xref: /openbmc/linux/mm/slab.c (revision 6246ed09111fbb17168619006b4380103c6673c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/slab.c
4  * Written by Mark Hemment, 1996/97.
5  * (markhe@nextd.demon.co.uk)
6  *
7  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8  *
9  * Major cleanup, different bufctl logic, per-cpu arrays
10  *	(c) 2000 Manfred Spraul
11  *
12  * Cleanup, make the head arrays unconditional, preparation for NUMA
13  * 	(c) 2002 Manfred Spraul
14  *
15  * An implementation of the Slab Allocator as described in outline in;
16  *	UNIX Internals: The New Frontiers by Uresh Vahalia
17  *	Pub: Prentice Hall	ISBN 0-13-101908-2
18  * or with a little more detail in;
19  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
20  *	Jeff Bonwick (Sun Microsystems).
21  *	Presented at: USENIX Summer 1994 Technical Conference
22  *
23  * The memory is organized in caches, one cache for each object type.
24  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25  * Each cache consists out of many slabs (they are small (usually one
26  * page long) and always contiguous), and each slab contains multiple
27  * initialized objects.
28  *
29  * This means, that your constructor is used only for newly allocated
30  * slabs and you must pass objects with the same initializations to
31  * kmem_cache_free.
32  *
33  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34  * normal). If you need a special memory type, then must create a new
35  * cache for that memory type.
36  *
37  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38  *   full slabs with 0 free objects
39  *   partial slabs
40  *   empty slabs with no allocated objects
41  *
42  * If partial slabs exist, then new allocations come from these slabs,
43  * otherwise from empty slabs or new slabs are allocated.
44  *
45  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47  *
48  * Each cache has a short per-cpu head array, most allocs
49  * and frees go into that array, and if that array overflows, then 1/2
50  * of the entries in the array are given back into the global cache.
51  * The head array is strictly LIFO and should improve the cache hit rates.
52  * On SMP, it additionally reduces the spinlock operations.
53  *
54  * The c_cpuarray may not be read with enabled local interrupts -
55  * it's changed with a smp_call_function().
56  *
57  * SMP synchronization:
58  *  constructors and destructors are called without any locking.
59  *  Several members in struct kmem_cache and struct slab never change, they
60  *	are accessed without any locking.
61  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
62  *  	and local interrupts are disabled so slab code is preempt-safe.
63  *  The non-constant members are protected with a per-cache irq spinlock.
64  *
65  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66  * in 2000 - many ideas in the current implementation are derived from
67  * his patch.
68  *
69  * Further notes from the original documentation:
70  *
71  * 11 April '97.  Started multi-threading - markhe
72  *	The global cache-chain is protected by the mutex 'slab_mutex'.
73  *	The sem is only needed when accessing/extending the cache-chain, which
74  *	can never happen inside an interrupt (kmem_cache_create(),
75  *	kmem_cache_shrink() and kmem_cache_reap()).
76  *
77  *	At present, each engine can be growing a cache.  This should be blocked.
78  *
79  * 15 March 2005. NUMA slab allocator.
80  *	Shai Fultheim <shai@scalex86.org>.
81  *	Shobhit Dayal <shobhit@calsoftinc.com>
82  *	Alok N Kataria <alokk@calsoftinc.com>
83  *	Christoph Lameter <christoph@lameter.com>
84  *
85  *	Modified the slab allocator to be node aware on NUMA systems.
86  *	Each node has its own list of partial, free and full slabs.
87  *	All object allocations for a node occur from node specific slab lists.
88  */
89 
90 #include	<linux/slab.h>
91 #include	<linux/mm.h>
92 #include	<linux/poison.h>
93 #include	<linux/swap.h>
94 #include	<linux/cache.h>
95 #include	<linux/interrupt.h>
96 #include	<linux/init.h>
97 #include	<linux/compiler.h>
98 #include	<linux/cpuset.h>
99 #include	<linux/proc_fs.h>
100 #include	<linux/seq_file.h>
101 #include	<linux/notifier.h>
102 #include	<linux/kallsyms.h>
103 #include	<linux/kfence.h>
104 #include	<linux/cpu.h>
105 #include	<linux/sysctl.h>
106 #include	<linux/module.h>
107 #include	<linux/rcupdate.h>
108 #include	<linux/string.h>
109 #include	<linux/uaccess.h>
110 #include	<linux/nodemask.h>
111 #include	<linux/kmemleak.h>
112 #include	<linux/mempolicy.h>
113 #include	<linux/mutex.h>
114 #include	<linux/fault-inject.h>
115 #include	<linux/rtmutex.h>
116 #include	<linux/reciprocal_div.h>
117 #include	<linux/debugobjects.h>
118 #include	<linux/memory.h>
119 #include	<linux/prefetch.h>
120 #include	<linux/sched/task_stack.h>
121 
122 #include	<net/sock.h>
123 
124 #include	<asm/cacheflush.h>
125 #include	<asm/tlbflush.h>
126 #include	<asm/page.h>
127 
128 #include <trace/events/kmem.h>
129 
130 #include	"internal.h"
131 
132 #include	"slab.h"
133 
134 /*
135  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
136  *		  0 for faster, smaller code (especially in the critical paths).
137  *
138  * STATS	- 1 to collect stats for /proc/slabinfo.
139  *		  0 for faster, smaller code (especially in the critical paths).
140  *
141  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142  */
143 
144 #ifdef CONFIG_DEBUG_SLAB
145 #define	DEBUG		1
146 #define	STATS		1
147 #define	FORCED_DEBUG	1
148 #else
149 #define	DEBUG		0
150 #define	STATS		0
151 #define	FORCED_DEBUG	0
152 #endif
153 
154 /* Shouldn't this be in a header file somewhere? */
155 #define	BYTES_PER_WORD		sizeof(void *)
156 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
157 
158 #ifndef ARCH_KMALLOC_FLAGS
159 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
160 #endif
161 
162 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
163 				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
164 
165 #if FREELIST_BYTE_INDEX
166 typedef unsigned char freelist_idx_t;
167 #else
168 typedef unsigned short freelist_idx_t;
169 #endif
170 
171 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
172 
173 /*
174  * struct array_cache
175  *
176  * Purpose:
177  * - LIFO ordering, to hand out cache-warm objects from _alloc
178  * - reduce the number of linked list operations
179  * - reduce spinlock operations
180  *
181  * The limit is stored in the per-cpu structure to reduce the data cache
182  * footprint.
183  *
184  */
185 struct array_cache {
186 	unsigned int avail;
187 	unsigned int limit;
188 	unsigned int batchcount;
189 	unsigned int touched;
190 	void *entry[];	/*
191 			 * Must have this definition in here for the proper
192 			 * alignment of array_cache. Also simplifies accessing
193 			 * the entries.
194 			 */
195 };
196 
197 struct alien_cache {
198 	spinlock_t lock;
199 	struct array_cache ac;
200 };
201 
202 /*
203  * Need this for bootstrapping a per node allocator.
204  */
205 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
206 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
207 #define	CACHE_CACHE 0
208 #define	SIZE_NODE (MAX_NUMNODES)
209 
210 static int drain_freelist(struct kmem_cache *cache,
211 			struct kmem_cache_node *n, int tofree);
212 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
213 			int node, struct list_head *list);
214 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
215 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
216 static void cache_reap(struct work_struct *unused);
217 
218 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
219 						void **list);
220 static inline void fixup_slab_list(struct kmem_cache *cachep,
221 				struct kmem_cache_node *n, struct slab *slab,
222 				void **list);
223 static int slab_early_init = 1;
224 
225 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
226 
227 static void kmem_cache_node_init(struct kmem_cache_node *parent)
228 {
229 	INIT_LIST_HEAD(&parent->slabs_full);
230 	INIT_LIST_HEAD(&parent->slabs_partial);
231 	INIT_LIST_HEAD(&parent->slabs_free);
232 	parent->total_slabs = 0;
233 	parent->free_slabs = 0;
234 	parent->shared = NULL;
235 	parent->alien = NULL;
236 	parent->colour_next = 0;
237 	spin_lock_init(&parent->list_lock);
238 	parent->free_objects = 0;
239 	parent->free_touched = 0;
240 }
241 
242 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
243 	do {								\
244 		INIT_LIST_HEAD(listp);					\
245 		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
246 	} while (0)
247 
248 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
249 	do {								\
250 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
251 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
252 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
253 	} while (0)
254 
255 #define CFLGS_OBJFREELIST_SLAB	((slab_flags_t __force)0x40000000U)
256 #define CFLGS_OFF_SLAB		((slab_flags_t __force)0x80000000U)
257 #define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
258 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
259 
260 #define BATCHREFILL_LIMIT	16
261 /*
262  * Optimization question: fewer reaps means less probability for unnecessary
263  * cpucache drain/refill cycles.
264  *
265  * OTOH the cpuarrays can contain lots of objects,
266  * which could lock up otherwise freeable slabs.
267  */
268 #define REAPTIMEOUT_AC		(2*HZ)
269 #define REAPTIMEOUT_NODE	(4*HZ)
270 
271 #if STATS
272 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
273 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
274 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
275 #define	STATS_INC_GROWN(x)	((x)->grown++)
276 #define	STATS_ADD_REAPED(x, y)	((x)->reaped += (y))
277 #define	STATS_SET_HIGH(x)						\
278 	do {								\
279 		if ((x)->num_active > (x)->high_mark)			\
280 			(x)->high_mark = (x)->num_active;		\
281 	} while (0)
282 #define	STATS_INC_ERR(x)	((x)->errors++)
283 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
284 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
285 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
286 #define	STATS_SET_FREEABLE(x, i)					\
287 	do {								\
288 		if ((x)->max_freeable < i)				\
289 			(x)->max_freeable = i;				\
290 	} while (0)
291 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
292 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
293 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
294 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
295 #else
296 #define	STATS_INC_ACTIVE(x)	do { } while (0)
297 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
298 #define	STATS_INC_ALLOCED(x)	do { } while (0)
299 #define	STATS_INC_GROWN(x)	do { } while (0)
300 #define	STATS_ADD_REAPED(x, y)	do { (void)(y); } while (0)
301 #define	STATS_SET_HIGH(x)	do { } while (0)
302 #define	STATS_INC_ERR(x)	do { } while (0)
303 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
304 #define	STATS_INC_NODEFREES(x)	do { } while (0)
305 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
306 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
307 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
308 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
309 #define STATS_INC_FREEHIT(x)	do { } while (0)
310 #define STATS_INC_FREEMISS(x)	do { } while (0)
311 #endif
312 
313 #if DEBUG
314 
315 /*
316  * memory layout of objects:
317  * 0		: objp
318  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
319  * 		the end of an object is aligned with the end of the real
320  * 		allocation. Catches writes behind the end of the allocation.
321  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
322  * 		redzone word.
323  * cachep->obj_offset: The real object.
324  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
325  * cachep->size - 1* BYTES_PER_WORD: last caller address
326  *					[BYTES_PER_WORD long]
327  */
328 static int obj_offset(struct kmem_cache *cachep)
329 {
330 	return cachep->obj_offset;
331 }
332 
333 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
334 {
335 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
336 	return (unsigned long long *) (objp + obj_offset(cachep) -
337 				      sizeof(unsigned long long));
338 }
339 
340 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
341 {
342 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
343 	if (cachep->flags & SLAB_STORE_USER)
344 		return (unsigned long long *)(objp + cachep->size -
345 					      sizeof(unsigned long long) -
346 					      REDZONE_ALIGN);
347 	return (unsigned long long *) (objp + cachep->size -
348 				       sizeof(unsigned long long));
349 }
350 
351 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
352 {
353 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
354 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
355 }
356 
357 #else
358 
359 #define obj_offset(x)			0
360 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
361 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
362 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
363 
364 #endif
365 
366 /*
367  * Do not go above this order unless 0 objects fit into the slab or
368  * overridden on the command line.
369  */
370 #define	SLAB_MAX_ORDER_HI	1
371 #define	SLAB_MAX_ORDER_LO	0
372 static int slab_max_order = SLAB_MAX_ORDER_LO;
373 static bool slab_max_order_set __initdata;
374 
375 static inline void *index_to_obj(struct kmem_cache *cache,
376 				 const struct slab *slab, unsigned int idx)
377 {
378 	return slab->s_mem + cache->size * idx;
379 }
380 
381 #define BOOT_CPUCACHE_ENTRIES	1
382 /* internal cache of cache description objs */
383 static struct kmem_cache kmem_cache_boot = {
384 	.batchcount = 1,
385 	.limit = BOOT_CPUCACHE_ENTRIES,
386 	.shared = 1,
387 	.size = sizeof(struct kmem_cache),
388 	.name = "kmem_cache",
389 };
390 
391 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
392 
393 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
394 {
395 	return this_cpu_ptr(cachep->cpu_cache);
396 }
397 
398 /*
399  * Calculate the number of objects and left-over bytes for a given buffer size.
400  */
401 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
402 		slab_flags_t flags, size_t *left_over)
403 {
404 	unsigned int num;
405 	size_t slab_size = PAGE_SIZE << gfporder;
406 
407 	/*
408 	 * The slab management structure can be either off the slab or
409 	 * on it. For the latter case, the memory allocated for a
410 	 * slab is used for:
411 	 *
412 	 * - @buffer_size bytes for each object
413 	 * - One freelist_idx_t for each object
414 	 *
415 	 * We don't need to consider alignment of freelist because
416 	 * freelist will be at the end of slab page. The objects will be
417 	 * at the correct alignment.
418 	 *
419 	 * If the slab management structure is off the slab, then the
420 	 * alignment will already be calculated into the size. Because
421 	 * the slabs are all pages aligned, the objects will be at the
422 	 * correct alignment when allocated.
423 	 */
424 	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
425 		num = slab_size / buffer_size;
426 		*left_over = slab_size % buffer_size;
427 	} else {
428 		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
429 		*left_over = slab_size %
430 			(buffer_size + sizeof(freelist_idx_t));
431 	}
432 
433 	return num;
434 }
435 
436 #if DEBUG
437 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
438 
439 static void __slab_error(const char *function, struct kmem_cache *cachep,
440 			char *msg)
441 {
442 	pr_err("slab error in %s(): cache `%s': %s\n",
443 	       function, cachep->name, msg);
444 	dump_stack();
445 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
446 }
447 #endif
448 
449 /*
450  * By default on NUMA we use alien caches to stage the freeing of
451  * objects allocated from other nodes. This causes massive memory
452  * inefficiencies when using fake NUMA setup to split memory into a
453  * large number of small nodes, so it can be disabled on the command
454  * line
455   */
456 
457 static int use_alien_caches __read_mostly = 1;
458 static int __init noaliencache_setup(char *s)
459 {
460 	use_alien_caches = 0;
461 	return 1;
462 }
463 __setup("noaliencache", noaliencache_setup);
464 
465 static int __init slab_max_order_setup(char *str)
466 {
467 	get_option(&str, &slab_max_order);
468 	slab_max_order = slab_max_order < 0 ? 0 :
469 				min(slab_max_order, MAX_ORDER - 1);
470 	slab_max_order_set = true;
471 
472 	return 1;
473 }
474 __setup("slab_max_order=", slab_max_order_setup);
475 
476 #ifdef CONFIG_NUMA
477 /*
478  * Special reaping functions for NUMA systems called from cache_reap().
479  * These take care of doing round robin flushing of alien caches (containing
480  * objects freed on different nodes from which they were allocated) and the
481  * flushing of remote pcps by calling drain_node_pages.
482  */
483 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
484 
485 static void init_reap_node(int cpu)
486 {
487 	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
488 						    node_online_map);
489 }
490 
491 static void next_reap_node(void)
492 {
493 	int node = __this_cpu_read(slab_reap_node);
494 
495 	node = next_node_in(node, node_online_map);
496 	__this_cpu_write(slab_reap_node, node);
497 }
498 
499 #else
500 #define init_reap_node(cpu) do { } while (0)
501 #define next_reap_node(void) do { } while (0)
502 #endif
503 
504 /*
505  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
506  * via the workqueue/eventd.
507  * Add the CPU number into the expiration time to minimize the possibility of
508  * the CPUs getting into lockstep and contending for the global cache chain
509  * lock.
510  */
511 static void start_cpu_timer(int cpu)
512 {
513 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
514 
515 	if (reap_work->work.func == NULL) {
516 		init_reap_node(cpu);
517 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
518 		schedule_delayed_work_on(cpu, reap_work,
519 					__round_jiffies_relative(HZ, cpu));
520 	}
521 }
522 
523 static void init_arraycache(struct array_cache *ac, int limit, int batch)
524 {
525 	if (ac) {
526 		ac->avail = 0;
527 		ac->limit = limit;
528 		ac->batchcount = batch;
529 		ac->touched = 0;
530 	}
531 }
532 
533 static struct array_cache *alloc_arraycache(int node, int entries,
534 					    int batchcount, gfp_t gfp)
535 {
536 	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
537 	struct array_cache *ac = NULL;
538 
539 	ac = kmalloc_node(memsize, gfp, node);
540 	/*
541 	 * The array_cache structures contain pointers to free object.
542 	 * However, when such objects are allocated or transferred to another
543 	 * cache the pointers are not cleared and they could be counted as
544 	 * valid references during a kmemleak scan. Therefore, kmemleak must
545 	 * not scan such objects.
546 	 */
547 	kmemleak_no_scan(ac);
548 	init_arraycache(ac, entries, batchcount);
549 	return ac;
550 }
551 
552 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
553 					struct slab *slab, void *objp)
554 {
555 	struct kmem_cache_node *n;
556 	int slab_node;
557 	LIST_HEAD(list);
558 
559 	slab_node = slab_nid(slab);
560 	n = get_node(cachep, slab_node);
561 
562 	spin_lock(&n->list_lock);
563 	free_block(cachep, &objp, 1, slab_node, &list);
564 	spin_unlock(&n->list_lock);
565 
566 	slabs_destroy(cachep, &list);
567 }
568 
569 /*
570  * Transfer objects in one arraycache to another.
571  * Locking must be handled by the caller.
572  *
573  * Return the number of entries transferred.
574  */
575 static int transfer_objects(struct array_cache *to,
576 		struct array_cache *from, unsigned int max)
577 {
578 	/* Figure out how many entries to transfer */
579 	int nr = min3(from->avail, max, to->limit - to->avail);
580 
581 	if (!nr)
582 		return 0;
583 
584 	memcpy(to->entry + to->avail, from->entry + from->avail - nr,
585 			sizeof(void *) *nr);
586 
587 	from->avail -= nr;
588 	to->avail += nr;
589 	return nr;
590 }
591 
592 /* &alien->lock must be held by alien callers. */
593 static __always_inline void __free_one(struct array_cache *ac, void *objp)
594 {
595 	/* Avoid trivial double-free. */
596 	if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
597 	    WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp))
598 		return;
599 	ac->entry[ac->avail++] = objp;
600 }
601 
602 #ifndef CONFIG_NUMA
603 
604 #define drain_alien_cache(cachep, alien) do { } while (0)
605 #define reap_alien(cachep, n) do { } while (0)
606 
607 static inline struct alien_cache **alloc_alien_cache(int node,
608 						int limit, gfp_t gfp)
609 {
610 	return NULL;
611 }
612 
613 static inline void free_alien_cache(struct alien_cache **ac_ptr)
614 {
615 }
616 
617 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
618 {
619 	return 0;
620 }
621 
622 static inline gfp_t gfp_exact_node(gfp_t flags)
623 {
624 	return flags & ~__GFP_NOFAIL;
625 }
626 
627 #else	/* CONFIG_NUMA */
628 
629 static struct alien_cache *__alloc_alien_cache(int node, int entries,
630 						int batch, gfp_t gfp)
631 {
632 	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
633 	struct alien_cache *alc = NULL;
634 
635 	alc = kmalloc_node(memsize, gfp, node);
636 	if (alc) {
637 		kmemleak_no_scan(alc);
638 		init_arraycache(&alc->ac, entries, batch);
639 		spin_lock_init(&alc->lock);
640 	}
641 	return alc;
642 }
643 
644 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
645 {
646 	struct alien_cache **alc_ptr;
647 	int i;
648 
649 	if (limit > 1)
650 		limit = 12;
651 	alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
652 	if (!alc_ptr)
653 		return NULL;
654 
655 	for_each_node(i) {
656 		if (i == node || !node_online(i))
657 			continue;
658 		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
659 		if (!alc_ptr[i]) {
660 			for (i--; i >= 0; i--)
661 				kfree(alc_ptr[i]);
662 			kfree(alc_ptr);
663 			return NULL;
664 		}
665 	}
666 	return alc_ptr;
667 }
668 
669 static void free_alien_cache(struct alien_cache **alc_ptr)
670 {
671 	int i;
672 
673 	if (!alc_ptr)
674 		return;
675 	for_each_node(i)
676 	    kfree(alc_ptr[i]);
677 	kfree(alc_ptr);
678 }
679 
680 static void __drain_alien_cache(struct kmem_cache *cachep,
681 				struct array_cache *ac, int node,
682 				struct list_head *list)
683 {
684 	struct kmem_cache_node *n = get_node(cachep, node);
685 
686 	if (ac->avail) {
687 		spin_lock(&n->list_lock);
688 		/*
689 		 * Stuff objects into the remote nodes shared array first.
690 		 * That way we could avoid the overhead of putting the objects
691 		 * into the free lists and getting them back later.
692 		 */
693 		if (n->shared)
694 			transfer_objects(n->shared, ac, ac->limit);
695 
696 		free_block(cachep, ac->entry, ac->avail, node, list);
697 		ac->avail = 0;
698 		spin_unlock(&n->list_lock);
699 	}
700 }
701 
702 /*
703  * Called from cache_reap() to regularly drain alien caches round robin.
704  */
705 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
706 {
707 	int node = __this_cpu_read(slab_reap_node);
708 
709 	if (n->alien) {
710 		struct alien_cache *alc = n->alien[node];
711 		struct array_cache *ac;
712 
713 		if (alc) {
714 			ac = &alc->ac;
715 			if (ac->avail && spin_trylock_irq(&alc->lock)) {
716 				LIST_HEAD(list);
717 
718 				__drain_alien_cache(cachep, ac, node, &list);
719 				spin_unlock_irq(&alc->lock);
720 				slabs_destroy(cachep, &list);
721 			}
722 		}
723 	}
724 }
725 
726 static void drain_alien_cache(struct kmem_cache *cachep,
727 				struct alien_cache **alien)
728 {
729 	int i = 0;
730 	struct alien_cache *alc;
731 	struct array_cache *ac;
732 	unsigned long flags;
733 
734 	for_each_online_node(i) {
735 		alc = alien[i];
736 		if (alc) {
737 			LIST_HEAD(list);
738 
739 			ac = &alc->ac;
740 			spin_lock_irqsave(&alc->lock, flags);
741 			__drain_alien_cache(cachep, ac, i, &list);
742 			spin_unlock_irqrestore(&alc->lock, flags);
743 			slabs_destroy(cachep, &list);
744 		}
745 	}
746 }
747 
748 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
749 				int node, int slab_node)
750 {
751 	struct kmem_cache_node *n;
752 	struct alien_cache *alien = NULL;
753 	struct array_cache *ac;
754 	LIST_HEAD(list);
755 
756 	n = get_node(cachep, node);
757 	STATS_INC_NODEFREES(cachep);
758 	if (n->alien && n->alien[slab_node]) {
759 		alien = n->alien[slab_node];
760 		ac = &alien->ac;
761 		spin_lock(&alien->lock);
762 		if (unlikely(ac->avail == ac->limit)) {
763 			STATS_INC_ACOVERFLOW(cachep);
764 			__drain_alien_cache(cachep, ac, slab_node, &list);
765 		}
766 		__free_one(ac, objp);
767 		spin_unlock(&alien->lock);
768 		slabs_destroy(cachep, &list);
769 	} else {
770 		n = get_node(cachep, slab_node);
771 		spin_lock(&n->list_lock);
772 		free_block(cachep, &objp, 1, slab_node, &list);
773 		spin_unlock(&n->list_lock);
774 		slabs_destroy(cachep, &list);
775 	}
776 	return 1;
777 }
778 
779 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
780 {
781 	int slab_node = slab_nid(virt_to_slab(objp));
782 	int node = numa_mem_id();
783 	/*
784 	 * Make sure we are not freeing an object from another node to the array
785 	 * cache on this cpu.
786 	 */
787 	if (likely(node == slab_node))
788 		return 0;
789 
790 	return __cache_free_alien(cachep, objp, node, slab_node);
791 }
792 
793 /*
794  * Construct gfp mask to allocate from a specific node but do not reclaim or
795  * warn about failures.
796  */
797 static inline gfp_t gfp_exact_node(gfp_t flags)
798 {
799 	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
800 }
801 #endif
802 
803 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
804 {
805 	struct kmem_cache_node *n;
806 
807 	/*
808 	 * Set up the kmem_cache_node for cpu before we can
809 	 * begin anything. Make sure some other cpu on this
810 	 * node has not already allocated this
811 	 */
812 	n = get_node(cachep, node);
813 	if (n) {
814 		spin_lock_irq(&n->list_lock);
815 		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
816 				cachep->num;
817 		spin_unlock_irq(&n->list_lock);
818 
819 		return 0;
820 	}
821 
822 	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
823 	if (!n)
824 		return -ENOMEM;
825 
826 	kmem_cache_node_init(n);
827 	n->next_reap = jiffies + REAPTIMEOUT_NODE +
828 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
829 
830 	n->free_limit =
831 		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
832 
833 	/*
834 	 * The kmem_cache_nodes don't come and go as CPUs
835 	 * come and go.  slab_mutex provides sufficient
836 	 * protection here.
837 	 */
838 	cachep->node[node] = n;
839 
840 	return 0;
841 }
842 
843 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
844 /*
845  * Allocates and initializes node for a node on each slab cache, used for
846  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
847  * will be allocated off-node since memory is not yet online for the new node.
848  * When hotplugging memory or a cpu, existing nodes are not replaced if
849  * already in use.
850  *
851  * Must hold slab_mutex.
852  */
853 static int init_cache_node_node(int node)
854 {
855 	int ret;
856 	struct kmem_cache *cachep;
857 
858 	list_for_each_entry(cachep, &slab_caches, list) {
859 		ret = init_cache_node(cachep, node, GFP_KERNEL);
860 		if (ret)
861 			return ret;
862 	}
863 
864 	return 0;
865 }
866 #endif
867 
868 static int setup_kmem_cache_node(struct kmem_cache *cachep,
869 				int node, gfp_t gfp, bool force_change)
870 {
871 	int ret = -ENOMEM;
872 	struct kmem_cache_node *n;
873 	struct array_cache *old_shared = NULL;
874 	struct array_cache *new_shared = NULL;
875 	struct alien_cache **new_alien = NULL;
876 	LIST_HEAD(list);
877 
878 	if (use_alien_caches) {
879 		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
880 		if (!new_alien)
881 			goto fail;
882 	}
883 
884 	if (cachep->shared) {
885 		new_shared = alloc_arraycache(node,
886 			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
887 		if (!new_shared)
888 			goto fail;
889 	}
890 
891 	ret = init_cache_node(cachep, node, gfp);
892 	if (ret)
893 		goto fail;
894 
895 	n = get_node(cachep, node);
896 	spin_lock_irq(&n->list_lock);
897 	if (n->shared && force_change) {
898 		free_block(cachep, n->shared->entry,
899 				n->shared->avail, node, &list);
900 		n->shared->avail = 0;
901 	}
902 
903 	if (!n->shared || force_change) {
904 		old_shared = n->shared;
905 		n->shared = new_shared;
906 		new_shared = NULL;
907 	}
908 
909 	if (!n->alien) {
910 		n->alien = new_alien;
911 		new_alien = NULL;
912 	}
913 
914 	spin_unlock_irq(&n->list_lock);
915 	slabs_destroy(cachep, &list);
916 
917 	/*
918 	 * To protect lockless access to n->shared during irq disabled context.
919 	 * If n->shared isn't NULL in irq disabled context, accessing to it is
920 	 * guaranteed to be valid until irq is re-enabled, because it will be
921 	 * freed after synchronize_rcu().
922 	 */
923 	if (old_shared && force_change)
924 		synchronize_rcu();
925 
926 fail:
927 	kfree(old_shared);
928 	kfree(new_shared);
929 	free_alien_cache(new_alien);
930 
931 	return ret;
932 }
933 
934 #ifdef CONFIG_SMP
935 
936 static void cpuup_canceled(long cpu)
937 {
938 	struct kmem_cache *cachep;
939 	struct kmem_cache_node *n = NULL;
940 	int node = cpu_to_mem(cpu);
941 	const struct cpumask *mask = cpumask_of_node(node);
942 
943 	list_for_each_entry(cachep, &slab_caches, list) {
944 		struct array_cache *nc;
945 		struct array_cache *shared;
946 		struct alien_cache **alien;
947 		LIST_HEAD(list);
948 
949 		n = get_node(cachep, node);
950 		if (!n)
951 			continue;
952 
953 		spin_lock_irq(&n->list_lock);
954 
955 		/* Free limit for this kmem_cache_node */
956 		n->free_limit -= cachep->batchcount;
957 
958 		/* cpu is dead; no one can alloc from it. */
959 		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
960 		free_block(cachep, nc->entry, nc->avail, node, &list);
961 		nc->avail = 0;
962 
963 		if (!cpumask_empty(mask)) {
964 			spin_unlock_irq(&n->list_lock);
965 			goto free_slab;
966 		}
967 
968 		shared = n->shared;
969 		if (shared) {
970 			free_block(cachep, shared->entry,
971 				   shared->avail, node, &list);
972 			n->shared = NULL;
973 		}
974 
975 		alien = n->alien;
976 		n->alien = NULL;
977 
978 		spin_unlock_irq(&n->list_lock);
979 
980 		kfree(shared);
981 		if (alien) {
982 			drain_alien_cache(cachep, alien);
983 			free_alien_cache(alien);
984 		}
985 
986 free_slab:
987 		slabs_destroy(cachep, &list);
988 	}
989 	/*
990 	 * In the previous loop, all the objects were freed to
991 	 * the respective cache's slabs,  now we can go ahead and
992 	 * shrink each nodelist to its limit.
993 	 */
994 	list_for_each_entry(cachep, &slab_caches, list) {
995 		n = get_node(cachep, node);
996 		if (!n)
997 			continue;
998 		drain_freelist(cachep, n, INT_MAX);
999 	}
1000 }
1001 
1002 static int cpuup_prepare(long cpu)
1003 {
1004 	struct kmem_cache *cachep;
1005 	int node = cpu_to_mem(cpu);
1006 	int err;
1007 
1008 	/*
1009 	 * We need to do this right in the beginning since
1010 	 * alloc_arraycache's are going to use this list.
1011 	 * kmalloc_node allows us to add the slab to the right
1012 	 * kmem_cache_node and not this cpu's kmem_cache_node
1013 	 */
1014 	err = init_cache_node_node(node);
1015 	if (err < 0)
1016 		goto bad;
1017 
1018 	/*
1019 	 * Now we can go ahead with allocating the shared arrays and
1020 	 * array caches
1021 	 */
1022 	list_for_each_entry(cachep, &slab_caches, list) {
1023 		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1024 		if (err)
1025 			goto bad;
1026 	}
1027 
1028 	return 0;
1029 bad:
1030 	cpuup_canceled(cpu);
1031 	return -ENOMEM;
1032 }
1033 
1034 int slab_prepare_cpu(unsigned int cpu)
1035 {
1036 	int err;
1037 
1038 	mutex_lock(&slab_mutex);
1039 	err = cpuup_prepare(cpu);
1040 	mutex_unlock(&slab_mutex);
1041 	return err;
1042 }
1043 
1044 /*
1045  * This is called for a failed online attempt and for a successful
1046  * offline.
1047  *
1048  * Even if all the cpus of a node are down, we don't free the
1049  * kmem_cache_node of any cache. This is to avoid a race between cpu_down, and
1050  * a kmalloc allocation from another cpu for memory from the node of
1051  * the cpu going down.  The kmem_cache_node structure is usually allocated from
1052  * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1053  */
1054 int slab_dead_cpu(unsigned int cpu)
1055 {
1056 	mutex_lock(&slab_mutex);
1057 	cpuup_canceled(cpu);
1058 	mutex_unlock(&slab_mutex);
1059 	return 0;
1060 }
1061 #endif
1062 
1063 static int slab_online_cpu(unsigned int cpu)
1064 {
1065 	start_cpu_timer(cpu);
1066 	return 0;
1067 }
1068 
1069 static int slab_offline_cpu(unsigned int cpu)
1070 {
1071 	/*
1072 	 * Shutdown cache reaper. Note that the slab_mutex is held so
1073 	 * that if cache_reap() is invoked it cannot do anything
1074 	 * expensive but will only modify reap_work and reschedule the
1075 	 * timer.
1076 	 */
1077 	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1078 	/* Now the cache_reaper is guaranteed to be not running. */
1079 	per_cpu(slab_reap_work, cpu).work.func = NULL;
1080 	return 0;
1081 }
1082 
1083 #if defined(CONFIG_NUMA)
1084 /*
1085  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1086  * Returns -EBUSY if all objects cannot be drained so that the node is not
1087  * removed.
1088  *
1089  * Must hold slab_mutex.
1090  */
1091 static int __meminit drain_cache_node_node(int node)
1092 {
1093 	struct kmem_cache *cachep;
1094 	int ret = 0;
1095 
1096 	list_for_each_entry(cachep, &slab_caches, list) {
1097 		struct kmem_cache_node *n;
1098 
1099 		n = get_node(cachep, node);
1100 		if (!n)
1101 			continue;
1102 
1103 		drain_freelist(cachep, n, INT_MAX);
1104 
1105 		if (!list_empty(&n->slabs_full) ||
1106 		    !list_empty(&n->slabs_partial)) {
1107 			ret = -EBUSY;
1108 			break;
1109 		}
1110 	}
1111 	return ret;
1112 }
1113 
1114 static int __meminit slab_memory_callback(struct notifier_block *self,
1115 					unsigned long action, void *arg)
1116 {
1117 	struct memory_notify *mnb = arg;
1118 	int ret = 0;
1119 	int nid;
1120 
1121 	nid = mnb->status_change_nid;
1122 	if (nid < 0)
1123 		goto out;
1124 
1125 	switch (action) {
1126 	case MEM_GOING_ONLINE:
1127 		mutex_lock(&slab_mutex);
1128 		ret = init_cache_node_node(nid);
1129 		mutex_unlock(&slab_mutex);
1130 		break;
1131 	case MEM_GOING_OFFLINE:
1132 		mutex_lock(&slab_mutex);
1133 		ret = drain_cache_node_node(nid);
1134 		mutex_unlock(&slab_mutex);
1135 		break;
1136 	case MEM_ONLINE:
1137 	case MEM_OFFLINE:
1138 	case MEM_CANCEL_ONLINE:
1139 	case MEM_CANCEL_OFFLINE:
1140 		break;
1141 	}
1142 out:
1143 	return notifier_from_errno(ret);
1144 }
1145 #endif /* CONFIG_NUMA */
1146 
1147 /*
1148  * swap the static kmem_cache_node with kmalloced memory
1149  */
1150 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1151 				int nodeid)
1152 {
1153 	struct kmem_cache_node *ptr;
1154 
1155 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1156 	BUG_ON(!ptr);
1157 
1158 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1159 	/*
1160 	 * Do not assume that spinlocks can be initialized via memcpy:
1161 	 */
1162 	spin_lock_init(&ptr->list_lock);
1163 
1164 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1165 	cachep->node[nodeid] = ptr;
1166 }
1167 
1168 /*
1169  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1170  * size of kmem_cache_node.
1171  */
1172 static void __init set_up_node(struct kmem_cache *cachep, int index)
1173 {
1174 	int node;
1175 
1176 	for_each_online_node(node) {
1177 		cachep->node[node] = &init_kmem_cache_node[index + node];
1178 		cachep->node[node]->next_reap = jiffies +
1179 		    REAPTIMEOUT_NODE +
1180 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1181 	}
1182 }
1183 
1184 /*
1185  * Initialisation.  Called after the page allocator have been initialised and
1186  * before smp_init().
1187  */
1188 void __init kmem_cache_init(void)
1189 {
1190 	int i;
1191 
1192 	kmem_cache = &kmem_cache_boot;
1193 
1194 	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1195 		use_alien_caches = 0;
1196 
1197 	for (i = 0; i < NUM_INIT_LISTS; i++)
1198 		kmem_cache_node_init(&init_kmem_cache_node[i]);
1199 
1200 	/*
1201 	 * Fragmentation resistance on low memory - only use bigger
1202 	 * page orders on machines with more than 32MB of memory if
1203 	 * not overridden on the command line.
1204 	 */
1205 	if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1206 		slab_max_order = SLAB_MAX_ORDER_HI;
1207 
1208 	/* Bootstrap is tricky, because several objects are allocated
1209 	 * from caches that do not exist yet:
1210 	 * 1) initialize the kmem_cache cache: it contains the struct
1211 	 *    kmem_cache structures of all caches, except kmem_cache itself:
1212 	 *    kmem_cache is statically allocated.
1213 	 *    Initially an __init data area is used for the head array and the
1214 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1215 	 *    array at the end of the bootstrap.
1216 	 * 2) Create the first kmalloc cache.
1217 	 *    The struct kmem_cache for the new cache is allocated normally.
1218 	 *    An __init data area is used for the head array.
1219 	 * 3) Create the remaining kmalloc caches, with minimally sized
1220 	 *    head arrays.
1221 	 * 4) Replace the __init data head arrays for kmem_cache and the first
1222 	 *    kmalloc cache with kmalloc allocated arrays.
1223 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1224 	 *    the other cache's with kmalloc allocated memory.
1225 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1226 	 */
1227 
1228 	/* 1) create the kmem_cache */
1229 
1230 	/*
1231 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1232 	 */
1233 	create_boot_cache(kmem_cache, "kmem_cache",
1234 		offsetof(struct kmem_cache, node) +
1235 				  nr_node_ids * sizeof(struct kmem_cache_node *),
1236 				  SLAB_HWCACHE_ALIGN, 0, 0);
1237 	list_add(&kmem_cache->list, &slab_caches);
1238 	slab_state = PARTIAL;
1239 
1240 	/*
1241 	 * Initialize the caches that provide memory for the  kmem_cache_node
1242 	 * structures first.  Without this, further allocations will bug.
1243 	 */
1244 	kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1245 				kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL],
1246 				kmalloc_info[INDEX_NODE].size,
1247 				ARCH_KMALLOC_FLAGS, 0,
1248 				kmalloc_info[INDEX_NODE].size);
1249 	slab_state = PARTIAL_NODE;
1250 	setup_kmalloc_cache_index_table();
1251 
1252 	slab_early_init = 0;
1253 
1254 	/* 5) Replace the bootstrap kmem_cache_node */
1255 	{
1256 		int nid;
1257 
1258 		for_each_online_node(nid) {
1259 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1260 
1261 			init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1262 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1263 		}
1264 	}
1265 
1266 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1267 }
1268 
1269 void __init kmem_cache_init_late(void)
1270 {
1271 	struct kmem_cache *cachep;
1272 
1273 	/* 6) resize the head arrays to their final sizes */
1274 	mutex_lock(&slab_mutex);
1275 	list_for_each_entry(cachep, &slab_caches, list)
1276 		if (enable_cpucache(cachep, GFP_NOWAIT))
1277 			BUG();
1278 	mutex_unlock(&slab_mutex);
1279 
1280 	/* Done! */
1281 	slab_state = FULL;
1282 
1283 #ifdef CONFIG_NUMA
1284 	/*
1285 	 * Register a memory hotplug callback that initializes and frees
1286 	 * node.
1287 	 */
1288 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1289 #endif
1290 
1291 	/*
1292 	 * The reap timers are started later, with a module init call: That part
1293 	 * of the kernel is not yet operational.
1294 	 */
1295 }
1296 
1297 static int __init cpucache_init(void)
1298 {
1299 	int ret;
1300 
1301 	/*
1302 	 * Register the timers that return unneeded pages to the page allocator
1303 	 */
1304 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1305 				slab_online_cpu, slab_offline_cpu);
1306 	WARN_ON(ret < 0);
1307 
1308 	return 0;
1309 }
1310 __initcall(cpucache_init);
1311 
1312 static noinline void
1313 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1314 {
1315 #if DEBUG
1316 	struct kmem_cache_node *n;
1317 	unsigned long flags;
1318 	int node;
1319 	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1320 				      DEFAULT_RATELIMIT_BURST);
1321 
1322 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1323 		return;
1324 
1325 	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1326 		nodeid, gfpflags, &gfpflags);
1327 	pr_warn("  cache: %s, object size: %d, order: %d\n",
1328 		cachep->name, cachep->size, cachep->gfporder);
1329 
1330 	for_each_kmem_cache_node(cachep, node, n) {
1331 		unsigned long total_slabs, free_slabs, free_objs;
1332 
1333 		spin_lock_irqsave(&n->list_lock, flags);
1334 		total_slabs = n->total_slabs;
1335 		free_slabs = n->free_slabs;
1336 		free_objs = n->free_objects;
1337 		spin_unlock_irqrestore(&n->list_lock, flags);
1338 
1339 		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1340 			node, total_slabs - free_slabs, total_slabs,
1341 			(total_slabs * cachep->num) - free_objs,
1342 			total_slabs * cachep->num);
1343 	}
1344 #endif
1345 }
1346 
1347 /*
1348  * Interface to system's page allocator. No need to hold the
1349  * kmem_cache_node ->list_lock.
1350  *
1351  * If we requested dmaable memory, we will get it. Even if we
1352  * did not request dmaable memory, we might get it, but that
1353  * would be relatively rare and ignorable.
1354  */
1355 static struct slab *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1356 								int nodeid)
1357 {
1358 	struct folio *folio;
1359 	struct slab *slab;
1360 
1361 	flags |= cachep->allocflags;
1362 
1363 	folio = (struct folio *) __alloc_pages_node(nodeid, flags, cachep->gfporder);
1364 	if (!folio) {
1365 		slab_out_of_memory(cachep, flags, nodeid);
1366 		return NULL;
1367 	}
1368 
1369 	slab = folio_slab(folio);
1370 
1371 	account_slab(slab, cachep->gfporder, cachep, flags);
1372 	__folio_set_slab(folio);
1373 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1374 	if (sk_memalloc_socks() && page_is_pfmemalloc(folio_page(folio, 0)))
1375 		slab_set_pfmemalloc(slab);
1376 
1377 	return slab;
1378 }
1379 
1380 /*
1381  * Interface to system's page release.
1382  */
1383 static void kmem_freepages(struct kmem_cache *cachep, struct slab *slab)
1384 {
1385 	int order = cachep->gfporder;
1386 	struct folio *folio = slab_folio(slab);
1387 
1388 	BUG_ON(!folio_test_slab(folio));
1389 	__slab_clear_pfmemalloc(slab);
1390 	__folio_clear_slab(folio);
1391 	page_mapcount_reset(folio_page(folio, 0));
1392 	folio->mapping = NULL;
1393 
1394 	if (current->reclaim_state)
1395 		current->reclaim_state->reclaimed_slab += 1 << order;
1396 	unaccount_slab(slab, order, cachep);
1397 	__free_pages(folio_page(folio, 0), order);
1398 }
1399 
1400 static void kmem_rcu_free(struct rcu_head *head)
1401 {
1402 	struct kmem_cache *cachep;
1403 	struct slab *slab;
1404 
1405 	slab = container_of(head, struct slab, rcu_head);
1406 	cachep = slab->slab_cache;
1407 
1408 	kmem_freepages(cachep, slab);
1409 }
1410 
1411 #if DEBUG
1412 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1413 {
1414 	if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) &&
1415 		(cachep->size % PAGE_SIZE) == 0)
1416 		return true;
1417 
1418 	return false;
1419 }
1420 
1421 #ifdef CONFIG_DEBUG_PAGEALLOC
1422 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
1423 {
1424 	if (!is_debug_pagealloc_cache(cachep))
1425 		return;
1426 
1427 	__kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1428 }
1429 
1430 #else
1431 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1432 				int map) {}
1433 
1434 #endif
1435 
1436 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1437 {
1438 	int size = cachep->object_size;
1439 	addr = &((char *)addr)[obj_offset(cachep)];
1440 
1441 	memset(addr, val, size);
1442 	*(unsigned char *)(addr + size - 1) = POISON_END;
1443 }
1444 
1445 static void dump_line(char *data, int offset, int limit)
1446 {
1447 	int i;
1448 	unsigned char error = 0;
1449 	int bad_count = 0;
1450 
1451 	pr_err("%03x: ", offset);
1452 	for (i = 0; i < limit; i++) {
1453 		if (data[offset + i] != POISON_FREE) {
1454 			error = data[offset + i];
1455 			bad_count++;
1456 		}
1457 	}
1458 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1459 			&data[offset], limit, 1);
1460 
1461 	if (bad_count == 1) {
1462 		error ^= POISON_FREE;
1463 		if (!(error & (error - 1))) {
1464 			pr_err("Single bit error detected. Probably bad RAM.\n");
1465 #ifdef CONFIG_X86
1466 			pr_err("Run memtest86+ or a similar memory test tool.\n");
1467 #else
1468 			pr_err("Run a memory test tool.\n");
1469 #endif
1470 		}
1471 	}
1472 }
1473 #endif
1474 
1475 #if DEBUG
1476 
1477 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1478 {
1479 	int i, size;
1480 	char *realobj;
1481 
1482 	if (cachep->flags & SLAB_RED_ZONE) {
1483 		pr_err("Redzone: 0x%llx/0x%llx\n",
1484 		       *dbg_redzone1(cachep, objp),
1485 		       *dbg_redzone2(cachep, objp));
1486 	}
1487 
1488 	if (cachep->flags & SLAB_STORE_USER)
1489 		pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1490 	realobj = (char *)objp + obj_offset(cachep);
1491 	size = cachep->object_size;
1492 	for (i = 0; i < size && lines; i += 16, lines--) {
1493 		int limit;
1494 		limit = 16;
1495 		if (i + limit > size)
1496 			limit = size - i;
1497 		dump_line(realobj, i, limit);
1498 	}
1499 }
1500 
1501 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1502 {
1503 	char *realobj;
1504 	int size, i;
1505 	int lines = 0;
1506 
1507 	if (is_debug_pagealloc_cache(cachep))
1508 		return;
1509 
1510 	realobj = (char *)objp + obj_offset(cachep);
1511 	size = cachep->object_size;
1512 
1513 	for (i = 0; i < size; i++) {
1514 		char exp = POISON_FREE;
1515 		if (i == size - 1)
1516 			exp = POISON_END;
1517 		if (realobj[i] != exp) {
1518 			int limit;
1519 			/* Mismatch ! */
1520 			/* Print header */
1521 			if (lines == 0) {
1522 				pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1523 				       print_tainted(), cachep->name,
1524 				       realobj, size);
1525 				print_objinfo(cachep, objp, 0);
1526 			}
1527 			/* Hexdump the affected line */
1528 			i = (i / 16) * 16;
1529 			limit = 16;
1530 			if (i + limit > size)
1531 				limit = size - i;
1532 			dump_line(realobj, i, limit);
1533 			i += 16;
1534 			lines++;
1535 			/* Limit to 5 lines */
1536 			if (lines > 5)
1537 				break;
1538 		}
1539 	}
1540 	if (lines != 0) {
1541 		/* Print some data about the neighboring objects, if they
1542 		 * exist:
1543 		 */
1544 		struct slab *slab = virt_to_slab(objp);
1545 		unsigned int objnr;
1546 
1547 		objnr = obj_to_index(cachep, slab, objp);
1548 		if (objnr) {
1549 			objp = index_to_obj(cachep, slab, objnr - 1);
1550 			realobj = (char *)objp + obj_offset(cachep);
1551 			pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1552 			print_objinfo(cachep, objp, 2);
1553 		}
1554 		if (objnr + 1 < cachep->num) {
1555 			objp = index_to_obj(cachep, slab, objnr + 1);
1556 			realobj = (char *)objp + obj_offset(cachep);
1557 			pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1558 			print_objinfo(cachep, objp, 2);
1559 		}
1560 	}
1561 }
1562 #endif
1563 
1564 #if DEBUG
1565 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1566 						struct slab *slab)
1567 {
1568 	int i;
1569 
1570 	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1571 		poison_obj(cachep, slab->freelist - obj_offset(cachep),
1572 			POISON_FREE);
1573 	}
1574 
1575 	for (i = 0; i < cachep->num; i++) {
1576 		void *objp = index_to_obj(cachep, slab, i);
1577 
1578 		if (cachep->flags & SLAB_POISON) {
1579 			check_poison_obj(cachep, objp);
1580 			slab_kernel_map(cachep, objp, 1);
1581 		}
1582 		if (cachep->flags & SLAB_RED_ZONE) {
1583 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1584 				slab_error(cachep, "start of a freed object was overwritten");
1585 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1586 				slab_error(cachep, "end of a freed object was overwritten");
1587 		}
1588 	}
1589 }
1590 #else
1591 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1592 						struct slab *slab)
1593 {
1594 }
1595 #endif
1596 
1597 /**
1598  * slab_destroy - destroy and release all objects in a slab
1599  * @cachep: cache pointer being destroyed
1600  * @slab: slab being destroyed
1601  *
1602  * Destroy all the objs in a slab, and release the mem back to the system.
1603  * Before calling the slab must have been unlinked from the cache. The
1604  * kmem_cache_node ->list_lock is not held/needed.
1605  */
1606 static void slab_destroy(struct kmem_cache *cachep, struct slab *slab)
1607 {
1608 	void *freelist;
1609 
1610 	freelist = slab->freelist;
1611 	slab_destroy_debugcheck(cachep, slab);
1612 	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1613 		call_rcu(&slab->rcu_head, kmem_rcu_free);
1614 	else
1615 		kmem_freepages(cachep, slab);
1616 
1617 	/*
1618 	 * From now on, we don't use freelist
1619 	 * although actual page can be freed in rcu context
1620 	 */
1621 	if (OFF_SLAB(cachep))
1622 		kmem_cache_free(cachep->freelist_cache, freelist);
1623 }
1624 
1625 /*
1626  * Update the size of the caches before calling slabs_destroy as it may
1627  * recursively call kfree.
1628  */
1629 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1630 {
1631 	struct slab *slab, *n;
1632 
1633 	list_for_each_entry_safe(slab, n, list, slab_list) {
1634 		list_del(&slab->slab_list);
1635 		slab_destroy(cachep, slab);
1636 	}
1637 }
1638 
1639 /**
1640  * calculate_slab_order - calculate size (page order) of slabs
1641  * @cachep: pointer to the cache that is being created
1642  * @size: size of objects to be created in this cache.
1643  * @flags: slab allocation flags
1644  *
1645  * Also calculates the number of objects per slab.
1646  *
1647  * This could be made much more intelligent.  For now, try to avoid using
1648  * high order pages for slabs.  When the gfp() functions are more friendly
1649  * towards high-order requests, this should be changed.
1650  *
1651  * Return: number of left-over bytes in a slab
1652  */
1653 static size_t calculate_slab_order(struct kmem_cache *cachep,
1654 				size_t size, slab_flags_t flags)
1655 {
1656 	size_t left_over = 0;
1657 	int gfporder;
1658 
1659 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1660 		unsigned int num;
1661 		size_t remainder;
1662 
1663 		num = cache_estimate(gfporder, size, flags, &remainder);
1664 		if (!num)
1665 			continue;
1666 
1667 		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1668 		if (num > SLAB_OBJ_MAX_NUM)
1669 			break;
1670 
1671 		if (flags & CFLGS_OFF_SLAB) {
1672 			struct kmem_cache *freelist_cache;
1673 			size_t freelist_size;
1674 
1675 			freelist_size = num * sizeof(freelist_idx_t);
1676 			freelist_cache = kmalloc_slab(freelist_size, 0u);
1677 			if (!freelist_cache)
1678 				continue;
1679 
1680 			/*
1681 			 * Needed to avoid possible looping condition
1682 			 * in cache_grow_begin()
1683 			 */
1684 			if (OFF_SLAB(freelist_cache))
1685 				continue;
1686 
1687 			/* check if off slab has enough benefit */
1688 			if (freelist_cache->size > cachep->size / 2)
1689 				continue;
1690 		}
1691 
1692 		/* Found something acceptable - save it away */
1693 		cachep->num = num;
1694 		cachep->gfporder = gfporder;
1695 		left_over = remainder;
1696 
1697 		/*
1698 		 * A VFS-reclaimable slab tends to have most allocations
1699 		 * as GFP_NOFS and we really don't want to have to be allocating
1700 		 * higher-order pages when we are unable to shrink dcache.
1701 		 */
1702 		if (flags & SLAB_RECLAIM_ACCOUNT)
1703 			break;
1704 
1705 		/*
1706 		 * Large number of objects is good, but very large slabs are
1707 		 * currently bad for the gfp()s.
1708 		 */
1709 		if (gfporder >= slab_max_order)
1710 			break;
1711 
1712 		/*
1713 		 * Acceptable internal fragmentation?
1714 		 */
1715 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1716 			break;
1717 	}
1718 	return left_over;
1719 }
1720 
1721 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1722 		struct kmem_cache *cachep, int entries, int batchcount)
1723 {
1724 	int cpu;
1725 	size_t size;
1726 	struct array_cache __percpu *cpu_cache;
1727 
1728 	size = sizeof(void *) * entries + sizeof(struct array_cache);
1729 	cpu_cache = __alloc_percpu(size, sizeof(void *));
1730 
1731 	if (!cpu_cache)
1732 		return NULL;
1733 
1734 	for_each_possible_cpu(cpu) {
1735 		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1736 				entries, batchcount);
1737 	}
1738 
1739 	return cpu_cache;
1740 }
1741 
1742 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1743 {
1744 	if (slab_state >= FULL)
1745 		return enable_cpucache(cachep, gfp);
1746 
1747 	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1748 	if (!cachep->cpu_cache)
1749 		return 1;
1750 
1751 	if (slab_state == DOWN) {
1752 		/* Creation of first cache (kmem_cache). */
1753 		set_up_node(kmem_cache, CACHE_CACHE);
1754 	} else if (slab_state == PARTIAL) {
1755 		/* For kmem_cache_node */
1756 		set_up_node(cachep, SIZE_NODE);
1757 	} else {
1758 		int node;
1759 
1760 		for_each_online_node(node) {
1761 			cachep->node[node] = kmalloc_node(
1762 				sizeof(struct kmem_cache_node), gfp, node);
1763 			BUG_ON(!cachep->node[node]);
1764 			kmem_cache_node_init(cachep->node[node]);
1765 		}
1766 	}
1767 
1768 	cachep->node[numa_mem_id()]->next_reap =
1769 			jiffies + REAPTIMEOUT_NODE +
1770 			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1771 
1772 	cpu_cache_get(cachep)->avail = 0;
1773 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1774 	cpu_cache_get(cachep)->batchcount = 1;
1775 	cpu_cache_get(cachep)->touched = 0;
1776 	cachep->batchcount = 1;
1777 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1778 	return 0;
1779 }
1780 
1781 slab_flags_t kmem_cache_flags(unsigned int object_size,
1782 	slab_flags_t flags, const char *name)
1783 {
1784 	return flags;
1785 }
1786 
1787 struct kmem_cache *
1788 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1789 		   slab_flags_t flags, void (*ctor)(void *))
1790 {
1791 	struct kmem_cache *cachep;
1792 
1793 	cachep = find_mergeable(size, align, flags, name, ctor);
1794 	if (cachep) {
1795 		cachep->refcount++;
1796 
1797 		/*
1798 		 * Adjust the object sizes so that we clear
1799 		 * the complete object on kzalloc.
1800 		 */
1801 		cachep->object_size = max_t(int, cachep->object_size, size);
1802 	}
1803 	return cachep;
1804 }
1805 
1806 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1807 			size_t size, slab_flags_t flags)
1808 {
1809 	size_t left;
1810 
1811 	cachep->num = 0;
1812 
1813 	/*
1814 	 * If slab auto-initialization on free is enabled, store the freelist
1815 	 * off-slab, so that its contents don't end up in one of the allocated
1816 	 * objects.
1817 	 */
1818 	if (unlikely(slab_want_init_on_free(cachep)))
1819 		return false;
1820 
1821 	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1822 		return false;
1823 
1824 	left = calculate_slab_order(cachep, size,
1825 			flags | CFLGS_OBJFREELIST_SLAB);
1826 	if (!cachep->num)
1827 		return false;
1828 
1829 	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1830 		return false;
1831 
1832 	cachep->colour = left / cachep->colour_off;
1833 
1834 	return true;
1835 }
1836 
1837 static bool set_off_slab_cache(struct kmem_cache *cachep,
1838 			size_t size, slab_flags_t flags)
1839 {
1840 	size_t left;
1841 
1842 	cachep->num = 0;
1843 
1844 	/*
1845 	 * Always use on-slab management when SLAB_NOLEAKTRACE
1846 	 * to avoid recursive calls into kmemleak.
1847 	 */
1848 	if (flags & SLAB_NOLEAKTRACE)
1849 		return false;
1850 
1851 	/*
1852 	 * Size is large, assume best to place the slab management obj
1853 	 * off-slab (should allow better packing of objs).
1854 	 */
1855 	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1856 	if (!cachep->num)
1857 		return false;
1858 
1859 	/*
1860 	 * If the slab has been placed off-slab, and we have enough space then
1861 	 * move it on-slab. This is at the expense of any extra colouring.
1862 	 */
1863 	if (left >= cachep->num * sizeof(freelist_idx_t))
1864 		return false;
1865 
1866 	cachep->colour = left / cachep->colour_off;
1867 
1868 	return true;
1869 }
1870 
1871 static bool set_on_slab_cache(struct kmem_cache *cachep,
1872 			size_t size, slab_flags_t flags)
1873 {
1874 	size_t left;
1875 
1876 	cachep->num = 0;
1877 
1878 	left = calculate_slab_order(cachep, size, flags);
1879 	if (!cachep->num)
1880 		return false;
1881 
1882 	cachep->colour = left / cachep->colour_off;
1883 
1884 	return true;
1885 }
1886 
1887 /**
1888  * __kmem_cache_create - Create a cache.
1889  * @cachep: cache management descriptor
1890  * @flags: SLAB flags
1891  *
1892  * Returns a ptr to the cache on success, NULL on failure.
1893  * Cannot be called within an int, but can be interrupted.
1894  * The @ctor is run when new pages are allocated by the cache.
1895  *
1896  * The flags are
1897  *
1898  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1899  * to catch references to uninitialised memory.
1900  *
1901  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1902  * for buffer overruns.
1903  *
1904  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1905  * cacheline.  This can be beneficial if you're counting cycles as closely
1906  * as davem.
1907  *
1908  * Return: a pointer to the created cache or %NULL in case of error
1909  */
1910 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1911 {
1912 	size_t ralign = BYTES_PER_WORD;
1913 	gfp_t gfp;
1914 	int err;
1915 	unsigned int size = cachep->size;
1916 
1917 #if DEBUG
1918 #if FORCED_DEBUG
1919 	/*
1920 	 * Enable redzoning and last user accounting, except for caches with
1921 	 * large objects, if the increased size would increase the object size
1922 	 * above the next power of two: caches with object sizes just above a
1923 	 * power of two have a significant amount of internal fragmentation.
1924 	 */
1925 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1926 						2 * sizeof(unsigned long long)))
1927 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1928 	if (!(flags & SLAB_TYPESAFE_BY_RCU))
1929 		flags |= SLAB_POISON;
1930 #endif
1931 #endif
1932 
1933 	/*
1934 	 * Check that size is in terms of words.  This is needed to avoid
1935 	 * unaligned accesses for some archs when redzoning is used, and makes
1936 	 * sure any on-slab bufctl's are also correctly aligned.
1937 	 */
1938 	size = ALIGN(size, BYTES_PER_WORD);
1939 
1940 	if (flags & SLAB_RED_ZONE) {
1941 		ralign = REDZONE_ALIGN;
1942 		/* If redzoning, ensure that the second redzone is suitably
1943 		 * aligned, by adjusting the object size accordingly. */
1944 		size = ALIGN(size, REDZONE_ALIGN);
1945 	}
1946 
1947 	/* 3) caller mandated alignment */
1948 	if (ralign < cachep->align) {
1949 		ralign = cachep->align;
1950 	}
1951 	/* disable debug if necessary */
1952 	if (ralign > __alignof__(unsigned long long))
1953 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1954 	/*
1955 	 * 4) Store it.
1956 	 */
1957 	cachep->align = ralign;
1958 	cachep->colour_off = cache_line_size();
1959 	/* Offset must be a multiple of the alignment. */
1960 	if (cachep->colour_off < cachep->align)
1961 		cachep->colour_off = cachep->align;
1962 
1963 	if (slab_is_available())
1964 		gfp = GFP_KERNEL;
1965 	else
1966 		gfp = GFP_NOWAIT;
1967 
1968 #if DEBUG
1969 
1970 	/*
1971 	 * Both debugging options require word-alignment which is calculated
1972 	 * into align above.
1973 	 */
1974 	if (flags & SLAB_RED_ZONE) {
1975 		/* add space for red zone words */
1976 		cachep->obj_offset += sizeof(unsigned long long);
1977 		size += 2 * sizeof(unsigned long long);
1978 	}
1979 	if (flags & SLAB_STORE_USER) {
1980 		/* user store requires one word storage behind the end of
1981 		 * the real object. But if the second red zone needs to be
1982 		 * aligned to 64 bits, we must allow that much space.
1983 		 */
1984 		if (flags & SLAB_RED_ZONE)
1985 			size += REDZONE_ALIGN;
1986 		else
1987 			size += BYTES_PER_WORD;
1988 	}
1989 #endif
1990 
1991 	kasan_cache_create(cachep, &size, &flags);
1992 
1993 	size = ALIGN(size, cachep->align);
1994 	/*
1995 	 * We should restrict the number of objects in a slab to implement
1996 	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
1997 	 */
1998 	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
1999 		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2000 
2001 #if DEBUG
2002 	/*
2003 	 * To activate debug pagealloc, off-slab management is necessary
2004 	 * requirement. In early phase of initialization, small sized slab
2005 	 * doesn't get initialized so it would not be possible. So, we need
2006 	 * to check size >= 256. It guarantees that all necessary small
2007 	 * sized slab is initialized in current slab initialization sequence.
2008 	 */
2009 	if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) &&
2010 		size >= 256 && cachep->object_size > cache_line_size()) {
2011 		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2012 			size_t tmp_size = ALIGN(size, PAGE_SIZE);
2013 
2014 			if (set_off_slab_cache(cachep, tmp_size, flags)) {
2015 				flags |= CFLGS_OFF_SLAB;
2016 				cachep->obj_offset += tmp_size - size;
2017 				size = tmp_size;
2018 				goto done;
2019 			}
2020 		}
2021 	}
2022 #endif
2023 
2024 	if (set_objfreelist_slab_cache(cachep, size, flags)) {
2025 		flags |= CFLGS_OBJFREELIST_SLAB;
2026 		goto done;
2027 	}
2028 
2029 	if (set_off_slab_cache(cachep, size, flags)) {
2030 		flags |= CFLGS_OFF_SLAB;
2031 		goto done;
2032 	}
2033 
2034 	if (set_on_slab_cache(cachep, size, flags))
2035 		goto done;
2036 
2037 	return -E2BIG;
2038 
2039 done:
2040 	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2041 	cachep->flags = flags;
2042 	cachep->allocflags = __GFP_COMP;
2043 	if (flags & SLAB_CACHE_DMA)
2044 		cachep->allocflags |= GFP_DMA;
2045 	if (flags & SLAB_CACHE_DMA32)
2046 		cachep->allocflags |= GFP_DMA32;
2047 	if (flags & SLAB_RECLAIM_ACCOUNT)
2048 		cachep->allocflags |= __GFP_RECLAIMABLE;
2049 	cachep->size = size;
2050 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2051 
2052 #if DEBUG
2053 	/*
2054 	 * If we're going to use the generic kernel_map_pages()
2055 	 * poisoning, then it's going to smash the contents of
2056 	 * the redzone and userword anyhow, so switch them off.
2057 	 */
2058 	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2059 		(cachep->flags & SLAB_POISON) &&
2060 		is_debug_pagealloc_cache(cachep))
2061 		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2062 #endif
2063 
2064 	if (OFF_SLAB(cachep)) {
2065 		cachep->freelist_cache =
2066 			kmalloc_slab(cachep->freelist_size, 0u);
2067 	}
2068 
2069 	err = setup_cpu_cache(cachep, gfp);
2070 	if (err) {
2071 		__kmem_cache_release(cachep);
2072 		return err;
2073 	}
2074 
2075 	return 0;
2076 }
2077 
2078 #if DEBUG
2079 static void check_irq_off(void)
2080 {
2081 	BUG_ON(!irqs_disabled());
2082 }
2083 
2084 static void check_irq_on(void)
2085 {
2086 	BUG_ON(irqs_disabled());
2087 }
2088 
2089 static void check_mutex_acquired(void)
2090 {
2091 	BUG_ON(!mutex_is_locked(&slab_mutex));
2092 }
2093 
2094 static void check_spinlock_acquired(struct kmem_cache *cachep)
2095 {
2096 #ifdef CONFIG_SMP
2097 	check_irq_off();
2098 	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2099 #endif
2100 }
2101 
2102 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2103 {
2104 #ifdef CONFIG_SMP
2105 	check_irq_off();
2106 	assert_spin_locked(&get_node(cachep, node)->list_lock);
2107 #endif
2108 }
2109 
2110 #else
2111 #define check_irq_off()	do { } while(0)
2112 #define check_irq_on()	do { } while(0)
2113 #define check_mutex_acquired()	do { } while(0)
2114 #define check_spinlock_acquired(x) do { } while(0)
2115 #define check_spinlock_acquired_node(x, y) do { } while(0)
2116 #endif
2117 
2118 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2119 				int node, bool free_all, struct list_head *list)
2120 {
2121 	int tofree;
2122 
2123 	if (!ac || !ac->avail)
2124 		return;
2125 
2126 	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2127 	if (tofree > ac->avail)
2128 		tofree = (ac->avail + 1) / 2;
2129 
2130 	free_block(cachep, ac->entry, tofree, node, list);
2131 	ac->avail -= tofree;
2132 	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2133 }
2134 
2135 static void do_drain(void *arg)
2136 {
2137 	struct kmem_cache *cachep = arg;
2138 	struct array_cache *ac;
2139 	int node = numa_mem_id();
2140 	struct kmem_cache_node *n;
2141 	LIST_HEAD(list);
2142 
2143 	check_irq_off();
2144 	ac = cpu_cache_get(cachep);
2145 	n = get_node(cachep, node);
2146 	spin_lock(&n->list_lock);
2147 	free_block(cachep, ac->entry, ac->avail, node, &list);
2148 	spin_unlock(&n->list_lock);
2149 	ac->avail = 0;
2150 	slabs_destroy(cachep, &list);
2151 }
2152 
2153 static void drain_cpu_caches(struct kmem_cache *cachep)
2154 {
2155 	struct kmem_cache_node *n;
2156 	int node;
2157 	LIST_HEAD(list);
2158 
2159 	on_each_cpu(do_drain, cachep, 1);
2160 	check_irq_on();
2161 	for_each_kmem_cache_node(cachep, node, n)
2162 		if (n->alien)
2163 			drain_alien_cache(cachep, n->alien);
2164 
2165 	for_each_kmem_cache_node(cachep, node, n) {
2166 		spin_lock_irq(&n->list_lock);
2167 		drain_array_locked(cachep, n->shared, node, true, &list);
2168 		spin_unlock_irq(&n->list_lock);
2169 
2170 		slabs_destroy(cachep, &list);
2171 	}
2172 }
2173 
2174 /*
2175  * Remove slabs from the list of free slabs.
2176  * Specify the number of slabs to drain in tofree.
2177  *
2178  * Returns the actual number of slabs released.
2179  */
2180 static int drain_freelist(struct kmem_cache *cache,
2181 			struct kmem_cache_node *n, int tofree)
2182 {
2183 	struct list_head *p;
2184 	int nr_freed;
2185 	struct slab *slab;
2186 
2187 	nr_freed = 0;
2188 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2189 
2190 		spin_lock_irq(&n->list_lock);
2191 		p = n->slabs_free.prev;
2192 		if (p == &n->slabs_free) {
2193 			spin_unlock_irq(&n->list_lock);
2194 			goto out;
2195 		}
2196 
2197 		slab = list_entry(p, struct slab, slab_list);
2198 		list_del(&slab->slab_list);
2199 		n->free_slabs--;
2200 		n->total_slabs--;
2201 		/*
2202 		 * Safe to drop the lock. The slab is no longer linked
2203 		 * to the cache.
2204 		 */
2205 		n->free_objects -= cache->num;
2206 		spin_unlock_irq(&n->list_lock);
2207 		slab_destroy(cache, slab);
2208 		nr_freed++;
2209 	}
2210 out:
2211 	return nr_freed;
2212 }
2213 
2214 bool __kmem_cache_empty(struct kmem_cache *s)
2215 {
2216 	int node;
2217 	struct kmem_cache_node *n;
2218 
2219 	for_each_kmem_cache_node(s, node, n)
2220 		if (!list_empty(&n->slabs_full) ||
2221 		    !list_empty(&n->slabs_partial))
2222 			return false;
2223 	return true;
2224 }
2225 
2226 int __kmem_cache_shrink(struct kmem_cache *cachep)
2227 {
2228 	int ret = 0;
2229 	int node;
2230 	struct kmem_cache_node *n;
2231 
2232 	drain_cpu_caches(cachep);
2233 
2234 	check_irq_on();
2235 	for_each_kmem_cache_node(cachep, node, n) {
2236 		drain_freelist(cachep, n, INT_MAX);
2237 
2238 		ret += !list_empty(&n->slabs_full) ||
2239 			!list_empty(&n->slabs_partial);
2240 	}
2241 	return (ret ? 1 : 0);
2242 }
2243 
2244 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2245 {
2246 	return __kmem_cache_shrink(cachep);
2247 }
2248 
2249 void __kmem_cache_release(struct kmem_cache *cachep)
2250 {
2251 	int i;
2252 	struct kmem_cache_node *n;
2253 
2254 	cache_random_seq_destroy(cachep);
2255 
2256 	free_percpu(cachep->cpu_cache);
2257 
2258 	/* NUMA: free the node structures */
2259 	for_each_kmem_cache_node(cachep, i, n) {
2260 		kfree(n->shared);
2261 		free_alien_cache(n->alien);
2262 		kfree(n);
2263 		cachep->node[i] = NULL;
2264 	}
2265 }
2266 
2267 /*
2268  * Get the memory for a slab management obj.
2269  *
2270  * For a slab cache when the slab descriptor is off-slab, the
2271  * slab descriptor can't come from the same cache which is being created,
2272  * Because if it is the case, that means we defer the creation of
2273  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2274  * And we eventually call down to __kmem_cache_create(), which
2275  * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one.
2276  * This is a "chicken-and-egg" problem.
2277  *
2278  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2279  * which are all initialized during kmem_cache_init().
2280  */
2281 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2282 				   struct slab *slab, int colour_off,
2283 				   gfp_t local_flags, int nodeid)
2284 {
2285 	void *freelist;
2286 	void *addr = slab_address(slab);
2287 
2288 	slab->s_mem = addr + colour_off;
2289 	slab->active = 0;
2290 
2291 	if (OBJFREELIST_SLAB(cachep))
2292 		freelist = NULL;
2293 	else if (OFF_SLAB(cachep)) {
2294 		/* Slab management obj is off-slab. */
2295 		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2296 					      local_flags, nodeid);
2297 	} else {
2298 		/* We will use last bytes at the slab for freelist */
2299 		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2300 				cachep->freelist_size;
2301 	}
2302 
2303 	return freelist;
2304 }
2305 
2306 static inline freelist_idx_t get_free_obj(struct slab *slab, unsigned int idx)
2307 {
2308 	return ((freelist_idx_t *) slab->freelist)[idx];
2309 }
2310 
2311 static inline void set_free_obj(struct slab *slab,
2312 					unsigned int idx, freelist_idx_t val)
2313 {
2314 	((freelist_idx_t *)(slab->freelist))[idx] = val;
2315 }
2316 
2317 static void cache_init_objs_debug(struct kmem_cache *cachep, struct slab *slab)
2318 {
2319 #if DEBUG
2320 	int i;
2321 
2322 	for (i = 0; i < cachep->num; i++) {
2323 		void *objp = index_to_obj(cachep, slab, i);
2324 
2325 		if (cachep->flags & SLAB_STORE_USER)
2326 			*dbg_userword(cachep, objp) = NULL;
2327 
2328 		if (cachep->flags & SLAB_RED_ZONE) {
2329 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2330 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2331 		}
2332 		/*
2333 		 * Constructors are not allowed to allocate memory from the same
2334 		 * cache which they are a constructor for.  Otherwise, deadlock.
2335 		 * They must also be threaded.
2336 		 */
2337 		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2338 			kasan_unpoison_object_data(cachep,
2339 						   objp + obj_offset(cachep));
2340 			cachep->ctor(objp + obj_offset(cachep));
2341 			kasan_poison_object_data(
2342 				cachep, objp + obj_offset(cachep));
2343 		}
2344 
2345 		if (cachep->flags & SLAB_RED_ZONE) {
2346 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2347 				slab_error(cachep, "constructor overwrote the end of an object");
2348 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2349 				slab_error(cachep, "constructor overwrote the start of an object");
2350 		}
2351 		/* need to poison the objs? */
2352 		if (cachep->flags & SLAB_POISON) {
2353 			poison_obj(cachep, objp, POISON_FREE);
2354 			slab_kernel_map(cachep, objp, 0);
2355 		}
2356 	}
2357 #endif
2358 }
2359 
2360 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2361 /* Hold information during a freelist initialization */
2362 union freelist_init_state {
2363 	struct {
2364 		unsigned int pos;
2365 		unsigned int *list;
2366 		unsigned int count;
2367 	};
2368 	struct rnd_state rnd_state;
2369 };
2370 
2371 /*
2372  * Initialize the state based on the randomization method available.
2373  * return true if the pre-computed list is available, false otherwise.
2374  */
2375 static bool freelist_state_initialize(union freelist_init_state *state,
2376 				struct kmem_cache *cachep,
2377 				unsigned int count)
2378 {
2379 	bool ret;
2380 	unsigned int rand;
2381 
2382 	/* Use best entropy available to define a random shift */
2383 	rand = get_random_int();
2384 
2385 	/* Use a random state if the pre-computed list is not available */
2386 	if (!cachep->random_seq) {
2387 		prandom_seed_state(&state->rnd_state, rand);
2388 		ret = false;
2389 	} else {
2390 		state->list = cachep->random_seq;
2391 		state->count = count;
2392 		state->pos = rand % count;
2393 		ret = true;
2394 	}
2395 	return ret;
2396 }
2397 
2398 /* Get the next entry on the list and randomize it using a random shift */
2399 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2400 {
2401 	if (state->pos >= state->count)
2402 		state->pos = 0;
2403 	return state->list[state->pos++];
2404 }
2405 
2406 /* Swap two freelist entries */
2407 static void swap_free_obj(struct slab *slab, unsigned int a, unsigned int b)
2408 {
2409 	swap(((freelist_idx_t *) slab->freelist)[a],
2410 		((freelist_idx_t *) slab->freelist)[b]);
2411 }
2412 
2413 /*
2414  * Shuffle the freelist initialization state based on pre-computed lists.
2415  * return true if the list was successfully shuffled, false otherwise.
2416  */
2417 static bool shuffle_freelist(struct kmem_cache *cachep, struct slab *slab)
2418 {
2419 	unsigned int objfreelist = 0, i, rand, count = cachep->num;
2420 	union freelist_init_state state;
2421 	bool precomputed;
2422 
2423 	if (count < 2)
2424 		return false;
2425 
2426 	precomputed = freelist_state_initialize(&state, cachep, count);
2427 
2428 	/* Take a random entry as the objfreelist */
2429 	if (OBJFREELIST_SLAB(cachep)) {
2430 		if (!precomputed)
2431 			objfreelist = count - 1;
2432 		else
2433 			objfreelist = next_random_slot(&state);
2434 		slab->freelist = index_to_obj(cachep, slab, objfreelist) +
2435 						obj_offset(cachep);
2436 		count--;
2437 	}
2438 
2439 	/*
2440 	 * On early boot, generate the list dynamically.
2441 	 * Later use a pre-computed list for speed.
2442 	 */
2443 	if (!precomputed) {
2444 		for (i = 0; i < count; i++)
2445 			set_free_obj(slab, i, i);
2446 
2447 		/* Fisher-Yates shuffle */
2448 		for (i = count - 1; i > 0; i--) {
2449 			rand = prandom_u32_state(&state.rnd_state);
2450 			rand %= (i + 1);
2451 			swap_free_obj(slab, i, rand);
2452 		}
2453 	} else {
2454 		for (i = 0; i < count; i++)
2455 			set_free_obj(slab, i, next_random_slot(&state));
2456 	}
2457 
2458 	if (OBJFREELIST_SLAB(cachep))
2459 		set_free_obj(slab, cachep->num - 1, objfreelist);
2460 
2461 	return true;
2462 }
2463 #else
2464 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2465 				struct slab *slab)
2466 {
2467 	return false;
2468 }
2469 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2470 
2471 static void cache_init_objs(struct kmem_cache *cachep,
2472 			    struct slab *slab)
2473 {
2474 	int i;
2475 	void *objp;
2476 	bool shuffled;
2477 
2478 	cache_init_objs_debug(cachep, slab);
2479 
2480 	/* Try to randomize the freelist if enabled */
2481 	shuffled = shuffle_freelist(cachep, slab);
2482 
2483 	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2484 		slab->freelist = index_to_obj(cachep, slab, cachep->num - 1) +
2485 						obj_offset(cachep);
2486 	}
2487 
2488 	for (i = 0; i < cachep->num; i++) {
2489 		objp = index_to_obj(cachep, slab, i);
2490 		objp = kasan_init_slab_obj(cachep, objp);
2491 
2492 		/* constructor could break poison info */
2493 		if (DEBUG == 0 && cachep->ctor) {
2494 			kasan_unpoison_object_data(cachep, objp);
2495 			cachep->ctor(objp);
2496 			kasan_poison_object_data(cachep, objp);
2497 		}
2498 
2499 		if (!shuffled)
2500 			set_free_obj(slab, i, i);
2501 	}
2502 }
2503 
2504 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slab)
2505 {
2506 	void *objp;
2507 
2508 	objp = index_to_obj(cachep, slab, get_free_obj(slab, slab->active));
2509 	slab->active++;
2510 
2511 	return objp;
2512 }
2513 
2514 static void slab_put_obj(struct kmem_cache *cachep,
2515 			struct slab *slab, void *objp)
2516 {
2517 	unsigned int objnr = obj_to_index(cachep, slab, objp);
2518 #if DEBUG
2519 	unsigned int i;
2520 
2521 	/* Verify double free bug */
2522 	for (i = slab->active; i < cachep->num; i++) {
2523 		if (get_free_obj(slab, i) == objnr) {
2524 			pr_err("slab: double free detected in cache '%s', objp %px\n",
2525 			       cachep->name, objp);
2526 			BUG();
2527 		}
2528 	}
2529 #endif
2530 	slab->active--;
2531 	if (!slab->freelist)
2532 		slab->freelist = objp + obj_offset(cachep);
2533 
2534 	set_free_obj(slab, slab->active, objnr);
2535 }
2536 
2537 /*
2538  * Grow (by 1) the number of slabs within a cache.  This is called by
2539  * kmem_cache_alloc() when there are no active objs left in a cache.
2540  */
2541 static struct slab *cache_grow_begin(struct kmem_cache *cachep,
2542 				gfp_t flags, int nodeid)
2543 {
2544 	void *freelist;
2545 	size_t offset;
2546 	gfp_t local_flags;
2547 	int slab_node;
2548 	struct kmem_cache_node *n;
2549 	struct slab *slab;
2550 
2551 	/*
2552 	 * Be lazy and only check for valid flags here,  keeping it out of the
2553 	 * critical path in kmem_cache_alloc().
2554 	 */
2555 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2556 		flags = kmalloc_fix_flags(flags);
2557 
2558 	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2559 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2560 
2561 	check_irq_off();
2562 	if (gfpflags_allow_blocking(local_flags))
2563 		local_irq_enable();
2564 
2565 	/*
2566 	 * Get mem for the objs.  Attempt to allocate a physical page from
2567 	 * 'nodeid'.
2568 	 */
2569 	slab = kmem_getpages(cachep, local_flags, nodeid);
2570 	if (!slab)
2571 		goto failed;
2572 
2573 	slab_node = slab_nid(slab);
2574 	n = get_node(cachep, slab_node);
2575 
2576 	/* Get colour for the slab, and cal the next value. */
2577 	n->colour_next++;
2578 	if (n->colour_next >= cachep->colour)
2579 		n->colour_next = 0;
2580 
2581 	offset = n->colour_next;
2582 	if (offset >= cachep->colour)
2583 		offset = 0;
2584 
2585 	offset *= cachep->colour_off;
2586 
2587 	/*
2588 	 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2589 	 * page_address() in the latter returns a non-tagged pointer,
2590 	 * as it should be for slab pages.
2591 	 */
2592 	kasan_poison_slab(slab);
2593 
2594 	/* Get slab management. */
2595 	freelist = alloc_slabmgmt(cachep, slab, offset,
2596 			local_flags & ~GFP_CONSTRAINT_MASK, slab_node);
2597 	if (OFF_SLAB(cachep) && !freelist)
2598 		goto opps1;
2599 
2600 	slab->slab_cache = cachep;
2601 	slab->freelist = freelist;
2602 
2603 	cache_init_objs(cachep, slab);
2604 
2605 	if (gfpflags_allow_blocking(local_flags))
2606 		local_irq_disable();
2607 
2608 	return slab;
2609 
2610 opps1:
2611 	kmem_freepages(cachep, slab);
2612 failed:
2613 	if (gfpflags_allow_blocking(local_flags))
2614 		local_irq_disable();
2615 	return NULL;
2616 }
2617 
2618 static void cache_grow_end(struct kmem_cache *cachep, struct slab *slab)
2619 {
2620 	struct kmem_cache_node *n;
2621 	void *list = NULL;
2622 
2623 	check_irq_off();
2624 
2625 	if (!slab)
2626 		return;
2627 
2628 	INIT_LIST_HEAD(&slab->slab_list);
2629 	n = get_node(cachep, slab_nid(slab));
2630 
2631 	spin_lock(&n->list_lock);
2632 	n->total_slabs++;
2633 	if (!slab->active) {
2634 		list_add_tail(&slab->slab_list, &n->slabs_free);
2635 		n->free_slabs++;
2636 	} else
2637 		fixup_slab_list(cachep, n, slab, &list);
2638 
2639 	STATS_INC_GROWN(cachep);
2640 	n->free_objects += cachep->num - slab->active;
2641 	spin_unlock(&n->list_lock);
2642 
2643 	fixup_objfreelist_debug(cachep, &list);
2644 }
2645 
2646 #if DEBUG
2647 
2648 /*
2649  * Perform extra freeing checks:
2650  * - detect bad pointers.
2651  * - POISON/RED_ZONE checking
2652  */
2653 static void kfree_debugcheck(const void *objp)
2654 {
2655 	if (!virt_addr_valid(objp)) {
2656 		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2657 		       (unsigned long)objp);
2658 		BUG();
2659 	}
2660 }
2661 
2662 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2663 {
2664 	unsigned long long redzone1, redzone2;
2665 
2666 	redzone1 = *dbg_redzone1(cache, obj);
2667 	redzone2 = *dbg_redzone2(cache, obj);
2668 
2669 	/*
2670 	 * Redzone is ok.
2671 	 */
2672 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2673 		return;
2674 
2675 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2676 		slab_error(cache, "double free detected");
2677 	else
2678 		slab_error(cache, "memory outside object was overwritten");
2679 
2680 	pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2681 	       obj, redzone1, redzone2);
2682 }
2683 
2684 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2685 				   unsigned long caller)
2686 {
2687 	unsigned int objnr;
2688 	struct slab *slab;
2689 
2690 	BUG_ON(virt_to_cache(objp) != cachep);
2691 
2692 	objp -= obj_offset(cachep);
2693 	kfree_debugcheck(objp);
2694 	slab = virt_to_slab(objp);
2695 
2696 	if (cachep->flags & SLAB_RED_ZONE) {
2697 		verify_redzone_free(cachep, objp);
2698 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2699 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2700 	}
2701 	if (cachep->flags & SLAB_STORE_USER)
2702 		*dbg_userword(cachep, objp) = (void *)caller;
2703 
2704 	objnr = obj_to_index(cachep, slab, objp);
2705 
2706 	BUG_ON(objnr >= cachep->num);
2707 	BUG_ON(objp != index_to_obj(cachep, slab, objnr));
2708 
2709 	if (cachep->flags & SLAB_POISON) {
2710 		poison_obj(cachep, objp, POISON_FREE);
2711 		slab_kernel_map(cachep, objp, 0);
2712 	}
2713 	return objp;
2714 }
2715 
2716 #else
2717 #define kfree_debugcheck(x) do { } while(0)
2718 #define cache_free_debugcheck(x, objp, z) (objp)
2719 #endif
2720 
2721 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2722 						void **list)
2723 {
2724 #if DEBUG
2725 	void *next = *list;
2726 	void *objp;
2727 
2728 	while (next) {
2729 		objp = next - obj_offset(cachep);
2730 		next = *(void **)next;
2731 		poison_obj(cachep, objp, POISON_FREE);
2732 	}
2733 #endif
2734 }
2735 
2736 static inline void fixup_slab_list(struct kmem_cache *cachep,
2737 				struct kmem_cache_node *n, struct slab *slab,
2738 				void **list)
2739 {
2740 	/* move slabp to correct slabp list: */
2741 	list_del(&slab->slab_list);
2742 	if (slab->active == cachep->num) {
2743 		list_add(&slab->slab_list, &n->slabs_full);
2744 		if (OBJFREELIST_SLAB(cachep)) {
2745 #if DEBUG
2746 			/* Poisoning will be done without holding the lock */
2747 			if (cachep->flags & SLAB_POISON) {
2748 				void **objp = slab->freelist;
2749 
2750 				*objp = *list;
2751 				*list = objp;
2752 			}
2753 #endif
2754 			slab->freelist = NULL;
2755 		}
2756 	} else
2757 		list_add(&slab->slab_list, &n->slabs_partial);
2758 }
2759 
2760 /* Try to find non-pfmemalloc slab if needed */
2761 static noinline struct slab *get_valid_first_slab(struct kmem_cache_node *n,
2762 					struct slab *slab, bool pfmemalloc)
2763 {
2764 	if (!slab)
2765 		return NULL;
2766 
2767 	if (pfmemalloc)
2768 		return slab;
2769 
2770 	if (!slab_test_pfmemalloc(slab))
2771 		return slab;
2772 
2773 	/* No need to keep pfmemalloc slab if we have enough free objects */
2774 	if (n->free_objects > n->free_limit) {
2775 		slab_clear_pfmemalloc(slab);
2776 		return slab;
2777 	}
2778 
2779 	/* Move pfmemalloc slab to the end of list to speed up next search */
2780 	list_del(&slab->slab_list);
2781 	if (!slab->active) {
2782 		list_add_tail(&slab->slab_list, &n->slabs_free);
2783 		n->free_slabs++;
2784 	} else
2785 		list_add_tail(&slab->slab_list, &n->slabs_partial);
2786 
2787 	list_for_each_entry(slab, &n->slabs_partial, slab_list) {
2788 		if (!slab_test_pfmemalloc(slab))
2789 			return slab;
2790 	}
2791 
2792 	n->free_touched = 1;
2793 	list_for_each_entry(slab, &n->slabs_free, slab_list) {
2794 		if (!slab_test_pfmemalloc(slab)) {
2795 			n->free_slabs--;
2796 			return slab;
2797 		}
2798 	}
2799 
2800 	return NULL;
2801 }
2802 
2803 static struct slab *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2804 {
2805 	struct slab *slab;
2806 
2807 	assert_spin_locked(&n->list_lock);
2808 	slab = list_first_entry_or_null(&n->slabs_partial, struct slab,
2809 					slab_list);
2810 	if (!slab) {
2811 		n->free_touched = 1;
2812 		slab = list_first_entry_or_null(&n->slabs_free, struct slab,
2813 						slab_list);
2814 		if (slab)
2815 			n->free_slabs--;
2816 	}
2817 
2818 	if (sk_memalloc_socks())
2819 		slab = get_valid_first_slab(n, slab, pfmemalloc);
2820 
2821 	return slab;
2822 }
2823 
2824 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2825 				struct kmem_cache_node *n, gfp_t flags)
2826 {
2827 	struct slab *slab;
2828 	void *obj;
2829 	void *list = NULL;
2830 
2831 	if (!gfp_pfmemalloc_allowed(flags))
2832 		return NULL;
2833 
2834 	spin_lock(&n->list_lock);
2835 	slab = get_first_slab(n, true);
2836 	if (!slab) {
2837 		spin_unlock(&n->list_lock);
2838 		return NULL;
2839 	}
2840 
2841 	obj = slab_get_obj(cachep, slab);
2842 	n->free_objects--;
2843 
2844 	fixup_slab_list(cachep, n, slab, &list);
2845 
2846 	spin_unlock(&n->list_lock);
2847 	fixup_objfreelist_debug(cachep, &list);
2848 
2849 	return obj;
2850 }
2851 
2852 /*
2853  * Slab list should be fixed up by fixup_slab_list() for existing slab
2854  * or cache_grow_end() for new slab
2855  */
2856 static __always_inline int alloc_block(struct kmem_cache *cachep,
2857 		struct array_cache *ac, struct slab *slab, int batchcount)
2858 {
2859 	/*
2860 	 * There must be at least one object available for
2861 	 * allocation.
2862 	 */
2863 	BUG_ON(slab->active >= cachep->num);
2864 
2865 	while (slab->active < cachep->num && batchcount--) {
2866 		STATS_INC_ALLOCED(cachep);
2867 		STATS_INC_ACTIVE(cachep);
2868 		STATS_SET_HIGH(cachep);
2869 
2870 		ac->entry[ac->avail++] = slab_get_obj(cachep, slab);
2871 	}
2872 
2873 	return batchcount;
2874 }
2875 
2876 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2877 {
2878 	int batchcount;
2879 	struct kmem_cache_node *n;
2880 	struct array_cache *ac, *shared;
2881 	int node;
2882 	void *list = NULL;
2883 	struct slab *slab;
2884 
2885 	check_irq_off();
2886 	node = numa_mem_id();
2887 
2888 	ac = cpu_cache_get(cachep);
2889 	batchcount = ac->batchcount;
2890 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2891 		/*
2892 		 * If there was little recent activity on this cache, then
2893 		 * perform only a partial refill.  Otherwise we could generate
2894 		 * refill bouncing.
2895 		 */
2896 		batchcount = BATCHREFILL_LIMIT;
2897 	}
2898 	n = get_node(cachep, node);
2899 
2900 	BUG_ON(ac->avail > 0 || !n);
2901 	shared = READ_ONCE(n->shared);
2902 	if (!n->free_objects && (!shared || !shared->avail))
2903 		goto direct_grow;
2904 
2905 	spin_lock(&n->list_lock);
2906 	shared = READ_ONCE(n->shared);
2907 
2908 	/* See if we can refill from the shared array */
2909 	if (shared && transfer_objects(ac, shared, batchcount)) {
2910 		shared->touched = 1;
2911 		goto alloc_done;
2912 	}
2913 
2914 	while (batchcount > 0) {
2915 		/* Get slab alloc is to come from. */
2916 		slab = get_first_slab(n, false);
2917 		if (!slab)
2918 			goto must_grow;
2919 
2920 		check_spinlock_acquired(cachep);
2921 
2922 		batchcount = alloc_block(cachep, ac, slab, batchcount);
2923 		fixup_slab_list(cachep, n, slab, &list);
2924 	}
2925 
2926 must_grow:
2927 	n->free_objects -= ac->avail;
2928 alloc_done:
2929 	spin_unlock(&n->list_lock);
2930 	fixup_objfreelist_debug(cachep, &list);
2931 
2932 direct_grow:
2933 	if (unlikely(!ac->avail)) {
2934 		/* Check if we can use obj in pfmemalloc slab */
2935 		if (sk_memalloc_socks()) {
2936 			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2937 
2938 			if (obj)
2939 				return obj;
2940 		}
2941 
2942 		slab = cache_grow_begin(cachep, gfp_exact_node(flags), node);
2943 
2944 		/*
2945 		 * cache_grow_begin() can reenable interrupts,
2946 		 * then ac could change.
2947 		 */
2948 		ac = cpu_cache_get(cachep);
2949 		if (!ac->avail && slab)
2950 			alloc_block(cachep, ac, slab, batchcount);
2951 		cache_grow_end(cachep, slab);
2952 
2953 		if (!ac->avail)
2954 			return NULL;
2955 	}
2956 	ac->touched = 1;
2957 
2958 	return ac->entry[--ac->avail];
2959 }
2960 
2961 #if DEBUG
2962 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2963 				gfp_t flags, void *objp, unsigned long caller)
2964 {
2965 	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2966 	if (!objp || is_kfence_address(objp))
2967 		return objp;
2968 	if (cachep->flags & SLAB_POISON) {
2969 		check_poison_obj(cachep, objp);
2970 		slab_kernel_map(cachep, objp, 1);
2971 		poison_obj(cachep, objp, POISON_INUSE);
2972 	}
2973 	if (cachep->flags & SLAB_STORE_USER)
2974 		*dbg_userword(cachep, objp) = (void *)caller;
2975 
2976 	if (cachep->flags & SLAB_RED_ZONE) {
2977 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2978 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2979 			slab_error(cachep, "double free, or memory outside object was overwritten");
2980 			pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2981 			       objp, *dbg_redzone1(cachep, objp),
2982 			       *dbg_redzone2(cachep, objp));
2983 		}
2984 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
2985 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
2986 	}
2987 
2988 	objp += obj_offset(cachep);
2989 	if (cachep->ctor && cachep->flags & SLAB_POISON)
2990 		cachep->ctor(objp);
2991 	if ((unsigned long)objp & (arch_slab_minalign() - 1)) {
2992 		pr_err("0x%px: not aligned to arch_slab_minalign()=%u\n", objp,
2993 		       arch_slab_minalign());
2994 	}
2995 	return objp;
2996 }
2997 #else
2998 #define cache_alloc_debugcheck_after(a, b, objp, d) (objp)
2999 #endif
3000 
3001 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3002 {
3003 	void *objp;
3004 	struct array_cache *ac;
3005 
3006 	check_irq_off();
3007 
3008 	ac = cpu_cache_get(cachep);
3009 	if (likely(ac->avail)) {
3010 		ac->touched = 1;
3011 		objp = ac->entry[--ac->avail];
3012 
3013 		STATS_INC_ALLOCHIT(cachep);
3014 		goto out;
3015 	}
3016 
3017 	STATS_INC_ALLOCMISS(cachep);
3018 	objp = cache_alloc_refill(cachep, flags);
3019 	/*
3020 	 * the 'ac' may be updated by cache_alloc_refill(),
3021 	 * and kmemleak_erase() requires its correct value.
3022 	 */
3023 	ac = cpu_cache_get(cachep);
3024 
3025 out:
3026 	/*
3027 	 * To avoid a false negative, if an object that is in one of the
3028 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3029 	 * treat the array pointers as a reference to the object.
3030 	 */
3031 	if (objp)
3032 		kmemleak_erase(&ac->entry[ac->avail]);
3033 	return objp;
3034 }
3035 
3036 #ifdef CONFIG_NUMA
3037 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
3038 
3039 /*
3040  * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3041  *
3042  * If we are in_interrupt, then process context, including cpusets and
3043  * mempolicy, may not apply and should not be used for allocation policy.
3044  */
3045 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3046 {
3047 	int nid_alloc, nid_here;
3048 
3049 	if (in_interrupt() || (flags & __GFP_THISNODE))
3050 		return NULL;
3051 	nid_alloc = nid_here = numa_mem_id();
3052 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3053 		nid_alloc = cpuset_slab_spread_node();
3054 	else if (current->mempolicy)
3055 		nid_alloc = mempolicy_slab_node();
3056 	if (nid_alloc != nid_here)
3057 		return ____cache_alloc_node(cachep, flags, nid_alloc);
3058 	return NULL;
3059 }
3060 
3061 /*
3062  * Fallback function if there was no memory available and no objects on a
3063  * certain node and fall back is permitted. First we scan all the
3064  * available node for available objects. If that fails then we
3065  * perform an allocation without specifying a node. This allows the page
3066  * allocator to do its reclaim / fallback magic. We then insert the
3067  * slab into the proper nodelist and then allocate from it.
3068  */
3069 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3070 {
3071 	struct zonelist *zonelist;
3072 	struct zoneref *z;
3073 	struct zone *zone;
3074 	enum zone_type highest_zoneidx = gfp_zone(flags);
3075 	void *obj = NULL;
3076 	struct slab *slab;
3077 	int nid;
3078 	unsigned int cpuset_mems_cookie;
3079 
3080 	if (flags & __GFP_THISNODE)
3081 		return NULL;
3082 
3083 retry_cpuset:
3084 	cpuset_mems_cookie = read_mems_allowed_begin();
3085 	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3086 
3087 retry:
3088 	/*
3089 	 * Look through allowed nodes for objects available
3090 	 * from existing per node queues.
3091 	 */
3092 	for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
3093 		nid = zone_to_nid(zone);
3094 
3095 		if (cpuset_zone_allowed(zone, flags) &&
3096 			get_node(cache, nid) &&
3097 			get_node(cache, nid)->free_objects) {
3098 				obj = ____cache_alloc_node(cache,
3099 					gfp_exact_node(flags), nid);
3100 				if (obj)
3101 					break;
3102 		}
3103 	}
3104 
3105 	if (!obj) {
3106 		/*
3107 		 * This allocation will be performed within the constraints
3108 		 * of the current cpuset / memory policy requirements.
3109 		 * We may trigger various forms of reclaim on the allowed
3110 		 * set and go into memory reserves if necessary.
3111 		 */
3112 		slab = cache_grow_begin(cache, flags, numa_mem_id());
3113 		cache_grow_end(cache, slab);
3114 		if (slab) {
3115 			nid = slab_nid(slab);
3116 			obj = ____cache_alloc_node(cache,
3117 				gfp_exact_node(flags), nid);
3118 
3119 			/*
3120 			 * Another processor may allocate the objects in
3121 			 * the slab since we are not holding any locks.
3122 			 */
3123 			if (!obj)
3124 				goto retry;
3125 		}
3126 	}
3127 
3128 	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3129 		goto retry_cpuset;
3130 	return obj;
3131 }
3132 
3133 /*
3134  * An interface to enable slab creation on nodeid
3135  */
3136 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3137 				int nodeid)
3138 {
3139 	struct slab *slab;
3140 	struct kmem_cache_node *n;
3141 	void *obj = NULL;
3142 	void *list = NULL;
3143 
3144 	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3145 	n = get_node(cachep, nodeid);
3146 	BUG_ON(!n);
3147 
3148 	check_irq_off();
3149 	spin_lock(&n->list_lock);
3150 	slab = get_first_slab(n, false);
3151 	if (!slab)
3152 		goto must_grow;
3153 
3154 	check_spinlock_acquired_node(cachep, nodeid);
3155 
3156 	STATS_INC_NODEALLOCS(cachep);
3157 	STATS_INC_ACTIVE(cachep);
3158 	STATS_SET_HIGH(cachep);
3159 
3160 	BUG_ON(slab->active == cachep->num);
3161 
3162 	obj = slab_get_obj(cachep, slab);
3163 	n->free_objects--;
3164 
3165 	fixup_slab_list(cachep, n, slab, &list);
3166 
3167 	spin_unlock(&n->list_lock);
3168 	fixup_objfreelist_debug(cachep, &list);
3169 	return obj;
3170 
3171 must_grow:
3172 	spin_unlock(&n->list_lock);
3173 	slab = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3174 	if (slab) {
3175 		/* This slab isn't counted yet so don't update free_objects */
3176 		obj = slab_get_obj(cachep, slab);
3177 	}
3178 	cache_grow_end(cachep, slab);
3179 
3180 	return obj ? obj : fallback_alloc(cachep, flags);
3181 }
3182 
3183 static __always_inline void *
3184 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, size_t orig_size,
3185 		   unsigned long caller)
3186 {
3187 	unsigned long save_flags;
3188 	void *ptr;
3189 	int slab_node = numa_mem_id();
3190 	struct obj_cgroup *objcg = NULL;
3191 	bool init = false;
3192 
3193 	flags &= gfp_allowed_mask;
3194 	cachep = slab_pre_alloc_hook(cachep, NULL, &objcg, 1, flags);
3195 	if (unlikely(!cachep))
3196 		return NULL;
3197 
3198 	ptr = kfence_alloc(cachep, orig_size, flags);
3199 	if (unlikely(ptr))
3200 		goto out_hooks;
3201 
3202 	local_irq_save(save_flags);
3203 
3204 	if (nodeid == NUMA_NO_NODE)
3205 		nodeid = slab_node;
3206 
3207 	if (unlikely(!get_node(cachep, nodeid))) {
3208 		/* Node not bootstrapped yet */
3209 		ptr = fallback_alloc(cachep, flags);
3210 		goto out;
3211 	}
3212 
3213 	if (nodeid == slab_node) {
3214 		/*
3215 		 * Use the locally cached objects if possible.
3216 		 * However ____cache_alloc does not allow fallback
3217 		 * to other nodes. It may fail while we still have
3218 		 * objects on other nodes available.
3219 		 */
3220 		ptr = ____cache_alloc(cachep, flags);
3221 		if (ptr)
3222 			goto out;
3223 	}
3224 	/* ___cache_alloc_node can fall back to other nodes */
3225 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3226 out:
3227 	local_irq_restore(save_flags);
3228 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3229 	init = slab_want_init_on_alloc(flags, cachep);
3230 
3231 out_hooks:
3232 	slab_post_alloc_hook(cachep, objcg, flags, 1, &ptr, init);
3233 	return ptr;
3234 }
3235 
3236 static __always_inline void *
3237 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3238 {
3239 	void *objp;
3240 
3241 	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3242 		objp = alternate_node_alloc(cache, flags);
3243 		if (objp)
3244 			goto out;
3245 	}
3246 	objp = ____cache_alloc(cache, flags);
3247 
3248 	/*
3249 	 * We may just have run out of memory on the local node.
3250 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3251 	 */
3252 	if (!objp)
3253 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3254 
3255 out:
3256 	return objp;
3257 }
3258 #else
3259 
3260 static __always_inline void *
3261 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3262 {
3263 	return ____cache_alloc(cachep, flags);
3264 }
3265 
3266 #endif /* CONFIG_NUMA */
3267 
3268 static __always_inline void *
3269 slab_alloc(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags,
3270 	   size_t orig_size, unsigned long caller)
3271 {
3272 	unsigned long save_flags;
3273 	void *objp;
3274 	struct obj_cgroup *objcg = NULL;
3275 	bool init = false;
3276 
3277 	flags &= gfp_allowed_mask;
3278 	cachep = slab_pre_alloc_hook(cachep, lru, &objcg, 1, flags);
3279 	if (unlikely(!cachep))
3280 		return NULL;
3281 
3282 	objp = kfence_alloc(cachep, orig_size, flags);
3283 	if (unlikely(objp))
3284 		goto out;
3285 
3286 	local_irq_save(save_flags);
3287 	objp = __do_cache_alloc(cachep, flags);
3288 	local_irq_restore(save_flags);
3289 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3290 	prefetchw(objp);
3291 	init = slab_want_init_on_alloc(flags, cachep);
3292 
3293 out:
3294 	slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init);
3295 	return objp;
3296 }
3297 
3298 /*
3299  * Caller needs to acquire correct kmem_cache_node's list_lock
3300  * @list: List of detached free slabs should be freed by caller
3301  */
3302 static void free_block(struct kmem_cache *cachep, void **objpp,
3303 			int nr_objects, int node, struct list_head *list)
3304 {
3305 	int i;
3306 	struct kmem_cache_node *n = get_node(cachep, node);
3307 	struct slab *slab;
3308 
3309 	n->free_objects += nr_objects;
3310 
3311 	for (i = 0; i < nr_objects; i++) {
3312 		void *objp;
3313 		struct slab *slab;
3314 
3315 		objp = objpp[i];
3316 
3317 		slab = virt_to_slab(objp);
3318 		list_del(&slab->slab_list);
3319 		check_spinlock_acquired_node(cachep, node);
3320 		slab_put_obj(cachep, slab, objp);
3321 		STATS_DEC_ACTIVE(cachep);
3322 
3323 		/* fixup slab chains */
3324 		if (slab->active == 0) {
3325 			list_add(&slab->slab_list, &n->slabs_free);
3326 			n->free_slabs++;
3327 		} else {
3328 			/* Unconditionally move a slab to the end of the
3329 			 * partial list on free - maximum time for the
3330 			 * other objects to be freed, too.
3331 			 */
3332 			list_add_tail(&slab->slab_list, &n->slabs_partial);
3333 		}
3334 	}
3335 
3336 	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3337 		n->free_objects -= cachep->num;
3338 
3339 		slab = list_last_entry(&n->slabs_free, struct slab, slab_list);
3340 		list_move(&slab->slab_list, list);
3341 		n->free_slabs--;
3342 		n->total_slabs--;
3343 	}
3344 }
3345 
3346 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3347 {
3348 	int batchcount;
3349 	struct kmem_cache_node *n;
3350 	int node = numa_mem_id();
3351 	LIST_HEAD(list);
3352 
3353 	batchcount = ac->batchcount;
3354 
3355 	check_irq_off();
3356 	n = get_node(cachep, node);
3357 	spin_lock(&n->list_lock);
3358 	if (n->shared) {
3359 		struct array_cache *shared_array = n->shared;
3360 		int max = shared_array->limit - shared_array->avail;
3361 		if (max) {
3362 			if (batchcount > max)
3363 				batchcount = max;
3364 			memcpy(&(shared_array->entry[shared_array->avail]),
3365 			       ac->entry, sizeof(void *) * batchcount);
3366 			shared_array->avail += batchcount;
3367 			goto free_done;
3368 		}
3369 	}
3370 
3371 	free_block(cachep, ac->entry, batchcount, node, &list);
3372 free_done:
3373 #if STATS
3374 	{
3375 		int i = 0;
3376 		struct slab *slab;
3377 
3378 		list_for_each_entry(slab, &n->slabs_free, slab_list) {
3379 			BUG_ON(slab->active);
3380 
3381 			i++;
3382 		}
3383 		STATS_SET_FREEABLE(cachep, i);
3384 	}
3385 #endif
3386 	spin_unlock(&n->list_lock);
3387 	ac->avail -= batchcount;
3388 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3389 	slabs_destroy(cachep, &list);
3390 }
3391 
3392 /*
3393  * Release an obj back to its cache. If the obj has a constructed state, it must
3394  * be in this state _before_ it is released.  Called with disabled ints.
3395  */
3396 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3397 					 unsigned long caller)
3398 {
3399 	bool init;
3400 
3401 	memcg_slab_free_hook(cachep, virt_to_slab(objp), &objp, 1);
3402 
3403 	if (is_kfence_address(objp)) {
3404 		kmemleak_free_recursive(objp, cachep->flags);
3405 		__kfence_free(objp);
3406 		return;
3407 	}
3408 
3409 	/*
3410 	 * As memory initialization might be integrated into KASAN,
3411 	 * kasan_slab_free and initialization memset must be
3412 	 * kept together to avoid discrepancies in behavior.
3413 	 */
3414 	init = slab_want_init_on_free(cachep);
3415 	if (init && !kasan_has_integrated_init())
3416 		memset(objp, 0, cachep->object_size);
3417 	/* KASAN might put objp into memory quarantine, delaying its reuse. */
3418 	if (kasan_slab_free(cachep, objp, init))
3419 		return;
3420 
3421 	/* Use KCSAN to help debug racy use-after-free. */
3422 	if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU))
3423 		__kcsan_check_access(objp, cachep->object_size,
3424 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
3425 
3426 	___cache_free(cachep, objp, caller);
3427 }
3428 
3429 void ___cache_free(struct kmem_cache *cachep, void *objp,
3430 		unsigned long caller)
3431 {
3432 	struct array_cache *ac = cpu_cache_get(cachep);
3433 
3434 	check_irq_off();
3435 	kmemleak_free_recursive(objp, cachep->flags);
3436 	objp = cache_free_debugcheck(cachep, objp, caller);
3437 
3438 	/*
3439 	 * Skip calling cache_free_alien() when the platform is not numa.
3440 	 * This will avoid cache misses that happen while accessing slabp (which
3441 	 * is per page memory  reference) to get nodeid. Instead use a global
3442 	 * variable to skip the call, which is mostly likely to be present in
3443 	 * the cache.
3444 	 */
3445 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3446 		return;
3447 
3448 	if (ac->avail < ac->limit) {
3449 		STATS_INC_FREEHIT(cachep);
3450 	} else {
3451 		STATS_INC_FREEMISS(cachep);
3452 		cache_flusharray(cachep, ac);
3453 	}
3454 
3455 	if (sk_memalloc_socks()) {
3456 		struct slab *slab = virt_to_slab(objp);
3457 
3458 		if (unlikely(slab_test_pfmemalloc(slab))) {
3459 			cache_free_pfmemalloc(cachep, slab, objp);
3460 			return;
3461 		}
3462 	}
3463 
3464 	__free_one(ac, objp);
3465 }
3466 
3467 static __always_inline
3468 void *__kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru,
3469 			     gfp_t flags)
3470 {
3471 	void *ret = slab_alloc(cachep, lru, flags, cachep->object_size, _RET_IP_);
3472 
3473 	trace_kmem_cache_alloc(_RET_IP_, ret, cachep,
3474 			       cachep->object_size, cachep->size, flags);
3475 
3476 	return ret;
3477 }
3478 
3479 /**
3480  * kmem_cache_alloc - Allocate an object
3481  * @cachep: The cache to allocate from.
3482  * @flags: See kmalloc().
3483  *
3484  * Allocate an object from this cache.  The flags are only relevant
3485  * if the cache has no available objects.
3486  *
3487  * Return: pointer to the new object or %NULL in case of error
3488  */
3489 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3490 {
3491 	return __kmem_cache_alloc_lru(cachep, NULL, flags);
3492 }
3493 EXPORT_SYMBOL(kmem_cache_alloc);
3494 
3495 void *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru,
3496 			   gfp_t flags)
3497 {
3498 	return __kmem_cache_alloc_lru(cachep, lru, flags);
3499 }
3500 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3501 
3502 static __always_inline void
3503 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3504 				  size_t size, void **p, unsigned long caller)
3505 {
3506 	size_t i;
3507 
3508 	for (i = 0; i < size; i++)
3509 		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3510 }
3511 
3512 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3513 			  void **p)
3514 {
3515 	size_t i;
3516 	struct obj_cgroup *objcg = NULL;
3517 
3518 	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
3519 	if (!s)
3520 		return 0;
3521 
3522 	local_irq_disable();
3523 	for (i = 0; i < size; i++) {
3524 		void *objp = kfence_alloc(s, s->object_size, flags) ?: __do_cache_alloc(s, flags);
3525 
3526 		if (unlikely(!objp))
3527 			goto error;
3528 		p[i] = objp;
3529 	}
3530 	local_irq_enable();
3531 
3532 	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3533 
3534 	/*
3535 	 * memcg and kmem_cache debug support and memory initialization.
3536 	 * Done outside of the IRQ disabled section.
3537 	 */
3538 	slab_post_alloc_hook(s, objcg, flags, size, p,
3539 				slab_want_init_on_alloc(flags, s));
3540 	/* FIXME: Trace call missing. Christoph would like a bulk variant */
3541 	return size;
3542 error:
3543 	local_irq_enable();
3544 	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3545 	slab_post_alloc_hook(s, objcg, flags, i, p, false);
3546 	kmem_cache_free_bulk(s, i, p);
3547 	return 0;
3548 }
3549 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3550 
3551 #ifdef CONFIG_TRACING
3552 void *
3553 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3554 {
3555 	void *ret;
3556 
3557 	ret = slab_alloc(cachep, NULL, flags, size, _RET_IP_);
3558 
3559 	ret = kasan_kmalloc(cachep, ret, size, flags);
3560 	trace_kmalloc(_RET_IP_, ret, cachep,
3561 		      size, cachep->size, flags);
3562 	return ret;
3563 }
3564 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3565 #endif
3566 
3567 #ifdef CONFIG_NUMA
3568 /**
3569  * kmem_cache_alloc_node - Allocate an object on the specified node
3570  * @cachep: The cache to allocate from.
3571  * @flags: See kmalloc().
3572  * @nodeid: node number of the target node.
3573  *
3574  * Identical to kmem_cache_alloc but it will allocate memory on the given
3575  * node, which can improve the performance for cpu bound structures.
3576  *
3577  * Fallback to other node is possible if __GFP_THISNODE is not set.
3578  *
3579  * Return: pointer to the new object or %NULL in case of error
3580  */
3581 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3582 {
3583 	void *ret = slab_alloc_node(cachep, flags, nodeid, cachep->object_size, _RET_IP_);
3584 
3585 	trace_kmem_cache_alloc_node(_RET_IP_, ret, cachep,
3586 				    cachep->object_size, cachep->size,
3587 				    flags, nodeid);
3588 
3589 	return ret;
3590 }
3591 EXPORT_SYMBOL(kmem_cache_alloc_node);
3592 
3593 #ifdef CONFIG_TRACING
3594 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3595 				  gfp_t flags,
3596 				  int nodeid,
3597 				  size_t size)
3598 {
3599 	void *ret;
3600 
3601 	ret = slab_alloc_node(cachep, flags, nodeid, size, _RET_IP_);
3602 
3603 	ret = kasan_kmalloc(cachep, ret, size, flags);
3604 	trace_kmalloc_node(_RET_IP_, ret, cachep,
3605 			   size, cachep->size,
3606 			   flags, nodeid);
3607 	return ret;
3608 }
3609 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3610 #endif
3611 
3612 static __always_inline void *
3613 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3614 {
3615 	struct kmem_cache *cachep;
3616 	void *ret;
3617 
3618 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3619 		return NULL;
3620 	cachep = kmalloc_slab(size, flags);
3621 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3622 		return cachep;
3623 	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3624 	ret = kasan_kmalloc(cachep, ret, size, flags);
3625 
3626 	return ret;
3627 }
3628 
3629 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3630 {
3631 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3632 }
3633 EXPORT_SYMBOL(__kmalloc_node);
3634 
3635 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3636 		int node, unsigned long caller)
3637 {
3638 	return __do_kmalloc_node(size, flags, node, caller);
3639 }
3640 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3641 #endif /* CONFIG_NUMA */
3642 
3643 #ifdef CONFIG_PRINTK
3644 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
3645 {
3646 	struct kmem_cache *cachep;
3647 	unsigned int objnr;
3648 	void *objp;
3649 
3650 	kpp->kp_ptr = object;
3651 	kpp->kp_slab = slab;
3652 	cachep = slab->slab_cache;
3653 	kpp->kp_slab_cache = cachep;
3654 	objp = object - obj_offset(cachep);
3655 	kpp->kp_data_offset = obj_offset(cachep);
3656 	slab = virt_to_slab(objp);
3657 	objnr = obj_to_index(cachep, slab, objp);
3658 	objp = index_to_obj(cachep, slab, objnr);
3659 	kpp->kp_objp = objp;
3660 	if (DEBUG && cachep->flags & SLAB_STORE_USER)
3661 		kpp->kp_ret = *dbg_userword(cachep, objp);
3662 }
3663 #endif
3664 
3665 /**
3666  * __do_kmalloc - allocate memory
3667  * @size: how many bytes of memory are required.
3668  * @flags: the type of memory to allocate (see kmalloc).
3669  * @caller: function caller for debug tracking of the caller
3670  *
3671  * Return: pointer to the allocated memory or %NULL in case of error
3672  */
3673 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3674 					  unsigned long caller)
3675 {
3676 	struct kmem_cache *cachep;
3677 	void *ret;
3678 
3679 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3680 		return NULL;
3681 	cachep = kmalloc_slab(size, flags);
3682 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3683 		return cachep;
3684 	ret = slab_alloc(cachep, NULL, flags, size, caller);
3685 
3686 	ret = kasan_kmalloc(cachep, ret, size, flags);
3687 	trace_kmalloc(caller, ret, cachep,
3688 		      size, cachep->size, flags);
3689 
3690 	return ret;
3691 }
3692 
3693 void *__kmalloc(size_t size, gfp_t flags)
3694 {
3695 	return __do_kmalloc(size, flags, _RET_IP_);
3696 }
3697 EXPORT_SYMBOL(__kmalloc);
3698 
3699 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3700 {
3701 	return __do_kmalloc(size, flags, caller);
3702 }
3703 EXPORT_SYMBOL(__kmalloc_track_caller);
3704 
3705 /**
3706  * kmem_cache_free - Deallocate an object
3707  * @cachep: The cache the allocation was from.
3708  * @objp: The previously allocated object.
3709  *
3710  * Free an object which was previously allocated from this
3711  * cache.
3712  */
3713 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3714 {
3715 	unsigned long flags;
3716 	cachep = cache_from_obj(cachep, objp);
3717 	if (!cachep)
3718 		return;
3719 
3720 	trace_kmem_cache_free(_RET_IP_, objp, cachep->name);
3721 	local_irq_save(flags);
3722 	debug_check_no_locks_freed(objp, cachep->object_size);
3723 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3724 		debug_check_no_obj_freed(objp, cachep->object_size);
3725 	__cache_free(cachep, objp, _RET_IP_);
3726 	local_irq_restore(flags);
3727 }
3728 EXPORT_SYMBOL(kmem_cache_free);
3729 
3730 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3731 {
3732 	struct kmem_cache *s;
3733 	size_t i;
3734 
3735 	local_irq_disable();
3736 	for (i = 0; i < size; i++) {
3737 		void *objp = p[i];
3738 
3739 		if (!orig_s) /* called via kfree_bulk */
3740 			s = virt_to_cache(objp);
3741 		else
3742 			s = cache_from_obj(orig_s, objp);
3743 		if (!s)
3744 			continue;
3745 
3746 		debug_check_no_locks_freed(objp, s->object_size);
3747 		if (!(s->flags & SLAB_DEBUG_OBJECTS))
3748 			debug_check_no_obj_freed(objp, s->object_size);
3749 
3750 		__cache_free(s, objp, _RET_IP_);
3751 	}
3752 	local_irq_enable();
3753 
3754 	/* FIXME: add tracing */
3755 }
3756 EXPORT_SYMBOL(kmem_cache_free_bulk);
3757 
3758 /**
3759  * kfree - free previously allocated memory
3760  * @objp: pointer returned by kmalloc.
3761  *
3762  * If @objp is NULL, no operation is performed.
3763  *
3764  * Don't free memory not originally allocated by kmalloc()
3765  * or you will run into trouble.
3766  */
3767 void kfree(const void *objp)
3768 {
3769 	struct kmem_cache *c;
3770 	unsigned long flags;
3771 
3772 	trace_kfree(_RET_IP_, objp);
3773 
3774 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3775 		return;
3776 	local_irq_save(flags);
3777 	kfree_debugcheck(objp);
3778 	c = virt_to_cache(objp);
3779 	if (!c) {
3780 		local_irq_restore(flags);
3781 		return;
3782 	}
3783 	debug_check_no_locks_freed(objp, c->object_size);
3784 
3785 	debug_check_no_obj_freed(objp, c->object_size);
3786 	__cache_free(c, (void *)objp, _RET_IP_);
3787 	local_irq_restore(flags);
3788 }
3789 EXPORT_SYMBOL(kfree);
3790 
3791 /*
3792  * This initializes kmem_cache_node or resizes various caches for all nodes.
3793  */
3794 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3795 {
3796 	int ret;
3797 	int node;
3798 	struct kmem_cache_node *n;
3799 
3800 	for_each_online_node(node) {
3801 		ret = setup_kmem_cache_node(cachep, node, gfp, true);
3802 		if (ret)
3803 			goto fail;
3804 
3805 	}
3806 
3807 	return 0;
3808 
3809 fail:
3810 	if (!cachep->list.next) {
3811 		/* Cache is not active yet. Roll back what we did */
3812 		node--;
3813 		while (node >= 0) {
3814 			n = get_node(cachep, node);
3815 			if (n) {
3816 				kfree(n->shared);
3817 				free_alien_cache(n->alien);
3818 				kfree(n);
3819 				cachep->node[node] = NULL;
3820 			}
3821 			node--;
3822 		}
3823 	}
3824 	return -ENOMEM;
3825 }
3826 
3827 /* Always called with the slab_mutex held */
3828 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3829 			    int batchcount, int shared, gfp_t gfp)
3830 {
3831 	struct array_cache __percpu *cpu_cache, *prev;
3832 	int cpu;
3833 
3834 	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3835 	if (!cpu_cache)
3836 		return -ENOMEM;
3837 
3838 	prev = cachep->cpu_cache;
3839 	cachep->cpu_cache = cpu_cache;
3840 	/*
3841 	 * Without a previous cpu_cache there's no need to synchronize remote
3842 	 * cpus, so skip the IPIs.
3843 	 */
3844 	if (prev)
3845 		kick_all_cpus_sync();
3846 
3847 	check_irq_on();
3848 	cachep->batchcount = batchcount;
3849 	cachep->limit = limit;
3850 	cachep->shared = shared;
3851 
3852 	if (!prev)
3853 		goto setup_node;
3854 
3855 	for_each_online_cpu(cpu) {
3856 		LIST_HEAD(list);
3857 		int node;
3858 		struct kmem_cache_node *n;
3859 		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3860 
3861 		node = cpu_to_mem(cpu);
3862 		n = get_node(cachep, node);
3863 		spin_lock_irq(&n->list_lock);
3864 		free_block(cachep, ac->entry, ac->avail, node, &list);
3865 		spin_unlock_irq(&n->list_lock);
3866 		slabs_destroy(cachep, &list);
3867 	}
3868 	free_percpu(prev);
3869 
3870 setup_node:
3871 	return setup_kmem_cache_nodes(cachep, gfp);
3872 }
3873 
3874 /* Called with slab_mutex held always */
3875 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3876 {
3877 	int err;
3878 	int limit = 0;
3879 	int shared = 0;
3880 	int batchcount = 0;
3881 
3882 	err = cache_random_seq_create(cachep, cachep->num, gfp);
3883 	if (err)
3884 		goto end;
3885 
3886 	/*
3887 	 * The head array serves three purposes:
3888 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3889 	 * - reduce the number of spinlock operations.
3890 	 * - reduce the number of linked list operations on the slab and
3891 	 *   bufctl chains: array operations are cheaper.
3892 	 * The numbers are guessed, we should auto-tune as described by
3893 	 * Bonwick.
3894 	 */
3895 	if (cachep->size > 131072)
3896 		limit = 1;
3897 	else if (cachep->size > PAGE_SIZE)
3898 		limit = 8;
3899 	else if (cachep->size > 1024)
3900 		limit = 24;
3901 	else if (cachep->size > 256)
3902 		limit = 54;
3903 	else
3904 		limit = 120;
3905 
3906 	/*
3907 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3908 	 * allocation behaviour: Most allocs on one cpu, most free operations
3909 	 * on another cpu. For these cases, an efficient object passing between
3910 	 * cpus is necessary. This is provided by a shared array. The array
3911 	 * replaces Bonwick's magazine layer.
3912 	 * On uniprocessor, it's functionally equivalent (but less efficient)
3913 	 * to a larger limit. Thus disabled by default.
3914 	 */
3915 	shared = 0;
3916 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3917 		shared = 8;
3918 
3919 #if DEBUG
3920 	/*
3921 	 * With debugging enabled, large batchcount lead to excessively long
3922 	 * periods with disabled local interrupts. Limit the batchcount
3923 	 */
3924 	if (limit > 32)
3925 		limit = 32;
3926 #endif
3927 	batchcount = (limit + 1) / 2;
3928 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3929 end:
3930 	if (err)
3931 		pr_err("enable_cpucache failed for %s, error %d\n",
3932 		       cachep->name, -err);
3933 	return err;
3934 }
3935 
3936 /*
3937  * Drain an array if it contains any elements taking the node lock only if
3938  * necessary. Note that the node listlock also protects the array_cache
3939  * if drain_array() is used on the shared array.
3940  */
3941 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3942 			 struct array_cache *ac, int node)
3943 {
3944 	LIST_HEAD(list);
3945 
3946 	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
3947 	check_mutex_acquired();
3948 
3949 	if (!ac || !ac->avail)
3950 		return;
3951 
3952 	if (ac->touched) {
3953 		ac->touched = 0;
3954 		return;
3955 	}
3956 
3957 	spin_lock_irq(&n->list_lock);
3958 	drain_array_locked(cachep, ac, node, false, &list);
3959 	spin_unlock_irq(&n->list_lock);
3960 
3961 	slabs_destroy(cachep, &list);
3962 }
3963 
3964 /**
3965  * cache_reap - Reclaim memory from caches.
3966  * @w: work descriptor
3967  *
3968  * Called from workqueue/eventd every few seconds.
3969  * Purpose:
3970  * - clear the per-cpu caches for this CPU.
3971  * - return freeable pages to the main free memory pool.
3972  *
3973  * If we cannot acquire the cache chain mutex then just give up - we'll try
3974  * again on the next iteration.
3975  */
3976 static void cache_reap(struct work_struct *w)
3977 {
3978 	struct kmem_cache *searchp;
3979 	struct kmem_cache_node *n;
3980 	int node = numa_mem_id();
3981 	struct delayed_work *work = to_delayed_work(w);
3982 
3983 	if (!mutex_trylock(&slab_mutex))
3984 		/* Give up. Setup the next iteration. */
3985 		goto out;
3986 
3987 	list_for_each_entry(searchp, &slab_caches, list) {
3988 		check_irq_on();
3989 
3990 		/*
3991 		 * We only take the node lock if absolutely necessary and we
3992 		 * have established with reasonable certainty that
3993 		 * we can do some work if the lock was obtained.
3994 		 */
3995 		n = get_node(searchp, node);
3996 
3997 		reap_alien(searchp, n);
3998 
3999 		drain_array(searchp, n, cpu_cache_get(searchp), node);
4000 
4001 		/*
4002 		 * These are racy checks but it does not matter
4003 		 * if we skip one check or scan twice.
4004 		 */
4005 		if (time_after(n->next_reap, jiffies))
4006 			goto next;
4007 
4008 		n->next_reap = jiffies + REAPTIMEOUT_NODE;
4009 
4010 		drain_array(searchp, n, n->shared, node);
4011 
4012 		if (n->free_touched)
4013 			n->free_touched = 0;
4014 		else {
4015 			int freed;
4016 
4017 			freed = drain_freelist(searchp, n, (n->free_limit +
4018 				5 * searchp->num - 1) / (5 * searchp->num));
4019 			STATS_ADD_REAPED(searchp, freed);
4020 		}
4021 next:
4022 		cond_resched();
4023 	}
4024 	check_irq_on();
4025 	mutex_unlock(&slab_mutex);
4026 	next_reap_node();
4027 out:
4028 	/* Set up the next iteration */
4029 	schedule_delayed_work_on(smp_processor_id(), work,
4030 				round_jiffies_relative(REAPTIMEOUT_AC));
4031 }
4032 
4033 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4034 {
4035 	unsigned long active_objs, num_objs, active_slabs;
4036 	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4037 	unsigned long free_slabs = 0;
4038 	int node;
4039 	struct kmem_cache_node *n;
4040 
4041 	for_each_kmem_cache_node(cachep, node, n) {
4042 		check_irq_on();
4043 		spin_lock_irq(&n->list_lock);
4044 
4045 		total_slabs += n->total_slabs;
4046 		free_slabs += n->free_slabs;
4047 		free_objs += n->free_objects;
4048 
4049 		if (n->shared)
4050 			shared_avail += n->shared->avail;
4051 
4052 		spin_unlock_irq(&n->list_lock);
4053 	}
4054 	num_objs = total_slabs * cachep->num;
4055 	active_slabs = total_slabs - free_slabs;
4056 	active_objs = num_objs - free_objs;
4057 
4058 	sinfo->active_objs = active_objs;
4059 	sinfo->num_objs = num_objs;
4060 	sinfo->active_slabs = active_slabs;
4061 	sinfo->num_slabs = total_slabs;
4062 	sinfo->shared_avail = shared_avail;
4063 	sinfo->limit = cachep->limit;
4064 	sinfo->batchcount = cachep->batchcount;
4065 	sinfo->shared = cachep->shared;
4066 	sinfo->objects_per_slab = cachep->num;
4067 	sinfo->cache_order = cachep->gfporder;
4068 }
4069 
4070 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4071 {
4072 #if STATS
4073 	{			/* node stats */
4074 		unsigned long high = cachep->high_mark;
4075 		unsigned long allocs = cachep->num_allocations;
4076 		unsigned long grown = cachep->grown;
4077 		unsigned long reaped = cachep->reaped;
4078 		unsigned long errors = cachep->errors;
4079 		unsigned long max_freeable = cachep->max_freeable;
4080 		unsigned long node_allocs = cachep->node_allocs;
4081 		unsigned long node_frees = cachep->node_frees;
4082 		unsigned long overflows = cachep->node_overflow;
4083 
4084 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4085 			   allocs, high, grown,
4086 			   reaped, errors, max_freeable, node_allocs,
4087 			   node_frees, overflows);
4088 	}
4089 	/* cpu stats */
4090 	{
4091 		unsigned long allochit = atomic_read(&cachep->allochit);
4092 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4093 		unsigned long freehit = atomic_read(&cachep->freehit);
4094 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4095 
4096 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4097 			   allochit, allocmiss, freehit, freemiss);
4098 	}
4099 #endif
4100 }
4101 
4102 #define MAX_SLABINFO_WRITE 128
4103 /**
4104  * slabinfo_write - Tuning for the slab allocator
4105  * @file: unused
4106  * @buffer: user buffer
4107  * @count: data length
4108  * @ppos: unused
4109  *
4110  * Return: %0 on success, negative error code otherwise.
4111  */
4112 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4113 		       size_t count, loff_t *ppos)
4114 {
4115 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4116 	int limit, batchcount, shared, res;
4117 	struct kmem_cache *cachep;
4118 
4119 	if (count > MAX_SLABINFO_WRITE)
4120 		return -EINVAL;
4121 	if (copy_from_user(&kbuf, buffer, count))
4122 		return -EFAULT;
4123 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4124 
4125 	tmp = strchr(kbuf, ' ');
4126 	if (!tmp)
4127 		return -EINVAL;
4128 	*tmp = '\0';
4129 	tmp++;
4130 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4131 		return -EINVAL;
4132 
4133 	/* Find the cache in the chain of caches. */
4134 	mutex_lock(&slab_mutex);
4135 	res = -EINVAL;
4136 	list_for_each_entry(cachep, &slab_caches, list) {
4137 		if (!strcmp(cachep->name, kbuf)) {
4138 			if (limit < 1 || batchcount < 1 ||
4139 					batchcount > limit || shared < 0) {
4140 				res = 0;
4141 			} else {
4142 				res = do_tune_cpucache(cachep, limit,
4143 						       batchcount, shared,
4144 						       GFP_KERNEL);
4145 			}
4146 			break;
4147 		}
4148 	}
4149 	mutex_unlock(&slab_mutex);
4150 	if (res >= 0)
4151 		res = count;
4152 	return res;
4153 }
4154 
4155 #ifdef CONFIG_HARDENED_USERCOPY
4156 /*
4157  * Rejects incorrectly sized objects and objects that are to be copied
4158  * to/from userspace but do not fall entirely within the containing slab
4159  * cache's usercopy region.
4160  *
4161  * Returns NULL if check passes, otherwise const char * to name of cache
4162  * to indicate an error.
4163  */
4164 void __check_heap_object(const void *ptr, unsigned long n,
4165 			 const struct slab *slab, bool to_user)
4166 {
4167 	struct kmem_cache *cachep;
4168 	unsigned int objnr;
4169 	unsigned long offset;
4170 
4171 	ptr = kasan_reset_tag(ptr);
4172 
4173 	/* Find and validate object. */
4174 	cachep = slab->slab_cache;
4175 	objnr = obj_to_index(cachep, slab, (void *)ptr);
4176 	BUG_ON(objnr >= cachep->num);
4177 
4178 	/* Find offset within object. */
4179 	if (is_kfence_address(ptr))
4180 		offset = ptr - kfence_object_start(ptr);
4181 	else
4182 		offset = ptr - index_to_obj(cachep, slab, objnr) - obj_offset(cachep);
4183 
4184 	/* Allow address range falling entirely within usercopy region. */
4185 	if (offset >= cachep->useroffset &&
4186 	    offset - cachep->useroffset <= cachep->usersize &&
4187 	    n <= cachep->useroffset - offset + cachep->usersize)
4188 		return;
4189 
4190 	usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4191 }
4192 #endif /* CONFIG_HARDENED_USERCOPY */
4193 
4194 /**
4195  * __ksize -- Uninstrumented ksize.
4196  * @objp: pointer to the object
4197  *
4198  * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same
4199  * safety checks as ksize() with KASAN instrumentation enabled.
4200  *
4201  * Return: size of the actual memory used by @objp in bytes
4202  */
4203 size_t __ksize(const void *objp)
4204 {
4205 	struct kmem_cache *c;
4206 	size_t size;
4207 
4208 	BUG_ON(!objp);
4209 	if (unlikely(objp == ZERO_SIZE_PTR))
4210 		return 0;
4211 
4212 	c = virt_to_cache(objp);
4213 	size = c ? c->object_size : 0;
4214 
4215 	return size;
4216 }
4217 EXPORT_SYMBOL(__ksize);
4218