xref: /openbmc/linux/mm/shmem.c (revision f7cd16a55837f37b4c3835a2c646023e4d0f0e04)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/fs_parser.h>
40 #include <linux/swapfile.h>
41 
42 static struct vfsmount *shm_mnt;
43 
44 #ifdef CONFIG_SHMEM
45 /*
46  * This virtual memory filesystem is heavily based on the ramfs. It
47  * extends ramfs by the ability to use swap and honor resource limits
48  * which makes it a completely usable filesystem.
49  */
50 
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
80 
81 #include <linux/uaccess.h>
82 
83 #include "internal.h"
84 
85 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
86 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
87 
88 /* Pretend that each entry is of this size in directory's i_size */
89 #define BOGO_DIRENT_SIZE 20
90 
91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
92 #define SHORT_SYMLINK_LEN 128
93 
94 /*
95  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
96  * inode->i_private (with i_rwsem making sure that it has only one user at
97  * a time): we would prefer not to enlarge the shmem inode just for that.
98  */
99 struct shmem_falloc {
100 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
101 	pgoff_t start;		/* start of range currently being fallocated */
102 	pgoff_t next;		/* the next page offset to be fallocated */
103 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
104 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
105 };
106 
107 struct shmem_options {
108 	unsigned long long blocks;
109 	unsigned long long inodes;
110 	struct mempolicy *mpol;
111 	kuid_t uid;
112 	kgid_t gid;
113 	umode_t mode;
114 	bool full_inums;
115 	int huge;
116 	int seen;
117 #define SHMEM_SEEN_BLOCKS 1
118 #define SHMEM_SEEN_INODES 2
119 #define SHMEM_SEEN_HUGE 4
120 #define SHMEM_SEEN_INUMS 8
121 };
122 
123 #ifdef CONFIG_TMPFS
124 static unsigned long shmem_default_max_blocks(void)
125 {
126 	return totalram_pages() / 2;
127 }
128 
129 static unsigned long shmem_default_max_inodes(void)
130 {
131 	unsigned long nr_pages = totalram_pages();
132 
133 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
134 }
135 #endif
136 
137 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
138 			     struct page **pagep, enum sgp_type sgp,
139 			     gfp_t gfp, struct vm_area_struct *vma,
140 			     vm_fault_t *fault_type);
141 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
142 		struct page **pagep, enum sgp_type sgp,
143 		gfp_t gfp, struct vm_area_struct *vma,
144 		struct vm_fault *vmf, vm_fault_t *fault_type);
145 
146 int shmem_getpage(struct inode *inode, pgoff_t index,
147 		struct page **pagep, enum sgp_type sgp)
148 {
149 	return shmem_getpage_gfp(inode, index, pagep, sgp,
150 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
151 }
152 
153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 {
155 	return sb->s_fs_info;
156 }
157 
158 /*
159  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160  * for shared memory and for shared anonymous (/dev/zero) mappings
161  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162  * consistent with the pre-accounting of private mappings ...
163  */
164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 {
166 	return (flags & VM_NORESERVE) ?
167 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
168 }
169 
170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 {
172 	if (!(flags & VM_NORESERVE))
173 		vm_unacct_memory(VM_ACCT(size));
174 }
175 
176 static inline int shmem_reacct_size(unsigned long flags,
177 		loff_t oldsize, loff_t newsize)
178 {
179 	if (!(flags & VM_NORESERVE)) {
180 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181 			return security_vm_enough_memory_mm(current->mm,
182 					VM_ACCT(newsize) - VM_ACCT(oldsize));
183 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185 	}
186 	return 0;
187 }
188 
189 /*
190  * ... whereas tmpfs objects are accounted incrementally as
191  * pages are allocated, in order to allow large sparse files.
192  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
193  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194  */
195 static inline int shmem_acct_block(unsigned long flags, long pages)
196 {
197 	if (!(flags & VM_NORESERVE))
198 		return 0;
199 
200 	return security_vm_enough_memory_mm(current->mm,
201 			pages * VM_ACCT(PAGE_SIZE));
202 }
203 
204 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205 {
206 	if (flags & VM_NORESERVE)
207 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
208 }
209 
210 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
211 {
212 	struct shmem_inode_info *info = SHMEM_I(inode);
213 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214 
215 	if (shmem_acct_block(info->flags, pages))
216 		return false;
217 
218 	if (sbinfo->max_blocks) {
219 		if (percpu_counter_compare(&sbinfo->used_blocks,
220 					   sbinfo->max_blocks - pages) > 0)
221 			goto unacct;
222 		percpu_counter_add(&sbinfo->used_blocks, pages);
223 	}
224 
225 	return true;
226 
227 unacct:
228 	shmem_unacct_blocks(info->flags, pages);
229 	return false;
230 }
231 
232 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
233 {
234 	struct shmem_inode_info *info = SHMEM_I(inode);
235 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
236 
237 	if (sbinfo->max_blocks)
238 		percpu_counter_sub(&sbinfo->used_blocks, pages);
239 	shmem_unacct_blocks(info->flags, pages);
240 }
241 
242 static const struct super_operations shmem_ops;
243 const struct address_space_operations shmem_aops;
244 static const struct file_operations shmem_file_operations;
245 static const struct inode_operations shmem_inode_operations;
246 static const struct inode_operations shmem_dir_inode_operations;
247 static const struct inode_operations shmem_special_inode_operations;
248 static const struct vm_operations_struct shmem_vm_ops;
249 static struct file_system_type shmem_fs_type;
250 
251 bool vma_is_shmem(struct vm_area_struct *vma)
252 {
253 	return vma->vm_ops == &shmem_vm_ops;
254 }
255 
256 static LIST_HEAD(shmem_swaplist);
257 static DEFINE_MUTEX(shmem_swaplist_mutex);
258 
259 /*
260  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
261  * produces a novel ino for the newly allocated inode.
262  *
263  * It may also be called when making a hard link to permit the space needed by
264  * each dentry. However, in that case, no new inode number is needed since that
265  * internally draws from another pool of inode numbers (currently global
266  * get_next_ino()). This case is indicated by passing NULL as inop.
267  */
268 #define SHMEM_INO_BATCH 1024
269 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
270 {
271 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
272 	ino_t ino;
273 
274 	if (!(sb->s_flags & SB_KERNMOUNT)) {
275 		raw_spin_lock(&sbinfo->stat_lock);
276 		if (sbinfo->max_inodes) {
277 			if (!sbinfo->free_inodes) {
278 				raw_spin_unlock(&sbinfo->stat_lock);
279 				return -ENOSPC;
280 			}
281 			sbinfo->free_inodes--;
282 		}
283 		if (inop) {
284 			ino = sbinfo->next_ino++;
285 			if (unlikely(is_zero_ino(ino)))
286 				ino = sbinfo->next_ino++;
287 			if (unlikely(!sbinfo->full_inums &&
288 				     ino > UINT_MAX)) {
289 				/*
290 				 * Emulate get_next_ino uint wraparound for
291 				 * compatibility
292 				 */
293 				if (IS_ENABLED(CONFIG_64BIT))
294 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
295 						__func__, MINOR(sb->s_dev));
296 				sbinfo->next_ino = 1;
297 				ino = sbinfo->next_ino++;
298 			}
299 			*inop = ino;
300 		}
301 		raw_spin_unlock(&sbinfo->stat_lock);
302 	} else if (inop) {
303 		/*
304 		 * __shmem_file_setup, one of our callers, is lock-free: it
305 		 * doesn't hold stat_lock in shmem_reserve_inode since
306 		 * max_inodes is always 0, and is called from potentially
307 		 * unknown contexts. As such, use a per-cpu batched allocator
308 		 * which doesn't require the per-sb stat_lock unless we are at
309 		 * the batch boundary.
310 		 *
311 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
312 		 * shmem mounts are not exposed to userspace, so we don't need
313 		 * to worry about things like glibc compatibility.
314 		 */
315 		ino_t *next_ino;
316 
317 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
318 		ino = *next_ino;
319 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
320 			raw_spin_lock(&sbinfo->stat_lock);
321 			ino = sbinfo->next_ino;
322 			sbinfo->next_ino += SHMEM_INO_BATCH;
323 			raw_spin_unlock(&sbinfo->stat_lock);
324 			if (unlikely(is_zero_ino(ino)))
325 				ino++;
326 		}
327 		*inop = ino;
328 		*next_ino = ++ino;
329 		put_cpu();
330 	}
331 
332 	return 0;
333 }
334 
335 static void shmem_free_inode(struct super_block *sb)
336 {
337 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
338 	if (sbinfo->max_inodes) {
339 		raw_spin_lock(&sbinfo->stat_lock);
340 		sbinfo->free_inodes++;
341 		raw_spin_unlock(&sbinfo->stat_lock);
342 	}
343 }
344 
345 /**
346  * shmem_recalc_inode - recalculate the block usage of an inode
347  * @inode: inode to recalc
348  *
349  * We have to calculate the free blocks since the mm can drop
350  * undirtied hole pages behind our back.
351  *
352  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
353  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
354  *
355  * It has to be called with the spinlock held.
356  */
357 static void shmem_recalc_inode(struct inode *inode)
358 {
359 	struct shmem_inode_info *info = SHMEM_I(inode);
360 	long freed;
361 
362 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
363 	if (freed > 0) {
364 		info->alloced -= freed;
365 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
366 		shmem_inode_unacct_blocks(inode, freed);
367 	}
368 }
369 
370 bool shmem_charge(struct inode *inode, long pages)
371 {
372 	struct shmem_inode_info *info = SHMEM_I(inode);
373 	unsigned long flags;
374 
375 	if (!shmem_inode_acct_block(inode, pages))
376 		return false;
377 
378 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
379 	inode->i_mapping->nrpages += pages;
380 
381 	spin_lock_irqsave(&info->lock, flags);
382 	info->alloced += pages;
383 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
384 	shmem_recalc_inode(inode);
385 	spin_unlock_irqrestore(&info->lock, flags);
386 
387 	return true;
388 }
389 
390 void shmem_uncharge(struct inode *inode, long pages)
391 {
392 	struct shmem_inode_info *info = SHMEM_I(inode);
393 	unsigned long flags;
394 
395 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
396 
397 	spin_lock_irqsave(&info->lock, flags);
398 	info->alloced -= pages;
399 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
400 	shmem_recalc_inode(inode);
401 	spin_unlock_irqrestore(&info->lock, flags);
402 
403 	shmem_inode_unacct_blocks(inode, pages);
404 }
405 
406 /*
407  * Replace item expected in xarray by a new item, while holding xa_lock.
408  */
409 static int shmem_replace_entry(struct address_space *mapping,
410 			pgoff_t index, void *expected, void *replacement)
411 {
412 	XA_STATE(xas, &mapping->i_pages, index);
413 	void *item;
414 
415 	VM_BUG_ON(!expected);
416 	VM_BUG_ON(!replacement);
417 	item = xas_load(&xas);
418 	if (item != expected)
419 		return -ENOENT;
420 	xas_store(&xas, replacement);
421 	return 0;
422 }
423 
424 /*
425  * Sometimes, before we decide whether to proceed or to fail, we must check
426  * that an entry was not already brought back from swap by a racing thread.
427  *
428  * Checking page is not enough: by the time a SwapCache page is locked, it
429  * might be reused, and again be SwapCache, using the same swap as before.
430  */
431 static bool shmem_confirm_swap(struct address_space *mapping,
432 			       pgoff_t index, swp_entry_t swap)
433 {
434 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
435 }
436 
437 /*
438  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
439  *
440  * SHMEM_HUGE_NEVER:
441  *	disables huge pages for the mount;
442  * SHMEM_HUGE_ALWAYS:
443  *	enables huge pages for the mount;
444  * SHMEM_HUGE_WITHIN_SIZE:
445  *	only allocate huge pages if the page will be fully within i_size,
446  *	also respect fadvise()/madvise() hints;
447  * SHMEM_HUGE_ADVISE:
448  *	only allocate huge pages if requested with fadvise()/madvise();
449  */
450 
451 #define SHMEM_HUGE_NEVER	0
452 #define SHMEM_HUGE_ALWAYS	1
453 #define SHMEM_HUGE_WITHIN_SIZE	2
454 #define SHMEM_HUGE_ADVISE	3
455 
456 /*
457  * Special values.
458  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
459  *
460  * SHMEM_HUGE_DENY:
461  *	disables huge on shm_mnt and all mounts, for emergency use;
462  * SHMEM_HUGE_FORCE:
463  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
464  *
465  */
466 #define SHMEM_HUGE_DENY		(-1)
467 #define SHMEM_HUGE_FORCE	(-2)
468 
469 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
470 /* ifdef here to avoid bloating shmem.o when not necessary */
471 
472 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
473 
474 bool shmem_is_huge(struct vm_area_struct *vma,
475 		   struct inode *inode, pgoff_t index)
476 {
477 	loff_t i_size;
478 
479 	if (!S_ISREG(inode->i_mode))
480 		return false;
481 	if (shmem_huge == SHMEM_HUGE_DENY)
482 		return false;
483 	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
484 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
485 		return false;
486 	if (shmem_huge == SHMEM_HUGE_FORCE)
487 		return true;
488 
489 	switch (SHMEM_SB(inode->i_sb)->huge) {
490 	case SHMEM_HUGE_ALWAYS:
491 		return true;
492 	case SHMEM_HUGE_WITHIN_SIZE:
493 		index = round_up(index + 1, HPAGE_PMD_NR);
494 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
495 		if (i_size >> PAGE_SHIFT >= index)
496 			return true;
497 		fallthrough;
498 	case SHMEM_HUGE_ADVISE:
499 		if (vma && (vma->vm_flags & VM_HUGEPAGE))
500 			return true;
501 		fallthrough;
502 	default:
503 		return false;
504 	}
505 }
506 
507 #if defined(CONFIG_SYSFS)
508 static int shmem_parse_huge(const char *str)
509 {
510 	if (!strcmp(str, "never"))
511 		return SHMEM_HUGE_NEVER;
512 	if (!strcmp(str, "always"))
513 		return SHMEM_HUGE_ALWAYS;
514 	if (!strcmp(str, "within_size"))
515 		return SHMEM_HUGE_WITHIN_SIZE;
516 	if (!strcmp(str, "advise"))
517 		return SHMEM_HUGE_ADVISE;
518 	if (!strcmp(str, "deny"))
519 		return SHMEM_HUGE_DENY;
520 	if (!strcmp(str, "force"))
521 		return SHMEM_HUGE_FORCE;
522 	return -EINVAL;
523 }
524 #endif
525 
526 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
527 static const char *shmem_format_huge(int huge)
528 {
529 	switch (huge) {
530 	case SHMEM_HUGE_NEVER:
531 		return "never";
532 	case SHMEM_HUGE_ALWAYS:
533 		return "always";
534 	case SHMEM_HUGE_WITHIN_SIZE:
535 		return "within_size";
536 	case SHMEM_HUGE_ADVISE:
537 		return "advise";
538 	case SHMEM_HUGE_DENY:
539 		return "deny";
540 	case SHMEM_HUGE_FORCE:
541 		return "force";
542 	default:
543 		VM_BUG_ON(1);
544 		return "bad_val";
545 	}
546 }
547 #endif
548 
549 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
550 		struct shrink_control *sc, unsigned long nr_to_split)
551 {
552 	LIST_HEAD(list), *pos, *next;
553 	LIST_HEAD(to_remove);
554 	struct inode *inode;
555 	struct shmem_inode_info *info;
556 	struct page *page;
557 	unsigned long batch = sc ? sc->nr_to_scan : 128;
558 	int split = 0;
559 
560 	if (list_empty(&sbinfo->shrinklist))
561 		return SHRINK_STOP;
562 
563 	spin_lock(&sbinfo->shrinklist_lock);
564 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
565 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
566 
567 		/* pin the inode */
568 		inode = igrab(&info->vfs_inode);
569 
570 		/* inode is about to be evicted */
571 		if (!inode) {
572 			list_del_init(&info->shrinklist);
573 			goto next;
574 		}
575 
576 		/* Check if there's anything to gain */
577 		if (round_up(inode->i_size, PAGE_SIZE) ==
578 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
579 			list_move(&info->shrinklist, &to_remove);
580 			goto next;
581 		}
582 
583 		list_move(&info->shrinklist, &list);
584 next:
585 		sbinfo->shrinklist_len--;
586 		if (!--batch)
587 			break;
588 	}
589 	spin_unlock(&sbinfo->shrinklist_lock);
590 
591 	list_for_each_safe(pos, next, &to_remove) {
592 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
593 		inode = &info->vfs_inode;
594 		list_del_init(&info->shrinklist);
595 		iput(inode);
596 	}
597 
598 	list_for_each_safe(pos, next, &list) {
599 		int ret;
600 
601 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
602 		inode = &info->vfs_inode;
603 
604 		if (nr_to_split && split >= nr_to_split)
605 			goto move_back;
606 
607 		page = find_get_page(inode->i_mapping,
608 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
609 		if (!page)
610 			goto drop;
611 
612 		/* No huge page at the end of the file: nothing to split */
613 		if (!PageTransHuge(page)) {
614 			put_page(page);
615 			goto drop;
616 		}
617 
618 		/*
619 		 * Move the inode on the list back to shrinklist if we failed
620 		 * to lock the page at this time.
621 		 *
622 		 * Waiting for the lock may lead to deadlock in the
623 		 * reclaim path.
624 		 */
625 		if (!trylock_page(page)) {
626 			put_page(page);
627 			goto move_back;
628 		}
629 
630 		ret = split_huge_page(page);
631 		unlock_page(page);
632 		put_page(page);
633 
634 		/* If split failed move the inode on the list back to shrinklist */
635 		if (ret)
636 			goto move_back;
637 
638 		split++;
639 drop:
640 		list_del_init(&info->shrinklist);
641 		goto put;
642 move_back:
643 		/*
644 		 * Make sure the inode is either on the global list or deleted
645 		 * from any local list before iput() since it could be deleted
646 		 * in another thread once we put the inode (then the local list
647 		 * is corrupted).
648 		 */
649 		spin_lock(&sbinfo->shrinklist_lock);
650 		list_move(&info->shrinklist, &sbinfo->shrinklist);
651 		sbinfo->shrinklist_len++;
652 		spin_unlock(&sbinfo->shrinklist_lock);
653 put:
654 		iput(inode);
655 	}
656 
657 	return split;
658 }
659 
660 static long shmem_unused_huge_scan(struct super_block *sb,
661 		struct shrink_control *sc)
662 {
663 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
664 
665 	if (!READ_ONCE(sbinfo->shrinklist_len))
666 		return SHRINK_STOP;
667 
668 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
669 }
670 
671 static long shmem_unused_huge_count(struct super_block *sb,
672 		struct shrink_control *sc)
673 {
674 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
675 	return READ_ONCE(sbinfo->shrinklist_len);
676 }
677 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
678 
679 #define shmem_huge SHMEM_HUGE_DENY
680 
681 bool shmem_is_huge(struct vm_area_struct *vma,
682 		   struct inode *inode, pgoff_t index)
683 {
684 	return false;
685 }
686 
687 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
688 		struct shrink_control *sc, unsigned long nr_to_split)
689 {
690 	return 0;
691 }
692 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
693 
694 /*
695  * Like add_to_page_cache_locked, but error if expected item has gone.
696  */
697 static int shmem_add_to_page_cache(struct page *page,
698 				   struct address_space *mapping,
699 				   pgoff_t index, void *expected, gfp_t gfp,
700 				   struct mm_struct *charge_mm)
701 {
702 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
703 	unsigned long nr = compound_nr(page);
704 	int error;
705 
706 	VM_BUG_ON_PAGE(PageTail(page), page);
707 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
708 	VM_BUG_ON_PAGE(!PageLocked(page), page);
709 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
710 	VM_BUG_ON(expected && PageTransHuge(page));
711 
712 	page_ref_add(page, nr);
713 	page->mapping = mapping;
714 	page->index = index;
715 
716 	if (!PageSwapCache(page)) {
717 		error = mem_cgroup_charge(page_folio(page), charge_mm, gfp);
718 		if (error) {
719 			if (PageTransHuge(page)) {
720 				count_vm_event(THP_FILE_FALLBACK);
721 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
722 			}
723 			goto error;
724 		}
725 	}
726 	cgroup_throttle_swaprate(page, gfp);
727 
728 	do {
729 		xas_lock_irq(&xas);
730 		if (expected != xas_find_conflict(&xas)) {
731 			xas_set_err(&xas, -EEXIST);
732 			goto unlock;
733 		}
734 		if (expected && xas_find_conflict(&xas)) {
735 			xas_set_err(&xas, -EEXIST);
736 			goto unlock;
737 		}
738 		xas_store(&xas, page);
739 		if (xas_error(&xas))
740 			goto unlock;
741 		if (PageTransHuge(page)) {
742 			count_vm_event(THP_FILE_ALLOC);
743 			__mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
744 		}
745 		mapping->nrpages += nr;
746 		__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
747 		__mod_lruvec_page_state(page, NR_SHMEM, nr);
748 unlock:
749 		xas_unlock_irq(&xas);
750 	} while (xas_nomem(&xas, gfp));
751 
752 	if (xas_error(&xas)) {
753 		error = xas_error(&xas);
754 		goto error;
755 	}
756 
757 	return 0;
758 error:
759 	page->mapping = NULL;
760 	page_ref_sub(page, nr);
761 	return error;
762 }
763 
764 /*
765  * Like delete_from_page_cache, but substitutes swap for page.
766  */
767 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
768 {
769 	struct address_space *mapping = page->mapping;
770 	int error;
771 
772 	VM_BUG_ON_PAGE(PageCompound(page), page);
773 
774 	xa_lock_irq(&mapping->i_pages);
775 	error = shmem_replace_entry(mapping, page->index, page, radswap);
776 	page->mapping = NULL;
777 	mapping->nrpages--;
778 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
779 	__dec_lruvec_page_state(page, NR_SHMEM);
780 	xa_unlock_irq(&mapping->i_pages);
781 	put_page(page);
782 	BUG_ON(error);
783 }
784 
785 /*
786  * Remove swap entry from page cache, free the swap and its page cache.
787  */
788 static int shmem_free_swap(struct address_space *mapping,
789 			   pgoff_t index, void *radswap)
790 {
791 	void *old;
792 
793 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
794 	if (old != radswap)
795 		return -ENOENT;
796 	free_swap_and_cache(radix_to_swp_entry(radswap));
797 	return 0;
798 }
799 
800 /*
801  * Determine (in bytes) how many of the shmem object's pages mapped by the
802  * given offsets are swapped out.
803  *
804  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
805  * as long as the inode doesn't go away and racy results are not a problem.
806  */
807 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
808 						pgoff_t start, pgoff_t end)
809 {
810 	XA_STATE(xas, &mapping->i_pages, start);
811 	struct page *page;
812 	unsigned long swapped = 0;
813 
814 	rcu_read_lock();
815 	xas_for_each(&xas, page, end - 1) {
816 		if (xas_retry(&xas, page))
817 			continue;
818 		if (xa_is_value(page))
819 			swapped++;
820 
821 		if (need_resched()) {
822 			xas_pause(&xas);
823 			cond_resched_rcu();
824 		}
825 	}
826 
827 	rcu_read_unlock();
828 
829 	return swapped << PAGE_SHIFT;
830 }
831 
832 /*
833  * Determine (in bytes) how many of the shmem object's pages mapped by the
834  * given vma is swapped out.
835  *
836  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
837  * as long as the inode doesn't go away and racy results are not a problem.
838  */
839 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
840 {
841 	struct inode *inode = file_inode(vma->vm_file);
842 	struct shmem_inode_info *info = SHMEM_I(inode);
843 	struct address_space *mapping = inode->i_mapping;
844 	unsigned long swapped;
845 
846 	/* Be careful as we don't hold info->lock */
847 	swapped = READ_ONCE(info->swapped);
848 
849 	/*
850 	 * The easier cases are when the shmem object has nothing in swap, or
851 	 * the vma maps it whole. Then we can simply use the stats that we
852 	 * already track.
853 	 */
854 	if (!swapped)
855 		return 0;
856 
857 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
858 		return swapped << PAGE_SHIFT;
859 
860 	/* Here comes the more involved part */
861 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
862 					vma->vm_pgoff + vma_pages(vma));
863 }
864 
865 /*
866  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
867  */
868 void shmem_unlock_mapping(struct address_space *mapping)
869 {
870 	struct pagevec pvec;
871 	pgoff_t index = 0;
872 
873 	pagevec_init(&pvec);
874 	/*
875 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
876 	 */
877 	while (!mapping_unevictable(mapping)) {
878 		if (!pagevec_lookup(&pvec, mapping, &index))
879 			break;
880 		check_move_unevictable_pages(&pvec);
881 		pagevec_release(&pvec);
882 		cond_resched();
883 	}
884 }
885 
886 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
887 {
888 	struct folio *folio;
889 	struct page *page;
890 
891 	/*
892 	 * At first avoid shmem_getpage(,,,SGP_READ): that fails
893 	 * beyond i_size, and reports fallocated pages as holes.
894 	 */
895 	folio = __filemap_get_folio(inode->i_mapping, index,
896 					FGP_ENTRY | FGP_LOCK, 0);
897 	if (!xa_is_value(folio))
898 		return folio;
899 	/*
900 	 * But read a page back from swap if any of it is within i_size
901 	 * (although in some cases this is just a waste of time).
902 	 */
903 	page = NULL;
904 	shmem_getpage(inode, index, &page, SGP_READ);
905 	return page ? page_folio(page) : NULL;
906 }
907 
908 /*
909  * Remove range of pages and swap entries from page cache, and free them.
910  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
911  */
912 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
913 								 bool unfalloc)
914 {
915 	struct address_space *mapping = inode->i_mapping;
916 	struct shmem_inode_info *info = SHMEM_I(inode);
917 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
918 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
919 	struct folio_batch fbatch;
920 	pgoff_t indices[PAGEVEC_SIZE];
921 	struct folio *folio;
922 	bool same_folio;
923 	long nr_swaps_freed = 0;
924 	pgoff_t index;
925 	int i;
926 
927 	if (lend == -1)
928 		end = -1;	/* unsigned, so actually very big */
929 
930 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
931 		info->fallocend = start;
932 
933 	folio_batch_init(&fbatch);
934 	index = start;
935 	while (index < end && find_lock_entries(mapping, index, end - 1,
936 			&fbatch, indices)) {
937 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
938 			folio = fbatch.folios[i];
939 
940 			index = indices[i];
941 
942 			if (xa_is_value(folio)) {
943 				if (unfalloc)
944 					continue;
945 				nr_swaps_freed += !shmem_free_swap(mapping,
946 								index, folio);
947 				continue;
948 			}
949 			index += folio_nr_pages(folio) - 1;
950 
951 			if (!unfalloc || !folio_test_uptodate(folio))
952 				truncate_inode_folio(mapping, folio);
953 			folio_unlock(folio);
954 		}
955 		folio_batch_remove_exceptionals(&fbatch);
956 		folio_batch_release(&fbatch);
957 		cond_resched();
958 		index++;
959 	}
960 
961 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
962 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
963 	if (folio) {
964 		same_folio = lend < folio_pos(folio) + folio_size(folio);
965 		folio_mark_dirty(folio);
966 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
967 			start = folio->index + folio_nr_pages(folio);
968 			if (same_folio)
969 				end = folio->index;
970 		}
971 		folio_unlock(folio);
972 		folio_put(folio);
973 		folio = NULL;
974 	}
975 
976 	if (!same_folio)
977 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
978 	if (folio) {
979 		folio_mark_dirty(folio);
980 		if (!truncate_inode_partial_folio(folio, lstart, lend))
981 			end = folio->index;
982 		folio_unlock(folio);
983 		folio_put(folio);
984 	}
985 
986 	index = start;
987 	while (index < end) {
988 		cond_resched();
989 
990 		if (!find_get_entries(mapping, index, end - 1, &fbatch,
991 				indices)) {
992 			/* If all gone or hole-punch or unfalloc, we're done */
993 			if (index == start || end != -1)
994 				break;
995 			/* But if truncating, restart to make sure all gone */
996 			index = start;
997 			continue;
998 		}
999 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1000 			folio = fbatch.folios[i];
1001 
1002 			index = indices[i];
1003 			if (xa_is_value(folio)) {
1004 				if (unfalloc)
1005 					continue;
1006 				if (shmem_free_swap(mapping, index, folio)) {
1007 					/* Swap was replaced by page: retry */
1008 					index--;
1009 					break;
1010 				}
1011 				nr_swaps_freed++;
1012 				continue;
1013 			}
1014 
1015 			folio_lock(folio);
1016 
1017 			if (!unfalloc || !folio_test_uptodate(folio)) {
1018 				if (folio_mapping(folio) != mapping) {
1019 					/* Page was replaced by swap: retry */
1020 					folio_unlock(folio);
1021 					index--;
1022 					break;
1023 				}
1024 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1025 						folio);
1026 				truncate_inode_folio(mapping, folio);
1027 			}
1028 			index = folio->index + folio_nr_pages(folio) - 1;
1029 			folio_unlock(folio);
1030 		}
1031 		folio_batch_remove_exceptionals(&fbatch);
1032 		folio_batch_release(&fbatch);
1033 		index++;
1034 	}
1035 
1036 	spin_lock_irq(&info->lock);
1037 	info->swapped -= nr_swaps_freed;
1038 	shmem_recalc_inode(inode);
1039 	spin_unlock_irq(&info->lock);
1040 }
1041 
1042 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1043 {
1044 	shmem_undo_range(inode, lstart, lend, false);
1045 	inode->i_ctime = inode->i_mtime = current_time(inode);
1046 }
1047 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1048 
1049 static int shmem_getattr(struct user_namespace *mnt_userns,
1050 			 const struct path *path, struct kstat *stat,
1051 			 u32 request_mask, unsigned int query_flags)
1052 {
1053 	struct inode *inode = path->dentry->d_inode;
1054 	struct shmem_inode_info *info = SHMEM_I(inode);
1055 
1056 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1057 		spin_lock_irq(&info->lock);
1058 		shmem_recalc_inode(inode);
1059 		spin_unlock_irq(&info->lock);
1060 	}
1061 	generic_fillattr(&init_user_ns, inode, stat);
1062 
1063 	if (shmem_is_huge(NULL, inode, 0))
1064 		stat->blksize = HPAGE_PMD_SIZE;
1065 
1066 	if (request_mask & STATX_BTIME) {
1067 		stat->result_mask |= STATX_BTIME;
1068 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1069 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1070 	}
1071 
1072 	return 0;
1073 }
1074 
1075 static int shmem_setattr(struct user_namespace *mnt_userns,
1076 			 struct dentry *dentry, struct iattr *attr)
1077 {
1078 	struct inode *inode = d_inode(dentry);
1079 	struct shmem_inode_info *info = SHMEM_I(inode);
1080 	int error;
1081 
1082 	error = setattr_prepare(&init_user_ns, dentry, attr);
1083 	if (error)
1084 		return error;
1085 
1086 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1087 		loff_t oldsize = inode->i_size;
1088 		loff_t newsize = attr->ia_size;
1089 
1090 		/* protected by i_rwsem */
1091 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1092 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1093 			return -EPERM;
1094 
1095 		if (newsize != oldsize) {
1096 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1097 					oldsize, newsize);
1098 			if (error)
1099 				return error;
1100 			i_size_write(inode, newsize);
1101 			inode->i_ctime = inode->i_mtime = current_time(inode);
1102 		}
1103 		if (newsize <= oldsize) {
1104 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1105 			if (oldsize > holebegin)
1106 				unmap_mapping_range(inode->i_mapping,
1107 							holebegin, 0, 1);
1108 			if (info->alloced)
1109 				shmem_truncate_range(inode,
1110 							newsize, (loff_t)-1);
1111 			/* unmap again to remove racily COWed private pages */
1112 			if (oldsize > holebegin)
1113 				unmap_mapping_range(inode->i_mapping,
1114 							holebegin, 0, 1);
1115 		}
1116 	}
1117 
1118 	setattr_copy(&init_user_ns, inode, attr);
1119 	if (attr->ia_valid & ATTR_MODE)
1120 		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1121 	return error;
1122 }
1123 
1124 static void shmem_evict_inode(struct inode *inode)
1125 {
1126 	struct shmem_inode_info *info = SHMEM_I(inode);
1127 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1128 
1129 	if (shmem_mapping(inode->i_mapping)) {
1130 		shmem_unacct_size(info->flags, inode->i_size);
1131 		inode->i_size = 0;
1132 		shmem_truncate_range(inode, 0, (loff_t)-1);
1133 		if (!list_empty(&info->shrinklist)) {
1134 			spin_lock(&sbinfo->shrinklist_lock);
1135 			if (!list_empty(&info->shrinklist)) {
1136 				list_del_init(&info->shrinklist);
1137 				sbinfo->shrinklist_len--;
1138 			}
1139 			spin_unlock(&sbinfo->shrinklist_lock);
1140 		}
1141 		while (!list_empty(&info->swaplist)) {
1142 			/* Wait while shmem_unuse() is scanning this inode... */
1143 			wait_var_event(&info->stop_eviction,
1144 				       !atomic_read(&info->stop_eviction));
1145 			mutex_lock(&shmem_swaplist_mutex);
1146 			/* ...but beware of the race if we peeked too early */
1147 			if (!atomic_read(&info->stop_eviction))
1148 				list_del_init(&info->swaplist);
1149 			mutex_unlock(&shmem_swaplist_mutex);
1150 		}
1151 	}
1152 
1153 	simple_xattrs_free(&info->xattrs);
1154 	WARN_ON(inode->i_blocks);
1155 	shmem_free_inode(inode->i_sb);
1156 	clear_inode(inode);
1157 }
1158 
1159 static int shmem_find_swap_entries(struct address_space *mapping,
1160 				   pgoff_t start, unsigned int nr_entries,
1161 				   struct page **entries, pgoff_t *indices,
1162 				   unsigned int type)
1163 {
1164 	XA_STATE(xas, &mapping->i_pages, start);
1165 	struct page *page;
1166 	swp_entry_t entry;
1167 	unsigned int ret = 0;
1168 
1169 	if (!nr_entries)
1170 		return 0;
1171 
1172 	rcu_read_lock();
1173 	xas_for_each(&xas, page, ULONG_MAX) {
1174 		if (xas_retry(&xas, page))
1175 			continue;
1176 
1177 		if (!xa_is_value(page))
1178 			continue;
1179 
1180 		entry = radix_to_swp_entry(page);
1181 		if (swp_type(entry) != type)
1182 			continue;
1183 
1184 		indices[ret] = xas.xa_index;
1185 		entries[ret] = page;
1186 
1187 		if (need_resched()) {
1188 			xas_pause(&xas);
1189 			cond_resched_rcu();
1190 		}
1191 		if (++ret == nr_entries)
1192 			break;
1193 	}
1194 	rcu_read_unlock();
1195 
1196 	return ret;
1197 }
1198 
1199 /*
1200  * Move the swapped pages for an inode to page cache. Returns the count
1201  * of pages swapped in, or the error in case of failure.
1202  */
1203 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1204 				    pgoff_t *indices)
1205 {
1206 	int i = 0;
1207 	int ret = 0;
1208 	int error = 0;
1209 	struct address_space *mapping = inode->i_mapping;
1210 
1211 	for (i = 0; i < pvec.nr; i++) {
1212 		struct page *page = pvec.pages[i];
1213 
1214 		if (!xa_is_value(page))
1215 			continue;
1216 		error = shmem_swapin_page(inode, indices[i],
1217 					  &page, SGP_CACHE,
1218 					  mapping_gfp_mask(mapping),
1219 					  NULL, NULL);
1220 		if (error == 0) {
1221 			unlock_page(page);
1222 			put_page(page);
1223 			ret++;
1224 		}
1225 		if (error == -ENOMEM)
1226 			break;
1227 		error = 0;
1228 	}
1229 	return error ? error : ret;
1230 }
1231 
1232 /*
1233  * If swap found in inode, free it and move page from swapcache to filecache.
1234  */
1235 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1236 {
1237 	struct address_space *mapping = inode->i_mapping;
1238 	pgoff_t start = 0;
1239 	struct pagevec pvec;
1240 	pgoff_t indices[PAGEVEC_SIZE];
1241 	int ret = 0;
1242 
1243 	pagevec_init(&pvec);
1244 	do {
1245 		unsigned int nr_entries = PAGEVEC_SIZE;
1246 
1247 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1248 						  pvec.pages, indices, type);
1249 		if (pvec.nr == 0) {
1250 			ret = 0;
1251 			break;
1252 		}
1253 
1254 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1255 		if (ret < 0)
1256 			break;
1257 
1258 		start = indices[pvec.nr - 1];
1259 	} while (true);
1260 
1261 	return ret;
1262 }
1263 
1264 /*
1265  * Read all the shared memory data that resides in the swap
1266  * device 'type' back into memory, so the swap device can be
1267  * unused.
1268  */
1269 int shmem_unuse(unsigned int type)
1270 {
1271 	struct shmem_inode_info *info, *next;
1272 	int error = 0;
1273 
1274 	if (list_empty(&shmem_swaplist))
1275 		return 0;
1276 
1277 	mutex_lock(&shmem_swaplist_mutex);
1278 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1279 		if (!info->swapped) {
1280 			list_del_init(&info->swaplist);
1281 			continue;
1282 		}
1283 		/*
1284 		 * Drop the swaplist mutex while searching the inode for swap;
1285 		 * but before doing so, make sure shmem_evict_inode() will not
1286 		 * remove placeholder inode from swaplist, nor let it be freed
1287 		 * (igrab() would protect from unlink, but not from unmount).
1288 		 */
1289 		atomic_inc(&info->stop_eviction);
1290 		mutex_unlock(&shmem_swaplist_mutex);
1291 
1292 		error = shmem_unuse_inode(&info->vfs_inode, type);
1293 		cond_resched();
1294 
1295 		mutex_lock(&shmem_swaplist_mutex);
1296 		next = list_next_entry(info, swaplist);
1297 		if (!info->swapped)
1298 			list_del_init(&info->swaplist);
1299 		if (atomic_dec_and_test(&info->stop_eviction))
1300 			wake_up_var(&info->stop_eviction);
1301 		if (error)
1302 			break;
1303 	}
1304 	mutex_unlock(&shmem_swaplist_mutex);
1305 
1306 	return error;
1307 }
1308 
1309 /*
1310  * Move the page from the page cache to the swap cache.
1311  */
1312 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1313 {
1314 	struct shmem_inode_info *info;
1315 	struct address_space *mapping;
1316 	struct inode *inode;
1317 	swp_entry_t swap;
1318 	pgoff_t index;
1319 
1320 	/*
1321 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1322 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1323 	 * and its shmem_writeback() needs them to be split when swapping.
1324 	 */
1325 	if (PageTransCompound(page)) {
1326 		/* Ensure the subpages are still dirty */
1327 		SetPageDirty(page);
1328 		if (split_huge_page(page) < 0)
1329 			goto redirty;
1330 		ClearPageDirty(page);
1331 	}
1332 
1333 	BUG_ON(!PageLocked(page));
1334 	mapping = page->mapping;
1335 	index = page->index;
1336 	inode = mapping->host;
1337 	info = SHMEM_I(inode);
1338 	if (info->flags & VM_LOCKED)
1339 		goto redirty;
1340 	if (!total_swap_pages)
1341 		goto redirty;
1342 
1343 	/*
1344 	 * Our capabilities prevent regular writeback or sync from ever calling
1345 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1346 	 * its underlying filesystem, in which case tmpfs should write out to
1347 	 * swap only in response to memory pressure, and not for the writeback
1348 	 * threads or sync.
1349 	 */
1350 	if (!wbc->for_reclaim) {
1351 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1352 		goto redirty;
1353 	}
1354 
1355 	/*
1356 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1357 	 * value into swapfile.c, the only way we can correctly account for a
1358 	 * fallocated page arriving here is now to initialize it and write it.
1359 	 *
1360 	 * That's okay for a page already fallocated earlier, but if we have
1361 	 * not yet completed the fallocation, then (a) we want to keep track
1362 	 * of this page in case we have to undo it, and (b) it may not be a
1363 	 * good idea to continue anyway, once we're pushing into swap.  So
1364 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1365 	 */
1366 	if (!PageUptodate(page)) {
1367 		if (inode->i_private) {
1368 			struct shmem_falloc *shmem_falloc;
1369 			spin_lock(&inode->i_lock);
1370 			shmem_falloc = inode->i_private;
1371 			if (shmem_falloc &&
1372 			    !shmem_falloc->waitq &&
1373 			    index >= shmem_falloc->start &&
1374 			    index < shmem_falloc->next)
1375 				shmem_falloc->nr_unswapped++;
1376 			else
1377 				shmem_falloc = NULL;
1378 			spin_unlock(&inode->i_lock);
1379 			if (shmem_falloc)
1380 				goto redirty;
1381 		}
1382 		clear_highpage(page);
1383 		flush_dcache_page(page);
1384 		SetPageUptodate(page);
1385 	}
1386 
1387 	swap = get_swap_page(page);
1388 	if (!swap.val)
1389 		goto redirty;
1390 
1391 	/*
1392 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1393 	 * if it's not already there.  Do it now before the page is
1394 	 * moved to swap cache, when its pagelock no longer protects
1395 	 * the inode from eviction.  But don't unlock the mutex until
1396 	 * we've incremented swapped, because shmem_unuse_inode() will
1397 	 * prune a !swapped inode from the swaplist under this mutex.
1398 	 */
1399 	mutex_lock(&shmem_swaplist_mutex);
1400 	if (list_empty(&info->swaplist))
1401 		list_add(&info->swaplist, &shmem_swaplist);
1402 
1403 	if (add_to_swap_cache(page, swap,
1404 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1405 			NULL) == 0) {
1406 		spin_lock_irq(&info->lock);
1407 		shmem_recalc_inode(inode);
1408 		info->swapped++;
1409 		spin_unlock_irq(&info->lock);
1410 
1411 		swap_shmem_alloc(swap);
1412 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1413 
1414 		mutex_unlock(&shmem_swaplist_mutex);
1415 		BUG_ON(page_mapped(page));
1416 		swap_writepage(page, wbc);
1417 		return 0;
1418 	}
1419 
1420 	mutex_unlock(&shmem_swaplist_mutex);
1421 	put_swap_page(page, swap);
1422 redirty:
1423 	set_page_dirty(page);
1424 	if (wbc->for_reclaim)
1425 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1426 	unlock_page(page);
1427 	return 0;
1428 }
1429 
1430 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1431 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1432 {
1433 	char buffer[64];
1434 
1435 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1436 		return;		/* show nothing */
1437 
1438 	mpol_to_str(buffer, sizeof(buffer), mpol);
1439 
1440 	seq_printf(seq, ",mpol=%s", buffer);
1441 }
1442 
1443 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1444 {
1445 	struct mempolicy *mpol = NULL;
1446 	if (sbinfo->mpol) {
1447 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1448 		mpol = sbinfo->mpol;
1449 		mpol_get(mpol);
1450 		raw_spin_unlock(&sbinfo->stat_lock);
1451 	}
1452 	return mpol;
1453 }
1454 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1455 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1456 {
1457 }
1458 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1459 {
1460 	return NULL;
1461 }
1462 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1463 #ifndef CONFIG_NUMA
1464 #define vm_policy vm_private_data
1465 #endif
1466 
1467 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1468 		struct shmem_inode_info *info, pgoff_t index)
1469 {
1470 	/* Create a pseudo vma that just contains the policy */
1471 	vma_init(vma, NULL);
1472 	/* Bias interleave by inode number to distribute better across nodes */
1473 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1474 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1475 }
1476 
1477 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1478 {
1479 	/* Drop reference taken by mpol_shared_policy_lookup() */
1480 	mpol_cond_put(vma->vm_policy);
1481 }
1482 
1483 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1484 			struct shmem_inode_info *info, pgoff_t index)
1485 {
1486 	struct vm_area_struct pvma;
1487 	struct page *page;
1488 	struct vm_fault vmf = {
1489 		.vma = &pvma,
1490 	};
1491 
1492 	shmem_pseudo_vma_init(&pvma, info, index);
1493 	page = swap_cluster_readahead(swap, gfp, &vmf);
1494 	shmem_pseudo_vma_destroy(&pvma);
1495 
1496 	return page;
1497 }
1498 
1499 /*
1500  * Make sure huge_gfp is always more limited than limit_gfp.
1501  * Some of the flags set permissions, while others set limitations.
1502  */
1503 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1504 {
1505 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1506 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1507 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1508 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1509 
1510 	/* Allow allocations only from the originally specified zones. */
1511 	result |= zoneflags;
1512 
1513 	/*
1514 	 * Minimize the result gfp by taking the union with the deny flags,
1515 	 * and the intersection of the allow flags.
1516 	 */
1517 	result |= (limit_gfp & denyflags);
1518 	result |= (huge_gfp & limit_gfp) & allowflags;
1519 
1520 	return result;
1521 }
1522 
1523 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1524 		struct shmem_inode_info *info, pgoff_t index)
1525 {
1526 	struct vm_area_struct pvma;
1527 	struct address_space *mapping = info->vfs_inode.i_mapping;
1528 	pgoff_t hindex;
1529 	struct page *page;
1530 
1531 	hindex = round_down(index, HPAGE_PMD_NR);
1532 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1533 								XA_PRESENT))
1534 		return NULL;
1535 
1536 	shmem_pseudo_vma_init(&pvma, info, hindex);
1537 	page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1538 	shmem_pseudo_vma_destroy(&pvma);
1539 	if (page)
1540 		prep_transhuge_page(page);
1541 	else
1542 		count_vm_event(THP_FILE_FALLBACK);
1543 	return page;
1544 }
1545 
1546 static struct page *shmem_alloc_page(gfp_t gfp,
1547 			struct shmem_inode_info *info, pgoff_t index)
1548 {
1549 	struct vm_area_struct pvma;
1550 	struct page *page;
1551 
1552 	shmem_pseudo_vma_init(&pvma, info, index);
1553 	page = alloc_page_vma(gfp, &pvma, 0);
1554 	shmem_pseudo_vma_destroy(&pvma);
1555 
1556 	return page;
1557 }
1558 
1559 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1560 		struct inode *inode,
1561 		pgoff_t index, bool huge)
1562 {
1563 	struct shmem_inode_info *info = SHMEM_I(inode);
1564 	struct page *page;
1565 	int nr;
1566 	int err = -ENOSPC;
1567 
1568 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1569 		huge = false;
1570 	nr = huge ? HPAGE_PMD_NR : 1;
1571 
1572 	if (!shmem_inode_acct_block(inode, nr))
1573 		goto failed;
1574 
1575 	if (huge)
1576 		page = shmem_alloc_hugepage(gfp, info, index);
1577 	else
1578 		page = shmem_alloc_page(gfp, info, index);
1579 	if (page) {
1580 		__SetPageLocked(page);
1581 		__SetPageSwapBacked(page);
1582 		return page;
1583 	}
1584 
1585 	err = -ENOMEM;
1586 	shmem_inode_unacct_blocks(inode, nr);
1587 failed:
1588 	return ERR_PTR(err);
1589 }
1590 
1591 /*
1592  * When a page is moved from swapcache to shmem filecache (either by the
1593  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1594  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1595  * ignorance of the mapping it belongs to.  If that mapping has special
1596  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1597  * we may need to copy to a suitable page before moving to filecache.
1598  *
1599  * In a future release, this may well be extended to respect cpuset and
1600  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1601  * but for now it is a simple matter of zone.
1602  */
1603 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1604 {
1605 	return page_zonenum(page) > gfp_zone(gfp);
1606 }
1607 
1608 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1609 				struct shmem_inode_info *info, pgoff_t index)
1610 {
1611 	struct page *oldpage, *newpage;
1612 	struct folio *old, *new;
1613 	struct address_space *swap_mapping;
1614 	swp_entry_t entry;
1615 	pgoff_t swap_index;
1616 	int error;
1617 
1618 	oldpage = *pagep;
1619 	entry.val = page_private(oldpage);
1620 	swap_index = swp_offset(entry);
1621 	swap_mapping = page_mapping(oldpage);
1622 
1623 	/*
1624 	 * We have arrived here because our zones are constrained, so don't
1625 	 * limit chance of success by further cpuset and node constraints.
1626 	 */
1627 	gfp &= ~GFP_CONSTRAINT_MASK;
1628 	newpage = shmem_alloc_page(gfp, info, index);
1629 	if (!newpage)
1630 		return -ENOMEM;
1631 
1632 	get_page(newpage);
1633 	copy_highpage(newpage, oldpage);
1634 	flush_dcache_page(newpage);
1635 
1636 	__SetPageLocked(newpage);
1637 	__SetPageSwapBacked(newpage);
1638 	SetPageUptodate(newpage);
1639 	set_page_private(newpage, entry.val);
1640 	SetPageSwapCache(newpage);
1641 
1642 	/*
1643 	 * Our caller will very soon move newpage out of swapcache, but it's
1644 	 * a nice clean interface for us to replace oldpage by newpage there.
1645 	 */
1646 	xa_lock_irq(&swap_mapping->i_pages);
1647 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1648 	if (!error) {
1649 		old = page_folio(oldpage);
1650 		new = page_folio(newpage);
1651 		mem_cgroup_migrate(old, new);
1652 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1653 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1654 	}
1655 	xa_unlock_irq(&swap_mapping->i_pages);
1656 
1657 	if (unlikely(error)) {
1658 		/*
1659 		 * Is this possible?  I think not, now that our callers check
1660 		 * both PageSwapCache and page_private after getting page lock;
1661 		 * but be defensive.  Reverse old to newpage for clear and free.
1662 		 */
1663 		oldpage = newpage;
1664 	} else {
1665 		lru_cache_add(newpage);
1666 		*pagep = newpage;
1667 	}
1668 
1669 	ClearPageSwapCache(oldpage);
1670 	set_page_private(oldpage, 0);
1671 
1672 	unlock_page(oldpage);
1673 	put_page(oldpage);
1674 	put_page(oldpage);
1675 	return error;
1676 }
1677 
1678 /*
1679  * Swap in the page pointed to by *pagep.
1680  * Caller has to make sure that *pagep contains a valid swapped page.
1681  * Returns 0 and the page in pagep if success. On failure, returns the
1682  * error code and NULL in *pagep.
1683  */
1684 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1685 			     struct page **pagep, enum sgp_type sgp,
1686 			     gfp_t gfp, struct vm_area_struct *vma,
1687 			     vm_fault_t *fault_type)
1688 {
1689 	struct address_space *mapping = inode->i_mapping;
1690 	struct shmem_inode_info *info = SHMEM_I(inode);
1691 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1692 	struct page *page;
1693 	swp_entry_t swap;
1694 	int error;
1695 
1696 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1697 	swap = radix_to_swp_entry(*pagep);
1698 	*pagep = NULL;
1699 
1700 	/* Look it up and read it in.. */
1701 	page = lookup_swap_cache(swap, NULL, 0);
1702 	if (!page) {
1703 		/* Or update major stats only when swapin succeeds?? */
1704 		if (fault_type) {
1705 			*fault_type |= VM_FAULT_MAJOR;
1706 			count_vm_event(PGMAJFAULT);
1707 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1708 		}
1709 		/* Here we actually start the io */
1710 		page = shmem_swapin(swap, gfp, info, index);
1711 		if (!page) {
1712 			error = -ENOMEM;
1713 			goto failed;
1714 		}
1715 	}
1716 
1717 	/* We have to do this with page locked to prevent races */
1718 	lock_page(page);
1719 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1720 	    !shmem_confirm_swap(mapping, index, swap)) {
1721 		error = -EEXIST;
1722 		goto unlock;
1723 	}
1724 	if (!PageUptodate(page)) {
1725 		error = -EIO;
1726 		goto failed;
1727 	}
1728 	wait_on_page_writeback(page);
1729 
1730 	/*
1731 	 * Some architectures may have to restore extra metadata to the
1732 	 * physical page after reading from swap.
1733 	 */
1734 	arch_swap_restore(swap, page);
1735 
1736 	if (shmem_should_replace_page(page, gfp)) {
1737 		error = shmem_replace_page(&page, gfp, info, index);
1738 		if (error)
1739 			goto failed;
1740 	}
1741 
1742 	error = shmem_add_to_page_cache(page, mapping, index,
1743 					swp_to_radix_entry(swap), gfp,
1744 					charge_mm);
1745 	if (error)
1746 		goto failed;
1747 
1748 	spin_lock_irq(&info->lock);
1749 	info->swapped--;
1750 	shmem_recalc_inode(inode);
1751 	spin_unlock_irq(&info->lock);
1752 
1753 	if (sgp == SGP_WRITE)
1754 		mark_page_accessed(page);
1755 
1756 	delete_from_swap_cache(page);
1757 	set_page_dirty(page);
1758 	swap_free(swap);
1759 
1760 	*pagep = page;
1761 	return 0;
1762 failed:
1763 	if (!shmem_confirm_swap(mapping, index, swap))
1764 		error = -EEXIST;
1765 unlock:
1766 	if (page) {
1767 		unlock_page(page);
1768 		put_page(page);
1769 	}
1770 
1771 	return error;
1772 }
1773 
1774 /*
1775  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1776  *
1777  * If we allocate a new one we do not mark it dirty. That's up to the
1778  * vm. If we swap it in we mark it dirty since we also free the swap
1779  * entry since a page cannot live in both the swap and page cache.
1780  *
1781  * vma, vmf, and fault_type are only supplied by shmem_fault:
1782  * otherwise they are NULL.
1783  */
1784 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1785 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1786 	struct vm_area_struct *vma, struct vm_fault *vmf,
1787 			vm_fault_t *fault_type)
1788 {
1789 	struct address_space *mapping = inode->i_mapping;
1790 	struct shmem_inode_info *info = SHMEM_I(inode);
1791 	struct shmem_sb_info *sbinfo;
1792 	struct mm_struct *charge_mm;
1793 	struct page *page;
1794 	pgoff_t hindex = index;
1795 	gfp_t huge_gfp;
1796 	int error;
1797 	int once = 0;
1798 	int alloced = 0;
1799 
1800 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1801 		return -EFBIG;
1802 repeat:
1803 	if (sgp <= SGP_CACHE &&
1804 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1805 		return -EINVAL;
1806 	}
1807 
1808 	sbinfo = SHMEM_SB(inode->i_sb);
1809 	charge_mm = vma ? vma->vm_mm : NULL;
1810 
1811 	page = pagecache_get_page(mapping, index,
1812 					FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1813 
1814 	if (page && vma && userfaultfd_minor(vma)) {
1815 		if (!xa_is_value(page)) {
1816 			unlock_page(page);
1817 			put_page(page);
1818 		}
1819 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1820 		return 0;
1821 	}
1822 
1823 	if (xa_is_value(page)) {
1824 		error = shmem_swapin_page(inode, index, &page,
1825 					  sgp, gfp, vma, fault_type);
1826 		if (error == -EEXIST)
1827 			goto repeat;
1828 
1829 		*pagep = page;
1830 		return error;
1831 	}
1832 
1833 	if (page) {
1834 		hindex = page->index;
1835 		if (sgp == SGP_WRITE)
1836 			mark_page_accessed(page);
1837 		if (PageUptodate(page))
1838 			goto out;
1839 		/* fallocated page */
1840 		if (sgp != SGP_READ)
1841 			goto clear;
1842 		unlock_page(page);
1843 		put_page(page);
1844 	}
1845 
1846 	/*
1847 	 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1848 	 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1849 	 */
1850 	*pagep = NULL;
1851 	if (sgp == SGP_READ)
1852 		return 0;
1853 	if (sgp == SGP_NOALLOC)
1854 		return -ENOENT;
1855 
1856 	/*
1857 	 * Fast cache lookup and swap lookup did not find it: allocate.
1858 	 */
1859 
1860 	if (vma && userfaultfd_missing(vma)) {
1861 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1862 		return 0;
1863 	}
1864 
1865 	if (!shmem_is_huge(vma, inode, index))
1866 		goto alloc_nohuge;
1867 
1868 	huge_gfp = vma_thp_gfp_mask(vma);
1869 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1870 	page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1871 	if (IS_ERR(page)) {
1872 alloc_nohuge:
1873 		page = shmem_alloc_and_acct_page(gfp, inode,
1874 						 index, false);
1875 	}
1876 	if (IS_ERR(page)) {
1877 		int retry = 5;
1878 
1879 		error = PTR_ERR(page);
1880 		page = NULL;
1881 		if (error != -ENOSPC)
1882 			goto unlock;
1883 		/*
1884 		 * Try to reclaim some space by splitting a huge page
1885 		 * beyond i_size on the filesystem.
1886 		 */
1887 		while (retry--) {
1888 			int ret;
1889 
1890 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1891 			if (ret == SHRINK_STOP)
1892 				break;
1893 			if (ret)
1894 				goto alloc_nohuge;
1895 		}
1896 		goto unlock;
1897 	}
1898 
1899 	if (PageTransHuge(page))
1900 		hindex = round_down(index, HPAGE_PMD_NR);
1901 	else
1902 		hindex = index;
1903 
1904 	if (sgp == SGP_WRITE)
1905 		__SetPageReferenced(page);
1906 
1907 	error = shmem_add_to_page_cache(page, mapping, hindex,
1908 					NULL, gfp & GFP_RECLAIM_MASK,
1909 					charge_mm);
1910 	if (error)
1911 		goto unacct;
1912 	lru_cache_add(page);
1913 
1914 	spin_lock_irq(&info->lock);
1915 	info->alloced += compound_nr(page);
1916 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1917 	shmem_recalc_inode(inode);
1918 	spin_unlock_irq(&info->lock);
1919 	alloced = true;
1920 
1921 	if (PageTransHuge(page) &&
1922 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1923 			hindex + HPAGE_PMD_NR - 1) {
1924 		/*
1925 		 * Part of the huge page is beyond i_size: subject
1926 		 * to shrink under memory pressure.
1927 		 */
1928 		spin_lock(&sbinfo->shrinklist_lock);
1929 		/*
1930 		 * _careful to defend against unlocked access to
1931 		 * ->shrink_list in shmem_unused_huge_shrink()
1932 		 */
1933 		if (list_empty_careful(&info->shrinklist)) {
1934 			list_add_tail(&info->shrinklist,
1935 				      &sbinfo->shrinklist);
1936 			sbinfo->shrinklist_len++;
1937 		}
1938 		spin_unlock(&sbinfo->shrinklist_lock);
1939 	}
1940 
1941 	/*
1942 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1943 	 */
1944 	if (sgp == SGP_FALLOC)
1945 		sgp = SGP_WRITE;
1946 clear:
1947 	/*
1948 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1949 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1950 	 * it now, lest undo on failure cancel our earlier guarantee.
1951 	 */
1952 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1953 		int i;
1954 
1955 		for (i = 0; i < compound_nr(page); i++) {
1956 			clear_highpage(page + i);
1957 			flush_dcache_page(page + i);
1958 		}
1959 		SetPageUptodate(page);
1960 	}
1961 
1962 	/* Perhaps the file has been truncated since we checked */
1963 	if (sgp <= SGP_CACHE &&
1964 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1965 		if (alloced) {
1966 			ClearPageDirty(page);
1967 			delete_from_page_cache(page);
1968 			spin_lock_irq(&info->lock);
1969 			shmem_recalc_inode(inode);
1970 			spin_unlock_irq(&info->lock);
1971 		}
1972 		error = -EINVAL;
1973 		goto unlock;
1974 	}
1975 out:
1976 	*pagep = page + index - hindex;
1977 	return 0;
1978 
1979 	/*
1980 	 * Error recovery.
1981 	 */
1982 unacct:
1983 	shmem_inode_unacct_blocks(inode, compound_nr(page));
1984 
1985 	if (PageTransHuge(page)) {
1986 		unlock_page(page);
1987 		put_page(page);
1988 		goto alloc_nohuge;
1989 	}
1990 unlock:
1991 	if (page) {
1992 		unlock_page(page);
1993 		put_page(page);
1994 	}
1995 	if (error == -ENOSPC && !once++) {
1996 		spin_lock_irq(&info->lock);
1997 		shmem_recalc_inode(inode);
1998 		spin_unlock_irq(&info->lock);
1999 		goto repeat;
2000 	}
2001 	if (error == -EEXIST)
2002 		goto repeat;
2003 	return error;
2004 }
2005 
2006 /*
2007  * This is like autoremove_wake_function, but it removes the wait queue
2008  * entry unconditionally - even if something else had already woken the
2009  * target.
2010  */
2011 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2012 {
2013 	int ret = default_wake_function(wait, mode, sync, key);
2014 	list_del_init(&wait->entry);
2015 	return ret;
2016 }
2017 
2018 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2019 {
2020 	struct vm_area_struct *vma = vmf->vma;
2021 	struct inode *inode = file_inode(vma->vm_file);
2022 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2023 	int err;
2024 	vm_fault_t ret = VM_FAULT_LOCKED;
2025 
2026 	/*
2027 	 * Trinity finds that probing a hole which tmpfs is punching can
2028 	 * prevent the hole-punch from ever completing: which in turn
2029 	 * locks writers out with its hold on i_rwsem.  So refrain from
2030 	 * faulting pages into the hole while it's being punched.  Although
2031 	 * shmem_undo_range() does remove the additions, it may be unable to
2032 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2033 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2034 	 *
2035 	 * It does not matter if we sometimes reach this check just before the
2036 	 * hole-punch begins, so that one fault then races with the punch:
2037 	 * we just need to make racing faults a rare case.
2038 	 *
2039 	 * The implementation below would be much simpler if we just used a
2040 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2041 	 * and bloating every shmem inode for this unlikely case would be sad.
2042 	 */
2043 	if (unlikely(inode->i_private)) {
2044 		struct shmem_falloc *shmem_falloc;
2045 
2046 		spin_lock(&inode->i_lock);
2047 		shmem_falloc = inode->i_private;
2048 		if (shmem_falloc &&
2049 		    shmem_falloc->waitq &&
2050 		    vmf->pgoff >= shmem_falloc->start &&
2051 		    vmf->pgoff < shmem_falloc->next) {
2052 			struct file *fpin;
2053 			wait_queue_head_t *shmem_falloc_waitq;
2054 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2055 
2056 			ret = VM_FAULT_NOPAGE;
2057 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2058 			if (fpin)
2059 				ret = VM_FAULT_RETRY;
2060 
2061 			shmem_falloc_waitq = shmem_falloc->waitq;
2062 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2063 					TASK_UNINTERRUPTIBLE);
2064 			spin_unlock(&inode->i_lock);
2065 			schedule();
2066 
2067 			/*
2068 			 * shmem_falloc_waitq points into the shmem_fallocate()
2069 			 * stack of the hole-punching task: shmem_falloc_waitq
2070 			 * is usually invalid by the time we reach here, but
2071 			 * finish_wait() does not dereference it in that case;
2072 			 * though i_lock needed lest racing with wake_up_all().
2073 			 */
2074 			spin_lock(&inode->i_lock);
2075 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2076 			spin_unlock(&inode->i_lock);
2077 
2078 			if (fpin)
2079 				fput(fpin);
2080 			return ret;
2081 		}
2082 		spin_unlock(&inode->i_lock);
2083 	}
2084 
2085 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2086 				  gfp, vma, vmf, &ret);
2087 	if (err)
2088 		return vmf_error(err);
2089 	return ret;
2090 }
2091 
2092 unsigned long shmem_get_unmapped_area(struct file *file,
2093 				      unsigned long uaddr, unsigned long len,
2094 				      unsigned long pgoff, unsigned long flags)
2095 {
2096 	unsigned long (*get_area)(struct file *,
2097 		unsigned long, unsigned long, unsigned long, unsigned long);
2098 	unsigned long addr;
2099 	unsigned long offset;
2100 	unsigned long inflated_len;
2101 	unsigned long inflated_addr;
2102 	unsigned long inflated_offset;
2103 
2104 	if (len > TASK_SIZE)
2105 		return -ENOMEM;
2106 
2107 	get_area = current->mm->get_unmapped_area;
2108 	addr = get_area(file, uaddr, len, pgoff, flags);
2109 
2110 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2111 		return addr;
2112 	if (IS_ERR_VALUE(addr))
2113 		return addr;
2114 	if (addr & ~PAGE_MASK)
2115 		return addr;
2116 	if (addr > TASK_SIZE - len)
2117 		return addr;
2118 
2119 	if (shmem_huge == SHMEM_HUGE_DENY)
2120 		return addr;
2121 	if (len < HPAGE_PMD_SIZE)
2122 		return addr;
2123 	if (flags & MAP_FIXED)
2124 		return addr;
2125 	/*
2126 	 * Our priority is to support MAP_SHARED mapped hugely;
2127 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2128 	 * But if caller specified an address hint and we allocated area there
2129 	 * successfully, respect that as before.
2130 	 */
2131 	if (uaddr == addr)
2132 		return addr;
2133 
2134 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2135 		struct super_block *sb;
2136 
2137 		if (file) {
2138 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2139 			sb = file_inode(file)->i_sb;
2140 		} else {
2141 			/*
2142 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2143 			 * for "/dev/zero", to create a shared anonymous object.
2144 			 */
2145 			if (IS_ERR(shm_mnt))
2146 				return addr;
2147 			sb = shm_mnt->mnt_sb;
2148 		}
2149 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2150 			return addr;
2151 	}
2152 
2153 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2154 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2155 		return addr;
2156 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2157 		return addr;
2158 
2159 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2160 	if (inflated_len > TASK_SIZE)
2161 		return addr;
2162 	if (inflated_len < len)
2163 		return addr;
2164 
2165 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2166 	if (IS_ERR_VALUE(inflated_addr))
2167 		return addr;
2168 	if (inflated_addr & ~PAGE_MASK)
2169 		return addr;
2170 
2171 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2172 	inflated_addr += offset - inflated_offset;
2173 	if (inflated_offset > offset)
2174 		inflated_addr += HPAGE_PMD_SIZE;
2175 
2176 	if (inflated_addr > TASK_SIZE - len)
2177 		return addr;
2178 	return inflated_addr;
2179 }
2180 
2181 #ifdef CONFIG_NUMA
2182 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2183 {
2184 	struct inode *inode = file_inode(vma->vm_file);
2185 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2186 }
2187 
2188 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2189 					  unsigned long addr)
2190 {
2191 	struct inode *inode = file_inode(vma->vm_file);
2192 	pgoff_t index;
2193 
2194 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2195 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2196 }
2197 #endif
2198 
2199 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2200 {
2201 	struct inode *inode = file_inode(file);
2202 	struct shmem_inode_info *info = SHMEM_I(inode);
2203 	int retval = -ENOMEM;
2204 
2205 	/*
2206 	 * What serializes the accesses to info->flags?
2207 	 * ipc_lock_object() when called from shmctl_do_lock(),
2208 	 * no serialization needed when called from shm_destroy().
2209 	 */
2210 	if (lock && !(info->flags & VM_LOCKED)) {
2211 		if (!user_shm_lock(inode->i_size, ucounts))
2212 			goto out_nomem;
2213 		info->flags |= VM_LOCKED;
2214 		mapping_set_unevictable(file->f_mapping);
2215 	}
2216 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2217 		user_shm_unlock(inode->i_size, ucounts);
2218 		info->flags &= ~VM_LOCKED;
2219 		mapping_clear_unevictable(file->f_mapping);
2220 	}
2221 	retval = 0;
2222 
2223 out_nomem:
2224 	return retval;
2225 }
2226 
2227 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2228 {
2229 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2230 	int ret;
2231 
2232 	ret = seal_check_future_write(info->seals, vma);
2233 	if (ret)
2234 		return ret;
2235 
2236 	/* arm64 - allow memory tagging on RAM-based files */
2237 	vma->vm_flags |= VM_MTE_ALLOWED;
2238 
2239 	file_accessed(file);
2240 	vma->vm_ops = &shmem_vm_ops;
2241 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2242 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2243 			(vma->vm_end & HPAGE_PMD_MASK)) {
2244 		khugepaged_enter(vma, vma->vm_flags);
2245 	}
2246 	return 0;
2247 }
2248 
2249 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2250 				     umode_t mode, dev_t dev, unsigned long flags)
2251 {
2252 	struct inode *inode;
2253 	struct shmem_inode_info *info;
2254 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2255 	ino_t ino;
2256 
2257 	if (shmem_reserve_inode(sb, &ino))
2258 		return NULL;
2259 
2260 	inode = new_inode(sb);
2261 	if (inode) {
2262 		inode->i_ino = ino;
2263 		inode_init_owner(&init_user_ns, inode, dir, mode);
2264 		inode->i_blocks = 0;
2265 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2266 		inode->i_generation = prandom_u32();
2267 		info = SHMEM_I(inode);
2268 		memset(info, 0, (char *)inode - (char *)info);
2269 		spin_lock_init(&info->lock);
2270 		atomic_set(&info->stop_eviction, 0);
2271 		info->seals = F_SEAL_SEAL;
2272 		info->flags = flags & VM_NORESERVE;
2273 		info->i_crtime = inode->i_mtime;
2274 		INIT_LIST_HEAD(&info->shrinklist);
2275 		INIT_LIST_HEAD(&info->swaplist);
2276 		simple_xattrs_init(&info->xattrs);
2277 		cache_no_acl(inode);
2278 		mapping_set_large_folios(inode->i_mapping);
2279 
2280 		switch (mode & S_IFMT) {
2281 		default:
2282 			inode->i_op = &shmem_special_inode_operations;
2283 			init_special_inode(inode, mode, dev);
2284 			break;
2285 		case S_IFREG:
2286 			inode->i_mapping->a_ops = &shmem_aops;
2287 			inode->i_op = &shmem_inode_operations;
2288 			inode->i_fop = &shmem_file_operations;
2289 			mpol_shared_policy_init(&info->policy,
2290 						 shmem_get_sbmpol(sbinfo));
2291 			break;
2292 		case S_IFDIR:
2293 			inc_nlink(inode);
2294 			/* Some things misbehave if size == 0 on a directory */
2295 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2296 			inode->i_op = &shmem_dir_inode_operations;
2297 			inode->i_fop = &simple_dir_operations;
2298 			break;
2299 		case S_IFLNK:
2300 			/*
2301 			 * Must not load anything in the rbtree,
2302 			 * mpol_free_shared_policy will not be called.
2303 			 */
2304 			mpol_shared_policy_init(&info->policy, NULL);
2305 			break;
2306 		}
2307 
2308 		lockdep_annotate_inode_mutex_key(inode);
2309 	} else
2310 		shmem_free_inode(sb);
2311 	return inode;
2312 }
2313 
2314 #ifdef CONFIG_USERFAULTFD
2315 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2316 			   pmd_t *dst_pmd,
2317 			   struct vm_area_struct *dst_vma,
2318 			   unsigned long dst_addr,
2319 			   unsigned long src_addr,
2320 			   bool zeropage,
2321 			   struct page **pagep)
2322 {
2323 	struct inode *inode = file_inode(dst_vma->vm_file);
2324 	struct shmem_inode_info *info = SHMEM_I(inode);
2325 	struct address_space *mapping = inode->i_mapping;
2326 	gfp_t gfp = mapping_gfp_mask(mapping);
2327 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2328 	void *page_kaddr;
2329 	struct page *page;
2330 	int ret;
2331 	pgoff_t max_off;
2332 
2333 	if (!shmem_inode_acct_block(inode, 1)) {
2334 		/*
2335 		 * We may have got a page, returned -ENOENT triggering a retry,
2336 		 * and now we find ourselves with -ENOMEM. Release the page, to
2337 		 * avoid a BUG_ON in our caller.
2338 		 */
2339 		if (unlikely(*pagep)) {
2340 			put_page(*pagep);
2341 			*pagep = NULL;
2342 		}
2343 		return -ENOMEM;
2344 	}
2345 
2346 	if (!*pagep) {
2347 		ret = -ENOMEM;
2348 		page = shmem_alloc_page(gfp, info, pgoff);
2349 		if (!page)
2350 			goto out_unacct_blocks;
2351 
2352 		if (!zeropage) {	/* COPY */
2353 			page_kaddr = kmap_atomic(page);
2354 			ret = copy_from_user(page_kaddr,
2355 					     (const void __user *)src_addr,
2356 					     PAGE_SIZE);
2357 			kunmap_atomic(page_kaddr);
2358 
2359 			/* fallback to copy_from_user outside mmap_lock */
2360 			if (unlikely(ret)) {
2361 				*pagep = page;
2362 				ret = -ENOENT;
2363 				/* don't free the page */
2364 				goto out_unacct_blocks;
2365 			}
2366 		} else {		/* ZEROPAGE */
2367 			clear_highpage(page);
2368 		}
2369 	} else {
2370 		page = *pagep;
2371 		*pagep = NULL;
2372 	}
2373 
2374 	VM_BUG_ON(PageLocked(page));
2375 	VM_BUG_ON(PageSwapBacked(page));
2376 	__SetPageLocked(page);
2377 	__SetPageSwapBacked(page);
2378 	__SetPageUptodate(page);
2379 
2380 	ret = -EFAULT;
2381 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2382 	if (unlikely(pgoff >= max_off))
2383 		goto out_release;
2384 
2385 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2386 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2387 	if (ret)
2388 		goto out_release;
2389 
2390 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2391 				       page, true, false);
2392 	if (ret)
2393 		goto out_delete_from_cache;
2394 
2395 	spin_lock_irq(&info->lock);
2396 	info->alloced++;
2397 	inode->i_blocks += BLOCKS_PER_PAGE;
2398 	shmem_recalc_inode(inode);
2399 	spin_unlock_irq(&info->lock);
2400 
2401 	unlock_page(page);
2402 	return 0;
2403 out_delete_from_cache:
2404 	delete_from_page_cache(page);
2405 out_release:
2406 	unlock_page(page);
2407 	put_page(page);
2408 out_unacct_blocks:
2409 	shmem_inode_unacct_blocks(inode, 1);
2410 	return ret;
2411 }
2412 #endif /* CONFIG_USERFAULTFD */
2413 
2414 #ifdef CONFIG_TMPFS
2415 static const struct inode_operations shmem_symlink_inode_operations;
2416 static const struct inode_operations shmem_short_symlink_operations;
2417 
2418 #ifdef CONFIG_TMPFS_XATTR
2419 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2420 #else
2421 #define shmem_initxattrs NULL
2422 #endif
2423 
2424 static int
2425 shmem_write_begin(struct file *file, struct address_space *mapping,
2426 			loff_t pos, unsigned len, unsigned flags,
2427 			struct page **pagep, void **fsdata)
2428 {
2429 	struct inode *inode = mapping->host;
2430 	struct shmem_inode_info *info = SHMEM_I(inode);
2431 	pgoff_t index = pos >> PAGE_SHIFT;
2432 	int ret = 0;
2433 
2434 	/* i_rwsem is held by caller */
2435 	if (unlikely(info->seals & (F_SEAL_GROW |
2436 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2437 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2438 			return -EPERM;
2439 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2440 			return -EPERM;
2441 	}
2442 
2443 	ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2444 
2445 	if (ret)
2446 		return ret;
2447 
2448 	if (PageHWPoison(*pagep)) {
2449 		unlock_page(*pagep);
2450 		put_page(*pagep);
2451 		*pagep = NULL;
2452 		return -EIO;
2453 	}
2454 
2455 	return 0;
2456 }
2457 
2458 static int
2459 shmem_write_end(struct file *file, struct address_space *mapping,
2460 			loff_t pos, unsigned len, unsigned copied,
2461 			struct page *page, void *fsdata)
2462 {
2463 	struct inode *inode = mapping->host;
2464 
2465 	if (pos + copied > inode->i_size)
2466 		i_size_write(inode, pos + copied);
2467 
2468 	if (!PageUptodate(page)) {
2469 		struct page *head = compound_head(page);
2470 		if (PageTransCompound(page)) {
2471 			int i;
2472 
2473 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2474 				if (head + i == page)
2475 					continue;
2476 				clear_highpage(head + i);
2477 				flush_dcache_page(head + i);
2478 			}
2479 		}
2480 		if (copied < PAGE_SIZE) {
2481 			unsigned from = pos & (PAGE_SIZE - 1);
2482 			zero_user_segments(page, 0, from,
2483 					from + copied, PAGE_SIZE);
2484 		}
2485 		SetPageUptodate(head);
2486 	}
2487 	set_page_dirty(page);
2488 	unlock_page(page);
2489 	put_page(page);
2490 
2491 	return copied;
2492 }
2493 
2494 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2495 {
2496 	struct file *file = iocb->ki_filp;
2497 	struct inode *inode = file_inode(file);
2498 	struct address_space *mapping = inode->i_mapping;
2499 	pgoff_t index;
2500 	unsigned long offset;
2501 	enum sgp_type sgp = SGP_READ;
2502 	int error = 0;
2503 	ssize_t retval = 0;
2504 	loff_t *ppos = &iocb->ki_pos;
2505 
2506 	/*
2507 	 * Might this read be for a stacking filesystem?  Then when reading
2508 	 * holes of a sparse file, we actually need to allocate those pages,
2509 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2510 	 */
2511 	if (!iter_is_iovec(to))
2512 		sgp = SGP_CACHE;
2513 
2514 	index = *ppos >> PAGE_SHIFT;
2515 	offset = *ppos & ~PAGE_MASK;
2516 
2517 	for (;;) {
2518 		struct page *page = NULL;
2519 		pgoff_t end_index;
2520 		unsigned long nr, ret;
2521 		loff_t i_size = i_size_read(inode);
2522 
2523 		end_index = i_size >> PAGE_SHIFT;
2524 		if (index > end_index)
2525 			break;
2526 		if (index == end_index) {
2527 			nr = i_size & ~PAGE_MASK;
2528 			if (nr <= offset)
2529 				break;
2530 		}
2531 
2532 		error = shmem_getpage(inode, index, &page, sgp);
2533 		if (error) {
2534 			if (error == -EINVAL)
2535 				error = 0;
2536 			break;
2537 		}
2538 		if (page) {
2539 			if (sgp == SGP_CACHE)
2540 				set_page_dirty(page);
2541 			unlock_page(page);
2542 
2543 			if (PageHWPoison(page)) {
2544 				put_page(page);
2545 				error = -EIO;
2546 				break;
2547 			}
2548 		}
2549 
2550 		/*
2551 		 * We must evaluate after, since reads (unlike writes)
2552 		 * are called without i_rwsem protection against truncate
2553 		 */
2554 		nr = PAGE_SIZE;
2555 		i_size = i_size_read(inode);
2556 		end_index = i_size >> PAGE_SHIFT;
2557 		if (index == end_index) {
2558 			nr = i_size & ~PAGE_MASK;
2559 			if (nr <= offset) {
2560 				if (page)
2561 					put_page(page);
2562 				break;
2563 			}
2564 		}
2565 		nr -= offset;
2566 
2567 		if (page) {
2568 			/*
2569 			 * If users can be writing to this page using arbitrary
2570 			 * virtual addresses, take care about potential aliasing
2571 			 * before reading the page on the kernel side.
2572 			 */
2573 			if (mapping_writably_mapped(mapping))
2574 				flush_dcache_page(page);
2575 			/*
2576 			 * Mark the page accessed if we read the beginning.
2577 			 */
2578 			if (!offset)
2579 				mark_page_accessed(page);
2580 		} else {
2581 			page = ZERO_PAGE(0);
2582 			get_page(page);
2583 		}
2584 
2585 		/*
2586 		 * Ok, we have the page, and it's up-to-date, so
2587 		 * now we can copy it to user space...
2588 		 */
2589 		ret = copy_page_to_iter(page, offset, nr, to);
2590 		retval += ret;
2591 		offset += ret;
2592 		index += offset >> PAGE_SHIFT;
2593 		offset &= ~PAGE_MASK;
2594 
2595 		put_page(page);
2596 		if (!iov_iter_count(to))
2597 			break;
2598 		if (ret < nr) {
2599 			error = -EFAULT;
2600 			break;
2601 		}
2602 		cond_resched();
2603 	}
2604 
2605 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2606 	file_accessed(file);
2607 	return retval ? retval : error;
2608 }
2609 
2610 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2611 {
2612 	struct address_space *mapping = file->f_mapping;
2613 	struct inode *inode = mapping->host;
2614 
2615 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2616 		return generic_file_llseek_size(file, offset, whence,
2617 					MAX_LFS_FILESIZE, i_size_read(inode));
2618 	if (offset < 0)
2619 		return -ENXIO;
2620 
2621 	inode_lock(inode);
2622 	/* We're holding i_rwsem so we can access i_size directly */
2623 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2624 	if (offset >= 0)
2625 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2626 	inode_unlock(inode);
2627 	return offset;
2628 }
2629 
2630 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2631 							 loff_t len)
2632 {
2633 	struct inode *inode = file_inode(file);
2634 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2635 	struct shmem_inode_info *info = SHMEM_I(inode);
2636 	struct shmem_falloc shmem_falloc;
2637 	pgoff_t start, index, end, undo_fallocend;
2638 	int error;
2639 
2640 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2641 		return -EOPNOTSUPP;
2642 
2643 	inode_lock(inode);
2644 
2645 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2646 		struct address_space *mapping = file->f_mapping;
2647 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2648 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2649 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2650 
2651 		/* protected by i_rwsem */
2652 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2653 			error = -EPERM;
2654 			goto out;
2655 		}
2656 
2657 		shmem_falloc.waitq = &shmem_falloc_waitq;
2658 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2659 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2660 		spin_lock(&inode->i_lock);
2661 		inode->i_private = &shmem_falloc;
2662 		spin_unlock(&inode->i_lock);
2663 
2664 		if ((u64)unmap_end > (u64)unmap_start)
2665 			unmap_mapping_range(mapping, unmap_start,
2666 					    1 + unmap_end - unmap_start, 0);
2667 		shmem_truncate_range(inode, offset, offset + len - 1);
2668 		/* No need to unmap again: hole-punching leaves COWed pages */
2669 
2670 		spin_lock(&inode->i_lock);
2671 		inode->i_private = NULL;
2672 		wake_up_all(&shmem_falloc_waitq);
2673 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2674 		spin_unlock(&inode->i_lock);
2675 		error = 0;
2676 		goto out;
2677 	}
2678 
2679 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2680 	error = inode_newsize_ok(inode, offset + len);
2681 	if (error)
2682 		goto out;
2683 
2684 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2685 		error = -EPERM;
2686 		goto out;
2687 	}
2688 
2689 	start = offset >> PAGE_SHIFT;
2690 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2691 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2692 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2693 		error = -ENOSPC;
2694 		goto out;
2695 	}
2696 
2697 	shmem_falloc.waitq = NULL;
2698 	shmem_falloc.start = start;
2699 	shmem_falloc.next  = start;
2700 	shmem_falloc.nr_falloced = 0;
2701 	shmem_falloc.nr_unswapped = 0;
2702 	spin_lock(&inode->i_lock);
2703 	inode->i_private = &shmem_falloc;
2704 	spin_unlock(&inode->i_lock);
2705 
2706 	/*
2707 	 * info->fallocend is only relevant when huge pages might be
2708 	 * involved: to prevent split_huge_page() freeing fallocated
2709 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2710 	 */
2711 	undo_fallocend = info->fallocend;
2712 	if (info->fallocend < end)
2713 		info->fallocend = end;
2714 
2715 	for (index = start; index < end; ) {
2716 		struct page *page;
2717 
2718 		/*
2719 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2720 		 * been interrupted because we are using up too much memory.
2721 		 */
2722 		if (signal_pending(current))
2723 			error = -EINTR;
2724 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2725 			error = -ENOMEM;
2726 		else
2727 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2728 		if (error) {
2729 			info->fallocend = undo_fallocend;
2730 			/* Remove the !PageUptodate pages we added */
2731 			if (index > start) {
2732 				shmem_undo_range(inode,
2733 				    (loff_t)start << PAGE_SHIFT,
2734 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2735 			}
2736 			goto undone;
2737 		}
2738 
2739 		index++;
2740 		/*
2741 		 * Here is a more important optimization than it appears:
2742 		 * a second SGP_FALLOC on the same huge page will clear it,
2743 		 * making it PageUptodate and un-undoable if we fail later.
2744 		 */
2745 		if (PageTransCompound(page)) {
2746 			index = round_up(index, HPAGE_PMD_NR);
2747 			/* Beware 32-bit wraparound */
2748 			if (!index)
2749 				index--;
2750 		}
2751 
2752 		/*
2753 		 * Inform shmem_writepage() how far we have reached.
2754 		 * No need for lock or barrier: we have the page lock.
2755 		 */
2756 		if (!PageUptodate(page))
2757 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2758 		shmem_falloc.next = index;
2759 
2760 		/*
2761 		 * If !PageUptodate, leave it that way so that freeable pages
2762 		 * can be recognized if we need to rollback on error later.
2763 		 * But set_page_dirty so that memory pressure will swap rather
2764 		 * than free the pages we are allocating (and SGP_CACHE pages
2765 		 * might still be clean: we now need to mark those dirty too).
2766 		 */
2767 		set_page_dirty(page);
2768 		unlock_page(page);
2769 		put_page(page);
2770 		cond_resched();
2771 	}
2772 
2773 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2774 		i_size_write(inode, offset + len);
2775 	inode->i_ctime = current_time(inode);
2776 undone:
2777 	spin_lock(&inode->i_lock);
2778 	inode->i_private = NULL;
2779 	spin_unlock(&inode->i_lock);
2780 out:
2781 	inode_unlock(inode);
2782 	return error;
2783 }
2784 
2785 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2786 {
2787 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2788 
2789 	buf->f_type = TMPFS_MAGIC;
2790 	buf->f_bsize = PAGE_SIZE;
2791 	buf->f_namelen = NAME_MAX;
2792 	if (sbinfo->max_blocks) {
2793 		buf->f_blocks = sbinfo->max_blocks;
2794 		buf->f_bavail =
2795 		buf->f_bfree  = sbinfo->max_blocks -
2796 				percpu_counter_sum(&sbinfo->used_blocks);
2797 	}
2798 	if (sbinfo->max_inodes) {
2799 		buf->f_files = sbinfo->max_inodes;
2800 		buf->f_ffree = sbinfo->free_inodes;
2801 	}
2802 	/* else leave those fields 0 like simple_statfs */
2803 
2804 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2805 
2806 	return 0;
2807 }
2808 
2809 /*
2810  * File creation. Allocate an inode, and we're done..
2811  */
2812 static int
2813 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2814 	    struct dentry *dentry, umode_t mode, dev_t dev)
2815 {
2816 	struct inode *inode;
2817 	int error = -ENOSPC;
2818 
2819 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2820 	if (inode) {
2821 		error = simple_acl_create(dir, inode);
2822 		if (error)
2823 			goto out_iput;
2824 		error = security_inode_init_security(inode, dir,
2825 						     &dentry->d_name,
2826 						     shmem_initxattrs, NULL);
2827 		if (error && error != -EOPNOTSUPP)
2828 			goto out_iput;
2829 
2830 		error = 0;
2831 		dir->i_size += BOGO_DIRENT_SIZE;
2832 		dir->i_ctime = dir->i_mtime = current_time(dir);
2833 		d_instantiate(dentry, inode);
2834 		dget(dentry); /* Extra count - pin the dentry in core */
2835 	}
2836 	return error;
2837 out_iput:
2838 	iput(inode);
2839 	return error;
2840 }
2841 
2842 static int
2843 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2844 	      struct dentry *dentry, umode_t mode)
2845 {
2846 	struct inode *inode;
2847 	int error = -ENOSPC;
2848 
2849 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2850 	if (inode) {
2851 		error = security_inode_init_security(inode, dir,
2852 						     NULL,
2853 						     shmem_initxattrs, NULL);
2854 		if (error && error != -EOPNOTSUPP)
2855 			goto out_iput;
2856 		error = simple_acl_create(dir, inode);
2857 		if (error)
2858 			goto out_iput;
2859 		d_tmpfile(dentry, inode);
2860 	}
2861 	return error;
2862 out_iput:
2863 	iput(inode);
2864 	return error;
2865 }
2866 
2867 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2868 		       struct dentry *dentry, umode_t mode)
2869 {
2870 	int error;
2871 
2872 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2873 				 mode | S_IFDIR, 0)))
2874 		return error;
2875 	inc_nlink(dir);
2876 	return 0;
2877 }
2878 
2879 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2880 			struct dentry *dentry, umode_t mode, bool excl)
2881 {
2882 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2883 }
2884 
2885 /*
2886  * Link a file..
2887  */
2888 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2889 {
2890 	struct inode *inode = d_inode(old_dentry);
2891 	int ret = 0;
2892 
2893 	/*
2894 	 * No ordinary (disk based) filesystem counts links as inodes;
2895 	 * but each new link needs a new dentry, pinning lowmem, and
2896 	 * tmpfs dentries cannot be pruned until they are unlinked.
2897 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2898 	 * first link must skip that, to get the accounting right.
2899 	 */
2900 	if (inode->i_nlink) {
2901 		ret = shmem_reserve_inode(inode->i_sb, NULL);
2902 		if (ret)
2903 			goto out;
2904 	}
2905 
2906 	dir->i_size += BOGO_DIRENT_SIZE;
2907 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2908 	inc_nlink(inode);
2909 	ihold(inode);	/* New dentry reference */
2910 	dget(dentry);		/* Extra pinning count for the created dentry */
2911 	d_instantiate(dentry, inode);
2912 out:
2913 	return ret;
2914 }
2915 
2916 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2917 {
2918 	struct inode *inode = d_inode(dentry);
2919 
2920 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2921 		shmem_free_inode(inode->i_sb);
2922 
2923 	dir->i_size -= BOGO_DIRENT_SIZE;
2924 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2925 	drop_nlink(inode);
2926 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2927 	return 0;
2928 }
2929 
2930 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2931 {
2932 	if (!simple_empty(dentry))
2933 		return -ENOTEMPTY;
2934 
2935 	drop_nlink(d_inode(dentry));
2936 	drop_nlink(dir);
2937 	return shmem_unlink(dir, dentry);
2938 }
2939 
2940 static int shmem_whiteout(struct user_namespace *mnt_userns,
2941 			  struct inode *old_dir, struct dentry *old_dentry)
2942 {
2943 	struct dentry *whiteout;
2944 	int error;
2945 
2946 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2947 	if (!whiteout)
2948 		return -ENOMEM;
2949 
2950 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2951 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2952 	dput(whiteout);
2953 	if (error)
2954 		return error;
2955 
2956 	/*
2957 	 * Cheat and hash the whiteout while the old dentry is still in
2958 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2959 	 *
2960 	 * d_lookup() will consistently find one of them at this point,
2961 	 * not sure which one, but that isn't even important.
2962 	 */
2963 	d_rehash(whiteout);
2964 	return 0;
2965 }
2966 
2967 /*
2968  * The VFS layer already does all the dentry stuff for rename,
2969  * we just have to decrement the usage count for the target if
2970  * it exists so that the VFS layer correctly free's it when it
2971  * gets overwritten.
2972  */
2973 static int shmem_rename2(struct user_namespace *mnt_userns,
2974 			 struct inode *old_dir, struct dentry *old_dentry,
2975 			 struct inode *new_dir, struct dentry *new_dentry,
2976 			 unsigned int flags)
2977 {
2978 	struct inode *inode = d_inode(old_dentry);
2979 	int they_are_dirs = S_ISDIR(inode->i_mode);
2980 
2981 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2982 		return -EINVAL;
2983 
2984 	if (flags & RENAME_EXCHANGE)
2985 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
2986 
2987 	if (!simple_empty(new_dentry))
2988 		return -ENOTEMPTY;
2989 
2990 	if (flags & RENAME_WHITEOUT) {
2991 		int error;
2992 
2993 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
2994 		if (error)
2995 			return error;
2996 	}
2997 
2998 	if (d_really_is_positive(new_dentry)) {
2999 		(void) shmem_unlink(new_dir, new_dentry);
3000 		if (they_are_dirs) {
3001 			drop_nlink(d_inode(new_dentry));
3002 			drop_nlink(old_dir);
3003 		}
3004 	} else if (they_are_dirs) {
3005 		drop_nlink(old_dir);
3006 		inc_nlink(new_dir);
3007 	}
3008 
3009 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3010 	new_dir->i_size += BOGO_DIRENT_SIZE;
3011 	old_dir->i_ctime = old_dir->i_mtime =
3012 	new_dir->i_ctime = new_dir->i_mtime =
3013 	inode->i_ctime = current_time(old_dir);
3014 	return 0;
3015 }
3016 
3017 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3018 			 struct dentry *dentry, const char *symname)
3019 {
3020 	int error;
3021 	int len;
3022 	struct inode *inode;
3023 	struct page *page;
3024 
3025 	len = strlen(symname) + 1;
3026 	if (len > PAGE_SIZE)
3027 		return -ENAMETOOLONG;
3028 
3029 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3030 				VM_NORESERVE);
3031 	if (!inode)
3032 		return -ENOSPC;
3033 
3034 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3035 					     shmem_initxattrs, NULL);
3036 	if (error && error != -EOPNOTSUPP) {
3037 		iput(inode);
3038 		return error;
3039 	}
3040 
3041 	inode->i_size = len-1;
3042 	if (len <= SHORT_SYMLINK_LEN) {
3043 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3044 		if (!inode->i_link) {
3045 			iput(inode);
3046 			return -ENOMEM;
3047 		}
3048 		inode->i_op = &shmem_short_symlink_operations;
3049 	} else {
3050 		inode_nohighmem(inode);
3051 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3052 		if (error) {
3053 			iput(inode);
3054 			return error;
3055 		}
3056 		inode->i_mapping->a_ops = &shmem_aops;
3057 		inode->i_op = &shmem_symlink_inode_operations;
3058 		memcpy(page_address(page), symname, len);
3059 		SetPageUptodate(page);
3060 		set_page_dirty(page);
3061 		unlock_page(page);
3062 		put_page(page);
3063 	}
3064 	dir->i_size += BOGO_DIRENT_SIZE;
3065 	dir->i_ctime = dir->i_mtime = current_time(dir);
3066 	d_instantiate(dentry, inode);
3067 	dget(dentry);
3068 	return 0;
3069 }
3070 
3071 static void shmem_put_link(void *arg)
3072 {
3073 	mark_page_accessed(arg);
3074 	put_page(arg);
3075 }
3076 
3077 static const char *shmem_get_link(struct dentry *dentry,
3078 				  struct inode *inode,
3079 				  struct delayed_call *done)
3080 {
3081 	struct page *page = NULL;
3082 	int error;
3083 	if (!dentry) {
3084 		page = find_get_page(inode->i_mapping, 0);
3085 		if (!page)
3086 			return ERR_PTR(-ECHILD);
3087 		if (PageHWPoison(page) ||
3088 		    !PageUptodate(page)) {
3089 			put_page(page);
3090 			return ERR_PTR(-ECHILD);
3091 		}
3092 	} else {
3093 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3094 		if (error)
3095 			return ERR_PTR(error);
3096 		if (!page)
3097 			return ERR_PTR(-ECHILD);
3098 		if (PageHWPoison(page)) {
3099 			unlock_page(page);
3100 			put_page(page);
3101 			return ERR_PTR(-ECHILD);
3102 		}
3103 		unlock_page(page);
3104 	}
3105 	set_delayed_call(done, shmem_put_link, page);
3106 	return page_address(page);
3107 }
3108 
3109 #ifdef CONFIG_TMPFS_XATTR
3110 /*
3111  * Superblocks without xattr inode operations may get some security.* xattr
3112  * support from the LSM "for free". As soon as we have any other xattrs
3113  * like ACLs, we also need to implement the security.* handlers at
3114  * filesystem level, though.
3115  */
3116 
3117 /*
3118  * Callback for security_inode_init_security() for acquiring xattrs.
3119  */
3120 static int shmem_initxattrs(struct inode *inode,
3121 			    const struct xattr *xattr_array,
3122 			    void *fs_info)
3123 {
3124 	struct shmem_inode_info *info = SHMEM_I(inode);
3125 	const struct xattr *xattr;
3126 	struct simple_xattr *new_xattr;
3127 	size_t len;
3128 
3129 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3130 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3131 		if (!new_xattr)
3132 			return -ENOMEM;
3133 
3134 		len = strlen(xattr->name) + 1;
3135 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3136 					  GFP_KERNEL);
3137 		if (!new_xattr->name) {
3138 			kvfree(new_xattr);
3139 			return -ENOMEM;
3140 		}
3141 
3142 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3143 		       XATTR_SECURITY_PREFIX_LEN);
3144 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3145 		       xattr->name, len);
3146 
3147 		simple_xattr_list_add(&info->xattrs, new_xattr);
3148 	}
3149 
3150 	return 0;
3151 }
3152 
3153 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3154 				   struct dentry *unused, struct inode *inode,
3155 				   const char *name, void *buffer, size_t size)
3156 {
3157 	struct shmem_inode_info *info = SHMEM_I(inode);
3158 
3159 	name = xattr_full_name(handler, name);
3160 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3161 }
3162 
3163 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3164 				   struct user_namespace *mnt_userns,
3165 				   struct dentry *unused, struct inode *inode,
3166 				   const char *name, const void *value,
3167 				   size_t size, int flags)
3168 {
3169 	struct shmem_inode_info *info = SHMEM_I(inode);
3170 
3171 	name = xattr_full_name(handler, name);
3172 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3173 }
3174 
3175 static const struct xattr_handler shmem_security_xattr_handler = {
3176 	.prefix = XATTR_SECURITY_PREFIX,
3177 	.get = shmem_xattr_handler_get,
3178 	.set = shmem_xattr_handler_set,
3179 };
3180 
3181 static const struct xattr_handler shmem_trusted_xattr_handler = {
3182 	.prefix = XATTR_TRUSTED_PREFIX,
3183 	.get = shmem_xattr_handler_get,
3184 	.set = shmem_xattr_handler_set,
3185 };
3186 
3187 static const struct xattr_handler *shmem_xattr_handlers[] = {
3188 #ifdef CONFIG_TMPFS_POSIX_ACL
3189 	&posix_acl_access_xattr_handler,
3190 	&posix_acl_default_xattr_handler,
3191 #endif
3192 	&shmem_security_xattr_handler,
3193 	&shmem_trusted_xattr_handler,
3194 	NULL
3195 };
3196 
3197 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3198 {
3199 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3200 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3201 }
3202 #endif /* CONFIG_TMPFS_XATTR */
3203 
3204 static const struct inode_operations shmem_short_symlink_operations = {
3205 	.getattr	= shmem_getattr,
3206 	.get_link	= simple_get_link,
3207 #ifdef CONFIG_TMPFS_XATTR
3208 	.listxattr	= shmem_listxattr,
3209 #endif
3210 };
3211 
3212 static const struct inode_operations shmem_symlink_inode_operations = {
3213 	.getattr	= shmem_getattr,
3214 	.get_link	= shmem_get_link,
3215 #ifdef CONFIG_TMPFS_XATTR
3216 	.listxattr	= shmem_listxattr,
3217 #endif
3218 };
3219 
3220 static struct dentry *shmem_get_parent(struct dentry *child)
3221 {
3222 	return ERR_PTR(-ESTALE);
3223 }
3224 
3225 static int shmem_match(struct inode *ino, void *vfh)
3226 {
3227 	__u32 *fh = vfh;
3228 	__u64 inum = fh[2];
3229 	inum = (inum << 32) | fh[1];
3230 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3231 }
3232 
3233 /* Find any alias of inode, but prefer a hashed alias */
3234 static struct dentry *shmem_find_alias(struct inode *inode)
3235 {
3236 	struct dentry *alias = d_find_alias(inode);
3237 
3238 	return alias ?: d_find_any_alias(inode);
3239 }
3240 
3241 
3242 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3243 		struct fid *fid, int fh_len, int fh_type)
3244 {
3245 	struct inode *inode;
3246 	struct dentry *dentry = NULL;
3247 	u64 inum;
3248 
3249 	if (fh_len < 3)
3250 		return NULL;
3251 
3252 	inum = fid->raw[2];
3253 	inum = (inum << 32) | fid->raw[1];
3254 
3255 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3256 			shmem_match, fid->raw);
3257 	if (inode) {
3258 		dentry = shmem_find_alias(inode);
3259 		iput(inode);
3260 	}
3261 
3262 	return dentry;
3263 }
3264 
3265 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3266 				struct inode *parent)
3267 {
3268 	if (*len < 3) {
3269 		*len = 3;
3270 		return FILEID_INVALID;
3271 	}
3272 
3273 	if (inode_unhashed(inode)) {
3274 		/* Unfortunately insert_inode_hash is not idempotent,
3275 		 * so as we hash inodes here rather than at creation
3276 		 * time, we need a lock to ensure we only try
3277 		 * to do it once
3278 		 */
3279 		static DEFINE_SPINLOCK(lock);
3280 		spin_lock(&lock);
3281 		if (inode_unhashed(inode))
3282 			__insert_inode_hash(inode,
3283 					    inode->i_ino + inode->i_generation);
3284 		spin_unlock(&lock);
3285 	}
3286 
3287 	fh[0] = inode->i_generation;
3288 	fh[1] = inode->i_ino;
3289 	fh[2] = ((__u64)inode->i_ino) >> 32;
3290 
3291 	*len = 3;
3292 	return 1;
3293 }
3294 
3295 static const struct export_operations shmem_export_ops = {
3296 	.get_parent     = shmem_get_parent,
3297 	.encode_fh      = shmem_encode_fh,
3298 	.fh_to_dentry	= shmem_fh_to_dentry,
3299 };
3300 
3301 enum shmem_param {
3302 	Opt_gid,
3303 	Opt_huge,
3304 	Opt_mode,
3305 	Opt_mpol,
3306 	Opt_nr_blocks,
3307 	Opt_nr_inodes,
3308 	Opt_size,
3309 	Opt_uid,
3310 	Opt_inode32,
3311 	Opt_inode64,
3312 };
3313 
3314 static const struct constant_table shmem_param_enums_huge[] = {
3315 	{"never",	SHMEM_HUGE_NEVER },
3316 	{"always",	SHMEM_HUGE_ALWAYS },
3317 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3318 	{"advise",	SHMEM_HUGE_ADVISE },
3319 	{}
3320 };
3321 
3322 const struct fs_parameter_spec shmem_fs_parameters[] = {
3323 	fsparam_u32   ("gid",		Opt_gid),
3324 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3325 	fsparam_u32oct("mode",		Opt_mode),
3326 	fsparam_string("mpol",		Opt_mpol),
3327 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3328 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3329 	fsparam_string("size",		Opt_size),
3330 	fsparam_u32   ("uid",		Opt_uid),
3331 	fsparam_flag  ("inode32",	Opt_inode32),
3332 	fsparam_flag  ("inode64",	Opt_inode64),
3333 	{}
3334 };
3335 
3336 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3337 {
3338 	struct shmem_options *ctx = fc->fs_private;
3339 	struct fs_parse_result result;
3340 	unsigned long long size;
3341 	char *rest;
3342 	int opt;
3343 
3344 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3345 	if (opt < 0)
3346 		return opt;
3347 
3348 	switch (opt) {
3349 	case Opt_size:
3350 		size = memparse(param->string, &rest);
3351 		if (*rest == '%') {
3352 			size <<= PAGE_SHIFT;
3353 			size *= totalram_pages();
3354 			do_div(size, 100);
3355 			rest++;
3356 		}
3357 		if (*rest)
3358 			goto bad_value;
3359 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3360 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3361 		break;
3362 	case Opt_nr_blocks:
3363 		ctx->blocks = memparse(param->string, &rest);
3364 		if (*rest)
3365 			goto bad_value;
3366 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3367 		break;
3368 	case Opt_nr_inodes:
3369 		ctx->inodes = memparse(param->string, &rest);
3370 		if (*rest)
3371 			goto bad_value;
3372 		ctx->seen |= SHMEM_SEEN_INODES;
3373 		break;
3374 	case Opt_mode:
3375 		ctx->mode = result.uint_32 & 07777;
3376 		break;
3377 	case Opt_uid:
3378 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3379 		if (!uid_valid(ctx->uid))
3380 			goto bad_value;
3381 		break;
3382 	case Opt_gid:
3383 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3384 		if (!gid_valid(ctx->gid))
3385 			goto bad_value;
3386 		break;
3387 	case Opt_huge:
3388 		ctx->huge = result.uint_32;
3389 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3390 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3391 		      has_transparent_hugepage()))
3392 			goto unsupported_parameter;
3393 		ctx->seen |= SHMEM_SEEN_HUGE;
3394 		break;
3395 	case Opt_mpol:
3396 		if (IS_ENABLED(CONFIG_NUMA)) {
3397 			mpol_put(ctx->mpol);
3398 			ctx->mpol = NULL;
3399 			if (mpol_parse_str(param->string, &ctx->mpol))
3400 				goto bad_value;
3401 			break;
3402 		}
3403 		goto unsupported_parameter;
3404 	case Opt_inode32:
3405 		ctx->full_inums = false;
3406 		ctx->seen |= SHMEM_SEEN_INUMS;
3407 		break;
3408 	case Opt_inode64:
3409 		if (sizeof(ino_t) < 8) {
3410 			return invalfc(fc,
3411 				       "Cannot use inode64 with <64bit inums in kernel\n");
3412 		}
3413 		ctx->full_inums = true;
3414 		ctx->seen |= SHMEM_SEEN_INUMS;
3415 		break;
3416 	}
3417 	return 0;
3418 
3419 unsupported_parameter:
3420 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3421 bad_value:
3422 	return invalfc(fc, "Bad value for '%s'", param->key);
3423 }
3424 
3425 static int shmem_parse_options(struct fs_context *fc, void *data)
3426 {
3427 	char *options = data;
3428 
3429 	if (options) {
3430 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3431 		if (err)
3432 			return err;
3433 	}
3434 
3435 	while (options != NULL) {
3436 		char *this_char = options;
3437 		for (;;) {
3438 			/*
3439 			 * NUL-terminate this option: unfortunately,
3440 			 * mount options form a comma-separated list,
3441 			 * but mpol's nodelist may also contain commas.
3442 			 */
3443 			options = strchr(options, ',');
3444 			if (options == NULL)
3445 				break;
3446 			options++;
3447 			if (!isdigit(*options)) {
3448 				options[-1] = '\0';
3449 				break;
3450 			}
3451 		}
3452 		if (*this_char) {
3453 			char *value = strchr(this_char, '=');
3454 			size_t len = 0;
3455 			int err;
3456 
3457 			if (value) {
3458 				*value++ = '\0';
3459 				len = strlen(value);
3460 			}
3461 			err = vfs_parse_fs_string(fc, this_char, value, len);
3462 			if (err < 0)
3463 				return err;
3464 		}
3465 	}
3466 	return 0;
3467 }
3468 
3469 /*
3470  * Reconfigure a shmem filesystem.
3471  *
3472  * Note that we disallow change from limited->unlimited blocks/inodes while any
3473  * are in use; but we must separately disallow unlimited->limited, because in
3474  * that case we have no record of how much is already in use.
3475  */
3476 static int shmem_reconfigure(struct fs_context *fc)
3477 {
3478 	struct shmem_options *ctx = fc->fs_private;
3479 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3480 	unsigned long inodes;
3481 	struct mempolicy *mpol = NULL;
3482 	const char *err;
3483 
3484 	raw_spin_lock(&sbinfo->stat_lock);
3485 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3486 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3487 		if (!sbinfo->max_blocks) {
3488 			err = "Cannot retroactively limit size";
3489 			goto out;
3490 		}
3491 		if (percpu_counter_compare(&sbinfo->used_blocks,
3492 					   ctx->blocks) > 0) {
3493 			err = "Too small a size for current use";
3494 			goto out;
3495 		}
3496 	}
3497 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3498 		if (!sbinfo->max_inodes) {
3499 			err = "Cannot retroactively limit inodes";
3500 			goto out;
3501 		}
3502 		if (ctx->inodes < inodes) {
3503 			err = "Too few inodes for current use";
3504 			goto out;
3505 		}
3506 	}
3507 
3508 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3509 	    sbinfo->next_ino > UINT_MAX) {
3510 		err = "Current inum too high to switch to 32-bit inums";
3511 		goto out;
3512 	}
3513 
3514 	if (ctx->seen & SHMEM_SEEN_HUGE)
3515 		sbinfo->huge = ctx->huge;
3516 	if (ctx->seen & SHMEM_SEEN_INUMS)
3517 		sbinfo->full_inums = ctx->full_inums;
3518 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3519 		sbinfo->max_blocks  = ctx->blocks;
3520 	if (ctx->seen & SHMEM_SEEN_INODES) {
3521 		sbinfo->max_inodes  = ctx->inodes;
3522 		sbinfo->free_inodes = ctx->inodes - inodes;
3523 	}
3524 
3525 	/*
3526 	 * Preserve previous mempolicy unless mpol remount option was specified.
3527 	 */
3528 	if (ctx->mpol) {
3529 		mpol = sbinfo->mpol;
3530 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3531 		ctx->mpol = NULL;
3532 	}
3533 	raw_spin_unlock(&sbinfo->stat_lock);
3534 	mpol_put(mpol);
3535 	return 0;
3536 out:
3537 	raw_spin_unlock(&sbinfo->stat_lock);
3538 	return invalfc(fc, "%s", err);
3539 }
3540 
3541 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3542 {
3543 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3544 
3545 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3546 		seq_printf(seq, ",size=%luk",
3547 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3548 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3549 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3550 	if (sbinfo->mode != (0777 | S_ISVTX))
3551 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3552 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3553 		seq_printf(seq, ",uid=%u",
3554 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3555 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3556 		seq_printf(seq, ",gid=%u",
3557 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3558 
3559 	/*
3560 	 * Showing inode{64,32} might be useful even if it's the system default,
3561 	 * since then people don't have to resort to checking both here and
3562 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3563 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3564 	 *
3565 	 * We hide it when inode64 isn't the default and we are using 32-bit
3566 	 * inodes, since that probably just means the feature isn't even under
3567 	 * consideration.
3568 	 *
3569 	 * As such:
3570 	 *
3571 	 *                     +-----------------+-----------------+
3572 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3573 	 *  +------------------+-----------------+-----------------+
3574 	 *  | full_inums=true  | show            | show            |
3575 	 *  | full_inums=false | show            | hide            |
3576 	 *  +------------------+-----------------+-----------------+
3577 	 *
3578 	 */
3579 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3580 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3581 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3582 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3583 	if (sbinfo->huge)
3584 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3585 #endif
3586 	shmem_show_mpol(seq, sbinfo->mpol);
3587 	return 0;
3588 }
3589 
3590 #endif /* CONFIG_TMPFS */
3591 
3592 static void shmem_put_super(struct super_block *sb)
3593 {
3594 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3595 
3596 	free_percpu(sbinfo->ino_batch);
3597 	percpu_counter_destroy(&sbinfo->used_blocks);
3598 	mpol_put(sbinfo->mpol);
3599 	kfree(sbinfo);
3600 	sb->s_fs_info = NULL;
3601 }
3602 
3603 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3604 {
3605 	struct shmem_options *ctx = fc->fs_private;
3606 	struct inode *inode;
3607 	struct shmem_sb_info *sbinfo;
3608 
3609 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3610 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3611 				L1_CACHE_BYTES), GFP_KERNEL);
3612 	if (!sbinfo)
3613 		return -ENOMEM;
3614 
3615 	sb->s_fs_info = sbinfo;
3616 
3617 #ifdef CONFIG_TMPFS
3618 	/*
3619 	 * Per default we only allow half of the physical ram per
3620 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3621 	 * but the internal instance is left unlimited.
3622 	 */
3623 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3624 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3625 			ctx->blocks = shmem_default_max_blocks();
3626 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3627 			ctx->inodes = shmem_default_max_inodes();
3628 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3629 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3630 	} else {
3631 		sb->s_flags |= SB_NOUSER;
3632 	}
3633 	sb->s_export_op = &shmem_export_ops;
3634 	sb->s_flags |= SB_NOSEC;
3635 #else
3636 	sb->s_flags |= SB_NOUSER;
3637 #endif
3638 	sbinfo->max_blocks = ctx->blocks;
3639 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3640 	if (sb->s_flags & SB_KERNMOUNT) {
3641 		sbinfo->ino_batch = alloc_percpu(ino_t);
3642 		if (!sbinfo->ino_batch)
3643 			goto failed;
3644 	}
3645 	sbinfo->uid = ctx->uid;
3646 	sbinfo->gid = ctx->gid;
3647 	sbinfo->full_inums = ctx->full_inums;
3648 	sbinfo->mode = ctx->mode;
3649 	sbinfo->huge = ctx->huge;
3650 	sbinfo->mpol = ctx->mpol;
3651 	ctx->mpol = NULL;
3652 
3653 	raw_spin_lock_init(&sbinfo->stat_lock);
3654 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3655 		goto failed;
3656 	spin_lock_init(&sbinfo->shrinklist_lock);
3657 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3658 
3659 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3660 	sb->s_blocksize = PAGE_SIZE;
3661 	sb->s_blocksize_bits = PAGE_SHIFT;
3662 	sb->s_magic = TMPFS_MAGIC;
3663 	sb->s_op = &shmem_ops;
3664 	sb->s_time_gran = 1;
3665 #ifdef CONFIG_TMPFS_XATTR
3666 	sb->s_xattr = shmem_xattr_handlers;
3667 #endif
3668 #ifdef CONFIG_TMPFS_POSIX_ACL
3669 	sb->s_flags |= SB_POSIXACL;
3670 #endif
3671 	uuid_gen(&sb->s_uuid);
3672 
3673 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3674 	if (!inode)
3675 		goto failed;
3676 	inode->i_uid = sbinfo->uid;
3677 	inode->i_gid = sbinfo->gid;
3678 	sb->s_root = d_make_root(inode);
3679 	if (!sb->s_root)
3680 		goto failed;
3681 	return 0;
3682 
3683 failed:
3684 	shmem_put_super(sb);
3685 	return -ENOMEM;
3686 }
3687 
3688 static int shmem_get_tree(struct fs_context *fc)
3689 {
3690 	return get_tree_nodev(fc, shmem_fill_super);
3691 }
3692 
3693 static void shmem_free_fc(struct fs_context *fc)
3694 {
3695 	struct shmem_options *ctx = fc->fs_private;
3696 
3697 	if (ctx) {
3698 		mpol_put(ctx->mpol);
3699 		kfree(ctx);
3700 	}
3701 }
3702 
3703 static const struct fs_context_operations shmem_fs_context_ops = {
3704 	.free			= shmem_free_fc,
3705 	.get_tree		= shmem_get_tree,
3706 #ifdef CONFIG_TMPFS
3707 	.parse_monolithic	= shmem_parse_options,
3708 	.parse_param		= shmem_parse_one,
3709 	.reconfigure		= shmem_reconfigure,
3710 #endif
3711 };
3712 
3713 static struct kmem_cache *shmem_inode_cachep;
3714 
3715 static struct inode *shmem_alloc_inode(struct super_block *sb)
3716 {
3717 	struct shmem_inode_info *info;
3718 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3719 	if (!info)
3720 		return NULL;
3721 	return &info->vfs_inode;
3722 }
3723 
3724 static void shmem_free_in_core_inode(struct inode *inode)
3725 {
3726 	if (S_ISLNK(inode->i_mode))
3727 		kfree(inode->i_link);
3728 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3729 }
3730 
3731 static void shmem_destroy_inode(struct inode *inode)
3732 {
3733 	if (S_ISREG(inode->i_mode))
3734 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3735 }
3736 
3737 static void shmem_init_inode(void *foo)
3738 {
3739 	struct shmem_inode_info *info = foo;
3740 	inode_init_once(&info->vfs_inode);
3741 }
3742 
3743 static void shmem_init_inodecache(void)
3744 {
3745 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3746 				sizeof(struct shmem_inode_info),
3747 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3748 }
3749 
3750 static void shmem_destroy_inodecache(void)
3751 {
3752 	kmem_cache_destroy(shmem_inode_cachep);
3753 }
3754 
3755 /* Keep the page in page cache instead of truncating it */
3756 static int shmem_error_remove_page(struct address_space *mapping,
3757 				   struct page *page)
3758 {
3759 	return 0;
3760 }
3761 
3762 const struct address_space_operations shmem_aops = {
3763 	.writepage	= shmem_writepage,
3764 	.set_page_dirty	= __set_page_dirty_no_writeback,
3765 #ifdef CONFIG_TMPFS
3766 	.write_begin	= shmem_write_begin,
3767 	.write_end	= shmem_write_end,
3768 #endif
3769 #ifdef CONFIG_MIGRATION
3770 	.migratepage	= migrate_page,
3771 #endif
3772 	.error_remove_page = shmem_error_remove_page,
3773 };
3774 EXPORT_SYMBOL(shmem_aops);
3775 
3776 static const struct file_operations shmem_file_operations = {
3777 	.mmap		= shmem_mmap,
3778 	.get_unmapped_area = shmem_get_unmapped_area,
3779 #ifdef CONFIG_TMPFS
3780 	.llseek		= shmem_file_llseek,
3781 	.read_iter	= shmem_file_read_iter,
3782 	.write_iter	= generic_file_write_iter,
3783 	.fsync		= noop_fsync,
3784 	.splice_read	= generic_file_splice_read,
3785 	.splice_write	= iter_file_splice_write,
3786 	.fallocate	= shmem_fallocate,
3787 #endif
3788 };
3789 
3790 static const struct inode_operations shmem_inode_operations = {
3791 	.getattr	= shmem_getattr,
3792 	.setattr	= shmem_setattr,
3793 #ifdef CONFIG_TMPFS_XATTR
3794 	.listxattr	= shmem_listxattr,
3795 	.set_acl	= simple_set_acl,
3796 #endif
3797 };
3798 
3799 static const struct inode_operations shmem_dir_inode_operations = {
3800 #ifdef CONFIG_TMPFS
3801 	.getattr	= shmem_getattr,
3802 	.create		= shmem_create,
3803 	.lookup		= simple_lookup,
3804 	.link		= shmem_link,
3805 	.unlink		= shmem_unlink,
3806 	.symlink	= shmem_symlink,
3807 	.mkdir		= shmem_mkdir,
3808 	.rmdir		= shmem_rmdir,
3809 	.mknod		= shmem_mknod,
3810 	.rename		= shmem_rename2,
3811 	.tmpfile	= shmem_tmpfile,
3812 #endif
3813 #ifdef CONFIG_TMPFS_XATTR
3814 	.listxattr	= shmem_listxattr,
3815 #endif
3816 #ifdef CONFIG_TMPFS_POSIX_ACL
3817 	.setattr	= shmem_setattr,
3818 	.set_acl	= simple_set_acl,
3819 #endif
3820 };
3821 
3822 static const struct inode_operations shmem_special_inode_operations = {
3823 	.getattr	= shmem_getattr,
3824 #ifdef CONFIG_TMPFS_XATTR
3825 	.listxattr	= shmem_listxattr,
3826 #endif
3827 #ifdef CONFIG_TMPFS_POSIX_ACL
3828 	.setattr	= shmem_setattr,
3829 	.set_acl	= simple_set_acl,
3830 #endif
3831 };
3832 
3833 static const struct super_operations shmem_ops = {
3834 	.alloc_inode	= shmem_alloc_inode,
3835 	.free_inode	= shmem_free_in_core_inode,
3836 	.destroy_inode	= shmem_destroy_inode,
3837 #ifdef CONFIG_TMPFS
3838 	.statfs		= shmem_statfs,
3839 	.show_options	= shmem_show_options,
3840 #endif
3841 	.evict_inode	= shmem_evict_inode,
3842 	.drop_inode	= generic_delete_inode,
3843 	.put_super	= shmem_put_super,
3844 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3845 	.nr_cached_objects	= shmem_unused_huge_count,
3846 	.free_cached_objects	= shmem_unused_huge_scan,
3847 #endif
3848 };
3849 
3850 static const struct vm_operations_struct shmem_vm_ops = {
3851 	.fault		= shmem_fault,
3852 	.map_pages	= filemap_map_pages,
3853 #ifdef CONFIG_NUMA
3854 	.set_policy     = shmem_set_policy,
3855 	.get_policy     = shmem_get_policy,
3856 #endif
3857 };
3858 
3859 int shmem_init_fs_context(struct fs_context *fc)
3860 {
3861 	struct shmem_options *ctx;
3862 
3863 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3864 	if (!ctx)
3865 		return -ENOMEM;
3866 
3867 	ctx->mode = 0777 | S_ISVTX;
3868 	ctx->uid = current_fsuid();
3869 	ctx->gid = current_fsgid();
3870 
3871 	fc->fs_private = ctx;
3872 	fc->ops = &shmem_fs_context_ops;
3873 	return 0;
3874 }
3875 
3876 static struct file_system_type shmem_fs_type = {
3877 	.owner		= THIS_MODULE,
3878 	.name		= "tmpfs",
3879 	.init_fs_context = shmem_init_fs_context,
3880 #ifdef CONFIG_TMPFS
3881 	.parameters	= shmem_fs_parameters,
3882 #endif
3883 	.kill_sb	= kill_litter_super,
3884 	.fs_flags	= FS_USERNS_MOUNT,
3885 };
3886 
3887 int __init shmem_init(void)
3888 {
3889 	int error;
3890 
3891 	shmem_init_inodecache();
3892 
3893 	error = register_filesystem(&shmem_fs_type);
3894 	if (error) {
3895 		pr_err("Could not register tmpfs\n");
3896 		goto out2;
3897 	}
3898 
3899 	shm_mnt = kern_mount(&shmem_fs_type);
3900 	if (IS_ERR(shm_mnt)) {
3901 		error = PTR_ERR(shm_mnt);
3902 		pr_err("Could not kern_mount tmpfs\n");
3903 		goto out1;
3904 	}
3905 
3906 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3907 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3908 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3909 	else
3910 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3911 #endif
3912 	return 0;
3913 
3914 out1:
3915 	unregister_filesystem(&shmem_fs_type);
3916 out2:
3917 	shmem_destroy_inodecache();
3918 	shm_mnt = ERR_PTR(error);
3919 	return error;
3920 }
3921 
3922 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3923 static ssize_t shmem_enabled_show(struct kobject *kobj,
3924 				  struct kobj_attribute *attr, char *buf)
3925 {
3926 	static const int values[] = {
3927 		SHMEM_HUGE_ALWAYS,
3928 		SHMEM_HUGE_WITHIN_SIZE,
3929 		SHMEM_HUGE_ADVISE,
3930 		SHMEM_HUGE_NEVER,
3931 		SHMEM_HUGE_DENY,
3932 		SHMEM_HUGE_FORCE,
3933 	};
3934 	int len = 0;
3935 	int i;
3936 
3937 	for (i = 0; i < ARRAY_SIZE(values); i++) {
3938 		len += sysfs_emit_at(buf, len,
3939 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3940 				     i ? " " : "",
3941 				     shmem_format_huge(values[i]));
3942 	}
3943 
3944 	len += sysfs_emit_at(buf, len, "\n");
3945 
3946 	return len;
3947 }
3948 
3949 static ssize_t shmem_enabled_store(struct kobject *kobj,
3950 		struct kobj_attribute *attr, const char *buf, size_t count)
3951 {
3952 	char tmp[16];
3953 	int huge;
3954 
3955 	if (count + 1 > sizeof(tmp))
3956 		return -EINVAL;
3957 	memcpy(tmp, buf, count);
3958 	tmp[count] = '\0';
3959 	if (count && tmp[count - 1] == '\n')
3960 		tmp[count - 1] = '\0';
3961 
3962 	huge = shmem_parse_huge(tmp);
3963 	if (huge == -EINVAL)
3964 		return -EINVAL;
3965 	if (!has_transparent_hugepage() &&
3966 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3967 		return -EINVAL;
3968 
3969 	shmem_huge = huge;
3970 	if (shmem_huge > SHMEM_HUGE_DENY)
3971 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3972 	return count;
3973 }
3974 
3975 struct kobj_attribute shmem_enabled_attr =
3976 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3977 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3978 
3979 #else /* !CONFIG_SHMEM */
3980 
3981 /*
3982  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3983  *
3984  * This is intended for small system where the benefits of the full
3985  * shmem code (swap-backed and resource-limited) are outweighed by
3986  * their complexity. On systems without swap this code should be
3987  * effectively equivalent, but much lighter weight.
3988  */
3989 
3990 static struct file_system_type shmem_fs_type = {
3991 	.name		= "tmpfs",
3992 	.init_fs_context = ramfs_init_fs_context,
3993 	.parameters	= ramfs_fs_parameters,
3994 	.kill_sb	= kill_litter_super,
3995 	.fs_flags	= FS_USERNS_MOUNT,
3996 };
3997 
3998 int __init shmem_init(void)
3999 {
4000 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4001 
4002 	shm_mnt = kern_mount(&shmem_fs_type);
4003 	BUG_ON(IS_ERR(shm_mnt));
4004 
4005 	return 0;
4006 }
4007 
4008 int shmem_unuse(unsigned int type)
4009 {
4010 	return 0;
4011 }
4012 
4013 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4014 {
4015 	return 0;
4016 }
4017 
4018 void shmem_unlock_mapping(struct address_space *mapping)
4019 {
4020 }
4021 
4022 #ifdef CONFIG_MMU
4023 unsigned long shmem_get_unmapped_area(struct file *file,
4024 				      unsigned long addr, unsigned long len,
4025 				      unsigned long pgoff, unsigned long flags)
4026 {
4027 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4028 }
4029 #endif
4030 
4031 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4032 {
4033 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4034 }
4035 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4036 
4037 #define shmem_vm_ops				generic_file_vm_ops
4038 #define shmem_file_operations			ramfs_file_operations
4039 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4040 #define shmem_acct_size(flags, size)		0
4041 #define shmem_unacct_size(flags, size)		do {} while (0)
4042 
4043 #endif /* CONFIG_SHMEM */
4044 
4045 /* common code */
4046 
4047 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4048 				       unsigned long flags, unsigned int i_flags)
4049 {
4050 	struct inode *inode;
4051 	struct file *res;
4052 
4053 	if (IS_ERR(mnt))
4054 		return ERR_CAST(mnt);
4055 
4056 	if (size < 0 || size > MAX_LFS_FILESIZE)
4057 		return ERR_PTR(-EINVAL);
4058 
4059 	if (shmem_acct_size(flags, size))
4060 		return ERR_PTR(-ENOMEM);
4061 
4062 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4063 				flags);
4064 	if (unlikely(!inode)) {
4065 		shmem_unacct_size(flags, size);
4066 		return ERR_PTR(-ENOSPC);
4067 	}
4068 	inode->i_flags |= i_flags;
4069 	inode->i_size = size;
4070 	clear_nlink(inode);	/* It is unlinked */
4071 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4072 	if (!IS_ERR(res))
4073 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4074 				&shmem_file_operations);
4075 	if (IS_ERR(res))
4076 		iput(inode);
4077 	return res;
4078 }
4079 
4080 /**
4081  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4082  * 	kernel internal.  There will be NO LSM permission checks against the
4083  * 	underlying inode.  So users of this interface must do LSM checks at a
4084  *	higher layer.  The users are the big_key and shm implementations.  LSM
4085  *	checks are provided at the key or shm level rather than the inode.
4086  * @name: name for dentry (to be seen in /proc/<pid>/maps
4087  * @size: size to be set for the file
4088  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4089  */
4090 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4091 {
4092 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4093 }
4094 
4095 /**
4096  * shmem_file_setup - get an unlinked file living in tmpfs
4097  * @name: name for dentry (to be seen in /proc/<pid>/maps
4098  * @size: size to be set for the file
4099  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4100  */
4101 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4102 {
4103 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4104 }
4105 EXPORT_SYMBOL_GPL(shmem_file_setup);
4106 
4107 /**
4108  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4109  * @mnt: the tmpfs mount where the file will be created
4110  * @name: name for dentry (to be seen in /proc/<pid>/maps
4111  * @size: size to be set for the file
4112  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4113  */
4114 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4115 				       loff_t size, unsigned long flags)
4116 {
4117 	return __shmem_file_setup(mnt, name, size, flags, 0);
4118 }
4119 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4120 
4121 /**
4122  * shmem_zero_setup - setup a shared anonymous mapping
4123  * @vma: the vma to be mmapped is prepared by do_mmap
4124  */
4125 int shmem_zero_setup(struct vm_area_struct *vma)
4126 {
4127 	struct file *file;
4128 	loff_t size = vma->vm_end - vma->vm_start;
4129 
4130 	/*
4131 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4132 	 * between XFS directory reading and selinux: since this file is only
4133 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4134 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4135 	 */
4136 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4137 	if (IS_ERR(file))
4138 		return PTR_ERR(file);
4139 
4140 	if (vma->vm_file)
4141 		fput(vma->vm_file);
4142 	vma->vm_file = file;
4143 	vma->vm_ops = &shmem_vm_ops;
4144 
4145 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4146 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4147 			(vma->vm_end & HPAGE_PMD_MASK)) {
4148 		khugepaged_enter(vma, vma->vm_flags);
4149 	}
4150 
4151 	return 0;
4152 }
4153 
4154 /**
4155  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4156  * @mapping:	the page's address_space
4157  * @index:	the page index
4158  * @gfp:	the page allocator flags to use if allocating
4159  *
4160  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4161  * with any new page allocations done using the specified allocation flags.
4162  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4163  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4164  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4165  *
4166  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4167  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4168  */
4169 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4170 					 pgoff_t index, gfp_t gfp)
4171 {
4172 #ifdef CONFIG_SHMEM
4173 	struct inode *inode = mapping->host;
4174 	struct page *page;
4175 	int error;
4176 
4177 	BUG_ON(!shmem_mapping(mapping));
4178 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4179 				  gfp, NULL, NULL, NULL);
4180 	if (error)
4181 		return ERR_PTR(error);
4182 
4183 	unlock_page(page);
4184 	if (PageHWPoison(page)) {
4185 		put_page(page);
4186 		return ERR_PTR(-EIO);
4187 	}
4188 
4189 	return page;
4190 #else
4191 	/*
4192 	 * The tiny !SHMEM case uses ramfs without swap
4193 	 */
4194 	return read_cache_page_gfp(mapping, index, gfp);
4195 #endif
4196 }
4197 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4198