xref: /openbmc/linux/mm/shmem.c (revision f21f8062201fc6361f65de92e758a76375ba8c59)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33 
34 static struct vfsmount *shm_mnt;
35 
36 #ifdef CONFIG_SHMEM
37 /*
38  * This virtual memory filesystem is heavily based on the ramfs. It
39  * extends ramfs by the ability to use swap and honor resource limits
40  * which makes it a completely usable filesystem.
41  */
42 
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/falloc.h>
57 #include <linux/splice.h>
58 #include <linux/security.h>
59 #include <linux/swapops.h>
60 #include <linux/mempolicy.h>
61 #include <linux/namei.h>
62 #include <linux/ctype.h>
63 #include <linux/migrate.h>
64 #include <linux/highmem.h>
65 #include <linux/seq_file.h>
66 #include <linux/magic.h>
67 
68 #include <asm/uaccess.h>
69 #include <asm/pgtable.h>
70 
71 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
72 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
73 
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
76 
77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78 #define SHORT_SYMLINK_LEN 128
79 
80 struct shmem_xattr {
81 	struct list_head list;	/* anchored by shmem_inode_info->xattr_list */
82 	char *name;		/* xattr name */
83 	size_t size;
84 	char value[0];
85 };
86 
87 /*
88  * shmem_fallocate and shmem_writepage communicate via inode->i_private
89  * (with i_mutex making sure that it has only one user at a time):
90  * we would prefer not to enlarge the shmem inode just for that.
91  */
92 struct shmem_falloc {
93 	pgoff_t start;		/* start of range currently being fallocated */
94 	pgoff_t next;		/* the next page offset to be fallocated */
95 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
96 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
97 };
98 
99 /* Flag allocation requirements to shmem_getpage */
100 enum sgp_type {
101 	SGP_READ,	/* don't exceed i_size, don't allocate page */
102 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
103 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
104 	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
105 	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
106 };
107 
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111 	return totalram_pages / 2;
112 }
113 
114 static unsigned long shmem_default_max_inodes(void)
115 {
116 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119 
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 				struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
125 
126 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
127 	struct page **pagep, enum sgp_type sgp, int *fault_type)
128 {
129 	return shmem_getpage_gfp(inode, index, pagep, sgp,
130 			mapping_gfp_mask(inode->i_mapping), fault_type);
131 }
132 
133 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
134 {
135 	return sb->s_fs_info;
136 }
137 
138 /*
139  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
140  * for shared memory and for shared anonymous (/dev/zero) mappings
141  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
142  * consistent with the pre-accounting of private mappings ...
143  */
144 static inline int shmem_acct_size(unsigned long flags, loff_t size)
145 {
146 	return (flags & VM_NORESERVE) ?
147 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
148 }
149 
150 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
151 {
152 	if (!(flags & VM_NORESERVE))
153 		vm_unacct_memory(VM_ACCT(size));
154 }
155 
156 /*
157  * ... whereas tmpfs objects are accounted incrementally as
158  * pages are allocated, in order to allow huge sparse files.
159  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
160  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
161  */
162 static inline int shmem_acct_block(unsigned long flags)
163 {
164 	return (flags & VM_NORESERVE) ?
165 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
166 }
167 
168 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
169 {
170 	if (flags & VM_NORESERVE)
171 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
172 }
173 
174 static const struct super_operations shmem_ops;
175 static const struct address_space_operations shmem_aops;
176 static const struct file_operations shmem_file_operations;
177 static const struct inode_operations shmem_inode_operations;
178 static const struct inode_operations shmem_dir_inode_operations;
179 static const struct inode_operations shmem_special_inode_operations;
180 static const struct vm_operations_struct shmem_vm_ops;
181 
182 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
183 	.ra_pages	= 0,	/* No readahead */
184 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
185 };
186 
187 static LIST_HEAD(shmem_swaplist);
188 static DEFINE_MUTEX(shmem_swaplist_mutex);
189 
190 static int shmem_reserve_inode(struct super_block *sb)
191 {
192 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
193 	if (sbinfo->max_inodes) {
194 		spin_lock(&sbinfo->stat_lock);
195 		if (!sbinfo->free_inodes) {
196 			spin_unlock(&sbinfo->stat_lock);
197 			return -ENOSPC;
198 		}
199 		sbinfo->free_inodes--;
200 		spin_unlock(&sbinfo->stat_lock);
201 	}
202 	return 0;
203 }
204 
205 static void shmem_free_inode(struct super_block *sb)
206 {
207 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
208 	if (sbinfo->max_inodes) {
209 		spin_lock(&sbinfo->stat_lock);
210 		sbinfo->free_inodes++;
211 		spin_unlock(&sbinfo->stat_lock);
212 	}
213 }
214 
215 /**
216  * shmem_recalc_inode - recalculate the block usage of an inode
217  * @inode: inode to recalc
218  *
219  * We have to calculate the free blocks since the mm can drop
220  * undirtied hole pages behind our back.
221  *
222  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
223  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
224  *
225  * It has to be called with the spinlock held.
226  */
227 static void shmem_recalc_inode(struct inode *inode)
228 {
229 	struct shmem_inode_info *info = SHMEM_I(inode);
230 	long freed;
231 
232 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
233 	if (freed > 0) {
234 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235 		if (sbinfo->max_blocks)
236 			percpu_counter_add(&sbinfo->used_blocks, -freed);
237 		info->alloced -= freed;
238 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
239 		shmem_unacct_blocks(info->flags, freed);
240 	}
241 }
242 
243 /*
244  * Replace item expected in radix tree by a new item, while holding tree lock.
245  */
246 static int shmem_radix_tree_replace(struct address_space *mapping,
247 			pgoff_t index, void *expected, void *replacement)
248 {
249 	void **pslot;
250 	void *item = NULL;
251 
252 	VM_BUG_ON(!expected);
253 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
254 	if (pslot)
255 		item = radix_tree_deref_slot_protected(pslot,
256 							&mapping->tree_lock);
257 	if (item != expected)
258 		return -ENOENT;
259 	if (replacement)
260 		radix_tree_replace_slot(pslot, replacement);
261 	else
262 		radix_tree_delete(&mapping->page_tree, index);
263 	return 0;
264 }
265 
266 /*
267  * Like add_to_page_cache_locked, but error if expected item has gone.
268  */
269 static int shmem_add_to_page_cache(struct page *page,
270 				   struct address_space *mapping,
271 				   pgoff_t index, gfp_t gfp, void *expected)
272 {
273 	int error = 0;
274 
275 	VM_BUG_ON(!PageLocked(page));
276 	VM_BUG_ON(!PageSwapBacked(page));
277 
278 	if (!expected)
279 		error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
280 	if (!error) {
281 		page_cache_get(page);
282 		page->mapping = mapping;
283 		page->index = index;
284 
285 		spin_lock_irq(&mapping->tree_lock);
286 		if (!expected)
287 			error = radix_tree_insert(&mapping->page_tree,
288 							index, page);
289 		else
290 			error = shmem_radix_tree_replace(mapping, index,
291 							expected, page);
292 		if (!error) {
293 			mapping->nrpages++;
294 			__inc_zone_page_state(page, NR_FILE_PAGES);
295 			__inc_zone_page_state(page, NR_SHMEM);
296 			spin_unlock_irq(&mapping->tree_lock);
297 		} else {
298 			page->mapping = NULL;
299 			spin_unlock_irq(&mapping->tree_lock);
300 			page_cache_release(page);
301 		}
302 		if (!expected)
303 			radix_tree_preload_end();
304 	}
305 	if (error)
306 		mem_cgroup_uncharge_cache_page(page);
307 	return error;
308 }
309 
310 /*
311  * Like delete_from_page_cache, but substitutes swap for page.
312  */
313 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
314 {
315 	struct address_space *mapping = page->mapping;
316 	int error;
317 
318 	spin_lock_irq(&mapping->tree_lock);
319 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
320 	page->mapping = NULL;
321 	mapping->nrpages--;
322 	__dec_zone_page_state(page, NR_FILE_PAGES);
323 	__dec_zone_page_state(page, NR_SHMEM);
324 	spin_unlock_irq(&mapping->tree_lock);
325 	page_cache_release(page);
326 	BUG_ON(error);
327 }
328 
329 /*
330  * Like find_get_pages, but collecting swap entries as well as pages.
331  */
332 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
333 					pgoff_t start, unsigned int nr_pages,
334 					struct page **pages, pgoff_t *indices)
335 {
336 	unsigned int i;
337 	unsigned int ret;
338 	unsigned int nr_found;
339 
340 	rcu_read_lock();
341 restart:
342 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
343 				(void ***)pages, indices, start, nr_pages);
344 	ret = 0;
345 	for (i = 0; i < nr_found; i++) {
346 		struct page *page;
347 repeat:
348 		page = radix_tree_deref_slot((void **)pages[i]);
349 		if (unlikely(!page))
350 			continue;
351 		if (radix_tree_exception(page)) {
352 			if (radix_tree_deref_retry(page))
353 				goto restart;
354 			/*
355 			 * Otherwise, we must be storing a swap entry
356 			 * here as an exceptional entry: so return it
357 			 * without attempting to raise page count.
358 			 */
359 			goto export;
360 		}
361 		if (!page_cache_get_speculative(page))
362 			goto repeat;
363 
364 		/* Has the page moved? */
365 		if (unlikely(page != *((void **)pages[i]))) {
366 			page_cache_release(page);
367 			goto repeat;
368 		}
369 export:
370 		indices[ret] = indices[i];
371 		pages[ret] = page;
372 		ret++;
373 	}
374 	if (unlikely(!ret && nr_found))
375 		goto restart;
376 	rcu_read_unlock();
377 	return ret;
378 }
379 
380 /*
381  * Remove swap entry from radix tree, free the swap and its page cache.
382  */
383 static int shmem_free_swap(struct address_space *mapping,
384 			   pgoff_t index, void *radswap)
385 {
386 	int error;
387 
388 	spin_lock_irq(&mapping->tree_lock);
389 	error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
390 	spin_unlock_irq(&mapping->tree_lock);
391 	if (!error)
392 		free_swap_and_cache(radix_to_swp_entry(radswap));
393 	return error;
394 }
395 
396 /*
397  * Pagevec may contain swap entries, so shuffle up pages before releasing.
398  */
399 static void shmem_deswap_pagevec(struct pagevec *pvec)
400 {
401 	int i, j;
402 
403 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
404 		struct page *page = pvec->pages[i];
405 		if (!radix_tree_exceptional_entry(page))
406 			pvec->pages[j++] = page;
407 	}
408 	pvec->nr = j;
409 }
410 
411 /*
412  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
413  */
414 void shmem_unlock_mapping(struct address_space *mapping)
415 {
416 	struct pagevec pvec;
417 	pgoff_t indices[PAGEVEC_SIZE];
418 	pgoff_t index = 0;
419 
420 	pagevec_init(&pvec, 0);
421 	/*
422 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
423 	 */
424 	while (!mapping_unevictable(mapping)) {
425 		/*
426 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
427 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
428 		 */
429 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
430 					PAGEVEC_SIZE, pvec.pages, indices);
431 		if (!pvec.nr)
432 			break;
433 		index = indices[pvec.nr - 1] + 1;
434 		shmem_deswap_pagevec(&pvec);
435 		check_move_unevictable_pages(pvec.pages, pvec.nr);
436 		pagevec_release(&pvec);
437 		cond_resched();
438 	}
439 }
440 
441 /*
442  * Remove range of pages and swap entries from radix tree, and free them.
443  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
444  */
445 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
446 								 bool unfalloc)
447 {
448 	struct address_space *mapping = inode->i_mapping;
449 	struct shmem_inode_info *info = SHMEM_I(inode);
450 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
451 	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
452 	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
453 	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
454 	struct pagevec pvec;
455 	pgoff_t indices[PAGEVEC_SIZE];
456 	long nr_swaps_freed = 0;
457 	pgoff_t index;
458 	int i;
459 
460 	if (lend == -1)
461 		end = -1;	/* unsigned, so actually very big */
462 
463 	pagevec_init(&pvec, 0);
464 	index = start;
465 	while (index < end) {
466 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
467 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
468 							pvec.pages, indices);
469 		if (!pvec.nr)
470 			break;
471 		mem_cgroup_uncharge_start();
472 		for (i = 0; i < pagevec_count(&pvec); i++) {
473 			struct page *page = pvec.pages[i];
474 
475 			index = indices[i];
476 			if (index >= end)
477 				break;
478 
479 			if (radix_tree_exceptional_entry(page)) {
480 				if (unfalloc)
481 					continue;
482 				nr_swaps_freed += !shmem_free_swap(mapping,
483 								index, page);
484 				continue;
485 			}
486 
487 			if (!trylock_page(page))
488 				continue;
489 			if (!unfalloc || !PageUptodate(page)) {
490 				if (page->mapping == mapping) {
491 					VM_BUG_ON(PageWriteback(page));
492 					truncate_inode_page(mapping, page);
493 				}
494 			}
495 			unlock_page(page);
496 		}
497 		shmem_deswap_pagevec(&pvec);
498 		pagevec_release(&pvec);
499 		mem_cgroup_uncharge_end();
500 		cond_resched();
501 		index++;
502 	}
503 
504 	if (partial_start) {
505 		struct page *page = NULL;
506 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
507 		if (page) {
508 			unsigned int top = PAGE_CACHE_SIZE;
509 			if (start > end) {
510 				top = partial_end;
511 				partial_end = 0;
512 			}
513 			zero_user_segment(page, partial_start, top);
514 			set_page_dirty(page);
515 			unlock_page(page);
516 			page_cache_release(page);
517 		}
518 	}
519 	if (partial_end) {
520 		struct page *page = NULL;
521 		shmem_getpage(inode, end, &page, SGP_READ, NULL);
522 		if (page) {
523 			zero_user_segment(page, 0, partial_end);
524 			set_page_dirty(page);
525 			unlock_page(page);
526 			page_cache_release(page);
527 		}
528 	}
529 	if (start >= end)
530 		return;
531 
532 	index = start;
533 	for ( ; ; ) {
534 		cond_resched();
535 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
536 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
537 							pvec.pages, indices);
538 		if (!pvec.nr) {
539 			if (index == start || unfalloc)
540 				break;
541 			index = start;
542 			continue;
543 		}
544 		if ((index == start || unfalloc) && indices[0] >= end) {
545 			shmem_deswap_pagevec(&pvec);
546 			pagevec_release(&pvec);
547 			break;
548 		}
549 		mem_cgroup_uncharge_start();
550 		for (i = 0; i < pagevec_count(&pvec); i++) {
551 			struct page *page = pvec.pages[i];
552 
553 			index = indices[i];
554 			if (index >= end)
555 				break;
556 
557 			if (radix_tree_exceptional_entry(page)) {
558 				if (unfalloc)
559 					continue;
560 				nr_swaps_freed += !shmem_free_swap(mapping,
561 								index, page);
562 				continue;
563 			}
564 
565 			lock_page(page);
566 			if (!unfalloc || !PageUptodate(page)) {
567 				if (page->mapping == mapping) {
568 					VM_BUG_ON(PageWriteback(page));
569 					truncate_inode_page(mapping, page);
570 				}
571 			}
572 			unlock_page(page);
573 		}
574 		shmem_deswap_pagevec(&pvec);
575 		pagevec_release(&pvec);
576 		mem_cgroup_uncharge_end();
577 		index++;
578 	}
579 
580 	spin_lock(&info->lock);
581 	info->swapped -= nr_swaps_freed;
582 	shmem_recalc_inode(inode);
583 	spin_unlock(&info->lock);
584 }
585 
586 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
587 {
588 	shmem_undo_range(inode, lstart, lend, false);
589 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
590 }
591 EXPORT_SYMBOL_GPL(shmem_truncate_range);
592 
593 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
594 {
595 	struct inode *inode = dentry->d_inode;
596 	int error;
597 
598 	error = inode_change_ok(inode, attr);
599 	if (error)
600 		return error;
601 
602 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
603 		loff_t oldsize = inode->i_size;
604 		loff_t newsize = attr->ia_size;
605 
606 		if (newsize != oldsize) {
607 			i_size_write(inode, newsize);
608 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
609 		}
610 		if (newsize < oldsize) {
611 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
612 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
613 			shmem_truncate_range(inode, newsize, (loff_t)-1);
614 			/* unmap again to remove racily COWed private pages */
615 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
616 		}
617 	}
618 
619 	setattr_copy(inode, attr);
620 #ifdef CONFIG_TMPFS_POSIX_ACL
621 	if (attr->ia_valid & ATTR_MODE)
622 		error = generic_acl_chmod(inode);
623 #endif
624 	return error;
625 }
626 
627 static void shmem_evict_inode(struct inode *inode)
628 {
629 	struct shmem_inode_info *info = SHMEM_I(inode);
630 	struct shmem_xattr *xattr, *nxattr;
631 
632 	if (inode->i_mapping->a_ops == &shmem_aops) {
633 		shmem_unacct_size(info->flags, inode->i_size);
634 		inode->i_size = 0;
635 		shmem_truncate_range(inode, 0, (loff_t)-1);
636 		if (!list_empty(&info->swaplist)) {
637 			mutex_lock(&shmem_swaplist_mutex);
638 			list_del_init(&info->swaplist);
639 			mutex_unlock(&shmem_swaplist_mutex);
640 		}
641 	} else
642 		kfree(info->symlink);
643 
644 	list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
645 		kfree(xattr->name);
646 		kfree(xattr);
647 	}
648 	BUG_ON(inode->i_blocks);
649 	shmem_free_inode(inode->i_sb);
650 	clear_inode(inode);
651 }
652 
653 /*
654  * If swap found in inode, free it and move page from swapcache to filecache.
655  */
656 static int shmem_unuse_inode(struct shmem_inode_info *info,
657 			     swp_entry_t swap, struct page **pagep)
658 {
659 	struct address_space *mapping = info->vfs_inode.i_mapping;
660 	void *radswap;
661 	pgoff_t index;
662 	gfp_t gfp;
663 	int error = 0;
664 
665 	radswap = swp_to_radix_entry(swap);
666 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
667 	if (index == -1)
668 		return 0;
669 
670 	/*
671 	 * Move _head_ to start search for next from here.
672 	 * But be careful: shmem_evict_inode checks list_empty without taking
673 	 * mutex, and there's an instant in list_move_tail when info->swaplist
674 	 * would appear empty, if it were the only one on shmem_swaplist.
675 	 */
676 	if (shmem_swaplist.next != &info->swaplist)
677 		list_move_tail(&shmem_swaplist, &info->swaplist);
678 
679 	gfp = mapping_gfp_mask(mapping);
680 	if (shmem_should_replace_page(*pagep, gfp)) {
681 		mutex_unlock(&shmem_swaplist_mutex);
682 		error = shmem_replace_page(pagep, gfp, info, index);
683 		mutex_lock(&shmem_swaplist_mutex);
684 		/*
685 		 * We needed to drop mutex to make that restrictive page
686 		 * allocation, but the inode might have been freed while we
687 		 * dropped it: although a racing shmem_evict_inode() cannot
688 		 * complete without emptying the radix_tree, our page lock
689 		 * on this swapcache page is not enough to prevent that -
690 		 * free_swap_and_cache() of our swap entry will only
691 		 * trylock_page(), removing swap from radix_tree whatever.
692 		 *
693 		 * We must not proceed to shmem_add_to_page_cache() if the
694 		 * inode has been freed, but of course we cannot rely on
695 		 * inode or mapping or info to check that.  However, we can
696 		 * safely check if our swap entry is still in use (and here
697 		 * it can't have got reused for another page): if it's still
698 		 * in use, then the inode cannot have been freed yet, and we
699 		 * can safely proceed (if it's no longer in use, that tells
700 		 * nothing about the inode, but we don't need to unuse swap).
701 		 */
702 		if (!page_swapcount(*pagep))
703 			error = -ENOENT;
704 	}
705 
706 	/*
707 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
708 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
709 	 * beneath us (pagelock doesn't help until the page is in pagecache).
710 	 */
711 	if (!error)
712 		error = shmem_add_to_page_cache(*pagep, mapping, index,
713 						GFP_NOWAIT, radswap);
714 	if (error != -ENOMEM) {
715 		/*
716 		 * Truncation and eviction use free_swap_and_cache(), which
717 		 * only does trylock page: if we raced, best clean up here.
718 		 */
719 		delete_from_swap_cache(*pagep);
720 		set_page_dirty(*pagep);
721 		if (!error) {
722 			spin_lock(&info->lock);
723 			info->swapped--;
724 			spin_unlock(&info->lock);
725 			swap_free(swap);
726 		}
727 		error = 1;	/* not an error, but entry was found */
728 	}
729 	return error;
730 }
731 
732 /*
733  * Search through swapped inodes to find and replace swap by page.
734  */
735 int shmem_unuse(swp_entry_t swap, struct page *page)
736 {
737 	struct list_head *this, *next;
738 	struct shmem_inode_info *info;
739 	int found = 0;
740 	int error = 0;
741 
742 	/*
743 	 * There's a faint possibility that swap page was replaced before
744 	 * caller locked it: caller will come back later with the right page.
745 	 */
746 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
747 		goto out;
748 
749 	/*
750 	 * Charge page using GFP_KERNEL while we can wait, before taking
751 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
752 	 * Charged back to the user (not to caller) when swap account is used.
753 	 */
754 	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
755 	if (error)
756 		goto out;
757 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
758 
759 	mutex_lock(&shmem_swaplist_mutex);
760 	list_for_each_safe(this, next, &shmem_swaplist) {
761 		info = list_entry(this, struct shmem_inode_info, swaplist);
762 		if (info->swapped)
763 			found = shmem_unuse_inode(info, swap, &page);
764 		else
765 			list_del_init(&info->swaplist);
766 		cond_resched();
767 		if (found)
768 			break;
769 	}
770 	mutex_unlock(&shmem_swaplist_mutex);
771 
772 	if (found < 0)
773 		error = found;
774 out:
775 	unlock_page(page);
776 	page_cache_release(page);
777 	return error;
778 }
779 
780 /*
781  * Move the page from the page cache to the swap cache.
782  */
783 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
784 {
785 	struct shmem_inode_info *info;
786 	struct address_space *mapping;
787 	struct inode *inode;
788 	swp_entry_t swap;
789 	pgoff_t index;
790 
791 	BUG_ON(!PageLocked(page));
792 	mapping = page->mapping;
793 	index = page->index;
794 	inode = mapping->host;
795 	info = SHMEM_I(inode);
796 	if (info->flags & VM_LOCKED)
797 		goto redirty;
798 	if (!total_swap_pages)
799 		goto redirty;
800 
801 	/*
802 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
803 	 * sync from ever calling shmem_writepage; but a stacking filesystem
804 	 * might use ->writepage of its underlying filesystem, in which case
805 	 * tmpfs should write out to swap only in response to memory pressure,
806 	 * and not for the writeback threads or sync.
807 	 */
808 	if (!wbc->for_reclaim) {
809 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
810 		goto redirty;
811 	}
812 
813 	/*
814 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
815 	 * value into swapfile.c, the only way we can correctly account for a
816 	 * fallocated page arriving here is now to initialize it and write it.
817 	 *
818 	 * That's okay for a page already fallocated earlier, but if we have
819 	 * not yet completed the fallocation, then (a) we want to keep track
820 	 * of this page in case we have to undo it, and (b) it may not be a
821 	 * good idea to continue anyway, once we're pushing into swap.  So
822 	 * reactivate the page, and let shmem_fallocate() quit when too many.
823 	 */
824 	if (!PageUptodate(page)) {
825 		if (inode->i_private) {
826 			struct shmem_falloc *shmem_falloc;
827 			spin_lock(&inode->i_lock);
828 			shmem_falloc = inode->i_private;
829 			if (shmem_falloc &&
830 			    index >= shmem_falloc->start &&
831 			    index < shmem_falloc->next)
832 				shmem_falloc->nr_unswapped++;
833 			else
834 				shmem_falloc = NULL;
835 			spin_unlock(&inode->i_lock);
836 			if (shmem_falloc)
837 				goto redirty;
838 		}
839 		clear_highpage(page);
840 		flush_dcache_page(page);
841 		SetPageUptodate(page);
842 	}
843 
844 	swap = get_swap_page();
845 	if (!swap.val)
846 		goto redirty;
847 
848 	/*
849 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
850 	 * if it's not already there.  Do it now before the page is
851 	 * moved to swap cache, when its pagelock no longer protects
852 	 * the inode from eviction.  But don't unlock the mutex until
853 	 * we've incremented swapped, because shmem_unuse_inode() will
854 	 * prune a !swapped inode from the swaplist under this mutex.
855 	 */
856 	mutex_lock(&shmem_swaplist_mutex);
857 	if (list_empty(&info->swaplist))
858 		list_add_tail(&info->swaplist, &shmem_swaplist);
859 
860 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
861 		swap_shmem_alloc(swap);
862 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
863 
864 		spin_lock(&info->lock);
865 		info->swapped++;
866 		shmem_recalc_inode(inode);
867 		spin_unlock(&info->lock);
868 
869 		mutex_unlock(&shmem_swaplist_mutex);
870 		BUG_ON(page_mapped(page));
871 		swap_writepage(page, wbc);
872 		return 0;
873 	}
874 
875 	mutex_unlock(&shmem_swaplist_mutex);
876 	swapcache_free(swap, NULL);
877 redirty:
878 	set_page_dirty(page);
879 	if (wbc->for_reclaim)
880 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
881 	unlock_page(page);
882 	return 0;
883 }
884 
885 #ifdef CONFIG_NUMA
886 #ifdef CONFIG_TMPFS
887 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
888 {
889 	char buffer[64];
890 
891 	if (!mpol || mpol->mode == MPOL_DEFAULT)
892 		return;		/* show nothing */
893 
894 	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
895 
896 	seq_printf(seq, ",mpol=%s", buffer);
897 }
898 
899 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
900 {
901 	struct mempolicy *mpol = NULL;
902 	if (sbinfo->mpol) {
903 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
904 		mpol = sbinfo->mpol;
905 		mpol_get(mpol);
906 		spin_unlock(&sbinfo->stat_lock);
907 	}
908 	return mpol;
909 }
910 #endif /* CONFIG_TMPFS */
911 
912 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
913 			struct shmem_inode_info *info, pgoff_t index)
914 {
915 	struct mempolicy mpol, *spol;
916 	struct vm_area_struct pvma;
917 
918 	spol = mpol_cond_copy(&mpol,
919 			mpol_shared_policy_lookup(&info->policy, index));
920 
921 	/* Create a pseudo vma that just contains the policy */
922 	pvma.vm_start = 0;
923 	pvma.vm_pgoff = index;
924 	pvma.vm_ops = NULL;
925 	pvma.vm_policy = spol;
926 	return swapin_readahead(swap, gfp, &pvma, 0);
927 }
928 
929 static struct page *shmem_alloc_page(gfp_t gfp,
930 			struct shmem_inode_info *info, pgoff_t index)
931 {
932 	struct vm_area_struct pvma;
933 
934 	/* Create a pseudo vma that just contains the policy */
935 	pvma.vm_start = 0;
936 	pvma.vm_pgoff = index;
937 	pvma.vm_ops = NULL;
938 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
939 
940 	/*
941 	 * alloc_page_vma() will drop the shared policy reference
942 	 */
943 	return alloc_page_vma(gfp, &pvma, 0);
944 }
945 #else /* !CONFIG_NUMA */
946 #ifdef CONFIG_TMPFS
947 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
948 {
949 }
950 #endif /* CONFIG_TMPFS */
951 
952 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
953 			struct shmem_inode_info *info, pgoff_t index)
954 {
955 	return swapin_readahead(swap, gfp, NULL, 0);
956 }
957 
958 static inline struct page *shmem_alloc_page(gfp_t gfp,
959 			struct shmem_inode_info *info, pgoff_t index)
960 {
961 	return alloc_page(gfp);
962 }
963 #endif /* CONFIG_NUMA */
964 
965 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
966 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
967 {
968 	return NULL;
969 }
970 #endif
971 
972 /*
973  * When a page is moved from swapcache to shmem filecache (either by the
974  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
975  * shmem_unuse_inode()), it may have been read in earlier from swap, in
976  * ignorance of the mapping it belongs to.  If that mapping has special
977  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
978  * we may need to copy to a suitable page before moving to filecache.
979  *
980  * In a future release, this may well be extended to respect cpuset and
981  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
982  * but for now it is a simple matter of zone.
983  */
984 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
985 {
986 	return page_zonenum(page) > gfp_zone(gfp);
987 }
988 
989 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
990 				struct shmem_inode_info *info, pgoff_t index)
991 {
992 	struct page *oldpage, *newpage;
993 	struct address_space *swap_mapping;
994 	pgoff_t swap_index;
995 	int error;
996 
997 	oldpage = *pagep;
998 	swap_index = page_private(oldpage);
999 	swap_mapping = page_mapping(oldpage);
1000 
1001 	/*
1002 	 * We have arrived here because our zones are constrained, so don't
1003 	 * limit chance of success by further cpuset and node constraints.
1004 	 */
1005 	gfp &= ~GFP_CONSTRAINT_MASK;
1006 	newpage = shmem_alloc_page(gfp, info, index);
1007 	if (!newpage)
1008 		return -ENOMEM;
1009 
1010 	page_cache_get(newpage);
1011 	copy_highpage(newpage, oldpage);
1012 	flush_dcache_page(newpage);
1013 
1014 	__set_page_locked(newpage);
1015 	SetPageUptodate(newpage);
1016 	SetPageSwapBacked(newpage);
1017 	set_page_private(newpage, swap_index);
1018 	SetPageSwapCache(newpage);
1019 
1020 	/*
1021 	 * Our caller will very soon move newpage out of swapcache, but it's
1022 	 * a nice clean interface for us to replace oldpage by newpage there.
1023 	 */
1024 	spin_lock_irq(&swap_mapping->tree_lock);
1025 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1026 								   newpage);
1027 	if (!error) {
1028 		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1029 		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1030 	}
1031 	spin_unlock_irq(&swap_mapping->tree_lock);
1032 
1033 	if (unlikely(error)) {
1034 		/*
1035 		 * Is this possible?  I think not, now that our callers check
1036 		 * both PageSwapCache and page_private after getting page lock;
1037 		 * but be defensive.  Reverse old to newpage for clear and free.
1038 		 */
1039 		oldpage = newpage;
1040 	} else {
1041 		mem_cgroup_replace_page_cache(oldpage, newpage);
1042 		lru_cache_add_anon(newpage);
1043 		*pagep = newpage;
1044 	}
1045 
1046 	ClearPageSwapCache(oldpage);
1047 	set_page_private(oldpage, 0);
1048 
1049 	unlock_page(oldpage);
1050 	page_cache_release(oldpage);
1051 	page_cache_release(oldpage);
1052 	return error;
1053 }
1054 
1055 /*
1056  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1057  *
1058  * If we allocate a new one we do not mark it dirty. That's up to the
1059  * vm. If we swap it in we mark it dirty since we also free the swap
1060  * entry since a page cannot live in both the swap and page cache
1061  */
1062 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1063 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1064 {
1065 	struct address_space *mapping = inode->i_mapping;
1066 	struct shmem_inode_info *info;
1067 	struct shmem_sb_info *sbinfo;
1068 	struct page *page;
1069 	swp_entry_t swap;
1070 	int error;
1071 	int once = 0;
1072 	int alloced = 0;
1073 
1074 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1075 		return -EFBIG;
1076 repeat:
1077 	swap.val = 0;
1078 	page = find_lock_page(mapping, index);
1079 	if (radix_tree_exceptional_entry(page)) {
1080 		swap = radix_to_swp_entry(page);
1081 		page = NULL;
1082 	}
1083 
1084 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1085 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1086 		error = -EINVAL;
1087 		goto failed;
1088 	}
1089 
1090 	/* fallocated page? */
1091 	if (page && !PageUptodate(page)) {
1092 		if (sgp != SGP_READ)
1093 			goto clear;
1094 		unlock_page(page);
1095 		page_cache_release(page);
1096 		page = NULL;
1097 	}
1098 	if (page || (sgp == SGP_READ && !swap.val)) {
1099 		*pagep = page;
1100 		return 0;
1101 	}
1102 
1103 	/*
1104 	 * Fast cache lookup did not find it:
1105 	 * bring it back from swap or allocate.
1106 	 */
1107 	info = SHMEM_I(inode);
1108 	sbinfo = SHMEM_SB(inode->i_sb);
1109 
1110 	if (swap.val) {
1111 		/* Look it up and read it in.. */
1112 		page = lookup_swap_cache(swap);
1113 		if (!page) {
1114 			/* here we actually do the io */
1115 			if (fault_type)
1116 				*fault_type |= VM_FAULT_MAJOR;
1117 			page = shmem_swapin(swap, gfp, info, index);
1118 			if (!page) {
1119 				error = -ENOMEM;
1120 				goto failed;
1121 			}
1122 		}
1123 
1124 		/* We have to do this with page locked to prevent races */
1125 		lock_page(page);
1126 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1127 		    page->mapping) {
1128 			error = -EEXIST;	/* try again */
1129 			goto failed;
1130 		}
1131 		if (!PageUptodate(page)) {
1132 			error = -EIO;
1133 			goto failed;
1134 		}
1135 		wait_on_page_writeback(page);
1136 
1137 		if (shmem_should_replace_page(page, gfp)) {
1138 			error = shmem_replace_page(&page, gfp, info, index);
1139 			if (error)
1140 				goto failed;
1141 		}
1142 
1143 		error = mem_cgroup_cache_charge(page, current->mm,
1144 						gfp & GFP_RECLAIM_MASK);
1145 		if (!error)
1146 			error = shmem_add_to_page_cache(page, mapping, index,
1147 						gfp, swp_to_radix_entry(swap));
1148 		if (error)
1149 			goto failed;
1150 
1151 		spin_lock(&info->lock);
1152 		info->swapped--;
1153 		shmem_recalc_inode(inode);
1154 		spin_unlock(&info->lock);
1155 
1156 		delete_from_swap_cache(page);
1157 		set_page_dirty(page);
1158 		swap_free(swap);
1159 
1160 	} else {
1161 		if (shmem_acct_block(info->flags)) {
1162 			error = -ENOSPC;
1163 			goto failed;
1164 		}
1165 		if (sbinfo->max_blocks) {
1166 			if (percpu_counter_compare(&sbinfo->used_blocks,
1167 						sbinfo->max_blocks) >= 0) {
1168 				error = -ENOSPC;
1169 				goto unacct;
1170 			}
1171 			percpu_counter_inc(&sbinfo->used_blocks);
1172 		}
1173 
1174 		page = shmem_alloc_page(gfp, info, index);
1175 		if (!page) {
1176 			error = -ENOMEM;
1177 			goto decused;
1178 		}
1179 
1180 		SetPageSwapBacked(page);
1181 		__set_page_locked(page);
1182 		error = mem_cgroup_cache_charge(page, current->mm,
1183 						gfp & GFP_RECLAIM_MASK);
1184 		if (!error)
1185 			error = shmem_add_to_page_cache(page, mapping, index,
1186 						gfp, NULL);
1187 		if (error)
1188 			goto decused;
1189 		lru_cache_add_anon(page);
1190 
1191 		spin_lock(&info->lock);
1192 		info->alloced++;
1193 		inode->i_blocks += BLOCKS_PER_PAGE;
1194 		shmem_recalc_inode(inode);
1195 		spin_unlock(&info->lock);
1196 		alloced = true;
1197 
1198 		/*
1199 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1200 		 */
1201 		if (sgp == SGP_FALLOC)
1202 			sgp = SGP_WRITE;
1203 clear:
1204 		/*
1205 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1206 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1207 		 * it now, lest undo on failure cancel our earlier guarantee.
1208 		 */
1209 		if (sgp != SGP_WRITE) {
1210 			clear_highpage(page);
1211 			flush_dcache_page(page);
1212 			SetPageUptodate(page);
1213 		}
1214 		if (sgp == SGP_DIRTY)
1215 			set_page_dirty(page);
1216 	}
1217 
1218 	/* Perhaps the file has been truncated since we checked */
1219 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1220 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1221 		error = -EINVAL;
1222 		if (alloced)
1223 			goto trunc;
1224 		else
1225 			goto failed;
1226 	}
1227 	*pagep = page;
1228 	return 0;
1229 
1230 	/*
1231 	 * Error recovery.
1232 	 */
1233 trunc:
1234 	info = SHMEM_I(inode);
1235 	ClearPageDirty(page);
1236 	delete_from_page_cache(page);
1237 	spin_lock(&info->lock);
1238 	info->alloced--;
1239 	inode->i_blocks -= BLOCKS_PER_PAGE;
1240 	spin_unlock(&info->lock);
1241 decused:
1242 	sbinfo = SHMEM_SB(inode->i_sb);
1243 	if (sbinfo->max_blocks)
1244 		percpu_counter_add(&sbinfo->used_blocks, -1);
1245 unacct:
1246 	shmem_unacct_blocks(info->flags, 1);
1247 failed:
1248 	if (swap.val && error != -EINVAL) {
1249 		struct page *test = find_get_page(mapping, index);
1250 		if (test && !radix_tree_exceptional_entry(test))
1251 			page_cache_release(test);
1252 		/* Have another try if the entry has changed */
1253 		if (test != swp_to_radix_entry(swap))
1254 			error = -EEXIST;
1255 	}
1256 	if (page) {
1257 		unlock_page(page);
1258 		page_cache_release(page);
1259 	}
1260 	if (error == -ENOSPC && !once++) {
1261 		info = SHMEM_I(inode);
1262 		spin_lock(&info->lock);
1263 		shmem_recalc_inode(inode);
1264 		spin_unlock(&info->lock);
1265 		goto repeat;
1266 	}
1267 	if (error == -EEXIST)
1268 		goto repeat;
1269 	return error;
1270 }
1271 
1272 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1273 {
1274 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1275 	int error;
1276 	int ret = VM_FAULT_LOCKED;
1277 
1278 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1279 	if (error)
1280 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1281 
1282 	if (ret & VM_FAULT_MAJOR) {
1283 		count_vm_event(PGMAJFAULT);
1284 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1285 	}
1286 	return ret;
1287 }
1288 
1289 #ifdef CONFIG_NUMA
1290 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1291 {
1292 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1293 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1294 }
1295 
1296 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1297 					  unsigned long addr)
1298 {
1299 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1300 	pgoff_t index;
1301 
1302 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1303 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1304 }
1305 #endif
1306 
1307 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1308 {
1309 	struct inode *inode = file->f_path.dentry->d_inode;
1310 	struct shmem_inode_info *info = SHMEM_I(inode);
1311 	int retval = -ENOMEM;
1312 
1313 	spin_lock(&info->lock);
1314 	if (lock && !(info->flags & VM_LOCKED)) {
1315 		if (!user_shm_lock(inode->i_size, user))
1316 			goto out_nomem;
1317 		info->flags |= VM_LOCKED;
1318 		mapping_set_unevictable(file->f_mapping);
1319 	}
1320 	if (!lock && (info->flags & VM_LOCKED) && user) {
1321 		user_shm_unlock(inode->i_size, user);
1322 		info->flags &= ~VM_LOCKED;
1323 		mapping_clear_unevictable(file->f_mapping);
1324 	}
1325 	retval = 0;
1326 
1327 out_nomem:
1328 	spin_unlock(&info->lock);
1329 	return retval;
1330 }
1331 
1332 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1333 {
1334 	file_accessed(file);
1335 	vma->vm_ops = &shmem_vm_ops;
1336 	vma->vm_flags |= VM_CAN_NONLINEAR;
1337 	return 0;
1338 }
1339 
1340 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1341 				     umode_t mode, dev_t dev, unsigned long flags)
1342 {
1343 	struct inode *inode;
1344 	struct shmem_inode_info *info;
1345 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1346 
1347 	if (shmem_reserve_inode(sb))
1348 		return NULL;
1349 
1350 	inode = new_inode(sb);
1351 	if (inode) {
1352 		inode->i_ino = get_next_ino();
1353 		inode_init_owner(inode, dir, mode);
1354 		inode->i_blocks = 0;
1355 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1356 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1357 		inode->i_generation = get_seconds();
1358 		info = SHMEM_I(inode);
1359 		memset(info, 0, (char *)inode - (char *)info);
1360 		spin_lock_init(&info->lock);
1361 		info->flags = flags & VM_NORESERVE;
1362 		INIT_LIST_HEAD(&info->swaplist);
1363 		INIT_LIST_HEAD(&info->xattr_list);
1364 		cache_no_acl(inode);
1365 
1366 		switch (mode & S_IFMT) {
1367 		default:
1368 			inode->i_op = &shmem_special_inode_operations;
1369 			init_special_inode(inode, mode, dev);
1370 			break;
1371 		case S_IFREG:
1372 			inode->i_mapping->a_ops = &shmem_aops;
1373 			inode->i_op = &shmem_inode_operations;
1374 			inode->i_fop = &shmem_file_operations;
1375 			mpol_shared_policy_init(&info->policy,
1376 						 shmem_get_sbmpol(sbinfo));
1377 			break;
1378 		case S_IFDIR:
1379 			inc_nlink(inode);
1380 			/* Some things misbehave if size == 0 on a directory */
1381 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1382 			inode->i_op = &shmem_dir_inode_operations;
1383 			inode->i_fop = &simple_dir_operations;
1384 			break;
1385 		case S_IFLNK:
1386 			/*
1387 			 * Must not load anything in the rbtree,
1388 			 * mpol_free_shared_policy will not be called.
1389 			 */
1390 			mpol_shared_policy_init(&info->policy, NULL);
1391 			break;
1392 		}
1393 	} else
1394 		shmem_free_inode(sb);
1395 	return inode;
1396 }
1397 
1398 #ifdef CONFIG_TMPFS
1399 static const struct inode_operations shmem_symlink_inode_operations;
1400 static const struct inode_operations shmem_short_symlink_operations;
1401 
1402 #ifdef CONFIG_TMPFS_XATTR
1403 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1404 #else
1405 #define shmem_initxattrs NULL
1406 #endif
1407 
1408 static int
1409 shmem_write_begin(struct file *file, struct address_space *mapping,
1410 			loff_t pos, unsigned len, unsigned flags,
1411 			struct page **pagep, void **fsdata)
1412 {
1413 	struct inode *inode = mapping->host;
1414 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1415 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1416 }
1417 
1418 static int
1419 shmem_write_end(struct file *file, struct address_space *mapping,
1420 			loff_t pos, unsigned len, unsigned copied,
1421 			struct page *page, void *fsdata)
1422 {
1423 	struct inode *inode = mapping->host;
1424 
1425 	if (pos + copied > inode->i_size)
1426 		i_size_write(inode, pos + copied);
1427 
1428 	if (!PageUptodate(page)) {
1429 		if (copied < PAGE_CACHE_SIZE) {
1430 			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1431 			zero_user_segments(page, 0, from,
1432 					from + copied, PAGE_CACHE_SIZE);
1433 		}
1434 		SetPageUptodate(page);
1435 	}
1436 	set_page_dirty(page);
1437 	unlock_page(page);
1438 	page_cache_release(page);
1439 
1440 	return copied;
1441 }
1442 
1443 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1444 {
1445 	struct inode *inode = filp->f_path.dentry->d_inode;
1446 	struct address_space *mapping = inode->i_mapping;
1447 	pgoff_t index;
1448 	unsigned long offset;
1449 	enum sgp_type sgp = SGP_READ;
1450 
1451 	/*
1452 	 * Might this read be for a stacking filesystem?  Then when reading
1453 	 * holes of a sparse file, we actually need to allocate those pages,
1454 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1455 	 */
1456 	if (segment_eq(get_fs(), KERNEL_DS))
1457 		sgp = SGP_DIRTY;
1458 
1459 	index = *ppos >> PAGE_CACHE_SHIFT;
1460 	offset = *ppos & ~PAGE_CACHE_MASK;
1461 
1462 	for (;;) {
1463 		struct page *page = NULL;
1464 		pgoff_t end_index;
1465 		unsigned long nr, ret;
1466 		loff_t i_size = i_size_read(inode);
1467 
1468 		end_index = i_size >> PAGE_CACHE_SHIFT;
1469 		if (index > end_index)
1470 			break;
1471 		if (index == end_index) {
1472 			nr = i_size & ~PAGE_CACHE_MASK;
1473 			if (nr <= offset)
1474 				break;
1475 		}
1476 
1477 		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1478 		if (desc->error) {
1479 			if (desc->error == -EINVAL)
1480 				desc->error = 0;
1481 			break;
1482 		}
1483 		if (page)
1484 			unlock_page(page);
1485 
1486 		/*
1487 		 * We must evaluate after, since reads (unlike writes)
1488 		 * are called without i_mutex protection against truncate
1489 		 */
1490 		nr = PAGE_CACHE_SIZE;
1491 		i_size = i_size_read(inode);
1492 		end_index = i_size >> PAGE_CACHE_SHIFT;
1493 		if (index == end_index) {
1494 			nr = i_size & ~PAGE_CACHE_MASK;
1495 			if (nr <= offset) {
1496 				if (page)
1497 					page_cache_release(page);
1498 				break;
1499 			}
1500 		}
1501 		nr -= offset;
1502 
1503 		if (page) {
1504 			/*
1505 			 * If users can be writing to this page using arbitrary
1506 			 * virtual addresses, take care about potential aliasing
1507 			 * before reading the page on the kernel side.
1508 			 */
1509 			if (mapping_writably_mapped(mapping))
1510 				flush_dcache_page(page);
1511 			/*
1512 			 * Mark the page accessed if we read the beginning.
1513 			 */
1514 			if (!offset)
1515 				mark_page_accessed(page);
1516 		} else {
1517 			page = ZERO_PAGE(0);
1518 			page_cache_get(page);
1519 		}
1520 
1521 		/*
1522 		 * Ok, we have the page, and it's up-to-date, so
1523 		 * now we can copy it to user space...
1524 		 *
1525 		 * The actor routine returns how many bytes were actually used..
1526 		 * NOTE! This may not be the same as how much of a user buffer
1527 		 * we filled up (we may be padding etc), so we can only update
1528 		 * "pos" here (the actor routine has to update the user buffer
1529 		 * pointers and the remaining count).
1530 		 */
1531 		ret = actor(desc, page, offset, nr);
1532 		offset += ret;
1533 		index += offset >> PAGE_CACHE_SHIFT;
1534 		offset &= ~PAGE_CACHE_MASK;
1535 
1536 		page_cache_release(page);
1537 		if (ret != nr || !desc->count)
1538 			break;
1539 
1540 		cond_resched();
1541 	}
1542 
1543 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1544 	file_accessed(filp);
1545 }
1546 
1547 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1548 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1549 {
1550 	struct file *filp = iocb->ki_filp;
1551 	ssize_t retval;
1552 	unsigned long seg;
1553 	size_t count;
1554 	loff_t *ppos = &iocb->ki_pos;
1555 
1556 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1557 	if (retval)
1558 		return retval;
1559 
1560 	for (seg = 0; seg < nr_segs; seg++) {
1561 		read_descriptor_t desc;
1562 
1563 		desc.written = 0;
1564 		desc.arg.buf = iov[seg].iov_base;
1565 		desc.count = iov[seg].iov_len;
1566 		if (desc.count == 0)
1567 			continue;
1568 		desc.error = 0;
1569 		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1570 		retval += desc.written;
1571 		if (desc.error) {
1572 			retval = retval ?: desc.error;
1573 			break;
1574 		}
1575 		if (desc.count > 0)
1576 			break;
1577 	}
1578 	return retval;
1579 }
1580 
1581 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1582 				struct pipe_inode_info *pipe, size_t len,
1583 				unsigned int flags)
1584 {
1585 	struct address_space *mapping = in->f_mapping;
1586 	struct inode *inode = mapping->host;
1587 	unsigned int loff, nr_pages, req_pages;
1588 	struct page *pages[PIPE_DEF_BUFFERS];
1589 	struct partial_page partial[PIPE_DEF_BUFFERS];
1590 	struct page *page;
1591 	pgoff_t index, end_index;
1592 	loff_t isize, left;
1593 	int error, page_nr;
1594 	struct splice_pipe_desc spd = {
1595 		.pages = pages,
1596 		.partial = partial,
1597 		.nr_pages_max = PIPE_DEF_BUFFERS,
1598 		.flags = flags,
1599 		.ops = &page_cache_pipe_buf_ops,
1600 		.spd_release = spd_release_page,
1601 	};
1602 
1603 	isize = i_size_read(inode);
1604 	if (unlikely(*ppos >= isize))
1605 		return 0;
1606 
1607 	left = isize - *ppos;
1608 	if (unlikely(left < len))
1609 		len = left;
1610 
1611 	if (splice_grow_spd(pipe, &spd))
1612 		return -ENOMEM;
1613 
1614 	index = *ppos >> PAGE_CACHE_SHIFT;
1615 	loff = *ppos & ~PAGE_CACHE_MASK;
1616 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1617 	nr_pages = min(req_pages, pipe->buffers);
1618 
1619 	spd.nr_pages = find_get_pages_contig(mapping, index,
1620 						nr_pages, spd.pages);
1621 	index += spd.nr_pages;
1622 	error = 0;
1623 
1624 	while (spd.nr_pages < nr_pages) {
1625 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1626 		if (error)
1627 			break;
1628 		unlock_page(page);
1629 		spd.pages[spd.nr_pages++] = page;
1630 		index++;
1631 	}
1632 
1633 	index = *ppos >> PAGE_CACHE_SHIFT;
1634 	nr_pages = spd.nr_pages;
1635 	spd.nr_pages = 0;
1636 
1637 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1638 		unsigned int this_len;
1639 
1640 		if (!len)
1641 			break;
1642 
1643 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1644 		page = spd.pages[page_nr];
1645 
1646 		if (!PageUptodate(page) || page->mapping != mapping) {
1647 			error = shmem_getpage(inode, index, &page,
1648 							SGP_CACHE, NULL);
1649 			if (error)
1650 				break;
1651 			unlock_page(page);
1652 			page_cache_release(spd.pages[page_nr]);
1653 			spd.pages[page_nr] = page;
1654 		}
1655 
1656 		isize = i_size_read(inode);
1657 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1658 		if (unlikely(!isize || index > end_index))
1659 			break;
1660 
1661 		if (end_index == index) {
1662 			unsigned int plen;
1663 
1664 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1665 			if (plen <= loff)
1666 				break;
1667 
1668 			this_len = min(this_len, plen - loff);
1669 			len = this_len;
1670 		}
1671 
1672 		spd.partial[page_nr].offset = loff;
1673 		spd.partial[page_nr].len = this_len;
1674 		len -= this_len;
1675 		loff = 0;
1676 		spd.nr_pages++;
1677 		index++;
1678 	}
1679 
1680 	while (page_nr < nr_pages)
1681 		page_cache_release(spd.pages[page_nr++]);
1682 
1683 	if (spd.nr_pages)
1684 		error = splice_to_pipe(pipe, &spd);
1685 
1686 	splice_shrink_spd(&spd);
1687 
1688 	if (error > 0) {
1689 		*ppos += error;
1690 		file_accessed(in);
1691 	}
1692 	return error;
1693 }
1694 
1695 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1696 							 loff_t len)
1697 {
1698 	struct inode *inode = file->f_path.dentry->d_inode;
1699 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1700 	struct shmem_falloc shmem_falloc;
1701 	pgoff_t start, index, end;
1702 	int error;
1703 
1704 	mutex_lock(&inode->i_mutex);
1705 
1706 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1707 		struct address_space *mapping = file->f_mapping;
1708 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
1709 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1710 
1711 		if ((u64)unmap_end > (u64)unmap_start)
1712 			unmap_mapping_range(mapping, unmap_start,
1713 					    1 + unmap_end - unmap_start, 0);
1714 		shmem_truncate_range(inode, offset, offset + len - 1);
1715 		/* No need to unmap again: hole-punching leaves COWed pages */
1716 		error = 0;
1717 		goto out;
1718 	}
1719 
1720 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1721 	error = inode_newsize_ok(inode, offset + len);
1722 	if (error)
1723 		goto out;
1724 
1725 	start = offset >> PAGE_CACHE_SHIFT;
1726 	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1727 	/* Try to avoid a swapstorm if len is impossible to satisfy */
1728 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1729 		error = -ENOSPC;
1730 		goto out;
1731 	}
1732 
1733 	shmem_falloc.start = start;
1734 	shmem_falloc.next  = start;
1735 	shmem_falloc.nr_falloced = 0;
1736 	shmem_falloc.nr_unswapped = 0;
1737 	spin_lock(&inode->i_lock);
1738 	inode->i_private = &shmem_falloc;
1739 	spin_unlock(&inode->i_lock);
1740 
1741 	for (index = start; index < end; index++) {
1742 		struct page *page;
1743 
1744 		/*
1745 		 * Good, the fallocate(2) manpage permits EINTR: we may have
1746 		 * been interrupted because we are using up too much memory.
1747 		 */
1748 		if (signal_pending(current))
1749 			error = -EINTR;
1750 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1751 			error = -ENOMEM;
1752 		else
1753 			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1754 									NULL);
1755 		if (error) {
1756 			/* Remove the !PageUptodate pages we added */
1757 			shmem_undo_range(inode,
1758 				(loff_t)start << PAGE_CACHE_SHIFT,
1759 				(loff_t)index << PAGE_CACHE_SHIFT, true);
1760 			goto undone;
1761 		}
1762 
1763 		/*
1764 		 * Inform shmem_writepage() how far we have reached.
1765 		 * No need for lock or barrier: we have the page lock.
1766 		 */
1767 		shmem_falloc.next++;
1768 		if (!PageUptodate(page))
1769 			shmem_falloc.nr_falloced++;
1770 
1771 		/*
1772 		 * If !PageUptodate, leave it that way so that freeable pages
1773 		 * can be recognized if we need to rollback on error later.
1774 		 * But set_page_dirty so that memory pressure will swap rather
1775 		 * than free the pages we are allocating (and SGP_CACHE pages
1776 		 * might still be clean: we now need to mark those dirty too).
1777 		 */
1778 		set_page_dirty(page);
1779 		unlock_page(page);
1780 		page_cache_release(page);
1781 		cond_resched();
1782 	}
1783 
1784 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1785 		i_size_write(inode, offset + len);
1786 	inode->i_ctime = CURRENT_TIME;
1787 undone:
1788 	spin_lock(&inode->i_lock);
1789 	inode->i_private = NULL;
1790 	spin_unlock(&inode->i_lock);
1791 out:
1792 	mutex_unlock(&inode->i_mutex);
1793 	return error;
1794 }
1795 
1796 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1797 {
1798 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1799 
1800 	buf->f_type = TMPFS_MAGIC;
1801 	buf->f_bsize = PAGE_CACHE_SIZE;
1802 	buf->f_namelen = NAME_MAX;
1803 	if (sbinfo->max_blocks) {
1804 		buf->f_blocks = sbinfo->max_blocks;
1805 		buf->f_bavail =
1806 		buf->f_bfree  = sbinfo->max_blocks -
1807 				percpu_counter_sum(&sbinfo->used_blocks);
1808 	}
1809 	if (sbinfo->max_inodes) {
1810 		buf->f_files = sbinfo->max_inodes;
1811 		buf->f_ffree = sbinfo->free_inodes;
1812 	}
1813 	/* else leave those fields 0 like simple_statfs */
1814 	return 0;
1815 }
1816 
1817 /*
1818  * File creation. Allocate an inode, and we're done..
1819  */
1820 static int
1821 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1822 {
1823 	struct inode *inode;
1824 	int error = -ENOSPC;
1825 
1826 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1827 	if (inode) {
1828 		error = security_inode_init_security(inode, dir,
1829 						     &dentry->d_name,
1830 						     shmem_initxattrs, NULL);
1831 		if (error) {
1832 			if (error != -EOPNOTSUPP) {
1833 				iput(inode);
1834 				return error;
1835 			}
1836 		}
1837 #ifdef CONFIG_TMPFS_POSIX_ACL
1838 		error = generic_acl_init(inode, dir);
1839 		if (error) {
1840 			iput(inode);
1841 			return error;
1842 		}
1843 #else
1844 		error = 0;
1845 #endif
1846 		dir->i_size += BOGO_DIRENT_SIZE;
1847 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1848 		d_instantiate(dentry, inode);
1849 		dget(dentry); /* Extra count - pin the dentry in core */
1850 	}
1851 	return error;
1852 }
1853 
1854 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1855 {
1856 	int error;
1857 
1858 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1859 		return error;
1860 	inc_nlink(dir);
1861 	return 0;
1862 }
1863 
1864 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1865 		struct nameidata *nd)
1866 {
1867 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1868 }
1869 
1870 /*
1871  * Link a file..
1872  */
1873 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1874 {
1875 	struct inode *inode = old_dentry->d_inode;
1876 	int ret;
1877 
1878 	/*
1879 	 * No ordinary (disk based) filesystem counts links as inodes;
1880 	 * but each new link needs a new dentry, pinning lowmem, and
1881 	 * tmpfs dentries cannot be pruned until they are unlinked.
1882 	 */
1883 	ret = shmem_reserve_inode(inode->i_sb);
1884 	if (ret)
1885 		goto out;
1886 
1887 	dir->i_size += BOGO_DIRENT_SIZE;
1888 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1889 	inc_nlink(inode);
1890 	ihold(inode);	/* New dentry reference */
1891 	dget(dentry);		/* Extra pinning count for the created dentry */
1892 	d_instantiate(dentry, inode);
1893 out:
1894 	return ret;
1895 }
1896 
1897 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1898 {
1899 	struct inode *inode = dentry->d_inode;
1900 
1901 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1902 		shmem_free_inode(inode->i_sb);
1903 
1904 	dir->i_size -= BOGO_DIRENT_SIZE;
1905 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1906 	drop_nlink(inode);
1907 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1908 	return 0;
1909 }
1910 
1911 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1912 {
1913 	if (!simple_empty(dentry))
1914 		return -ENOTEMPTY;
1915 
1916 	drop_nlink(dentry->d_inode);
1917 	drop_nlink(dir);
1918 	return shmem_unlink(dir, dentry);
1919 }
1920 
1921 /*
1922  * The VFS layer already does all the dentry stuff for rename,
1923  * we just have to decrement the usage count for the target if
1924  * it exists so that the VFS layer correctly free's it when it
1925  * gets overwritten.
1926  */
1927 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1928 {
1929 	struct inode *inode = old_dentry->d_inode;
1930 	int they_are_dirs = S_ISDIR(inode->i_mode);
1931 
1932 	if (!simple_empty(new_dentry))
1933 		return -ENOTEMPTY;
1934 
1935 	if (new_dentry->d_inode) {
1936 		(void) shmem_unlink(new_dir, new_dentry);
1937 		if (they_are_dirs)
1938 			drop_nlink(old_dir);
1939 	} else if (they_are_dirs) {
1940 		drop_nlink(old_dir);
1941 		inc_nlink(new_dir);
1942 	}
1943 
1944 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1945 	new_dir->i_size += BOGO_DIRENT_SIZE;
1946 	old_dir->i_ctime = old_dir->i_mtime =
1947 	new_dir->i_ctime = new_dir->i_mtime =
1948 	inode->i_ctime = CURRENT_TIME;
1949 	return 0;
1950 }
1951 
1952 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1953 {
1954 	int error;
1955 	int len;
1956 	struct inode *inode;
1957 	struct page *page;
1958 	char *kaddr;
1959 	struct shmem_inode_info *info;
1960 
1961 	len = strlen(symname) + 1;
1962 	if (len > PAGE_CACHE_SIZE)
1963 		return -ENAMETOOLONG;
1964 
1965 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1966 	if (!inode)
1967 		return -ENOSPC;
1968 
1969 	error = security_inode_init_security(inode, dir, &dentry->d_name,
1970 					     shmem_initxattrs, NULL);
1971 	if (error) {
1972 		if (error != -EOPNOTSUPP) {
1973 			iput(inode);
1974 			return error;
1975 		}
1976 		error = 0;
1977 	}
1978 
1979 	info = SHMEM_I(inode);
1980 	inode->i_size = len-1;
1981 	if (len <= SHORT_SYMLINK_LEN) {
1982 		info->symlink = kmemdup(symname, len, GFP_KERNEL);
1983 		if (!info->symlink) {
1984 			iput(inode);
1985 			return -ENOMEM;
1986 		}
1987 		inode->i_op = &shmem_short_symlink_operations;
1988 	} else {
1989 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1990 		if (error) {
1991 			iput(inode);
1992 			return error;
1993 		}
1994 		inode->i_mapping->a_ops = &shmem_aops;
1995 		inode->i_op = &shmem_symlink_inode_operations;
1996 		kaddr = kmap_atomic(page);
1997 		memcpy(kaddr, symname, len);
1998 		kunmap_atomic(kaddr);
1999 		SetPageUptodate(page);
2000 		set_page_dirty(page);
2001 		unlock_page(page);
2002 		page_cache_release(page);
2003 	}
2004 	dir->i_size += BOGO_DIRENT_SIZE;
2005 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2006 	d_instantiate(dentry, inode);
2007 	dget(dentry);
2008 	return 0;
2009 }
2010 
2011 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2012 {
2013 	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2014 	return NULL;
2015 }
2016 
2017 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2018 {
2019 	struct page *page = NULL;
2020 	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2021 	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2022 	if (page)
2023 		unlock_page(page);
2024 	return page;
2025 }
2026 
2027 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2028 {
2029 	if (!IS_ERR(nd_get_link(nd))) {
2030 		struct page *page = cookie;
2031 		kunmap(page);
2032 		mark_page_accessed(page);
2033 		page_cache_release(page);
2034 	}
2035 }
2036 
2037 #ifdef CONFIG_TMPFS_XATTR
2038 /*
2039  * Superblocks without xattr inode operations may get some security.* xattr
2040  * support from the LSM "for free". As soon as we have any other xattrs
2041  * like ACLs, we also need to implement the security.* handlers at
2042  * filesystem level, though.
2043  */
2044 
2045 /*
2046  * Allocate new xattr and copy in the value; but leave the name to callers.
2047  */
2048 static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size)
2049 {
2050 	struct shmem_xattr *new_xattr;
2051 	size_t len;
2052 
2053 	/* wrap around? */
2054 	len = sizeof(*new_xattr) + size;
2055 	if (len <= sizeof(*new_xattr))
2056 		return NULL;
2057 
2058 	new_xattr = kmalloc(len, GFP_KERNEL);
2059 	if (!new_xattr)
2060 		return NULL;
2061 
2062 	new_xattr->size = size;
2063 	memcpy(new_xattr->value, value, size);
2064 	return new_xattr;
2065 }
2066 
2067 /*
2068  * Callback for security_inode_init_security() for acquiring xattrs.
2069  */
2070 static int shmem_initxattrs(struct inode *inode,
2071 			    const struct xattr *xattr_array,
2072 			    void *fs_info)
2073 {
2074 	struct shmem_inode_info *info = SHMEM_I(inode);
2075 	const struct xattr *xattr;
2076 	struct shmem_xattr *new_xattr;
2077 	size_t len;
2078 
2079 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2080 		new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len);
2081 		if (!new_xattr)
2082 			return -ENOMEM;
2083 
2084 		len = strlen(xattr->name) + 1;
2085 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2086 					  GFP_KERNEL);
2087 		if (!new_xattr->name) {
2088 			kfree(new_xattr);
2089 			return -ENOMEM;
2090 		}
2091 
2092 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2093 		       XATTR_SECURITY_PREFIX_LEN);
2094 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2095 		       xattr->name, len);
2096 
2097 		spin_lock(&info->lock);
2098 		list_add(&new_xattr->list, &info->xattr_list);
2099 		spin_unlock(&info->lock);
2100 	}
2101 
2102 	return 0;
2103 }
2104 
2105 static int shmem_xattr_get(struct dentry *dentry, const char *name,
2106 			   void *buffer, size_t size)
2107 {
2108 	struct shmem_inode_info *info;
2109 	struct shmem_xattr *xattr;
2110 	int ret = -ENODATA;
2111 
2112 	info = SHMEM_I(dentry->d_inode);
2113 
2114 	spin_lock(&info->lock);
2115 	list_for_each_entry(xattr, &info->xattr_list, list) {
2116 		if (strcmp(name, xattr->name))
2117 			continue;
2118 
2119 		ret = xattr->size;
2120 		if (buffer) {
2121 			if (size < xattr->size)
2122 				ret = -ERANGE;
2123 			else
2124 				memcpy(buffer, xattr->value, xattr->size);
2125 		}
2126 		break;
2127 	}
2128 	spin_unlock(&info->lock);
2129 	return ret;
2130 }
2131 
2132 static int shmem_xattr_set(struct inode *inode, const char *name,
2133 			   const void *value, size_t size, int flags)
2134 {
2135 	struct shmem_inode_info *info = SHMEM_I(inode);
2136 	struct shmem_xattr *xattr;
2137 	struct shmem_xattr *new_xattr = NULL;
2138 	int err = 0;
2139 
2140 	/* value == NULL means remove */
2141 	if (value) {
2142 		new_xattr = shmem_xattr_alloc(value, size);
2143 		if (!new_xattr)
2144 			return -ENOMEM;
2145 
2146 		new_xattr->name = kstrdup(name, GFP_KERNEL);
2147 		if (!new_xattr->name) {
2148 			kfree(new_xattr);
2149 			return -ENOMEM;
2150 		}
2151 	}
2152 
2153 	spin_lock(&info->lock);
2154 	list_for_each_entry(xattr, &info->xattr_list, list) {
2155 		if (!strcmp(name, xattr->name)) {
2156 			if (flags & XATTR_CREATE) {
2157 				xattr = new_xattr;
2158 				err = -EEXIST;
2159 			} else if (new_xattr) {
2160 				list_replace(&xattr->list, &new_xattr->list);
2161 			} else {
2162 				list_del(&xattr->list);
2163 			}
2164 			goto out;
2165 		}
2166 	}
2167 	if (flags & XATTR_REPLACE) {
2168 		xattr = new_xattr;
2169 		err = -ENODATA;
2170 	} else {
2171 		list_add(&new_xattr->list, &info->xattr_list);
2172 		xattr = NULL;
2173 	}
2174 out:
2175 	spin_unlock(&info->lock);
2176 	if (xattr)
2177 		kfree(xattr->name);
2178 	kfree(xattr);
2179 	return err;
2180 }
2181 
2182 static const struct xattr_handler *shmem_xattr_handlers[] = {
2183 #ifdef CONFIG_TMPFS_POSIX_ACL
2184 	&generic_acl_access_handler,
2185 	&generic_acl_default_handler,
2186 #endif
2187 	NULL
2188 };
2189 
2190 static int shmem_xattr_validate(const char *name)
2191 {
2192 	struct { const char *prefix; size_t len; } arr[] = {
2193 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2194 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2195 	};
2196 	int i;
2197 
2198 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2199 		size_t preflen = arr[i].len;
2200 		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2201 			if (!name[preflen])
2202 				return -EINVAL;
2203 			return 0;
2204 		}
2205 	}
2206 	return -EOPNOTSUPP;
2207 }
2208 
2209 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2210 			      void *buffer, size_t size)
2211 {
2212 	int err;
2213 
2214 	/*
2215 	 * If this is a request for a synthetic attribute in the system.*
2216 	 * namespace use the generic infrastructure to resolve a handler
2217 	 * for it via sb->s_xattr.
2218 	 */
2219 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2220 		return generic_getxattr(dentry, name, buffer, size);
2221 
2222 	err = shmem_xattr_validate(name);
2223 	if (err)
2224 		return err;
2225 
2226 	return shmem_xattr_get(dentry, name, buffer, size);
2227 }
2228 
2229 static int shmem_setxattr(struct dentry *dentry, const char *name,
2230 			  const void *value, size_t size, int flags)
2231 {
2232 	int err;
2233 
2234 	/*
2235 	 * If this is a request for a synthetic attribute in the system.*
2236 	 * namespace use the generic infrastructure to resolve a handler
2237 	 * for it via sb->s_xattr.
2238 	 */
2239 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2240 		return generic_setxattr(dentry, name, value, size, flags);
2241 
2242 	err = shmem_xattr_validate(name);
2243 	if (err)
2244 		return err;
2245 
2246 	if (size == 0)
2247 		value = "";  /* empty EA, do not remove */
2248 
2249 	return shmem_xattr_set(dentry->d_inode, name, value, size, flags);
2250 
2251 }
2252 
2253 static int shmem_removexattr(struct dentry *dentry, const char *name)
2254 {
2255 	int err;
2256 
2257 	/*
2258 	 * If this is a request for a synthetic attribute in the system.*
2259 	 * namespace use the generic infrastructure to resolve a handler
2260 	 * for it via sb->s_xattr.
2261 	 */
2262 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2263 		return generic_removexattr(dentry, name);
2264 
2265 	err = shmem_xattr_validate(name);
2266 	if (err)
2267 		return err;
2268 
2269 	return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE);
2270 }
2271 
2272 static bool xattr_is_trusted(const char *name)
2273 {
2274 	return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2275 }
2276 
2277 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2278 {
2279 	bool trusted = capable(CAP_SYS_ADMIN);
2280 	struct shmem_xattr *xattr;
2281 	struct shmem_inode_info *info;
2282 	size_t used = 0;
2283 
2284 	info = SHMEM_I(dentry->d_inode);
2285 
2286 	spin_lock(&info->lock);
2287 	list_for_each_entry(xattr, &info->xattr_list, list) {
2288 		size_t len;
2289 
2290 		/* skip "trusted." attributes for unprivileged callers */
2291 		if (!trusted && xattr_is_trusted(xattr->name))
2292 			continue;
2293 
2294 		len = strlen(xattr->name) + 1;
2295 		used += len;
2296 		if (buffer) {
2297 			if (size < used) {
2298 				used = -ERANGE;
2299 				break;
2300 			}
2301 			memcpy(buffer, xattr->name, len);
2302 			buffer += len;
2303 		}
2304 	}
2305 	spin_unlock(&info->lock);
2306 
2307 	return used;
2308 }
2309 #endif /* CONFIG_TMPFS_XATTR */
2310 
2311 static const struct inode_operations shmem_short_symlink_operations = {
2312 	.readlink	= generic_readlink,
2313 	.follow_link	= shmem_follow_short_symlink,
2314 #ifdef CONFIG_TMPFS_XATTR
2315 	.setxattr	= shmem_setxattr,
2316 	.getxattr	= shmem_getxattr,
2317 	.listxattr	= shmem_listxattr,
2318 	.removexattr	= shmem_removexattr,
2319 #endif
2320 };
2321 
2322 static const struct inode_operations shmem_symlink_inode_operations = {
2323 	.readlink	= generic_readlink,
2324 	.follow_link	= shmem_follow_link,
2325 	.put_link	= shmem_put_link,
2326 #ifdef CONFIG_TMPFS_XATTR
2327 	.setxattr	= shmem_setxattr,
2328 	.getxattr	= shmem_getxattr,
2329 	.listxattr	= shmem_listxattr,
2330 	.removexattr	= shmem_removexattr,
2331 #endif
2332 };
2333 
2334 static struct dentry *shmem_get_parent(struct dentry *child)
2335 {
2336 	return ERR_PTR(-ESTALE);
2337 }
2338 
2339 static int shmem_match(struct inode *ino, void *vfh)
2340 {
2341 	__u32 *fh = vfh;
2342 	__u64 inum = fh[2];
2343 	inum = (inum << 32) | fh[1];
2344 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2345 }
2346 
2347 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2348 		struct fid *fid, int fh_len, int fh_type)
2349 {
2350 	struct inode *inode;
2351 	struct dentry *dentry = NULL;
2352 	u64 inum = fid->raw[2];
2353 	inum = (inum << 32) | fid->raw[1];
2354 
2355 	if (fh_len < 3)
2356 		return NULL;
2357 
2358 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2359 			shmem_match, fid->raw);
2360 	if (inode) {
2361 		dentry = d_find_alias(inode);
2362 		iput(inode);
2363 	}
2364 
2365 	return dentry;
2366 }
2367 
2368 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2369 				struct inode *parent)
2370 {
2371 	if (*len < 3) {
2372 		*len = 3;
2373 		return 255;
2374 	}
2375 
2376 	if (inode_unhashed(inode)) {
2377 		/* Unfortunately insert_inode_hash is not idempotent,
2378 		 * so as we hash inodes here rather than at creation
2379 		 * time, we need a lock to ensure we only try
2380 		 * to do it once
2381 		 */
2382 		static DEFINE_SPINLOCK(lock);
2383 		spin_lock(&lock);
2384 		if (inode_unhashed(inode))
2385 			__insert_inode_hash(inode,
2386 					    inode->i_ino + inode->i_generation);
2387 		spin_unlock(&lock);
2388 	}
2389 
2390 	fh[0] = inode->i_generation;
2391 	fh[1] = inode->i_ino;
2392 	fh[2] = ((__u64)inode->i_ino) >> 32;
2393 
2394 	*len = 3;
2395 	return 1;
2396 }
2397 
2398 static const struct export_operations shmem_export_ops = {
2399 	.get_parent     = shmem_get_parent,
2400 	.encode_fh      = shmem_encode_fh,
2401 	.fh_to_dentry	= shmem_fh_to_dentry,
2402 };
2403 
2404 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2405 			       bool remount)
2406 {
2407 	char *this_char, *value, *rest;
2408 	uid_t uid;
2409 	gid_t gid;
2410 
2411 	while (options != NULL) {
2412 		this_char = options;
2413 		for (;;) {
2414 			/*
2415 			 * NUL-terminate this option: unfortunately,
2416 			 * mount options form a comma-separated list,
2417 			 * but mpol's nodelist may also contain commas.
2418 			 */
2419 			options = strchr(options, ',');
2420 			if (options == NULL)
2421 				break;
2422 			options++;
2423 			if (!isdigit(*options)) {
2424 				options[-1] = '\0';
2425 				break;
2426 			}
2427 		}
2428 		if (!*this_char)
2429 			continue;
2430 		if ((value = strchr(this_char,'=')) != NULL) {
2431 			*value++ = 0;
2432 		} else {
2433 			printk(KERN_ERR
2434 			    "tmpfs: No value for mount option '%s'\n",
2435 			    this_char);
2436 			return 1;
2437 		}
2438 
2439 		if (!strcmp(this_char,"size")) {
2440 			unsigned long long size;
2441 			size = memparse(value,&rest);
2442 			if (*rest == '%') {
2443 				size <<= PAGE_SHIFT;
2444 				size *= totalram_pages;
2445 				do_div(size, 100);
2446 				rest++;
2447 			}
2448 			if (*rest)
2449 				goto bad_val;
2450 			sbinfo->max_blocks =
2451 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2452 		} else if (!strcmp(this_char,"nr_blocks")) {
2453 			sbinfo->max_blocks = memparse(value, &rest);
2454 			if (*rest)
2455 				goto bad_val;
2456 		} else if (!strcmp(this_char,"nr_inodes")) {
2457 			sbinfo->max_inodes = memparse(value, &rest);
2458 			if (*rest)
2459 				goto bad_val;
2460 		} else if (!strcmp(this_char,"mode")) {
2461 			if (remount)
2462 				continue;
2463 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2464 			if (*rest)
2465 				goto bad_val;
2466 		} else if (!strcmp(this_char,"uid")) {
2467 			if (remount)
2468 				continue;
2469 			uid = simple_strtoul(value, &rest, 0);
2470 			if (*rest)
2471 				goto bad_val;
2472 			sbinfo->uid = make_kuid(current_user_ns(), uid);
2473 			if (!uid_valid(sbinfo->uid))
2474 				goto bad_val;
2475 		} else if (!strcmp(this_char,"gid")) {
2476 			if (remount)
2477 				continue;
2478 			gid = simple_strtoul(value, &rest, 0);
2479 			if (*rest)
2480 				goto bad_val;
2481 			sbinfo->gid = make_kgid(current_user_ns(), gid);
2482 			if (!gid_valid(sbinfo->gid))
2483 				goto bad_val;
2484 		} else if (!strcmp(this_char,"mpol")) {
2485 			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2486 				goto bad_val;
2487 		} else {
2488 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2489 			       this_char);
2490 			return 1;
2491 		}
2492 	}
2493 	return 0;
2494 
2495 bad_val:
2496 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2497 	       value, this_char);
2498 	return 1;
2499 
2500 }
2501 
2502 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2503 {
2504 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2505 	struct shmem_sb_info config = *sbinfo;
2506 	unsigned long inodes;
2507 	int error = -EINVAL;
2508 
2509 	if (shmem_parse_options(data, &config, true))
2510 		return error;
2511 
2512 	spin_lock(&sbinfo->stat_lock);
2513 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2514 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2515 		goto out;
2516 	if (config.max_inodes < inodes)
2517 		goto out;
2518 	/*
2519 	 * Those tests disallow limited->unlimited while any are in use;
2520 	 * but we must separately disallow unlimited->limited, because
2521 	 * in that case we have no record of how much is already in use.
2522 	 */
2523 	if (config.max_blocks && !sbinfo->max_blocks)
2524 		goto out;
2525 	if (config.max_inodes && !sbinfo->max_inodes)
2526 		goto out;
2527 
2528 	error = 0;
2529 	sbinfo->max_blocks  = config.max_blocks;
2530 	sbinfo->max_inodes  = config.max_inodes;
2531 	sbinfo->free_inodes = config.max_inodes - inodes;
2532 
2533 	mpol_put(sbinfo->mpol);
2534 	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2535 out:
2536 	spin_unlock(&sbinfo->stat_lock);
2537 	return error;
2538 }
2539 
2540 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2541 {
2542 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2543 
2544 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2545 		seq_printf(seq, ",size=%luk",
2546 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2547 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2548 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2549 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2550 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2551 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2552 		seq_printf(seq, ",uid=%u",
2553 				from_kuid_munged(&init_user_ns, sbinfo->uid));
2554 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2555 		seq_printf(seq, ",gid=%u",
2556 				from_kgid_munged(&init_user_ns, sbinfo->gid));
2557 	shmem_show_mpol(seq, sbinfo->mpol);
2558 	return 0;
2559 }
2560 #endif /* CONFIG_TMPFS */
2561 
2562 static void shmem_put_super(struct super_block *sb)
2563 {
2564 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2565 
2566 	percpu_counter_destroy(&sbinfo->used_blocks);
2567 	kfree(sbinfo);
2568 	sb->s_fs_info = NULL;
2569 }
2570 
2571 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2572 {
2573 	struct inode *inode;
2574 	struct shmem_sb_info *sbinfo;
2575 	int err = -ENOMEM;
2576 
2577 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2578 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2579 				L1_CACHE_BYTES), GFP_KERNEL);
2580 	if (!sbinfo)
2581 		return -ENOMEM;
2582 
2583 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2584 	sbinfo->uid = current_fsuid();
2585 	sbinfo->gid = current_fsgid();
2586 	sb->s_fs_info = sbinfo;
2587 
2588 #ifdef CONFIG_TMPFS
2589 	/*
2590 	 * Per default we only allow half of the physical ram per
2591 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2592 	 * but the internal instance is left unlimited.
2593 	 */
2594 	if (!(sb->s_flags & MS_NOUSER)) {
2595 		sbinfo->max_blocks = shmem_default_max_blocks();
2596 		sbinfo->max_inodes = shmem_default_max_inodes();
2597 		if (shmem_parse_options(data, sbinfo, false)) {
2598 			err = -EINVAL;
2599 			goto failed;
2600 		}
2601 	}
2602 	sb->s_export_op = &shmem_export_ops;
2603 	sb->s_flags |= MS_NOSEC;
2604 #else
2605 	sb->s_flags |= MS_NOUSER;
2606 #endif
2607 
2608 	spin_lock_init(&sbinfo->stat_lock);
2609 	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2610 		goto failed;
2611 	sbinfo->free_inodes = sbinfo->max_inodes;
2612 
2613 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2614 	sb->s_blocksize = PAGE_CACHE_SIZE;
2615 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2616 	sb->s_magic = TMPFS_MAGIC;
2617 	sb->s_op = &shmem_ops;
2618 	sb->s_time_gran = 1;
2619 #ifdef CONFIG_TMPFS_XATTR
2620 	sb->s_xattr = shmem_xattr_handlers;
2621 #endif
2622 #ifdef CONFIG_TMPFS_POSIX_ACL
2623 	sb->s_flags |= MS_POSIXACL;
2624 #endif
2625 
2626 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2627 	if (!inode)
2628 		goto failed;
2629 	inode->i_uid = sbinfo->uid;
2630 	inode->i_gid = sbinfo->gid;
2631 	sb->s_root = d_make_root(inode);
2632 	if (!sb->s_root)
2633 		goto failed;
2634 	return 0;
2635 
2636 failed:
2637 	shmem_put_super(sb);
2638 	return err;
2639 }
2640 
2641 static struct kmem_cache *shmem_inode_cachep;
2642 
2643 static struct inode *shmem_alloc_inode(struct super_block *sb)
2644 {
2645 	struct shmem_inode_info *info;
2646 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2647 	if (!info)
2648 		return NULL;
2649 	return &info->vfs_inode;
2650 }
2651 
2652 static void shmem_destroy_callback(struct rcu_head *head)
2653 {
2654 	struct inode *inode = container_of(head, struct inode, i_rcu);
2655 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2656 }
2657 
2658 static void shmem_destroy_inode(struct inode *inode)
2659 {
2660 	if (S_ISREG(inode->i_mode))
2661 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2662 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2663 }
2664 
2665 static void shmem_init_inode(void *foo)
2666 {
2667 	struct shmem_inode_info *info = foo;
2668 	inode_init_once(&info->vfs_inode);
2669 }
2670 
2671 static int shmem_init_inodecache(void)
2672 {
2673 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2674 				sizeof(struct shmem_inode_info),
2675 				0, SLAB_PANIC, shmem_init_inode);
2676 	return 0;
2677 }
2678 
2679 static void shmem_destroy_inodecache(void)
2680 {
2681 	kmem_cache_destroy(shmem_inode_cachep);
2682 }
2683 
2684 static const struct address_space_operations shmem_aops = {
2685 	.writepage	= shmem_writepage,
2686 	.set_page_dirty	= __set_page_dirty_no_writeback,
2687 #ifdef CONFIG_TMPFS
2688 	.write_begin	= shmem_write_begin,
2689 	.write_end	= shmem_write_end,
2690 #endif
2691 	.migratepage	= migrate_page,
2692 	.error_remove_page = generic_error_remove_page,
2693 };
2694 
2695 static const struct file_operations shmem_file_operations = {
2696 	.mmap		= shmem_mmap,
2697 #ifdef CONFIG_TMPFS
2698 	.llseek		= generic_file_llseek,
2699 	.read		= do_sync_read,
2700 	.write		= do_sync_write,
2701 	.aio_read	= shmem_file_aio_read,
2702 	.aio_write	= generic_file_aio_write,
2703 	.fsync		= noop_fsync,
2704 	.splice_read	= shmem_file_splice_read,
2705 	.splice_write	= generic_file_splice_write,
2706 	.fallocate	= shmem_fallocate,
2707 #endif
2708 };
2709 
2710 static const struct inode_operations shmem_inode_operations = {
2711 	.setattr	= shmem_setattr,
2712 #ifdef CONFIG_TMPFS_XATTR
2713 	.setxattr	= shmem_setxattr,
2714 	.getxattr	= shmem_getxattr,
2715 	.listxattr	= shmem_listxattr,
2716 	.removexattr	= shmem_removexattr,
2717 #endif
2718 };
2719 
2720 static const struct inode_operations shmem_dir_inode_operations = {
2721 #ifdef CONFIG_TMPFS
2722 	.create		= shmem_create,
2723 	.lookup		= simple_lookup,
2724 	.link		= shmem_link,
2725 	.unlink		= shmem_unlink,
2726 	.symlink	= shmem_symlink,
2727 	.mkdir		= shmem_mkdir,
2728 	.rmdir		= shmem_rmdir,
2729 	.mknod		= shmem_mknod,
2730 	.rename		= shmem_rename,
2731 #endif
2732 #ifdef CONFIG_TMPFS_XATTR
2733 	.setxattr	= shmem_setxattr,
2734 	.getxattr	= shmem_getxattr,
2735 	.listxattr	= shmem_listxattr,
2736 	.removexattr	= shmem_removexattr,
2737 #endif
2738 #ifdef CONFIG_TMPFS_POSIX_ACL
2739 	.setattr	= shmem_setattr,
2740 #endif
2741 };
2742 
2743 static const struct inode_operations shmem_special_inode_operations = {
2744 #ifdef CONFIG_TMPFS_XATTR
2745 	.setxattr	= shmem_setxattr,
2746 	.getxattr	= shmem_getxattr,
2747 	.listxattr	= shmem_listxattr,
2748 	.removexattr	= shmem_removexattr,
2749 #endif
2750 #ifdef CONFIG_TMPFS_POSIX_ACL
2751 	.setattr	= shmem_setattr,
2752 #endif
2753 };
2754 
2755 static const struct super_operations shmem_ops = {
2756 	.alloc_inode	= shmem_alloc_inode,
2757 	.destroy_inode	= shmem_destroy_inode,
2758 #ifdef CONFIG_TMPFS
2759 	.statfs		= shmem_statfs,
2760 	.remount_fs	= shmem_remount_fs,
2761 	.show_options	= shmem_show_options,
2762 #endif
2763 	.evict_inode	= shmem_evict_inode,
2764 	.drop_inode	= generic_delete_inode,
2765 	.put_super	= shmem_put_super,
2766 };
2767 
2768 static const struct vm_operations_struct shmem_vm_ops = {
2769 	.fault		= shmem_fault,
2770 #ifdef CONFIG_NUMA
2771 	.set_policy     = shmem_set_policy,
2772 	.get_policy     = shmem_get_policy,
2773 #endif
2774 };
2775 
2776 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2777 	int flags, const char *dev_name, void *data)
2778 {
2779 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2780 }
2781 
2782 static struct file_system_type shmem_fs_type = {
2783 	.owner		= THIS_MODULE,
2784 	.name		= "tmpfs",
2785 	.mount		= shmem_mount,
2786 	.kill_sb	= kill_litter_super,
2787 };
2788 
2789 int __init shmem_init(void)
2790 {
2791 	int error;
2792 
2793 	error = bdi_init(&shmem_backing_dev_info);
2794 	if (error)
2795 		goto out4;
2796 
2797 	error = shmem_init_inodecache();
2798 	if (error)
2799 		goto out3;
2800 
2801 	error = register_filesystem(&shmem_fs_type);
2802 	if (error) {
2803 		printk(KERN_ERR "Could not register tmpfs\n");
2804 		goto out2;
2805 	}
2806 
2807 	shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2808 				 shmem_fs_type.name, NULL);
2809 	if (IS_ERR(shm_mnt)) {
2810 		error = PTR_ERR(shm_mnt);
2811 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2812 		goto out1;
2813 	}
2814 	return 0;
2815 
2816 out1:
2817 	unregister_filesystem(&shmem_fs_type);
2818 out2:
2819 	shmem_destroy_inodecache();
2820 out3:
2821 	bdi_destroy(&shmem_backing_dev_info);
2822 out4:
2823 	shm_mnt = ERR_PTR(error);
2824 	return error;
2825 }
2826 
2827 #else /* !CONFIG_SHMEM */
2828 
2829 /*
2830  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2831  *
2832  * This is intended for small system where the benefits of the full
2833  * shmem code (swap-backed and resource-limited) are outweighed by
2834  * their complexity. On systems without swap this code should be
2835  * effectively equivalent, but much lighter weight.
2836  */
2837 
2838 #include <linux/ramfs.h>
2839 
2840 static struct file_system_type shmem_fs_type = {
2841 	.name		= "tmpfs",
2842 	.mount		= ramfs_mount,
2843 	.kill_sb	= kill_litter_super,
2844 };
2845 
2846 int __init shmem_init(void)
2847 {
2848 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2849 
2850 	shm_mnt = kern_mount(&shmem_fs_type);
2851 	BUG_ON(IS_ERR(shm_mnt));
2852 
2853 	return 0;
2854 }
2855 
2856 int shmem_unuse(swp_entry_t swap, struct page *page)
2857 {
2858 	return 0;
2859 }
2860 
2861 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2862 {
2863 	return 0;
2864 }
2865 
2866 void shmem_unlock_mapping(struct address_space *mapping)
2867 {
2868 }
2869 
2870 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2871 {
2872 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2873 }
2874 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2875 
2876 #define shmem_vm_ops				generic_file_vm_ops
2877 #define shmem_file_operations			ramfs_file_operations
2878 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2879 #define shmem_acct_size(flags, size)		0
2880 #define shmem_unacct_size(flags, size)		do {} while (0)
2881 
2882 #endif /* CONFIG_SHMEM */
2883 
2884 /* common code */
2885 
2886 /**
2887  * shmem_file_setup - get an unlinked file living in tmpfs
2888  * @name: name for dentry (to be seen in /proc/<pid>/maps
2889  * @size: size to be set for the file
2890  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2891  */
2892 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2893 {
2894 	int error;
2895 	struct file *file;
2896 	struct inode *inode;
2897 	struct path path;
2898 	struct dentry *root;
2899 	struct qstr this;
2900 
2901 	if (IS_ERR(shm_mnt))
2902 		return (void *)shm_mnt;
2903 
2904 	if (size < 0 || size > MAX_LFS_FILESIZE)
2905 		return ERR_PTR(-EINVAL);
2906 
2907 	if (shmem_acct_size(flags, size))
2908 		return ERR_PTR(-ENOMEM);
2909 
2910 	error = -ENOMEM;
2911 	this.name = name;
2912 	this.len = strlen(name);
2913 	this.hash = 0; /* will go */
2914 	root = shm_mnt->mnt_root;
2915 	path.dentry = d_alloc(root, &this);
2916 	if (!path.dentry)
2917 		goto put_memory;
2918 	path.mnt = mntget(shm_mnt);
2919 
2920 	error = -ENOSPC;
2921 	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2922 	if (!inode)
2923 		goto put_dentry;
2924 
2925 	d_instantiate(path.dentry, inode);
2926 	inode->i_size = size;
2927 	clear_nlink(inode);	/* It is unlinked */
2928 #ifndef CONFIG_MMU
2929 	error = ramfs_nommu_expand_for_mapping(inode, size);
2930 	if (error)
2931 		goto put_dentry;
2932 #endif
2933 
2934 	error = -ENFILE;
2935 	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2936 		  &shmem_file_operations);
2937 	if (!file)
2938 		goto put_dentry;
2939 
2940 	return file;
2941 
2942 put_dentry:
2943 	path_put(&path);
2944 put_memory:
2945 	shmem_unacct_size(flags, size);
2946 	return ERR_PTR(error);
2947 }
2948 EXPORT_SYMBOL_GPL(shmem_file_setup);
2949 
2950 /**
2951  * shmem_zero_setup - setup a shared anonymous mapping
2952  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2953  */
2954 int shmem_zero_setup(struct vm_area_struct *vma)
2955 {
2956 	struct file *file;
2957 	loff_t size = vma->vm_end - vma->vm_start;
2958 
2959 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2960 	if (IS_ERR(file))
2961 		return PTR_ERR(file);
2962 
2963 	if (vma->vm_file)
2964 		fput(vma->vm_file);
2965 	vma->vm_file = file;
2966 	vma->vm_ops = &shmem_vm_ops;
2967 	vma->vm_flags |= VM_CAN_NONLINEAR;
2968 	return 0;
2969 }
2970 
2971 /**
2972  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2973  * @mapping:	the page's address_space
2974  * @index:	the page index
2975  * @gfp:	the page allocator flags to use if allocating
2976  *
2977  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2978  * with any new page allocations done using the specified allocation flags.
2979  * But read_cache_page_gfp() uses the ->readpage() method: which does not
2980  * suit tmpfs, since it may have pages in swapcache, and needs to find those
2981  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2982  *
2983  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2984  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2985  */
2986 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2987 					 pgoff_t index, gfp_t gfp)
2988 {
2989 #ifdef CONFIG_SHMEM
2990 	struct inode *inode = mapping->host;
2991 	struct page *page;
2992 	int error;
2993 
2994 	BUG_ON(mapping->a_ops != &shmem_aops);
2995 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2996 	if (error)
2997 		page = ERR_PTR(error);
2998 	else
2999 		unlock_page(page);
3000 	return page;
3001 #else
3002 	/*
3003 	 * The tiny !SHMEM case uses ramfs without swap
3004 	 */
3005 	return read_cache_page_gfp(mapping, index, gfp);
3006 #endif
3007 }
3008 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3009