	return ret;
3529 }
3530 
3531 void *__kmalloc(size_t size, gfp_t flags)
3532 {
3533 	return __do_kmalloc(size, flags, _RET_IP_);
3534 }
3535 EXPORT_SYMBOL(__kmalloc);
3536 
3537 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3538 {
3539 	return __do_kmalloc(size, flags, caller);
3540 }
3541 EXPORT_SYMBOL(__kmalloc_track_caller);
3542 
3543 /**
3544  * kmem_cache_free - Deallocate an object
3545  * @cachep: The cache the allocation was from.
3546  * @objp: The previously allocated object.
3547  *
3548  * Free an object which was previously allocated from this
3549  * cache.
3550  */
3551 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3552 {
3553 	unsigned long flags;
3554 	cachep = cache_from_obj(cachep, objp);
3555 	if (!cachep)
3556 		return;
3557 
3558 	local_irq_save(flags);
3559 	debug_check_no_locks_freed(objp, cachep->object_size);
3560 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3561 		debug_check_no_obj_freed(objp, cachep->object_size);
3562 	__cache_free(cachep, objp, _RET_IP_);
3563 	local_irq_restore(flags);
3564 
3565 	trace_kmem_cache_free(_RET_IP_, objp);
3566 }
3567 EXPORT_SYMBOL(kmem_cache_free);
3568 
3569 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3570 {
3571 	struct kmem_cache *s;
3572 	size_t i;
3573 
3574 	local_irq_disable();
3575 	for (i = 0; i < size; i++) {
3576 		void *objp = p[i];
3577 
3578 		if (!orig_s) /* called via kfree_bulk */
3579 			s = virt_to_cache(objp);
3580 		else
3581 			s = cache_from_obj(orig_s, objp);
3582 
3583 		debug_check_no_locks_freed(objp, s->object_size);
3584 		if (!(s->flags & SLAB_DEBUG_OBJECTS))
3585 			debug_check_no_obj_freed(objp, s->object_size);
3586 
3587 		__cache_free(s, objp, _RET_IP_);
3588 	}
3589 	local_irq_enable();
3590 
3591 	/* FIXME: add tracing */
3592 }
3593 EXPORT_SYMBOL(kmem_cache_free_bulk);
3594 
3595 /**
3596  * kfree - free previously allocated memory
3597  * @objp: pointer returned by kmalloc.
3598  *
3599  * If @objp is NULL, no operation is performed.
3600  *
3601  * Don't free memory not originally allocated by kmalloc()
3602  * or you will run into trouble.
3603  */
3604 void kfree(const void *objp)
3605 {
3606 	struct kmem_cache *c;
3607 	unsigned long flags;
3608 
3609 	trace_kfree(_RET_IP_, objp);
3610 
3611 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3612 		return;
3613 	local_irq_save(flags);
3614 	kfree_debugcheck(objp);
3615 	c = virt_to_cache(objp);
3616 	debug_check_no_locks_freed(objp, c->object_size);
3617 
3618 	debug_check_no_obj_freed(objp, c->object_size);
3619 	__cache_free(c, (void *)objp, _RET_IP_);
3620 	local_irq_restore(flags);
3621 }
3622 EXPORT_SYMBOL(kfree);
3623 
3624 /*
3625  * This initializes kmem_cache_node or resizes various caches for all nodes.
3626  */
3627 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3628 {
3629 	int node;
3630 	struct kmem_cache_node *n;
3631 	struct array_cache *new_shared;
3632 	struct alien_cache **new_alien = NULL;
3633 
3634 	for_each_online_node(node) {
3635 
3636 		if (use_alien_caches) {
3637 			new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3638 			if (!new_alien)
3639 				goto fail;
3640 		}
3641 
3642 		new_shared = NULL;
3643 		if (cachep->shared) {
3644 			new_shared = alloc_arraycache(node,
3645 				cachep->shared*cachep->batchcount,
3646 					0xbaadf00d, gfp);
3647 			if (!new_shared) {
3648 				free_alien_cache(new_alien);
3649 				goto fail;
3650 			}
3651 		}
3652 
3653 		n = get_node(cachep, node);
3654 		if (n) {
3655 			struct array_cache *shared = n->shared;
3656 			LIST_HEAD(list);
3657 
3658 			spin_lock_irq(&n->list_lock);
3659 
3660 			if (shared)
3661 				free_block(cachep, shared->entry,
3662 						shared->avail, node, &list);
3663 
3664 			n->shared = new_shared;
3665 			if (!n->alien) {
3666 				n->alien = new_alien;
3667 				new_alien = NULL;
3668 			}
3669 			n->free_limit = (1 + nr_cpus_node(node)) *
3670 					cachep->batchcount + cachep->num;
3671 			spin_unlock_irq(&n->list_lock);
3672 			slabs_destroy(cachep, &list);
3673 			kfree(shared);
3674 			free_alien_cache(new_alien);
3675 			continue;
3676 		}
3677 		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3678 		if (!n) {
3679 			free_alien_cache(new_alien);
3680 			kfree(new_shared);
3681 			goto fail;
3682 		}
3683 
3684 		kmem_cache_node_init(n);
3685 		n->next_reap = jiffies + REAPTIMEOUT_NODE +
3686 				((unsigned long)cachep) % REAPTIMEOUT_NODE;
3687 		n->shared = new_shared;
3688 		n->alien = new_alien;
3689 		n->free_limit = (1 + nr_cpus_node(node)) *
3690 					cachep->batchcount + cachep->num;
3691 		cachep->node[node] = n;
3692 	}
3693 	return 0;
3694 
3695 fail:
3696 	if (!cachep->list.next) {
3697 		/* Cache is not active yet. Roll back what we did */
3698 		node--;
3699 		while (node >= 0) {
3700 			n = get_node(cachep, node);
3701 			if (n) {
3702 				kfree(n->shared);
3703 				free_alien_cache(n->alien);
3704 				kfree(n);
3705 				cachep->node[node] = NULL;
3706 			}
3707 			node--;
3708 		}
3709 	}
3710 	return -ENOMEM;
3711 }
3712 
3713 /* Always called with the slab_mutex held */
3714 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3715 				int batchcount, int shared, gfp_t gfp)
3716 {
3717 	struct array_cache __percpu *cpu_cache, *prev;
3718 	int cpu;
3719 
3720 	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3721 	if (!cpu_cache)
3722 		return -ENOMEM;
3723 
3724 	prev = cachep->cpu_cache;
3725 	cachep->cpu_cache = cpu_cache;
3726 	kick_all_cpus_sync();
3727 
3728 	check_irq_on();
3729 	cachep->batchcount = batchcount;
3730 	cachep->limit = limit;
3731 	cachep->shared = shared;
3732 
3733 	if (!prev)
3734 		goto alloc_node;
3735 
3736 	for_each_online_cpu(cpu) {
3737 		LIST_HEAD(list);
3738 		int node;
3739 		struct kmem_cache_node *n;
3740 		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3741 
3742 		node = cpu_to_mem(cpu);
3743 		n = get_node(cachep, node);
3744 		spin_lock_irq(&n->list_lock);
3745 		free_block(cachep, ac->entry, ac->avail, node, &list);
3746 		spin_unlock_irq(&n->list_lock);
3747 		slabs_destroy(cachep, &list);
3748 	}
3749 	free_percpu(prev);
3750 
3751 alloc_node:
3752 	return alloc_kmem_cache_node(cachep, gfp);
3753 }
3754 
3755 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3756 				int batchcount, int shared, gfp_t gfp)
3757 {
3758 	int ret;
3759 	struct kmem_cache *c;
3760 
3761 	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3762 
3763 	if (slab_state < FULL)
3764 		return ret;
3765 
3766 	if ((ret < 0) || !is_root_cache(cachep))
3767 		return ret;
3768 
3769 	lockdep_assert_held(&slab_mutex);
3770 	for_each_memcg_cache(c, cachep) {
3771 		/* return value determined by the root cache only */
3772 		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3773 	}
3774 
3775 	return ret;
3776 }
3777 
3778 /* Called with slab_mutex held always */
3779 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3780 {
3781 	int err;
3782 	int limit = 0;
3783 	int shared = 0;
3784 	int batchcount = 0;
3785 
3786 	if (!is_root_cache(cachep)) {
3787 		struct kmem_cache *root = memcg_root_cache(cachep);
3788 		limit = root->limit;
3789 		shared = root->shared;
3790 		batchcount = root->batchcount;
3791 	}
3792 
3793 	if (limit && shared && batchcount)
3794 		goto skip_setup;
3795 	/*
3796 	 * The head array serves three purposes:
3797 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3798 	 * - reduce the number of spinlock operations.
3799 	 * - reduce the number of linked list operations on the slab and
3800 	 *   bufctl chains: array operations are cheaper.
3801 	 * The numbers are guessed, we should auto-tune as described by
3802 	 * Bonwick.
3803 	 */
3804 	if (cachep->size > 131072)
3805 		limit = 1;
3806 	else if (cachep->size > PAGE_SIZE)
3807 		limit = 8;
3808 	else if (cachep->size > 1024)
3809 		limit = 24;
3810 	else if (cachep->size > 256)
3811 		limit = 54;
3812 	else
3813 		limit = 120;
3814 
3815 	/*
3816 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3817 	 * allocation behaviour: Most allocs on one cpu, most free operations
3818 	 * on another cpu. For these cases, an efficient object passing between
3819 	 * cpus is necessary. This is provided by a shared array. The array
3820 	 * replaces Bonwick's magazine layer.
3821 	 * On uniprocessor, it's functionally equivalent (but less efficient)
3822 	 * to a larger limit. Thus disabled by default.
3823 	 */
3824 	shared = 0;
3825 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3826 		shared = 8;
3827 
3828 #if DEBUG
3829 	/*
3830 	 * With debugging enabled, large batchcount lead to excessively long
3831 	 * periods with disabled local interrupts. Limit the batchcount
3832 	 */
3833 	if (limit > 32)
3834 		limit = 32;
3835 #endif
3836 	batchcount = (limit + 1) / 2;
3837 skip_setup:
3838 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3839 	if (err)
3840 		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3841 		       cachep->name, -err);
3842 	return err;
3843 }
3844 
3845 /*
3846  * Drain an array if it contains any elements taking the node lock only if
3847  * necessary. Note that the node listlock also protects the array_cache
3848  * if drain_array() is used on the shared array.
3849  */
3850 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3851 			 struct array_cache *ac, int force, int node)
3852 {
3853 	LIST_HEAD(list);
3854 	int tofree;
3855 
3856 	if (!ac || !ac->avail)
3857 		return;
3858 	if (ac->touched && !force) {
3859 		ac->touched = 0;
3860 	} else {
3861 		spin_lock_irq(&n->list_lock);
3862 		if (ac->avail) {
3863 			tofree = force ? ac->avail : (ac->limit + 4) / 5;
3864 			if (tofree > ac->avail)
3865 				tofree = (ac->avail + 1) / 2;
3866 			free_block(cachep, ac->entry, tofree, node, &list);
3867 			ac->avail -= tofree;
3868 			memmove(ac->entry, &(ac->entry[tofree]),
3869 				sizeof(void *) * ac->avail);
3870 		}
3871 		spin_unlock_irq(&n->list_lock);
3872 		slabs_destroy(cachep, &list);
3873 	}
3874 }
3875 
3876 /**
3877  * cache_reap - Reclaim memory from caches.
3878  * @w: work descriptor
3879  *
3880  * Called from workqueue/eventd every few seconds.
3881  * Purpose:
3882  * - clear the per-cpu caches for this CPU.
3883  * - return freeable pages to the main free memory pool.
3884  *
3885  * If we cannot acquire the cache chain mutex then just give up - we'll try
3886  * again on the next iteration.
3887  */
3888 static void cache_reap(struct work_struct *w)
3889 {
3890 	struct kmem_cache *searchp;
3891 	struct kmem_cache_node *n;
3892 	int node = numa_mem_id();
3893 	struct delayed_work *work = to_delayed_work(w);
3894 
3895 	if (!mutex_trylock(&slab_mutex))
3896 		/* Give up. Setup the next iteration. */
3897 		goto out;
3898 
3899 	list_for_each_entry(searchp, &slab_caches, list) {
3900 		check_irq_on();
3901 
3902 		/*
3903 		 * We only take the node lock if absolutely necessary and we
3904 		 * have established with reasonable certainty that
3905 		 * we can do some work if the lock was obtained.
3906 		 */
3907 		n = get_node(searchp, node);
3908 
3909 		reap_alien(searchp, n);
3910 
3911 		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3912 
3913 		/*
3914 		 * These are racy checks but it does not matter
3915 		 * if we skip one check or scan twice.
3916 		 */
3917 		if (time_after(n->next_reap, jiffies))
3918 			goto next;
3919 
3920 		n->next_reap = jiffies + REAPTIMEOUT_NODE;
3921 
3922 		drain_array(searchp, n, n->shared, 0, node);
3923 
3924 		if (n->free_touched)
3925 			n->free_touched = 0;
3926 		else {
3927 			int freed;
3928 
3929 			freed = drain_freelist(searchp, n, (n->free_limit +
3930 				5 * searchp->num - 1) / (5 * searchp->num));
3931 			STATS_ADD_REAPED(searchp, freed);
3932 		}
3933 next:
3934 		cond_resched();
3935 	}
3936 	check_irq_on();
3937 	mutex_unlock(&slab_mutex);
3938 	next_reap_node();
3939 out:
3940 	/* Set up the next iteration */
3941 	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3942 }
3943 
3944 #ifdef CONFIG_SLABINFO
3945 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3946 {
3947 	struct page *page;
3948 	unsigned long active_objs;
3949 	unsigned long num_objs;
3950 	unsigned long active_slabs = 0;
3951 	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3952 	const char *name;
3953 	char *error = NULL;
3954 	int node;
3955 	struct kmem_cache_node *n;
3956 
3957 	active_objs = 0;
3958 	num_slabs = 0;
3959 	for_each_kmem_cache_node(cachep, node, n) {
3960 
3961 		check_irq_on();
3962 		spin_lock_irq(&n->list_lock);
3963 
3964 		list_for_each_entry(page, &n->slabs_full, lru) {
3965 			if (page->active != cachep->num && !error)
3966 				error = "slabs_full accounting error";
3967 			active_objs += cachep->num;
3968 			active_slabs++;
3969 		}
3970 		list_for_each_entry(page, &n->slabs_partial, lru) {
3971 			if (page->active == cachep->num && !error)
3972 				error = "slabs_partial accounting error";
3973 			if (!page->active && !error)
3974 				error = "slabs_partial accounting error";
3975 			active_objs += page->active;
3976 			active_slabs++;
3977 		}
3978 		list_for_each_entry(page, &n->slabs_free, lru) {
3979 			if (page->active && !error)
3980 				error = "slabs_free accounting error";
3981 			num_slabs++;
3982 		}
3983 		free_objects += n->free_objects;
3984 		if (n->shared)
3985 			shared_avail += n->shared->avail;
3986 
3987 		spin_unlock_irq(&n->list_lock);
3988 	}
3989 	num_slabs += active_slabs;
3990 	num_objs = num_slabs * cachep->num;
3991 	if (num_objs - active_objs != free_objects && !error)
3992 		error = "free_objects accounting error";
3993 
3994 	name = cachep->name;
3995 	if (error)
3996 		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3997 
3998 	sinfo->active_objs = active_objs;
3999 	sinfo->num_objs = num_objs;
4000 	sinfo->active_slabs = active_slabs;
4001 	sinfo->num_slabs = num_slabs;
4002 	sinfo->shared_avail = shared_avail;
4003 	sinfo->limit = cachep->limit;
4004 	sinfo->batchcount = cachep->batchcount;
4005 	sinfo->shared = cachep->shared;
4006 	sinfo->objects_per_slab = cachep->num;
4007 	sinfo->cache_order = cachep->gfporder;
4008 }
4009 
4010 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4011 {
4012 #if STATS
4013 	{			/* node stats */
4014 		unsigned long high = cachep->high_mark;
4015 		unsigned long allocs = cachep->num_allocations;
4016 		unsigned long grown = cachep->grown;
4017 		unsigned long reaped = cachep->reaped;
4018 		unsigned long errors = cachep->errors;
4019 		unsigned long max_freeable = cachep->max_freeable;
4020 		unsigned long node_allocs = cachep->node_allocs;
4021 		unsigned long node_frees = cachep->node_frees;
4022 		unsigned long overflows = cachep->node_overflow;
4023 
4024 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4025 			   allocs, high, grown,
4026 			   reaped, errors, max_freeable, node_allocs,
4027 			   node_frees, overflows);
4028 	}
4029 	/* cpu stats */
4030 	{
4031 		unsigned long allochit = atomic_read(&cachep->allochit);
4032 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4033 		unsigned long freehit = atomic_read(&cachep->freehit);
4034 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4035 
4036 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4037 			   allochit, allocmiss, freehit, freemiss);
4038 	}
4039 #endif
4040 }
4041 
4042 #define MAX_SLABINFO_WRITE 128
4043 /**
4044  * slabinfo_write - Tuning for the slab allocator
4045  * @file: unused
4046  * @buffer: user buffer
4047  * @count: data length
4048  * @ppos: unused
4049  */
4050 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4051 		       size_t count, loff_t *ppos)
4052 {
4053 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4054 	int limit, batchcount, shared, res;
4055 	struct kmem_cache *cachep;
4056 
4057 	if (count > MAX_SLABINFO_WRITE)
4058 		return -EINVAL;
4059 	if (copy_from_user(&kbuf, buffer, count))
4060 		return -EFAULT;
4061 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4062 
4063 	tmp = strchr(kbuf, ' ');
4064 	if (!tmp)
4065 		return -EINVAL;
4066 	*tmp = '\0';
4067 	tmp++;
4068 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4069 		return -EINVAL;
4070 
4071 	/* Find the cache in the chain of caches. */
4072 	mutex_lock(&slab_mutex);
4073 	res = -EINVAL;
4074 	list_for_each_entry(cachep, &slab_caches, list) {
4075 		if (!strcmp(cachep->name, kbuf)) {
4076 			if (limit < 1 || batchcount < 1 ||
4077 					batchcount > limit || shared < 0) {
4078 				res = 0;
4079 			} else {
4080 				res = do_tune_cpucache(cachep, limit,
4081 						       batchcount, shared,
4082 						       GFP_KERNEL);
4083 			}
4084 			break;
4085 		}
4086 	}
4087 	mutex_unlock(&slab_mutex);
4088 	if (res >= 0)
4089 		res = count;
4090 	return res;
4091 }
4092 
4093 #ifdef CONFIG_DEBUG_SLAB_LEAK
4094 
4095 static inline int add_caller(unsigned long *n, unsigned long v)
4096 {
4097 	unsigned long *p;
4098 	int l;
4099 	if (!v)
4100 		return 1;
4101 	l = n[1];
4102 	p = n + 2;
4103 	while (l) {
4104 		int i = l/2;
4105 		unsigned long *q = p + 2 * i;
4106 		if (*q == v) {
4107 			q[1]++;
4108 			return 1;
4109 		}
4110 		if (*q > v) {
4111 			l = i;
4112 		} else {
4113 			p = q + 2;
4114 			l -= i + 1;
4115 		}
4116 	}
4117 	if (++n[1] == n[0])
4118 		return 0;
4119 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4120 	p[0] = v;
4121 	p[1] = 1;
4122 	return 1;
4123 }
4124 
4125 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4126 						struct page *page)
4127 {
4128 	void *p;
4129 	int i, j;
4130 	unsigned long v;
4131 
4132 	if (n[0] == n[1])
4133 		return;
4134 	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4135 		bool active = true;
4136 
4137 		for (j = page->active; j < c->num; j++) {
4138 			if (get_free_obj(page, j) == i) {
4139 				active = false;
4140 				break;
4141 			}
4142 		}
4143 
4144 		if (!active)
4145 			continue;
4146 
4147 		/*
4148 		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4149 		 * mapping is established when actual object allocation and
4150 		 * we could mistakenly access the unmapped object in the cpu
4151 		 * cache.
4152 		 */
4153 		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4154 			continue;
4155 
4156 		if (!add_caller(n, v))
4157 			return;
4158 	}
4159 }
4160 
4161 static void show_symbol(struct seq_file *m, unsigned long address)
4162 {
4163 #ifdef CONFIG_KALLSYMS
4164 	unsigned long offset, size;
4165 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4166 
4167 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4168 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4169 		if (modname[0])
4170 			seq_printf(m, " [%s]", modname);
4171 		return;
4172 	}
4173 #endif
4174 	seq_printf(m, "%p", (void *)address);
4175 }
4176 
4177 static int leaks_show(struct seq_file *m, void *p)
4178 {
4179 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4180 	struct page *page;
4181 	struct kmem_cache_node *n;
4182 	const char *name;
4183 	unsigned long *x = m->private;
4184 	int node;
4185 	int i;
4186 
4187 	if (!(cachep->flags & SLAB_STORE_USER))
4188 		return 0;
4189 	if (!(cachep->flags & SLAB_RED_ZONE))
4190 		return 0;
4191 
4192 	/*
4193 	 * Set store_user_clean and start to grab stored user information
4194 	 * for all objects on this cache. If some alloc/free requests comes
4195 	 * during the processing, information would be wrong so restart
4196 	 * whole processing.
4197 	 */
4198 	do {
4199 		set_store_user_clean(cachep);
4200 		drain_cpu_caches(cachep);
4201 
4202 		x[1] = 0;
4203 
4204 		for_each_kmem_cache_node(cachep, node, n) {
4205 
4206 			check_irq_on();
4207 			spin_lock_irq(&n->list_lock);
4208 
4209 			list_for_each_entry(page, &n->slabs_full, lru)
4210 				handle_slab(x, cachep, page);
4211 			list_for_each_entry(page, &n->slabs_partial, lru)
4212 				handle_slab(x, cachep, page);
4213 			spin_unlock_irq(&n->list_lock);
4214 		}
4215 	} while (!is_store_user_clean(cachep));
4216 
4217 	name = cachep->name;
4218 	if (x[0] == x[1]) {
4219 		/* Increase the buffer size */
4220 		mutex_unlock(&slab_mutex);
4221 		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4222 		if (!m->private) {
4223 			/* Too bad, we are really out */
4224 			m->private = x;
4225 			mutex_lock(&slab_mutex);
4226 			return -ENOMEM;
4227 		}
4228 		*(unsigned long *)m->private = x[0] * 2;
4229 		kfree(x);
4230 		mutex_lock(&slab_mutex);
4231 		/* Now make sure this entry will be retried */
4232 		m->count = m->size;
4233 		return 0;
4234 	}
4235 	for (i = 0; i < x[1]; i++) {
4236 		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4237 		show_symbol(m, x[2*i+2]);
4238 		seq_putc(m, '\n');
4239 	}
4240 
4241 	return 0;
4242 }
4243 
4244 static const struct seq_operations slabstats_op = {
4245 	.start = slab_start,
4246 	.next = slab_next,
4247 	.stop = slab_stop,
4248 	.show = leaks_show,
4249 };
4250 
4251 static int slabstats_open(struct inode *inode, struct file *file)
4252 {
4253 	unsigned long *n;
4254 
4255 	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4256 	if (!n)
4257 		return -ENOMEM;
4258 
4259 	*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4260 
4261 	return 0;
4262 }
4263 
4264 static const struct file_operations proc_slabstats_operations = {
4265 	.open		= slabstats_open,
4266 	.read		= seq_read,
4267 	.llseek		= seq_lseek,
4268 	.release	= seq_release_private,
4269 };
4270 #endif
4271 
4272 static int __init slab_proc_init(void)
4273 {
4274 #ifdef CONFIG_DEBUG_SLAB_LEAK
4275 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4276 #endif
4277 	return 0;
4278 }
4279 module_init(slab_proc_init);
4280 #endif
4281 
4282 /**
4283  * ksize - get the actual amount of memory allocated for a given object
4284  * @objp: Pointer to the object
4285  *
4286  * kmalloc may internally round up allocations and return more memory
4287  * than requested. ksize() can be used to determine the actual amount of
4288  * memory allocated. The caller may use this additional memory, even though
4289  * a smaller amount of memory was initially specified with the kmalloc call.
4290  * The caller must guarantee that objp points to a valid object previously
4291  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4292  * must not be freed during the duration of the call.
4293  */
4294 size_t ksize(const void *objp)
4295 {
4296 	BUG_ON(!objp);
4297 	if (unlikely(objp == ZERO_SIZE_PTR))
4298 		return 0;
4299 
4300 	return virt_to_cache(objp)->object_size;
4301 }
4302 EXPORT_SYMBOL(ksize);
4303