xref: /openbmc/linux/mm/slab.c (revision 15ad7cdcfd76450d4beebc789ec646664238184d)
1 /*
2  * linux/mm/slab.c
3  * Written by Mark Hemment, 1996/97.
4  * (markhe@nextd.demon.co.uk)
5  *
6  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7  *
8  * Major cleanup, different bufctl logic, per-cpu arrays
9  *	(c) 2000 Manfred Spraul
10  *
11  * Cleanup, make the head arrays unconditional, preparation for NUMA
12  * 	(c) 2002 Manfred Spraul
13  *
14  * An implementation of the Slab Allocator as described in outline in;
15  *	UNIX Internals: The New Frontiers by Uresh Vahalia
16  *	Pub: Prentice Hall	ISBN 0-13-101908-2
17  * or with a little more detail in;
18  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19  *	Jeff Bonwick (Sun Microsystems).
20  *	Presented at: USENIX Summer 1994 Technical Conference
21  *
22  * The memory is organized in caches, one cache for each object type.
23  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24  * Each cache consists out of many slabs (they are small (usually one
25  * page long) and always contiguous), and each slab contains multiple
26  * initialized objects.
27  *
28  * This means, that your constructor is used only for newly allocated
29  * slabs and you must pass objects with the same intializations to
30  * kmem_cache_free.
31  *
32  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33  * normal). If you need a special memory type, then must create a new
34  * cache for that memory type.
35  *
36  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37  *   full slabs with 0 free objects
38  *   partial slabs
39  *   empty slabs with no allocated objects
40  *
41  * If partial slabs exist, then new allocations come from these slabs,
42  * otherwise from empty slabs or new slabs are allocated.
43  *
44  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46  *
47  * Each cache has a short per-cpu head array, most allocs
48  * and frees go into that array, and if that array overflows, then 1/2
49  * of the entries in the array are given back into the global cache.
50  * The head array is strictly LIFO and should improve the cache hit rates.
51  * On SMP, it additionally reduces the spinlock operations.
52  *
53  * The c_cpuarray may not be read with enabled local interrupts -
54  * it's changed with a smp_call_function().
55  *
56  * SMP synchronization:
57  *  constructors and destructors are called without any locking.
58  *  Several members in struct kmem_cache and struct slab never change, they
59  *	are accessed without any locking.
60  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61  *  	and local interrupts are disabled so slab code is preempt-safe.
62  *  The non-constant members are protected with a per-cache irq spinlock.
63  *
64  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65  * in 2000 - many ideas in the current implementation are derived from
66  * his patch.
67  *
68  * Further notes from the original documentation:
69  *
70  * 11 April '97.  Started multi-threading - markhe
71  *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72  *	The sem is only needed when accessing/extending the cache-chain, which
73  *	can never happen inside an interrupt (kmem_cache_create(),
74  *	kmem_cache_shrink() and kmem_cache_reap()).
75  *
76  *	At present, each engine can be growing a cache.  This should be blocked.
77  *
78  * 15 March 2005. NUMA slab allocator.
79  *	Shai Fultheim <shai@scalex86.org>.
80  *	Shobhit Dayal <shobhit@calsoftinc.com>
81  *	Alok N Kataria <alokk@calsoftinc.com>
82  *	Christoph Lameter <christoph@lameter.com>
83  *
84  *	Modified the slab allocator to be node aware on NUMA systems.
85  *	Each node has its own list of partial, free and full slabs.
86  *	All object allocations for a node occur from node specific slab lists.
87  */
88 
89 #include	<linux/slab.h>
90 #include	<linux/mm.h>
91 #include	<linux/poison.h>
92 #include	<linux/swap.h>
93 #include	<linux/cache.h>
94 #include	<linux/interrupt.h>
95 #include	<linux/init.h>
96 #include	<linux/compiler.h>
97 #include	<linux/cpuset.h>
98 #include	<linux/seq_file.h>
99 #include	<linux/notifier.h>
100 #include	<linux/kallsyms.h>
101 #include	<linux/cpu.h>
102 #include	<linux/sysctl.h>
103 #include	<linux/module.h>
104 #include	<linux/rcupdate.h>
105 #include	<linux/string.h>
106 #include	<linux/uaccess.h>
107 #include	<linux/nodemask.h>
108 #include	<linux/mempolicy.h>
109 #include	<linux/mutex.h>
110 #include	<linux/rtmutex.h>
111 
112 #include	<asm/cacheflush.h>
113 #include	<asm/tlbflush.h>
114 #include	<asm/page.h>
115 
116 /*
117  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
118  *		  SLAB_RED_ZONE & SLAB_POISON.
119  *		  0 for faster, smaller code (especially in the critical paths).
120  *
121  * STATS	- 1 to collect stats for /proc/slabinfo.
122  *		  0 for faster, smaller code (especially in the critical paths).
123  *
124  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
125  */
126 
127 #ifdef CONFIG_DEBUG_SLAB
128 #define	DEBUG		1
129 #define	STATS		1
130 #define	FORCED_DEBUG	1
131 #else
132 #define	DEBUG		0
133 #define	STATS		0
134 #define	FORCED_DEBUG	0
135 #endif
136 
137 /* Shouldn't this be in a header file somewhere? */
138 #define	BYTES_PER_WORD		sizeof(void *)
139 
140 #ifndef cache_line_size
141 #define cache_line_size()	L1_CACHE_BYTES
142 #endif
143 
144 #ifndef ARCH_KMALLOC_MINALIGN
145 /*
146  * Enforce a minimum alignment for the kmalloc caches.
147  * Usually, the kmalloc caches are cache_line_size() aligned, except when
148  * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
149  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
150  * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
151  * Note that this flag disables some debug features.
152  */
153 #define ARCH_KMALLOC_MINALIGN 0
154 #endif
155 
156 #ifndef ARCH_SLAB_MINALIGN
157 /*
158  * Enforce a minimum alignment for all caches.
159  * Intended for archs that get misalignment faults even for BYTES_PER_WORD
160  * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
161  * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
162  * some debug features.
163  */
164 #define ARCH_SLAB_MINALIGN 0
165 #endif
166 
167 #ifndef ARCH_KMALLOC_FLAGS
168 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
169 #endif
170 
171 /* Legal flag mask for kmem_cache_create(). */
172 #if DEBUG
173 # define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
174 			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
175 			 SLAB_CACHE_DMA | \
176 			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
177 			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178 			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
179 #else
180 # define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
181 			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
182 			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
183 			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
184 #endif
185 
186 /*
187  * kmem_bufctl_t:
188  *
189  * Bufctl's are used for linking objs within a slab
190  * linked offsets.
191  *
192  * This implementation relies on "struct page" for locating the cache &
193  * slab an object belongs to.
194  * This allows the bufctl structure to be small (one int), but limits
195  * the number of objects a slab (not a cache) can contain when off-slab
196  * bufctls are used. The limit is the size of the largest general cache
197  * that does not use off-slab slabs.
198  * For 32bit archs with 4 kB pages, is this 56.
199  * This is not serious, as it is only for large objects, when it is unwise
200  * to have too many per slab.
201  * Note: This limit can be raised by introducing a general cache whose size
202  * is less than 512 (PAGE_SIZE<<3), but greater than 256.
203  */
204 
205 typedef unsigned int kmem_bufctl_t;
206 #define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
207 #define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
208 #define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
209 #define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
210 
211 /*
212  * struct slab
213  *
214  * Manages the objs in a slab. Placed either at the beginning of mem allocated
215  * for a slab, or allocated from an general cache.
216  * Slabs are chained into three list: fully used, partial, fully free slabs.
217  */
218 struct slab {
219 	struct list_head list;
220 	unsigned long colouroff;
221 	void *s_mem;		/* including colour offset */
222 	unsigned int inuse;	/* num of objs active in slab */
223 	kmem_bufctl_t free;
224 	unsigned short nodeid;
225 };
226 
227 /*
228  * struct slab_rcu
229  *
230  * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
231  * arrange for kmem_freepages to be called via RCU.  This is useful if
232  * we need to approach a kernel structure obliquely, from its address
233  * obtained without the usual locking.  We can lock the structure to
234  * stabilize it and check it's still at the given address, only if we
235  * can be sure that the memory has not been meanwhile reused for some
236  * other kind of object (which our subsystem's lock might corrupt).
237  *
238  * rcu_read_lock before reading the address, then rcu_read_unlock after
239  * taking the spinlock within the structure expected at that address.
240  *
241  * We assume struct slab_rcu can overlay struct slab when destroying.
242  */
243 struct slab_rcu {
244 	struct rcu_head head;
245 	struct kmem_cache *cachep;
246 	void *addr;
247 };
248 
249 /*
250  * struct array_cache
251  *
252  * Purpose:
253  * - LIFO ordering, to hand out cache-warm objects from _alloc
254  * - reduce the number of linked list operations
255  * - reduce spinlock operations
256  *
257  * The limit is stored in the per-cpu structure to reduce the data cache
258  * footprint.
259  *
260  */
261 struct array_cache {
262 	unsigned int avail;
263 	unsigned int limit;
264 	unsigned int batchcount;
265 	unsigned int touched;
266 	spinlock_t lock;
267 	void *entry[0];	/*
268 			 * Must have this definition in here for the proper
269 			 * alignment of array_cache. Also simplifies accessing
270 			 * the entries.
271 			 * [0] is for gcc 2.95. It should really be [].
272 			 */
273 };
274 
275 /*
276  * bootstrap: The caches do not work without cpuarrays anymore, but the
277  * cpuarrays are allocated from the generic caches...
278  */
279 #define BOOT_CPUCACHE_ENTRIES	1
280 struct arraycache_init {
281 	struct array_cache cache;
282 	void *entries[BOOT_CPUCACHE_ENTRIES];
283 };
284 
285 /*
286  * The slab lists for all objects.
287  */
288 struct kmem_list3 {
289 	struct list_head slabs_partial;	/* partial list first, better asm code */
290 	struct list_head slabs_full;
291 	struct list_head slabs_free;
292 	unsigned long free_objects;
293 	unsigned int free_limit;
294 	unsigned int colour_next;	/* Per-node cache coloring */
295 	spinlock_t list_lock;
296 	struct array_cache *shared;	/* shared per node */
297 	struct array_cache **alien;	/* on other nodes */
298 	unsigned long next_reap;	/* updated without locking */
299 	int free_touched;		/* updated without locking */
300 };
301 
302 /*
303  * Need this for bootstrapping a per node allocator.
304  */
305 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
306 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
307 #define	CACHE_CACHE 0
308 #define	SIZE_AC 1
309 #define	SIZE_L3 (1 + MAX_NUMNODES)
310 
311 static int drain_freelist(struct kmem_cache *cache,
312 			struct kmem_list3 *l3, int tofree);
313 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
314 			int node);
315 static int enable_cpucache(struct kmem_cache *cachep);
316 static void cache_reap(struct work_struct *unused);
317 
318 /*
319  * This function must be completely optimized away if a constant is passed to
320  * it.  Mostly the same as what is in linux/slab.h except it returns an index.
321  */
322 static __always_inline int index_of(const size_t size)
323 {
324 	extern void __bad_size(void);
325 
326 	if (__builtin_constant_p(size)) {
327 		int i = 0;
328 
329 #define CACHE(x) \
330 	if (size <=x) \
331 		return i; \
332 	else \
333 		i++;
334 #include "linux/kmalloc_sizes.h"
335 #undef CACHE
336 		__bad_size();
337 	} else
338 		__bad_size();
339 	return 0;
340 }
341 
342 static int slab_early_init = 1;
343 
344 #define INDEX_AC index_of(sizeof(struct arraycache_init))
345 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
346 
347 static void kmem_list3_init(struct kmem_list3 *parent)
348 {
349 	INIT_LIST_HEAD(&parent->slabs_full);
350 	INIT_LIST_HEAD(&parent->slabs_partial);
351 	INIT_LIST_HEAD(&parent->slabs_free);
352 	parent->shared = NULL;
353 	parent->alien = NULL;
354 	parent->colour_next = 0;
355 	spin_lock_init(&parent->list_lock);
356 	parent->free_objects = 0;
357 	parent->free_touched = 0;
358 }
359 
360 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
361 	do {								\
362 		INIT_LIST_HEAD(listp);					\
363 		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
364 	} while (0)
365 
366 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
367 	do {								\
368 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
369 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
370 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
371 	} while (0)
372 
373 /*
374  * struct kmem_cache
375  *
376  * manages a cache.
377  */
378 
379 struct kmem_cache {
380 /* 1) per-cpu data, touched during every alloc/free */
381 	struct array_cache *array[NR_CPUS];
382 /* 2) Cache tunables. Protected by cache_chain_mutex */
383 	unsigned int batchcount;
384 	unsigned int limit;
385 	unsigned int shared;
386 
387 	unsigned int buffer_size;
388 /* 3) touched by every alloc & free from the backend */
389 	struct kmem_list3 *nodelists[MAX_NUMNODES];
390 
391 	unsigned int flags;		/* constant flags */
392 	unsigned int num;		/* # of objs per slab */
393 
394 /* 4) cache_grow/shrink */
395 	/* order of pgs per slab (2^n) */
396 	unsigned int gfporder;
397 
398 	/* force GFP flags, e.g. GFP_DMA */
399 	gfp_t gfpflags;
400 
401 	size_t colour;			/* cache colouring range */
402 	unsigned int colour_off;	/* colour offset */
403 	struct kmem_cache *slabp_cache;
404 	unsigned int slab_size;
405 	unsigned int dflags;		/* dynamic flags */
406 
407 	/* constructor func */
408 	void (*ctor) (void *, struct kmem_cache *, unsigned long);
409 
410 	/* de-constructor func */
411 	void (*dtor) (void *, struct kmem_cache *, unsigned long);
412 
413 /* 5) cache creation/removal */
414 	const char *name;
415 	struct list_head next;
416 
417 /* 6) statistics */
418 #if STATS
419 	unsigned long num_active;
420 	unsigned long num_allocations;
421 	unsigned long high_mark;
422 	unsigned long grown;
423 	unsigned long reaped;
424 	unsigned long errors;
425 	unsigned long max_freeable;
426 	unsigned long node_allocs;
427 	unsigned long node_frees;
428 	unsigned long node_overflow;
429 	atomic_t allochit;
430 	atomic_t allocmiss;
431 	atomic_t freehit;
432 	atomic_t freemiss;
433 #endif
434 #if DEBUG
435 	/*
436 	 * If debugging is enabled, then the allocator can add additional
437 	 * fields and/or padding to every object. buffer_size contains the total
438 	 * object size including these internal fields, the following two
439 	 * variables contain the offset to the user object and its size.
440 	 */
441 	int obj_offset;
442 	int obj_size;
443 #endif
444 };
445 
446 #define CFLGS_OFF_SLAB		(0x80000000UL)
447 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
448 
449 #define BATCHREFILL_LIMIT	16
450 /*
451  * Optimization question: fewer reaps means less probability for unnessary
452  * cpucache drain/refill cycles.
453  *
454  * OTOH the cpuarrays can contain lots of objects,
455  * which could lock up otherwise freeable slabs.
456  */
457 #define REAPTIMEOUT_CPUC	(2*HZ)
458 #define REAPTIMEOUT_LIST3	(4*HZ)
459 
460 #if STATS
461 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
462 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
463 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
464 #define	STATS_INC_GROWN(x)	((x)->grown++)
465 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
466 #define	STATS_SET_HIGH(x)						\
467 	do {								\
468 		if ((x)->num_active > (x)->high_mark)			\
469 			(x)->high_mark = (x)->num_active;		\
470 	} while (0)
471 #define	STATS_INC_ERR(x)	((x)->errors++)
472 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
473 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
474 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
475 #define	STATS_SET_FREEABLE(x, i)					\
476 	do {								\
477 		if ((x)->max_freeable < i)				\
478 			(x)->max_freeable = i;				\
479 	} while (0)
480 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
481 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
482 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
483 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
484 #else
485 #define	STATS_INC_ACTIVE(x)	do { } while (0)
486 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
487 #define	STATS_INC_ALLOCED(x)	do { } while (0)
488 #define	STATS_INC_GROWN(x)	do { } while (0)
489 #define	STATS_ADD_REAPED(x,y)	do { } while (0)
490 #define	STATS_SET_HIGH(x)	do { } while (0)
491 #define	STATS_INC_ERR(x)	do { } while (0)
492 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
493 #define	STATS_INC_NODEFREES(x)	do { } while (0)
494 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
495 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
496 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
497 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
498 #define STATS_INC_FREEHIT(x)	do { } while (0)
499 #define STATS_INC_FREEMISS(x)	do { } while (0)
500 #endif
501 
502 #if DEBUG
503 
504 /*
505  * memory layout of objects:
506  * 0		: objp
507  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
508  * 		the end of an object is aligned with the end of the real
509  * 		allocation. Catches writes behind the end of the allocation.
510  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
511  * 		redzone word.
512  * cachep->obj_offset: The real object.
513  * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
514  * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
515  *					[BYTES_PER_WORD long]
516  */
517 static int obj_offset(struct kmem_cache *cachep)
518 {
519 	return cachep->obj_offset;
520 }
521 
522 static int obj_size(struct kmem_cache *cachep)
523 {
524 	return cachep->obj_size;
525 }
526 
527 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
528 {
529 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
530 	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
531 }
532 
533 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
534 {
535 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
536 	if (cachep->flags & SLAB_STORE_USER)
537 		return (unsigned long *)(objp + cachep->buffer_size -
538 					 2 * BYTES_PER_WORD);
539 	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
540 }
541 
542 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
543 {
544 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
545 	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
546 }
547 
548 #else
549 
550 #define obj_offset(x)			0
551 #define obj_size(cachep)		(cachep->buffer_size)
552 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
553 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
554 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
555 
556 #endif
557 
558 /*
559  * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
560  * order.
561  */
562 #if defined(CONFIG_LARGE_ALLOCS)
563 #define	MAX_OBJ_ORDER	13	/* up to 32Mb */
564 #define	MAX_GFP_ORDER	13	/* up to 32Mb */
565 #elif defined(CONFIG_MMU)
566 #define	MAX_OBJ_ORDER	5	/* 32 pages */
567 #define	MAX_GFP_ORDER	5	/* 32 pages */
568 #else
569 #define	MAX_OBJ_ORDER	8	/* up to 1Mb */
570 #define	MAX_GFP_ORDER	8	/* up to 1Mb */
571 #endif
572 
573 /*
574  * Do not go above this order unless 0 objects fit into the slab.
575  */
576 #define	BREAK_GFP_ORDER_HI	1
577 #define	BREAK_GFP_ORDER_LO	0
578 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
579 
580 /*
581  * Functions for storing/retrieving the cachep and or slab from the page
582  * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
583  * these are used to find the cache which an obj belongs to.
584  */
585 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
586 {
587 	page->lru.next = (struct list_head *)cache;
588 }
589 
590 static inline struct kmem_cache *page_get_cache(struct page *page)
591 {
592 	if (unlikely(PageCompound(page)))
593 		page = (struct page *)page_private(page);
594 	BUG_ON(!PageSlab(page));
595 	return (struct kmem_cache *)page->lru.next;
596 }
597 
598 static inline void page_set_slab(struct page *page, struct slab *slab)
599 {
600 	page->lru.prev = (struct list_head *)slab;
601 }
602 
603 static inline struct slab *page_get_slab(struct page *page)
604 {
605 	if (unlikely(PageCompound(page)))
606 		page = (struct page *)page_private(page);
607 	BUG_ON(!PageSlab(page));
608 	return (struct slab *)page->lru.prev;
609 }
610 
611 static inline struct kmem_cache *virt_to_cache(const void *obj)
612 {
613 	struct page *page = virt_to_page(obj);
614 	return page_get_cache(page);
615 }
616 
617 static inline struct slab *virt_to_slab(const void *obj)
618 {
619 	struct page *page = virt_to_page(obj);
620 	return page_get_slab(page);
621 }
622 
623 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
624 				 unsigned int idx)
625 {
626 	return slab->s_mem + cache->buffer_size * idx;
627 }
628 
629 static inline unsigned int obj_to_index(struct kmem_cache *cache,
630 					struct slab *slab, void *obj)
631 {
632 	return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
633 }
634 
635 /*
636  * These are the default caches for kmalloc. Custom caches can have other sizes.
637  */
638 struct cache_sizes malloc_sizes[] = {
639 #define CACHE(x) { .cs_size = (x) },
640 #include <linux/kmalloc_sizes.h>
641 	CACHE(ULONG_MAX)
642 #undef CACHE
643 };
644 EXPORT_SYMBOL(malloc_sizes);
645 
646 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
647 struct cache_names {
648 	char *name;
649 	char *name_dma;
650 };
651 
652 static struct cache_names __initdata cache_names[] = {
653 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
654 #include <linux/kmalloc_sizes.h>
655 	{NULL,}
656 #undef CACHE
657 };
658 
659 static struct arraycache_init initarray_cache __initdata =
660     { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
661 static struct arraycache_init initarray_generic =
662     { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
663 
664 /* internal cache of cache description objs */
665 static struct kmem_cache cache_cache = {
666 	.batchcount = 1,
667 	.limit = BOOT_CPUCACHE_ENTRIES,
668 	.shared = 1,
669 	.buffer_size = sizeof(struct kmem_cache),
670 	.name = "kmem_cache",
671 #if DEBUG
672 	.obj_size = sizeof(struct kmem_cache),
673 #endif
674 };
675 
676 #define BAD_ALIEN_MAGIC 0x01020304ul
677 
678 #ifdef CONFIG_LOCKDEP
679 
680 /*
681  * Slab sometimes uses the kmalloc slabs to store the slab headers
682  * for other slabs "off slab".
683  * The locking for this is tricky in that it nests within the locks
684  * of all other slabs in a few places; to deal with this special
685  * locking we put on-slab caches into a separate lock-class.
686  *
687  * We set lock class for alien array caches which are up during init.
688  * The lock annotation will be lost if all cpus of a node goes down and
689  * then comes back up during hotplug
690  */
691 static struct lock_class_key on_slab_l3_key;
692 static struct lock_class_key on_slab_alc_key;
693 
694 static inline void init_lock_keys(void)
695 
696 {
697 	int q;
698 	struct cache_sizes *s = malloc_sizes;
699 
700 	while (s->cs_size != ULONG_MAX) {
701 		for_each_node(q) {
702 			struct array_cache **alc;
703 			int r;
704 			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
705 			if (!l3 || OFF_SLAB(s->cs_cachep))
706 				continue;
707 			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
708 			alc = l3->alien;
709 			/*
710 			 * FIXME: This check for BAD_ALIEN_MAGIC
711 			 * should go away when common slab code is taught to
712 			 * work even without alien caches.
713 			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
714 			 * for alloc_alien_cache,
715 			 */
716 			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
717 				continue;
718 			for_each_node(r) {
719 				if (alc[r])
720 					lockdep_set_class(&alc[r]->lock,
721 					     &on_slab_alc_key);
722 			}
723 		}
724 		s++;
725 	}
726 }
727 #else
728 static inline void init_lock_keys(void)
729 {
730 }
731 #endif
732 
733 /*
734  * 1. Guard access to the cache-chain.
735  * 2. Protect sanity of cpu_online_map against cpu hotplug events
736  */
737 static DEFINE_MUTEX(cache_chain_mutex);
738 static struct list_head cache_chain;
739 
740 /*
741  * chicken and egg problem: delay the per-cpu array allocation
742  * until the general caches are up.
743  */
744 static enum {
745 	NONE,
746 	PARTIAL_AC,
747 	PARTIAL_L3,
748 	FULL
749 } g_cpucache_up;
750 
751 /*
752  * used by boot code to determine if it can use slab based allocator
753  */
754 int slab_is_available(void)
755 {
756 	return g_cpucache_up == FULL;
757 }
758 
759 static DEFINE_PER_CPU(struct delayed_work, reap_work);
760 
761 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
762 {
763 	return cachep->array[smp_processor_id()];
764 }
765 
766 static inline struct kmem_cache *__find_general_cachep(size_t size,
767 							gfp_t gfpflags)
768 {
769 	struct cache_sizes *csizep = malloc_sizes;
770 
771 #if DEBUG
772 	/* This happens if someone tries to call
773 	 * kmem_cache_create(), or __kmalloc(), before
774 	 * the generic caches are initialized.
775 	 */
776 	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
777 #endif
778 	while (size > csizep->cs_size)
779 		csizep++;
780 
781 	/*
782 	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
783 	 * has cs_{dma,}cachep==NULL. Thus no special case
784 	 * for large kmalloc calls required.
785 	 */
786 	if (unlikely(gfpflags & GFP_DMA))
787 		return csizep->cs_dmacachep;
788 	return csizep->cs_cachep;
789 }
790 
791 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
792 {
793 	return __find_general_cachep(size, gfpflags);
794 }
795 
796 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
797 {
798 	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
799 }
800 
801 /*
802  * Calculate the number of objects and left-over bytes for a given buffer size.
803  */
804 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
805 			   size_t align, int flags, size_t *left_over,
806 			   unsigned int *num)
807 {
808 	int nr_objs;
809 	size_t mgmt_size;
810 	size_t slab_size = PAGE_SIZE << gfporder;
811 
812 	/*
813 	 * The slab management structure can be either off the slab or
814 	 * on it. For the latter case, the memory allocated for a
815 	 * slab is used for:
816 	 *
817 	 * - The struct slab
818 	 * - One kmem_bufctl_t for each object
819 	 * - Padding to respect alignment of @align
820 	 * - @buffer_size bytes for each object
821 	 *
822 	 * If the slab management structure is off the slab, then the
823 	 * alignment will already be calculated into the size. Because
824 	 * the slabs are all pages aligned, the objects will be at the
825 	 * correct alignment when allocated.
826 	 */
827 	if (flags & CFLGS_OFF_SLAB) {
828 		mgmt_size = 0;
829 		nr_objs = slab_size / buffer_size;
830 
831 		if (nr_objs > SLAB_LIMIT)
832 			nr_objs = SLAB_LIMIT;
833 	} else {
834 		/*
835 		 * Ignore padding for the initial guess. The padding
836 		 * is at most @align-1 bytes, and @buffer_size is at
837 		 * least @align. In the worst case, this result will
838 		 * be one greater than the number of objects that fit
839 		 * into the memory allocation when taking the padding
840 		 * into account.
841 		 */
842 		nr_objs = (slab_size - sizeof(struct slab)) /
843 			  (buffer_size + sizeof(kmem_bufctl_t));
844 
845 		/*
846 		 * This calculated number will be either the right
847 		 * amount, or one greater than what we want.
848 		 */
849 		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
850 		       > slab_size)
851 			nr_objs--;
852 
853 		if (nr_objs > SLAB_LIMIT)
854 			nr_objs = SLAB_LIMIT;
855 
856 		mgmt_size = slab_mgmt_size(nr_objs, align);
857 	}
858 	*num = nr_objs;
859 	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
860 }
861 
862 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
863 
864 static void __slab_error(const char *function, struct kmem_cache *cachep,
865 			char *msg)
866 {
867 	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
868 	       function, cachep->name, msg);
869 	dump_stack();
870 }
871 
872 /*
873  * By default on NUMA we use alien caches to stage the freeing of
874  * objects allocated from other nodes. This causes massive memory
875  * inefficiencies when using fake NUMA setup to split memory into a
876  * large number of small nodes, so it can be disabled on the command
877  * line
878   */
879 
880 static int use_alien_caches __read_mostly = 1;
881 static int __init noaliencache_setup(char *s)
882 {
883 	use_alien_caches = 0;
884 	return 1;
885 }
886 __setup("noaliencache", noaliencache_setup);
887 
888 #ifdef CONFIG_NUMA
889 /*
890  * Special reaping functions for NUMA systems called from cache_reap().
891  * These take care of doing round robin flushing of alien caches (containing
892  * objects freed on different nodes from which they were allocated) and the
893  * flushing of remote pcps by calling drain_node_pages.
894  */
895 static DEFINE_PER_CPU(unsigned long, reap_node);
896 
897 static void init_reap_node(int cpu)
898 {
899 	int node;
900 
901 	node = next_node(cpu_to_node(cpu), node_online_map);
902 	if (node == MAX_NUMNODES)
903 		node = first_node(node_online_map);
904 
905 	per_cpu(reap_node, cpu) = node;
906 }
907 
908 static void next_reap_node(void)
909 {
910 	int node = __get_cpu_var(reap_node);
911 
912 	/*
913 	 * Also drain per cpu pages on remote zones
914 	 */
915 	if (node != numa_node_id())
916 		drain_node_pages(node);
917 
918 	node = next_node(node, node_online_map);
919 	if (unlikely(node >= MAX_NUMNODES))
920 		node = first_node(node_online_map);
921 	__get_cpu_var(reap_node) = node;
922 }
923 
924 #else
925 #define init_reap_node(cpu) do { } while (0)
926 #define next_reap_node(void) do { } while (0)
927 #endif
928 
929 /*
930  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
931  * via the workqueue/eventd.
932  * Add the CPU number into the expiration time to minimize the possibility of
933  * the CPUs getting into lockstep and contending for the global cache chain
934  * lock.
935  */
936 static void __devinit start_cpu_timer(int cpu)
937 {
938 	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
939 
940 	/*
941 	 * When this gets called from do_initcalls via cpucache_init(),
942 	 * init_workqueues() has already run, so keventd will be setup
943 	 * at that time.
944 	 */
945 	if (keventd_up() && reap_work->work.func == NULL) {
946 		init_reap_node(cpu);
947 		INIT_DELAYED_WORK(reap_work, cache_reap);
948 		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
949 	}
950 }
951 
952 static struct array_cache *alloc_arraycache(int node, int entries,
953 					    int batchcount)
954 {
955 	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
956 	struct array_cache *nc = NULL;
957 
958 	nc = kmalloc_node(memsize, GFP_KERNEL, node);
959 	if (nc) {
960 		nc->avail = 0;
961 		nc->limit = entries;
962 		nc->batchcount = batchcount;
963 		nc->touched = 0;
964 		spin_lock_init(&nc->lock);
965 	}
966 	return nc;
967 }
968 
969 /*
970  * Transfer objects in one arraycache to another.
971  * Locking must be handled by the caller.
972  *
973  * Return the number of entries transferred.
974  */
975 static int transfer_objects(struct array_cache *to,
976 		struct array_cache *from, unsigned int max)
977 {
978 	/* Figure out how many entries to transfer */
979 	int nr = min(min(from->avail, max), to->limit - to->avail);
980 
981 	if (!nr)
982 		return 0;
983 
984 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
985 			sizeof(void *) *nr);
986 
987 	from->avail -= nr;
988 	to->avail += nr;
989 	to->touched = 1;
990 	return nr;
991 }
992 
993 #ifndef CONFIG_NUMA
994 
995 #define drain_alien_cache(cachep, alien) do { } while (0)
996 #define reap_alien(cachep, l3) do { } while (0)
997 
998 static inline struct array_cache **alloc_alien_cache(int node, int limit)
999 {
1000 	return (struct array_cache **)BAD_ALIEN_MAGIC;
1001 }
1002 
1003 static inline void free_alien_cache(struct array_cache **ac_ptr)
1004 {
1005 }
1006 
1007 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1008 {
1009 	return 0;
1010 }
1011 
1012 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1013 		gfp_t flags)
1014 {
1015 	return NULL;
1016 }
1017 
1018 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1019 		 gfp_t flags, int nodeid)
1020 {
1021 	return NULL;
1022 }
1023 
1024 #else	/* CONFIG_NUMA */
1025 
1026 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1027 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1028 
1029 static struct array_cache **alloc_alien_cache(int node, int limit)
1030 {
1031 	struct array_cache **ac_ptr;
1032 	int memsize = sizeof(void *) * MAX_NUMNODES;
1033 	int i;
1034 
1035 	if (limit > 1)
1036 		limit = 12;
1037 	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1038 	if (ac_ptr) {
1039 		for_each_node(i) {
1040 			if (i == node || !node_online(i)) {
1041 				ac_ptr[i] = NULL;
1042 				continue;
1043 			}
1044 			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1045 			if (!ac_ptr[i]) {
1046 				for (i--; i <= 0; i--)
1047 					kfree(ac_ptr[i]);
1048 				kfree(ac_ptr);
1049 				return NULL;
1050 			}
1051 		}
1052 	}
1053 	return ac_ptr;
1054 }
1055 
1056 static void free_alien_cache(struct array_cache **ac_ptr)
1057 {
1058 	int i;
1059 
1060 	if (!ac_ptr)
1061 		return;
1062 	for_each_node(i)
1063 	    kfree(ac_ptr[i]);
1064 	kfree(ac_ptr);
1065 }
1066 
1067 static void __drain_alien_cache(struct kmem_cache *cachep,
1068 				struct array_cache *ac, int node)
1069 {
1070 	struct kmem_list3 *rl3 = cachep->nodelists[node];
1071 
1072 	if (ac->avail) {
1073 		spin_lock(&rl3->list_lock);
1074 		/*
1075 		 * Stuff objects into the remote nodes shared array first.
1076 		 * That way we could avoid the overhead of putting the objects
1077 		 * into the free lists and getting them back later.
1078 		 */
1079 		if (rl3->shared)
1080 			transfer_objects(rl3->shared, ac, ac->limit);
1081 
1082 		free_block(cachep, ac->entry, ac->avail, node);
1083 		ac->avail = 0;
1084 		spin_unlock(&rl3->list_lock);
1085 	}
1086 }
1087 
1088 /*
1089  * Called from cache_reap() to regularly drain alien caches round robin.
1090  */
1091 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1092 {
1093 	int node = __get_cpu_var(reap_node);
1094 
1095 	if (l3->alien) {
1096 		struct array_cache *ac = l3->alien[node];
1097 
1098 		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1099 			__drain_alien_cache(cachep, ac, node);
1100 			spin_unlock_irq(&ac->lock);
1101 		}
1102 	}
1103 }
1104 
1105 static void drain_alien_cache(struct kmem_cache *cachep,
1106 				struct array_cache **alien)
1107 {
1108 	int i = 0;
1109 	struct array_cache *ac;
1110 	unsigned long flags;
1111 
1112 	for_each_online_node(i) {
1113 		ac = alien[i];
1114 		if (ac) {
1115 			spin_lock_irqsave(&ac->lock, flags);
1116 			__drain_alien_cache(cachep, ac, i);
1117 			spin_unlock_irqrestore(&ac->lock, flags);
1118 		}
1119 	}
1120 }
1121 
1122 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1123 {
1124 	struct slab *slabp = virt_to_slab(objp);
1125 	int nodeid = slabp->nodeid;
1126 	struct kmem_list3 *l3;
1127 	struct array_cache *alien = NULL;
1128 	int node;
1129 
1130 	node = numa_node_id();
1131 
1132 	/*
1133 	 * Make sure we are not freeing a object from another node to the array
1134 	 * cache on this cpu.
1135 	 */
1136 	if (likely(slabp->nodeid == node) || unlikely(!use_alien_caches))
1137 		return 0;
1138 
1139 	l3 = cachep->nodelists[node];
1140 	STATS_INC_NODEFREES(cachep);
1141 	if (l3->alien && l3->alien[nodeid]) {
1142 		alien = l3->alien[nodeid];
1143 		spin_lock(&alien->lock);
1144 		if (unlikely(alien->avail == alien->limit)) {
1145 			STATS_INC_ACOVERFLOW(cachep);
1146 			__drain_alien_cache(cachep, alien, nodeid);
1147 		}
1148 		alien->entry[alien->avail++] = objp;
1149 		spin_unlock(&alien->lock);
1150 	} else {
1151 		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1152 		free_block(cachep, &objp, 1, nodeid);
1153 		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1154 	}
1155 	return 1;
1156 }
1157 #endif
1158 
1159 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1160 				    unsigned long action, void *hcpu)
1161 {
1162 	long cpu = (long)hcpu;
1163 	struct kmem_cache *cachep;
1164 	struct kmem_list3 *l3 = NULL;
1165 	int node = cpu_to_node(cpu);
1166 	int memsize = sizeof(struct kmem_list3);
1167 
1168 	switch (action) {
1169 	case CPU_UP_PREPARE:
1170 		mutex_lock(&cache_chain_mutex);
1171 		/*
1172 		 * We need to do this right in the beginning since
1173 		 * alloc_arraycache's are going to use this list.
1174 		 * kmalloc_node allows us to add the slab to the right
1175 		 * kmem_list3 and not this cpu's kmem_list3
1176 		 */
1177 
1178 		list_for_each_entry(cachep, &cache_chain, next) {
1179 			/*
1180 			 * Set up the size64 kmemlist for cpu before we can
1181 			 * begin anything. Make sure some other cpu on this
1182 			 * node has not already allocated this
1183 			 */
1184 			if (!cachep->nodelists[node]) {
1185 				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1186 				if (!l3)
1187 					goto bad;
1188 				kmem_list3_init(l3);
1189 				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1190 				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1191 
1192 				/*
1193 				 * The l3s don't come and go as CPUs come and
1194 				 * go.  cache_chain_mutex is sufficient
1195 				 * protection here.
1196 				 */
1197 				cachep->nodelists[node] = l3;
1198 			}
1199 
1200 			spin_lock_irq(&cachep->nodelists[node]->list_lock);
1201 			cachep->nodelists[node]->free_limit =
1202 				(1 + nr_cpus_node(node)) *
1203 				cachep->batchcount + cachep->num;
1204 			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1205 		}
1206 
1207 		/*
1208 		 * Now we can go ahead with allocating the shared arrays and
1209 		 * array caches
1210 		 */
1211 		list_for_each_entry(cachep, &cache_chain, next) {
1212 			struct array_cache *nc;
1213 			struct array_cache *shared;
1214 			struct array_cache **alien = NULL;
1215 
1216 			nc = alloc_arraycache(node, cachep->limit,
1217 						cachep->batchcount);
1218 			if (!nc)
1219 				goto bad;
1220 			shared = alloc_arraycache(node,
1221 					cachep->shared * cachep->batchcount,
1222 					0xbaadf00d);
1223 			if (!shared)
1224 				goto bad;
1225 
1226 			if (use_alien_caches) {
1227                                 alien = alloc_alien_cache(node, cachep->limit);
1228                                 if (!alien)
1229                                         goto bad;
1230                         }
1231 			cachep->array[cpu] = nc;
1232 			l3 = cachep->nodelists[node];
1233 			BUG_ON(!l3);
1234 
1235 			spin_lock_irq(&l3->list_lock);
1236 			if (!l3->shared) {
1237 				/*
1238 				 * We are serialised from CPU_DEAD or
1239 				 * CPU_UP_CANCELLED by the cpucontrol lock
1240 				 */
1241 				l3->shared = shared;
1242 				shared = NULL;
1243 			}
1244 #ifdef CONFIG_NUMA
1245 			if (!l3->alien) {
1246 				l3->alien = alien;
1247 				alien = NULL;
1248 			}
1249 #endif
1250 			spin_unlock_irq(&l3->list_lock);
1251 			kfree(shared);
1252 			free_alien_cache(alien);
1253 		}
1254 		break;
1255 	case CPU_ONLINE:
1256 		mutex_unlock(&cache_chain_mutex);
1257 		start_cpu_timer(cpu);
1258 		break;
1259 #ifdef CONFIG_HOTPLUG_CPU
1260 	case CPU_DOWN_PREPARE:
1261 		mutex_lock(&cache_chain_mutex);
1262 		break;
1263 	case CPU_DOWN_FAILED:
1264 		mutex_unlock(&cache_chain_mutex);
1265 		break;
1266 	case CPU_DEAD:
1267 		/*
1268 		 * Even if all the cpus of a node are down, we don't free the
1269 		 * kmem_list3 of any cache. This to avoid a race between
1270 		 * cpu_down, and a kmalloc allocation from another cpu for
1271 		 * memory from the node of the cpu going down.  The list3
1272 		 * structure is usually allocated from kmem_cache_create() and
1273 		 * gets destroyed at kmem_cache_destroy().
1274 		 */
1275 		/* fall thru */
1276 #endif
1277 	case CPU_UP_CANCELED:
1278 		list_for_each_entry(cachep, &cache_chain, next) {
1279 			struct array_cache *nc;
1280 			struct array_cache *shared;
1281 			struct array_cache **alien;
1282 			cpumask_t mask;
1283 
1284 			mask = node_to_cpumask(node);
1285 			/* cpu is dead; no one can alloc from it. */
1286 			nc = cachep->array[cpu];
1287 			cachep->array[cpu] = NULL;
1288 			l3 = cachep->nodelists[node];
1289 
1290 			if (!l3)
1291 				goto free_array_cache;
1292 
1293 			spin_lock_irq(&l3->list_lock);
1294 
1295 			/* Free limit for this kmem_list3 */
1296 			l3->free_limit -= cachep->batchcount;
1297 			if (nc)
1298 				free_block(cachep, nc->entry, nc->avail, node);
1299 
1300 			if (!cpus_empty(mask)) {
1301 				spin_unlock_irq(&l3->list_lock);
1302 				goto free_array_cache;
1303 			}
1304 
1305 			shared = l3->shared;
1306 			if (shared) {
1307 				free_block(cachep, l3->shared->entry,
1308 					   l3->shared->avail, node);
1309 				l3->shared = NULL;
1310 			}
1311 
1312 			alien = l3->alien;
1313 			l3->alien = NULL;
1314 
1315 			spin_unlock_irq(&l3->list_lock);
1316 
1317 			kfree(shared);
1318 			if (alien) {
1319 				drain_alien_cache(cachep, alien);
1320 				free_alien_cache(alien);
1321 			}
1322 free_array_cache:
1323 			kfree(nc);
1324 		}
1325 		/*
1326 		 * In the previous loop, all the objects were freed to
1327 		 * the respective cache's slabs,  now we can go ahead and
1328 		 * shrink each nodelist to its limit.
1329 		 */
1330 		list_for_each_entry(cachep, &cache_chain, next) {
1331 			l3 = cachep->nodelists[node];
1332 			if (!l3)
1333 				continue;
1334 			drain_freelist(cachep, l3, l3->free_objects);
1335 		}
1336 		mutex_unlock(&cache_chain_mutex);
1337 		break;
1338 	}
1339 	return NOTIFY_OK;
1340 bad:
1341 	return NOTIFY_BAD;
1342 }
1343 
1344 static struct notifier_block __cpuinitdata cpucache_notifier = {
1345 	&cpuup_callback, NULL, 0
1346 };
1347 
1348 /*
1349  * swap the static kmem_list3 with kmalloced memory
1350  */
1351 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1352 			int nodeid)
1353 {
1354 	struct kmem_list3 *ptr;
1355 
1356 	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1357 	BUG_ON(!ptr);
1358 
1359 	local_irq_disable();
1360 	memcpy(ptr, list, sizeof(struct kmem_list3));
1361 	/*
1362 	 * Do not assume that spinlocks can be initialized via memcpy:
1363 	 */
1364 	spin_lock_init(&ptr->list_lock);
1365 
1366 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1367 	cachep->nodelists[nodeid] = ptr;
1368 	local_irq_enable();
1369 }
1370 
1371 /*
1372  * Initialisation.  Called after the page allocator have been initialised and
1373  * before smp_init().
1374  */
1375 void __init kmem_cache_init(void)
1376 {
1377 	size_t left_over;
1378 	struct cache_sizes *sizes;
1379 	struct cache_names *names;
1380 	int i;
1381 	int order;
1382 	int node;
1383 
1384 	for (i = 0; i < NUM_INIT_LISTS; i++) {
1385 		kmem_list3_init(&initkmem_list3[i]);
1386 		if (i < MAX_NUMNODES)
1387 			cache_cache.nodelists[i] = NULL;
1388 	}
1389 
1390 	/*
1391 	 * Fragmentation resistance on low memory - only use bigger
1392 	 * page orders on machines with more than 32MB of memory.
1393 	 */
1394 	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1395 		slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1396 
1397 	/* Bootstrap is tricky, because several objects are allocated
1398 	 * from caches that do not exist yet:
1399 	 * 1) initialize the cache_cache cache: it contains the struct
1400 	 *    kmem_cache structures of all caches, except cache_cache itself:
1401 	 *    cache_cache is statically allocated.
1402 	 *    Initially an __init data area is used for the head array and the
1403 	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1404 	 *    array at the end of the bootstrap.
1405 	 * 2) Create the first kmalloc cache.
1406 	 *    The struct kmem_cache for the new cache is allocated normally.
1407 	 *    An __init data area is used for the head array.
1408 	 * 3) Create the remaining kmalloc caches, with minimally sized
1409 	 *    head arrays.
1410 	 * 4) Replace the __init data head arrays for cache_cache and the first
1411 	 *    kmalloc cache with kmalloc allocated arrays.
1412 	 * 5) Replace the __init data for kmem_list3 for cache_cache and
1413 	 *    the other cache's with kmalloc allocated memory.
1414 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1415 	 */
1416 
1417 	node = numa_node_id();
1418 
1419 	/* 1) create the cache_cache */
1420 	INIT_LIST_HEAD(&cache_chain);
1421 	list_add(&cache_cache.next, &cache_chain);
1422 	cache_cache.colour_off = cache_line_size();
1423 	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1424 	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1425 
1426 	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1427 					cache_line_size());
1428 
1429 	for (order = 0; order < MAX_ORDER; order++) {
1430 		cache_estimate(order, cache_cache.buffer_size,
1431 			cache_line_size(), 0, &left_over, &cache_cache.num);
1432 		if (cache_cache.num)
1433 			break;
1434 	}
1435 	BUG_ON(!cache_cache.num);
1436 	cache_cache.gfporder = order;
1437 	cache_cache.colour = left_over / cache_cache.colour_off;
1438 	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1439 				      sizeof(struct slab), cache_line_size());
1440 
1441 	/* 2+3) create the kmalloc caches */
1442 	sizes = malloc_sizes;
1443 	names = cache_names;
1444 
1445 	/*
1446 	 * Initialize the caches that provide memory for the array cache and the
1447 	 * kmem_list3 structures first.  Without this, further allocations will
1448 	 * bug.
1449 	 */
1450 
1451 	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1452 					sizes[INDEX_AC].cs_size,
1453 					ARCH_KMALLOC_MINALIGN,
1454 					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1455 					NULL, NULL);
1456 
1457 	if (INDEX_AC != INDEX_L3) {
1458 		sizes[INDEX_L3].cs_cachep =
1459 			kmem_cache_create(names[INDEX_L3].name,
1460 				sizes[INDEX_L3].cs_size,
1461 				ARCH_KMALLOC_MINALIGN,
1462 				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1463 				NULL, NULL);
1464 	}
1465 
1466 	slab_early_init = 0;
1467 
1468 	while (sizes->cs_size != ULONG_MAX) {
1469 		/*
1470 		 * For performance, all the general caches are L1 aligned.
1471 		 * This should be particularly beneficial on SMP boxes, as it
1472 		 * eliminates "false sharing".
1473 		 * Note for systems short on memory removing the alignment will
1474 		 * allow tighter packing of the smaller caches.
1475 		 */
1476 		if (!sizes->cs_cachep) {
1477 			sizes->cs_cachep = kmem_cache_create(names->name,
1478 					sizes->cs_size,
1479 					ARCH_KMALLOC_MINALIGN,
1480 					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1481 					NULL, NULL);
1482 		}
1483 
1484 		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1485 					sizes->cs_size,
1486 					ARCH_KMALLOC_MINALIGN,
1487 					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1488 						SLAB_PANIC,
1489 					NULL, NULL);
1490 		sizes++;
1491 		names++;
1492 	}
1493 	/* 4) Replace the bootstrap head arrays */
1494 	{
1495 		struct array_cache *ptr;
1496 
1497 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1498 
1499 		local_irq_disable();
1500 		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1501 		memcpy(ptr, cpu_cache_get(&cache_cache),
1502 		       sizeof(struct arraycache_init));
1503 		/*
1504 		 * Do not assume that spinlocks can be initialized via memcpy:
1505 		 */
1506 		spin_lock_init(&ptr->lock);
1507 
1508 		cache_cache.array[smp_processor_id()] = ptr;
1509 		local_irq_enable();
1510 
1511 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1512 
1513 		local_irq_disable();
1514 		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1515 		       != &initarray_generic.cache);
1516 		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1517 		       sizeof(struct arraycache_init));
1518 		/*
1519 		 * Do not assume that spinlocks can be initialized via memcpy:
1520 		 */
1521 		spin_lock_init(&ptr->lock);
1522 
1523 		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1524 		    ptr;
1525 		local_irq_enable();
1526 	}
1527 	/* 5) Replace the bootstrap kmem_list3's */
1528 	{
1529 		int nid;
1530 
1531 		/* Replace the static kmem_list3 structures for the boot cpu */
1532 		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1533 
1534 		for_each_online_node(nid) {
1535 			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1536 				  &initkmem_list3[SIZE_AC + nid], nid);
1537 
1538 			if (INDEX_AC != INDEX_L3) {
1539 				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1540 					  &initkmem_list3[SIZE_L3 + nid], nid);
1541 			}
1542 		}
1543 	}
1544 
1545 	/* 6) resize the head arrays to their final sizes */
1546 	{
1547 		struct kmem_cache *cachep;
1548 		mutex_lock(&cache_chain_mutex);
1549 		list_for_each_entry(cachep, &cache_chain, next)
1550 			if (enable_cpucache(cachep))
1551 				BUG();
1552 		mutex_unlock(&cache_chain_mutex);
1553 	}
1554 
1555 	/* Annotate slab for lockdep -- annotate the malloc caches */
1556 	init_lock_keys();
1557 
1558 
1559 	/* Done! */
1560 	g_cpucache_up = FULL;
1561 
1562 	/*
1563 	 * Register a cpu startup notifier callback that initializes
1564 	 * cpu_cache_get for all new cpus
1565 	 */
1566 	register_cpu_notifier(&cpucache_notifier);
1567 
1568 	/*
1569 	 * The reap timers are started later, with a module init call: That part
1570 	 * of the kernel is not yet operational.
1571 	 */
1572 }
1573 
1574 static int __init cpucache_init(void)
1575 {
1576 	int cpu;
1577 
1578 	/*
1579 	 * Register the timers that return unneeded pages to the page allocator
1580 	 */
1581 	for_each_online_cpu(cpu)
1582 		start_cpu_timer(cpu);
1583 	return 0;
1584 }
1585 __initcall(cpucache_init);
1586 
1587 /*
1588  * Interface to system's page allocator. No need to hold the cache-lock.
1589  *
1590  * If we requested dmaable memory, we will get it. Even if we
1591  * did not request dmaable memory, we might get it, but that
1592  * would be relatively rare and ignorable.
1593  */
1594 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1595 {
1596 	struct page *page;
1597 	int nr_pages;
1598 	int i;
1599 
1600 #ifndef CONFIG_MMU
1601 	/*
1602 	 * Nommu uses slab's for process anonymous memory allocations, and thus
1603 	 * requires __GFP_COMP to properly refcount higher order allocations
1604 	 */
1605 	flags |= __GFP_COMP;
1606 #endif
1607 
1608 	flags |= cachep->gfpflags;
1609 
1610 	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1611 	if (!page)
1612 		return NULL;
1613 
1614 	nr_pages = (1 << cachep->gfporder);
1615 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1616 		add_zone_page_state(page_zone(page),
1617 			NR_SLAB_RECLAIMABLE, nr_pages);
1618 	else
1619 		add_zone_page_state(page_zone(page),
1620 			NR_SLAB_UNRECLAIMABLE, nr_pages);
1621 	for (i = 0; i < nr_pages; i++)
1622 		__SetPageSlab(page + i);
1623 	return page_address(page);
1624 }
1625 
1626 /*
1627  * Interface to system's page release.
1628  */
1629 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1630 {
1631 	unsigned long i = (1 << cachep->gfporder);
1632 	struct page *page = virt_to_page(addr);
1633 	const unsigned long nr_freed = i;
1634 
1635 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1636 		sub_zone_page_state(page_zone(page),
1637 				NR_SLAB_RECLAIMABLE, nr_freed);
1638 	else
1639 		sub_zone_page_state(page_zone(page),
1640 				NR_SLAB_UNRECLAIMABLE, nr_freed);
1641 	while (i--) {
1642 		BUG_ON(!PageSlab(page));
1643 		__ClearPageSlab(page);
1644 		page++;
1645 	}
1646 	if (current->reclaim_state)
1647 		current->reclaim_state->reclaimed_slab += nr_freed;
1648 	free_pages((unsigned long)addr, cachep->gfporder);
1649 }
1650 
1651 static void kmem_rcu_free(struct rcu_head *head)
1652 {
1653 	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1654 	struct kmem_cache *cachep = slab_rcu->cachep;
1655 
1656 	kmem_freepages(cachep, slab_rcu->addr);
1657 	if (OFF_SLAB(cachep))
1658 		kmem_cache_free(cachep->slabp_cache, slab_rcu);
1659 }
1660 
1661 #if DEBUG
1662 
1663 #ifdef CONFIG_DEBUG_PAGEALLOC
1664 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1665 			    unsigned long caller)
1666 {
1667 	int size = obj_size(cachep);
1668 
1669 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1670 
1671 	if (size < 5 * sizeof(unsigned long))
1672 		return;
1673 
1674 	*addr++ = 0x12345678;
1675 	*addr++ = caller;
1676 	*addr++ = smp_processor_id();
1677 	size -= 3 * sizeof(unsigned long);
1678 	{
1679 		unsigned long *sptr = &caller;
1680 		unsigned long svalue;
1681 
1682 		while (!kstack_end(sptr)) {
1683 			svalue = *sptr++;
1684 			if (kernel_text_address(svalue)) {
1685 				*addr++ = svalue;
1686 				size -= sizeof(unsigned long);
1687 				if (size <= sizeof(unsigned long))
1688 					break;
1689 			}
1690 		}
1691 
1692 	}
1693 	*addr++ = 0x87654321;
1694 }
1695 #endif
1696 
1697 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1698 {
1699 	int size = obj_size(cachep);
1700 	addr = &((char *)addr)[obj_offset(cachep)];
1701 
1702 	memset(addr, val, size);
1703 	*(unsigned char *)(addr + size - 1) = POISON_END;
1704 }
1705 
1706 static void dump_line(char *data, int offset, int limit)
1707 {
1708 	int i;
1709 	unsigned char error = 0;
1710 	int bad_count = 0;
1711 
1712 	printk(KERN_ERR "%03x:", offset);
1713 	for (i = 0; i < limit; i++) {
1714 		if (data[offset + i] != POISON_FREE) {
1715 			error = data[offset + i];
1716 			bad_count++;
1717 		}
1718 		printk(" %02x", (unsigned char)data[offset + i]);
1719 	}
1720 	printk("\n");
1721 
1722 	if (bad_count == 1) {
1723 		error ^= POISON_FREE;
1724 		if (!(error & (error - 1))) {
1725 			printk(KERN_ERR "Single bit error detected. Probably "
1726 					"bad RAM.\n");
1727 #ifdef CONFIG_X86
1728 			printk(KERN_ERR "Run memtest86+ or a similar memory "
1729 					"test tool.\n");
1730 #else
1731 			printk(KERN_ERR "Run a memory test tool.\n");
1732 #endif
1733 		}
1734 	}
1735 }
1736 #endif
1737 
1738 #if DEBUG
1739 
1740 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1741 {
1742 	int i, size;
1743 	char *realobj;
1744 
1745 	if (cachep->flags & SLAB_RED_ZONE) {
1746 		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1747 			*dbg_redzone1(cachep, objp),
1748 			*dbg_redzone2(cachep, objp));
1749 	}
1750 
1751 	if (cachep->flags & SLAB_STORE_USER) {
1752 		printk(KERN_ERR "Last user: [<%p>]",
1753 			*dbg_userword(cachep, objp));
1754 		print_symbol("(%s)",
1755 				(unsigned long)*dbg_userword(cachep, objp));
1756 		printk("\n");
1757 	}
1758 	realobj = (char *)objp + obj_offset(cachep);
1759 	size = obj_size(cachep);
1760 	for (i = 0; i < size && lines; i += 16, lines--) {
1761 		int limit;
1762 		limit = 16;
1763 		if (i + limit > size)
1764 			limit = size - i;
1765 		dump_line(realobj, i, limit);
1766 	}
1767 }
1768 
1769 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1770 {
1771 	char *realobj;
1772 	int size, i;
1773 	int lines = 0;
1774 
1775 	realobj = (char *)objp + obj_offset(cachep);
1776 	size = obj_size(cachep);
1777 
1778 	for (i = 0; i < size; i++) {
1779 		char exp = POISON_FREE;
1780 		if (i == size - 1)
1781 			exp = POISON_END;
1782 		if (realobj[i] != exp) {
1783 			int limit;
1784 			/* Mismatch ! */
1785 			/* Print header */
1786 			if (lines == 0) {
1787 				printk(KERN_ERR
1788 					"Slab corruption: start=%p, len=%d\n",
1789 					realobj, size);
1790 				print_objinfo(cachep, objp, 0);
1791 			}
1792 			/* Hexdump the affected line */
1793 			i = (i / 16) * 16;
1794 			limit = 16;
1795 			if (i + limit > size)
1796 				limit = size - i;
1797 			dump_line(realobj, i, limit);
1798 			i += 16;
1799 			lines++;
1800 			/* Limit to 5 lines */
1801 			if (lines > 5)
1802 				break;
1803 		}
1804 	}
1805 	if (lines != 0) {
1806 		/* Print some data about the neighboring objects, if they
1807 		 * exist:
1808 		 */
1809 		struct slab *slabp = virt_to_slab(objp);
1810 		unsigned int objnr;
1811 
1812 		objnr = obj_to_index(cachep, slabp, objp);
1813 		if (objnr) {
1814 			objp = index_to_obj(cachep, slabp, objnr - 1);
1815 			realobj = (char *)objp + obj_offset(cachep);
1816 			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1817 			       realobj, size);
1818 			print_objinfo(cachep, objp, 2);
1819 		}
1820 		if (objnr + 1 < cachep->num) {
1821 			objp = index_to_obj(cachep, slabp, objnr + 1);
1822 			realobj = (char *)objp + obj_offset(cachep);
1823 			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1824 			       realobj, size);
1825 			print_objinfo(cachep, objp, 2);
1826 		}
1827 	}
1828 }
1829 #endif
1830 
1831 #if DEBUG
1832 /**
1833  * slab_destroy_objs - destroy a slab and its objects
1834  * @cachep: cache pointer being destroyed
1835  * @slabp: slab pointer being destroyed
1836  *
1837  * Call the registered destructor for each object in a slab that is being
1838  * destroyed.
1839  */
1840 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1841 {
1842 	int i;
1843 	for (i = 0; i < cachep->num; i++) {
1844 		void *objp = index_to_obj(cachep, slabp, i);
1845 
1846 		if (cachep->flags & SLAB_POISON) {
1847 #ifdef CONFIG_DEBUG_PAGEALLOC
1848 			if (cachep->buffer_size % PAGE_SIZE == 0 &&
1849 					OFF_SLAB(cachep))
1850 				kernel_map_pages(virt_to_page(objp),
1851 					cachep->buffer_size / PAGE_SIZE, 1);
1852 			else
1853 				check_poison_obj(cachep, objp);
1854 #else
1855 			check_poison_obj(cachep, objp);
1856 #endif
1857 		}
1858 		if (cachep->flags & SLAB_RED_ZONE) {
1859 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1860 				slab_error(cachep, "start of a freed object "
1861 					   "was overwritten");
1862 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1863 				slab_error(cachep, "end of a freed object "
1864 					   "was overwritten");
1865 		}
1866 		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1867 			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1868 	}
1869 }
1870 #else
1871 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1872 {
1873 	if (cachep->dtor) {
1874 		int i;
1875 		for (i = 0; i < cachep->num; i++) {
1876 			void *objp = index_to_obj(cachep, slabp, i);
1877 			(cachep->dtor) (objp, cachep, 0);
1878 		}
1879 	}
1880 }
1881 #endif
1882 
1883 /**
1884  * slab_destroy - destroy and release all objects in a slab
1885  * @cachep: cache pointer being destroyed
1886  * @slabp: slab pointer being destroyed
1887  *
1888  * Destroy all the objs in a slab, and release the mem back to the system.
1889  * Before calling the slab must have been unlinked from the cache.  The
1890  * cache-lock is not held/needed.
1891  */
1892 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1893 {
1894 	void *addr = slabp->s_mem - slabp->colouroff;
1895 
1896 	slab_destroy_objs(cachep, slabp);
1897 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1898 		struct slab_rcu *slab_rcu;
1899 
1900 		slab_rcu = (struct slab_rcu *)slabp;
1901 		slab_rcu->cachep = cachep;
1902 		slab_rcu->addr = addr;
1903 		call_rcu(&slab_rcu->head, kmem_rcu_free);
1904 	} else {
1905 		kmem_freepages(cachep, addr);
1906 		if (OFF_SLAB(cachep))
1907 			kmem_cache_free(cachep->slabp_cache, slabp);
1908 	}
1909 }
1910 
1911 /*
1912  * For setting up all the kmem_list3s for cache whose buffer_size is same as
1913  * size of kmem_list3.
1914  */
1915 static void set_up_list3s(struct kmem_cache *cachep, int index)
1916 {
1917 	int node;
1918 
1919 	for_each_online_node(node) {
1920 		cachep->nodelists[node] = &initkmem_list3[index + node];
1921 		cachep->nodelists[node]->next_reap = jiffies +
1922 		    REAPTIMEOUT_LIST3 +
1923 		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1924 	}
1925 }
1926 
1927 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1928 {
1929 	int i;
1930 	struct kmem_list3 *l3;
1931 
1932 	for_each_online_cpu(i)
1933 	    kfree(cachep->array[i]);
1934 
1935 	/* NUMA: free the list3 structures */
1936 	for_each_online_node(i) {
1937 		l3 = cachep->nodelists[i];
1938 		if (l3) {
1939 			kfree(l3->shared);
1940 			free_alien_cache(l3->alien);
1941 			kfree(l3);
1942 		}
1943 	}
1944 	kmem_cache_free(&cache_cache, cachep);
1945 }
1946 
1947 
1948 /**
1949  * calculate_slab_order - calculate size (page order) of slabs
1950  * @cachep: pointer to the cache that is being created
1951  * @size: size of objects to be created in this cache.
1952  * @align: required alignment for the objects.
1953  * @flags: slab allocation flags
1954  *
1955  * Also calculates the number of objects per slab.
1956  *
1957  * This could be made much more intelligent.  For now, try to avoid using
1958  * high order pages for slabs.  When the gfp() functions are more friendly
1959  * towards high-order requests, this should be changed.
1960  */
1961 static size_t calculate_slab_order(struct kmem_cache *cachep,
1962 			size_t size, size_t align, unsigned long flags)
1963 {
1964 	unsigned long offslab_limit;
1965 	size_t left_over = 0;
1966 	int gfporder;
1967 
1968 	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1969 		unsigned int num;
1970 		size_t remainder;
1971 
1972 		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1973 		if (!num)
1974 			continue;
1975 
1976 		if (flags & CFLGS_OFF_SLAB) {
1977 			/*
1978 			 * Max number of objs-per-slab for caches which
1979 			 * use off-slab slabs. Needed to avoid a possible
1980 			 * looping condition in cache_grow().
1981 			 */
1982 			offslab_limit = size - sizeof(struct slab);
1983 			offslab_limit /= sizeof(kmem_bufctl_t);
1984 
1985  			if (num > offslab_limit)
1986 				break;
1987 		}
1988 
1989 		/* Found something acceptable - save it away */
1990 		cachep->num = num;
1991 		cachep->gfporder = gfporder;
1992 		left_over = remainder;
1993 
1994 		/*
1995 		 * A VFS-reclaimable slab tends to have most allocations
1996 		 * as GFP_NOFS and we really don't want to have to be allocating
1997 		 * higher-order pages when we are unable to shrink dcache.
1998 		 */
1999 		if (flags & SLAB_RECLAIM_ACCOUNT)
2000 			break;
2001 
2002 		/*
2003 		 * Large number of objects is good, but very large slabs are
2004 		 * currently bad for the gfp()s.
2005 		 */
2006 		if (gfporder >= slab_break_gfp_order)
2007 			break;
2008 
2009 		/*
2010 		 * Acceptable internal fragmentation?
2011 		 */
2012 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2013 			break;
2014 	}
2015 	return left_over;
2016 }
2017 
2018 static int setup_cpu_cache(struct kmem_cache *cachep)
2019 {
2020 	if (g_cpucache_up == FULL)
2021 		return enable_cpucache(cachep);
2022 
2023 	if (g_cpucache_up == NONE) {
2024 		/*
2025 		 * Note: the first kmem_cache_create must create the cache
2026 		 * that's used by kmalloc(24), otherwise the creation of
2027 		 * further caches will BUG().
2028 		 */
2029 		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2030 
2031 		/*
2032 		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2033 		 * the first cache, then we need to set up all its list3s,
2034 		 * otherwise the creation of further caches will BUG().
2035 		 */
2036 		set_up_list3s(cachep, SIZE_AC);
2037 		if (INDEX_AC == INDEX_L3)
2038 			g_cpucache_up = PARTIAL_L3;
2039 		else
2040 			g_cpucache_up = PARTIAL_AC;
2041 	} else {
2042 		cachep->array[smp_processor_id()] =
2043 			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2044 
2045 		if (g_cpucache_up == PARTIAL_AC) {
2046 			set_up_list3s(cachep, SIZE_L3);
2047 			g_cpucache_up = PARTIAL_L3;
2048 		} else {
2049 			int node;
2050 			for_each_online_node(node) {
2051 				cachep->nodelists[node] =
2052 				    kmalloc_node(sizeof(struct kmem_list3),
2053 						GFP_KERNEL, node);
2054 				BUG_ON(!cachep->nodelists[node]);
2055 				kmem_list3_init(cachep->nodelists[node]);
2056 			}
2057 		}
2058 	}
2059 	cachep->nodelists[numa_node_id()]->next_reap =
2060 			jiffies + REAPTIMEOUT_LIST3 +
2061 			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2062 
2063 	cpu_cache_get(cachep)->avail = 0;
2064 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2065 	cpu_cache_get(cachep)->batchcount = 1;
2066 	cpu_cache_get(cachep)->touched = 0;
2067 	cachep->batchcount = 1;
2068 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2069 	return 0;
2070 }
2071 
2072 /**
2073  * kmem_cache_create - Create a cache.
2074  * @name: A string which is used in /proc/slabinfo to identify this cache.
2075  * @size: The size of objects to be created in this cache.
2076  * @align: The required alignment for the objects.
2077  * @flags: SLAB flags
2078  * @ctor: A constructor for the objects.
2079  * @dtor: A destructor for the objects.
2080  *
2081  * Returns a ptr to the cache on success, NULL on failure.
2082  * Cannot be called within a int, but can be interrupted.
2083  * The @ctor is run when new pages are allocated by the cache
2084  * and the @dtor is run before the pages are handed back.
2085  *
2086  * @name must be valid until the cache is destroyed. This implies that
2087  * the module calling this has to destroy the cache before getting unloaded.
2088  *
2089  * The flags are
2090  *
2091  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2092  * to catch references to uninitialised memory.
2093  *
2094  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2095  * for buffer overruns.
2096  *
2097  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2098  * cacheline.  This can be beneficial if you're counting cycles as closely
2099  * as davem.
2100  */
2101 struct kmem_cache *
2102 kmem_cache_create (const char *name, size_t size, size_t align,
2103 	unsigned long flags,
2104 	void (*ctor)(void*, struct kmem_cache *, unsigned long),
2105 	void (*dtor)(void*, struct kmem_cache *, unsigned long))
2106 {
2107 	size_t left_over, slab_size, ralign;
2108 	struct kmem_cache *cachep = NULL, *pc;
2109 
2110 	/*
2111 	 * Sanity checks... these are all serious usage bugs.
2112 	 */
2113 	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2114 	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
2115 		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2116 				name);
2117 		BUG();
2118 	}
2119 
2120 	/*
2121 	 * We use cache_chain_mutex to ensure a consistent view of
2122 	 * cpu_online_map as well.  Please see cpuup_callback
2123 	 */
2124 	mutex_lock(&cache_chain_mutex);
2125 
2126 	list_for_each_entry(pc, &cache_chain, next) {
2127 		char tmp;
2128 		int res;
2129 
2130 		/*
2131 		 * This happens when the module gets unloaded and doesn't
2132 		 * destroy its slab cache and no-one else reuses the vmalloc
2133 		 * area of the module.  Print a warning.
2134 		 */
2135 		res = probe_kernel_address(pc->name, tmp);
2136 		if (res) {
2137 			printk("SLAB: cache with size %d has lost its name\n",
2138 			       pc->buffer_size);
2139 			continue;
2140 		}
2141 
2142 		if (!strcmp(pc->name, name)) {
2143 			printk("kmem_cache_create: duplicate cache %s\n", name);
2144 			dump_stack();
2145 			goto oops;
2146 		}
2147 	}
2148 
2149 #if DEBUG
2150 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
2151 	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2152 		/* No constructor, but inital state check requested */
2153 		printk(KERN_ERR "%s: No con, but init state check "
2154 		       "requested - %s\n", __FUNCTION__, name);
2155 		flags &= ~SLAB_DEBUG_INITIAL;
2156 	}
2157 #if FORCED_DEBUG
2158 	/*
2159 	 * Enable redzoning and last user accounting, except for caches with
2160 	 * large objects, if the increased size would increase the object size
2161 	 * above the next power of two: caches with object sizes just above a
2162 	 * power of two have a significant amount of internal fragmentation.
2163 	 */
2164 	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
2165 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2166 	if (!(flags & SLAB_DESTROY_BY_RCU))
2167 		flags |= SLAB_POISON;
2168 #endif
2169 	if (flags & SLAB_DESTROY_BY_RCU)
2170 		BUG_ON(flags & SLAB_POISON);
2171 #endif
2172 	if (flags & SLAB_DESTROY_BY_RCU)
2173 		BUG_ON(dtor);
2174 
2175 	/*
2176 	 * Always checks flags, a caller might be expecting debug support which
2177 	 * isn't available.
2178 	 */
2179 	BUG_ON(flags & ~CREATE_MASK);
2180 
2181 	/*
2182 	 * Check that size is in terms of words.  This is needed to avoid
2183 	 * unaligned accesses for some archs when redzoning is used, and makes
2184 	 * sure any on-slab bufctl's are also correctly aligned.
2185 	 */
2186 	if (size & (BYTES_PER_WORD - 1)) {
2187 		size += (BYTES_PER_WORD - 1);
2188 		size &= ~(BYTES_PER_WORD - 1);
2189 	}
2190 
2191 	/* calculate the final buffer alignment: */
2192 
2193 	/* 1) arch recommendation: can be overridden for debug */
2194 	if (flags & SLAB_HWCACHE_ALIGN) {
2195 		/*
2196 		 * Default alignment: as specified by the arch code.  Except if
2197 		 * an object is really small, then squeeze multiple objects into
2198 		 * one cacheline.
2199 		 */
2200 		ralign = cache_line_size();
2201 		while (size <= ralign / 2)
2202 			ralign /= 2;
2203 	} else {
2204 		ralign = BYTES_PER_WORD;
2205 	}
2206 
2207 	/*
2208 	 * Redzoning and user store require word alignment. Note this will be
2209 	 * overridden by architecture or caller mandated alignment if either
2210 	 * is greater than BYTES_PER_WORD.
2211 	 */
2212 	if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2213 		ralign = BYTES_PER_WORD;
2214 
2215 	/* 2) arch mandated alignment */
2216 	if (ralign < ARCH_SLAB_MINALIGN) {
2217 		ralign = ARCH_SLAB_MINALIGN;
2218 	}
2219 	/* 3) caller mandated alignment */
2220 	if (ralign < align) {
2221 		ralign = align;
2222 	}
2223 	/* disable debug if necessary */
2224 	if (ralign > BYTES_PER_WORD)
2225 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2226 	/*
2227 	 * 4) Store it.
2228 	 */
2229 	align = ralign;
2230 
2231 	/* Get cache's description obj. */
2232 	cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
2233 	if (!cachep)
2234 		goto oops;
2235 
2236 #if DEBUG
2237 	cachep->obj_size = size;
2238 
2239 	/*
2240 	 * Both debugging options require word-alignment which is calculated
2241 	 * into align above.
2242 	 */
2243 	if (flags & SLAB_RED_ZONE) {
2244 		/* add space for red zone words */
2245 		cachep->obj_offset += BYTES_PER_WORD;
2246 		size += 2 * BYTES_PER_WORD;
2247 	}
2248 	if (flags & SLAB_STORE_USER) {
2249 		/* user store requires one word storage behind the end of
2250 		 * the real object.
2251 		 */
2252 		size += BYTES_PER_WORD;
2253 	}
2254 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2255 	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2256 	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2257 		cachep->obj_offset += PAGE_SIZE - size;
2258 		size = PAGE_SIZE;
2259 	}
2260 #endif
2261 #endif
2262 
2263 	/*
2264 	 * Determine if the slab management is 'on' or 'off' slab.
2265 	 * (bootstrapping cannot cope with offslab caches so don't do
2266 	 * it too early on.)
2267 	 */
2268 	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2269 		/*
2270 		 * Size is large, assume best to place the slab management obj
2271 		 * off-slab (should allow better packing of objs).
2272 		 */
2273 		flags |= CFLGS_OFF_SLAB;
2274 
2275 	size = ALIGN(size, align);
2276 
2277 	left_over = calculate_slab_order(cachep, size, align, flags);
2278 
2279 	if (!cachep->num) {
2280 		printk("kmem_cache_create: couldn't create cache %s.\n", name);
2281 		kmem_cache_free(&cache_cache, cachep);
2282 		cachep = NULL;
2283 		goto oops;
2284 	}
2285 	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2286 			  + sizeof(struct slab), align);
2287 
2288 	/*
2289 	 * If the slab has been placed off-slab, and we have enough space then
2290 	 * move it on-slab. This is at the expense of any extra colouring.
2291 	 */
2292 	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2293 		flags &= ~CFLGS_OFF_SLAB;
2294 		left_over -= slab_size;
2295 	}
2296 
2297 	if (flags & CFLGS_OFF_SLAB) {
2298 		/* really off slab. No need for manual alignment */
2299 		slab_size =
2300 		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2301 	}
2302 
2303 	cachep->colour_off = cache_line_size();
2304 	/* Offset must be a multiple of the alignment. */
2305 	if (cachep->colour_off < align)
2306 		cachep->colour_off = align;
2307 	cachep->colour = left_over / cachep->colour_off;
2308 	cachep->slab_size = slab_size;
2309 	cachep->flags = flags;
2310 	cachep->gfpflags = 0;
2311 	if (flags & SLAB_CACHE_DMA)
2312 		cachep->gfpflags |= GFP_DMA;
2313 	cachep->buffer_size = size;
2314 
2315 	if (flags & CFLGS_OFF_SLAB) {
2316 		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2317 		/*
2318 		 * This is a possibility for one of the malloc_sizes caches.
2319 		 * But since we go off slab only for object size greater than
2320 		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2321 		 * this should not happen at all.
2322 		 * But leave a BUG_ON for some lucky dude.
2323 		 */
2324 		BUG_ON(!cachep->slabp_cache);
2325 	}
2326 	cachep->ctor = ctor;
2327 	cachep->dtor = dtor;
2328 	cachep->name = name;
2329 
2330 	if (setup_cpu_cache(cachep)) {
2331 		__kmem_cache_destroy(cachep);
2332 		cachep = NULL;
2333 		goto oops;
2334 	}
2335 
2336 	/* cache setup completed, link it into the list */
2337 	list_add(&cachep->next, &cache_chain);
2338 oops:
2339 	if (!cachep && (flags & SLAB_PANIC))
2340 		panic("kmem_cache_create(): failed to create slab `%s'\n",
2341 		      name);
2342 	mutex_unlock(&cache_chain_mutex);
2343 	return cachep;
2344 }
2345 EXPORT_SYMBOL(kmem_cache_create);
2346 
2347 #if DEBUG
2348 static void check_irq_off(void)
2349 {
2350 	BUG_ON(!irqs_disabled());
2351 }
2352 
2353 static void check_irq_on(void)
2354 {
2355 	BUG_ON(irqs_disabled());
2356 }
2357 
2358 static void check_spinlock_acquired(struct kmem_cache *cachep)
2359 {
2360 #ifdef CONFIG_SMP
2361 	check_irq_off();
2362 	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2363 #endif
2364 }
2365 
2366 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2367 {
2368 #ifdef CONFIG_SMP
2369 	check_irq_off();
2370 	assert_spin_locked(&cachep->nodelists[node]->list_lock);
2371 #endif
2372 }
2373 
2374 #else
2375 #define check_irq_off()	do { } while(0)
2376 #define check_irq_on()	do { } while(0)
2377 #define check_spinlock_acquired(x) do { } while(0)
2378 #define check_spinlock_acquired_node(x, y) do { } while(0)
2379 #endif
2380 
2381 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2382 			struct array_cache *ac,
2383 			int force, int node);
2384 
2385 static void do_drain(void *arg)
2386 {
2387 	struct kmem_cache *cachep = arg;
2388 	struct array_cache *ac;
2389 	int node = numa_node_id();
2390 
2391 	check_irq_off();
2392 	ac = cpu_cache_get(cachep);
2393 	spin_lock(&cachep->nodelists[node]->list_lock);
2394 	free_block(cachep, ac->entry, ac->avail, node);
2395 	spin_unlock(&cachep->nodelists[node]->list_lock);
2396 	ac->avail = 0;
2397 }
2398 
2399 static void drain_cpu_caches(struct kmem_cache *cachep)
2400 {
2401 	struct kmem_list3 *l3;
2402 	int node;
2403 
2404 	on_each_cpu(do_drain, cachep, 1, 1);
2405 	check_irq_on();
2406 	for_each_online_node(node) {
2407 		l3 = cachep->nodelists[node];
2408 		if (l3 && l3->alien)
2409 			drain_alien_cache(cachep, l3->alien);
2410 	}
2411 
2412 	for_each_online_node(node) {
2413 		l3 = cachep->nodelists[node];
2414 		if (l3)
2415 			drain_array(cachep, l3, l3->shared, 1, node);
2416 	}
2417 }
2418 
2419 /*
2420  * Remove slabs from the list of free slabs.
2421  * Specify the number of slabs to drain in tofree.
2422  *
2423  * Returns the actual number of slabs released.
2424  */
2425 static int drain_freelist(struct kmem_cache *cache,
2426 			struct kmem_list3 *l3, int tofree)
2427 {
2428 	struct list_head *p;
2429 	int nr_freed;
2430 	struct slab *slabp;
2431 
2432 	nr_freed = 0;
2433 	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2434 
2435 		spin_lock_irq(&l3->list_lock);
2436 		p = l3->slabs_free.prev;
2437 		if (p == &l3->slabs_free) {
2438 			spin_unlock_irq(&l3->list_lock);
2439 			goto out;
2440 		}
2441 
2442 		slabp = list_entry(p, struct slab, list);
2443 #if DEBUG
2444 		BUG_ON(slabp->inuse);
2445 #endif
2446 		list_del(&slabp->list);
2447 		/*
2448 		 * Safe to drop the lock. The slab is no longer linked
2449 		 * to the cache.
2450 		 */
2451 		l3->free_objects -= cache->num;
2452 		spin_unlock_irq(&l3->list_lock);
2453 		slab_destroy(cache, slabp);
2454 		nr_freed++;
2455 	}
2456 out:
2457 	return nr_freed;
2458 }
2459 
2460 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2461 static int __cache_shrink(struct kmem_cache *cachep)
2462 {
2463 	int ret = 0, i = 0;
2464 	struct kmem_list3 *l3;
2465 
2466 	drain_cpu_caches(cachep);
2467 
2468 	check_irq_on();
2469 	for_each_online_node(i) {
2470 		l3 = cachep->nodelists[i];
2471 		if (!l3)
2472 			continue;
2473 
2474 		drain_freelist(cachep, l3, l3->free_objects);
2475 
2476 		ret += !list_empty(&l3->slabs_full) ||
2477 			!list_empty(&l3->slabs_partial);
2478 	}
2479 	return (ret ? 1 : 0);
2480 }
2481 
2482 /**
2483  * kmem_cache_shrink - Shrink a cache.
2484  * @cachep: The cache to shrink.
2485  *
2486  * Releases as many slabs as possible for a cache.
2487  * To help debugging, a zero exit status indicates all slabs were released.
2488  */
2489 int kmem_cache_shrink(struct kmem_cache *cachep)
2490 {
2491 	int ret;
2492 	BUG_ON(!cachep || in_interrupt());
2493 
2494 	mutex_lock(&cache_chain_mutex);
2495 	ret = __cache_shrink(cachep);
2496 	mutex_unlock(&cache_chain_mutex);
2497 	return ret;
2498 }
2499 EXPORT_SYMBOL(kmem_cache_shrink);
2500 
2501 /**
2502  * kmem_cache_destroy - delete a cache
2503  * @cachep: the cache to destroy
2504  *
2505  * Remove a struct kmem_cache object from the slab cache.
2506  *
2507  * It is expected this function will be called by a module when it is
2508  * unloaded.  This will remove the cache completely, and avoid a duplicate
2509  * cache being allocated each time a module is loaded and unloaded, if the
2510  * module doesn't have persistent in-kernel storage across loads and unloads.
2511  *
2512  * The cache must be empty before calling this function.
2513  *
2514  * The caller must guarantee that noone will allocate memory from the cache
2515  * during the kmem_cache_destroy().
2516  */
2517 void kmem_cache_destroy(struct kmem_cache *cachep)
2518 {
2519 	BUG_ON(!cachep || in_interrupt());
2520 
2521 	/* Find the cache in the chain of caches. */
2522 	mutex_lock(&cache_chain_mutex);
2523 	/*
2524 	 * the chain is never empty, cache_cache is never destroyed
2525 	 */
2526 	list_del(&cachep->next);
2527 	if (__cache_shrink(cachep)) {
2528 		slab_error(cachep, "Can't free all objects");
2529 		list_add(&cachep->next, &cache_chain);
2530 		mutex_unlock(&cache_chain_mutex);
2531 		return;
2532 	}
2533 
2534 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2535 		synchronize_rcu();
2536 
2537 	__kmem_cache_destroy(cachep);
2538 	mutex_unlock(&cache_chain_mutex);
2539 }
2540 EXPORT_SYMBOL(kmem_cache_destroy);
2541 
2542 /*
2543  * Get the memory for a slab management obj.
2544  * For a slab cache when the slab descriptor is off-slab, slab descriptors
2545  * always come from malloc_sizes caches.  The slab descriptor cannot
2546  * come from the same cache which is getting created because,
2547  * when we are searching for an appropriate cache for these
2548  * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2549  * If we are creating a malloc_sizes cache here it would not be visible to
2550  * kmem_find_general_cachep till the initialization is complete.
2551  * Hence we cannot have slabp_cache same as the original cache.
2552  */
2553 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2554 				   int colour_off, gfp_t local_flags,
2555 				   int nodeid)
2556 {
2557 	struct slab *slabp;
2558 
2559 	if (OFF_SLAB(cachep)) {
2560 		/* Slab management obj is off-slab. */
2561 		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2562 					      local_flags & ~GFP_THISNODE, nodeid);
2563 		if (!slabp)
2564 			return NULL;
2565 	} else {
2566 		slabp = objp + colour_off;
2567 		colour_off += cachep->slab_size;
2568 	}
2569 	slabp->inuse = 0;
2570 	slabp->colouroff = colour_off;
2571 	slabp->s_mem = objp + colour_off;
2572 	slabp->nodeid = nodeid;
2573 	return slabp;
2574 }
2575 
2576 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2577 {
2578 	return (kmem_bufctl_t *) (slabp + 1);
2579 }
2580 
2581 static void cache_init_objs(struct kmem_cache *cachep,
2582 			    struct slab *slabp, unsigned long ctor_flags)
2583 {
2584 	int i;
2585 
2586 	for (i = 0; i < cachep->num; i++) {
2587 		void *objp = index_to_obj(cachep, slabp, i);
2588 #if DEBUG
2589 		/* need to poison the objs? */
2590 		if (cachep->flags & SLAB_POISON)
2591 			poison_obj(cachep, objp, POISON_FREE);
2592 		if (cachep->flags & SLAB_STORE_USER)
2593 			*dbg_userword(cachep, objp) = NULL;
2594 
2595 		if (cachep->flags & SLAB_RED_ZONE) {
2596 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2597 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2598 		}
2599 		/*
2600 		 * Constructors are not allowed to allocate memory from the same
2601 		 * cache which they are a constructor for.  Otherwise, deadlock.
2602 		 * They must also be threaded.
2603 		 */
2604 		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2605 			cachep->ctor(objp + obj_offset(cachep), cachep,
2606 				     ctor_flags);
2607 
2608 		if (cachep->flags & SLAB_RED_ZONE) {
2609 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2610 				slab_error(cachep, "constructor overwrote the"
2611 					   " end of an object");
2612 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2613 				slab_error(cachep, "constructor overwrote the"
2614 					   " start of an object");
2615 		}
2616 		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2617 			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2618 			kernel_map_pages(virt_to_page(objp),
2619 					 cachep->buffer_size / PAGE_SIZE, 0);
2620 #else
2621 		if (cachep->ctor)
2622 			cachep->ctor(objp, cachep, ctor_flags);
2623 #endif
2624 		slab_bufctl(slabp)[i] = i + 1;
2625 	}
2626 	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2627 	slabp->free = 0;
2628 }
2629 
2630 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2631 {
2632 	if (flags & GFP_DMA)
2633 		BUG_ON(!(cachep->gfpflags & GFP_DMA));
2634 	else
2635 		BUG_ON(cachep->gfpflags & GFP_DMA);
2636 }
2637 
2638 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2639 				int nodeid)
2640 {
2641 	void *objp = index_to_obj(cachep, slabp, slabp->free);
2642 	kmem_bufctl_t next;
2643 
2644 	slabp->inuse++;
2645 	next = slab_bufctl(slabp)[slabp->free];
2646 #if DEBUG
2647 	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2648 	WARN_ON(slabp->nodeid != nodeid);
2649 #endif
2650 	slabp->free = next;
2651 
2652 	return objp;
2653 }
2654 
2655 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2656 				void *objp, int nodeid)
2657 {
2658 	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2659 
2660 #if DEBUG
2661 	/* Verify that the slab belongs to the intended node */
2662 	WARN_ON(slabp->nodeid != nodeid);
2663 
2664 	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2665 		printk(KERN_ERR "slab: double free detected in cache "
2666 				"'%s', objp %p\n", cachep->name, objp);
2667 		BUG();
2668 	}
2669 #endif
2670 	slab_bufctl(slabp)[objnr] = slabp->free;
2671 	slabp->free = objnr;
2672 	slabp->inuse--;
2673 }
2674 
2675 /*
2676  * Map pages beginning at addr to the given cache and slab. This is required
2677  * for the slab allocator to be able to lookup the cache and slab of a
2678  * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2679  */
2680 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2681 			   void *addr)
2682 {
2683 	int nr_pages;
2684 	struct page *page;
2685 
2686 	page = virt_to_page(addr);
2687 
2688 	nr_pages = 1;
2689 	if (likely(!PageCompound(page)))
2690 		nr_pages <<= cache->gfporder;
2691 
2692 	do {
2693 		page_set_cache(page, cache);
2694 		page_set_slab(page, slab);
2695 		page++;
2696 	} while (--nr_pages);
2697 }
2698 
2699 /*
2700  * Grow (by 1) the number of slabs within a cache.  This is called by
2701  * kmem_cache_alloc() when there are no active objs left in a cache.
2702  */
2703 static int cache_grow(struct kmem_cache *cachep,
2704 		gfp_t flags, int nodeid, void *objp)
2705 {
2706 	struct slab *slabp;
2707 	size_t offset;
2708 	gfp_t local_flags;
2709 	unsigned long ctor_flags;
2710 	struct kmem_list3 *l3;
2711 
2712 	/*
2713 	 * Be lazy and only check for valid flags here,  keeping it out of the
2714 	 * critical path in kmem_cache_alloc().
2715 	 */
2716 	BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW));
2717 	if (flags & __GFP_NO_GROW)
2718 		return 0;
2719 
2720 	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2721 	local_flags = (flags & GFP_LEVEL_MASK);
2722 	if (!(local_flags & __GFP_WAIT))
2723 		/*
2724 		 * Not allowed to sleep.  Need to tell a constructor about
2725 		 * this - it might need to know...
2726 		 */
2727 		ctor_flags |= SLAB_CTOR_ATOMIC;
2728 
2729 	/* Take the l3 list lock to change the colour_next on this node */
2730 	check_irq_off();
2731 	l3 = cachep->nodelists[nodeid];
2732 	spin_lock(&l3->list_lock);
2733 
2734 	/* Get colour for the slab, and cal the next value. */
2735 	offset = l3->colour_next;
2736 	l3->colour_next++;
2737 	if (l3->colour_next >= cachep->colour)
2738 		l3->colour_next = 0;
2739 	spin_unlock(&l3->list_lock);
2740 
2741 	offset *= cachep->colour_off;
2742 
2743 	if (local_flags & __GFP_WAIT)
2744 		local_irq_enable();
2745 
2746 	/*
2747 	 * The test for missing atomic flag is performed here, rather than
2748 	 * the more obvious place, simply to reduce the critical path length
2749 	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2750 	 * will eventually be caught here (where it matters).
2751 	 */
2752 	kmem_flagcheck(cachep, flags);
2753 
2754 	/*
2755 	 * Get mem for the objs.  Attempt to allocate a physical page from
2756 	 * 'nodeid'.
2757 	 */
2758 	if (!objp)
2759 		objp = kmem_getpages(cachep, flags, nodeid);
2760 	if (!objp)
2761 		goto failed;
2762 
2763 	/* Get slab management. */
2764 	slabp = alloc_slabmgmt(cachep, objp, offset,
2765 			local_flags & ~GFP_THISNODE, nodeid);
2766 	if (!slabp)
2767 		goto opps1;
2768 
2769 	slabp->nodeid = nodeid;
2770 	slab_map_pages(cachep, slabp, objp);
2771 
2772 	cache_init_objs(cachep, slabp, ctor_flags);
2773 
2774 	if (local_flags & __GFP_WAIT)
2775 		local_irq_disable();
2776 	check_irq_off();
2777 	spin_lock(&l3->list_lock);
2778 
2779 	/* Make slab active. */
2780 	list_add_tail(&slabp->list, &(l3->slabs_free));
2781 	STATS_INC_GROWN(cachep);
2782 	l3->free_objects += cachep->num;
2783 	spin_unlock(&l3->list_lock);
2784 	return 1;
2785 opps1:
2786 	kmem_freepages(cachep, objp);
2787 failed:
2788 	if (local_flags & __GFP_WAIT)
2789 		local_irq_disable();
2790 	return 0;
2791 }
2792 
2793 #if DEBUG
2794 
2795 /*
2796  * Perform extra freeing checks:
2797  * - detect bad pointers.
2798  * - POISON/RED_ZONE checking
2799  * - destructor calls, for caches with POISON+dtor
2800  */
2801 static void kfree_debugcheck(const void *objp)
2802 {
2803 	struct page *page;
2804 
2805 	if (!virt_addr_valid(objp)) {
2806 		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2807 		       (unsigned long)objp);
2808 		BUG();
2809 	}
2810 	page = virt_to_page(objp);
2811 	if (!PageSlab(page)) {
2812 		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2813 		       (unsigned long)objp);
2814 		BUG();
2815 	}
2816 }
2817 
2818 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2819 {
2820 	unsigned long redzone1, redzone2;
2821 
2822 	redzone1 = *dbg_redzone1(cache, obj);
2823 	redzone2 = *dbg_redzone2(cache, obj);
2824 
2825 	/*
2826 	 * Redzone is ok.
2827 	 */
2828 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2829 		return;
2830 
2831 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2832 		slab_error(cache, "double free detected");
2833 	else
2834 		slab_error(cache, "memory outside object was overwritten");
2835 
2836 	printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2837 			obj, redzone1, redzone2);
2838 }
2839 
2840 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2841 				   void *caller)
2842 {
2843 	struct page *page;
2844 	unsigned int objnr;
2845 	struct slab *slabp;
2846 
2847 	objp -= obj_offset(cachep);
2848 	kfree_debugcheck(objp);
2849 	page = virt_to_page(objp);
2850 
2851 	slabp = page_get_slab(page);
2852 
2853 	if (cachep->flags & SLAB_RED_ZONE) {
2854 		verify_redzone_free(cachep, objp);
2855 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2856 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2857 	}
2858 	if (cachep->flags & SLAB_STORE_USER)
2859 		*dbg_userword(cachep, objp) = caller;
2860 
2861 	objnr = obj_to_index(cachep, slabp, objp);
2862 
2863 	BUG_ON(objnr >= cachep->num);
2864 	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2865 
2866 	if (cachep->flags & SLAB_DEBUG_INITIAL) {
2867 		/*
2868 		 * Need to call the slab's constructor so the caller can
2869 		 * perform a verify of its state (debugging).  Called without
2870 		 * the cache-lock held.
2871 		 */
2872 		cachep->ctor(objp + obj_offset(cachep),
2873 			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2874 	}
2875 	if (cachep->flags & SLAB_POISON && cachep->dtor) {
2876 		/* we want to cache poison the object,
2877 		 * call the destruction callback
2878 		 */
2879 		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2880 	}
2881 #ifdef CONFIG_DEBUG_SLAB_LEAK
2882 	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2883 #endif
2884 	if (cachep->flags & SLAB_POISON) {
2885 #ifdef CONFIG_DEBUG_PAGEALLOC
2886 		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2887 			store_stackinfo(cachep, objp, (unsigned long)caller);
2888 			kernel_map_pages(virt_to_page(objp),
2889 					 cachep->buffer_size / PAGE_SIZE, 0);
2890 		} else {
2891 			poison_obj(cachep, objp, POISON_FREE);
2892 		}
2893 #else
2894 		poison_obj(cachep, objp, POISON_FREE);
2895 #endif
2896 	}
2897 	return objp;
2898 }
2899 
2900 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2901 {
2902 	kmem_bufctl_t i;
2903 	int entries = 0;
2904 
2905 	/* Check slab's freelist to see if this obj is there. */
2906 	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2907 		entries++;
2908 		if (entries > cachep->num || i >= cachep->num)
2909 			goto bad;
2910 	}
2911 	if (entries != cachep->num - slabp->inuse) {
2912 bad:
2913 		printk(KERN_ERR "slab: Internal list corruption detected in "
2914 				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2915 			cachep->name, cachep->num, slabp, slabp->inuse);
2916 		for (i = 0;
2917 		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2918 		     i++) {
2919 			if (i % 16 == 0)
2920 				printk("\n%03x:", i);
2921 			printk(" %02x", ((unsigned char *)slabp)[i]);
2922 		}
2923 		printk("\n");
2924 		BUG();
2925 	}
2926 }
2927 #else
2928 #define kfree_debugcheck(x) do { } while(0)
2929 #define cache_free_debugcheck(x,objp,z) (objp)
2930 #define check_slabp(x,y) do { } while(0)
2931 #endif
2932 
2933 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2934 {
2935 	int batchcount;
2936 	struct kmem_list3 *l3;
2937 	struct array_cache *ac;
2938 	int node;
2939 
2940 	node = numa_node_id();
2941 
2942 	check_irq_off();
2943 	ac = cpu_cache_get(cachep);
2944 retry:
2945 	batchcount = ac->batchcount;
2946 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2947 		/*
2948 		 * If there was little recent activity on this cache, then
2949 		 * perform only a partial refill.  Otherwise we could generate
2950 		 * refill bouncing.
2951 		 */
2952 		batchcount = BATCHREFILL_LIMIT;
2953 	}
2954 	l3 = cachep->nodelists[node];
2955 
2956 	BUG_ON(ac->avail > 0 || !l3);
2957 	spin_lock(&l3->list_lock);
2958 
2959 	/* See if we can refill from the shared array */
2960 	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2961 		goto alloc_done;
2962 
2963 	while (batchcount > 0) {
2964 		struct list_head *entry;
2965 		struct slab *slabp;
2966 		/* Get slab alloc is to come from. */
2967 		entry = l3->slabs_partial.next;
2968 		if (entry == &l3->slabs_partial) {
2969 			l3->free_touched = 1;
2970 			entry = l3->slabs_free.next;
2971 			if (entry == &l3->slabs_free)
2972 				goto must_grow;
2973 		}
2974 
2975 		slabp = list_entry(entry, struct slab, list);
2976 		check_slabp(cachep, slabp);
2977 		check_spinlock_acquired(cachep);
2978 		while (slabp->inuse < cachep->num && batchcount--) {
2979 			STATS_INC_ALLOCED(cachep);
2980 			STATS_INC_ACTIVE(cachep);
2981 			STATS_SET_HIGH(cachep);
2982 
2983 			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2984 							    node);
2985 		}
2986 		check_slabp(cachep, slabp);
2987 
2988 		/* move slabp to correct slabp list: */
2989 		list_del(&slabp->list);
2990 		if (slabp->free == BUFCTL_END)
2991 			list_add(&slabp->list, &l3->slabs_full);
2992 		else
2993 			list_add(&slabp->list, &l3->slabs_partial);
2994 	}
2995 
2996 must_grow:
2997 	l3->free_objects -= ac->avail;
2998 alloc_done:
2999 	spin_unlock(&l3->list_lock);
3000 
3001 	if (unlikely(!ac->avail)) {
3002 		int x;
3003 		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3004 
3005 		/* cache_grow can reenable interrupts, then ac could change. */
3006 		ac = cpu_cache_get(cachep);
3007 		if (!x && ac->avail == 0)	/* no objects in sight? abort */
3008 			return NULL;
3009 
3010 		if (!ac->avail)		/* objects refilled by interrupt? */
3011 			goto retry;
3012 	}
3013 	ac->touched = 1;
3014 	return ac->entry[--ac->avail];
3015 }
3016 
3017 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3018 						gfp_t flags)
3019 {
3020 	might_sleep_if(flags & __GFP_WAIT);
3021 #if DEBUG
3022 	kmem_flagcheck(cachep, flags);
3023 #endif
3024 }
3025 
3026 #if DEBUG
3027 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3028 				gfp_t flags, void *objp, void *caller)
3029 {
3030 	if (!objp)
3031 		return objp;
3032 	if (cachep->flags & SLAB_POISON) {
3033 #ifdef CONFIG_DEBUG_PAGEALLOC
3034 		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3035 			kernel_map_pages(virt_to_page(objp),
3036 					 cachep->buffer_size / PAGE_SIZE, 1);
3037 		else
3038 			check_poison_obj(cachep, objp);
3039 #else
3040 		check_poison_obj(cachep, objp);
3041 #endif
3042 		poison_obj(cachep, objp, POISON_INUSE);
3043 	}
3044 	if (cachep->flags & SLAB_STORE_USER)
3045 		*dbg_userword(cachep, objp) = caller;
3046 
3047 	if (cachep->flags & SLAB_RED_ZONE) {
3048 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3049 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3050 			slab_error(cachep, "double free, or memory outside"
3051 						" object was overwritten");
3052 			printk(KERN_ERR
3053 				"%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3054 				objp, *dbg_redzone1(cachep, objp),
3055 				*dbg_redzone2(cachep, objp));
3056 		}
3057 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3058 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3059 	}
3060 #ifdef CONFIG_DEBUG_SLAB_LEAK
3061 	{
3062 		struct slab *slabp;
3063 		unsigned objnr;
3064 
3065 		slabp = page_get_slab(virt_to_page(objp));
3066 		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3067 		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3068 	}
3069 #endif
3070 	objp += obj_offset(cachep);
3071 	if (cachep->ctor && cachep->flags & SLAB_POISON) {
3072 		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
3073 
3074 		if (!(flags & __GFP_WAIT))
3075 			ctor_flags |= SLAB_CTOR_ATOMIC;
3076 
3077 		cachep->ctor(objp, cachep, ctor_flags);
3078 	}
3079 #if ARCH_SLAB_MINALIGN
3080 	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3081 		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3082 		       objp, ARCH_SLAB_MINALIGN);
3083 	}
3084 #endif
3085 	return objp;
3086 }
3087 #else
3088 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3089 #endif
3090 
3091 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3092 {
3093 	void *objp;
3094 	struct array_cache *ac;
3095 
3096 	check_irq_off();
3097 	ac = cpu_cache_get(cachep);
3098 	if (likely(ac->avail)) {
3099 		STATS_INC_ALLOCHIT(cachep);
3100 		ac->touched = 1;
3101 		objp = ac->entry[--ac->avail];
3102 	} else {
3103 		STATS_INC_ALLOCMISS(cachep);
3104 		objp = cache_alloc_refill(cachep, flags);
3105 	}
3106 	return objp;
3107 }
3108 
3109 static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
3110 						gfp_t flags, void *caller)
3111 {
3112 	unsigned long save_flags;
3113 	void *objp = NULL;
3114 
3115 	cache_alloc_debugcheck_before(cachep, flags);
3116 
3117 	local_irq_save(save_flags);
3118 
3119 	if (unlikely(NUMA_BUILD &&
3120 			current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY)))
3121 		objp = alternate_node_alloc(cachep, flags);
3122 
3123 	if (!objp)
3124 		objp = ____cache_alloc(cachep, flags);
3125 	/*
3126 	 * We may just have run out of memory on the local node.
3127 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3128 	 */
3129  	if (NUMA_BUILD && !objp)
3130  		objp = ____cache_alloc_node(cachep, flags, numa_node_id());
3131 	local_irq_restore(save_flags);
3132 	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
3133 					    caller);
3134 	prefetchw(objp);
3135 	return objp;
3136 }
3137 
3138 #ifdef CONFIG_NUMA
3139 /*
3140  * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3141  *
3142  * If we are in_interrupt, then process context, including cpusets and
3143  * mempolicy, may not apply and should not be used for allocation policy.
3144  */
3145 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3146 {
3147 	int nid_alloc, nid_here;
3148 
3149 	if (in_interrupt() || (flags & __GFP_THISNODE))
3150 		return NULL;
3151 	nid_alloc = nid_here = numa_node_id();
3152 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3153 		nid_alloc = cpuset_mem_spread_node();
3154 	else if (current->mempolicy)
3155 		nid_alloc = slab_node(current->mempolicy);
3156 	if (nid_alloc != nid_here)
3157 		return ____cache_alloc_node(cachep, flags, nid_alloc);
3158 	return NULL;
3159 }
3160 
3161 /*
3162  * Fallback function if there was no memory available and no objects on a
3163  * certain node and fall back is permitted. First we scan all the
3164  * available nodelists for available objects. If that fails then we
3165  * perform an allocation without specifying a node. This allows the page
3166  * allocator to do its reclaim / fallback magic. We then insert the
3167  * slab into the proper nodelist and then allocate from it.
3168  */
3169 void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3170 {
3171 	struct zonelist *zonelist = &NODE_DATA(slab_node(current->mempolicy))
3172 					->node_zonelists[gfp_zone(flags)];
3173 	struct zone **z;
3174 	void *obj = NULL;
3175 	int nid;
3176 
3177 retry:
3178 	/*
3179 	 * Look through allowed nodes for objects available
3180 	 * from existing per node queues.
3181 	 */
3182 	for (z = zonelist->zones; *z && !obj; z++) {
3183 		nid = zone_to_nid(*z);
3184 
3185 		if (cpuset_zone_allowed(*z, flags) &&
3186 			cache->nodelists[nid] &&
3187 			cache->nodelists[nid]->free_objects)
3188 				obj = ____cache_alloc_node(cache,
3189 					flags | GFP_THISNODE, nid);
3190 	}
3191 
3192 	if (!obj) {
3193 		/*
3194 		 * This allocation will be performed within the constraints
3195 		 * of the current cpuset / memory policy requirements.
3196 		 * We may trigger various forms of reclaim on the allowed
3197 		 * set and go into memory reserves if necessary.
3198 		 */
3199 		obj = kmem_getpages(cache, flags, -1);
3200 		if (obj) {
3201 			/*
3202 			 * Insert into the appropriate per node queues
3203 			 */
3204 			nid = page_to_nid(virt_to_page(obj));
3205 			if (cache_grow(cache, flags, nid, obj)) {
3206 				obj = ____cache_alloc_node(cache,
3207 					flags | GFP_THISNODE, nid);
3208 				if (!obj)
3209 					/*
3210 					 * Another processor may allocate the
3211 					 * objects in the slab since we are
3212 					 * not holding any locks.
3213 					 */
3214 					goto retry;
3215 			} else {
3216 				kmem_freepages(cache, obj);
3217 				obj = NULL;
3218 			}
3219 		}
3220 	}
3221 	return obj;
3222 }
3223 
3224 /*
3225  * A interface to enable slab creation on nodeid
3226  */
3227 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3228 				int nodeid)
3229 {
3230 	struct list_head *entry;
3231 	struct slab *slabp;
3232 	struct kmem_list3 *l3;
3233 	void *obj;
3234 	int x;
3235 
3236 	l3 = cachep->nodelists[nodeid];
3237 	BUG_ON(!l3);
3238 
3239 retry:
3240 	check_irq_off();
3241 	spin_lock(&l3->list_lock);
3242 	entry = l3->slabs_partial.next;
3243 	if (entry == &l3->slabs_partial) {
3244 		l3->free_touched = 1;
3245 		entry = l3->slabs_free.next;
3246 		if (entry == &l3->slabs_free)
3247 			goto must_grow;
3248 	}
3249 
3250 	slabp = list_entry(entry, struct slab, list);
3251 	check_spinlock_acquired_node(cachep, nodeid);
3252 	check_slabp(cachep, slabp);
3253 
3254 	STATS_INC_NODEALLOCS(cachep);
3255 	STATS_INC_ACTIVE(cachep);
3256 	STATS_SET_HIGH(cachep);
3257 
3258 	BUG_ON(slabp->inuse == cachep->num);
3259 
3260 	obj = slab_get_obj(cachep, slabp, nodeid);
3261 	check_slabp(cachep, slabp);
3262 	l3->free_objects--;
3263 	/* move slabp to correct slabp list: */
3264 	list_del(&slabp->list);
3265 
3266 	if (slabp->free == BUFCTL_END)
3267 		list_add(&slabp->list, &l3->slabs_full);
3268 	else
3269 		list_add(&slabp->list, &l3->slabs_partial);
3270 
3271 	spin_unlock(&l3->list_lock);
3272 	goto done;
3273 
3274 must_grow:
3275 	spin_unlock(&l3->list_lock);
3276 	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3277 	if (x)
3278 		goto retry;
3279 
3280 	if (!(flags & __GFP_THISNODE))
3281 		/* Unable to grow the cache. Fall back to other nodes. */
3282 		return fallback_alloc(cachep, flags);
3283 
3284 	return NULL;
3285 
3286 done:
3287 	return obj;
3288 }
3289 #endif
3290 
3291 /*
3292  * Caller needs to acquire correct kmem_list's list_lock
3293  */
3294 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3295 		       int node)
3296 {
3297 	int i;
3298 	struct kmem_list3 *l3;
3299 
3300 	for (i = 0; i < nr_objects; i++) {
3301 		void *objp = objpp[i];
3302 		struct slab *slabp;
3303 
3304 		slabp = virt_to_slab(objp);
3305 		l3 = cachep->nodelists[node];
3306 		list_del(&slabp->list);
3307 		check_spinlock_acquired_node(cachep, node);
3308 		check_slabp(cachep, slabp);
3309 		slab_put_obj(cachep, slabp, objp, node);
3310 		STATS_DEC_ACTIVE(cachep);
3311 		l3->free_objects++;
3312 		check_slabp(cachep, slabp);
3313 
3314 		/* fixup slab chains */
3315 		if (slabp->inuse == 0) {
3316 			if (l3->free_objects > l3->free_limit) {
3317 				l3->free_objects -= cachep->num;
3318 				/* No need to drop any previously held
3319 				 * lock here, even if we have a off-slab slab
3320 				 * descriptor it is guaranteed to come from
3321 				 * a different cache, refer to comments before
3322 				 * alloc_slabmgmt.
3323 				 */
3324 				slab_destroy(cachep, slabp);
3325 			} else {
3326 				list_add(&slabp->list, &l3->slabs_free);
3327 			}
3328 		} else {
3329 			/* Unconditionally move a slab to the end of the
3330 			 * partial list on free - maximum time for the
3331 			 * other objects to be freed, too.
3332 			 */
3333 			list_add_tail(&slabp->list, &l3->slabs_partial);
3334 		}
3335 	}
3336 }
3337 
3338 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3339 {
3340 	int batchcount;
3341 	struct kmem_list3 *l3;
3342 	int node = numa_node_id();
3343 
3344 	batchcount = ac->batchcount;
3345 #if DEBUG
3346 	BUG_ON(!batchcount || batchcount > ac->avail);
3347 #endif
3348 	check_irq_off();
3349 	l3 = cachep->nodelists[node];
3350 	spin_lock(&l3->list_lock);
3351 	if (l3->shared) {
3352 		struct array_cache *shared_array = l3->shared;
3353 		int max = shared_array->limit - shared_array->avail;
3354 		if (max) {
3355 			if (batchcount > max)
3356 				batchcount = max;
3357 			memcpy(&(shared_array->entry[shared_array->avail]),
3358 			       ac->entry, sizeof(void *) * batchcount);
3359 			shared_array->avail += batchcount;
3360 			goto free_done;
3361 		}
3362 	}
3363 
3364 	free_block(cachep, ac->entry, batchcount, node);
3365 free_done:
3366 #if STATS
3367 	{
3368 		int i = 0;
3369 		struct list_head *p;
3370 
3371 		p = l3->slabs_free.next;
3372 		while (p != &(l3->slabs_free)) {
3373 			struct slab *slabp;
3374 
3375 			slabp = list_entry(p, struct slab, list);
3376 			BUG_ON(slabp->inuse);
3377 
3378 			i++;
3379 			p = p->next;
3380 		}
3381 		STATS_SET_FREEABLE(cachep, i);
3382 	}
3383 #endif
3384 	spin_unlock(&l3->list_lock);
3385 	ac->avail -= batchcount;
3386 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3387 }
3388 
3389 /*
3390  * Release an obj back to its cache. If the obj has a constructed state, it must
3391  * be in this state _before_ it is released.  Called with disabled ints.
3392  */
3393 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3394 {
3395 	struct array_cache *ac = cpu_cache_get(cachep);
3396 
3397 	check_irq_off();
3398 	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3399 
3400 	if (cache_free_alien(cachep, objp))
3401 		return;
3402 
3403 	if (likely(ac->avail < ac->limit)) {
3404 		STATS_INC_FREEHIT(cachep);
3405 		ac->entry[ac->avail++] = objp;
3406 		return;
3407 	} else {
3408 		STATS_INC_FREEMISS(cachep);
3409 		cache_flusharray(cachep, ac);
3410 		ac->entry[ac->avail++] = objp;
3411 	}
3412 }
3413 
3414 /**
3415  * kmem_cache_alloc - Allocate an object
3416  * @cachep: The cache to allocate from.
3417  * @flags: See kmalloc().
3418  *
3419  * Allocate an object from this cache.  The flags are only relevant
3420  * if the cache has no available objects.
3421  */
3422 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3423 {
3424 	return __cache_alloc(cachep, flags, __builtin_return_address(0));
3425 }
3426 EXPORT_SYMBOL(kmem_cache_alloc);
3427 
3428 /**
3429  * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3430  * @cache: The cache to allocate from.
3431  * @flags: See kmalloc().
3432  *
3433  * Allocate an object from this cache and set the allocated memory to zero.
3434  * The flags are only relevant if the cache has no available objects.
3435  */
3436 void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3437 {
3438 	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3439 	if (ret)
3440 		memset(ret, 0, obj_size(cache));
3441 	return ret;
3442 }
3443 EXPORT_SYMBOL(kmem_cache_zalloc);
3444 
3445 /**
3446  * kmem_ptr_validate - check if an untrusted pointer might
3447  *	be a slab entry.
3448  * @cachep: the cache we're checking against
3449  * @ptr: pointer to validate
3450  *
3451  * This verifies that the untrusted pointer looks sane:
3452  * it is _not_ a guarantee that the pointer is actually
3453  * part of the slab cache in question, but it at least
3454  * validates that the pointer can be dereferenced and
3455  * looks half-way sane.
3456  *
3457  * Currently only used for dentry validation.
3458  */
3459 int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3460 {
3461 	unsigned long addr = (unsigned long)ptr;
3462 	unsigned long min_addr = PAGE_OFFSET;
3463 	unsigned long align_mask = BYTES_PER_WORD - 1;
3464 	unsigned long size = cachep->buffer_size;
3465 	struct page *page;
3466 
3467 	if (unlikely(addr < min_addr))
3468 		goto out;
3469 	if (unlikely(addr > (unsigned long)high_memory - size))
3470 		goto out;
3471 	if (unlikely(addr & align_mask))
3472 		goto out;
3473 	if (unlikely(!kern_addr_valid(addr)))
3474 		goto out;
3475 	if (unlikely(!kern_addr_valid(addr + size - 1)))
3476 		goto out;
3477 	page = virt_to_page(ptr);
3478 	if (unlikely(!PageSlab(page)))
3479 		goto out;
3480 	if (unlikely(page_get_cache(page) != cachep))
3481 		goto out;
3482 	return 1;
3483 out:
3484 	return 0;
3485 }
3486 
3487 #ifdef CONFIG_NUMA
3488 /**
3489  * kmem_cache_alloc_node - Allocate an object on the specified node
3490  * @cachep: The cache to allocate from.
3491  * @flags: See kmalloc().
3492  * @nodeid: node number of the target node.
3493  *
3494  * Identical to kmem_cache_alloc but it will allocate memory on the given
3495  * node, which can improve the performance for cpu bound structures.
3496  *
3497  * Fallback to other node is possible if __GFP_THISNODE is not set.
3498  */
3499 static __always_inline void *
3500 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3501 		int nodeid, void *caller)
3502 {
3503 	unsigned long save_flags;
3504 	void *ptr = NULL;
3505 
3506 	cache_alloc_debugcheck_before(cachep, flags);
3507 	local_irq_save(save_flags);
3508 
3509 	if (unlikely(nodeid == -1))
3510 		nodeid = numa_node_id();
3511 
3512 	if (likely(cachep->nodelists[nodeid])) {
3513 		if (nodeid == numa_node_id()) {
3514 			/*
3515 			 * Use the locally cached objects if possible.
3516 			 * However ____cache_alloc does not allow fallback
3517 			 * to other nodes. It may fail while we still have
3518 			 * objects on other nodes available.
3519 			 */
3520 			ptr = ____cache_alloc(cachep, flags);
3521 		}
3522 		if (!ptr) {
3523 			/* ___cache_alloc_node can fall back to other nodes */
3524 			ptr = ____cache_alloc_node(cachep, flags, nodeid);
3525 		}
3526 	} else {
3527 		/* Node not bootstrapped yet */
3528 		if (!(flags & __GFP_THISNODE))
3529 			ptr = fallback_alloc(cachep, flags);
3530 	}
3531 
3532 	local_irq_restore(save_flags);
3533 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3534 
3535 	return ptr;
3536 }
3537 
3538 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3539 {
3540 	return __cache_alloc_node(cachep, flags, nodeid,
3541 			__builtin_return_address(0));
3542 }
3543 EXPORT_SYMBOL(kmem_cache_alloc_node);
3544 
3545 static __always_inline void *
3546 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3547 {
3548 	struct kmem_cache *cachep;
3549 
3550 	cachep = kmem_find_general_cachep(size, flags);
3551 	if (unlikely(cachep == NULL))
3552 		return NULL;
3553 	return kmem_cache_alloc_node(cachep, flags, node);
3554 }
3555 
3556 #ifdef CONFIG_DEBUG_SLAB
3557 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3558 {
3559 	return __do_kmalloc_node(size, flags, node,
3560 			__builtin_return_address(0));
3561 }
3562 EXPORT_SYMBOL(__kmalloc_node);
3563 
3564 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3565 		int node, void *caller)
3566 {
3567 	return __do_kmalloc_node(size, flags, node, caller);
3568 }
3569 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3570 #else
3571 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3572 {
3573 	return __do_kmalloc_node(size, flags, node, NULL);
3574 }
3575 EXPORT_SYMBOL(__kmalloc_node);
3576 #endif /* CONFIG_DEBUG_SLAB */
3577 #endif /* CONFIG_NUMA */
3578 
3579 /**
3580  * __do_kmalloc - allocate memory
3581  * @size: how many bytes of memory are required.
3582  * @flags: the type of memory to allocate (see kmalloc).
3583  * @caller: function caller for debug tracking of the caller
3584  */
3585 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3586 					  void *caller)
3587 {
3588 	struct kmem_cache *cachep;
3589 
3590 	/* If you want to save a few bytes .text space: replace
3591 	 * __ with kmem_.
3592 	 * Then kmalloc uses the uninlined functions instead of the inline
3593 	 * functions.
3594 	 */
3595 	cachep = __find_general_cachep(size, flags);
3596 	if (unlikely(cachep == NULL))
3597 		return NULL;
3598 	return __cache_alloc(cachep, flags, caller);
3599 }
3600 
3601 
3602 #ifdef CONFIG_DEBUG_SLAB
3603 void *__kmalloc(size_t size, gfp_t flags)
3604 {
3605 	return __do_kmalloc(size, flags, __builtin_return_address(0));
3606 }
3607 EXPORT_SYMBOL(__kmalloc);
3608 
3609 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3610 {
3611 	return __do_kmalloc(size, flags, caller);
3612 }
3613 EXPORT_SYMBOL(__kmalloc_track_caller);
3614 
3615 #else
3616 void *__kmalloc(size_t size, gfp_t flags)
3617 {
3618 	return __do_kmalloc(size, flags, NULL);
3619 }
3620 EXPORT_SYMBOL(__kmalloc);
3621 #endif
3622 
3623 /**
3624  * kmem_cache_free - Deallocate an object
3625  * @cachep: The cache the allocation was from.
3626  * @objp: The previously allocated object.
3627  *
3628  * Free an object which was previously allocated from this
3629  * cache.
3630  */
3631 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3632 {
3633 	unsigned long flags;
3634 
3635 	BUG_ON(virt_to_cache(objp) != cachep);
3636 
3637 	local_irq_save(flags);
3638 	__cache_free(cachep, objp);
3639 	local_irq_restore(flags);
3640 }
3641 EXPORT_SYMBOL(kmem_cache_free);
3642 
3643 /**
3644  * kfree - free previously allocated memory
3645  * @objp: pointer returned by kmalloc.
3646  *
3647  * If @objp is NULL, no operation is performed.
3648  *
3649  * Don't free memory not originally allocated by kmalloc()
3650  * or you will run into trouble.
3651  */
3652 void kfree(const void *objp)
3653 {
3654 	struct kmem_cache *c;
3655 	unsigned long flags;
3656 
3657 	if (unlikely(!objp))
3658 		return;
3659 	local_irq_save(flags);
3660 	kfree_debugcheck(objp);
3661 	c = virt_to_cache(objp);
3662 	debug_check_no_locks_freed(objp, obj_size(c));
3663 	__cache_free(c, (void *)objp);
3664 	local_irq_restore(flags);
3665 }
3666 EXPORT_SYMBOL(kfree);
3667 
3668 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3669 {
3670 	return obj_size(cachep);
3671 }
3672 EXPORT_SYMBOL(kmem_cache_size);
3673 
3674 const char *kmem_cache_name(struct kmem_cache *cachep)
3675 {
3676 	return cachep->name;
3677 }
3678 EXPORT_SYMBOL_GPL(kmem_cache_name);
3679 
3680 /*
3681  * This initializes kmem_list3 or resizes varioius caches for all nodes.
3682  */
3683 static int alloc_kmemlist(struct kmem_cache *cachep)
3684 {
3685 	int node;
3686 	struct kmem_list3 *l3;
3687 	struct array_cache *new_shared;
3688 	struct array_cache **new_alien = NULL;
3689 
3690 	for_each_online_node(node) {
3691 
3692                 if (use_alien_caches) {
3693                         new_alien = alloc_alien_cache(node, cachep->limit);
3694                         if (!new_alien)
3695                                 goto fail;
3696                 }
3697 
3698 		new_shared = alloc_arraycache(node,
3699 				cachep->shared*cachep->batchcount,
3700 					0xbaadf00d);
3701 		if (!new_shared) {
3702 			free_alien_cache(new_alien);
3703 			goto fail;
3704 		}
3705 
3706 		l3 = cachep->nodelists[node];
3707 		if (l3) {
3708 			struct array_cache *shared = l3->shared;
3709 
3710 			spin_lock_irq(&l3->list_lock);
3711 
3712 			if (shared)
3713 				free_block(cachep, shared->entry,
3714 						shared->avail, node);
3715 
3716 			l3->shared = new_shared;
3717 			if (!l3->alien) {
3718 				l3->alien = new_alien;
3719 				new_alien = NULL;
3720 			}
3721 			l3->free_limit = (1 + nr_cpus_node(node)) *
3722 					cachep->batchcount + cachep->num;
3723 			spin_unlock_irq(&l3->list_lock);
3724 			kfree(shared);
3725 			free_alien_cache(new_alien);
3726 			continue;
3727 		}
3728 		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3729 		if (!l3) {
3730 			free_alien_cache(new_alien);
3731 			kfree(new_shared);
3732 			goto fail;
3733 		}
3734 
3735 		kmem_list3_init(l3);
3736 		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3737 				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3738 		l3->shared = new_shared;
3739 		l3->alien = new_alien;
3740 		l3->free_limit = (1 + nr_cpus_node(node)) *
3741 					cachep->batchcount + cachep->num;
3742 		cachep->nodelists[node] = l3;
3743 	}
3744 	return 0;
3745 
3746 fail:
3747 	if (!cachep->next.next) {
3748 		/* Cache is not active yet. Roll back what we did */
3749 		node--;
3750 		while (node >= 0) {
3751 			if (cachep->nodelists[node]) {
3752 				l3 = cachep->nodelists[node];
3753 
3754 				kfree(l3->shared);
3755 				free_alien_cache(l3->alien);
3756 				kfree(l3);
3757 				cachep->nodelists[node] = NULL;
3758 			}
3759 			node--;
3760 		}
3761 	}
3762 	return -ENOMEM;
3763 }
3764 
3765 struct ccupdate_struct {
3766 	struct kmem_cache *cachep;
3767 	struct array_cache *new[NR_CPUS];
3768 };
3769 
3770 static void do_ccupdate_local(void *info)
3771 {
3772 	struct ccupdate_struct *new = info;
3773 	struct array_cache *old;
3774 
3775 	check_irq_off();
3776 	old = cpu_cache_get(new->cachep);
3777 
3778 	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3779 	new->new[smp_processor_id()] = old;
3780 }
3781 
3782 /* Always called with the cache_chain_mutex held */
3783 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3784 				int batchcount, int shared)
3785 {
3786 	struct ccupdate_struct *new;
3787 	int i;
3788 
3789 	new = kzalloc(sizeof(*new), GFP_KERNEL);
3790 	if (!new)
3791 		return -ENOMEM;
3792 
3793 	for_each_online_cpu(i) {
3794 		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3795 						batchcount);
3796 		if (!new->new[i]) {
3797 			for (i--; i >= 0; i--)
3798 				kfree(new->new[i]);
3799 			kfree(new);
3800 			return -ENOMEM;
3801 		}
3802 	}
3803 	new->cachep = cachep;
3804 
3805 	on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3806 
3807 	check_irq_on();
3808 	cachep->batchcount = batchcount;
3809 	cachep->limit = limit;
3810 	cachep->shared = shared;
3811 
3812 	for_each_online_cpu(i) {
3813 		struct array_cache *ccold = new->new[i];
3814 		if (!ccold)
3815 			continue;
3816 		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3817 		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3818 		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3819 		kfree(ccold);
3820 	}
3821 	kfree(new);
3822 	return alloc_kmemlist(cachep);
3823 }
3824 
3825 /* Called with cache_chain_mutex held always */
3826 static int enable_cpucache(struct kmem_cache *cachep)
3827 {
3828 	int err;
3829 	int limit, shared;
3830 
3831 	/*
3832 	 * The head array serves three purposes:
3833 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3834 	 * - reduce the number of spinlock operations.
3835 	 * - reduce the number of linked list operations on the slab and
3836 	 *   bufctl chains: array operations are cheaper.
3837 	 * The numbers are guessed, we should auto-tune as described by
3838 	 * Bonwick.
3839 	 */
3840 	if (cachep->buffer_size > 131072)
3841 		limit = 1;
3842 	else if (cachep->buffer_size > PAGE_SIZE)
3843 		limit = 8;
3844 	else if (cachep->buffer_size > 1024)
3845 		limit = 24;
3846 	else if (cachep->buffer_size > 256)
3847 		limit = 54;
3848 	else
3849 		limit = 120;
3850 
3851 	/*
3852 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3853 	 * allocation behaviour: Most allocs on one cpu, most free operations
3854 	 * on another cpu. For these cases, an efficient object passing between
3855 	 * cpus is necessary. This is provided by a shared array. The array
3856 	 * replaces Bonwick's magazine layer.
3857 	 * On uniprocessor, it's functionally equivalent (but less efficient)
3858 	 * to a larger limit. Thus disabled by default.
3859 	 */
3860 	shared = 0;
3861 #ifdef CONFIG_SMP
3862 	if (cachep->buffer_size <= PAGE_SIZE)
3863 		shared = 8;
3864 #endif
3865 
3866 #if DEBUG
3867 	/*
3868 	 * With debugging enabled, large batchcount lead to excessively long
3869 	 * periods with disabled local interrupts. Limit the batchcount
3870 	 */
3871 	if (limit > 32)
3872 		limit = 32;
3873 #endif
3874 	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3875 	if (err)
3876 		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3877 		       cachep->name, -err);
3878 	return err;
3879 }
3880 
3881 /*
3882  * Drain an array if it contains any elements taking the l3 lock only if
3883  * necessary. Note that the l3 listlock also protects the array_cache
3884  * if drain_array() is used on the shared array.
3885  */
3886 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3887 			 struct array_cache *ac, int force, int node)
3888 {
3889 	int tofree;
3890 
3891 	if (!ac || !ac->avail)
3892 		return;
3893 	if (ac->touched && !force) {
3894 		ac->touched = 0;
3895 	} else {
3896 		spin_lock_irq(&l3->list_lock);
3897 		if (ac->avail) {
3898 			tofree = force ? ac->avail : (ac->limit + 4) / 5;
3899 			if (tofree > ac->avail)
3900 				tofree = (ac->avail + 1) / 2;
3901 			free_block(cachep, ac->entry, tofree, node);
3902 			ac->avail -= tofree;
3903 			memmove(ac->entry, &(ac->entry[tofree]),
3904 				sizeof(void *) * ac->avail);
3905 		}
3906 		spin_unlock_irq(&l3->list_lock);
3907 	}
3908 }
3909 
3910 /**
3911  * cache_reap - Reclaim memory from caches.
3912  * @unused: unused parameter
3913  *
3914  * Called from workqueue/eventd every few seconds.
3915  * Purpose:
3916  * - clear the per-cpu caches for this CPU.
3917  * - return freeable pages to the main free memory pool.
3918  *
3919  * If we cannot acquire the cache chain mutex then just give up - we'll try
3920  * again on the next iteration.
3921  */
3922 static void cache_reap(struct work_struct *unused)
3923 {
3924 	struct kmem_cache *searchp;
3925 	struct kmem_list3 *l3;
3926 	int node = numa_node_id();
3927 
3928 	if (!mutex_trylock(&cache_chain_mutex)) {
3929 		/* Give up. Setup the next iteration. */
3930 		schedule_delayed_work(&__get_cpu_var(reap_work),
3931 				      REAPTIMEOUT_CPUC);
3932 		return;
3933 	}
3934 
3935 	list_for_each_entry(searchp, &cache_chain, next) {
3936 		check_irq_on();
3937 
3938 		/*
3939 		 * We only take the l3 lock if absolutely necessary and we
3940 		 * have established with reasonable certainty that
3941 		 * we can do some work if the lock was obtained.
3942 		 */
3943 		l3 = searchp->nodelists[node];
3944 
3945 		reap_alien(searchp, l3);
3946 
3947 		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
3948 
3949 		/*
3950 		 * These are racy checks but it does not matter
3951 		 * if we skip one check or scan twice.
3952 		 */
3953 		if (time_after(l3->next_reap, jiffies))
3954 			goto next;
3955 
3956 		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3957 
3958 		drain_array(searchp, l3, l3->shared, 0, node);
3959 
3960 		if (l3->free_touched)
3961 			l3->free_touched = 0;
3962 		else {
3963 			int freed;
3964 
3965 			freed = drain_freelist(searchp, l3, (l3->free_limit +
3966 				5 * searchp->num - 1) / (5 * searchp->num));
3967 			STATS_ADD_REAPED(searchp, freed);
3968 		}
3969 next:
3970 		cond_resched();
3971 	}
3972 	check_irq_on();
3973 	mutex_unlock(&cache_chain_mutex);
3974 	next_reap_node();
3975 	refresh_cpu_vm_stats(smp_processor_id());
3976 	/* Set up the next iteration */
3977 	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3978 }
3979 
3980 #ifdef CONFIG_PROC_FS
3981 
3982 static void print_slabinfo_header(struct seq_file *m)
3983 {
3984 	/*
3985 	 * Output format version, so at least we can change it
3986 	 * without _too_ many complaints.
3987 	 */
3988 #if STATS
3989 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3990 #else
3991 	seq_puts(m, "slabinfo - version: 2.1\n");
3992 #endif
3993 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
3994 		 "<objperslab> <pagesperslab>");
3995 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3996 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3997 #if STATS
3998 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3999 		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4000 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4001 #endif
4002 	seq_putc(m, '\n');
4003 }
4004 
4005 static void *s_start(struct seq_file *m, loff_t *pos)
4006 {
4007 	loff_t n = *pos;
4008 	struct list_head *p;
4009 
4010 	mutex_lock(&cache_chain_mutex);
4011 	if (!n)
4012 		print_slabinfo_header(m);
4013 	p = cache_chain.next;
4014 	while (n--) {
4015 		p = p->next;
4016 		if (p == &cache_chain)
4017 			return NULL;
4018 	}
4019 	return list_entry(p, struct kmem_cache, next);
4020 }
4021 
4022 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4023 {
4024 	struct kmem_cache *cachep = p;
4025 	++*pos;
4026 	return cachep->next.next == &cache_chain ?
4027 		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
4028 }
4029 
4030 static void s_stop(struct seq_file *m, void *p)
4031 {
4032 	mutex_unlock(&cache_chain_mutex);
4033 }
4034 
4035 static int s_show(struct seq_file *m, void *p)
4036 {
4037 	struct kmem_cache *cachep = p;
4038 	struct slab *slabp;
4039 	unsigned long active_objs;
4040 	unsigned long num_objs;
4041 	unsigned long active_slabs = 0;
4042 	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4043 	const char *name;
4044 	char *error = NULL;
4045 	int node;
4046 	struct kmem_list3 *l3;
4047 
4048 	active_objs = 0;
4049 	num_slabs = 0;
4050 	for_each_online_node(node) {
4051 		l3 = cachep->nodelists[node];
4052 		if (!l3)
4053 			continue;
4054 
4055 		check_irq_on();
4056 		spin_lock_irq(&l3->list_lock);
4057 
4058 		list_for_each_entry(slabp, &l3->slabs_full, list) {
4059 			if (slabp->inuse != cachep->num && !error)
4060 				error = "slabs_full accounting error";
4061 			active_objs += cachep->num;
4062 			active_slabs++;
4063 		}
4064 		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4065 			if (slabp->inuse == cachep->num && !error)
4066 				error = "slabs_partial inuse accounting error";
4067 			if (!slabp->inuse && !error)
4068 				error = "slabs_partial/inuse accounting error";
4069 			active_objs += slabp->inuse;
4070 			active_slabs++;
4071 		}
4072 		list_for_each_entry(slabp, &l3->slabs_free, list) {
4073 			if (slabp->inuse && !error)
4074 				error = "slabs_free/inuse accounting error";
4075 			num_slabs++;
4076 		}
4077 		free_objects += l3->free_objects;
4078 		if (l3->shared)
4079 			shared_avail += l3->shared->avail;
4080 
4081 		spin_unlock_irq(&l3->list_lock);
4082 	}
4083 	num_slabs += active_slabs;
4084 	num_objs = num_slabs * cachep->num;
4085 	if (num_objs - active_objs != free_objects && !error)
4086 		error = "free_objects accounting error";
4087 
4088 	name = cachep->name;
4089 	if (error)
4090 		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4091 
4092 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4093 		   name, active_objs, num_objs, cachep->buffer_size,
4094 		   cachep->num, (1 << cachep->gfporder));
4095 	seq_printf(m, " : tunables %4u %4u %4u",
4096 		   cachep->limit, cachep->batchcount, cachep->shared);
4097 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
4098 		   active_slabs, num_slabs, shared_avail);
4099 #if STATS
4100 	{			/* list3 stats */
4101 		unsigned long high = cachep->high_mark;
4102 		unsigned long allocs = cachep->num_allocations;
4103 		unsigned long grown = cachep->grown;
4104 		unsigned long reaped = cachep->reaped;
4105 		unsigned long errors = cachep->errors;
4106 		unsigned long max_freeable = cachep->max_freeable;
4107 		unsigned long node_allocs = cachep->node_allocs;
4108 		unsigned long node_frees = cachep->node_frees;
4109 		unsigned long overflows = cachep->node_overflow;
4110 
4111 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4112 				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4113 				reaped, errors, max_freeable, node_allocs,
4114 				node_frees, overflows);
4115 	}
4116 	/* cpu stats */
4117 	{
4118 		unsigned long allochit = atomic_read(&cachep->allochit);
4119 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4120 		unsigned long freehit = atomic_read(&cachep->freehit);
4121 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4122 
4123 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4124 			   allochit, allocmiss, freehit, freemiss);
4125 	}
4126 #endif
4127 	seq_putc(m, '\n');
4128 	return 0;
4129 }
4130 
4131 /*
4132  * slabinfo_op - iterator that generates /proc/slabinfo
4133  *
4134  * Output layout:
4135  * cache-name
4136  * num-active-objs
4137  * total-objs
4138  * object size
4139  * num-active-slabs
4140  * total-slabs
4141  * num-pages-per-slab
4142  * + further values on SMP and with statistics enabled
4143  */
4144 
4145 const struct seq_operations slabinfo_op = {
4146 	.start = s_start,
4147 	.next = s_next,
4148 	.stop = s_stop,
4149 	.show = s_show,
4150 };
4151 
4152 #define MAX_SLABINFO_WRITE 128
4153 /**
4154  * slabinfo_write - Tuning for the slab allocator
4155  * @file: unused
4156  * @buffer: user buffer
4157  * @count: data length
4158  * @ppos: unused
4159  */
4160 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4161 		       size_t count, loff_t *ppos)
4162 {
4163 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4164 	int limit, batchcount, shared, res;
4165 	struct kmem_cache *cachep;
4166 
4167 	if (count > MAX_SLABINFO_WRITE)
4168 		return -EINVAL;
4169 	if (copy_from_user(&kbuf, buffer, count))
4170 		return -EFAULT;
4171 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4172 
4173 	tmp = strchr(kbuf, ' ');
4174 	if (!tmp)
4175 		return -EINVAL;
4176 	*tmp = '\0';
4177 	tmp++;
4178 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4179 		return -EINVAL;
4180 
4181 	/* Find the cache in the chain of caches. */
4182 	mutex_lock(&cache_chain_mutex);
4183 	res = -EINVAL;
4184 	list_for_each_entry(cachep, &cache_chain, next) {
4185 		if (!strcmp(cachep->name, kbuf)) {
4186 			if (limit < 1 || batchcount < 1 ||
4187 					batchcount > limit || shared < 0) {
4188 				res = 0;
4189 			} else {
4190 				res = do_tune_cpucache(cachep, limit,
4191 						       batchcount, shared);
4192 			}
4193 			break;
4194 		}
4195 	}
4196 	mutex_unlock(&cache_chain_mutex);
4197 	if (res >= 0)
4198 		res = count;
4199 	return res;
4200 }
4201 
4202 #ifdef CONFIG_DEBUG_SLAB_LEAK
4203 
4204 static void *leaks_start(struct seq_file *m, loff_t *pos)
4205 {
4206 	loff_t n = *pos;
4207 	struct list_head *p;
4208 
4209 	mutex_lock(&cache_chain_mutex);
4210 	p = cache_chain.next;
4211 	while (n--) {
4212 		p = p->next;
4213 		if (p == &cache_chain)
4214 			return NULL;
4215 	}
4216 	return list_entry(p, struct kmem_cache, next);
4217 }
4218 
4219 static inline int add_caller(unsigned long *n, unsigned long v)
4220 {
4221 	unsigned long *p;
4222 	int l;
4223 	if (!v)
4224 		return 1;
4225 	l = n[1];
4226 	p = n + 2;
4227 	while (l) {
4228 		int i = l/2;
4229 		unsigned long *q = p + 2 * i;
4230 		if (*q == v) {
4231 			q[1]++;
4232 			return 1;
4233 		}
4234 		if (*q > v) {
4235 			l = i;
4236 		} else {
4237 			p = q + 2;
4238 			l -= i + 1;
4239 		}
4240 	}
4241 	if (++n[1] == n[0])
4242 		return 0;
4243 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4244 	p[0] = v;
4245 	p[1] = 1;
4246 	return 1;
4247 }
4248 
4249 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4250 {
4251 	void *p;
4252 	int i;
4253 	if (n[0] == n[1])
4254 		return;
4255 	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4256 		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4257 			continue;
4258 		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4259 			return;
4260 	}
4261 }
4262 
4263 static void show_symbol(struct seq_file *m, unsigned long address)
4264 {
4265 #ifdef CONFIG_KALLSYMS
4266 	char *modname;
4267 	const char *name;
4268 	unsigned long offset, size;
4269 	char namebuf[KSYM_NAME_LEN+1];
4270 
4271 	name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4272 
4273 	if (name) {
4274 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4275 		if (modname)
4276 			seq_printf(m, " [%s]", modname);
4277 		return;
4278 	}
4279 #endif
4280 	seq_printf(m, "%p", (void *)address);
4281 }
4282 
4283 static int leaks_show(struct seq_file *m, void *p)
4284 {
4285 	struct kmem_cache *cachep = p;
4286 	struct slab *slabp;
4287 	struct kmem_list3 *l3;
4288 	const char *name;
4289 	unsigned long *n = m->private;
4290 	int node;
4291 	int i;
4292 
4293 	if (!(cachep->flags & SLAB_STORE_USER))
4294 		return 0;
4295 	if (!(cachep->flags & SLAB_RED_ZONE))
4296 		return 0;
4297 
4298 	/* OK, we can do it */
4299 
4300 	n[1] = 0;
4301 
4302 	for_each_online_node(node) {
4303 		l3 = cachep->nodelists[node];
4304 		if (!l3)
4305 			continue;
4306 
4307 		check_irq_on();
4308 		spin_lock_irq(&l3->list_lock);
4309 
4310 		list_for_each_entry(slabp, &l3->slabs_full, list)
4311 			handle_slab(n, cachep, slabp);
4312 		list_for_each_entry(slabp, &l3->slabs_partial, list)
4313 			handle_slab(n, cachep, slabp);
4314 		spin_unlock_irq(&l3->list_lock);
4315 	}
4316 	name = cachep->name;
4317 	if (n[0] == n[1]) {
4318 		/* Increase the buffer size */
4319 		mutex_unlock(&cache_chain_mutex);
4320 		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4321 		if (!m->private) {
4322 			/* Too bad, we are really out */
4323 			m->private = n;
4324 			mutex_lock(&cache_chain_mutex);
4325 			return -ENOMEM;
4326 		}
4327 		*(unsigned long *)m->private = n[0] * 2;
4328 		kfree(n);
4329 		mutex_lock(&cache_chain_mutex);
4330 		/* Now make sure this entry will be retried */
4331 		m->count = m->size;
4332 		return 0;
4333 	}
4334 	for (i = 0; i < n[1]; i++) {
4335 		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4336 		show_symbol(m, n[2*i+2]);
4337 		seq_putc(m, '\n');
4338 	}
4339 
4340 	return 0;
4341 }
4342 
4343 const struct seq_operations slabstats_op = {
4344 	.start = leaks_start,
4345 	.next = s_next,
4346 	.stop = s_stop,
4347 	.show = leaks_show,
4348 };
4349 #endif
4350 #endif
4351 
4352 /**
4353  * ksize - get the actual amount of memory allocated for a given object
4354  * @objp: Pointer to the object
4355  *
4356  * kmalloc may internally round up allocations and return more memory
4357  * than requested. ksize() can be used to determine the actual amount of
4358  * memory allocated. The caller may use this additional memory, even though
4359  * a smaller amount of memory was initially specified with the kmalloc call.
4360  * The caller must guarantee that objp points to a valid object previously
4361  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4362  * must not be freed during the duration of the call.
4363  */
4364 unsigned int ksize(const void *objp)
4365 {
4366 	if (unlikely(objp == NULL))
4367 		return 0;
4368 
4369 	return obj_size(virt_to_cache(objp));
4370 }
4371