1 /* 2 * linux/mm/slab.c 3 * Written by Mark Hemment, 1996/97. 4 * (markhe@nextd.demon.co.uk) 5 * 6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 7 * 8 * Major cleanup, different bufctl logic, per-cpu arrays 9 * (c) 2000 Manfred Spraul 10 * 11 * Cleanup, make the head arrays unconditional, preparation for NUMA 12 * (c) 2002 Manfred Spraul 13 * 14 * An implementation of the Slab Allocator as described in outline in; 15 * UNIX Internals: The New Frontiers by Uresh Vahalia 16 * Pub: Prentice Hall ISBN 0-13-101908-2 17 * or with a little more detail in; 18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 19 * Jeff Bonwick (Sun Microsystems). 20 * Presented at: USENIX Summer 1994 Technical Conference 21 * 22 * The memory is organized in caches, one cache for each object type. 23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 24 * Each cache consists out of many slabs (they are small (usually one 25 * page long) and always contiguous), and each slab contains multiple 26 * initialized objects. 27 * 28 * This means, that your constructor is used only for newly allocated 29 * slabs and you must pass objects with the same intializations to 30 * kmem_cache_free. 31 * 32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 33 * normal). If you need a special memory type, then must create a new 34 * cache for that memory type. 35 * 36 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 37 * full slabs with 0 free objects 38 * partial slabs 39 * empty slabs with no allocated objects 40 * 41 * If partial slabs exist, then new allocations come from these slabs, 42 * otherwise from empty slabs or new slabs are allocated. 43 * 44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 46 * 47 * Each cache has a short per-cpu head array, most allocs 48 * and frees go into that array, and if that array overflows, then 1/2 49 * of the entries in the array are given back into the global cache. 50 * The head array is strictly LIFO and should improve the cache hit rates. 51 * On SMP, it additionally reduces the spinlock operations. 52 * 53 * The c_cpuarray may not be read with enabled local interrupts - 54 * it's changed with a smp_call_function(). 55 * 56 * SMP synchronization: 57 * constructors and destructors are called without any locking. 58 * Several members in struct kmem_cache and struct slab never change, they 59 * are accessed without any locking. 60 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 61 * and local interrupts are disabled so slab code is preempt-safe. 62 * The non-constant members are protected with a per-cache irq spinlock. 63 * 64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 65 * in 2000 - many ideas in the current implementation are derived from 66 * his patch. 67 * 68 * Further notes from the original documentation: 69 * 70 * 11 April '97. Started multi-threading - markhe 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'. 72 * The sem is only needed when accessing/extending the cache-chain, which 73 * can never happen inside an interrupt (kmem_cache_create(), 74 * kmem_cache_shrink() and kmem_cache_reap()). 75 * 76 * At present, each engine can be growing a cache. This should be blocked. 77 * 78 * 15 March 2005. NUMA slab allocator. 79 * Shai Fultheim <shai@scalex86.org>. 80 * Shobhit Dayal <shobhit@calsoftinc.com> 81 * Alok N Kataria <alokk@calsoftinc.com> 82 * Christoph Lameter <christoph@lameter.com> 83 * 84 * Modified the slab allocator to be node aware on NUMA systems. 85 * Each node has its own list of partial, free and full slabs. 86 * All object allocations for a node occur from node specific slab lists. 87 */ 88 89 #include <linux/slab.h> 90 #include <linux/mm.h> 91 #include <linux/poison.h> 92 #include <linux/swap.h> 93 #include <linux/cache.h> 94 #include <linux/interrupt.h> 95 #include <linux/init.h> 96 #include <linux/compiler.h> 97 #include <linux/cpuset.h> 98 #include <linux/seq_file.h> 99 #include <linux/notifier.h> 100 #include <linux/kallsyms.h> 101 #include <linux/cpu.h> 102 #include <linux/sysctl.h> 103 #include <linux/module.h> 104 #include <linux/rcupdate.h> 105 #include <linux/string.h> 106 #include <linux/uaccess.h> 107 #include <linux/nodemask.h> 108 #include <linux/mempolicy.h> 109 #include <linux/mutex.h> 110 #include <linux/rtmutex.h> 111 112 #include <asm/cacheflush.h> 113 #include <asm/tlbflush.h> 114 #include <asm/page.h> 115 116 /* 117 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL, 118 * SLAB_RED_ZONE & SLAB_POISON. 119 * 0 for faster, smaller code (especially in the critical paths). 120 * 121 * STATS - 1 to collect stats for /proc/slabinfo. 122 * 0 for faster, smaller code (especially in the critical paths). 123 * 124 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 125 */ 126 127 #ifdef CONFIG_DEBUG_SLAB 128 #define DEBUG 1 129 #define STATS 1 130 #define FORCED_DEBUG 1 131 #else 132 #define DEBUG 0 133 #define STATS 0 134 #define FORCED_DEBUG 0 135 #endif 136 137 /* Shouldn't this be in a header file somewhere? */ 138 #define BYTES_PER_WORD sizeof(void *) 139 140 #ifndef cache_line_size 141 #define cache_line_size() L1_CACHE_BYTES 142 #endif 143 144 #ifndef ARCH_KMALLOC_MINALIGN 145 /* 146 * Enforce a minimum alignment for the kmalloc caches. 147 * Usually, the kmalloc caches are cache_line_size() aligned, except when 148 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned. 149 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 150 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that. 151 * Note that this flag disables some debug features. 152 */ 153 #define ARCH_KMALLOC_MINALIGN 0 154 #endif 155 156 #ifndef ARCH_SLAB_MINALIGN 157 /* 158 * Enforce a minimum alignment for all caches. 159 * Intended for archs that get misalignment faults even for BYTES_PER_WORD 160 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN. 161 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables 162 * some debug features. 163 */ 164 #define ARCH_SLAB_MINALIGN 0 165 #endif 166 167 #ifndef ARCH_KMALLOC_FLAGS 168 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 169 #endif 170 171 /* Legal flag mask for kmem_cache_create(). */ 172 #if DEBUG 173 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \ 174 SLAB_POISON | SLAB_HWCACHE_ALIGN | \ 175 SLAB_CACHE_DMA | \ 176 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \ 177 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ 178 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD) 179 #else 180 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \ 181 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \ 182 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ 183 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD) 184 #endif 185 186 /* 187 * kmem_bufctl_t: 188 * 189 * Bufctl's are used for linking objs within a slab 190 * linked offsets. 191 * 192 * This implementation relies on "struct page" for locating the cache & 193 * slab an object belongs to. 194 * This allows the bufctl structure to be small (one int), but limits 195 * the number of objects a slab (not a cache) can contain when off-slab 196 * bufctls are used. The limit is the size of the largest general cache 197 * that does not use off-slab slabs. 198 * For 32bit archs with 4 kB pages, is this 56. 199 * This is not serious, as it is only for large objects, when it is unwise 200 * to have too many per slab. 201 * Note: This limit can be raised by introducing a general cache whose size 202 * is less than 512 (PAGE_SIZE<<3), but greater than 256. 203 */ 204 205 typedef unsigned int kmem_bufctl_t; 206 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0) 207 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1) 208 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2) 209 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3) 210 211 /* 212 * struct slab 213 * 214 * Manages the objs in a slab. Placed either at the beginning of mem allocated 215 * for a slab, or allocated from an general cache. 216 * Slabs are chained into three list: fully used, partial, fully free slabs. 217 */ 218 struct slab { 219 struct list_head list; 220 unsigned long colouroff; 221 void *s_mem; /* including colour offset */ 222 unsigned int inuse; /* num of objs active in slab */ 223 kmem_bufctl_t free; 224 unsigned short nodeid; 225 }; 226 227 /* 228 * struct slab_rcu 229 * 230 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to 231 * arrange for kmem_freepages to be called via RCU. This is useful if 232 * we need to approach a kernel structure obliquely, from its address 233 * obtained without the usual locking. We can lock the structure to 234 * stabilize it and check it's still at the given address, only if we 235 * can be sure that the memory has not been meanwhile reused for some 236 * other kind of object (which our subsystem's lock might corrupt). 237 * 238 * rcu_read_lock before reading the address, then rcu_read_unlock after 239 * taking the spinlock within the structure expected at that address. 240 * 241 * We assume struct slab_rcu can overlay struct slab when destroying. 242 */ 243 struct slab_rcu { 244 struct rcu_head head; 245 struct kmem_cache *cachep; 246 void *addr; 247 }; 248 249 /* 250 * struct array_cache 251 * 252 * Purpose: 253 * - LIFO ordering, to hand out cache-warm objects from _alloc 254 * - reduce the number of linked list operations 255 * - reduce spinlock operations 256 * 257 * The limit is stored in the per-cpu structure to reduce the data cache 258 * footprint. 259 * 260 */ 261 struct array_cache { 262 unsigned int avail; 263 unsigned int limit; 264 unsigned int batchcount; 265 unsigned int touched; 266 spinlock_t lock; 267 void *entry[0]; /* 268 * Must have this definition in here for the proper 269 * alignment of array_cache. Also simplifies accessing 270 * the entries. 271 * [0] is for gcc 2.95. It should really be []. 272 */ 273 }; 274 275 /* 276 * bootstrap: The caches do not work without cpuarrays anymore, but the 277 * cpuarrays are allocated from the generic caches... 278 */ 279 #define BOOT_CPUCACHE_ENTRIES 1 280 struct arraycache_init { 281 struct array_cache cache; 282 void *entries[BOOT_CPUCACHE_ENTRIES]; 283 }; 284 285 /* 286 * The slab lists for all objects. 287 */ 288 struct kmem_list3 { 289 struct list_head slabs_partial; /* partial list first, better asm code */ 290 struct list_head slabs_full; 291 struct list_head slabs_free; 292 unsigned long free_objects; 293 unsigned int free_limit; 294 unsigned int colour_next; /* Per-node cache coloring */ 295 spinlock_t list_lock; 296 struct array_cache *shared; /* shared per node */ 297 struct array_cache **alien; /* on other nodes */ 298 unsigned long next_reap; /* updated without locking */ 299 int free_touched; /* updated without locking */ 300 }; 301 302 /* 303 * Need this for bootstrapping a per node allocator. 304 */ 305 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1) 306 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS]; 307 #define CACHE_CACHE 0 308 #define SIZE_AC 1 309 #define SIZE_L3 (1 + MAX_NUMNODES) 310 311 static int drain_freelist(struct kmem_cache *cache, 312 struct kmem_list3 *l3, int tofree); 313 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 314 int node); 315 static int enable_cpucache(struct kmem_cache *cachep); 316 static void cache_reap(struct work_struct *unused); 317 318 /* 319 * This function must be completely optimized away if a constant is passed to 320 * it. Mostly the same as what is in linux/slab.h except it returns an index. 321 */ 322 static __always_inline int index_of(const size_t size) 323 { 324 extern void __bad_size(void); 325 326 if (__builtin_constant_p(size)) { 327 int i = 0; 328 329 #define CACHE(x) \ 330 if (size <=x) \ 331 return i; \ 332 else \ 333 i++; 334 #include "linux/kmalloc_sizes.h" 335 #undef CACHE 336 __bad_size(); 337 } else 338 __bad_size(); 339 return 0; 340 } 341 342 static int slab_early_init = 1; 343 344 #define INDEX_AC index_of(sizeof(struct arraycache_init)) 345 #define INDEX_L3 index_of(sizeof(struct kmem_list3)) 346 347 static void kmem_list3_init(struct kmem_list3 *parent) 348 { 349 INIT_LIST_HEAD(&parent->slabs_full); 350 INIT_LIST_HEAD(&parent->slabs_partial); 351 INIT_LIST_HEAD(&parent->slabs_free); 352 parent->shared = NULL; 353 parent->alien = NULL; 354 parent->colour_next = 0; 355 spin_lock_init(&parent->list_lock); 356 parent->free_objects = 0; 357 parent->free_touched = 0; 358 } 359 360 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 361 do { \ 362 INIT_LIST_HEAD(listp); \ 363 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \ 364 } while (0) 365 366 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 367 do { \ 368 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 369 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 370 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 371 } while (0) 372 373 /* 374 * struct kmem_cache 375 * 376 * manages a cache. 377 */ 378 379 struct kmem_cache { 380 /* 1) per-cpu data, touched during every alloc/free */ 381 struct array_cache *array[NR_CPUS]; 382 /* 2) Cache tunables. Protected by cache_chain_mutex */ 383 unsigned int batchcount; 384 unsigned int limit; 385 unsigned int shared; 386 387 unsigned int buffer_size; 388 /* 3) touched by every alloc & free from the backend */ 389 struct kmem_list3 *nodelists[MAX_NUMNODES]; 390 391 unsigned int flags; /* constant flags */ 392 unsigned int num; /* # of objs per slab */ 393 394 /* 4) cache_grow/shrink */ 395 /* order of pgs per slab (2^n) */ 396 unsigned int gfporder; 397 398 /* force GFP flags, e.g. GFP_DMA */ 399 gfp_t gfpflags; 400 401 size_t colour; /* cache colouring range */ 402 unsigned int colour_off; /* colour offset */ 403 struct kmem_cache *slabp_cache; 404 unsigned int slab_size; 405 unsigned int dflags; /* dynamic flags */ 406 407 /* constructor func */ 408 void (*ctor) (void *, struct kmem_cache *, unsigned long); 409 410 /* de-constructor func */ 411 void (*dtor) (void *, struct kmem_cache *, unsigned long); 412 413 /* 5) cache creation/removal */ 414 const char *name; 415 struct list_head next; 416 417 /* 6) statistics */ 418 #if STATS 419 unsigned long num_active; 420 unsigned long num_allocations; 421 unsigned long high_mark; 422 unsigned long grown; 423 unsigned long reaped; 424 unsigned long errors; 425 unsigned long max_freeable; 426 unsigned long node_allocs; 427 unsigned long node_frees; 428 unsigned long node_overflow; 429 atomic_t allochit; 430 atomic_t allocmiss; 431 atomic_t freehit; 432 atomic_t freemiss; 433 #endif 434 #if DEBUG 435 /* 436 * If debugging is enabled, then the allocator can add additional 437 * fields and/or padding to every object. buffer_size contains the total 438 * object size including these internal fields, the following two 439 * variables contain the offset to the user object and its size. 440 */ 441 int obj_offset; 442 int obj_size; 443 #endif 444 }; 445 446 #define CFLGS_OFF_SLAB (0x80000000UL) 447 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 448 449 #define BATCHREFILL_LIMIT 16 450 /* 451 * Optimization question: fewer reaps means less probability for unnessary 452 * cpucache drain/refill cycles. 453 * 454 * OTOH the cpuarrays can contain lots of objects, 455 * which could lock up otherwise freeable slabs. 456 */ 457 #define REAPTIMEOUT_CPUC (2*HZ) 458 #define REAPTIMEOUT_LIST3 (4*HZ) 459 460 #if STATS 461 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 462 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 463 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 464 #define STATS_INC_GROWN(x) ((x)->grown++) 465 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 466 #define STATS_SET_HIGH(x) \ 467 do { \ 468 if ((x)->num_active > (x)->high_mark) \ 469 (x)->high_mark = (x)->num_active; \ 470 } while (0) 471 #define STATS_INC_ERR(x) ((x)->errors++) 472 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 473 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 474 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 475 #define STATS_SET_FREEABLE(x, i) \ 476 do { \ 477 if ((x)->max_freeable < i) \ 478 (x)->max_freeable = i; \ 479 } while (0) 480 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 481 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 482 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 483 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 484 #else 485 #define STATS_INC_ACTIVE(x) do { } while (0) 486 #define STATS_DEC_ACTIVE(x) do { } while (0) 487 #define STATS_INC_ALLOCED(x) do { } while (0) 488 #define STATS_INC_GROWN(x) do { } while (0) 489 #define STATS_ADD_REAPED(x,y) do { } while (0) 490 #define STATS_SET_HIGH(x) do { } while (0) 491 #define STATS_INC_ERR(x) do { } while (0) 492 #define STATS_INC_NODEALLOCS(x) do { } while (0) 493 #define STATS_INC_NODEFREES(x) do { } while (0) 494 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 495 #define STATS_SET_FREEABLE(x, i) do { } while (0) 496 #define STATS_INC_ALLOCHIT(x) do { } while (0) 497 #define STATS_INC_ALLOCMISS(x) do { } while (0) 498 #define STATS_INC_FREEHIT(x) do { } while (0) 499 #define STATS_INC_FREEMISS(x) do { } while (0) 500 #endif 501 502 #if DEBUG 503 504 /* 505 * memory layout of objects: 506 * 0 : objp 507 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 508 * the end of an object is aligned with the end of the real 509 * allocation. Catches writes behind the end of the allocation. 510 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 511 * redzone word. 512 * cachep->obj_offset: The real object. 513 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 514 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address 515 * [BYTES_PER_WORD long] 516 */ 517 static int obj_offset(struct kmem_cache *cachep) 518 { 519 return cachep->obj_offset; 520 } 521 522 static int obj_size(struct kmem_cache *cachep) 523 { 524 return cachep->obj_size; 525 } 526 527 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 528 { 529 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 530 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD); 531 } 532 533 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 534 { 535 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 536 if (cachep->flags & SLAB_STORE_USER) 537 return (unsigned long *)(objp + cachep->buffer_size - 538 2 * BYTES_PER_WORD); 539 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD); 540 } 541 542 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 543 { 544 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 545 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD); 546 } 547 548 #else 549 550 #define obj_offset(x) 0 551 #define obj_size(cachep) (cachep->buffer_size) 552 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;}) 553 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;}) 554 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 555 556 #endif 557 558 /* 559 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp 560 * order. 561 */ 562 #if defined(CONFIG_LARGE_ALLOCS) 563 #define MAX_OBJ_ORDER 13 /* up to 32Mb */ 564 #define MAX_GFP_ORDER 13 /* up to 32Mb */ 565 #elif defined(CONFIG_MMU) 566 #define MAX_OBJ_ORDER 5 /* 32 pages */ 567 #define MAX_GFP_ORDER 5 /* 32 pages */ 568 #else 569 #define MAX_OBJ_ORDER 8 /* up to 1Mb */ 570 #define MAX_GFP_ORDER 8 /* up to 1Mb */ 571 #endif 572 573 /* 574 * Do not go above this order unless 0 objects fit into the slab. 575 */ 576 #define BREAK_GFP_ORDER_HI 1 577 #define BREAK_GFP_ORDER_LO 0 578 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO; 579 580 /* 581 * Functions for storing/retrieving the cachep and or slab from the page 582 * allocator. These are used to find the slab an obj belongs to. With kfree(), 583 * these are used to find the cache which an obj belongs to. 584 */ 585 static inline void page_set_cache(struct page *page, struct kmem_cache *cache) 586 { 587 page->lru.next = (struct list_head *)cache; 588 } 589 590 static inline struct kmem_cache *page_get_cache(struct page *page) 591 { 592 if (unlikely(PageCompound(page))) 593 page = (struct page *)page_private(page); 594 BUG_ON(!PageSlab(page)); 595 return (struct kmem_cache *)page->lru.next; 596 } 597 598 static inline void page_set_slab(struct page *page, struct slab *slab) 599 { 600 page->lru.prev = (struct list_head *)slab; 601 } 602 603 static inline struct slab *page_get_slab(struct page *page) 604 { 605 if (unlikely(PageCompound(page))) 606 page = (struct page *)page_private(page); 607 BUG_ON(!PageSlab(page)); 608 return (struct slab *)page->lru.prev; 609 } 610 611 static inline struct kmem_cache *virt_to_cache(const void *obj) 612 { 613 struct page *page = virt_to_page(obj); 614 return page_get_cache(page); 615 } 616 617 static inline struct slab *virt_to_slab(const void *obj) 618 { 619 struct page *page = virt_to_page(obj); 620 return page_get_slab(page); 621 } 622 623 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab, 624 unsigned int idx) 625 { 626 return slab->s_mem + cache->buffer_size * idx; 627 } 628 629 static inline unsigned int obj_to_index(struct kmem_cache *cache, 630 struct slab *slab, void *obj) 631 { 632 return (unsigned)(obj - slab->s_mem) / cache->buffer_size; 633 } 634 635 /* 636 * These are the default caches for kmalloc. Custom caches can have other sizes. 637 */ 638 struct cache_sizes malloc_sizes[] = { 639 #define CACHE(x) { .cs_size = (x) }, 640 #include <linux/kmalloc_sizes.h> 641 CACHE(ULONG_MAX) 642 #undef CACHE 643 }; 644 EXPORT_SYMBOL(malloc_sizes); 645 646 /* Must match cache_sizes above. Out of line to keep cache footprint low. */ 647 struct cache_names { 648 char *name; 649 char *name_dma; 650 }; 651 652 static struct cache_names __initdata cache_names[] = { 653 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" }, 654 #include <linux/kmalloc_sizes.h> 655 {NULL,} 656 #undef CACHE 657 }; 658 659 static struct arraycache_init initarray_cache __initdata = 660 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; 661 static struct arraycache_init initarray_generic = 662 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; 663 664 /* internal cache of cache description objs */ 665 static struct kmem_cache cache_cache = { 666 .batchcount = 1, 667 .limit = BOOT_CPUCACHE_ENTRIES, 668 .shared = 1, 669 .buffer_size = sizeof(struct kmem_cache), 670 .name = "kmem_cache", 671 #if DEBUG 672 .obj_size = sizeof(struct kmem_cache), 673 #endif 674 }; 675 676 #define BAD_ALIEN_MAGIC 0x01020304ul 677 678 #ifdef CONFIG_LOCKDEP 679 680 /* 681 * Slab sometimes uses the kmalloc slabs to store the slab headers 682 * for other slabs "off slab". 683 * The locking for this is tricky in that it nests within the locks 684 * of all other slabs in a few places; to deal with this special 685 * locking we put on-slab caches into a separate lock-class. 686 * 687 * We set lock class for alien array caches which are up during init. 688 * The lock annotation will be lost if all cpus of a node goes down and 689 * then comes back up during hotplug 690 */ 691 static struct lock_class_key on_slab_l3_key; 692 static struct lock_class_key on_slab_alc_key; 693 694 static inline void init_lock_keys(void) 695 696 { 697 int q; 698 struct cache_sizes *s = malloc_sizes; 699 700 while (s->cs_size != ULONG_MAX) { 701 for_each_node(q) { 702 struct array_cache **alc; 703 int r; 704 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q]; 705 if (!l3 || OFF_SLAB(s->cs_cachep)) 706 continue; 707 lockdep_set_class(&l3->list_lock, &on_slab_l3_key); 708 alc = l3->alien; 709 /* 710 * FIXME: This check for BAD_ALIEN_MAGIC 711 * should go away when common slab code is taught to 712 * work even without alien caches. 713 * Currently, non NUMA code returns BAD_ALIEN_MAGIC 714 * for alloc_alien_cache, 715 */ 716 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC) 717 continue; 718 for_each_node(r) { 719 if (alc[r]) 720 lockdep_set_class(&alc[r]->lock, 721 &on_slab_alc_key); 722 } 723 } 724 s++; 725 } 726 } 727 #else 728 static inline void init_lock_keys(void) 729 { 730 } 731 #endif 732 733 /* 734 * 1. Guard access to the cache-chain. 735 * 2. Protect sanity of cpu_online_map against cpu hotplug events 736 */ 737 static DEFINE_MUTEX(cache_chain_mutex); 738 static struct list_head cache_chain; 739 740 /* 741 * chicken and egg problem: delay the per-cpu array allocation 742 * until the general caches are up. 743 */ 744 static enum { 745 NONE, 746 PARTIAL_AC, 747 PARTIAL_L3, 748 FULL 749 } g_cpucache_up; 750 751 /* 752 * used by boot code to determine if it can use slab based allocator 753 */ 754 int slab_is_available(void) 755 { 756 return g_cpucache_up == FULL; 757 } 758 759 static DEFINE_PER_CPU(struct delayed_work, reap_work); 760 761 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 762 { 763 return cachep->array[smp_processor_id()]; 764 } 765 766 static inline struct kmem_cache *__find_general_cachep(size_t size, 767 gfp_t gfpflags) 768 { 769 struct cache_sizes *csizep = malloc_sizes; 770 771 #if DEBUG 772 /* This happens if someone tries to call 773 * kmem_cache_create(), or __kmalloc(), before 774 * the generic caches are initialized. 775 */ 776 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL); 777 #endif 778 while (size > csizep->cs_size) 779 csizep++; 780 781 /* 782 * Really subtle: The last entry with cs->cs_size==ULONG_MAX 783 * has cs_{dma,}cachep==NULL. Thus no special case 784 * for large kmalloc calls required. 785 */ 786 if (unlikely(gfpflags & GFP_DMA)) 787 return csizep->cs_dmacachep; 788 return csizep->cs_cachep; 789 } 790 791 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags) 792 { 793 return __find_general_cachep(size, gfpflags); 794 } 795 796 static size_t slab_mgmt_size(size_t nr_objs, size_t align) 797 { 798 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align); 799 } 800 801 /* 802 * Calculate the number of objects and left-over bytes for a given buffer size. 803 */ 804 static void cache_estimate(unsigned long gfporder, size_t buffer_size, 805 size_t align, int flags, size_t *left_over, 806 unsigned int *num) 807 { 808 int nr_objs; 809 size_t mgmt_size; 810 size_t slab_size = PAGE_SIZE << gfporder; 811 812 /* 813 * The slab management structure can be either off the slab or 814 * on it. For the latter case, the memory allocated for a 815 * slab is used for: 816 * 817 * - The struct slab 818 * - One kmem_bufctl_t for each object 819 * - Padding to respect alignment of @align 820 * - @buffer_size bytes for each object 821 * 822 * If the slab management structure is off the slab, then the 823 * alignment will already be calculated into the size. Because 824 * the slabs are all pages aligned, the objects will be at the 825 * correct alignment when allocated. 826 */ 827 if (flags & CFLGS_OFF_SLAB) { 828 mgmt_size = 0; 829 nr_objs = slab_size / buffer_size; 830 831 if (nr_objs > SLAB_LIMIT) 832 nr_objs = SLAB_LIMIT; 833 } else { 834 /* 835 * Ignore padding for the initial guess. The padding 836 * is at most @align-1 bytes, and @buffer_size is at 837 * least @align. In the worst case, this result will 838 * be one greater than the number of objects that fit 839 * into the memory allocation when taking the padding 840 * into account. 841 */ 842 nr_objs = (slab_size - sizeof(struct slab)) / 843 (buffer_size + sizeof(kmem_bufctl_t)); 844 845 /* 846 * This calculated number will be either the right 847 * amount, or one greater than what we want. 848 */ 849 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size 850 > slab_size) 851 nr_objs--; 852 853 if (nr_objs > SLAB_LIMIT) 854 nr_objs = SLAB_LIMIT; 855 856 mgmt_size = slab_mgmt_size(nr_objs, align); 857 } 858 *num = nr_objs; 859 *left_over = slab_size - nr_objs*buffer_size - mgmt_size; 860 } 861 862 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg) 863 864 static void __slab_error(const char *function, struct kmem_cache *cachep, 865 char *msg) 866 { 867 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", 868 function, cachep->name, msg); 869 dump_stack(); 870 } 871 872 /* 873 * By default on NUMA we use alien caches to stage the freeing of 874 * objects allocated from other nodes. This causes massive memory 875 * inefficiencies when using fake NUMA setup to split memory into a 876 * large number of small nodes, so it can be disabled on the command 877 * line 878 */ 879 880 static int use_alien_caches __read_mostly = 1; 881 static int __init noaliencache_setup(char *s) 882 { 883 use_alien_caches = 0; 884 return 1; 885 } 886 __setup("noaliencache", noaliencache_setup); 887 888 #ifdef CONFIG_NUMA 889 /* 890 * Special reaping functions for NUMA systems called from cache_reap(). 891 * These take care of doing round robin flushing of alien caches (containing 892 * objects freed on different nodes from which they were allocated) and the 893 * flushing of remote pcps by calling drain_node_pages. 894 */ 895 static DEFINE_PER_CPU(unsigned long, reap_node); 896 897 static void init_reap_node(int cpu) 898 { 899 int node; 900 901 node = next_node(cpu_to_node(cpu), node_online_map); 902 if (node == MAX_NUMNODES) 903 node = first_node(node_online_map); 904 905 per_cpu(reap_node, cpu) = node; 906 } 907 908 static void next_reap_node(void) 909 { 910 int node = __get_cpu_var(reap_node); 911 912 /* 913 * Also drain per cpu pages on remote zones 914 */ 915 if (node != numa_node_id()) 916 drain_node_pages(node); 917 918 node = next_node(node, node_online_map); 919 if (unlikely(node >= MAX_NUMNODES)) 920 node = first_node(node_online_map); 921 __get_cpu_var(reap_node) = node; 922 } 923 924 #else 925 #define init_reap_node(cpu) do { } while (0) 926 #define next_reap_node(void) do { } while (0) 927 #endif 928 929 /* 930 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 931 * via the workqueue/eventd. 932 * Add the CPU number into the expiration time to minimize the possibility of 933 * the CPUs getting into lockstep and contending for the global cache chain 934 * lock. 935 */ 936 static void __devinit start_cpu_timer(int cpu) 937 { 938 struct delayed_work *reap_work = &per_cpu(reap_work, cpu); 939 940 /* 941 * When this gets called from do_initcalls via cpucache_init(), 942 * init_workqueues() has already run, so keventd will be setup 943 * at that time. 944 */ 945 if (keventd_up() && reap_work->work.func == NULL) { 946 init_reap_node(cpu); 947 INIT_DELAYED_WORK(reap_work, cache_reap); 948 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu); 949 } 950 } 951 952 static struct array_cache *alloc_arraycache(int node, int entries, 953 int batchcount) 954 { 955 int memsize = sizeof(void *) * entries + sizeof(struct array_cache); 956 struct array_cache *nc = NULL; 957 958 nc = kmalloc_node(memsize, GFP_KERNEL, node); 959 if (nc) { 960 nc->avail = 0; 961 nc->limit = entries; 962 nc->batchcount = batchcount; 963 nc->touched = 0; 964 spin_lock_init(&nc->lock); 965 } 966 return nc; 967 } 968 969 /* 970 * Transfer objects in one arraycache to another. 971 * Locking must be handled by the caller. 972 * 973 * Return the number of entries transferred. 974 */ 975 static int transfer_objects(struct array_cache *to, 976 struct array_cache *from, unsigned int max) 977 { 978 /* Figure out how many entries to transfer */ 979 int nr = min(min(from->avail, max), to->limit - to->avail); 980 981 if (!nr) 982 return 0; 983 984 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 985 sizeof(void *) *nr); 986 987 from->avail -= nr; 988 to->avail += nr; 989 to->touched = 1; 990 return nr; 991 } 992 993 #ifndef CONFIG_NUMA 994 995 #define drain_alien_cache(cachep, alien) do { } while (0) 996 #define reap_alien(cachep, l3) do { } while (0) 997 998 static inline struct array_cache **alloc_alien_cache(int node, int limit) 999 { 1000 return (struct array_cache **)BAD_ALIEN_MAGIC; 1001 } 1002 1003 static inline void free_alien_cache(struct array_cache **ac_ptr) 1004 { 1005 } 1006 1007 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 1008 { 1009 return 0; 1010 } 1011 1012 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 1013 gfp_t flags) 1014 { 1015 return NULL; 1016 } 1017 1018 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 1019 gfp_t flags, int nodeid) 1020 { 1021 return NULL; 1022 } 1023 1024 #else /* CONFIG_NUMA */ 1025 1026 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 1027 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 1028 1029 static struct array_cache **alloc_alien_cache(int node, int limit) 1030 { 1031 struct array_cache **ac_ptr; 1032 int memsize = sizeof(void *) * MAX_NUMNODES; 1033 int i; 1034 1035 if (limit > 1) 1036 limit = 12; 1037 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node); 1038 if (ac_ptr) { 1039 for_each_node(i) { 1040 if (i == node || !node_online(i)) { 1041 ac_ptr[i] = NULL; 1042 continue; 1043 } 1044 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d); 1045 if (!ac_ptr[i]) { 1046 for (i--; i <= 0; i--) 1047 kfree(ac_ptr[i]); 1048 kfree(ac_ptr); 1049 return NULL; 1050 } 1051 } 1052 } 1053 return ac_ptr; 1054 } 1055 1056 static void free_alien_cache(struct array_cache **ac_ptr) 1057 { 1058 int i; 1059 1060 if (!ac_ptr) 1061 return; 1062 for_each_node(i) 1063 kfree(ac_ptr[i]); 1064 kfree(ac_ptr); 1065 } 1066 1067 static void __drain_alien_cache(struct kmem_cache *cachep, 1068 struct array_cache *ac, int node) 1069 { 1070 struct kmem_list3 *rl3 = cachep->nodelists[node]; 1071 1072 if (ac->avail) { 1073 spin_lock(&rl3->list_lock); 1074 /* 1075 * Stuff objects into the remote nodes shared array first. 1076 * That way we could avoid the overhead of putting the objects 1077 * into the free lists and getting them back later. 1078 */ 1079 if (rl3->shared) 1080 transfer_objects(rl3->shared, ac, ac->limit); 1081 1082 free_block(cachep, ac->entry, ac->avail, node); 1083 ac->avail = 0; 1084 spin_unlock(&rl3->list_lock); 1085 } 1086 } 1087 1088 /* 1089 * Called from cache_reap() to regularly drain alien caches round robin. 1090 */ 1091 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3) 1092 { 1093 int node = __get_cpu_var(reap_node); 1094 1095 if (l3->alien) { 1096 struct array_cache *ac = l3->alien[node]; 1097 1098 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) { 1099 __drain_alien_cache(cachep, ac, node); 1100 spin_unlock_irq(&ac->lock); 1101 } 1102 } 1103 } 1104 1105 static void drain_alien_cache(struct kmem_cache *cachep, 1106 struct array_cache **alien) 1107 { 1108 int i = 0; 1109 struct array_cache *ac; 1110 unsigned long flags; 1111 1112 for_each_online_node(i) { 1113 ac = alien[i]; 1114 if (ac) { 1115 spin_lock_irqsave(&ac->lock, flags); 1116 __drain_alien_cache(cachep, ac, i); 1117 spin_unlock_irqrestore(&ac->lock, flags); 1118 } 1119 } 1120 } 1121 1122 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 1123 { 1124 struct slab *slabp = virt_to_slab(objp); 1125 int nodeid = slabp->nodeid; 1126 struct kmem_list3 *l3; 1127 struct array_cache *alien = NULL; 1128 int node; 1129 1130 node = numa_node_id(); 1131 1132 /* 1133 * Make sure we are not freeing a object from another node to the array 1134 * cache on this cpu. 1135 */ 1136 if (likely(slabp->nodeid == node) || unlikely(!use_alien_caches)) 1137 return 0; 1138 1139 l3 = cachep->nodelists[node]; 1140 STATS_INC_NODEFREES(cachep); 1141 if (l3->alien && l3->alien[nodeid]) { 1142 alien = l3->alien[nodeid]; 1143 spin_lock(&alien->lock); 1144 if (unlikely(alien->avail == alien->limit)) { 1145 STATS_INC_ACOVERFLOW(cachep); 1146 __drain_alien_cache(cachep, alien, nodeid); 1147 } 1148 alien->entry[alien->avail++] = objp; 1149 spin_unlock(&alien->lock); 1150 } else { 1151 spin_lock(&(cachep->nodelists[nodeid])->list_lock); 1152 free_block(cachep, &objp, 1, nodeid); 1153 spin_unlock(&(cachep->nodelists[nodeid])->list_lock); 1154 } 1155 return 1; 1156 } 1157 #endif 1158 1159 static int __cpuinit cpuup_callback(struct notifier_block *nfb, 1160 unsigned long action, void *hcpu) 1161 { 1162 long cpu = (long)hcpu; 1163 struct kmem_cache *cachep; 1164 struct kmem_list3 *l3 = NULL; 1165 int node = cpu_to_node(cpu); 1166 int memsize = sizeof(struct kmem_list3); 1167 1168 switch (action) { 1169 case CPU_UP_PREPARE: 1170 mutex_lock(&cache_chain_mutex); 1171 /* 1172 * We need to do this right in the beginning since 1173 * alloc_arraycache's are going to use this list. 1174 * kmalloc_node allows us to add the slab to the right 1175 * kmem_list3 and not this cpu's kmem_list3 1176 */ 1177 1178 list_for_each_entry(cachep, &cache_chain, next) { 1179 /* 1180 * Set up the size64 kmemlist for cpu before we can 1181 * begin anything. Make sure some other cpu on this 1182 * node has not already allocated this 1183 */ 1184 if (!cachep->nodelists[node]) { 1185 l3 = kmalloc_node(memsize, GFP_KERNEL, node); 1186 if (!l3) 1187 goto bad; 1188 kmem_list3_init(l3); 1189 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + 1190 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 1191 1192 /* 1193 * The l3s don't come and go as CPUs come and 1194 * go. cache_chain_mutex is sufficient 1195 * protection here. 1196 */ 1197 cachep->nodelists[node] = l3; 1198 } 1199 1200 spin_lock_irq(&cachep->nodelists[node]->list_lock); 1201 cachep->nodelists[node]->free_limit = 1202 (1 + nr_cpus_node(node)) * 1203 cachep->batchcount + cachep->num; 1204 spin_unlock_irq(&cachep->nodelists[node]->list_lock); 1205 } 1206 1207 /* 1208 * Now we can go ahead with allocating the shared arrays and 1209 * array caches 1210 */ 1211 list_for_each_entry(cachep, &cache_chain, next) { 1212 struct array_cache *nc; 1213 struct array_cache *shared; 1214 struct array_cache **alien = NULL; 1215 1216 nc = alloc_arraycache(node, cachep->limit, 1217 cachep->batchcount); 1218 if (!nc) 1219 goto bad; 1220 shared = alloc_arraycache(node, 1221 cachep->shared * cachep->batchcount, 1222 0xbaadf00d); 1223 if (!shared) 1224 goto bad; 1225 1226 if (use_alien_caches) { 1227 alien = alloc_alien_cache(node, cachep->limit); 1228 if (!alien) 1229 goto bad; 1230 } 1231 cachep->array[cpu] = nc; 1232 l3 = cachep->nodelists[node]; 1233 BUG_ON(!l3); 1234 1235 spin_lock_irq(&l3->list_lock); 1236 if (!l3->shared) { 1237 /* 1238 * We are serialised from CPU_DEAD or 1239 * CPU_UP_CANCELLED by the cpucontrol lock 1240 */ 1241 l3->shared = shared; 1242 shared = NULL; 1243 } 1244 #ifdef CONFIG_NUMA 1245 if (!l3->alien) { 1246 l3->alien = alien; 1247 alien = NULL; 1248 } 1249 #endif 1250 spin_unlock_irq(&l3->list_lock); 1251 kfree(shared); 1252 free_alien_cache(alien); 1253 } 1254 break; 1255 case CPU_ONLINE: 1256 mutex_unlock(&cache_chain_mutex); 1257 start_cpu_timer(cpu); 1258 break; 1259 #ifdef CONFIG_HOTPLUG_CPU 1260 case CPU_DOWN_PREPARE: 1261 mutex_lock(&cache_chain_mutex); 1262 break; 1263 case CPU_DOWN_FAILED: 1264 mutex_unlock(&cache_chain_mutex); 1265 break; 1266 case CPU_DEAD: 1267 /* 1268 * Even if all the cpus of a node are down, we don't free the 1269 * kmem_list3 of any cache. This to avoid a race between 1270 * cpu_down, and a kmalloc allocation from another cpu for 1271 * memory from the node of the cpu going down. The list3 1272 * structure is usually allocated from kmem_cache_create() and 1273 * gets destroyed at kmem_cache_destroy(). 1274 */ 1275 /* fall thru */ 1276 #endif 1277 case CPU_UP_CANCELED: 1278 list_for_each_entry(cachep, &cache_chain, next) { 1279 struct array_cache *nc; 1280 struct array_cache *shared; 1281 struct array_cache **alien; 1282 cpumask_t mask; 1283 1284 mask = node_to_cpumask(node); 1285 /* cpu is dead; no one can alloc from it. */ 1286 nc = cachep->array[cpu]; 1287 cachep->array[cpu] = NULL; 1288 l3 = cachep->nodelists[node]; 1289 1290 if (!l3) 1291 goto free_array_cache; 1292 1293 spin_lock_irq(&l3->list_lock); 1294 1295 /* Free limit for this kmem_list3 */ 1296 l3->free_limit -= cachep->batchcount; 1297 if (nc) 1298 free_block(cachep, nc->entry, nc->avail, node); 1299 1300 if (!cpus_empty(mask)) { 1301 spin_unlock_irq(&l3->list_lock); 1302 goto free_array_cache; 1303 } 1304 1305 shared = l3->shared; 1306 if (shared) { 1307 free_block(cachep, l3->shared->entry, 1308 l3->shared->avail, node); 1309 l3->shared = NULL; 1310 } 1311 1312 alien = l3->alien; 1313 l3->alien = NULL; 1314 1315 spin_unlock_irq(&l3->list_lock); 1316 1317 kfree(shared); 1318 if (alien) { 1319 drain_alien_cache(cachep, alien); 1320 free_alien_cache(alien); 1321 } 1322 free_array_cache: 1323 kfree(nc); 1324 } 1325 /* 1326 * In the previous loop, all the objects were freed to 1327 * the respective cache's slabs, now we can go ahead and 1328 * shrink each nodelist to its limit. 1329 */ 1330 list_for_each_entry(cachep, &cache_chain, next) { 1331 l3 = cachep->nodelists[node]; 1332 if (!l3) 1333 continue; 1334 drain_freelist(cachep, l3, l3->free_objects); 1335 } 1336 mutex_unlock(&cache_chain_mutex); 1337 break; 1338 } 1339 return NOTIFY_OK; 1340 bad: 1341 return NOTIFY_BAD; 1342 } 1343 1344 static struct notifier_block __cpuinitdata cpucache_notifier = { 1345 &cpuup_callback, NULL, 0 1346 }; 1347 1348 /* 1349 * swap the static kmem_list3 with kmalloced memory 1350 */ 1351 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, 1352 int nodeid) 1353 { 1354 struct kmem_list3 *ptr; 1355 1356 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid); 1357 BUG_ON(!ptr); 1358 1359 local_irq_disable(); 1360 memcpy(ptr, list, sizeof(struct kmem_list3)); 1361 /* 1362 * Do not assume that spinlocks can be initialized via memcpy: 1363 */ 1364 spin_lock_init(&ptr->list_lock); 1365 1366 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1367 cachep->nodelists[nodeid] = ptr; 1368 local_irq_enable(); 1369 } 1370 1371 /* 1372 * Initialisation. Called after the page allocator have been initialised and 1373 * before smp_init(). 1374 */ 1375 void __init kmem_cache_init(void) 1376 { 1377 size_t left_over; 1378 struct cache_sizes *sizes; 1379 struct cache_names *names; 1380 int i; 1381 int order; 1382 int node; 1383 1384 for (i = 0; i < NUM_INIT_LISTS; i++) { 1385 kmem_list3_init(&initkmem_list3[i]); 1386 if (i < MAX_NUMNODES) 1387 cache_cache.nodelists[i] = NULL; 1388 } 1389 1390 /* 1391 * Fragmentation resistance on low memory - only use bigger 1392 * page orders on machines with more than 32MB of memory. 1393 */ 1394 if (num_physpages > (32 << 20) >> PAGE_SHIFT) 1395 slab_break_gfp_order = BREAK_GFP_ORDER_HI; 1396 1397 /* Bootstrap is tricky, because several objects are allocated 1398 * from caches that do not exist yet: 1399 * 1) initialize the cache_cache cache: it contains the struct 1400 * kmem_cache structures of all caches, except cache_cache itself: 1401 * cache_cache is statically allocated. 1402 * Initially an __init data area is used for the head array and the 1403 * kmem_list3 structures, it's replaced with a kmalloc allocated 1404 * array at the end of the bootstrap. 1405 * 2) Create the first kmalloc cache. 1406 * The struct kmem_cache for the new cache is allocated normally. 1407 * An __init data area is used for the head array. 1408 * 3) Create the remaining kmalloc caches, with minimally sized 1409 * head arrays. 1410 * 4) Replace the __init data head arrays for cache_cache and the first 1411 * kmalloc cache with kmalloc allocated arrays. 1412 * 5) Replace the __init data for kmem_list3 for cache_cache and 1413 * the other cache's with kmalloc allocated memory. 1414 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1415 */ 1416 1417 node = numa_node_id(); 1418 1419 /* 1) create the cache_cache */ 1420 INIT_LIST_HEAD(&cache_chain); 1421 list_add(&cache_cache.next, &cache_chain); 1422 cache_cache.colour_off = cache_line_size(); 1423 cache_cache.array[smp_processor_id()] = &initarray_cache.cache; 1424 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE]; 1425 1426 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, 1427 cache_line_size()); 1428 1429 for (order = 0; order < MAX_ORDER; order++) { 1430 cache_estimate(order, cache_cache.buffer_size, 1431 cache_line_size(), 0, &left_over, &cache_cache.num); 1432 if (cache_cache.num) 1433 break; 1434 } 1435 BUG_ON(!cache_cache.num); 1436 cache_cache.gfporder = order; 1437 cache_cache.colour = left_over / cache_cache.colour_off; 1438 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) + 1439 sizeof(struct slab), cache_line_size()); 1440 1441 /* 2+3) create the kmalloc caches */ 1442 sizes = malloc_sizes; 1443 names = cache_names; 1444 1445 /* 1446 * Initialize the caches that provide memory for the array cache and the 1447 * kmem_list3 structures first. Without this, further allocations will 1448 * bug. 1449 */ 1450 1451 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name, 1452 sizes[INDEX_AC].cs_size, 1453 ARCH_KMALLOC_MINALIGN, 1454 ARCH_KMALLOC_FLAGS|SLAB_PANIC, 1455 NULL, NULL); 1456 1457 if (INDEX_AC != INDEX_L3) { 1458 sizes[INDEX_L3].cs_cachep = 1459 kmem_cache_create(names[INDEX_L3].name, 1460 sizes[INDEX_L3].cs_size, 1461 ARCH_KMALLOC_MINALIGN, 1462 ARCH_KMALLOC_FLAGS|SLAB_PANIC, 1463 NULL, NULL); 1464 } 1465 1466 slab_early_init = 0; 1467 1468 while (sizes->cs_size != ULONG_MAX) { 1469 /* 1470 * For performance, all the general caches are L1 aligned. 1471 * This should be particularly beneficial on SMP boxes, as it 1472 * eliminates "false sharing". 1473 * Note for systems short on memory removing the alignment will 1474 * allow tighter packing of the smaller caches. 1475 */ 1476 if (!sizes->cs_cachep) { 1477 sizes->cs_cachep = kmem_cache_create(names->name, 1478 sizes->cs_size, 1479 ARCH_KMALLOC_MINALIGN, 1480 ARCH_KMALLOC_FLAGS|SLAB_PANIC, 1481 NULL, NULL); 1482 } 1483 1484 sizes->cs_dmacachep = kmem_cache_create(names->name_dma, 1485 sizes->cs_size, 1486 ARCH_KMALLOC_MINALIGN, 1487 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA| 1488 SLAB_PANIC, 1489 NULL, NULL); 1490 sizes++; 1491 names++; 1492 } 1493 /* 4) Replace the bootstrap head arrays */ 1494 { 1495 struct array_cache *ptr; 1496 1497 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); 1498 1499 local_irq_disable(); 1500 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache); 1501 memcpy(ptr, cpu_cache_get(&cache_cache), 1502 sizeof(struct arraycache_init)); 1503 /* 1504 * Do not assume that spinlocks can be initialized via memcpy: 1505 */ 1506 spin_lock_init(&ptr->lock); 1507 1508 cache_cache.array[smp_processor_id()] = ptr; 1509 local_irq_enable(); 1510 1511 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); 1512 1513 local_irq_disable(); 1514 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep) 1515 != &initarray_generic.cache); 1516 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep), 1517 sizeof(struct arraycache_init)); 1518 /* 1519 * Do not assume that spinlocks can be initialized via memcpy: 1520 */ 1521 spin_lock_init(&ptr->lock); 1522 1523 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = 1524 ptr; 1525 local_irq_enable(); 1526 } 1527 /* 5) Replace the bootstrap kmem_list3's */ 1528 { 1529 int nid; 1530 1531 /* Replace the static kmem_list3 structures for the boot cpu */ 1532 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node); 1533 1534 for_each_online_node(nid) { 1535 init_list(malloc_sizes[INDEX_AC].cs_cachep, 1536 &initkmem_list3[SIZE_AC + nid], nid); 1537 1538 if (INDEX_AC != INDEX_L3) { 1539 init_list(malloc_sizes[INDEX_L3].cs_cachep, 1540 &initkmem_list3[SIZE_L3 + nid], nid); 1541 } 1542 } 1543 } 1544 1545 /* 6) resize the head arrays to their final sizes */ 1546 { 1547 struct kmem_cache *cachep; 1548 mutex_lock(&cache_chain_mutex); 1549 list_for_each_entry(cachep, &cache_chain, next) 1550 if (enable_cpucache(cachep)) 1551 BUG(); 1552 mutex_unlock(&cache_chain_mutex); 1553 } 1554 1555 /* Annotate slab for lockdep -- annotate the malloc caches */ 1556 init_lock_keys(); 1557 1558 1559 /* Done! */ 1560 g_cpucache_up = FULL; 1561 1562 /* 1563 * Register a cpu startup notifier callback that initializes 1564 * cpu_cache_get for all new cpus 1565 */ 1566 register_cpu_notifier(&cpucache_notifier); 1567 1568 /* 1569 * The reap timers are started later, with a module init call: That part 1570 * of the kernel is not yet operational. 1571 */ 1572 } 1573 1574 static int __init cpucache_init(void) 1575 { 1576 int cpu; 1577 1578 /* 1579 * Register the timers that return unneeded pages to the page allocator 1580 */ 1581 for_each_online_cpu(cpu) 1582 start_cpu_timer(cpu); 1583 return 0; 1584 } 1585 __initcall(cpucache_init); 1586 1587 /* 1588 * Interface to system's page allocator. No need to hold the cache-lock. 1589 * 1590 * If we requested dmaable memory, we will get it. Even if we 1591 * did not request dmaable memory, we might get it, but that 1592 * would be relatively rare and ignorable. 1593 */ 1594 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid) 1595 { 1596 struct page *page; 1597 int nr_pages; 1598 int i; 1599 1600 #ifndef CONFIG_MMU 1601 /* 1602 * Nommu uses slab's for process anonymous memory allocations, and thus 1603 * requires __GFP_COMP to properly refcount higher order allocations 1604 */ 1605 flags |= __GFP_COMP; 1606 #endif 1607 1608 flags |= cachep->gfpflags; 1609 1610 page = alloc_pages_node(nodeid, flags, cachep->gfporder); 1611 if (!page) 1612 return NULL; 1613 1614 nr_pages = (1 << cachep->gfporder); 1615 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1616 add_zone_page_state(page_zone(page), 1617 NR_SLAB_RECLAIMABLE, nr_pages); 1618 else 1619 add_zone_page_state(page_zone(page), 1620 NR_SLAB_UNRECLAIMABLE, nr_pages); 1621 for (i = 0; i < nr_pages; i++) 1622 __SetPageSlab(page + i); 1623 return page_address(page); 1624 } 1625 1626 /* 1627 * Interface to system's page release. 1628 */ 1629 static void kmem_freepages(struct kmem_cache *cachep, void *addr) 1630 { 1631 unsigned long i = (1 << cachep->gfporder); 1632 struct page *page = virt_to_page(addr); 1633 const unsigned long nr_freed = i; 1634 1635 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1636 sub_zone_page_state(page_zone(page), 1637 NR_SLAB_RECLAIMABLE, nr_freed); 1638 else 1639 sub_zone_page_state(page_zone(page), 1640 NR_SLAB_UNRECLAIMABLE, nr_freed); 1641 while (i--) { 1642 BUG_ON(!PageSlab(page)); 1643 __ClearPageSlab(page); 1644 page++; 1645 } 1646 if (current->reclaim_state) 1647 current->reclaim_state->reclaimed_slab += nr_freed; 1648 free_pages((unsigned long)addr, cachep->gfporder); 1649 } 1650 1651 static void kmem_rcu_free(struct rcu_head *head) 1652 { 1653 struct slab_rcu *slab_rcu = (struct slab_rcu *)head; 1654 struct kmem_cache *cachep = slab_rcu->cachep; 1655 1656 kmem_freepages(cachep, slab_rcu->addr); 1657 if (OFF_SLAB(cachep)) 1658 kmem_cache_free(cachep->slabp_cache, slab_rcu); 1659 } 1660 1661 #if DEBUG 1662 1663 #ifdef CONFIG_DEBUG_PAGEALLOC 1664 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, 1665 unsigned long caller) 1666 { 1667 int size = obj_size(cachep); 1668 1669 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; 1670 1671 if (size < 5 * sizeof(unsigned long)) 1672 return; 1673 1674 *addr++ = 0x12345678; 1675 *addr++ = caller; 1676 *addr++ = smp_processor_id(); 1677 size -= 3 * sizeof(unsigned long); 1678 { 1679 unsigned long *sptr = &caller; 1680 unsigned long svalue; 1681 1682 while (!kstack_end(sptr)) { 1683 svalue = *sptr++; 1684 if (kernel_text_address(svalue)) { 1685 *addr++ = svalue; 1686 size -= sizeof(unsigned long); 1687 if (size <= sizeof(unsigned long)) 1688 break; 1689 } 1690 } 1691 1692 } 1693 *addr++ = 0x87654321; 1694 } 1695 #endif 1696 1697 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1698 { 1699 int size = obj_size(cachep); 1700 addr = &((char *)addr)[obj_offset(cachep)]; 1701 1702 memset(addr, val, size); 1703 *(unsigned char *)(addr + size - 1) = POISON_END; 1704 } 1705 1706 static void dump_line(char *data, int offset, int limit) 1707 { 1708 int i; 1709 unsigned char error = 0; 1710 int bad_count = 0; 1711 1712 printk(KERN_ERR "%03x:", offset); 1713 for (i = 0; i < limit; i++) { 1714 if (data[offset + i] != POISON_FREE) { 1715 error = data[offset + i]; 1716 bad_count++; 1717 } 1718 printk(" %02x", (unsigned char)data[offset + i]); 1719 } 1720 printk("\n"); 1721 1722 if (bad_count == 1) { 1723 error ^= POISON_FREE; 1724 if (!(error & (error - 1))) { 1725 printk(KERN_ERR "Single bit error detected. Probably " 1726 "bad RAM.\n"); 1727 #ifdef CONFIG_X86 1728 printk(KERN_ERR "Run memtest86+ or a similar memory " 1729 "test tool.\n"); 1730 #else 1731 printk(KERN_ERR "Run a memory test tool.\n"); 1732 #endif 1733 } 1734 } 1735 } 1736 #endif 1737 1738 #if DEBUG 1739 1740 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1741 { 1742 int i, size; 1743 char *realobj; 1744 1745 if (cachep->flags & SLAB_RED_ZONE) { 1746 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n", 1747 *dbg_redzone1(cachep, objp), 1748 *dbg_redzone2(cachep, objp)); 1749 } 1750 1751 if (cachep->flags & SLAB_STORE_USER) { 1752 printk(KERN_ERR "Last user: [<%p>]", 1753 *dbg_userword(cachep, objp)); 1754 print_symbol("(%s)", 1755 (unsigned long)*dbg_userword(cachep, objp)); 1756 printk("\n"); 1757 } 1758 realobj = (char *)objp + obj_offset(cachep); 1759 size = obj_size(cachep); 1760 for (i = 0; i < size && lines; i += 16, lines--) { 1761 int limit; 1762 limit = 16; 1763 if (i + limit > size) 1764 limit = size - i; 1765 dump_line(realobj, i, limit); 1766 } 1767 } 1768 1769 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1770 { 1771 char *realobj; 1772 int size, i; 1773 int lines = 0; 1774 1775 realobj = (char *)objp + obj_offset(cachep); 1776 size = obj_size(cachep); 1777 1778 for (i = 0; i < size; i++) { 1779 char exp = POISON_FREE; 1780 if (i == size - 1) 1781 exp = POISON_END; 1782 if (realobj[i] != exp) { 1783 int limit; 1784 /* Mismatch ! */ 1785 /* Print header */ 1786 if (lines == 0) { 1787 printk(KERN_ERR 1788 "Slab corruption: start=%p, len=%d\n", 1789 realobj, size); 1790 print_objinfo(cachep, objp, 0); 1791 } 1792 /* Hexdump the affected line */ 1793 i = (i / 16) * 16; 1794 limit = 16; 1795 if (i + limit > size) 1796 limit = size - i; 1797 dump_line(realobj, i, limit); 1798 i += 16; 1799 lines++; 1800 /* Limit to 5 lines */ 1801 if (lines > 5) 1802 break; 1803 } 1804 } 1805 if (lines != 0) { 1806 /* Print some data about the neighboring objects, if they 1807 * exist: 1808 */ 1809 struct slab *slabp = virt_to_slab(objp); 1810 unsigned int objnr; 1811 1812 objnr = obj_to_index(cachep, slabp, objp); 1813 if (objnr) { 1814 objp = index_to_obj(cachep, slabp, objnr - 1); 1815 realobj = (char *)objp + obj_offset(cachep); 1816 printk(KERN_ERR "Prev obj: start=%p, len=%d\n", 1817 realobj, size); 1818 print_objinfo(cachep, objp, 2); 1819 } 1820 if (objnr + 1 < cachep->num) { 1821 objp = index_to_obj(cachep, slabp, objnr + 1); 1822 realobj = (char *)objp + obj_offset(cachep); 1823 printk(KERN_ERR "Next obj: start=%p, len=%d\n", 1824 realobj, size); 1825 print_objinfo(cachep, objp, 2); 1826 } 1827 } 1828 } 1829 #endif 1830 1831 #if DEBUG 1832 /** 1833 * slab_destroy_objs - destroy a slab and its objects 1834 * @cachep: cache pointer being destroyed 1835 * @slabp: slab pointer being destroyed 1836 * 1837 * Call the registered destructor for each object in a slab that is being 1838 * destroyed. 1839 */ 1840 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp) 1841 { 1842 int i; 1843 for (i = 0; i < cachep->num; i++) { 1844 void *objp = index_to_obj(cachep, slabp, i); 1845 1846 if (cachep->flags & SLAB_POISON) { 1847 #ifdef CONFIG_DEBUG_PAGEALLOC 1848 if (cachep->buffer_size % PAGE_SIZE == 0 && 1849 OFF_SLAB(cachep)) 1850 kernel_map_pages(virt_to_page(objp), 1851 cachep->buffer_size / PAGE_SIZE, 1); 1852 else 1853 check_poison_obj(cachep, objp); 1854 #else 1855 check_poison_obj(cachep, objp); 1856 #endif 1857 } 1858 if (cachep->flags & SLAB_RED_ZONE) { 1859 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1860 slab_error(cachep, "start of a freed object " 1861 "was overwritten"); 1862 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1863 slab_error(cachep, "end of a freed object " 1864 "was overwritten"); 1865 } 1866 if (cachep->dtor && !(cachep->flags & SLAB_POISON)) 1867 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0); 1868 } 1869 } 1870 #else 1871 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp) 1872 { 1873 if (cachep->dtor) { 1874 int i; 1875 for (i = 0; i < cachep->num; i++) { 1876 void *objp = index_to_obj(cachep, slabp, i); 1877 (cachep->dtor) (objp, cachep, 0); 1878 } 1879 } 1880 } 1881 #endif 1882 1883 /** 1884 * slab_destroy - destroy and release all objects in a slab 1885 * @cachep: cache pointer being destroyed 1886 * @slabp: slab pointer being destroyed 1887 * 1888 * Destroy all the objs in a slab, and release the mem back to the system. 1889 * Before calling the slab must have been unlinked from the cache. The 1890 * cache-lock is not held/needed. 1891 */ 1892 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp) 1893 { 1894 void *addr = slabp->s_mem - slabp->colouroff; 1895 1896 slab_destroy_objs(cachep, slabp); 1897 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { 1898 struct slab_rcu *slab_rcu; 1899 1900 slab_rcu = (struct slab_rcu *)slabp; 1901 slab_rcu->cachep = cachep; 1902 slab_rcu->addr = addr; 1903 call_rcu(&slab_rcu->head, kmem_rcu_free); 1904 } else { 1905 kmem_freepages(cachep, addr); 1906 if (OFF_SLAB(cachep)) 1907 kmem_cache_free(cachep->slabp_cache, slabp); 1908 } 1909 } 1910 1911 /* 1912 * For setting up all the kmem_list3s for cache whose buffer_size is same as 1913 * size of kmem_list3. 1914 */ 1915 static void set_up_list3s(struct kmem_cache *cachep, int index) 1916 { 1917 int node; 1918 1919 for_each_online_node(node) { 1920 cachep->nodelists[node] = &initkmem_list3[index + node]; 1921 cachep->nodelists[node]->next_reap = jiffies + 1922 REAPTIMEOUT_LIST3 + 1923 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 1924 } 1925 } 1926 1927 static void __kmem_cache_destroy(struct kmem_cache *cachep) 1928 { 1929 int i; 1930 struct kmem_list3 *l3; 1931 1932 for_each_online_cpu(i) 1933 kfree(cachep->array[i]); 1934 1935 /* NUMA: free the list3 structures */ 1936 for_each_online_node(i) { 1937 l3 = cachep->nodelists[i]; 1938 if (l3) { 1939 kfree(l3->shared); 1940 free_alien_cache(l3->alien); 1941 kfree(l3); 1942 } 1943 } 1944 kmem_cache_free(&cache_cache, cachep); 1945 } 1946 1947 1948 /** 1949 * calculate_slab_order - calculate size (page order) of slabs 1950 * @cachep: pointer to the cache that is being created 1951 * @size: size of objects to be created in this cache. 1952 * @align: required alignment for the objects. 1953 * @flags: slab allocation flags 1954 * 1955 * Also calculates the number of objects per slab. 1956 * 1957 * This could be made much more intelligent. For now, try to avoid using 1958 * high order pages for slabs. When the gfp() functions are more friendly 1959 * towards high-order requests, this should be changed. 1960 */ 1961 static size_t calculate_slab_order(struct kmem_cache *cachep, 1962 size_t size, size_t align, unsigned long flags) 1963 { 1964 unsigned long offslab_limit; 1965 size_t left_over = 0; 1966 int gfporder; 1967 1968 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) { 1969 unsigned int num; 1970 size_t remainder; 1971 1972 cache_estimate(gfporder, size, align, flags, &remainder, &num); 1973 if (!num) 1974 continue; 1975 1976 if (flags & CFLGS_OFF_SLAB) { 1977 /* 1978 * Max number of objs-per-slab for caches which 1979 * use off-slab slabs. Needed to avoid a possible 1980 * looping condition in cache_grow(). 1981 */ 1982 offslab_limit = size - sizeof(struct slab); 1983 offslab_limit /= sizeof(kmem_bufctl_t); 1984 1985 if (num > offslab_limit) 1986 break; 1987 } 1988 1989 /* Found something acceptable - save it away */ 1990 cachep->num = num; 1991 cachep->gfporder = gfporder; 1992 left_over = remainder; 1993 1994 /* 1995 * A VFS-reclaimable slab tends to have most allocations 1996 * as GFP_NOFS and we really don't want to have to be allocating 1997 * higher-order pages when we are unable to shrink dcache. 1998 */ 1999 if (flags & SLAB_RECLAIM_ACCOUNT) 2000 break; 2001 2002 /* 2003 * Large number of objects is good, but very large slabs are 2004 * currently bad for the gfp()s. 2005 */ 2006 if (gfporder >= slab_break_gfp_order) 2007 break; 2008 2009 /* 2010 * Acceptable internal fragmentation? 2011 */ 2012 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 2013 break; 2014 } 2015 return left_over; 2016 } 2017 2018 static int setup_cpu_cache(struct kmem_cache *cachep) 2019 { 2020 if (g_cpucache_up == FULL) 2021 return enable_cpucache(cachep); 2022 2023 if (g_cpucache_up == NONE) { 2024 /* 2025 * Note: the first kmem_cache_create must create the cache 2026 * that's used by kmalloc(24), otherwise the creation of 2027 * further caches will BUG(). 2028 */ 2029 cachep->array[smp_processor_id()] = &initarray_generic.cache; 2030 2031 /* 2032 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is 2033 * the first cache, then we need to set up all its list3s, 2034 * otherwise the creation of further caches will BUG(). 2035 */ 2036 set_up_list3s(cachep, SIZE_AC); 2037 if (INDEX_AC == INDEX_L3) 2038 g_cpucache_up = PARTIAL_L3; 2039 else 2040 g_cpucache_up = PARTIAL_AC; 2041 } else { 2042 cachep->array[smp_processor_id()] = 2043 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); 2044 2045 if (g_cpucache_up == PARTIAL_AC) { 2046 set_up_list3s(cachep, SIZE_L3); 2047 g_cpucache_up = PARTIAL_L3; 2048 } else { 2049 int node; 2050 for_each_online_node(node) { 2051 cachep->nodelists[node] = 2052 kmalloc_node(sizeof(struct kmem_list3), 2053 GFP_KERNEL, node); 2054 BUG_ON(!cachep->nodelists[node]); 2055 kmem_list3_init(cachep->nodelists[node]); 2056 } 2057 } 2058 } 2059 cachep->nodelists[numa_node_id()]->next_reap = 2060 jiffies + REAPTIMEOUT_LIST3 + 2061 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 2062 2063 cpu_cache_get(cachep)->avail = 0; 2064 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 2065 cpu_cache_get(cachep)->batchcount = 1; 2066 cpu_cache_get(cachep)->touched = 0; 2067 cachep->batchcount = 1; 2068 cachep->limit = BOOT_CPUCACHE_ENTRIES; 2069 return 0; 2070 } 2071 2072 /** 2073 * kmem_cache_create - Create a cache. 2074 * @name: A string which is used in /proc/slabinfo to identify this cache. 2075 * @size: The size of objects to be created in this cache. 2076 * @align: The required alignment for the objects. 2077 * @flags: SLAB flags 2078 * @ctor: A constructor for the objects. 2079 * @dtor: A destructor for the objects. 2080 * 2081 * Returns a ptr to the cache on success, NULL on failure. 2082 * Cannot be called within a int, but can be interrupted. 2083 * The @ctor is run when new pages are allocated by the cache 2084 * and the @dtor is run before the pages are handed back. 2085 * 2086 * @name must be valid until the cache is destroyed. This implies that 2087 * the module calling this has to destroy the cache before getting unloaded. 2088 * 2089 * The flags are 2090 * 2091 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 2092 * to catch references to uninitialised memory. 2093 * 2094 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 2095 * for buffer overruns. 2096 * 2097 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 2098 * cacheline. This can be beneficial if you're counting cycles as closely 2099 * as davem. 2100 */ 2101 struct kmem_cache * 2102 kmem_cache_create (const char *name, size_t size, size_t align, 2103 unsigned long flags, 2104 void (*ctor)(void*, struct kmem_cache *, unsigned long), 2105 void (*dtor)(void*, struct kmem_cache *, unsigned long)) 2106 { 2107 size_t left_over, slab_size, ralign; 2108 struct kmem_cache *cachep = NULL, *pc; 2109 2110 /* 2111 * Sanity checks... these are all serious usage bugs. 2112 */ 2113 if (!name || in_interrupt() || (size < BYTES_PER_WORD) || 2114 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) { 2115 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__, 2116 name); 2117 BUG(); 2118 } 2119 2120 /* 2121 * We use cache_chain_mutex to ensure a consistent view of 2122 * cpu_online_map as well. Please see cpuup_callback 2123 */ 2124 mutex_lock(&cache_chain_mutex); 2125 2126 list_for_each_entry(pc, &cache_chain, next) { 2127 char tmp; 2128 int res; 2129 2130 /* 2131 * This happens when the module gets unloaded and doesn't 2132 * destroy its slab cache and no-one else reuses the vmalloc 2133 * area of the module. Print a warning. 2134 */ 2135 res = probe_kernel_address(pc->name, tmp); 2136 if (res) { 2137 printk("SLAB: cache with size %d has lost its name\n", 2138 pc->buffer_size); 2139 continue; 2140 } 2141 2142 if (!strcmp(pc->name, name)) { 2143 printk("kmem_cache_create: duplicate cache %s\n", name); 2144 dump_stack(); 2145 goto oops; 2146 } 2147 } 2148 2149 #if DEBUG 2150 WARN_ON(strchr(name, ' ')); /* It confuses parsers */ 2151 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) { 2152 /* No constructor, but inital state check requested */ 2153 printk(KERN_ERR "%s: No con, but init state check " 2154 "requested - %s\n", __FUNCTION__, name); 2155 flags &= ~SLAB_DEBUG_INITIAL; 2156 } 2157 #if FORCED_DEBUG 2158 /* 2159 * Enable redzoning and last user accounting, except for caches with 2160 * large objects, if the increased size would increase the object size 2161 * above the next power of two: caches with object sizes just above a 2162 * power of two have a significant amount of internal fragmentation. 2163 */ 2164 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD)) 2165 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 2166 if (!(flags & SLAB_DESTROY_BY_RCU)) 2167 flags |= SLAB_POISON; 2168 #endif 2169 if (flags & SLAB_DESTROY_BY_RCU) 2170 BUG_ON(flags & SLAB_POISON); 2171 #endif 2172 if (flags & SLAB_DESTROY_BY_RCU) 2173 BUG_ON(dtor); 2174 2175 /* 2176 * Always checks flags, a caller might be expecting debug support which 2177 * isn't available. 2178 */ 2179 BUG_ON(flags & ~CREATE_MASK); 2180 2181 /* 2182 * Check that size is in terms of words. This is needed to avoid 2183 * unaligned accesses for some archs when redzoning is used, and makes 2184 * sure any on-slab bufctl's are also correctly aligned. 2185 */ 2186 if (size & (BYTES_PER_WORD - 1)) { 2187 size += (BYTES_PER_WORD - 1); 2188 size &= ~(BYTES_PER_WORD - 1); 2189 } 2190 2191 /* calculate the final buffer alignment: */ 2192 2193 /* 1) arch recommendation: can be overridden for debug */ 2194 if (flags & SLAB_HWCACHE_ALIGN) { 2195 /* 2196 * Default alignment: as specified by the arch code. Except if 2197 * an object is really small, then squeeze multiple objects into 2198 * one cacheline. 2199 */ 2200 ralign = cache_line_size(); 2201 while (size <= ralign / 2) 2202 ralign /= 2; 2203 } else { 2204 ralign = BYTES_PER_WORD; 2205 } 2206 2207 /* 2208 * Redzoning and user store require word alignment. Note this will be 2209 * overridden by architecture or caller mandated alignment if either 2210 * is greater than BYTES_PER_WORD. 2211 */ 2212 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER) 2213 ralign = BYTES_PER_WORD; 2214 2215 /* 2) arch mandated alignment */ 2216 if (ralign < ARCH_SLAB_MINALIGN) { 2217 ralign = ARCH_SLAB_MINALIGN; 2218 } 2219 /* 3) caller mandated alignment */ 2220 if (ralign < align) { 2221 ralign = align; 2222 } 2223 /* disable debug if necessary */ 2224 if (ralign > BYTES_PER_WORD) 2225 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2226 /* 2227 * 4) Store it. 2228 */ 2229 align = ralign; 2230 2231 /* Get cache's description obj. */ 2232 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL); 2233 if (!cachep) 2234 goto oops; 2235 2236 #if DEBUG 2237 cachep->obj_size = size; 2238 2239 /* 2240 * Both debugging options require word-alignment which is calculated 2241 * into align above. 2242 */ 2243 if (flags & SLAB_RED_ZONE) { 2244 /* add space for red zone words */ 2245 cachep->obj_offset += BYTES_PER_WORD; 2246 size += 2 * BYTES_PER_WORD; 2247 } 2248 if (flags & SLAB_STORE_USER) { 2249 /* user store requires one word storage behind the end of 2250 * the real object. 2251 */ 2252 size += BYTES_PER_WORD; 2253 } 2254 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) 2255 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size 2256 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) { 2257 cachep->obj_offset += PAGE_SIZE - size; 2258 size = PAGE_SIZE; 2259 } 2260 #endif 2261 #endif 2262 2263 /* 2264 * Determine if the slab management is 'on' or 'off' slab. 2265 * (bootstrapping cannot cope with offslab caches so don't do 2266 * it too early on.) 2267 */ 2268 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init) 2269 /* 2270 * Size is large, assume best to place the slab management obj 2271 * off-slab (should allow better packing of objs). 2272 */ 2273 flags |= CFLGS_OFF_SLAB; 2274 2275 size = ALIGN(size, align); 2276 2277 left_over = calculate_slab_order(cachep, size, align, flags); 2278 2279 if (!cachep->num) { 2280 printk("kmem_cache_create: couldn't create cache %s.\n", name); 2281 kmem_cache_free(&cache_cache, cachep); 2282 cachep = NULL; 2283 goto oops; 2284 } 2285 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t) 2286 + sizeof(struct slab), align); 2287 2288 /* 2289 * If the slab has been placed off-slab, and we have enough space then 2290 * move it on-slab. This is at the expense of any extra colouring. 2291 */ 2292 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) { 2293 flags &= ~CFLGS_OFF_SLAB; 2294 left_over -= slab_size; 2295 } 2296 2297 if (flags & CFLGS_OFF_SLAB) { 2298 /* really off slab. No need for manual alignment */ 2299 slab_size = 2300 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab); 2301 } 2302 2303 cachep->colour_off = cache_line_size(); 2304 /* Offset must be a multiple of the alignment. */ 2305 if (cachep->colour_off < align) 2306 cachep->colour_off = align; 2307 cachep->colour = left_over / cachep->colour_off; 2308 cachep->slab_size = slab_size; 2309 cachep->flags = flags; 2310 cachep->gfpflags = 0; 2311 if (flags & SLAB_CACHE_DMA) 2312 cachep->gfpflags |= GFP_DMA; 2313 cachep->buffer_size = size; 2314 2315 if (flags & CFLGS_OFF_SLAB) { 2316 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); 2317 /* 2318 * This is a possibility for one of the malloc_sizes caches. 2319 * But since we go off slab only for object size greater than 2320 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order, 2321 * this should not happen at all. 2322 * But leave a BUG_ON for some lucky dude. 2323 */ 2324 BUG_ON(!cachep->slabp_cache); 2325 } 2326 cachep->ctor = ctor; 2327 cachep->dtor = dtor; 2328 cachep->name = name; 2329 2330 if (setup_cpu_cache(cachep)) { 2331 __kmem_cache_destroy(cachep); 2332 cachep = NULL; 2333 goto oops; 2334 } 2335 2336 /* cache setup completed, link it into the list */ 2337 list_add(&cachep->next, &cache_chain); 2338 oops: 2339 if (!cachep && (flags & SLAB_PANIC)) 2340 panic("kmem_cache_create(): failed to create slab `%s'\n", 2341 name); 2342 mutex_unlock(&cache_chain_mutex); 2343 return cachep; 2344 } 2345 EXPORT_SYMBOL(kmem_cache_create); 2346 2347 #if DEBUG 2348 static void check_irq_off(void) 2349 { 2350 BUG_ON(!irqs_disabled()); 2351 } 2352 2353 static void check_irq_on(void) 2354 { 2355 BUG_ON(irqs_disabled()); 2356 } 2357 2358 static void check_spinlock_acquired(struct kmem_cache *cachep) 2359 { 2360 #ifdef CONFIG_SMP 2361 check_irq_off(); 2362 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock); 2363 #endif 2364 } 2365 2366 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2367 { 2368 #ifdef CONFIG_SMP 2369 check_irq_off(); 2370 assert_spin_locked(&cachep->nodelists[node]->list_lock); 2371 #endif 2372 } 2373 2374 #else 2375 #define check_irq_off() do { } while(0) 2376 #define check_irq_on() do { } while(0) 2377 #define check_spinlock_acquired(x) do { } while(0) 2378 #define check_spinlock_acquired_node(x, y) do { } while(0) 2379 #endif 2380 2381 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, 2382 struct array_cache *ac, 2383 int force, int node); 2384 2385 static void do_drain(void *arg) 2386 { 2387 struct kmem_cache *cachep = arg; 2388 struct array_cache *ac; 2389 int node = numa_node_id(); 2390 2391 check_irq_off(); 2392 ac = cpu_cache_get(cachep); 2393 spin_lock(&cachep->nodelists[node]->list_lock); 2394 free_block(cachep, ac->entry, ac->avail, node); 2395 spin_unlock(&cachep->nodelists[node]->list_lock); 2396 ac->avail = 0; 2397 } 2398 2399 static void drain_cpu_caches(struct kmem_cache *cachep) 2400 { 2401 struct kmem_list3 *l3; 2402 int node; 2403 2404 on_each_cpu(do_drain, cachep, 1, 1); 2405 check_irq_on(); 2406 for_each_online_node(node) { 2407 l3 = cachep->nodelists[node]; 2408 if (l3 && l3->alien) 2409 drain_alien_cache(cachep, l3->alien); 2410 } 2411 2412 for_each_online_node(node) { 2413 l3 = cachep->nodelists[node]; 2414 if (l3) 2415 drain_array(cachep, l3, l3->shared, 1, node); 2416 } 2417 } 2418 2419 /* 2420 * Remove slabs from the list of free slabs. 2421 * Specify the number of slabs to drain in tofree. 2422 * 2423 * Returns the actual number of slabs released. 2424 */ 2425 static int drain_freelist(struct kmem_cache *cache, 2426 struct kmem_list3 *l3, int tofree) 2427 { 2428 struct list_head *p; 2429 int nr_freed; 2430 struct slab *slabp; 2431 2432 nr_freed = 0; 2433 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) { 2434 2435 spin_lock_irq(&l3->list_lock); 2436 p = l3->slabs_free.prev; 2437 if (p == &l3->slabs_free) { 2438 spin_unlock_irq(&l3->list_lock); 2439 goto out; 2440 } 2441 2442 slabp = list_entry(p, struct slab, list); 2443 #if DEBUG 2444 BUG_ON(slabp->inuse); 2445 #endif 2446 list_del(&slabp->list); 2447 /* 2448 * Safe to drop the lock. The slab is no longer linked 2449 * to the cache. 2450 */ 2451 l3->free_objects -= cache->num; 2452 spin_unlock_irq(&l3->list_lock); 2453 slab_destroy(cache, slabp); 2454 nr_freed++; 2455 } 2456 out: 2457 return nr_freed; 2458 } 2459 2460 /* Called with cache_chain_mutex held to protect against cpu hotplug */ 2461 static int __cache_shrink(struct kmem_cache *cachep) 2462 { 2463 int ret = 0, i = 0; 2464 struct kmem_list3 *l3; 2465 2466 drain_cpu_caches(cachep); 2467 2468 check_irq_on(); 2469 for_each_online_node(i) { 2470 l3 = cachep->nodelists[i]; 2471 if (!l3) 2472 continue; 2473 2474 drain_freelist(cachep, l3, l3->free_objects); 2475 2476 ret += !list_empty(&l3->slabs_full) || 2477 !list_empty(&l3->slabs_partial); 2478 } 2479 return (ret ? 1 : 0); 2480 } 2481 2482 /** 2483 * kmem_cache_shrink - Shrink a cache. 2484 * @cachep: The cache to shrink. 2485 * 2486 * Releases as many slabs as possible for a cache. 2487 * To help debugging, a zero exit status indicates all slabs were released. 2488 */ 2489 int kmem_cache_shrink(struct kmem_cache *cachep) 2490 { 2491 int ret; 2492 BUG_ON(!cachep || in_interrupt()); 2493 2494 mutex_lock(&cache_chain_mutex); 2495 ret = __cache_shrink(cachep); 2496 mutex_unlock(&cache_chain_mutex); 2497 return ret; 2498 } 2499 EXPORT_SYMBOL(kmem_cache_shrink); 2500 2501 /** 2502 * kmem_cache_destroy - delete a cache 2503 * @cachep: the cache to destroy 2504 * 2505 * Remove a struct kmem_cache object from the slab cache. 2506 * 2507 * It is expected this function will be called by a module when it is 2508 * unloaded. This will remove the cache completely, and avoid a duplicate 2509 * cache being allocated each time a module is loaded and unloaded, if the 2510 * module doesn't have persistent in-kernel storage across loads and unloads. 2511 * 2512 * The cache must be empty before calling this function. 2513 * 2514 * The caller must guarantee that noone will allocate memory from the cache 2515 * during the kmem_cache_destroy(). 2516 */ 2517 void kmem_cache_destroy(struct kmem_cache *cachep) 2518 { 2519 BUG_ON(!cachep || in_interrupt()); 2520 2521 /* Find the cache in the chain of caches. */ 2522 mutex_lock(&cache_chain_mutex); 2523 /* 2524 * the chain is never empty, cache_cache is never destroyed 2525 */ 2526 list_del(&cachep->next); 2527 if (__cache_shrink(cachep)) { 2528 slab_error(cachep, "Can't free all objects"); 2529 list_add(&cachep->next, &cache_chain); 2530 mutex_unlock(&cache_chain_mutex); 2531 return; 2532 } 2533 2534 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) 2535 synchronize_rcu(); 2536 2537 __kmem_cache_destroy(cachep); 2538 mutex_unlock(&cache_chain_mutex); 2539 } 2540 EXPORT_SYMBOL(kmem_cache_destroy); 2541 2542 /* 2543 * Get the memory for a slab management obj. 2544 * For a slab cache when the slab descriptor is off-slab, slab descriptors 2545 * always come from malloc_sizes caches. The slab descriptor cannot 2546 * come from the same cache which is getting created because, 2547 * when we are searching for an appropriate cache for these 2548 * descriptors in kmem_cache_create, we search through the malloc_sizes array. 2549 * If we are creating a malloc_sizes cache here it would not be visible to 2550 * kmem_find_general_cachep till the initialization is complete. 2551 * Hence we cannot have slabp_cache same as the original cache. 2552 */ 2553 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp, 2554 int colour_off, gfp_t local_flags, 2555 int nodeid) 2556 { 2557 struct slab *slabp; 2558 2559 if (OFF_SLAB(cachep)) { 2560 /* Slab management obj is off-slab. */ 2561 slabp = kmem_cache_alloc_node(cachep->slabp_cache, 2562 local_flags & ~GFP_THISNODE, nodeid); 2563 if (!slabp) 2564 return NULL; 2565 } else { 2566 slabp = objp + colour_off; 2567 colour_off += cachep->slab_size; 2568 } 2569 slabp->inuse = 0; 2570 slabp->colouroff = colour_off; 2571 slabp->s_mem = objp + colour_off; 2572 slabp->nodeid = nodeid; 2573 return slabp; 2574 } 2575 2576 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp) 2577 { 2578 return (kmem_bufctl_t *) (slabp + 1); 2579 } 2580 2581 static void cache_init_objs(struct kmem_cache *cachep, 2582 struct slab *slabp, unsigned long ctor_flags) 2583 { 2584 int i; 2585 2586 for (i = 0; i < cachep->num; i++) { 2587 void *objp = index_to_obj(cachep, slabp, i); 2588 #if DEBUG 2589 /* need to poison the objs? */ 2590 if (cachep->flags & SLAB_POISON) 2591 poison_obj(cachep, objp, POISON_FREE); 2592 if (cachep->flags & SLAB_STORE_USER) 2593 *dbg_userword(cachep, objp) = NULL; 2594 2595 if (cachep->flags & SLAB_RED_ZONE) { 2596 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2597 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2598 } 2599 /* 2600 * Constructors are not allowed to allocate memory from the same 2601 * cache which they are a constructor for. Otherwise, deadlock. 2602 * They must also be threaded. 2603 */ 2604 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) 2605 cachep->ctor(objp + obj_offset(cachep), cachep, 2606 ctor_flags); 2607 2608 if (cachep->flags & SLAB_RED_ZONE) { 2609 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2610 slab_error(cachep, "constructor overwrote the" 2611 " end of an object"); 2612 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2613 slab_error(cachep, "constructor overwrote the" 2614 " start of an object"); 2615 } 2616 if ((cachep->buffer_size % PAGE_SIZE) == 0 && 2617 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) 2618 kernel_map_pages(virt_to_page(objp), 2619 cachep->buffer_size / PAGE_SIZE, 0); 2620 #else 2621 if (cachep->ctor) 2622 cachep->ctor(objp, cachep, ctor_flags); 2623 #endif 2624 slab_bufctl(slabp)[i] = i + 1; 2625 } 2626 slab_bufctl(slabp)[i - 1] = BUFCTL_END; 2627 slabp->free = 0; 2628 } 2629 2630 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) 2631 { 2632 if (flags & GFP_DMA) 2633 BUG_ON(!(cachep->gfpflags & GFP_DMA)); 2634 else 2635 BUG_ON(cachep->gfpflags & GFP_DMA); 2636 } 2637 2638 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, 2639 int nodeid) 2640 { 2641 void *objp = index_to_obj(cachep, slabp, slabp->free); 2642 kmem_bufctl_t next; 2643 2644 slabp->inuse++; 2645 next = slab_bufctl(slabp)[slabp->free]; 2646 #if DEBUG 2647 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; 2648 WARN_ON(slabp->nodeid != nodeid); 2649 #endif 2650 slabp->free = next; 2651 2652 return objp; 2653 } 2654 2655 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, 2656 void *objp, int nodeid) 2657 { 2658 unsigned int objnr = obj_to_index(cachep, slabp, objp); 2659 2660 #if DEBUG 2661 /* Verify that the slab belongs to the intended node */ 2662 WARN_ON(slabp->nodeid != nodeid); 2663 2664 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) { 2665 printk(KERN_ERR "slab: double free detected in cache " 2666 "'%s', objp %p\n", cachep->name, objp); 2667 BUG(); 2668 } 2669 #endif 2670 slab_bufctl(slabp)[objnr] = slabp->free; 2671 slabp->free = objnr; 2672 slabp->inuse--; 2673 } 2674 2675 /* 2676 * Map pages beginning at addr to the given cache and slab. This is required 2677 * for the slab allocator to be able to lookup the cache and slab of a 2678 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging. 2679 */ 2680 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab, 2681 void *addr) 2682 { 2683 int nr_pages; 2684 struct page *page; 2685 2686 page = virt_to_page(addr); 2687 2688 nr_pages = 1; 2689 if (likely(!PageCompound(page))) 2690 nr_pages <<= cache->gfporder; 2691 2692 do { 2693 page_set_cache(page, cache); 2694 page_set_slab(page, slab); 2695 page++; 2696 } while (--nr_pages); 2697 } 2698 2699 /* 2700 * Grow (by 1) the number of slabs within a cache. This is called by 2701 * kmem_cache_alloc() when there are no active objs left in a cache. 2702 */ 2703 static int cache_grow(struct kmem_cache *cachep, 2704 gfp_t flags, int nodeid, void *objp) 2705 { 2706 struct slab *slabp; 2707 size_t offset; 2708 gfp_t local_flags; 2709 unsigned long ctor_flags; 2710 struct kmem_list3 *l3; 2711 2712 /* 2713 * Be lazy and only check for valid flags here, keeping it out of the 2714 * critical path in kmem_cache_alloc(). 2715 */ 2716 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW)); 2717 if (flags & __GFP_NO_GROW) 2718 return 0; 2719 2720 ctor_flags = SLAB_CTOR_CONSTRUCTOR; 2721 local_flags = (flags & GFP_LEVEL_MASK); 2722 if (!(local_flags & __GFP_WAIT)) 2723 /* 2724 * Not allowed to sleep. Need to tell a constructor about 2725 * this - it might need to know... 2726 */ 2727 ctor_flags |= SLAB_CTOR_ATOMIC; 2728 2729 /* Take the l3 list lock to change the colour_next on this node */ 2730 check_irq_off(); 2731 l3 = cachep->nodelists[nodeid]; 2732 spin_lock(&l3->list_lock); 2733 2734 /* Get colour for the slab, and cal the next value. */ 2735 offset = l3->colour_next; 2736 l3->colour_next++; 2737 if (l3->colour_next >= cachep->colour) 2738 l3->colour_next = 0; 2739 spin_unlock(&l3->list_lock); 2740 2741 offset *= cachep->colour_off; 2742 2743 if (local_flags & __GFP_WAIT) 2744 local_irq_enable(); 2745 2746 /* 2747 * The test for missing atomic flag is performed here, rather than 2748 * the more obvious place, simply to reduce the critical path length 2749 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they 2750 * will eventually be caught here (where it matters). 2751 */ 2752 kmem_flagcheck(cachep, flags); 2753 2754 /* 2755 * Get mem for the objs. Attempt to allocate a physical page from 2756 * 'nodeid'. 2757 */ 2758 if (!objp) 2759 objp = kmem_getpages(cachep, flags, nodeid); 2760 if (!objp) 2761 goto failed; 2762 2763 /* Get slab management. */ 2764 slabp = alloc_slabmgmt(cachep, objp, offset, 2765 local_flags & ~GFP_THISNODE, nodeid); 2766 if (!slabp) 2767 goto opps1; 2768 2769 slabp->nodeid = nodeid; 2770 slab_map_pages(cachep, slabp, objp); 2771 2772 cache_init_objs(cachep, slabp, ctor_flags); 2773 2774 if (local_flags & __GFP_WAIT) 2775 local_irq_disable(); 2776 check_irq_off(); 2777 spin_lock(&l3->list_lock); 2778 2779 /* Make slab active. */ 2780 list_add_tail(&slabp->list, &(l3->slabs_free)); 2781 STATS_INC_GROWN(cachep); 2782 l3->free_objects += cachep->num; 2783 spin_unlock(&l3->list_lock); 2784 return 1; 2785 opps1: 2786 kmem_freepages(cachep, objp); 2787 failed: 2788 if (local_flags & __GFP_WAIT) 2789 local_irq_disable(); 2790 return 0; 2791 } 2792 2793 #if DEBUG 2794 2795 /* 2796 * Perform extra freeing checks: 2797 * - detect bad pointers. 2798 * - POISON/RED_ZONE checking 2799 * - destructor calls, for caches with POISON+dtor 2800 */ 2801 static void kfree_debugcheck(const void *objp) 2802 { 2803 struct page *page; 2804 2805 if (!virt_addr_valid(objp)) { 2806 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", 2807 (unsigned long)objp); 2808 BUG(); 2809 } 2810 page = virt_to_page(objp); 2811 if (!PageSlab(page)) { 2812 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n", 2813 (unsigned long)objp); 2814 BUG(); 2815 } 2816 } 2817 2818 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2819 { 2820 unsigned long redzone1, redzone2; 2821 2822 redzone1 = *dbg_redzone1(cache, obj); 2823 redzone2 = *dbg_redzone2(cache, obj); 2824 2825 /* 2826 * Redzone is ok. 2827 */ 2828 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2829 return; 2830 2831 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2832 slab_error(cache, "double free detected"); 2833 else 2834 slab_error(cache, "memory outside object was overwritten"); 2835 2836 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n", 2837 obj, redzone1, redzone2); 2838 } 2839 2840 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2841 void *caller) 2842 { 2843 struct page *page; 2844 unsigned int objnr; 2845 struct slab *slabp; 2846 2847 objp -= obj_offset(cachep); 2848 kfree_debugcheck(objp); 2849 page = virt_to_page(objp); 2850 2851 slabp = page_get_slab(page); 2852 2853 if (cachep->flags & SLAB_RED_ZONE) { 2854 verify_redzone_free(cachep, objp); 2855 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2856 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2857 } 2858 if (cachep->flags & SLAB_STORE_USER) 2859 *dbg_userword(cachep, objp) = caller; 2860 2861 objnr = obj_to_index(cachep, slabp, objp); 2862 2863 BUG_ON(objnr >= cachep->num); 2864 BUG_ON(objp != index_to_obj(cachep, slabp, objnr)); 2865 2866 if (cachep->flags & SLAB_DEBUG_INITIAL) { 2867 /* 2868 * Need to call the slab's constructor so the caller can 2869 * perform a verify of its state (debugging). Called without 2870 * the cache-lock held. 2871 */ 2872 cachep->ctor(objp + obj_offset(cachep), 2873 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY); 2874 } 2875 if (cachep->flags & SLAB_POISON && cachep->dtor) { 2876 /* we want to cache poison the object, 2877 * call the destruction callback 2878 */ 2879 cachep->dtor(objp + obj_offset(cachep), cachep, 0); 2880 } 2881 #ifdef CONFIG_DEBUG_SLAB_LEAK 2882 slab_bufctl(slabp)[objnr] = BUFCTL_FREE; 2883 #endif 2884 if (cachep->flags & SLAB_POISON) { 2885 #ifdef CONFIG_DEBUG_PAGEALLOC 2886 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) { 2887 store_stackinfo(cachep, objp, (unsigned long)caller); 2888 kernel_map_pages(virt_to_page(objp), 2889 cachep->buffer_size / PAGE_SIZE, 0); 2890 } else { 2891 poison_obj(cachep, objp, POISON_FREE); 2892 } 2893 #else 2894 poison_obj(cachep, objp, POISON_FREE); 2895 #endif 2896 } 2897 return objp; 2898 } 2899 2900 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp) 2901 { 2902 kmem_bufctl_t i; 2903 int entries = 0; 2904 2905 /* Check slab's freelist to see if this obj is there. */ 2906 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { 2907 entries++; 2908 if (entries > cachep->num || i >= cachep->num) 2909 goto bad; 2910 } 2911 if (entries != cachep->num - slabp->inuse) { 2912 bad: 2913 printk(KERN_ERR "slab: Internal list corruption detected in " 2914 "cache '%s'(%d), slabp %p(%d). Hexdump:\n", 2915 cachep->name, cachep->num, slabp, slabp->inuse); 2916 for (i = 0; 2917 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t); 2918 i++) { 2919 if (i % 16 == 0) 2920 printk("\n%03x:", i); 2921 printk(" %02x", ((unsigned char *)slabp)[i]); 2922 } 2923 printk("\n"); 2924 BUG(); 2925 } 2926 } 2927 #else 2928 #define kfree_debugcheck(x) do { } while(0) 2929 #define cache_free_debugcheck(x,objp,z) (objp) 2930 #define check_slabp(x,y) do { } while(0) 2931 #endif 2932 2933 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2934 { 2935 int batchcount; 2936 struct kmem_list3 *l3; 2937 struct array_cache *ac; 2938 int node; 2939 2940 node = numa_node_id(); 2941 2942 check_irq_off(); 2943 ac = cpu_cache_get(cachep); 2944 retry: 2945 batchcount = ac->batchcount; 2946 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2947 /* 2948 * If there was little recent activity on this cache, then 2949 * perform only a partial refill. Otherwise we could generate 2950 * refill bouncing. 2951 */ 2952 batchcount = BATCHREFILL_LIMIT; 2953 } 2954 l3 = cachep->nodelists[node]; 2955 2956 BUG_ON(ac->avail > 0 || !l3); 2957 spin_lock(&l3->list_lock); 2958 2959 /* See if we can refill from the shared array */ 2960 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) 2961 goto alloc_done; 2962 2963 while (batchcount > 0) { 2964 struct list_head *entry; 2965 struct slab *slabp; 2966 /* Get slab alloc is to come from. */ 2967 entry = l3->slabs_partial.next; 2968 if (entry == &l3->slabs_partial) { 2969 l3->free_touched = 1; 2970 entry = l3->slabs_free.next; 2971 if (entry == &l3->slabs_free) 2972 goto must_grow; 2973 } 2974 2975 slabp = list_entry(entry, struct slab, list); 2976 check_slabp(cachep, slabp); 2977 check_spinlock_acquired(cachep); 2978 while (slabp->inuse < cachep->num && batchcount--) { 2979 STATS_INC_ALLOCED(cachep); 2980 STATS_INC_ACTIVE(cachep); 2981 STATS_SET_HIGH(cachep); 2982 2983 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp, 2984 node); 2985 } 2986 check_slabp(cachep, slabp); 2987 2988 /* move slabp to correct slabp list: */ 2989 list_del(&slabp->list); 2990 if (slabp->free == BUFCTL_END) 2991 list_add(&slabp->list, &l3->slabs_full); 2992 else 2993 list_add(&slabp->list, &l3->slabs_partial); 2994 } 2995 2996 must_grow: 2997 l3->free_objects -= ac->avail; 2998 alloc_done: 2999 spin_unlock(&l3->list_lock); 3000 3001 if (unlikely(!ac->avail)) { 3002 int x; 3003 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL); 3004 3005 /* cache_grow can reenable interrupts, then ac could change. */ 3006 ac = cpu_cache_get(cachep); 3007 if (!x && ac->avail == 0) /* no objects in sight? abort */ 3008 return NULL; 3009 3010 if (!ac->avail) /* objects refilled by interrupt? */ 3011 goto retry; 3012 } 3013 ac->touched = 1; 3014 return ac->entry[--ac->avail]; 3015 } 3016 3017 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 3018 gfp_t flags) 3019 { 3020 might_sleep_if(flags & __GFP_WAIT); 3021 #if DEBUG 3022 kmem_flagcheck(cachep, flags); 3023 #endif 3024 } 3025 3026 #if DEBUG 3027 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 3028 gfp_t flags, void *objp, void *caller) 3029 { 3030 if (!objp) 3031 return objp; 3032 if (cachep->flags & SLAB_POISON) { 3033 #ifdef CONFIG_DEBUG_PAGEALLOC 3034 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) 3035 kernel_map_pages(virt_to_page(objp), 3036 cachep->buffer_size / PAGE_SIZE, 1); 3037 else 3038 check_poison_obj(cachep, objp); 3039 #else 3040 check_poison_obj(cachep, objp); 3041 #endif 3042 poison_obj(cachep, objp, POISON_INUSE); 3043 } 3044 if (cachep->flags & SLAB_STORE_USER) 3045 *dbg_userword(cachep, objp) = caller; 3046 3047 if (cachep->flags & SLAB_RED_ZONE) { 3048 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 3049 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 3050 slab_error(cachep, "double free, or memory outside" 3051 " object was overwritten"); 3052 printk(KERN_ERR 3053 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n", 3054 objp, *dbg_redzone1(cachep, objp), 3055 *dbg_redzone2(cachep, objp)); 3056 } 3057 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 3058 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 3059 } 3060 #ifdef CONFIG_DEBUG_SLAB_LEAK 3061 { 3062 struct slab *slabp; 3063 unsigned objnr; 3064 3065 slabp = page_get_slab(virt_to_page(objp)); 3066 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size; 3067 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE; 3068 } 3069 #endif 3070 objp += obj_offset(cachep); 3071 if (cachep->ctor && cachep->flags & SLAB_POISON) { 3072 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR; 3073 3074 if (!(flags & __GFP_WAIT)) 3075 ctor_flags |= SLAB_CTOR_ATOMIC; 3076 3077 cachep->ctor(objp, cachep, ctor_flags); 3078 } 3079 #if ARCH_SLAB_MINALIGN 3080 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) { 3081 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3082 objp, ARCH_SLAB_MINALIGN); 3083 } 3084 #endif 3085 return objp; 3086 } 3087 #else 3088 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 3089 #endif 3090 3091 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3092 { 3093 void *objp; 3094 struct array_cache *ac; 3095 3096 check_irq_off(); 3097 ac = cpu_cache_get(cachep); 3098 if (likely(ac->avail)) { 3099 STATS_INC_ALLOCHIT(cachep); 3100 ac->touched = 1; 3101 objp = ac->entry[--ac->avail]; 3102 } else { 3103 STATS_INC_ALLOCMISS(cachep); 3104 objp = cache_alloc_refill(cachep, flags); 3105 } 3106 return objp; 3107 } 3108 3109 static __always_inline void *__cache_alloc(struct kmem_cache *cachep, 3110 gfp_t flags, void *caller) 3111 { 3112 unsigned long save_flags; 3113 void *objp = NULL; 3114 3115 cache_alloc_debugcheck_before(cachep, flags); 3116 3117 local_irq_save(save_flags); 3118 3119 if (unlikely(NUMA_BUILD && 3120 current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) 3121 objp = alternate_node_alloc(cachep, flags); 3122 3123 if (!objp) 3124 objp = ____cache_alloc(cachep, flags); 3125 /* 3126 * We may just have run out of memory on the local node. 3127 * ____cache_alloc_node() knows how to locate memory on other nodes 3128 */ 3129 if (NUMA_BUILD && !objp) 3130 objp = ____cache_alloc_node(cachep, flags, numa_node_id()); 3131 local_irq_restore(save_flags); 3132 objp = cache_alloc_debugcheck_after(cachep, flags, objp, 3133 caller); 3134 prefetchw(objp); 3135 return objp; 3136 } 3137 3138 #ifdef CONFIG_NUMA 3139 /* 3140 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY. 3141 * 3142 * If we are in_interrupt, then process context, including cpusets and 3143 * mempolicy, may not apply and should not be used for allocation policy. 3144 */ 3145 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3146 { 3147 int nid_alloc, nid_here; 3148 3149 if (in_interrupt() || (flags & __GFP_THISNODE)) 3150 return NULL; 3151 nid_alloc = nid_here = numa_node_id(); 3152 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3153 nid_alloc = cpuset_mem_spread_node(); 3154 else if (current->mempolicy) 3155 nid_alloc = slab_node(current->mempolicy); 3156 if (nid_alloc != nid_here) 3157 return ____cache_alloc_node(cachep, flags, nid_alloc); 3158 return NULL; 3159 } 3160 3161 /* 3162 * Fallback function if there was no memory available and no objects on a 3163 * certain node and fall back is permitted. First we scan all the 3164 * available nodelists for available objects. If that fails then we 3165 * perform an allocation without specifying a node. This allows the page 3166 * allocator to do its reclaim / fallback magic. We then insert the 3167 * slab into the proper nodelist and then allocate from it. 3168 */ 3169 void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3170 { 3171 struct zonelist *zonelist = &NODE_DATA(slab_node(current->mempolicy)) 3172 ->node_zonelists[gfp_zone(flags)]; 3173 struct zone **z; 3174 void *obj = NULL; 3175 int nid; 3176 3177 retry: 3178 /* 3179 * Look through allowed nodes for objects available 3180 * from existing per node queues. 3181 */ 3182 for (z = zonelist->zones; *z && !obj; z++) { 3183 nid = zone_to_nid(*z); 3184 3185 if (cpuset_zone_allowed(*z, flags) && 3186 cache->nodelists[nid] && 3187 cache->nodelists[nid]->free_objects) 3188 obj = ____cache_alloc_node(cache, 3189 flags | GFP_THISNODE, nid); 3190 } 3191 3192 if (!obj) { 3193 /* 3194 * This allocation will be performed within the constraints 3195 * of the current cpuset / memory policy requirements. 3196 * We may trigger various forms of reclaim on the allowed 3197 * set and go into memory reserves if necessary. 3198 */ 3199 obj = kmem_getpages(cache, flags, -1); 3200 if (obj) { 3201 /* 3202 * Insert into the appropriate per node queues 3203 */ 3204 nid = page_to_nid(virt_to_page(obj)); 3205 if (cache_grow(cache, flags, nid, obj)) { 3206 obj = ____cache_alloc_node(cache, 3207 flags | GFP_THISNODE, nid); 3208 if (!obj) 3209 /* 3210 * Another processor may allocate the 3211 * objects in the slab since we are 3212 * not holding any locks. 3213 */ 3214 goto retry; 3215 } else { 3216 kmem_freepages(cache, obj); 3217 obj = NULL; 3218 } 3219 } 3220 } 3221 return obj; 3222 } 3223 3224 /* 3225 * A interface to enable slab creation on nodeid 3226 */ 3227 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3228 int nodeid) 3229 { 3230 struct list_head *entry; 3231 struct slab *slabp; 3232 struct kmem_list3 *l3; 3233 void *obj; 3234 int x; 3235 3236 l3 = cachep->nodelists[nodeid]; 3237 BUG_ON(!l3); 3238 3239 retry: 3240 check_irq_off(); 3241 spin_lock(&l3->list_lock); 3242 entry = l3->slabs_partial.next; 3243 if (entry == &l3->slabs_partial) { 3244 l3->free_touched = 1; 3245 entry = l3->slabs_free.next; 3246 if (entry == &l3->slabs_free) 3247 goto must_grow; 3248 } 3249 3250 slabp = list_entry(entry, struct slab, list); 3251 check_spinlock_acquired_node(cachep, nodeid); 3252 check_slabp(cachep, slabp); 3253 3254 STATS_INC_NODEALLOCS(cachep); 3255 STATS_INC_ACTIVE(cachep); 3256 STATS_SET_HIGH(cachep); 3257 3258 BUG_ON(slabp->inuse == cachep->num); 3259 3260 obj = slab_get_obj(cachep, slabp, nodeid); 3261 check_slabp(cachep, slabp); 3262 l3->free_objects--; 3263 /* move slabp to correct slabp list: */ 3264 list_del(&slabp->list); 3265 3266 if (slabp->free == BUFCTL_END) 3267 list_add(&slabp->list, &l3->slabs_full); 3268 else 3269 list_add(&slabp->list, &l3->slabs_partial); 3270 3271 spin_unlock(&l3->list_lock); 3272 goto done; 3273 3274 must_grow: 3275 spin_unlock(&l3->list_lock); 3276 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); 3277 if (x) 3278 goto retry; 3279 3280 if (!(flags & __GFP_THISNODE)) 3281 /* Unable to grow the cache. Fall back to other nodes. */ 3282 return fallback_alloc(cachep, flags); 3283 3284 return NULL; 3285 3286 done: 3287 return obj; 3288 } 3289 #endif 3290 3291 /* 3292 * Caller needs to acquire correct kmem_list's list_lock 3293 */ 3294 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, 3295 int node) 3296 { 3297 int i; 3298 struct kmem_list3 *l3; 3299 3300 for (i = 0; i < nr_objects; i++) { 3301 void *objp = objpp[i]; 3302 struct slab *slabp; 3303 3304 slabp = virt_to_slab(objp); 3305 l3 = cachep->nodelists[node]; 3306 list_del(&slabp->list); 3307 check_spinlock_acquired_node(cachep, node); 3308 check_slabp(cachep, slabp); 3309 slab_put_obj(cachep, slabp, objp, node); 3310 STATS_DEC_ACTIVE(cachep); 3311 l3->free_objects++; 3312 check_slabp(cachep, slabp); 3313 3314 /* fixup slab chains */ 3315 if (slabp->inuse == 0) { 3316 if (l3->free_objects > l3->free_limit) { 3317 l3->free_objects -= cachep->num; 3318 /* No need to drop any previously held 3319 * lock here, even if we have a off-slab slab 3320 * descriptor it is guaranteed to come from 3321 * a different cache, refer to comments before 3322 * alloc_slabmgmt. 3323 */ 3324 slab_destroy(cachep, slabp); 3325 } else { 3326 list_add(&slabp->list, &l3->slabs_free); 3327 } 3328 } else { 3329 /* Unconditionally move a slab to the end of the 3330 * partial list on free - maximum time for the 3331 * other objects to be freed, too. 3332 */ 3333 list_add_tail(&slabp->list, &l3->slabs_partial); 3334 } 3335 } 3336 } 3337 3338 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3339 { 3340 int batchcount; 3341 struct kmem_list3 *l3; 3342 int node = numa_node_id(); 3343 3344 batchcount = ac->batchcount; 3345 #if DEBUG 3346 BUG_ON(!batchcount || batchcount > ac->avail); 3347 #endif 3348 check_irq_off(); 3349 l3 = cachep->nodelists[node]; 3350 spin_lock(&l3->list_lock); 3351 if (l3->shared) { 3352 struct array_cache *shared_array = l3->shared; 3353 int max = shared_array->limit - shared_array->avail; 3354 if (max) { 3355 if (batchcount > max) 3356 batchcount = max; 3357 memcpy(&(shared_array->entry[shared_array->avail]), 3358 ac->entry, sizeof(void *) * batchcount); 3359 shared_array->avail += batchcount; 3360 goto free_done; 3361 } 3362 } 3363 3364 free_block(cachep, ac->entry, batchcount, node); 3365 free_done: 3366 #if STATS 3367 { 3368 int i = 0; 3369 struct list_head *p; 3370 3371 p = l3->slabs_free.next; 3372 while (p != &(l3->slabs_free)) { 3373 struct slab *slabp; 3374 3375 slabp = list_entry(p, struct slab, list); 3376 BUG_ON(slabp->inuse); 3377 3378 i++; 3379 p = p->next; 3380 } 3381 STATS_SET_FREEABLE(cachep, i); 3382 } 3383 #endif 3384 spin_unlock(&l3->list_lock); 3385 ac->avail -= batchcount; 3386 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3387 } 3388 3389 /* 3390 * Release an obj back to its cache. If the obj has a constructed state, it must 3391 * be in this state _before_ it is released. Called with disabled ints. 3392 */ 3393 static inline void __cache_free(struct kmem_cache *cachep, void *objp) 3394 { 3395 struct array_cache *ac = cpu_cache_get(cachep); 3396 3397 check_irq_off(); 3398 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0)); 3399 3400 if (cache_free_alien(cachep, objp)) 3401 return; 3402 3403 if (likely(ac->avail < ac->limit)) { 3404 STATS_INC_FREEHIT(cachep); 3405 ac->entry[ac->avail++] = objp; 3406 return; 3407 } else { 3408 STATS_INC_FREEMISS(cachep); 3409 cache_flusharray(cachep, ac); 3410 ac->entry[ac->avail++] = objp; 3411 } 3412 } 3413 3414 /** 3415 * kmem_cache_alloc - Allocate an object 3416 * @cachep: The cache to allocate from. 3417 * @flags: See kmalloc(). 3418 * 3419 * Allocate an object from this cache. The flags are only relevant 3420 * if the cache has no available objects. 3421 */ 3422 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3423 { 3424 return __cache_alloc(cachep, flags, __builtin_return_address(0)); 3425 } 3426 EXPORT_SYMBOL(kmem_cache_alloc); 3427 3428 /** 3429 * kmem_cache_zalloc - Allocate an object. The memory is set to zero. 3430 * @cache: The cache to allocate from. 3431 * @flags: See kmalloc(). 3432 * 3433 * Allocate an object from this cache and set the allocated memory to zero. 3434 * The flags are only relevant if the cache has no available objects. 3435 */ 3436 void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags) 3437 { 3438 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0)); 3439 if (ret) 3440 memset(ret, 0, obj_size(cache)); 3441 return ret; 3442 } 3443 EXPORT_SYMBOL(kmem_cache_zalloc); 3444 3445 /** 3446 * kmem_ptr_validate - check if an untrusted pointer might 3447 * be a slab entry. 3448 * @cachep: the cache we're checking against 3449 * @ptr: pointer to validate 3450 * 3451 * This verifies that the untrusted pointer looks sane: 3452 * it is _not_ a guarantee that the pointer is actually 3453 * part of the slab cache in question, but it at least 3454 * validates that the pointer can be dereferenced and 3455 * looks half-way sane. 3456 * 3457 * Currently only used for dentry validation. 3458 */ 3459 int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr) 3460 { 3461 unsigned long addr = (unsigned long)ptr; 3462 unsigned long min_addr = PAGE_OFFSET; 3463 unsigned long align_mask = BYTES_PER_WORD - 1; 3464 unsigned long size = cachep->buffer_size; 3465 struct page *page; 3466 3467 if (unlikely(addr < min_addr)) 3468 goto out; 3469 if (unlikely(addr > (unsigned long)high_memory - size)) 3470 goto out; 3471 if (unlikely(addr & align_mask)) 3472 goto out; 3473 if (unlikely(!kern_addr_valid(addr))) 3474 goto out; 3475 if (unlikely(!kern_addr_valid(addr + size - 1))) 3476 goto out; 3477 page = virt_to_page(ptr); 3478 if (unlikely(!PageSlab(page))) 3479 goto out; 3480 if (unlikely(page_get_cache(page) != cachep)) 3481 goto out; 3482 return 1; 3483 out: 3484 return 0; 3485 } 3486 3487 #ifdef CONFIG_NUMA 3488 /** 3489 * kmem_cache_alloc_node - Allocate an object on the specified node 3490 * @cachep: The cache to allocate from. 3491 * @flags: See kmalloc(). 3492 * @nodeid: node number of the target node. 3493 * 3494 * Identical to kmem_cache_alloc but it will allocate memory on the given 3495 * node, which can improve the performance for cpu bound structures. 3496 * 3497 * Fallback to other node is possible if __GFP_THISNODE is not set. 3498 */ 3499 static __always_inline void * 3500 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3501 int nodeid, void *caller) 3502 { 3503 unsigned long save_flags; 3504 void *ptr = NULL; 3505 3506 cache_alloc_debugcheck_before(cachep, flags); 3507 local_irq_save(save_flags); 3508 3509 if (unlikely(nodeid == -1)) 3510 nodeid = numa_node_id(); 3511 3512 if (likely(cachep->nodelists[nodeid])) { 3513 if (nodeid == numa_node_id()) { 3514 /* 3515 * Use the locally cached objects if possible. 3516 * However ____cache_alloc does not allow fallback 3517 * to other nodes. It may fail while we still have 3518 * objects on other nodes available. 3519 */ 3520 ptr = ____cache_alloc(cachep, flags); 3521 } 3522 if (!ptr) { 3523 /* ___cache_alloc_node can fall back to other nodes */ 3524 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3525 } 3526 } else { 3527 /* Node not bootstrapped yet */ 3528 if (!(flags & __GFP_THISNODE)) 3529 ptr = fallback_alloc(cachep, flags); 3530 } 3531 3532 local_irq_restore(save_flags); 3533 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3534 3535 return ptr; 3536 } 3537 3538 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3539 { 3540 return __cache_alloc_node(cachep, flags, nodeid, 3541 __builtin_return_address(0)); 3542 } 3543 EXPORT_SYMBOL(kmem_cache_alloc_node); 3544 3545 static __always_inline void * 3546 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller) 3547 { 3548 struct kmem_cache *cachep; 3549 3550 cachep = kmem_find_general_cachep(size, flags); 3551 if (unlikely(cachep == NULL)) 3552 return NULL; 3553 return kmem_cache_alloc_node(cachep, flags, node); 3554 } 3555 3556 #ifdef CONFIG_DEBUG_SLAB 3557 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3558 { 3559 return __do_kmalloc_node(size, flags, node, 3560 __builtin_return_address(0)); 3561 } 3562 EXPORT_SYMBOL(__kmalloc_node); 3563 3564 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3565 int node, void *caller) 3566 { 3567 return __do_kmalloc_node(size, flags, node, caller); 3568 } 3569 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3570 #else 3571 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3572 { 3573 return __do_kmalloc_node(size, flags, node, NULL); 3574 } 3575 EXPORT_SYMBOL(__kmalloc_node); 3576 #endif /* CONFIG_DEBUG_SLAB */ 3577 #endif /* CONFIG_NUMA */ 3578 3579 /** 3580 * __do_kmalloc - allocate memory 3581 * @size: how many bytes of memory are required. 3582 * @flags: the type of memory to allocate (see kmalloc). 3583 * @caller: function caller for debug tracking of the caller 3584 */ 3585 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3586 void *caller) 3587 { 3588 struct kmem_cache *cachep; 3589 3590 /* If you want to save a few bytes .text space: replace 3591 * __ with kmem_. 3592 * Then kmalloc uses the uninlined functions instead of the inline 3593 * functions. 3594 */ 3595 cachep = __find_general_cachep(size, flags); 3596 if (unlikely(cachep == NULL)) 3597 return NULL; 3598 return __cache_alloc(cachep, flags, caller); 3599 } 3600 3601 3602 #ifdef CONFIG_DEBUG_SLAB 3603 void *__kmalloc(size_t size, gfp_t flags) 3604 { 3605 return __do_kmalloc(size, flags, __builtin_return_address(0)); 3606 } 3607 EXPORT_SYMBOL(__kmalloc); 3608 3609 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller) 3610 { 3611 return __do_kmalloc(size, flags, caller); 3612 } 3613 EXPORT_SYMBOL(__kmalloc_track_caller); 3614 3615 #else 3616 void *__kmalloc(size_t size, gfp_t flags) 3617 { 3618 return __do_kmalloc(size, flags, NULL); 3619 } 3620 EXPORT_SYMBOL(__kmalloc); 3621 #endif 3622 3623 /** 3624 * kmem_cache_free - Deallocate an object 3625 * @cachep: The cache the allocation was from. 3626 * @objp: The previously allocated object. 3627 * 3628 * Free an object which was previously allocated from this 3629 * cache. 3630 */ 3631 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3632 { 3633 unsigned long flags; 3634 3635 BUG_ON(virt_to_cache(objp) != cachep); 3636 3637 local_irq_save(flags); 3638 __cache_free(cachep, objp); 3639 local_irq_restore(flags); 3640 } 3641 EXPORT_SYMBOL(kmem_cache_free); 3642 3643 /** 3644 * kfree - free previously allocated memory 3645 * @objp: pointer returned by kmalloc. 3646 * 3647 * If @objp is NULL, no operation is performed. 3648 * 3649 * Don't free memory not originally allocated by kmalloc() 3650 * or you will run into trouble. 3651 */ 3652 void kfree(const void *objp) 3653 { 3654 struct kmem_cache *c; 3655 unsigned long flags; 3656 3657 if (unlikely(!objp)) 3658 return; 3659 local_irq_save(flags); 3660 kfree_debugcheck(objp); 3661 c = virt_to_cache(objp); 3662 debug_check_no_locks_freed(objp, obj_size(c)); 3663 __cache_free(c, (void *)objp); 3664 local_irq_restore(flags); 3665 } 3666 EXPORT_SYMBOL(kfree); 3667 3668 unsigned int kmem_cache_size(struct kmem_cache *cachep) 3669 { 3670 return obj_size(cachep); 3671 } 3672 EXPORT_SYMBOL(kmem_cache_size); 3673 3674 const char *kmem_cache_name(struct kmem_cache *cachep) 3675 { 3676 return cachep->name; 3677 } 3678 EXPORT_SYMBOL_GPL(kmem_cache_name); 3679 3680 /* 3681 * This initializes kmem_list3 or resizes varioius caches for all nodes. 3682 */ 3683 static int alloc_kmemlist(struct kmem_cache *cachep) 3684 { 3685 int node; 3686 struct kmem_list3 *l3; 3687 struct array_cache *new_shared; 3688 struct array_cache **new_alien = NULL; 3689 3690 for_each_online_node(node) { 3691 3692 if (use_alien_caches) { 3693 new_alien = alloc_alien_cache(node, cachep->limit); 3694 if (!new_alien) 3695 goto fail; 3696 } 3697 3698 new_shared = alloc_arraycache(node, 3699 cachep->shared*cachep->batchcount, 3700 0xbaadf00d); 3701 if (!new_shared) { 3702 free_alien_cache(new_alien); 3703 goto fail; 3704 } 3705 3706 l3 = cachep->nodelists[node]; 3707 if (l3) { 3708 struct array_cache *shared = l3->shared; 3709 3710 spin_lock_irq(&l3->list_lock); 3711 3712 if (shared) 3713 free_block(cachep, shared->entry, 3714 shared->avail, node); 3715 3716 l3->shared = new_shared; 3717 if (!l3->alien) { 3718 l3->alien = new_alien; 3719 new_alien = NULL; 3720 } 3721 l3->free_limit = (1 + nr_cpus_node(node)) * 3722 cachep->batchcount + cachep->num; 3723 spin_unlock_irq(&l3->list_lock); 3724 kfree(shared); 3725 free_alien_cache(new_alien); 3726 continue; 3727 } 3728 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node); 3729 if (!l3) { 3730 free_alien_cache(new_alien); 3731 kfree(new_shared); 3732 goto fail; 3733 } 3734 3735 kmem_list3_init(l3); 3736 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + 3737 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 3738 l3->shared = new_shared; 3739 l3->alien = new_alien; 3740 l3->free_limit = (1 + nr_cpus_node(node)) * 3741 cachep->batchcount + cachep->num; 3742 cachep->nodelists[node] = l3; 3743 } 3744 return 0; 3745 3746 fail: 3747 if (!cachep->next.next) { 3748 /* Cache is not active yet. Roll back what we did */ 3749 node--; 3750 while (node >= 0) { 3751 if (cachep->nodelists[node]) { 3752 l3 = cachep->nodelists[node]; 3753 3754 kfree(l3->shared); 3755 free_alien_cache(l3->alien); 3756 kfree(l3); 3757 cachep->nodelists[node] = NULL; 3758 } 3759 node--; 3760 } 3761 } 3762 return -ENOMEM; 3763 } 3764 3765 struct ccupdate_struct { 3766 struct kmem_cache *cachep; 3767 struct array_cache *new[NR_CPUS]; 3768 }; 3769 3770 static void do_ccupdate_local(void *info) 3771 { 3772 struct ccupdate_struct *new = info; 3773 struct array_cache *old; 3774 3775 check_irq_off(); 3776 old = cpu_cache_get(new->cachep); 3777 3778 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; 3779 new->new[smp_processor_id()] = old; 3780 } 3781 3782 /* Always called with the cache_chain_mutex held */ 3783 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3784 int batchcount, int shared) 3785 { 3786 struct ccupdate_struct *new; 3787 int i; 3788 3789 new = kzalloc(sizeof(*new), GFP_KERNEL); 3790 if (!new) 3791 return -ENOMEM; 3792 3793 for_each_online_cpu(i) { 3794 new->new[i] = alloc_arraycache(cpu_to_node(i), limit, 3795 batchcount); 3796 if (!new->new[i]) { 3797 for (i--; i >= 0; i--) 3798 kfree(new->new[i]); 3799 kfree(new); 3800 return -ENOMEM; 3801 } 3802 } 3803 new->cachep = cachep; 3804 3805 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1); 3806 3807 check_irq_on(); 3808 cachep->batchcount = batchcount; 3809 cachep->limit = limit; 3810 cachep->shared = shared; 3811 3812 for_each_online_cpu(i) { 3813 struct array_cache *ccold = new->new[i]; 3814 if (!ccold) 3815 continue; 3816 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); 3817 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i)); 3818 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); 3819 kfree(ccold); 3820 } 3821 kfree(new); 3822 return alloc_kmemlist(cachep); 3823 } 3824 3825 /* Called with cache_chain_mutex held always */ 3826 static int enable_cpucache(struct kmem_cache *cachep) 3827 { 3828 int err; 3829 int limit, shared; 3830 3831 /* 3832 * The head array serves three purposes: 3833 * - create a LIFO ordering, i.e. return objects that are cache-warm 3834 * - reduce the number of spinlock operations. 3835 * - reduce the number of linked list operations on the slab and 3836 * bufctl chains: array operations are cheaper. 3837 * The numbers are guessed, we should auto-tune as described by 3838 * Bonwick. 3839 */ 3840 if (cachep->buffer_size > 131072) 3841 limit = 1; 3842 else if (cachep->buffer_size > PAGE_SIZE) 3843 limit = 8; 3844 else if (cachep->buffer_size > 1024) 3845 limit = 24; 3846 else if (cachep->buffer_size > 256) 3847 limit = 54; 3848 else 3849 limit = 120; 3850 3851 /* 3852 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3853 * allocation behaviour: Most allocs on one cpu, most free operations 3854 * on another cpu. For these cases, an efficient object passing between 3855 * cpus is necessary. This is provided by a shared array. The array 3856 * replaces Bonwick's magazine layer. 3857 * On uniprocessor, it's functionally equivalent (but less efficient) 3858 * to a larger limit. Thus disabled by default. 3859 */ 3860 shared = 0; 3861 #ifdef CONFIG_SMP 3862 if (cachep->buffer_size <= PAGE_SIZE) 3863 shared = 8; 3864 #endif 3865 3866 #if DEBUG 3867 /* 3868 * With debugging enabled, large batchcount lead to excessively long 3869 * periods with disabled local interrupts. Limit the batchcount 3870 */ 3871 if (limit > 32) 3872 limit = 32; 3873 #endif 3874 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared); 3875 if (err) 3876 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", 3877 cachep->name, -err); 3878 return err; 3879 } 3880 3881 /* 3882 * Drain an array if it contains any elements taking the l3 lock only if 3883 * necessary. Note that the l3 listlock also protects the array_cache 3884 * if drain_array() is used on the shared array. 3885 */ 3886 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, 3887 struct array_cache *ac, int force, int node) 3888 { 3889 int tofree; 3890 3891 if (!ac || !ac->avail) 3892 return; 3893 if (ac->touched && !force) { 3894 ac->touched = 0; 3895 } else { 3896 spin_lock_irq(&l3->list_lock); 3897 if (ac->avail) { 3898 tofree = force ? ac->avail : (ac->limit + 4) / 5; 3899 if (tofree > ac->avail) 3900 tofree = (ac->avail + 1) / 2; 3901 free_block(cachep, ac->entry, tofree, node); 3902 ac->avail -= tofree; 3903 memmove(ac->entry, &(ac->entry[tofree]), 3904 sizeof(void *) * ac->avail); 3905 } 3906 spin_unlock_irq(&l3->list_lock); 3907 } 3908 } 3909 3910 /** 3911 * cache_reap - Reclaim memory from caches. 3912 * @unused: unused parameter 3913 * 3914 * Called from workqueue/eventd every few seconds. 3915 * Purpose: 3916 * - clear the per-cpu caches for this CPU. 3917 * - return freeable pages to the main free memory pool. 3918 * 3919 * If we cannot acquire the cache chain mutex then just give up - we'll try 3920 * again on the next iteration. 3921 */ 3922 static void cache_reap(struct work_struct *unused) 3923 { 3924 struct kmem_cache *searchp; 3925 struct kmem_list3 *l3; 3926 int node = numa_node_id(); 3927 3928 if (!mutex_trylock(&cache_chain_mutex)) { 3929 /* Give up. Setup the next iteration. */ 3930 schedule_delayed_work(&__get_cpu_var(reap_work), 3931 REAPTIMEOUT_CPUC); 3932 return; 3933 } 3934 3935 list_for_each_entry(searchp, &cache_chain, next) { 3936 check_irq_on(); 3937 3938 /* 3939 * We only take the l3 lock if absolutely necessary and we 3940 * have established with reasonable certainty that 3941 * we can do some work if the lock was obtained. 3942 */ 3943 l3 = searchp->nodelists[node]; 3944 3945 reap_alien(searchp, l3); 3946 3947 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node); 3948 3949 /* 3950 * These are racy checks but it does not matter 3951 * if we skip one check or scan twice. 3952 */ 3953 if (time_after(l3->next_reap, jiffies)) 3954 goto next; 3955 3956 l3->next_reap = jiffies + REAPTIMEOUT_LIST3; 3957 3958 drain_array(searchp, l3, l3->shared, 0, node); 3959 3960 if (l3->free_touched) 3961 l3->free_touched = 0; 3962 else { 3963 int freed; 3964 3965 freed = drain_freelist(searchp, l3, (l3->free_limit + 3966 5 * searchp->num - 1) / (5 * searchp->num)); 3967 STATS_ADD_REAPED(searchp, freed); 3968 } 3969 next: 3970 cond_resched(); 3971 } 3972 check_irq_on(); 3973 mutex_unlock(&cache_chain_mutex); 3974 next_reap_node(); 3975 refresh_cpu_vm_stats(smp_processor_id()); 3976 /* Set up the next iteration */ 3977 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC); 3978 } 3979 3980 #ifdef CONFIG_PROC_FS 3981 3982 static void print_slabinfo_header(struct seq_file *m) 3983 { 3984 /* 3985 * Output format version, so at least we can change it 3986 * without _too_ many complaints. 3987 */ 3988 #if STATS 3989 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); 3990 #else 3991 seq_puts(m, "slabinfo - version: 2.1\n"); 3992 #endif 3993 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 3994 "<objperslab> <pagesperslab>"); 3995 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 3996 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 3997 #if STATS 3998 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> " 3999 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); 4000 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); 4001 #endif 4002 seq_putc(m, '\n'); 4003 } 4004 4005 static void *s_start(struct seq_file *m, loff_t *pos) 4006 { 4007 loff_t n = *pos; 4008 struct list_head *p; 4009 4010 mutex_lock(&cache_chain_mutex); 4011 if (!n) 4012 print_slabinfo_header(m); 4013 p = cache_chain.next; 4014 while (n--) { 4015 p = p->next; 4016 if (p == &cache_chain) 4017 return NULL; 4018 } 4019 return list_entry(p, struct kmem_cache, next); 4020 } 4021 4022 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4023 { 4024 struct kmem_cache *cachep = p; 4025 ++*pos; 4026 return cachep->next.next == &cache_chain ? 4027 NULL : list_entry(cachep->next.next, struct kmem_cache, next); 4028 } 4029 4030 static void s_stop(struct seq_file *m, void *p) 4031 { 4032 mutex_unlock(&cache_chain_mutex); 4033 } 4034 4035 static int s_show(struct seq_file *m, void *p) 4036 { 4037 struct kmem_cache *cachep = p; 4038 struct slab *slabp; 4039 unsigned long active_objs; 4040 unsigned long num_objs; 4041 unsigned long active_slabs = 0; 4042 unsigned long num_slabs, free_objects = 0, shared_avail = 0; 4043 const char *name; 4044 char *error = NULL; 4045 int node; 4046 struct kmem_list3 *l3; 4047 4048 active_objs = 0; 4049 num_slabs = 0; 4050 for_each_online_node(node) { 4051 l3 = cachep->nodelists[node]; 4052 if (!l3) 4053 continue; 4054 4055 check_irq_on(); 4056 spin_lock_irq(&l3->list_lock); 4057 4058 list_for_each_entry(slabp, &l3->slabs_full, list) { 4059 if (slabp->inuse != cachep->num && !error) 4060 error = "slabs_full accounting error"; 4061 active_objs += cachep->num; 4062 active_slabs++; 4063 } 4064 list_for_each_entry(slabp, &l3->slabs_partial, list) { 4065 if (slabp->inuse == cachep->num && !error) 4066 error = "slabs_partial inuse accounting error"; 4067 if (!slabp->inuse && !error) 4068 error = "slabs_partial/inuse accounting error"; 4069 active_objs += slabp->inuse; 4070 active_slabs++; 4071 } 4072 list_for_each_entry(slabp, &l3->slabs_free, list) { 4073 if (slabp->inuse && !error) 4074 error = "slabs_free/inuse accounting error"; 4075 num_slabs++; 4076 } 4077 free_objects += l3->free_objects; 4078 if (l3->shared) 4079 shared_avail += l3->shared->avail; 4080 4081 spin_unlock_irq(&l3->list_lock); 4082 } 4083 num_slabs += active_slabs; 4084 num_objs = num_slabs * cachep->num; 4085 if (num_objs - active_objs != free_objects && !error) 4086 error = "free_objects accounting error"; 4087 4088 name = cachep->name; 4089 if (error) 4090 printk(KERN_ERR "slab: cache %s error: %s\n", name, error); 4091 4092 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", 4093 name, active_objs, num_objs, cachep->buffer_size, 4094 cachep->num, (1 << cachep->gfporder)); 4095 seq_printf(m, " : tunables %4u %4u %4u", 4096 cachep->limit, cachep->batchcount, cachep->shared); 4097 seq_printf(m, " : slabdata %6lu %6lu %6lu", 4098 active_slabs, num_slabs, shared_avail); 4099 #if STATS 4100 { /* list3 stats */ 4101 unsigned long high = cachep->high_mark; 4102 unsigned long allocs = cachep->num_allocations; 4103 unsigned long grown = cachep->grown; 4104 unsigned long reaped = cachep->reaped; 4105 unsigned long errors = cachep->errors; 4106 unsigned long max_freeable = cachep->max_freeable; 4107 unsigned long node_allocs = cachep->node_allocs; 4108 unsigned long node_frees = cachep->node_frees; 4109 unsigned long overflows = cachep->node_overflow; 4110 4111 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \ 4112 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown, 4113 reaped, errors, max_freeable, node_allocs, 4114 node_frees, overflows); 4115 } 4116 /* cpu stats */ 4117 { 4118 unsigned long allochit = atomic_read(&cachep->allochit); 4119 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 4120 unsigned long freehit = atomic_read(&cachep->freehit); 4121 unsigned long freemiss = atomic_read(&cachep->freemiss); 4122 4123 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 4124 allochit, allocmiss, freehit, freemiss); 4125 } 4126 #endif 4127 seq_putc(m, '\n'); 4128 return 0; 4129 } 4130 4131 /* 4132 * slabinfo_op - iterator that generates /proc/slabinfo 4133 * 4134 * Output layout: 4135 * cache-name 4136 * num-active-objs 4137 * total-objs 4138 * object size 4139 * num-active-slabs 4140 * total-slabs 4141 * num-pages-per-slab 4142 * + further values on SMP and with statistics enabled 4143 */ 4144 4145 const struct seq_operations slabinfo_op = { 4146 .start = s_start, 4147 .next = s_next, 4148 .stop = s_stop, 4149 .show = s_show, 4150 }; 4151 4152 #define MAX_SLABINFO_WRITE 128 4153 /** 4154 * slabinfo_write - Tuning for the slab allocator 4155 * @file: unused 4156 * @buffer: user buffer 4157 * @count: data length 4158 * @ppos: unused 4159 */ 4160 ssize_t slabinfo_write(struct file *file, const char __user * buffer, 4161 size_t count, loff_t *ppos) 4162 { 4163 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4164 int limit, batchcount, shared, res; 4165 struct kmem_cache *cachep; 4166 4167 if (count > MAX_SLABINFO_WRITE) 4168 return -EINVAL; 4169 if (copy_from_user(&kbuf, buffer, count)) 4170 return -EFAULT; 4171 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4172 4173 tmp = strchr(kbuf, ' '); 4174 if (!tmp) 4175 return -EINVAL; 4176 *tmp = '\0'; 4177 tmp++; 4178 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4179 return -EINVAL; 4180 4181 /* Find the cache in the chain of caches. */ 4182 mutex_lock(&cache_chain_mutex); 4183 res = -EINVAL; 4184 list_for_each_entry(cachep, &cache_chain, next) { 4185 if (!strcmp(cachep->name, kbuf)) { 4186 if (limit < 1 || batchcount < 1 || 4187 batchcount > limit || shared < 0) { 4188 res = 0; 4189 } else { 4190 res = do_tune_cpucache(cachep, limit, 4191 batchcount, shared); 4192 } 4193 break; 4194 } 4195 } 4196 mutex_unlock(&cache_chain_mutex); 4197 if (res >= 0) 4198 res = count; 4199 return res; 4200 } 4201 4202 #ifdef CONFIG_DEBUG_SLAB_LEAK 4203 4204 static void *leaks_start(struct seq_file *m, loff_t *pos) 4205 { 4206 loff_t n = *pos; 4207 struct list_head *p; 4208 4209 mutex_lock(&cache_chain_mutex); 4210 p = cache_chain.next; 4211 while (n--) { 4212 p = p->next; 4213 if (p == &cache_chain) 4214 return NULL; 4215 } 4216 return list_entry(p, struct kmem_cache, next); 4217 } 4218 4219 static inline int add_caller(unsigned long *n, unsigned long v) 4220 { 4221 unsigned long *p; 4222 int l; 4223 if (!v) 4224 return 1; 4225 l = n[1]; 4226 p = n + 2; 4227 while (l) { 4228 int i = l/2; 4229 unsigned long *q = p + 2 * i; 4230 if (*q == v) { 4231 q[1]++; 4232 return 1; 4233 } 4234 if (*q > v) { 4235 l = i; 4236 } else { 4237 p = q + 2; 4238 l -= i + 1; 4239 } 4240 } 4241 if (++n[1] == n[0]) 4242 return 0; 4243 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); 4244 p[0] = v; 4245 p[1] = 1; 4246 return 1; 4247 } 4248 4249 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s) 4250 { 4251 void *p; 4252 int i; 4253 if (n[0] == n[1]) 4254 return; 4255 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) { 4256 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE) 4257 continue; 4258 if (!add_caller(n, (unsigned long)*dbg_userword(c, p))) 4259 return; 4260 } 4261 } 4262 4263 static void show_symbol(struct seq_file *m, unsigned long address) 4264 { 4265 #ifdef CONFIG_KALLSYMS 4266 char *modname; 4267 const char *name; 4268 unsigned long offset, size; 4269 char namebuf[KSYM_NAME_LEN+1]; 4270 4271 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf); 4272 4273 if (name) { 4274 seq_printf(m, "%s+%#lx/%#lx", name, offset, size); 4275 if (modname) 4276 seq_printf(m, " [%s]", modname); 4277 return; 4278 } 4279 #endif 4280 seq_printf(m, "%p", (void *)address); 4281 } 4282 4283 static int leaks_show(struct seq_file *m, void *p) 4284 { 4285 struct kmem_cache *cachep = p; 4286 struct slab *slabp; 4287 struct kmem_list3 *l3; 4288 const char *name; 4289 unsigned long *n = m->private; 4290 int node; 4291 int i; 4292 4293 if (!(cachep->flags & SLAB_STORE_USER)) 4294 return 0; 4295 if (!(cachep->flags & SLAB_RED_ZONE)) 4296 return 0; 4297 4298 /* OK, we can do it */ 4299 4300 n[1] = 0; 4301 4302 for_each_online_node(node) { 4303 l3 = cachep->nodelists[node]; 4304 if (!l3) 4305 continue; 4306 4307 check_irq_on(); 4308 spin_lock_irq(&l3->list_lock); 4309 4310 list_for_each_entry(slabp, &l3->slabs_full, list) 4311 handle_slab(n, cachep, slabp); 4312 list_for_each_entry(slabp, &l3->slabs_partial, list) 4313 handle_slab(n, cachep, slabp); 4314 spin_unlock_irq(&l3->list_lock); 4315 } 4316 name = cachep->name; 4317 if (n[0] == n[1]) { 4318 /* Increase the buffer size */ 4319 mutex_unlock(&cache_chain_mutex); 4320 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL); 4321 if (!m->private) { 4322 /* Too bad, we are really out */ 4323 m->private = n; 4324 mutex_lock(&cache_chain_mutex); 4325 return -ENOMEM; 4326 } 4327 *(unsigned long *)m->private = n[0] * 2; 4328 kfree(n); 4329 mutex_lock(&cache_chain_mutex); 4330 /* Now make sure this entry will be retried */ 4331 m->count = m->size; 4332 return 0; 4333 } 4334 for (i = 0; i < n[1]; i++) { 4335 seq_printf(m, "%s: %lu ", name, n[2*i+3]); 4336 show_symbol(m, n[2*i+2]); 4337 seq_putc(m, '\n'); 4338 } 4339 4340 return 0; 4341 } 4342 4343 const struct seq_operations slabstats_op = { 4344 .start = leaks_start, 4345 .next = s_next, 4346 .stop = s_stop, 4347 .show = leaks_show, 4348 }; 4349 #endif 4350 #endif 4351 4352 /** 4353 * ksize - get the actual amount of memory allocated for a given object 4354 * @objp: Pointer to the object 4355 * 4356 * kmalloc may internally round up allocations and return more memory 4357 * than requested. ksize() can be used to determine the actual amount of 4358 * memory allocated. The caller may use this additional memory, even though 4359 * a smaller amount of memory was initially specified with the kmalloc call. 4360 * The caller must guarantee that objp points to a valid object previously 4361 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4362 * must not be freed during the duration of the call. 4363 */ 4364 unsigned int ksize(const void *objp) 4365 { 4366 if (unlikely(objp == NULL)) 4367 return 0; 4368 4369 return obj_size(virt_to_cache(objp)); 4370 } 4371