1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/swap.h> 36 #include <linux/uio.h> 37 #include <linux/khugepaged.h> 38 #include <linux/hugetlb.h> 39 #include <linux/fs_parser.h> 40 #include <linux/swapfile.h> 41 42 static struct vfsmount *shm_mnt; 43 44 #ifdef CONFIG_SHMEM 45 /* 46 * This virtual memory filesystem is heavily based on the ramfs. It 47 * extends ramfs by the ability to use swap and honor resource limits 48 * which makes it a completely usable filesystem. 49 */ 50 51 #include <linux/xattr.h> 52 #include <linux/exportfs.h> 53 #include <linux/posix_acl.h> 54 #include <linux/posix_acl_xattr.h> 55 #include <linux/mman.h> 56 #include <linux/string.h> 57 #include <linux/slab.h> 58 #include <linux/backing-dev.h> 59 #include <linux/shmem_fs.h> 60 #include <linux/writeback.h> 61 #include <linux/pagevec.h> 62 #include <linux/percpu_counter.h> 63 #include <linux/falloc.h> 64 #include <linux/splice.h> 65 #include <linux/security.h> 66 #include <linux/swapops.h> 67 #include <linux/mempolicy.h> 68 #include <linux/namei.h> 69 #include <linux/ctype.h> 70 #include <linux/migrate.h> 71 #include <linux/highmem.h> 72 #include <linux/seq_file.h> 73 #include <linux/magic.h> 74 #include <linux/syscalls.h> 75 #include <linux/fcntl.h> 76 #include <uapi/linux/memfd.h> 77 #include <linux/userfaultfd_k.h> 78 #include <linux/rmap.h> 79 #include <linux/uuid.h> 80 81 #include <linux/uaccess.h> 82 83 #include "internal.h" 84 85 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 86 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 87 88 /* Pretend that each entry is of this size in directory's i_size */ 89 #define BOGO_DIRENT_SIZE 20 90 91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 92 #define SHORT_SYMLINK_LEN 128 93 94 /* 95 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 96 * inode->i_private (with i_rwsem making sure that it has only one user at 97 * a time): we would prefer not to enlarge the shmem inode just for that. 98 */ 99 struct shmem_falloc { 100 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 101 pgoff_t start; /* start of range currently being fallocated */ 102 pgoff_t next; /* the next page offset to be fallocated */ 103 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 104 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 105 }; 106 107 struct shmem_options { 108 unsigned long long blocks; 109 unsigned long long inodes; 110 struct mempolicy *mpol; 111 kuid_t uid; 112 kgid_t gid; 113 umode_t mode; 114 bool full_inums; 115 int huge; 116 int seen; 117 #define SHMEM_SEEN_BLOCKS 1 118 #define SHMEM_SEEN_INODES 2 119 #define SHMEM_SEEN_HUGE 4 120 #define SHMEM_SEEN_INUMS 8 121 }; 122 123 #ifdef CONFIG_TMPFS 124 static unsigned long shmem_default_max_blocks(void) 125 { 126 return totalram_pages() / 2; 127 } 128 129 static unsigned long shmem_default_max_inodes(void) 130 { 131 unsigned long nr_pages = totalram_pages(); 132 133 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 134 } 135 #endif 136 137 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 138 struct page **pagep, enum sgp_type sgp, 139 gfp_t gfp, struct vm_area_struct *vma, 140 vm_fault_t *fault_type); 141 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 142 struct page **pagep, enum sgp_type sgp, 143 gfp_t gfp, struct vm_area_struct *vma, 144 struct vm_fault *vmf, vm_fault_t *fault_type); 145 146 int shmem_getpage(struct inode *inode, pgoff_t index, 147 struct page **pagep, enum sgp_type sgp) 148 { 149 return shmem_getpage_gfp(inode, index, pagep, sgp, 150 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 151 } 152 153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 154 { 155 return sb->s_fs_info; 156 } 157 158 /* 159 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 160 * for shared memory and for shared anonymous (/dev/zero) mappings 161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 162 * consistent with the pre-accounting of private mappings ... 163 */ 164 static inline int shmem_acct_size(unsigned long flags, loff_t size) 165 { 166 return (flags & VM_NORESERVE) ? 167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 168 } 169 170 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 171 { 172 if (!(flags & VM_NORESERVE)) 173 vm_unacct_memory(VM_ACCT(size)); 174 } 175 176 static inline int shmem_reacct_size(unsigned long flags, 177 loff_t oldsize, loff_t newsize) 178 { 179 if (!(flags & VM_NORESERVE)) { 180 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 181 return security_vm_enough_memory_mm(current->mm, 182 VM_ACCT(newsize) - VM_ACCT(oldsize)); 183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 185 } 186 return 0; 187 } 188 189 /* 190 * ... whereas tmpfs objects are accounted incrementally as 191 * pages are allocated, in order to allow large sparse files. 192 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 194 */ 195 static inline int shmem_acct_block(unsigned long flags, long pages) 196 { 197 if (!(flags & VM_NORESERVE)) 198 return 0; 199 200 return security_vm_enough_memory_mm(current->mm, 201 pages * VM_ACCT(PAGE_SIZE)); 202 } 203 204 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 205 { 206 if (flags & VM_NORESERVE) 207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 208 } 209 210 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 211 { 212 struct shmem_inode_info *info = SHMEM_I(inode); 213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 214 215 if (shmem_acct_block(info->flags, pages)) 216 return false; 217 218 if (sbinfo->max_blocks) { 219 if (percpu_counter_compare(&sbinfo->used_blocks, 220 sbinfo->max_blocks - pages) > 0) 221 goto unacct; 222 percpu_counter_add(&sbinfo->used_blocks, pages); 223 } 224 225 return true; 226 227 unacct: 228 shmem_unacct_blocks(info->flags, pages); 229 return false; 230 } 231 232 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 233 { 234 struct shmem_inode_info *info = SHMEM_I(inode); 235 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 236 237 if (sbinfo->max_blocks) 238 percpu_counter_sub(&sbinfo->used_blocks, pages); 239 shmem_unacct_blocks(info->flags, pages); 240 } 241 242 static const struct super_operations shmem_ops; 243 const struct address_space_operations shmem_aops; 244 static const struct file_operations shmem_file_operations; 245 static const struct inode_operations shmem_inode_operations; 246 static const struct inode_operations shmem_dir_inode_operations; 247 static const struct inode_operations shmem_special_inode_operations; 248 static const struct vm_operations_struct shmem_vm_ops; 249 static struct file_system_type shmem_fs_type; 250 251 bool vma_is_shmem(struct vm_area_struct *vma) 252 { 253 return vma->vm_ops == &shmem_vm_ops; 254 } 255 256 static LIST_HEAD(shmem_swaplist); 257 static DEFINE_MUTEX(shmem_swaplist_mutex); 258 259 /* 260 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 261 * produces a novel ino for the newly allocated inode. 262 * 263 * It may also be called when making a hard link to permit the space needed by 264 * each dentry. However, in that case, no new inode number is needed since that 265 * internally draws from another pool of inode numbers (currently global 266 * get_next_ino()). This case is indicated by passing NULL as inop. 267 */ 268 #define SHMEM_INO_BATCH 1024 269 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 270 { 271 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 272 ino_t ino; 273 274 if (!(sb->s_flags & SB_KERNMOUNT)) { 275 raw_spin_lock(&sbinfo->stat_lock); 276 if (sbinfo->max_inodes) { 277 if (!sbinfo->free_inodes) { 278 raw_spin_unlock(&sbinfo->stat_lock); 279 return -ENOSPC; 280 } 281 sbinfo->free_inodes--; 282 } 283 if (inop) { 284 ino = sbinfo->next_ino++; 285 if (unlikely(is_zero_ino(ino))) 286 ino = sbinfo->next_ino++; 287 if (unlikely(!sbinfo->full_inums && 288 ino > UINT_MAX)) { 289 /* 290 * Emulate get_next_ino uint wraparound for 291 * compatibility 292 */ 293 if (IS_ENABLED(CONFIG_64BIT)) 294 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 295 __func__, MINOR(sb->s_dev)); 296 sbinfo->next_ino = 1; 297 ino = sbinfo->next_ino++; 298 } 299 *inop = ino; 300 } 301 raw_spin_unlock(&sbinfo->stat_lock); 302 } else if (inop) { 303 /* 304 * __shmem_file_setup, one of our callers, is lock-free: it 305 * doesn't hold stat_lock in shmem_reserve_inode since 306 * max_inodes is always 0, and is called from potentially 307 * unknown contexts. As such, use a per-cpu batched allocator 308 * which doesn't require the per-sb stat_lock unless we are at 309 * the batch boundary. 310 * 311 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 312 * shmem mounts are not exposed to userspace, so we don't need 313 * to worry about things like glibc compatibility. 314 */ 315 ino_t *next_ino; 316 317 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 318 ino = *next_ino; 319 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 320 raw_spin_lock(&sbinfo->stat_lock); 321 ino = sbinfo->next_ino; 322 sbinfo->next_ino += SHMEM_INO_BATCH; 323 raw_spin_unlock(&sbinfo->stat_lock); 324 if (unlikely(is_zero_ino(ino))) 325 ino++; 326 } 327 *inop = ino; 328 *next_ino = ++ino; 329 put_cpu(); 330 } 331 332 return 0; 333 } 334 335 static void shmem_free_inode(struct super_block *sb) 336 { 337 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 338 if (sbinfo->max_inodes) { 339 raw_spin_lock(&sbinfo->stat_lock); 340 sbinfo->free_inodes++; 341 raw_spin_unlock(&sbinfo->stat_lock); 342 } 343 } 344 345 /** 346 * shmem_recalc_inode - recalculate the block usage of an inode 347 * @inode: inode to recalc 348 * 349 * We have to calculate the free blocks since the mm can drop 350 * undirtied hole pages behind our back. 351 * 352 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 353 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 354 * 355 * It has to be called with the spinlock held. 356 */ 357 static void shmem_recalc_inode(struct inode *inode) 358 { 359 struct shmem_inode_info *info = SHMEM_I(inode); 360 long freed; 361 362 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 363 if (freed > 0) { 364 info->alloced -= freed; 365 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 366 shmem_inode_unacct_blocks(inode, freed); 367 } 368 } 369 370 bool shmem_charge(struct inode *inode, long pages) 371 { 372 struct shmem_inode_info *info = SHMEM_I(inode); 373 unsigned long flags; 374 375 if (!shmem_inode_acct_block(inode, pages)) 376 return false; 377 378 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 379 inode->i_mapping->nrpages += pages; 380 381 spin_lock_irqsave(&info->lock, flags); 382 info->alloced += pages; 383 inode->i_blocks += pages * BLOCKS_PER_PAGE; 384 shmem_recalc_inode(inode); 385 spin_unlock_irqrestore(&info->lock, flags); 386 387 return true; 388 } 389 390 void shmem_uncharge(struct inode *inode, long pages) 391 { 392 struct shmem_inode_info *info = SHMEM_I(inode); 393 unsigned long flags; 394 395 /* nrpages adjustment done by __delete_from_page_cache() or caller */ 396 397 spin_lock_irqsave(&info->lock, flags); 398 info->alloced -= pages; 399 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 400 shmem_recalc_inode(inode); 401 spin_unlock_irqrestore(&info->lock, flags); 402 403 shmem_inode_unacct_blocks(inode, pages); 404 } 405 406 /* 407 * Replace item expected in xarray by a new item, while holding xa_lock. 408 */ 409 static int shmem_replace_entry(struct address_space *mapping, 410 pgoff_t index, void *expected, void *replacement) 411 { 412 XA_STATE(xas, &mapping->i_pages, index); 413 void *item; 414 415 VM_BUG_ON(!expected); 416 VM_BUG_ON(!replacement); 417 item = xas_load(&xas); 418 if (item != expected) 419 return -ENOENT; 420 xas_store(&xas, replacement); 421 return 0; 422 } 423 424 /* 425 * Sometimes, before we decide whether to proceed or to fail, we must check 426 * that an entry was not already brought back from swap by a racing thread. 427 * 428 * Checking page is not enough: by the time a SwapCache page is locked, it 429 * might be reused, and again be SwapCache, using the same swap as before. 430 */ 431 static bool shmem_confirm_swap(struct address_space *mapping, 432 pgoff_t index, swp_entry_t swap) 433 { 434 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 435 } 436 437 /* 438 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 439 * 440 * SHMEM_HUGE_NEVER: 441 * disables huge pages for the mount; 442 * SHMEM_HUGE_ALWAYS: 443 * enables huge pages for the mount; 444 * SHMEM_HUGE_WITHIN_SIZE: 445 * only allocate huge pages if the page will be fully within i_size, 446 * also respect fadvise()/madvise() hints; 447 * SHMEM_HUGE_ADVISE: 448 * only allocate huge pages if requested with fadvise()/madvise(); 449 */ 450 451 #define SHMEM_HUGE_NEVER 0 452 #define SHMEM_HUGE_ALWAYS 1 453 #define SHMEM_HUGE_WITHIN_SIZE 2 454 #define SHMEM_HUGE_ADVISE 3 455 456 /* 457 * Special values. 458 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 459 * 460 * SHMEM_HUGE_DENY: 461 * disables huge on shm_mnt and all mounts, for emergency use; 462 * SHMEM_HUGE_FORCE: 463 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 464 * 465 */ 466 #define SHMEM_HUGE_DENY (-1) 467 #define SHMEM_HUGE_FORCE (-2) 468 469 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 470 /* ifdef here to avoid bloating shmem.o when not necessary */ 471 472 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 473 474 bool shmem_is_huge(struct vm_area_struct *vma, 475 struct inode *inode, pgoff_t index) 476 { 477 loff_t i_size; 478 479 if (!S_ISREG(inode->i_mode)) 480 return false; 481 if (shmem_huge == SHMEM_HUGE_DENY) 482 return false; 483 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) || 484 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))) 485 return false; 486 if (shmem_huge == SHMEM_HUGE_FORCE) 487 return true; 488 489 switch (SHMEM_SB(inode->i_sb)->huge) { 490 case SHMEM_HUGE_ALWAYS: 491 return true; 492 case SHMEM_HUGE_WITHIN_SIZE: 493 index = round_up(index + 1, HPAGE_PMD_NR); 494 i_size = round_up(i_size_read(inode), PAGE_SIZE); 495 if (i_size >> PAGE_SHIFT >= index) 496 return true; 497 fallthrough; 498 case SHMEM_HUGE_ADVISE: 499 if (vma && (vma->vm_flags & VM_HUGEPAGE)) 500 return true; 501 fallthrough; 502 default: 503 return false; 504 } 505 } 506 507 #if defined(CONFIG_SYSFS) 508 static int shmem_parse_huge(const char *str) 509 { 510 if (!strcmp(str, "never")) 511 return SHMEM_HUGE_NEVER; 512 if (!strcmp(str, "always")) 513 return SHMEM_HUGE_ALWAYS; 514 if (!strcmp(str, "within_size")) 515 return SHMEM_HUGE_WITHIN_SIZE; 516 if (!strcmp(str, "advise")) 517 return SHMEM_HUGE_ADVISE; 518 if (!strcmp(str, "deny")) 519 return SHMEM_HUGE_DENY; 520 if (!strcmp(str, "force")) 521 return SHMEM_HUGE_FORCE; 522 return -EINVAL; 523 } 524 #endif 525 526 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 527 static const char *shmem_format_huge(int huge) 528 { 529 switch (huge) { 530 case SHMEM_HUGE_NEVER: 531 return "never"; 532 case SHMEM_HUGE_ALWAYS: 533 return "always"; 534 case SHMEM_HUGE_WITHIN_SIZE: 535 return "within_size"; 536 case SHMEM_HUGE_ADVISE: 537 return "advise"; 538 case SHMEM_HUGE_DENY: 539 return "deny"; 540 case SHMEM_HUGE_FORCE: 541 return "force"; 542 default: 543 VM_BUG_ON(1); 544 return "bad_val"; 545 } 546 } 547 #endif 548 549 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 550 struct shrink_control *sc, unsigned long nr_to_split) 551 { 552 LIST_HEAD(list), *pos, *next; 553 LIST_HEAD(to_remove); 554 struct inode *inode; 555 struct shmem_inode_info *info; 556 struct page *page; 557 unsigned long batch = sc ? sc->nr_to_scan : 128; 558 int split = 0; 559 560 if (list_empty(&sbinfo->shrinklist)) 561 return SHRINK_STOP; 562 563 spin_lock(&sbinfo->shrinklist_lock); 564 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 565 info = list_entry(pos, struct shmem_inode_info, shrinklist); 566 567 /* pin the inode */ 568 inode = igrab(&info->vfs_inode); 569 570 /* inode is about to be evicted */ 571 if (!inode) { 572 list_del_init(&info->shrinklist); 573 goto next; 574 } 575 576 /* Check if there's anything to gain */ 577 if (round_up(inode->i_size, PAGE_SIZE) == 578 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 579 list_move(&info->shrinklist, &to_remove); 580 goto next; 581 } 582 583 list_move(&info->shrinklist, &list); 584 next: 585 sbinfo->shrinklist_len--; 586 if (!--batch) 587 break; 588 } 589 spin_unlock(&sbinfo->shrinklist_lock); 590 591 list_for_each_safe(pos, next, &to_remove) { 592 info = list_entry(pos, struct shmem_inode_info, shrinklist); 593 inode = &info->vfs_inode; 594 list_del_init(&info->shrinklist); 595 iput(inode); 596 } 597 598 list_for_each_safe(pos, next, &list) { 599 int ret; 600 601 info = list_entry(pos, struct shmem_inode_info, shrinklist); 602 inode = &info->vfs_inode; 603 604 if (nr_to_split && split >= nr_to_split) 605 goto move_back; 606 607 page = find_get_page(inode->i_mapping, 608 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 609 if (!page) 610 goto drop; 611 612 /* No huge page at the end of the file: nothing to split */ 613 if (!PageTransHuge(page)) { 614 put_page(page); 615 goto drop; 616 } 617 618 /* 619 * Move the inode on the list back to shrinklist if we failed 620 * to lock the page at this time. 621 * 622 * Waiting for the lock may lead to deadlock in the 623 * reclaim path. 624 */ 625 if (!trylock_page(page)) { 626 put_page(page); 627 goto move_back; 628 } 629 630 ret = split_huge_page(page); 631 unlock_page(page); 632 put_page(page); 633 634 /* If split failed move the inode on the list back to shrinklist */ 635 if (ret) 636 goto move_back; 637 638 split++; 639 drop: 640 list_del_init(&info->shrinklist); 641 goto put; 642 move_back: 643 /* 644 * Make sure the inode is either on the global list or deleted 645 * from any local list before iput() since it could be deleted 646 * in another thread once we put the inode (then the local list 647 * is corrupted). 648 */ 649 spin_lock(&sbinfo->shrinklist_lock); 650 list_move(&info->shrinklist, &sbinfo->shrinklist); 651 sbinfo->shrinklist_len++; 652 spin_unlock(&sbinfo->shrinklist_lock); 653 put: 654 iput(inode); 655 } 656 657 return split; 658 } 659 660 static long shmem_unused_huge_scan(struct super_block *sb, 661 struct shrink_control *sc) 662 { 663 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 664 665 if (!READ_ONCE(sbinfo->shrinklist_len)) 666 return SHRINK_STOP; 667 668 return shmem_unused_huge_shrink(sbinfo, sc, 0); 669 } 670 671 static long shmem_unused_huge_count(struct super_block *sb, 672 struct shrink_control *sc) 673 { 674 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 675 return READ_ONCE(sbinfo->shrinklist_len); 676 } 677 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 678 679 #define shmem_huge SHMEM_HUGE_DENY 680 681 bool shmem_is_huge(struct vm_area_struct *vma, 682 struct inode *inode, pgoff_t index) 683 { 684 return false; 685 } 686 687 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 688 struct shrink_control *sc, unsigned long nr_to_split) 689 { 690 return 0; 691 } 692 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 693 694 /* 695 * Like add_to_page_cache_locked, but error if expected item has gone. 696 */ 697 static int shmem_add_to_page_cache(struct page *page, 698 struct address_space *mapping, 699 pgoff_t index, void *expected, gfp_t gfp, 700 struct mm_struct *charge_mm) 701 { 702 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page)); 703 unsigned long nr = compound_nr(page); 704 int error; 705 706 VM_BUG_ON_PAGE(PageTail(page), page); 707 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 708 VM_BUG_ON_PAGE(!PageLocked(page), page); 709 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 710 VM_BUG_ON(expected && PageTransHuge(page)); 711 712 page_ref_add(page, nr); 713 page->mapping = mapping; 714 page->index = index; 715 716 if (!PageSwapCache(page)) { 717 error = mem_cgroup_charge(page_folio(page), charge_mm, gfp); 718 if (error) { 719 if (PageTransHuge(page)) { 720 count_vm_event(THP_FILE_FALLBACK); 721 count_vm_event(THP_FILE_FALLBACK_CHARGE); 722 } 723 goto error; 724 } 725 } 726 cgroup_throttle_swaprate(page, gfp); 727 728 do { 729 xas_lock_irq(&xas); 730 if (expected != xas_find_conflict(&xas)) { 731 xas_set_err(&xas, -EEXIST); 732 goto unlock; 733 } 734 if (expected && xas_find_conflict(&xas)) { 735 xas_set_err(&xas, -EEXIST); 736 goto unlock; 737 } 738 xas_store(&xas, page); 739 if (xas_error(&xas)) 740 goto unlock; 741 if (PageTransHuge(page)) { 742 count_vm_event(THP_FILE_ALLOC); 743 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr); 744 } 745 mapping->nrpages += nr; 746 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr); 747 __mod_lruvec_page_state(page, NR_SHMEM, nr); 748 unlock: 749 xas_unlock_irq(&xas); 750 } while (xas_nomem(&xas, gfp)); 751 752 if (xas_error(&xas)) { 753 error = xas_error(&xas); 754 goto error; 755 } 756 757 return 0; 758 error: 759 page->mapping = NULL; 760 page_ref_sub(page, nr); 761 return error; 762 } 763 764 /* 765 * Like delete_from_page_cache, but substitutes swap for page. 766 */ 767 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 768 { 769 struct address_space *mapping = page->mapping; 770 int error; 771 772 VM_BUG_ON_PAGE(PageCompound(page), page); 773 774 xa_lock_irq(&mapping->i_pages); 775 error = shmem_replace_entry(mapping, page->index, page, radswap); 776 page->mapping = NULL; 777 mapping->nrpages--; 778 __dec_lruvec_page_state(page, NR_FILE_PAGES); 779 __dec_lruvec_page_state(page, NR_SHMEM); 780 xa_unlock_irq(&mapping->i_pages); 781 put_page(page); 782 BUG_ON(error); 783 } 784 785 /* 786 * Remove swap entry from page cache, free the swap and its page cache. 787 */ 788 static int shmem_free_swap(struct address_space *mapping, 789 pgoff_t index, void *radswap) 790 { 791 void *old; 792 793 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 794 if (old != radswap) 795 return -ENOENT; 796 free_swap_and_cache(radix_to_swp_entry(radswap)); 797 return 0; 798 } 799 800 /* 801 * Determine (in bytes) how many of the shmem object's pages mapped by the 802 * given offsets are swapped out. 803 * 804 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 805 * as long as the inode doesn't go away and racy results are not a problem. 806 */ 807 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 808 pgoff_t start, pgoff_t end) 809 { 810 XA_STATE(xas, &mapping->i_pages, start); 811 struct page *page; 812 unsigned long swapped = 0; 813 814 rcu_read_lock(); 815 xas_for_each(&xas, page, end - 1) { 816 if (xas_retry(&xas, page)) 817 continue; 818 if (xa_is_value(page)) 819 swapped++; 820 821 if (need_resched()) { 822 xas_pause(&xas); 823 cond_resched_rcu(); 824 } 825 } 826 827 rcu_read_unlock(); 828 829 return swapped << PAGE_SHIFT; 830 } 831 832 /* 833 * Determine (in bytes) how many of the shmem object's pages mapped by the 834 * given vma is swapped out. 835 * 836 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 837 * as long as the inode doesn't go away and racy results are not a problem. 838 */ 839 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 840 { 841 struct inode *inode = file_inode(vma->vm_file); 842 struct shmem_inode_info *info = SHMEM_I(inode); 843 struct address_space *mapping = inode->i_mapping; 844 unsigned long swapped; 845 846 /* Be careful as we don't hold info->lock */ 847 swapped = READ_ONCE(info->swapped); 848 849 /* 850 * The easier cases are when the shmem object has nothing in swap, or 851 * the vma maps it whole. Then we can simply use the stats that we 852 * already track. 853 */ 854 if (!swapped) 855 return 0; 856 857 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 858 return swapped << PAGE_SHIFT; 859 860 /* Here comes the more involved part */ 861 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 862 vma->vm_pgoff + vma_pages(vma)); 863 } 864 865 /* 866 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 867 */ 868 void shmem_unlock_mapping(struct address_space *mapping) 869 { 870 struct pagevec pvec; 871 pgoff_t index = 0; 872 873 pagevec_init(&pvec); 874 /* 875 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 876 */ 877 while (!mapping_unevictable(mapping)) { 878 if (!pagevec_lookup(&pvec, mapping, &index)) 879 break; 880 check_move_unevictable_pages(&pvec); 881 pagevec_release(&pvec); 882 cond_resched(); 883 } 884 } 885 886 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 887 { 888 struct folio *folio; 889 struct page *page; 890 891 /* 892 * At first avoid shmem_getpage(,,,SGP_READ): that fails 893 * beyond i_size, and reports fallocated pages as holes. 894 */ 895 folio = __filemap_get_folio(inode->i_mapping, index, 896 FGP_ENTRY | FGP_LOCK, 0); 897 if (!xa_is_value(folio)) 898 return folio; 899 /* 900 * But read a page back from swap if any of it is within i_size 901 * (although in some cases this is just a waste of time). 902 */ 903 page = NULL; 904 shmem_getpage(inode, index, &page, SGP_READ); 905 return page ? page_folio(page) : NULL; 906 } 907 908 /* 909 * Remove range of pages and swap entries from page cache, and free them. 910 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 911 */ 912 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 913 bool unfalloc) 914 { 915 struct address_space *mapping = inode->i_mapping; 916 struct shmem_inode_info *info = SHMEM_I(inode); 917 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 918 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 919 struct folio_batch fbatch; 920 pgoff_t indices[PAGEVEC_SIZE]; 921 struct folio *folio; 922 bool same_folio; 923 long nr_swaps_freed = 0; 924 pgoff_t index; 925 int i; 926 927 if (lend == -1) 928 end = -1; /* unsigned, so actually very big */ 929 930 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 931 info->fallocend = start; 932 933 folio_batch_init(&fbatch); 934 index = start; 935 while (index < end && find_lock_entries(mapping, index, end - 1, 936 &fbatch, indices)) { 937 for (i = 0; i < folio_batch_count(&fbatch); i++) { 938 folio = fbatch.folios[i]; 939 940 index = indices[i]; 941 942 if (xa_is_value(folio)) { 943 if (unfalloc) 944 continue; 945 nr_swaps_freed += !shmem_free_swap(mapping, 946 index, folio); 947 continue; 948 } 949 index += folio_nr_pages(folio) - 1; 950 951 if (!unfalloc || !folio_test_uptodate(folio)) 952 truncate_inode_folio(mapping, folio); 953 folio_unlock(folio); 954 } 955 folio_batch_remove_exceptionals(&fbatch); 956 folio_batch_release(&fbatch); 957 cond_resched(); 958 index++; 959 } 960 961 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 962 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 963 if (folio) { 964 same_folio = lend < folio_pos(folio) + folio_size(folio); 965 folio_mark_dirty(folio); 966 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 967 start = folio->index + folio_nr_pages(folio); 968 if (same_folio) 969 end = folio->index; 970 } 971 folio_unlock(folio); 972 folio_put(folio); 973 folio = NULL; 974 } 975 976 if (!same_folio) 977 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 978 if (folio) { 979 folio_mark_dirty(folio); 980 if (!truncate_inode_partial_folio(folio, lstart, lend)) 981 end = folio->index; 982 folio_unlock(folio); 983 folio_put(folio); 984 } 985 986 index = start; 987 while (index < end) { 988 cond_resched(); 989 990 if (!find_get_entries(mapping, index, end - 1, &fbatch, 991 indices)) { 992 /* If all gone or hole-punch or unfalloc, we're done */ 993 if (index == start || end != -1) 994 break; 995 /* But if truncating, restart to make sure all gone */ 996 index = start; 997 continue; 998 } 999 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1000 folio = fbatch.folios[i]; 1001 1002 index = indices[i]; 1003 if (xa_is_value(folio)) { 1004 if (unfalloc) 1005 continue; 1006 if (shmem_free_swap(mapping, index, folio)) { 1007 /* Swap was replaced by page: retry */ 1008 index--; 1009 break; 1010 } 1011 nr_swaps_freed++; 1012 continue; 1013 } 1014 1015 folio_lock(folio); 1016 1017 if (!unfalloc || !folio_test_uptodate(folio)) { 1018 if (folio_mapping(folio) != mapping) { 1019 /* Page was replaced by swap: retry */ 1020 folio_unlock(folio); 1021 index--; 1022 break; 1023 } 1024 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1025 folio); 1026 truncate_inode_folio(mapping, folio); 1027 } 1028 index = folio->index + folio_nr_pages(folio) - 1; 1029 folio_unlock(folio); 1030 } 1031 folio_batch_remove_exceptionals(&fbatch); 1032 folio_batch_release(&fbatch); 1033 index++; 1034 } 1035 1036 spin_lock_irq(&info->lock); 1037 info->swapped -= nr_swaps_freed; 1038 shmem_recalc_inode(inode); 1039 spin_unlock_irq(&info->lock); 1040 } 1041 1042 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1043 { 1044 shmem_undo_range(inode, lstart, lend, false); 1045 inode->i_ctime = inode->i_mtime = current_time(inode); 1046 } 1047 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1048 1049 static int shmem_getattr(struct user_namespace *mnt_userns, 1050 const struct path *path, struct kstat *stat, 1051 u32 request_mask, unsigned int query_flags) 1052 { 1053 struct inode *inode = path->dentry->d_inode; 1054 struct shmem_inode_info *info = SHMEM_I(inode); 1055 1056 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1057 spin_lock_irq(&info->lock); 1058 shmem_recalc_inode(inode); 1059 spin_unlock_irq(&info->lock); 1060 } 1061 generic_fillattr(&init_user_ns, inode, stat); 1062 1063 if (shmem_is_huge(NULL, inode, 0)) 1064 stat->blksize = HPAGE_PMD_SIZE; 1065 1066 if (request_mask & STATX_BTIME) { 1067 stat->result_mask |= STATX_BTIME; 1068 stat->btime.tv_sec = info->i_crtime.tv_sec; 1069 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1070 } 1071 1072 return 0; 1073 } 1074 1075 static int shmem_setattr(struct user_namespace *mnt_userns, 1076 struct dentry *dentry, struct iattr *attr) 1077 { 1078 struct inode *inode = d_inode(dentry); 1079 struct shmem_inode_info *info = SHMEM_I(inode); 1080 int error; 1081 1082 error = setattr_prepare(&init_user_ns, dentry, attr); 1083 if (error) 1084 return error; 1085 1086 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1087 loff_t oldsize = inode->i_size; 1088 loff_t newsize = attr->ia_size; 1089 1090 /* protected by i_rwsem */ 1091 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1092 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1093 return -EPERM; 1094 1095 if (newsize != oldsize) { 1096 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1097 oldsize, newsize); 1098 if (error) 1099 return error; 1100 i_size_write(inode, newsize); 1101 inode->i_ctime = inode->i_mtime = current_time(inode); 1102 } 1103 if (newsize <= oldsize) { 1104 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1105 if (oldsize > holebegin) 1106 unmap_mapping_range(inode->i_mapping, 1107 holebegin, 0, 1); 1108 if (info->alloced) 1109 shmem_truncate_range(inode, 1110 newsize, (loff_t)-1); 1111 /* unmap again to remove racily COWed private pages */ 1112 if (oldsize > holebegin) 1113 unmap_mapping_range(inode->i_mapping, 1114 holebegin, 0, 1); 1115 } 1116 } 1117 1118 setattr_copy(&init_user_ns, inode, attr); 1119 if (attr->ia_valid & ATTR_MODE) 1120 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode); 1121 return error; 1122 } 1123 1124 static void shmem_evict_inode(struct inode *inode) 1125 { 1126 struct shmem_inode_info *info = SHMEM_I(inode); 1127 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1128 1129 if (shmem_mapping(inode->i_mapping)) { 1130 shmem_unacct_size(info->flags, inode->i_size); 1131 inode->i_size = 0; 1132 shmem_truncate_range(inode, 0, (loff_t)-1); 1133 if (!list_empty(&info->shrinklist)) { 1134 spin_lock(&sbinfo->shrinklist_lock); 1135 if (!list_empty(&info->shrinklist)) { 1136 list_del_init(&info->shrinklist); 1137 sbinfo->shrinklist_len--; 1138 } 1139 spin_unlock(&sbinfo->shrinklist_lock); 1140 } 1141 while (!list_empty(&info->swaplist)) { 1142 /* Wait while shmem_unuse() is scanning this inode... */ 1143 wait_var_event(&info->stop_eviction, 1144 !atomic_read(&info->stop_eviction)); 1145 mutex_lock(&shmem_swaplist_mutex); 1146 /* ...but beware of the race if we peeked too early */ 1147 if (!atomic_read(&info->stop_eviction)) 1148 list_del_init(&info->swaplist); 1149 mutex_unlock(&shmem_swaplist_mutex); 1150 } 1151 } 1152 1153 simple_xattrs_free(&info->xattrs); 1154 WARN_ON(inode->i_blocks); 1155 shmem_free_inode(inode->i_sb); 1156 clear_inode(inode); 1157 } 1158 1159 static int shmem_find_swap_entries(struct address_space *mapping, 1160 pgoff_t start, unsigned int nr_entries, 1161 struct page **entries, pgoff_t *indices, 1162 unsigned int type) 1163 { 1164 XA_STATE(xas, &mapping->i_pages, start); 1165 struct page *page; 1166 swp_entry_t entry; 1167 unsigned int ret = 0; 1168 1169 if (!nr_entries) 1170 return 0; 1171 1172 rcu_read_lock(); 1173 xas_for_each(&xas, page, ULONG_MAX) { 1174 if (xas_retry(&xas, page)) 1175 continue; 1176 1177 if (!xa_is_value(page)) 1178 continue; 1179 1180 entry = radix_to_swp_entry(page); 1181 if (swp_type(entry) != type) 1182 continue; 1183 1184 indices[ret] = xas.xa_index; 1185 entries[ret] = page; 1186 1187 if (need_resched()) { 1188 xas_pause(&xas); 1189 cond_resched_rcu(); 1190 } 1191 if (++ret == nr_entries) 1192 break; 1193 } 1194 rcu_read_unlock(); 1195 1196 return ret; 1197 } 1198 1199 /* 1200 * Move the swapped pages for an inode to page cache. Returns the count 1201 * of pages swapped in, or the error in case of failure. 1202 */ 1203 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec, 1204 pgoff_t *indices) 1205 { 1206 int i = 0; 1207 int ret = 0; 1208 int error = 0; 1209 struct address_space *mapping = inode->i_mapping; 1210 1211 for (i = 0; i < pvec.nr; i++) { 1212 struct page *page = pvec.pages[i]; 1213 1214 if (!xa_is_value(page)) 1215 continue; 1216 error = shmem_swapin_page(inode, indices[i], 1217 &page, SGP_CACHE, 1218 mapping_gfp_mask(mapping), 1219 NULL, NULL); 1220 if (error == 0) { 1221 unlock_page(page); 1222 put_page(page); 1223 ret++; 1224 } 1225 if (error == -ENOMEM) 1226 break; 1227 error = 0; 1228 } 1229 return error ? error : ret; 1230 } 1231 1232 /* 1233 * If swap found in inode, free it and move page from swapcache to filecache. 1234 */ 1235 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1236 { 1237 struct address_space *mapping = inode->i_mapping; 1238 pgoff_t start = 0; 1239 struct pagevec pvec; 1240 pgoff_t indices[PAGEVEC_SIZE]; 1241 int ret = 0; 1242 1243 pagevec_init(&pvec); 1244 do { 1245 unsigned int nr_entries = PAGEVEC_SIZE; 1246 1247 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries, 1248 pvec.pages, indices, type); 1249 if (pvec.nr == 0) { 1250 ret = 0; 1251 break; 1252 } 1253 1254 ret = shmem_unuse_swap_entries(inode, pvec, indices); 1255 if (ret < 0) 1256 break; 1257 1258 start = indices[pvec.nr - 1]; 1259 } while (true); 1260 1261 return ret; 1262 } 1263 1264 /* 1265 * Read all the shared memory data that resides in the swap 1266 * device 'type' back into memory, so the swap device can be 1267 * unused. 1268 */ 1269 int shmem_unuse(unsigned int type) 1270 { 1271 struct shmem_inode_info *info, *next; 1272 int error = 0; 1273 1274 if (list_empty(&shmem_swaplist)) 1275 return 0; 1276 1277 mutex_lock(&shmem_swaplist_mutex); 1278 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1279 if (!info->swapped) { 1280 list_del_init(&info->swaplist); 1281 continue; 1282 } 1283 /* 1284 * Drop the swaplist mutex while searching the inode for swap; 1285 * but before doing so, make sure shmem_evict_inode() will not 1286 * remove placeholder inode from swaplist, nor let it be freed 1287 * (igrab() would protect from unlink, but not from unmount). 1288 */ 1289 atomic_inc(&info->stop_eviction); 1290 mutex_unlock(&shmem_swaplist_mutex); 1291 1292 error = shmem_unuse_inode(&info->vfs_inode, type); 1293 cond_resched(); 1294 1295 mutex_lock(&shmem_swaplist_mutex); 1296 next = list_next_entry(info, swaplist); 1297 if (!info->swapped) 1298 list_del_init(&info->swaplist); 1299 if (atomic_dec_and_test(&info->stop_eviction)) 1300 wake_up_var(&info->stop_eviction); 1301 if (error) 1302 break; 1303 } 1304 mutex_unlock(&shmem_swaplist_mutex); 1305 1306 return error; 1307 } 1308 1309 /* 1310 * Move the page from the page cache to the swap cache. 1311 */ 1312 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1313 { 1314 struct shmem_inode_info *info; 1315 struct address_space *mapping; 1316 struct inode *inode; 1317 swp_entry_t swap; 1318 pgoff_t index; 1319 1320 /* 1321 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1322 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1323 * and its shmem_writeback() needs them to be split when swapping. 1324 */ 1325 if (PageTransCompound(page)) { 1326 /* Ensure the subpages are still dirty */ 1327 SetPageDirty(page); 1328 if (split_huge_page(page) < 0) 1329 goto redirty; 1330 ClearPageDirty(page); 1331 } 1332 1333 BUG_ON(!PageLocked(page)); 1334 mapping = page->mapping; 1335 index = page->index; 1336 inode = mapping->host; 1337 info = SHMEM_I(inode); 1338 if (info->flags & VM_LOCKED) 1339 goto redirty; 1340 if (!total_swap_pages) 1341 goto redirty; 1342 1343 /* 1344 * Our capabilities prevent regular writeback or sync from ever calling 1345 * shmem_writepage; but a stacking filesystem might use ->writepage of 1346 * its underlying filesystem, in which case tmpfs should write out to 1347 * swap only in response to memory pressure, and not for the writeback 1348 * threads or sync. 1349 */ 1350 if (!wbc->for_reclaim) { 1351 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1352 goto redirty; 1353 } 1354 1355 /* 1356 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1357 * value into swapfile.c, the only way we can correctly account for a 1358 * fallocated page arriving here is now to initialize it and write it. 1359 * 1360 * That's okay for a page already fallocated earlier, but if we have 1361 * not yet completed the fallocation, then (a) we want to keep track 1362 * of this page in case we have to undo it, and (b) it may not be a 1363 * good idea to continue anyway, once we're pushing into swap. So 1364 * reactivate the page, and let shmem_fallocate() quit when too many. 1365 */ 1366 if (!PageUptodate(page)) { 1367 if (inode->i_private) { 1368 struct shmem_falloc *shmem_falloc; 1369 spin_lock(&inode->i_lock); 1370 shmem_falloc = inode->i_private; 1371 if (shmem_falloc && 1372 !shmem_falloc->waitq && 1373 index >= shmem_falloc->start && 1374 index < shmem_falloc->next) 1375 shmem_falloc->nr_unswapped++; 1376 else 1377 shmem_falloc = NULL; 1378 spin_unlock(&inode->i_lock); 1379 if (shmem_falloc) 1380 goto redirty; 1381 } 1382 clear_highpage(page); 1383 flush_dcache_page(page); 1384 SetPageUptodate(page); 1385 } 1386 1387 swap = get_swap_page(page); 1388 if (!swap.val) 1389 goto redirty; 1390 1391 /* 1392 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1393 * if it's not already there. Do it now before the page is 1394 * moved to swap cache, when its pagelock no longer protects 1395 * the inode from eviction. But don't unlock the mutex until 1396 * we've incremented swapped, because shmem_unuse_inode() will 1397 * prune a !swapped inode from the swaplist under this mutex. 1398 */ 1399 mutex_lock(&shmem_swaplist_mutex); 1400 if (list_empty(&info->swaplist)) 1401 list_add(&info->swaplist, &shmem_swaplist); 1402 1403 if (add_to_swap_cache(page, swap, 1404 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1405 NULL) == 0) { 1406 spin_lock_irq(&info->lock); 1407 shmem_recalc_inode(inode); 1408 info->swapped++; 1409 spin_unlock_irq(&info->lock); 1410 1411 swap_shmem_alloc(swap); 1412 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1413 1414 mutex_unlock(&shmem_swaplist_mutex); 1415 BUG_ON(page_mapped(page)); 1416 swap_writepage(page, wbc); 1417 return 0; 1418 } 1419 1420 mutex_unlock(&shmem_swaplist_mutex); 1421 put_swap_page(page, swap); 1422 redirty: 1423 set_page_dirty(page); 1424 if (wbc->for_reclaim) 1425 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1426 unlock_page(page); 1427 return 0; 1428 } 1429 1430 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1431 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1432 { 1433 char buffer[64]; 1434 1435 if (!mpol || mpol->mode == MPOL_DEFAULT) 1436 return; /* show nothing */ 1437 1438 mpol_to_str(buffer, sizeof(buffer), mpol); 1439 1440 seq_printf(seq, ",mpol=%s", buffer); 1441 } 1442 1443 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1444 { 1445 struct mempolicy *mpol = NULL; 1446 if (sbinfo->mpol) { 1447 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1448 mpol = sbinfo->mpol; 1449 mpol_get(mpol); 1450 raw_spin_unlock(&sbinfo->stat_lock); 1451 } 1452 return mpol; 1453 } 1454 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1455 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1456 { 1457 } 1458 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1459 { 1460 return NULL; 1461 } 1462 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1463 #ifndef CONFIG_NUMA 1464 #define vm_policy vm_private_data 1465 #endif 1466 1467 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1468 struct shmem_inode_info *info, pgoff_t index) 1469 { 1470 /* Create a pseudo vma that just contains the policy */ 1471 vma_init(vma, NULL); 1472 /* Bias interleave by inode number to distribute better across nodes */ 1473 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1474 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1475 } 1476 1477 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1478 { 1479 /* Drop reference taken by mpol_shared_policy_lookup() */ 1480 mpol_cond_put(vma->vm_policy); 1481 } 1482 1483 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1484 struct shmem_inode_info *info, pgoff_t index) 1485 { 1486 struct vm_area_struct pvma; 1487 struct page *page; 1488 struct vm_fault vmf = { 1489 .vma = &pvma, 1490 }; 1491 1492 shmem_pseudo_vma_init(&pvma, info, index); 1493 page = swap_cluster_readahead(swap, gfp, &vmf); 1494 shmem_pseudo_vma_destroy(&pvma); 1495 1496 return page; 1497 } 1498 1499 /* 1500 * Make sure huge_gfp is always more limited than limit_gfp. 1501 * Some of the flags set permissions, while others set limitations. 1502 */ 1503 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1504 { 1505 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1506 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1507 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1508 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1509 1510 /* Allow allocations only from the originally specified zones. */ 1511 result |= zoneflags; 1512 1513 /* 1514 * Minimize the result gfp by taking the union with the deny flags, 1515 * and the intersection of the allow flags. 1516 */ 1517 result |= (limit_gfp & denyflags); 1518 result |= (huge_gfp & limit_gfp) & allowflags; 1519 1520 return result; 1521 } 1522 1523 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1524 struct shmem_inode_info *info, pgoff_t index) 1525 { 1526 struct vm_area_struct pvma; 1527 struct address_space *mapping = info->vfs_inode.i_mapping; 1528 pgoff_t hindex; 1529 struct page *page; 1530 1531 hindex = round_down(index, HPAGE_PMD_NR); 1532 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1533 XA_PRESENT)) 1534 return NULL; 1535 1536 shmem_pseudo_vma_init(&pvma, info, hindex); 1537 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, true); 1538 shmem_pseudo_vma_destroy(&pvma); 1539 if (page) 1540 prep_transhuge_page(page); 1541 else 1542 count_vm_event(THP_FILE_FALLBACK); 1543 return page; 1544 } 1545 1546 static struct page *shmem_alloc_page(gfp_t gfp, 1547 struct shmem_inode_info *info, pgoff_t index) 1548 { 1549 struct vm_area_struct pvma; 1550 struct page *page; 1551 1552 shmem_pseudo_vma_init(&pvma, info, index); 1553 page = alloc_page_vma(gfp, &pvma, 0); 1554 shmem_pseudo_vma_destroy(&pvma); 1555 1556 return page; 1557 } 1558 1559 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1560 struct inode *inode, 1561 pgoff_t index, bool huge) 1562 { 1563 struct shmem_inode_info *info = SHMEM_I(inode); 1564 struct page *page; 1565 int nr; 1566 int err = -ENOSPC; 1567 1568 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1569 huge = false; 1570 nr = huge ? HPAGE_PMD_NR : 1; 1571 1572 if (!shmem_inode_acct_block(inode, nr)) 1573 goto failed; 1574 1575 if (huge) 1576 page = shmem_alloc_hugepage(gfp, info, index); 1577 else 1578 page = shmem_alloc_page(gfp, info, index); 1579 if (page) { 1580 __SetPageLocked(page); 1581 __SetPageSwapBacked(page); 1582 return page; 1583 } 1584 1585 err = -ENOMEM; 1586 shmem_inode_unacct_blocks(inode, nr); 1587 failed: 1588 return ERR_PTR(err); 1589 } 1590 1591 /* 1592 * When a page is moved from swapcache to shmem filecache (either by the 1593 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1594 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1595 * ignorance of the mapping it belongs to. If that mapping has special 1596 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1597 * we may need to copy to a suitable page before moving to filecache. 1598 * 1599 * In a future release, this may well be extended to respect cpuset and 1600 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1601 * but for now it is a simple matter of zone. 1602 */ 1603 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1604 { 1605 return page_zonenum(page) > gfp_zone(gfp); 1606 } 1607 1608 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1609 struct shmem_inode_info *info, pgoff_t index) 1610 { 1611 struct page *oldpage, *newpage; 1612 struct folio *old, *new; 1613 struct address_space *swap_mapping; 1614 swp_entry_t entry; 1615 pgoff_t swap_index; 1616 int error; 1617 1618 oldpage = *pagep; 1619 entry.val = page_private(oldpage); 1620 swap_index = swp_offset(entry); 1621 swap_mapping = page_mapping(oldpage); 1622 1623 /* 1624 * We have arrived here because our zones are constrained, so don't 1625 * limit chance of success by further cpuset and node constraints. 1626 */ 1627 gfp &= ~GFP_CONSTRAINT_MASK; 1628 newpage = shmem_alloc_page(gfp, info, index); 1629 if (!newpage) 1630 return -ENOMEM; 1631 1632 get_page(newpage); 1633 copy_highpage(newpage, oldpage); 1634 flush_dcache_page(newpage); 1635 1636 __SetPageLocked(newpage); 1637 __SetPageSwapBacked(newpage); 1638 SetPageUptodate(newpage); 1639 set_page_private(newpage, entry.val); 1640 SetPageSwapCache(newpage); 1641 1642 /* 1643 * Our caller will very soon move newpage out of swapcache, but it's 1644 * a nice clean interface for us to replace oldpage by newpage there. 1645 */ 1646 xa_lock_irq(&swap_mapping->i_pages); 1647 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); 1648 if (!error) { 1649 old = page_folio(oldpage); 1650 new = page_folio(newpage); 1651 mem_cgroup_migrate(old, new); 1652 __inc_lruvec_page_state(newpage, NR_FILE_PAGES); 1653 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES); 1654 } 1655 xa_unlock_irq(&swap_mapping->i_pages); 1656 1657 if (unlikely(error)) { 1658 /* 1659 * Is this possible? I think not, now that our callers check 1660 * both PageSwapCache and page_private after getting page lock; 1661 * but be defensive. Reverse old to newpage for clear and free. 1662 */ 1663 oldpage = newpage; 1664 } else { 1665 lru_cache_add(newpage); 1666 *pagep = newpage; 1667 } 1668 1669 ClearPageSwapCache(oldpage); 1670 set_page_private(oldpage, 0); 1671 1672 unlock_page(oldpage); 1673 put_page(oldpage); 1674 put_page(oldpage); 1675 return error; 1676 } 1677 1678 /* 1679 * Swap in the page pointed to by *pagep. 1680 * Caller has to make sure that *pagep contains a valid swapped page. 1681 * Returns 0 and the page in pagep if success. On failure, returns the 1682 * error code and NULL in *pagep. 1683 */ 1684 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 1685 struct page **pagep, enum sgp_type sgp, 1686 gfp_t gfp, struct vm_area_struct *vma, 1687 vm_fault_t *fault_type) 1688 { 1689 struct address_space *mapping = inode->i_mapping; 1690 struct shmem_inode_info *info = SHMEM_I(inode); 1691 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1692 struct page *page; 1693 swp_entry_t swap; 1694 int error; 1695 1696 VM_BUG_ON(!*pagep || !xa_is_value(*pagep)); 1697 swap = radix_to_swp_entry(*pagep); 1698 *pagep = NULL; 1699 1700 /* Look it up and read it in.. */ 1701 page = lookup_swap_cache(swap, NULL, 0); 1702 if (!page) { 1703 /* Or update major stats only when swapin succeeds?? */ 1704 if (fault_type) { 1705 *fault_type |= VM_FAULT_MAJOR; 1706 count_vm_event(PGMAJFAULT); 1707 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1708 } 1709 /* Here we actually start the io */ 1710 page = shmem_swapin(swap, gfp, info, index); 1711 if (!page) { 1712 error = -ENOMEM; 1713 goto failed; 1714 } 1715 } 1716 1717 /* We have to do this with page locked to prevent races */ 1718 lock_page(page); 1719 if (!PageSwapCache(page) || page_private(page) != swap.val || 1720 !shmem_confirm_swap(mapping, index, swap)) { 1721 error = -EEXIST; 1722 goto unlock; 1723 } 1724 if (!PageUptodate(page)) { 1725 error = -EIO; 1726 goto failed; 1727 } 1728 wait_on_page_writeback(page); 1729 1730 /* 1731 * Some architectures may have to restore extra metadata to the 1732 * physical page after reading from swap. 1733 */ 1734 arch_swap_restore(swap, page); 1735 1736 if (shmem_should_replace_page(page, gfp)) { 1737 error = shmem_replace_page(&page, gfp, info, index); 1738 if (error) 1739 goto failed; 1740 } 1741 1742 error = shmem_add_to_page_cache(page, mapping, index, 1743 swp_to_radix_entry(swap), gfp, 1744 charge_mm); 1745 if (error) 1746 goto failed; 1747 1748 spin_lock_irq(&info->lock); 1749 info->swapped--; 1750 shmem_recalc_inode(inode); 1751 spin_unlock_irq(&info->lock); 1752 1753 if (sgp == SGP_WRITE) 1754 mark_page_accessed(page); 1755 1756 delete_from_swap_cache(page); 1757 set_page_dirty(page); 1758 swap_free(swap); 1759 1760 *pagep = page; 1761 return 0; 1762 failed: 1763 if (!shmem_confirm_swap(mapping, index, swap)) 1764 error = -EEXIST; 1765 unlock: 1766 if (page) { 1767 unlock_page(page); 1768 put_page(page); 1769 } 1770 1771 return error; 1772 } 1773 1774 /* 1775 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1776 * 1777 * If we allocate a new one we do not mark it dirty. That's up to the 1778 * vm. If we swap it in we mark it dirty since we also free the swap 1779 * entry since a page cannot live in both the swap and page cache. 1780 * 1781 * vma, vmf, and fault_type are only supplied by shmem_fault: 1782 * otherwise they are NULL. 1783 */ 1784 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1785 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1786 struct vm_area_struct *vma, struct vm_fault *vmf, 1787 vm_fault_t *fault_type) 1788 { 1789 struct address_space *mapping = inode->i_mapping; 1790 struct shmem_inode_info *info = SHMEM_I(inode); 1791 struct shmem_sb_info *sbinfo; 1792 struct mm_struct *charge_mm; 1793 struct page *page; 1794 pgoff_t hindex = index; 1795 gfp_t huge_gfp; 1796 int error; 1797 int once = 0; 1798 int alloced = 0; 1799 1800 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1801 return -EFBIG; 1802 repeat: 1803 if (sgp <= SGP_CACHE && 1804 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1805 return -EINVAL; 1806 } 1807 1808 sbinfo = SHMEM_SB(inode->i_sb); 1809 charge_mm = vma ? vma->vm_mm : NULL; 1810 1811 page = pagecache_get_page(mapping, index, 1812 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0); 1813 1814 if (page && vma && userfaultfd_minor(vma)) { 1815 if (!xa_is_value(page)) { 1816 unlock_page(page); 1817 put_page(page); 1818 } 1819 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1820 return 0; 1821 } 1822 1823 if (xa_is_value(page)) { 1824 error = shmem_swapin_page(inode, index, &page, 1825 sgp, gfp, vma, fault_type); 1826 if (error == -EEXIST) 1827 goto repeat; 1828 1829 *pagep = page; 1830 return error; 1831 } 1832 1833 if (page) { 1834 hindex = page->index; 1835 if (sgp == SGP_WRITE) 1836 mark_page_accessed(page); 1837 if (PageUptodate(page)) 1838 goto out; 1839 /* fallocated page */ 1840 if (sgp != SGP_READ) 1841 goto clear; 1842 unlock_page(page); 1843 put_page(page); 1844 } 1845 1846 /* 1847 * SGP_READ: succeed on hole, with NULL page, letting caller zero. 1848 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail. 1849 */ 1850 *pagep = NULL; 1851 if (sgp == SGP_READ) 1852 return 0; 1853 if (sgp == SGP_NOALLOC) 1854 return -ENOENT; 1855 1856 /* 1857 * Fast cache lookup and swap lookup did not find it: allocate. 1858 */ 1859 1860 if (vma && userfaultfd_missing(vma)) { 1861 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1862 return 0; 1863 } 1864 1865 if (!shmem_is_huge(vma, inode, index)) 1866 goto alloc_nohuge; 1867 1868 huge_gfp = vma_thp_gfp_mask(vma); 1869 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 1870 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true); 1871 if (IS_ERR(page)) { 1872 alloc_nohuge: 1873 page = shmem_alloc_and_acct_page(gfp, inode, 1874 index, false); 1875 } 1876 if (IS_ERR(page)) { 1877 int retry = 5; 1878 1879 error = PTR_ERR(page); 1880 page = NULL; 1881 if (error != -ENOSPC) 1882 goto unlock; 1883 /* 1884 * Try to reclaim some space by splitting a huge page 1885 * beyond i_size on the filesystem. 1886 */ 1887 while (retry--) { 1888 int ret; 1889 1890 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1891 if (ret == SHRINK_STOP) 1892 break; 1893 if (ret) 1894 goto alloc_nohuge; 1895 } 1896 goto unlock; 1897 } 1898 1899 if (PageTransHuge(page)) 1900 hindex = round_down(index, HPAGE_PMD_NR); 1901 else 1902 hindex = index; 1903 1904 if (sgp == SGP_WRITE) 1905 __SetPageReferenced(page); 1906 1907 error = shmem_add_to_page_cache(page, mapping, hindex, 1908 NULL, gfp & GFP_RECLAIM_MASK, 1909 charge_mm); 1910 if (error) 1911 goto unacct; 1912 lru_cache_add(page); 1913 1914 spin_lock_irq(&info->lock); 1915 info->alloced += compound_nr(page); 1916 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1917 shmem_recalc_inode(inode); 1918 spin_unlock_irq(&info->lock); 1919 alloced = true; 1920 1921 if (PageTransHuge(page) && 1922 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1923 hindex + HPAGE_PMD_NR - 1) { 1924 /* 1925 * Part of the huge page is beyond i_size: subject 1926 * to shrink under memory pressure. 1927 */ 1928 spin_lock(&sbinfo->shrinklist_lock); 1929 /* 1930 * _careful to defend against unlocked access to 1931 * ->shrink_list in shmem_unused_huge_shrink() 1932 */ 1933 if (list_empty_careful(&info->shrinklist)) { 1934 list_add_tail(&info->shrinklist, 1935 &sbinfo->shrinklist); 1936 sbinfo->shrinklist_len++; 1937 } 1938 spin_unlock(&sbinfo->shrinklist_lock); 1939 } 1940 1941 /* 1942 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1943 */ 1944 if (sgp == SGP_FALLOC) 1945 sgp = SGP_WRITE; 1946 clear: 1947 /* 1948 * Let SGP_WRITE caller clear ends if write does not fill page; 1949 * but SGP_FALLOC on a page fallocated earlier must initialize 1950 * it now, lest undo on failure cancel our earlier guarantee. 1951 */ 1952 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1953 int i; 1954 1955 for (i = 0; i < compound_nr(page); i++) { 1956 clear_highpage(page + i); 1957 flush_dcache_page(page + i); 1958 } 1959 SetPageUptodate(page); 1960 } 1961 1962 /* Perhaps the file has been truncated since we checked */ 1963 if (sgp <= SGP_CACHE && 1964 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1965 if (alloced) { 1966 ClearPageDirty(page); 1967 delete_from_page_cache(page); 1968 spin_lock_irq(&info->lock); 1969 shmem_recalc_inode(inode); 1970 spin_unlock_irq(&info->lock); 1971 } 1972 error = -EINVAL; 1973 goto unlock; 1974 } 1975 out: 1976 *pagep = page + index - hindex; 1977 return 0; 1978 1979 /* 1980 * Error recovery. 1981 */ 1982 unacct: 1983 shmem_inode_unacct_blocks(inode, compound_nr(page)); 1984 1985 if (PageTransHuge(page)) { 1986 unlock_page(page); 1987 put_page(page); 1988 goto alloc_nohuge; 1989 } 1990 unlock: 1991 if (page) { 1992 unlock_page(page); 1993 put_page(page); 1994 } 1995 if (error == -ENOSPC && !once++) { 1996 spin_lock_irq(&info->lock); 1997 shmem_recalc_inode(inode); 1998 spin_unlock_irq(&info->lock); 1999 goto repeat; 2000 } 2001 if (error == -EEXIST) 2002 goto repeat; 2003 return error; 2004 } 2005 2006 /* 2007 * This is like autoremove_wake_function, but it removes the wait queue 2008 * entry unconditionally - even if something else had already woken the 2009 * target. 2010 */ 2011 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2012 { 2013 int ret = default_wake_function(wait, mode, sync, key); 2014 list_del_init(&wait->entry); 2015 return ret; 2016 } 2017 2018 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2019 { 2020 struct vm_area_struct *vma = vmf->vma; 2021 struct inode *inode = file_inode(vma->vm_file); 2022 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2023 int err; 2024 vm_fault_t ret = VM_FAULT_LOCKED; 2025 2026 /* 2027 * Trinity finds that probing a hole which tmpfs is punching can 2028 * prevent the hole-punch from ever completing: which in turn 2029 * locks writers out with its hold on i_rwsem. So refrain from 2030 * faulting pages into the hole while it's being punched. Although 2031 * shmem_undo_range() does remove the additions, it may be unable to 2032 * keep up, as each new page needs its own unmap_mapping_range() call, 2033 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2034 * 2035 * It does not matter if we sometimes reach this check just before the 2036 * hole-punch begins, so that one fault then races with the punch: 2037 * we just need to make racing faults a rare case. 2038 * 2039 * The implementation below would be much simpler if we just used a 2040 * standard mutex or completion: but we cannot take i_rwsem in fault, 2041 * and bloating every shmem inode for this unlikely case would be sad. 2042 */ 2043 if (unlikely(inode->i_private)) { 2044 struct shmem_falloc *shmem_falloc; 2045 2046 spin_lock(&inode->i_lock); 2047 shmem_falloc = inode->i_private; 2048 if (shmem_falloc && 2049 shmem_falloc->waitq && 2050 vmf->pgoff >= shmem_falloc->start && 2051 vmf->pgoff < shmem_falloc->next) { 2052 struct file *fpin; 2053 wait_queue_head_t *shmem_falloc_waitq; 2054 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2055 2056 ret = VM_FAULT_NOPAGE; 2057 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2058 if (fpin) 2059 ret = VM_FAULT_RETRY; 2060 2061 shmem_falloc_waitq = shmem_falloc->waitq; 2062 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2063 TASK_UNINTERRUPTIBLE); 2064 spin_unlock(&inode->i_lock); 2065 schedule(); 2066 2067 /* 2068 * shmem_falloc_waitq points into the shmem_fallocate() 2069 * stack of the hole-punching task: shmem_falloc_waitq 2070 * is usually invalid by the time we reach here, but 2071 * finish_wait() does not dereference it in that case; 2072 * though i_lock needed lest racing with wake_up_all(). 2073 */ 2074 spin_lock(&inode->i_lock); 2075 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2076 spin_unlock(&inode->i_lock); 2077 2078 if (fpin) 2079 fput(fpin); 2080 return ret; 2081 } 2082 spin_unlock(&inode->i_lock); 2083 } 2084 2085 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE, 2086 gfp, vma, vmf, &ret); 2087 if (err) 2088 return vmf_error(err); 2089 return ret; 2090 } 2091 2092 unsigned long shmem_get_unmapped_area(struct file *file, 2093 unsigned long uaddr, unsigned long len, 2094 unsigned long pgoff, unsigned long flags) 2095 { 2096 unsigned long (*get_area)(struct file *, 2097 unsigned long, unsigned long, unsigned long, unsigned long); 2098 unsigned long addr; 2099 unsigned long offset; 2100 unsigned long inflated_len; 2101 unsigned long inflated_addr; 2102 unsigned long inflated_offset; 2103 2104 if (len > TASK_SIZE) 2105 return -ENOMEM; 2106 2107 get_area = current->mm->get_unmapped_area; 2108 addr = get_area(file, uaddr, len, pgoff, flags); 2109 2110 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2111 return addr; 2112 if (IS_ERR_VALUE(addr)) 2113 return addr; 2114 if (addr & ~PAGE_MASK) 2115 return addr; 2116 if (addr > TASK_SIZE - len) 2117 return addr; 2118 2119 if (shmem_huge == SHMEM_HUGE_DENY) 2120 return addr; 2121 if (len < HPAGE_PMD_SIZE) 2122 return addr; 2123 if (flags & MAP_FIXED) 2124 return addr; 2125 /* 2126 * Our priority is to support MAP_SHARED mapped hugely; 2127 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2128 * But if caller specified an address hint and we allocated area there 2129 * successfully, respect that as before. 2130 */ 2131 if (uaddr == addr) 2132 return addr; 2133 2134 if (shmem_huge != SHMEM_HUGE_FORCE) { 2135 struct super_block *sb; 2136 2137 if (file) { 2138 VM_BUG_ON(file->f_op != &shmem_file_operations); 2139 sb = file_inode(file)->i_sb; 2140 } else { 2141 /* 2142 * Called directly from mm/mmap.c, or drivers/char/mem.c 2143 * for "/dev/zero", to create a shared anonymous object. 2144 */ 2145 if (IS_ERR(shm_mnt)) 2146 return addr; 2147 sb = shm_mnt->mnt_sb; 2148 } 2149 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2150 return addr; 2151 } 2152 2153 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2154 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2155 return addr; 2156 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2157 return addr; 2158 2159 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2160 if (inflated_len > TASK_SIZE) 2161 return addr; 2162 if (inflated_len < len) 2163 return addr; 2164 2165 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2166 if (IS_ERR_VALUE(inflated_addr)) 2167 return addr; 2168 if (inflated_addr & ~PAGE_MASK) 2169 return addr; 2170 2171 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2172 inflated_addr += offset - inflated_offset; 2173 if (inflated_offset > offset) 2174 inflated_addr += HPAGE_PMD_SIZE; 2175 2176 if (inflated_addr > TASK_SIZE - len) 2177 return addr; 2178 return inflated_addr; 2179 } 2180 2181 #ifdef CONFIG_NUMA 2182 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2183 { 2184 struct inode *inode = file_inode(vma->vm_file); 2185 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2186 } 2187 2188 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2189 unsigned long addr) 2190 { 2191 struct inode *inode = file_inode(vma->vm_file); 2192 pgoff_t index; 2193 2194 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2195 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2196 } 2197 #endif 2198 2199 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2200 { 2201 struct inode *inode = file_inode(file); 2202 struct shmem_inode_info *info = SHMEM_I(inode); 2203 int retval = -ENOMEM; 2204 2205 /* 2206 * What serializes the accesses to info->flags? 2207 * ipc_lock_object() when called from shmctl_do_lock(), 2208 * no serialization needed when called from shm_destroy(). 2209 */ 2210 if (lock && !(info->flags & VM_LOCKED)) { 2211 if (!user_shm_lock(inode->i_size, ucounts)) 2212 goto out_nomem; 2213 info->flags |= VM_LOCKED; 2214 mapping_set_unevictable(file->f_mapping); 2215 } 2216 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2217 user_shm_unlock(inode->i_size, ucounts); 2218 info->flags &= ~VM_LOCKED; 2219 mapping_clear_unevictable(file->f_mapping); 2220 } 2221 retval = 0; 2222 2223 out_nomem: 2224 return retval; 2225 } 2226 2227 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2228 { 2229 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2230 int ret; 2231 2232 ret = seal_check_future_write(info->seals, vma); 2233 if (ret) 2234 return ret; 2235 2236 /* arm64 - allow memory tagging on RAM-based files */ 2237 vma->vm_flags |= VM_MTE_ALLOWED; 2238 2239 file_accessed(file); 2240 vma->vm_ops = &shmem_vm_ops; 2241 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 2242 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2243 (vma->vm_end & HPAGE_PMD_MASK)) { 2244 khugepaged_enter(vma, vma->vm_flags); 2245 } 2246 return 0; 2247 } 2248 2249 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2250 umode_t mode, dev_t dev, unsigned long flags) 2251 { 2252 struct inode *inode; 2253 struct shmem_inode_info *info; 2254 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2255 ino_t ino; 2256 2257 if (shmem_reserve_inode(sb, &ino)) 2258 return NULL; 2259 2260 inode = new_inode(sb); 2261 if (inode) { 2262 inode->i_ino = ino; 2263 inode_init_owner(&init_user_ns, inode, dir, mode); 2264 inode->i_blocks = 0; 2265 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2266 inode->i_generation = prandom_u32(); 2267 info = SHMEM_I(inode); 2268 memset(info, 0, (char *)inode - (char *)info); 2269 spin_lock_init(&info->lock); 2270 atomic_set(&info->stop_eviction, 0); 2271 info->seals = F_SEAL_SEAL; 2272 info->flags = flags & VM_NORESERVE; 2273 info->i_crtime = inode->i_mtime; 2274 INIT_LIST_HEAD(&info->shrinklist); 2275 INIT_LIST_HEAD(&info->swaplist); 2276 simple_xattrs_init(&info->xattrs); 2277 cache_no_acl(inode); 2278 mapping_set_large_folios(inode->i_mapping); 2279 2280 switch (mode & S_IFMT) { 2281 default: 2282 inode->i_op = &shmem_special_inode_operations; 2283 init_special_inode(inode, mode, dev); 2284 break; 2285 case S_IFREG: 2286 inode->i_mapping->a_ops = &shmem_aops; 2287 inode->i_op = &shmem_inode_operations; 2288 inode->i_fop = &shmem_file_operations; 2289 mpol_shared_policy_init(&info->policy, 2290 shmem_get_sbmpol(sbinfo)); 2291 break; 2292 case S_IFDIR: 2293 inc_nlink(inode); 2294 /* Some things misbehave if size == 0 on a directory */ 2295 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2296 inode->i_op = &shmem_dir_inode_operations; 2297 inode->i_fop = &simple_dir_operations; 2298 break; 2299 case S_IFLNK: 2300 /* 2301 * Must not load anything in the rbtree, 2302 * mpol_free_shared_policy will not be called. 2303 */ 2304 mpol_shared_policy_init(&info->policy, NULL); 2305 break; 2306 } 2307 2308 lockdep_annotate_inode_mutex_key(inode); 2309 } else 2310 shmem_free_inode(sb); 2311 return inode; 2312 } 2313 2314 #ifdef CONFIG_USERFAULTFD 2315 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2316 pmd_t *dst_pmd, 2317 struct vm_area_struct *dst_vma, 2318 unsigned long dst_addr, 2319 unsigned long src_addr, 2320 bool zeropage, 2321 struct page **pagep) 2322 { 2323 struct inode *inode = file_inode(dst_vma->vm_file); 2324 struct shmem_inode_info *info = SHMEM_I(inode); 2325 struct address_space *mapping = inode->i_mapping; 2326 gfp_t gfp = mapping_gfp_mask(mapping); 2327 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2328 void *page_kaddr; 2329 struct page *page; 2330 int ret; 2331 pgoff_t max_off; 2332 2333 if (!shmem_inode_acct_block(inode, 1)) { 2334 /* 2335 * We may have got a page, returned -ENOENT triggering a retry, 2336 * and now we find ourselves with -ENOMEM. Release the page, to 2337 * avoid a BUG_ON in our caller. 2338 */ 2339 if (unlikely(*pagep)) { 2340 put_page(*pagep); 2341 *pagep = NULL; 2342 } 2343 return -ENOMEM; 2344 } 2345 2346 if (!*pagep) { 2347 ret = -ENOMEM; 2348 page = shmem_alloc_page(gfp, info, pgoff); 2349 if (!page) 2350 goto out_unacct_blocks; 2351 2352 if (!zeropage) { /* COPY */ 2353 page_kaddr = kmap_atomic(page); 2354 ret = copy_from_user(page_kaddr, 2355 (const void __user *)src_addr, 2356 PAGE_SIZE); 2357 kunmap_atomic(page_kaddr); 2358 2359 /* fallback to copy_from_user outside mmap_lock */ 2360 if (unlikely(ret)) { 2361 *pagep = page; 2362 ret = -ENOENT; 2363 /* don't free the page */ 2364 goto out_unacct_blocks; 2365 } 2366 } else { /* ZEROPAGE */ 2367 clear_highpage(page); 2368 } 2369 } else { 2370 page = *pagep; 2371 *pagep = NULL; 2372 } 2373 2374 VM_BUG_ON(PageLocked(page)); 2375 VM_BUG_ON(PageSwapBacked(page)); 2376 __SetPageLocked(page); 2377 __SetPageSwapBacked(page); 2378 __SetPageUptodate(page); 2379 2380 ret = -EFAULT; 2381 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2382 if (unlikely(pgoff >= max_off)) 2383 goto out_release; 2384 2385 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL, 2386 gfp & GFP_RECLAIM_MASK, dst_mm); 2387 if (ret) 2388 goto out_release; 2389 2390 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr, 2391 page, true, false); 2392 if (ret) 2393 goto out_delete_from_cache; 2394 2395 spin_lock_irq(&info->lock); 2396 info->alloced++; 2397 inode->i_blocks += BLOCKS_PER_PAGE; 2398 shmem_recalc_inode(inode); 2399 spin_unlock_irq(&info->lock); 2400 2401 unlock_page(page); 2402 return 0; 2403 out_delete_from_cache: 2404 delete_from_page_cache(page); 2405 out_release: 2406 unlock_page(page); 2407 put_page(page); 2408 out_unacct_blocks: 2409 shmem_inode_unacct_blocks(inode, 1); 2410 return ret; 2411 } 2412 #endif /* CONFIG_USERFAULTFD */ 2413 2414 #ifdef CONFIG_TMPFS 2415 static const struct inode_operations shmem_symlink_inode_operations; 2416 static const struct inode_operations shmem_short_symlink_operations; 2417 2418 #ifdef CONFIG_TMPFS_XATTR 2419 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2420 #else 2421 #define shmem_initxattrs NULL 2422 #endif 2423 2424 static int 2425 shmem_write_begin(struct file *file, struct address_space *mapping, 2426 loff_t pos, unsigned len, unsigned flags, 2427 struct page **pagep, void **fsdata) 2428 { 2429 struct inode *inode = mapping->host; 2430 struct shmem_inode_info *info = SHMEM_I(inode); 2431 pgoff_t index = pos >> PAGE_SHIFT; 2432 int ret = 0; 2433 2434 /* i_rwsem is held by caller */ 2435 if (unlikely(info->seals & (F_SEAL_GROW | 2436 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2437 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2438 return -EPERM; 2439 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2440 return -EPERM; 2441 } 2442 2443 ret = shmem_getpage(inode, index, pagep, SGP_WRITE); 2444 2445 if (ret) 2446 return ret; 2447 2448 if (PageHWPoison(*pagep)) { 2449 unlock_page(*pagep); 2450 put_page(*pagep); 2451 *pagep = NULL; 2452 return -EIO; 2453 } 2454 2455 return 0; 2456 } 2457 2458 static int 2459 shmem_write_end(struct file *file, struct address_space *mapping, 2460 loff_t pos, unsigned len, unsigned copied, 2461 struct page *page, void *fsdata) 2462 { 2463 struct inode *inode = mapping->host; 2464 2465 if (pos + copied > inode->i_size) 2466 i_size_write(inode, pos + copied); 2467 2468 if (!PageUptodate(page)) { 2469 struct page *head = compound_head(page); 2470 if (PageTransCompound(page)) { 2471 int i; 2472 2473 for (i = 0; i < HPAGE_PMD_NR; i++) { 2474 if (head + i == page) 2475 continue; 2476 clear_highpage(head + i); 2477 flush_dcache_page(head + i); 2478 } 2479 } 2480 if (copied < PAGE_SIZE) { 2481 unsigned from = pos & (PAGE_SIZE - 1); 2482 zero_user_segments(page, 0, from, 2483 from + copied, PAGE_SIZE); 2484 } 2485 SetPageUptodate(head); 2486 } 2487 set_page_dirty(page); 2488 unlock_page(page); 2489 put_page(page); 2490 2491 return copied; 2492 } 2493 2494 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2495 { 2496 struct file *file = iocb->ki_filp; 2497 struct inode *inode = file_inode(file); 2498 struct address_space *mapping = inode->i_mapping; 2499 pgoff_t index; 2500 unsigned long offset; 2501 enum sgp_type sgp = SGP_READ; 2502 int error = 0; 2503 ssize_t retval = 0; 2504 loff_t *ppos = &iocb->ki_pos; 2505 2506 /* 2507 * Might this read be for a stacking filesystem? Then when reading 2508 * holes of a sparse file, we actually need to allocate those pages, 2509 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2510 */ 2511 if (!iter_is_iovec(to)) 2512 sgp = SGP_CACHE; 2513 2514 index = *ppos >> PAGE_SHIFT; 2515 offset = *ppos & ~PAGE_MASK; 2516 2517 for (;;) { 2518 struct page *page = NULL; 2519 pgoff_t end_index; 2520 unsigned long nr, ret; 2521 loff_t i_size = i_size_read(inode); 2522 2523 end_index = i_size >> PAGE_SHIFT; 2524 if (index > end_index) 2525 break; 2526 if (index == end_index) { 2527 nr = i_size & ~PAGE_MASK; 2528 if (nr <= offset) 2529 break; 2530 } 2531 2532 error = shmem_getpage(inode, index, &page, sgp); 2533 if (error) { 2534 if (error == -EINVAL) 2535 error = 0; 2536 break; 2537 } 2538 if (page) { 2539 if (sgp == SGP_CACHE) 2540 set_page_dirty(page); 2541 unlock_page(page); 2542 2543 if (PageHWPoison(page)) { 2544 put_page(page); 2545 error = -EIO; 2546 break; 2547 } 2548 } 2549 2550 /* 2551 * We must evaluate after, since reads (unlike writes) 2552 * are called without i_rwsem protection against truncate 2553 */ 2554 nr = PAGE_SIZE; 2555 i_size = i_size_read(inode); 2556 end_index = i_size >> PAGE_SHIFT; 2557 if (index == end_index) { 2558 nr = i_size & ~PAGE_MASK; 2559 if (nr <= offset) { 2560 if (page) 2561 put_page(page); 2562 break; 2563 } 2564 } 2565 nr -= offset; 2566 2567 if (page) { 2568 /* 2569 * If users can be writing to this page using arbitrary 2570 * virtual addresses, take care about potential aliasing 2571 * before reading the page on the kernel side. 2572 */ 2573 if (mapping_writably_mapped(mapping)) 2574 flush_dcache_page(page); 2575 /* 2576 * Mark the page accessed if we read the beginning. 2577 */ 2578 if (!offset) 2579 mark_page_accessed(page); 2580 } else { 2581 page = ZERO_PAGE(0); 2582 get_page(page); 2583 } 2584 2585 /* 2586 * Ok, we have the page, and it's up-to-date, so 2587 * now we can copy it to user space... 2588 */ 2589 ret = copy_page_to_iter(page, offset, nr, to); 2590 retval += ret; 2591 offset += ret; 2592 index += offset >> PAGE_SHIFT; 2593 offset &= ~PAGE_MASK; 2594 2595 put_page(page); 2596 if (!iov_iter_count(to)) 2597 break; 2598 if (ret < nr) { 2599 error = -EFAULT; 2600 break; 2601 } 2602 cond_resched(); 2603 } 2604 2605 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2606 file_accessed(file); 2607 return retval ? retval : error; 2608 } 2609 2610 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2611 { 2612 struct address_space *mapping = file->f_mapping; 2613 struct inode *inode = mapping->host; 2614 2615 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2616 return generic_file_llseek_size(file, offset, whence, 2617 MAX_LFS_FILESIZE, i_size_read(inode)); 2618 if (offset < 0) 2619 return -ENXIO; 2620 2621 inode_lock(inode); 2622 /* We're holding i_rwsem so we can access i_size directly */ 2623 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 2624 if (offset >= 0) 2625 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2626 inode_unlock(inode); 2627 return offset; 2628 } 2629 2630 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2631 loff_t len) 2632 { 2633 struct inode *inode = file_inode(file); 2634 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2635 struct shmem_inode_info *info = SHMEM_I(inode); 2636 struct shmem_falloc shmem_falloc; 2637 pgoff_t start, index, end, undo_fallocend; 2638 int error; 2639 2640 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2641 return -EOPNOTSUPP; 2642 2643 inode_lock(inode); 2644 2645 if (mode & FALLOC_FL_PUNCH_HOLE) { 2646 struct address_space *mapping = file->f_mapping; 2647 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2648 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2649 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2650 2651 /* protected by i_rwsem */ 2652 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2653 error = -EPERM; 2654 goto out; 2655 } 2656 2657 shmem_falloc.waitq = &shmem_falloc_waitq; 2658 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2659 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2660 spin_lock(&inode->i_lock); 2661 inode->i_private = &shmem_falloc; 2662 spin_unlock(&inode->i_lock); 2663 2664 if ((u64)unmap_end > (u64)unmap_start) 2665 unmap_mapping_range(mapping, unmap_start, 2666 1 + unmap_end - unmap_start, 0); 2667 shmem_truncate_range(inode, offset, offset + len - 1); 2668 /* No need to unmap again: hole-punching leaves COWed pages */ 2669 2670 spin_lock(&inode->i_lock); 2671 inode->i_private = NULL; 2672 wake_up_all(&shmem_falloc_waitq); 2673 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2674 spin_unlock(&inode->i_lock); 2675 error = 0; 2676 goto out; 2677 } 2678 2679 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2680 error = inode_newsize_ok(inode, offset + len); 2681 if (error) 2682 goto out; 2683 2684 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2685 error = -EPERM; 2686 goto out; 2687 } 2688 2689 start = offset >> PAGE_SHIFT; 2690 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2691 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2692 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2693 error = -ENOSPC; 2694 goto out; 2695 } 2696 2697 shmem_falloc.waitq = NULL; 2698 shmem_falloc.start = start; 2699 shmem_falloc.next = start; 2700 shmem_falloc.nr_falloced = 0; 2701 shmem_falloc.nr_unswapped = 0; 2702 spin_lock(&inode->i_lock); 2703 inode->i_private = &shmem_falloc; 2704 spin_unlock(&inode->i_lock); 2705 2706 /* 2707 * info->fallocend is only relevant when huge pages might be 2708 * involved: to prevent split_huge_page() freeing fallocated 2709 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 2710 */ 2711 undo_fallocend = info->fallocend; 2712 if (info->fallocend < end) 2713 info->fallocend = end; 2714 2715 for (index = start; index < end; ) { 2716 struct page *page; 2717 2718 /* 2719 * Good, the fallocate(2) manpage permits EINTR: we may have 2720 * been interrupted because we are using up too much memory. 2721 */ 2722 if (signal_pending(current)) 2723 error = -EINTR; 2724 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2725 error = -ENOMEM; 2726 else 2727 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2728 if (error) { 2729 info->fallocend = undo_fallocend; 2730 /* Remove the !PageUptodate pages we added */ 2731 if (index > start) { 2732 shmem_undo_range(inode, 2733 (loff_t)start << PAGE_SHIFT, 2734 ((loff_t)index << PAGE_SHIFT) - 1, true); 2735 } 2736 goto undone; 2737 } 2738 2739 index++; 2740 /* 2741 * Here is a more important optimization than it appears: 2742 * a second SGP_FALLOC on the same huge page will clear it, 2743 * making it PageUptodate and un-undoable if we fail later. 2744 */ 2745 if (PageTransCompound(page)) { 2746 index = round_up(index, HPAGE_PMD_NR); 2747 /* Beware 32-bit wraparound */ 2748 if (!index) 2749 index--; 2750 } 2751 2752 /* 2753 * Inform shmem_writepage() how far we have reached. 2754 * No need for lock or barrier: we have the page lock. 2755 */ 2756 if (!PageUptodate(page)) 2757 shmem_falloc.nr_falloced += index - shmem_falloc.next; 2758 shmem_falloc.next = index; 2759 2760 /* 2761 * If !PageUptodate, leave it that way so that freeable pages 2762 * can be recognized if we need to rollback on error later. 2763 * But set_page_dirty so that memory pressure will swap rather 2764 * than free the pages we are allocating (and SGP_CACHE pages 2765 * might still be clean: we now need to mark those dirty too). 2766 */ 2767 set_page_dirty(page); 2768 unlock_page(page); 2769 put_page(page); 2770 cond_resched(); 2771 } 2772 2773 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2774 i_size_write(inode, offset + len); 2775 inode->i_ctime = current_time(inode); 2776 undone: 2777 spin_lock(&inode->i_lock); 2778 inode->i_private = NULL; 2779 spin_unlock(&inode->i_lock); 2780 out: 2781 inode_unlock(inode); 2782 return error; 2783 } 2784 2785 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2786 { 2787 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2788 2789 buf->f_type = TMPFS_MAGIC; 2790 buf->f_bsize = PAGE_SIZE; 2791 buf->f_namelen = NAME_MAX; 2792 if (sbinfo->max_blocks) { 2793 buf->f_blocks = sbinfo->max_blocks; 2794 buf->f_bavail = 2795 buf->f_bfree = sbinfo->max_blocks - 2796 percpu_counter_sum(&sbinfo->used_blocks); 2797 } 2798 if (sbinfo->max_inodes) { 2799 buf->f_files = sbinfo->max_inodes; 2800 buf->f_ffree = sbinfo->free_inodes; 2801 } 2802 /* else leave those fields 0 like simple_statfs */ 2803 2804 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 2805 2806 return 0; 2807 } 2808 2809 /* 2810 * File creation. Allocate an inode, and we're done.. 2811 */ 2812 static int 2813 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir, 2814 struct dentry *dentry, umode_t mode, dev_t dev) 2815 { 2816 struct inode *inode; 2817 int error = -ENOSPC; 2818 2819 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2820 if (inode) { 2821 error = simple_acl_create(dir, inode); 2822 if (error) 2823 goto out_iput; 2824 error = security_inode_init_security(inode, dir, 2825 &dentry->d_name, 2826 shmem_initxattrs, NULL); 2827 if (error && error != -EOPNOTSUPP) 2828 goto out_iput; 2829 2830 error = 0; 2831 dir->i_size += BOGO_DIRENT_SIZE; 2832 dir->i_ctime = dir->i_mtime = current_time(dir); 2833 d_instantiate(dentry, inode); 2834 dget(dentry); /* Extra count - pin the dentry in core */ 2835 } 2836 return error; 2837 out_iput: 2838 iput(inode); 2839 return error; 2840 } 2841 2842 static int 2843 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 2844 struct dentry *dentry, umode_t mode) 2845 { 2846 struct inode *inode; 2847 int error = -ENOSPC; 2848 2849 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2850 if (inode) { 2851 error = security_inode_init_security(inode, dir, 2852 NULL, 2853 shmem_initxattrs, NULL); 2854 if (error && error != -EOPNOTSUPP) 2855 goto out_iput; 2856 error = simple_acl_create(dir, inode); 2857 if (error) 2858 goto out_iput; 2859 d_tmpfile(dentry, inode); 2860 } 2861 return error; 2862 out_iput: 2863 iput(inode); 2864 return error; 2865 } 2866 2867 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 2868 struct dentry *dentry, umode_t mode) 2869 { 2870 int error; 2871 2872 if ((error = shmem_mknod(&init_user_ns, dir, dentry, 2873 mode | S_IFDIR, 0))) 2874 return error; 2875 inc_nlink(dir); 2876 return 0; 2877 } 2878 2879 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir, 2880 struct dentry *dentry, umode_t mode, bool excl) 2881 { 2882 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 2883 } 2884 2885 /* 2886 * Link a file.. 2887 */ 2888 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2889 { 2890 struct inode *inode = d_inode(old_dentry); 2891 int ret = 0; 2892 2893 /* 2894 * No ordinary (disk based) filesystem counts links as inodes; 2895 * but each new link needs a new dentry, pinning lowmem, and 2896 * tmpfs dentries cannot be pruned until they are unlinked. 2897 * But if an O_TMPFILE file is linked into the tmpfs, the 2898 * first link must skip that, to get the accounting right. 2899 */ 2900 if (inode->i_nlink) { 2901 ret = shmem_reserve_inode(inode->i_sb, NULL); 2902 if (ret) 2903 goto out; 2904 } 2905 2906 dir->i_size += BOGO_DIRENT_SIZE; 2907 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2908 inc_nlink(inode); 2909 ihold(inode); /* New dentry reference */ 2910 dget(dentry); /* Extra pinning count for the created dentry */ 2911 d_instantiate(dentry, inode); 2912 out: 2913 return ret; 2914 } 2915 2916 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2917 { 2918 struct inode *inode = d_inode(dentry); 2919 2920 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2921 shmem_free_inode(inode->i_sb); 2922 2923 dir->i_size -= BOGO_DIRENT_SIZE; 2924 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2925 drop_nlink(inode); 2926 dput(dentry); /* Undo the count from "create" - this does all the work */ 2927 return 0; 2928 } 2929 2930 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2931 { 2932 if (!simple_empty(dentry)) 2933 return -ENOTEMPTY; 2934 2935 drop_nlink(d_inode(dentry)); 2936 drop_nlink(dir); 2937 return shmem_unlink(dir, dentry); 2938 } 2939 2940 static int shmem_whiteout(struct user_namespace *mnt_userns, 2941 struct inode *old_dir, struct dentry *old_dentry) 2942 { 2943 struct dentry *whiteout; 2944 int error; 2945 2946 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 2947 if (!whiteout) 2948 return -ENOMEM; 2949 2950 error = shmem_mknod(&init_user_ns, old_dir, whiteout, 2951 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 2952 dput(whiteout); 2953 if (error) 2954 return error; 2955 2956 /* 2957 * Cheat and hash the whiteout while the old dentry is still in 2958 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 2959 * 2960 * d_lookup() will consistently find one of them at this point, 2961 * not sure which one, but that isn't even important. 2962 */ 2963 d_rehash(whiteout); 2964 return 0; 2965 } 2966 2967 /* 2968 * The VFS layer already does all the dentry stuff for rename, 2969 * we just have to decrement the usage count for the target if 2970 * it exists so that the VFS layer correctly free's it when it 2971 * gets overwritten. 2972 */ 2973 static int shmem_rename2(struct user_namespace *mnt_userns, 2974 struct inode *old_dir, struct dentry *old_dentry, 2975 struct inode *new_dir, struct dentry *new_dentry, 2976 unsigned int flags) 2977 { 2978 struct inode *inode = d_inode(old_dentry); 2979 int they_are_dirs = S_ISDIR(inode->i_mode); 2980 2981 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 2982 return -EINVAL; 2983 2984 if (flags & RENAME_EXCHANGE) 2985 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 2986 2987 if (!simple_empty(new_dentry)) 2988 return -ENOTEMPTY; 2989 2990 if (flags & RENAME_WHITEOUT) { 2991 int error; 2992 2993 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry); 2994 if (error) 2995 return error; 2996 } 2997 2998 if (d_really_is_positive(new_dentry)) { 2999 (void) shmem_unlink(new_dir, new_dentry); 3000 if (they_are_dirs) { 3001 drop_nlink(d_inode(new_dentry)); 3002 drop_nlink(old_dir); 3003 } 3004 } else if (they_are_dirs) { 3005 drop_nlink(old_dir); 3006 inc_nlink(new_dir); 3007 } 3008 3009 old_dir->i_size -= BOGO_DIRENT_SIZE; 3010 new_dir->i_size += BOGO_DIRENT_SIZE; 3011 old_dir->i_ctime = old_dir->i_mtime = 3012 new_dir->i_ctime = new_dir->i_mtime = 3013 inode->i_ctime = current_time(old_dir); 3014 return 0; 3015 } 3016 3017 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir, 3018 struct dentry *dentry, const char *symname) 3019 { 3020 int error; 3021 int len; 3022 struct inode *inode; 3023 struct page *page; 3024 3025 len = strlen(symname) + 1; 3026 if (len > PAGE_SIZE) 3027 return -ENAMETOOLONG; 3028 3029 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3030 VM_NORESERVE); 3031 if (!inode) 3032 return -ENOSPC; 3033 3034 error = security_inode_init_security(inode, dir, &dentry->d_name, 3035 shmem_initxattrs, NULL); 3036 if (error && error != -EOPNOTSUPP) { 3037 iput(inode); 3038 return error; 3039 } 3040 3041 inode->i_size = len-1; 3042 if (len <= SHORT_SYMLINK_LEN) { 3043 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3044 if (!inode->i_link) { 3045 iput(inode); 3046 return -ENOMEM; 3047 } 3048 inode->i_op = &shmem_short_symlink_operations; 3049 } else { 3050 inode_nohighmem(inode); 3051 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3052 if (error) { 3053 iput(inode); 3054 return error; 3055 } 3056 inode->i_mapping->a_ops = &shmem_aops; 3057 inode->i_op = &shmem_symlink_inode_operations; 3058 memcpy(page_address(page), symname, len); 3059 SetPageUptodate(page); 3060 set_page_dirty(page); 3061 unlock_page(page); 3062 put_page(page); 3063 } 3064 dir->i_size += BOGO_DIRENT_SIZE; 3065 dir->i_ctime = dir->i_mtime = current_time(dir); 3066 d_instantiate(dentry, inode); 3067 dget(dentry); 3068 return 0; 3069 } 3070 3071 static void shmem_put_link(void *arg) 3072 { 3073 mark_page_accessed(arg); 3074 put_page(arg); 3075 } 3076 3077 static const char *shmem_get_link(struct dentry *dentry, 3078 struct inode *inode, 3079 struct delayed_call *done) 3080 { 3081 struct page *page = NULL; 3082 int error; 3083 if (!dentry) { 3084 page = find_get_page(inode->i_mapping, 0); 3085 if (!page) 3086 return ERR_PTR(-ECHILD); 3087 if (PageHWPoison(page) || 3088 !PageUptodate(page)) { 3089 put_page(page); 3090 return ERR_PTR(-ECHILD); 3091 } 3092 } else { 3093 error = shmem_getpage(inode, 0, &page, SGP_READ); 3094 if (error) 3095 return ERR_PTR(error); 3096 if (!page) 3097 return ERR_PTR(-ECHILD); 3098 if (PageHWPoison(page)) { 3099 unlock_page(page); 3100 put_page(page); 3101 return ERR_PTR(-ECHILD); 3102 } 3103 unlock_page(page); 3104 } 3105 set_delayed_call(done, shmem_put_link, page); 3106 return page_address(page); 3107 } 3108 3109 #ifdef CONFIG_TMPFS_XATTR 3110 /* 3111 * Superblocks without xattr inode operations may get some security.* xattr 3112 * support from the LSM "for free". As soon as we have any other xattrs 3113 * like ACLs, we also need to implement the security.* handlers at 3114 * filesystem level, though. 3115 */ 3116 3117 /* 3118 * Callback for security_inode_init_security() for acquiring xattrs. 3119 */ 3120 static int shmem_initxattrs(struct inode *inode, 3121 const struct xattr *xattr_array, 3122 void *fs_info) 3123 { 3124 struct shmem_inode_info *info = SHMEM_I(inode); 3125 const struct xattr *xattr; 3126 struct simple_xattr *new_xattr; 3127 size_t len; 3128 3129 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3130 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3131 if (!new_xattr) 3132 return -ENOMEM; 3133 3134 len = strlen(xattr->name) + 1; 3135 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3136 GFP_KERNEL); 3137 if (!new_xattr->name) { 3138 kvfree(new_xattr); 3139 return -ENOMEM; 3140 } 3141 3142 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3143 XATTR_SECURITY_PREFIX_LEN); 3144 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3145 xattr->name, len); 3146 3147 simple_xattr_list_add(&info->xattrs, new_xattr); 3148 } 3149 3150 return 0; 3151 } 3152 3153 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3154 struct dentry *unused, struct inode *inode, 3155 const char *name, void *buffer, size_t size) 3156 { 3157 struct shmem_inode_info *info = SHMEM_I(inode); 3158 3159 name = xattr_full_name(handler, name); 3160 return simple_xattr_get(&info->xattrs, name, buffer, size); 3161 } 3162 3163 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3164 struct user_namespace *mnt_userns, 3165 struct dentry *unused, struct inode *inode, 3166 const char *name, const void *value, 3167 size_t size, int flags) 3168 { 3169 struct shmem_inode_info *info = SHMEM_I(inode); 3170 3171 name = xattr_full_name(handler, name); 3172 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3173 } 3174 3175 static const struct xattr_handler shmem_security_xattr_handler = { 3176 .prefix = XATTR_SECURITY_PREFIX, 3177 .get = shmem_xattr_handler_get, 3178 .set = shmem_xattr_handler_set, 3179 }; 3180 3181 static const struct xattr_handler shmem_trusted_xattr_handler = { 3182 .prefix = XATTR_TRUSTED_PREFIX, 3183 .get = shmem_xattr_handler_get, 3184 .set = shmem_xattr_handler_set, 3185 }; 3186 3187 static const struct xattr_handler *shmem_xattr_handlers[] = { 3188 #ifdef CONFIG_TMPFS_POSIX_ACL 3189 &posix_acl_access_xattr_handler, 3190 &posix_acl_default_xattr_handler, 3191 #endif 3192 &shmem_security_xattr_handler, 3193 &shmem_trusted_xattr_handler, 3194 NULL 3195 }; 3196 3197 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3198 { 3199 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3200 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3201 } 3202 #endif /* CONFIG_TMPFS_XATTR */ 3203 3204 static const struct inode_operations shmem_short_symlink_operations = { 3205 .getattr = shmem_getattr, 3206 .get_link = simple_get_link, 3207 #ifdef CONFIG_TMPFS_XATTR 3208 .listxattr = shmem_listxattr, 3209 #endif 3210 }; 3211 3212 static const struct inode_operations shmem_symlink_inode_operations = { 3213 .getattr = shmem_getattr, 3214 .get_link = shmem_get_link, 3215 #ifdef CONFIG_TMPFS_XATTR 3216 .listxattr = shmem_listxattr, 3217 #endif 3218 }; 3219 3220 static struct dentry *shmem_get_parent(struct dentry *child) 3221 { 3222 return ERR_PTR(-ESTALE); 3223 } 3224 3225 static int shmem_match(struct inode *ino, void *vfh) 3226 { 3227 __u32 *fh = vfh; 3228 __u64 inum = fh[2]; 3229 inum = (inum << 32) | fh[1]; 3230 return ino->i_ino == inum && fh[0] == ino->i_generation; 3231 } 3232 3233 /* Find any alias of inode, but prefer a hashed alias */ 3234 static struct dentry *shmem_find_alias(struct inode *inode) 3235 { 3236 struct dentry *alias = d_find_alias(inode); 3237 3238 return alias ?: d_find_any_alias(inode); 3239 } 3240 3241 3242 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3243 struct fid *fid, int fh_len, int fh_type) 3244 { 3245 struct inode *inode; 3246 struct dentry *dentry = NULL; 3247 u64 inum; 3248 3249 if (fh_len < 3) 3250 return NULL; 3251 3252 inum = fid->raw[2]; 3253 inum = (inum << 32) | fid->raw[1]; 3254 3255 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3256 shmem_match, fid->raw); 3257 if (inode) { 3258 dentry = shmem_find_alias(inode); 3259 iput(inode); 3260 } 3261 3262 return dentry; 3263 } 3264 3265 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3266 struct inode *parent) 3267 { 3268 if (*len < 3) { 3269 *len = 3; 3270 return FILEID_INVALID; 3271 } 3272 3273 if (inode_unhashed(inode)) { 3274 /* Unfortunately insert_inode_hash is not idempotent, 3275 * so as we hash inodes here rather than at creation 3276 * time, we need a lock to ensure we only try 3277 * to do it once 3278 */ 3279 static DEFINE_SPINLOCK(lock); 3280 spin_lock(&lock); 3281 if (inode_unhashed(inode)) 3282 __insert_inode_hash(inode, 3283 inode->i_ino + inode->i_generation); 3284 spin_unlock(&lock); 3285 } 3286 3287 fh[0] = inode->i_generation; 3288 fh[1] = inode->i_ino; 3289 fh[2] = ((__u64)inode->i_ino) >> 32; 3290 3291 *len = 3; 3292 return 1; 3293 } 3294 3295 static const struct export_operations shmem_export_ops = { 3296 .get_parent = shmem_get_parent, 3297 .encode_fh = shmem_encode_fh, 3298 .fh_to_dentry = shmem_fh_to_dentry, 3299 }; 3300 3301 enum shmem_param { 3302 Opt_gid, 3303 Opt_huge, 3304 Opt_mode, 3305 Opt_mpol, 3306 Opt_nr_blocks, 3307 Opt_nr_inodes, 3308 Opt_size, 3309 Opt_uid, 3310 Opt_inode32, 3311 Opt_inode64, 3312 }; 3313 3314 static const struct constant_table shmem_param_enums_huge[] = { 3315 {"never", SHMEM_HUGE_NEVER }, 3316 {"always", SHMEM_HUGE_ALWAYS }, 3317 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3318 {"advise", SHMEM_HUGE_ADVISE }, 3319 {} 3320 }; 3321 3322 const struct fs_parameter_spec shmem_fs_parameters[] = { 3323 fsparam_u32 ("gid", Opt_gid), 3324 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3325 fsparam_u32oct("mode", Opt_mode), 3326 fsparam_string("mpol", Opt_mpol), 3327 fsparam_string("nr_blocks", Opt_nr_blocks), 3328 fsparam_string("nr_inodes", Opt_nr_inodes), 3329 fsparam_string("size", Opt_size), 3330 fsparam_u32 ("uid", Opt_uid), 3331 fsparam_flag ("inode32", Opt_inode32), 3332 fsparam_flag ("inode64", Opt_inode64), 3333 {} 3334 }; 3335 3336 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3337 { 3338 struct shmem_options *ctx = fc->fs_private; 3339 struct fs_parse_result result; 3340 unsigned long long size; 3341 char *rest; 3342 int opt; 3343 3344 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3345 if (opt < 0) 3346 return opt; 3347 3348 switch (opt) { 3349 case Opt_size: 3350 size = memparse(param->string, &rest); 3351 if (*rest == '%') { 3352 size <<= PAGE_SHIFT; 3353 size *= totalram_pages(); 3354 do_div(size, 100); 3355 rest++; 3356 } 3357 if (*rest) 3358 goto bad_value; 3359 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3360 ctx->seen |= SHMEM_SEEN_BLOCKS; 3361 break; 3362 case Opt_nr_blocks: 3363 ctx->blocks = memparse(param->string, &rest); 3364 if (*rest) 3365 goto bad_value; 3366 ctx->seen |= SHMEM_SEEN_BLOCKS; 3367 break; 3368 case Opt_nr_inodes: 3369 ctx->inodes = memparse(param->string, &rest); 3370 if (*rest) 3371 goto bad_value; 3372 ctx->seen |= SHMEM_SEEN_INODES; 3373 break; 3374 case Opt_mode: 3375 ctx->mode = result.uint_32 & 07777; 3376 break; 3377 case Opt_uid: 3378 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3379 if (!uid_valid(ctx->uid)) 3380 goto bad_value; 3381 break; 3382 case Opt_gid: 3383 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3384 if (!gid_valid(ctx->gid)) 3385 goto bad_value; 3386 break; 3387 case Opt_huge: 3388 ctx->huge = result.uint_32; 3389 if (ctx->huge != SHMEM_HUGE_NEVER && 3390 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3391 has_transparent_hugepage())) 3392 goto unsupported_parameter; 3393 ctx->seen |= SHMEM_SEEN_HUGE; 3394 break; 3395 case Opt_mpol: 3396 if (IS_ENABLED(CONFIG_NUMA)) { 3397 mpol_put(ctx->mpol); 3398 ctx->mpol = NULL; 3399 if (mpol_parse_str(param->string, &ctx->mpol)) 3400 goto bad_value; 3401 break; 3402 } 3403 goto unsupported_parameter; 3404 case Opt_inode32: 3405 ctx->full_inums = false; 3406 ctx->seen |= SHMEM_SEEN_INUMS; 3407 break; 3408 case Opt_inode64: 3409 if (sizeof(ino_t) < 8) { 3410 return invalfc(fc, 3411 "Cannot use inode64 with <64bit inums in kernel\n"); 3412 } 3413 ctx->full_inums = true; 3414 ctx->seen |= SHMEM_SEEN_INUMS; 3415 break; 3416 } 3417 return 0; 3418 3419 unsupported_parameter: 3420 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3421 bad_value: 3422 return invalfc(fc, "Bad value for '%s'", param->key); 3423 } 3424 3425 static int shmem_parse_options(struct fs_context *fc, void *data) 3426 { 3427 char *options = data; 3428 3429 if (options) { 3430 int err = security_sb_eat_lsm_opts(options, &fc->security); 3431 if (err) 3432 return err; 3433 } 3434 3435 while (options != NULL) { 3436 char *this_char = options; 3437 for (;;) { 3438 /* 3439 * NUL-terminate this option: unfortunately, 3440 * mount options form a comma-separated list, 3441 * but mpol's nodelist may also contain commas. 3442 */ 3443 options = strchr(options, ','); 3444 if (options == NULL) 3445 break; 3446 options++; 3447 if (!isdigit(*options)) { 3448 options[-1] = '\0'; 3449 break; 3450 } 3451 } 3452 if (*this_char) { 3453 char *value = strchr(this_char, '='); 3454 size_t len = 0; 3455 int err; 3456 3457 if (value) { 3458 *value++ = '\0'; 3459 len = strlen(value); 3460 } 3461 err = vfs_parse_fs_string(fc, this_char, value, len); 3462 if (err < 0) 3463 return err; 3464 } 3465 } 3466 return 0; 3467 } 3468 3469 /* 3470 * Reconfigure a shmem filesystem. 3471 * 3472 * Note that we disallow change from limited->unlimited blocks/inodes while any 3473 * are in use; but we must separately disallow unlimited->limited, because in 3474 * that case we have no record of how much is already in use. 3475 */ 3476 static int shmem_reconfigure(struct fs_context *fc) 3477 { 3478 struct shmem_options *ctx = fc->fs_private; 3479 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3480 unsigned long inodes; 3481 struct mempolicy *mpol = NULL; 3482 const char *err; 3483 3484 raw_spin_lock(&sbinfo->stat_lock); 3485 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3486 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3487 if (!sbinfo->max_blocks) { 3488 err = "Cannot retroactively limit size"; 3489 goto out; 3490 } 3491 if (percpu_counter_compare(&sbinfo->used_blocks, 3492 ctx->blocks) > 0) { 3493 err = "Too small a size for current use"; 3494 goto out; 3495 } 3496 } 3497 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3498 if (!sbinfo->max_inodes) { 3499 err = "Cannot retroactively limit inodes"; 3500 goto out; 3501 } 3502 if (ctx->inodes < inodes) { 3503 err = "Too few inodes for current use"; 3504 goto out; 3505 } 3506 } 3507 3508 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 3509 sbinfo->next_ino > UINT_MAX) { 3510 err = "Current inum too high to switch to 32-bit inums"; 3511 goto out; 3512 } 3513 3514 if (ctx->seen & SHMEM_SEEN_HUGE) 3515 sbinfo->huge = ctx->huge; 3516 if (ctx->seen & SHMEM_SEEN_INUMS) 3517 sbinfo->full_inums = ctx->full_inums; 3518 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3519 sbinfo->max_blocks = ctx->blocks; 3520 if (ctx->seen & SHMEM_SEEN_INODES) { 3521 sbinfo->max_inodes = ctx->inodes; 3522 sbinfo->free_inodes = ctx->inodes - inodes; 3523 } 3524 3525 /* 3526 * Preserve previous mempolicy unless mpol remount option was specified. 3527 */ 3528 if (ctx->mpol) { 3529 mpol = sbinfo->mpol; 3530 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3531 ctx->mpol = NULL; 3532 } 3533 raw_spin_unlock(&sbinfo->stat_lock); 3534 mpol_put(mpol); 3535 return 0; 3536 out: 3537 raw_spin_unlock(&sbinfo->stat_lock); 3538 return invalfc(fc, "%s", err); 3539 } 3540 3541 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3542 { 3543 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3544 3545 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3546 seq_printf(seq, ",size=%luk", 3547 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3548 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3549 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3550 if (sbinfo->mode != (0777 | S_ISVTX)) 3551 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3552 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3553 seq_printf(seq, ",uid=%u", 3554 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3555 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3556 seq_printf(seq, ",gid=%u", 3557 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3558 3559 /* 3560 * Showing inode{64,32} might be useful even if it's the system default, 3561 * since then people don't have to resort to checking both here and 3562 * /proc/config.gz to confirm 64-bit inums were successfully applied 3563 * (which may not even exist if IKCONFIG_PROC isn't enabled). 3564 * 3565 * We hide it when inode64 isn't the default and we are using 32-bit 3566 * inodes, since that probably just means the feature isn't even under 3567 * consideration. 3568 * 3569 * As such: 3570 * 3571 * +-----------------+-----------------+ 3572 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 3573 * +------------------+-----------------+-----------------+ 3574 * | full_inums=true | show | show | 3575 * | full_inums=false | show | hide | 3576 * +------------------+-----------------+-----------------+ 3577 * 3578 */ 3579 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 3580 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 3581 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3582 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3583 if (sbinfo->huge) 3584 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3585 #endif 3586 shmem_show_mpol(seq, sbinfo->mpol); 3587 return 0; 3588 } 3589 3590 #endif /* CONFIG_TMPFS */ 3591 3592 static void shmem_put_super(struct super_block *sb) 3593 { 3594 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3595 3596 free_percpu(sbinfo->ino_batch); 3597 percpu_counter_destroy(&sbinfo->used_blocks); 3598 mpol_put(sbinfo->mpol); 3599 kfree(sbinfo); 3600 sb->s_fs_info = NULL; 3601 } 3602 3603 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3604 { 3605 struct shmem_options *ctx = fc->fs_private; 3606 struct inode *inode; 3607 struct shmem_sb_info *sbinfo; 3608 3609 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3610 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3611 L1_CACHE_BYTES), GFP_KERNEL); 3612 if (!sbinfo) 3613 return -ENOMEM; 3614 3615 sb->s_fs_info = sbinfo; 3616 3617 #ifdef CONFIG_TMPFS 3618 /* 3619 * Per default we only allow half of the physical ram per 3620 * tmpfs instance, limiting inodes to one per page of lowmem; 3621 * but the internal instance is left unlimited. 3622 */ 3623 if (!(sb->s_flags & SB_KERNMOUNT)) { 3624 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3625 ctx->blocks = shmem_default_max_blocks(); 3626 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3627 ctx->inodes = shmem_default_max_inodes(); 3628 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 3629 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 3630 } else { 3631 sb->s_flags |= SB_NOUSER; 3632 } 3633 sb->s_export_op = &shmem_export_ops; 3634 sb->s_flags |= SB_NOSEC; 3635 #else 3636 sb->s_flags |= SB_NOUSER; 3637 #endif 3638 sbinfo->max_blocks = ctx->blocks; 3639 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3640 if (sb->s_flags & SB_KERNMOUNT) { 3641 sbinfo->ino_batch = alloc_percpu(ino_t); 3642 if (!sbinfo->ino_batch) 3643 goto failed; 3644 } 3645 sbinfo->uid = ctx->uid; 3646 sbinfo->gid = ctx->gid; 3647 sbinfo->full_inums = ctx->full_inums; 3648 sbinfo->mode = ctx->mode; 3649 sbinfo->huge = ctx->huge; 3650 sbinfo->mpol = ctx->mpol; 3651 ctx->mpol = NULL; 3652 3653 raw_spin_lock_init(&sbinfo->stat_lock); 3654 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3655 goto failed; 3656 spin_lock_init(&sbinfo->shrinklist_lock); 3657 INIT_LIST_HEAD(&sbinfo->shrinklist); 3658 3659 sb->s_maxbytes = MAX_LFS_FILESIZE; 3660 sb->s_blocksize = PAGE_SIZE; 3661 sb->s_blocksize_bits = PAGE_SHIFT; 3662 sb->s_magic = TMPFS_MAGIC; 3663 sb->s_op = &shmem_ops; 3664 sb->s_time_gran = 1; 3665 #ifdef CONFIG_TMPFS_XATTR 3666 sb->s_xattr = shmem_xattr_handlers; 3667 #endif 3668 #ifdef CONFIG_TMPFS_POSIX_ACL 3669 sb->s_flags |= SB_POSIXACL; 3670 #endif 3671 uuid_gen(&sb->s_uuid); 3672 3673 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3674 if (!inode) 3675 goto failed; 3676 inode->i_uid = sbinfo->uid; 3677 inode->i_gid = sbinfo->gid; 3678 sb->s_root = d_make_root(inode); 3679 if (!sb->s_root) 3680 goto failed; 3681 return 0; 3682 3683 failed: 3684 shmem_put_super(sb); 3685 return -ENOMEM; 3686 } 3687 3688 static int shmem_get_tree(struct fs_context *fc) 3689 { 3690 return get_tree_nodev(fc, shmem_fill_super); 3691 } 3692 3693 static void shmem_free_fc(struct fs_context *fc) 3694 { 3695 struct shmem_options *ctx = fc->fs_private; 3696 3697 if (ctx) { 3698 mpol_put(ctx->mpol); 3699 kfree(ctx); 3700 } 3701 } 3702 3703 static const struct fs_context_operations shmem_fs_context_ops = { 3704 .free = shmem_free_fc, 3705 .get_tree = shmem_get_tree, 3706 #ifdef CONFIG_TMPFS 3707 .parse_monolithic = shmem_parse_options, 3708 .parse_param = shmem_parse_one, 3709 .reconfigure = shmem_reconfigure, 3710 #endif 3711 }; 3712 3713 static struct kmem_cache *shmem_inode_cachep; 3714 3715 static struct inode *shmem_alloc_inode(struct super_block *sb) 3716 { 3717 struct shmem_inode_info *info; 3718 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3719 if (!info) 3720 return NULL; 3721 return &info->vfs_inode; 3722 } 3723 3724 static void shmem_free_in_core_inode(struct inode *inode) 3725 { 3726 if (S_ISLNK(inode->i_mode)) 3727 kfree(inode->i_link); 3728 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3729 } 3730 3731 static void shmem_destroy_inode(struct inode *inode) 3732 { 3733 if (S_ISREG(inode->i_mode)) 3734 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3735 } 3736 3737 static void shmem_init_inode(void *foo) 3738 { 3739 struct shmem_inode_info *info = foo; 3740 inode_init_once(&info->vfs_inode); 3741 } 3742 3743 static void shmem_init_inodecache(void) 3744 { 3745 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3746 sizeof(struct shmem_inode_info), 3747 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3748 } 3749 3750 static void shmem_destroy_inodecache(void) 3751 { 3752 kmem_cache_destroy(shmem_inode_cachep); 3753 } 3754 3755 /* Keep the page in page cache instead of truncating it */ 3756 static int shmem_error_remove_page(struct address_space *mapping, 3757 struct page *page) 3758 { 3759 return 0; 3760 } 3761 3762 const struct address_space_operations shmem_aops = { 3763 .writepage = shmem_writepage, 3764 .set_page_dirty = __set_page_dirty_no_writeback, 3765 #ifdef CONFIG_TMPFS 3766 .write_begin = shmem_write_begin, 3767 .write_end = shmem_write_end, 3768 #endif 3769 #ifdef CONFIG_MIGRATION 3770 .migratepage = migrate_page, 3771 #endif 3772 .error_remove_page = shmem_error_remove_page, 3773 }; 3774 EXPORT_SYMBOL(shmem_aops); 3775 3776 static const struct file_operations shmem_file_operations = { 3777 .mmap = shmem_mmap, 3778 .get_unmapped_area = shmem_get_unmapped_area, 3779 #ifdef CONFIG_TMPFS 3780 .llseek = shmem_file_llseek, 3781 .read_iter = shmem_file_read_iter, 3782 .write_iter = generic_file_write_iter, 3783 .fsync = noop_fsync, 3784 .splice_read = generic_file_splice_read, 3785 .splice_write = iter_file_splice_write, 3786 .fallocate = shmem_fallocate, 3787 #endif 3788 }; 3789 3790 static const struct inode_operations shmem_inode_operations = { 3791 .getattr = shmem_getattr, 3792 .setattr = shmem_setattr, 3793 #ifdef CONFIG_TMPFS_XATTR 3794 .listxattr = shmem_listxattr, 3795 .set_acl = simple_set_acl, 3796 #endif 3797 }; 3798 3799 static const struct inode_operations shmem_dir_inode_operations = { 3800 #ifdef CONFIG_TMPFS 3801 .getattr = shmem_getattr, 3802 .create = shmem_create, 3803 .lookup = simple_lookup, 3804 .link = shmem_link, 3805 .unlink = shmem_unlink, 3806 .symlink = shmem_symlink, 3807 .mkdir = shmem_mkdir, 3808 .rmdir = shmem_rmdir, 3809 .mknod = shmem_mknod, 3810 .rename = shmem_rename2, 3811 .tmpfile = shmem_tmpfile, 3812 #endif 3813 #ifdef CONFIG_TMPFS_XATTR 3814 .listxattr = shmem_listxattr, 3815 #endif 3816 #ifdef CONFIG_TMPFS_POSIX_ACL 3817 .setattr = shmem_setattr, 3818 .set_acl = simple_set_acl, 3819 #endif 3820 }; 3821 3822 static const struct inode_operations shmem_special_inode_operations = { 3823 .getattr = shmem_getattr, 3824 #ifdef CONFIG_TMPFS_XATTR 3825 .listxattr = shmem_listxattr, 3826 #endif 3827 #ifdef CONFIG_TMPFS_POSIX_ACL 3828 .setattr = shmem_setattr, 3829 .set_acl = simple_set_acl, 3830 #endif 3831 }; 3832 3833 static const struct super_operations shmem_ops = { 3834 .alloc_inode = shmem_alloc_inode, 3835 .free_inode = shmem_free_in_core_inode, 3836 .destroy_inode = shmem_destroy_inode, 3837 #ifdef CONFIG_TMPFS 3838 .statfs = shmem_statfs, 3839 .show_options = shmem_show_options, 3840 #endif 3841 .evict_inode = shmem_evict_inode, 3842 .drop_inode = generic_delete_inode, 3843 .put_super = shmem_put_super, 3844 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3845 .nr_cached_objects = shmem_unused_huge_count, 3846 .free_cached_objects = shmem_unused_huge_scan, 3847 #endif 3848 }; 3849 3850 static const struct vm_operations_struct shmem_vm_ops = { 3851 .fault = shmem_fault, 3852 .map_pages = filemap_map_pages, 3853 #ifdef CONFIG_NUMA 3854 .set_policy = shmem_set_policy, 3855 .get_policy = shmem_get_policy, 3856 #endif 3857 }; 3858 3859 int shmem_init_fs_context(struct fs_context *fc) 3860 { 3861 struct shmem_options *ctx; 3862 3863 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 3864 if (!ctx) 3865 return -ENOMEM; 3866 3867 ctx->mode = 0777 | S_ISVTX; 3868 ctx->uid = current_fsuid(); 3869 ctx->gid = current_fsgid(); 3870 3871 fc->fs_private = ctx; 3872 fc->ops = &shmem_fs_context_ops; 3873 return 0; 3874 } 3875 3876 static struct file_system_type shmem_fs_type = { 3877 .owner = THIS_MODULE, 3878 .name = "tmpfs", 3879 .init_fs_context = shmem_init_fs_context, 3880 #ifdef CONFIG_TMPFS 3881 .parameters = shmem_fs_parameters, 3882 #endif 3883 .kill_sb = kill_litter_super, 3884 .fs_flags = FS_USERNS_MOUNT, 3885 }; 3886 3887 int __init shmem_init(void) 3888 { 3889 int error; 3890 3891 shmem_init_inodecache(); 3892 3893 error = register_filesystem(&shmem_fs_type); 3894 if (error) { 3895 pr_err("Could not register tmpfs\n"); 3896 goto out2; 3897 } 3898 3899 shm_mnt = kern_mount(&shmem_fs_type); 3900 if (IS_ERR(shm_mnt)) { 3901 error = PTR_ERR(shm_mnt); 3902 pr_err("Could not kern_mount tmpfs\n"); 3903 goto out1; 3904 } 3905 3906 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3907 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 3908 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3909 else 3910 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 3911 #endif 3912 return 0; 3913 3914 out1: 3915 unregister_filesystem(&shmem_fs_type); 3916 out2: 3917 shmem_destroy_inodecache(); 3918 shm_mnt = ERR_PTR(error); 3919 return error; 3920 } 3921 3922 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 3923 static ssize_t shmem_enabled_show(struct kobject *kobj, 3924 struct kobj_attribute *attr, char *buf) 3925 { 3926 static const int values[] = { 3927 SHMEM_HUGE_ALWAYS, 3928 SHMEM_HUGE_WITHIN_SIZE, 3929 SHMEM_HUGE_ADVISE, 3930 SHMEM_HUGE_NEVER, 3931 SHMEM_HUGE_DENY, 3932 SHMEM_HUGE_FORCE, 3933 }; 3934 int len = 0; 3935 int i; 3936 3937 for (i = 0; i < ARRAY_SIZE(values); i++) { 3938 len += sysfs_emit_at(buf, len, 3939 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 3940 i ? " " : "", 3941 shmem_format_huge(values[i])); 3942 } 3943 3944 len += sysfs_emit_at(buf, len, "\n"); 3945 3946 return len; 3947 } 3948 3949 static ssize_t shmem_enabled_store(struct kobject *kobj, 3950 struct kobj_attribute *attr, const char *buf, size_t count) 3951 { 3952 char tmp[16]; 3953 int huge; 3954 3955 if (count + 1 > sizeof(tmp)) 3956 return -EINVAL; 3957 memcpy(tmp, buf, count); 3958 tmp[count] = '\0'; 3959 if (count && tmp[count - 1] == '\n') 3960 tmp[count - 1] = '\0'; 3961 3962 huge = shmem_parse_huge(tmp); 3963 if (huge == -EINVAL) 3964 return -EINVAL; 3965 if (!has_transparent_hugepage() && 3966 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 3967 return -EINVAL; 3968 3969 shmem_huge = huge; 3970 if (shmem_huge > SHMEM_HUGE_DENY) 3971 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3972 return count; 3973 } 3974 3975 struct kobj_attribute shmem_enabled_attr = 3976 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 3977 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 3978 3979 #else /* !CONFIG_SHMEM */ 3980 3981 /* 3982 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 3983 * 3984 * This is intended for small system where the benefits of the full 3985 * shmem code (swap-backed and resource-limited) are outweighed by 3986 * their complexity. On systems without swap this code should be 3987 * effectively equivalent, but much lighter weight. 3988 */ 3989 3990 static struct file_system_type shmem_fs_type = { 3991 .name = "tmpfs", 3992 .init_fs_context = ramfs_init_fs_context, 3993 .parameters = ramfs_fs_parameters, 3994 .kill_sb = kill_litter_super, 3995 .fs_flags = FS_USERNS_MOUNT, 3996 }; 3997 3998 int __init shmem_init(void) 3999 { 4000 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4001 4002 shm_mnt = kern_mount(&shmem_fs_type); 4003 BUG_ON(IS_ERR(shm_mnt)); 4004 4005 return 0; 4006 } 4007 4008 int shmem_unuse(unsigned int type) 4009 { 4010 return 0; 4011 } 4012 4013 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4014 { 4015 return 0; 4016 } 4017 4018 void shmem_unlock_mapping(struct address_space *mapping) 4019 { 4020 } 4021 4022 #ifdef CONFIG_MMU 4023 unsigned long shmem_get_unmapped_area(struct file *file, 4024 unsigned long addr, unsigned long len, 4025 unsigned long pgoff, unsigned long flags) 4026 { 4027 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4028 } 4029 #endif 4030 4031 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4032 { 4033 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4034 } 4035 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4036 4037 #define shmem_vm_ops generic_file_vm_ops 4038 #define shmem_file_operations ramfs_file_operations 4039 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4040 #define shmem_acct_size(flags, size) 0 4041 #define shmem_unacct_size(flags, size) do {} while (0) 4042 4043 #endif /* CONFIG_SHMEM */ 4044 4045 /* common code */ 4046 4047 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4048 unsigned long flags, unsigned int i_flags) 4049 { 4050 struct inode *inode; 4051 struct file *res; 4052 4053 if (IS_ERR(mnt)) 4054 return ERR_CAST(mnt); 4055 4056 if (size < 0 || size > MAX_LFS_FILESIZE) 4057 return ERR_PTR(-EINVAL); 4058 4059 if (shmem_acct_size(flags, size)) 4060 return ERR_PTR(-ENOMEM); 4061 4062 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4063 flags); 4064 if (unlikely(!inode)) { 4065 shmem_unacct_size(flags, size); 4066 return ERR_PTR(-ENOSPC); 4067 } 4068 inode->i_flags |= i_flags; 4069 inode->i_size = size; 4070 clear_nlink(inode); /* It is unlinked */ 4071 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4072 if (!IS_ERR(res)) 4073 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4074 &shmem_file_operations); 4075 if (IS_ERR(res)) 4076 iput(inode); 4077 return res; 4078 } 4079 4080 /** 4081 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4082 * kernel internal. There will be NO LSM permission checks against the 4083 * underlying inode. So users of this interface must do LSM checks at a 4084 * higher layer. The users are the big_key and shm implementations. LSM 4085 * checks are provided at the key or shm level rather than the inode. 4086 * @name: name for dentry (to be seen in /proc/<pid>/maps 4087 * @size: size to be set for the file 4088 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4089 */ 4090 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4091 { 4092 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4093 } 4094 4095 /** 4096 * shmem_file_setup - get an unlinked file living in tmpfs 4097 * @name: name for dentry (to be seen in /proc/<pid>/maps 4098 * @size: size to be set for the file 4099 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4100 */ 4101 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4102 { 4103 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4104 } 4105 EXPORT_SYMBOL_GPL(shmem_file_setup); 4106 4107 /** 4108 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4109 * @mnt: the tmpfs mount where the file will be created 4110 * @name: name for dentry (to be seen in /proc/<pid>/maps 4111 * @size: size to be set for the file 4112 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4113 */ 4114 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4115 loff_t size, unsigned long flags) 4116 { 4117 return __shmem_file_setup(mnt, name, size, flags, 0); 4118 } 4119 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4120 4121 /** 4122 * shmem_zero_setup - setup a shared anonymous mapping 4123 * @vma: the vma to be mmapped is prepared by do_mmap 4124 */ 4125 int shmem_zero_setup(struct vm_area_struct *vma) 4126 { 4127 struct file *file; 4128 loff_t size = vma->vm_end - vma->vm_start; 4129 4130 /* 4131 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4132 * between XFS directory reading and selinux: since this file is only 4133 * accessible to the user through its mapping, use S_PRIVATE flag to 4134 * bypass file security, in the same way as shmem_kernel_file_setup(). 4135 */ 4136 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4137 if (IS_ERR(file)) 4138 return PTR_ERR(file); 4139 4140 if (vma->vm_file) 4141 fput(vma->vm_file); 4142 vma->vm_file = file; 4143 vma->vm_ops = &shmem_vm_ops; 4144 4145 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4146 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4147 (vma->vm_end & HPAGE_PMD_MASK)) { 4148 khugepaged_enter(vma, vma->vm_flags); 4149 } 4150 4151 return 0; 4152 } 4153 4154 /** 4155 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4156 * @mapping: the page's address_space 4157 * @index: the page index 4158 * @gfp: the page allocator flags to use if allocating 4159 * 4160 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4161 * with any new page allocations done using the specified allocation flags. 4162 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4163 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4164 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4165 * 4166 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4167 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4168 */ 4169 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4170 pgoff_t index, gfp_t gfp) 4171 { 4172 #ifdef CONFIG_SHMEM 4173 struct inode *inode = mapping->host; 4174 struct page *page; 4175 int error; 4176 4177 BUG_ON(!shmem_mapping(mapping)); 4178 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4179 gfp, NULL, NULL, NULL); 4180 if (error) 4181 return ERR_PTR(error); 4182 4183 unlock_page(page); 4184 if (PageHWPoison(page)) { 4185 put_page(page); 4186 return ERR_PTR(-EIO); 4187 } 4188 4189 return page; 4190 #else 4191 /* 4192 * The tiny !SHMEM case uses ramfs without swap 4193 */ 4194 return read_cache_page_gfp(mapping, index, gfp); 4195 #endif 4196 } 4197 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4198