xref: /openbmc/linux/mm/shmem.c (revision e408e695f5f1f60d784913afc45ff2c387a5aeb8)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/uio.h>
38 #include <linux/hugetlb.h>
39 #include <linux/fs_parser.h>
40 #include <linux/swapfile.h>
41 #include "swap.h"
42 
43 static struct vfsmount *shm_mnt;
44 
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51 
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 
82 #include <linux/uaccess.h>
83 
84 #include "internal.h"
85 
86 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
87 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
88 
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91 
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94 
95 /*
96  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97  * inode->i_private (with i_rwsem making sure that it has only one user at
98  * a time): we would prefer not to enlarge the shmem inode just for that.
99  */
100 struct shmem_falloc {
101 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 	pgoff_t start;		/* start of range currently being fallocated */
103 	pgoff_t next;		/* the next page offset to be fallocated */
104 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
105 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
106 };
107 
108 struct shmem_options {
109 	unsigned long long blocks;
110 	unsigned long long inodes;
111 	struct mempolicy *mpol;
112 	kuid_t uid;
113 	kgid_t gid;
114 	umode_t mode;
115 	bool full_inums;
116 	int huge;
117 	int seen;
118 #define SHMEM_SEEN_BLOCKS 1
119 #define SHMEM_SEEN_INODES 2
120 #define SHMEM_SEEN_HUGE 4
121 #define SHMEM_SEEN_INUMS 8
122 };
123 
124 #ifdef CONFIG_TMPFS
125 static unsigned long shmem_default_max_blocks(void)
126 {
127 	return totalram_pages() / 2;
128 }
129 
130 static unsigned long shmem_default_max_inodes(void)
131 {
132 	unsigned long nr_pages = totalram_pages();
133 
134 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
135 }
136 #endif
137 
138 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
139 			     struct folio **foliop, enum sgp_type sgp,
140 			     gfp_t gfp, struct vm_area_struct *vma,
141 			     vm_fault_t *fault_type);
142 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
143 		struct page **pagep, enum sgp_type sgp,
144 		gfp_t gfp, struct vm_area_struct *vma,
145 		struct vm_fault *vmf, vm_fault_t *fault_type);
146 
147 int shmem_getpage(struct inode *inode, pgoff_t index,
148 		struct page **pagep, enum sgp_type sgp)
149 {
150 	return shmem_getpage_gfp(inode, index, pagep, sgp,
151 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
152 }
153 
154 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
155 {
156 	return sb->s_fs_info;
157 }
158 
159 /*
160  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
161  * for shared memory and for shared anonymous (/dev/zero) mappings
162  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
163  * consistent with the pre-accounting of private mappings ...
164  */
165 static inline int shmem_acct_size(unsigned long flags, loff_t size)
166 {
167 	return (flags & VM_NORESERVE) ?
168 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
169 }
170 
171 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
172 {
173 	if (!(flags & VM_NORESERVE))
174 		vm_unacct_memory(VM_ACCT(size));
175 }
176 
177 static inline int shmem_reacct_size(unsigned long flags,
178 		loff_t oldsize, loff_t newsize)
179 {
180 	if (!(flags & VM_NORESERVE)) {
181 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
182 			return security_vm_enough_memory_mm(current->mm,
183 					VM_ACCT(newsize) - VM_ACCT(oldsize));
184 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
185 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
186 	}
187 	return 0;
188 }
189 
190 /*
191  * ... whereas tmpfs objects are accounted incrementally as
192  * pages are allocated, in order to allow large sparse files.
193  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
194  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
195  */
196 static inline int shmem_acct_block(unsigned long flags, long pages)
197 {
198 	if (!(flags & VM_NORESERVE))
199 		return 0;
200 
201 	return security_vm_enough_memory_mm(current->mm,
202 			pages * VM_ACCT(PAGE_SIZE));
203 }
204 
205 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
206 {
207 	if (flags & VM_NORESERVE)
208 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
209 }
210 
211 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
212 {
213 	struct shmem_inode_info *info = SHMEM_I(inode);
214 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
215 
216 	if (shmem_acct_block(info->flags, pages))
217 		return false;
218 
219 	if (sbinfo->max_blocks) {
220 		if (percpu_counter_compare(&sbinfo->used_blocks,
221 					   sbinfo->max_blocks - pages) > 0)
222 			goto unacct;
223 		percpu_counter_add(&sbinfo->used_blocks, pages);
224 	}
225 
226 	return true;
227 
228 unacct:
229 	shmem_unacct_blocks(info->flags, pages);
230 	return false;
231 }
232 
233 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
234 {
235 	struct shmem_inode_info *info = SHMEM_I(inode);
236 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
237 
238 	if (sbinfo->max_blocks)
239 		percpu_counter_sub(&sbinfo->used_blocks, pages);
240 	shmem_unacct_blocks(info->flags, pages);
241 }
242 
243 static const struct super_operations shmem_ops;
244 const struct address_space_operations shmem_aops;
245 static const struct file_operations shmem_file_operations;
246 static const struct inode_operations shmem_inode_operations;
247 static const struct inode_operations shmem_dir_inode_operations;
248 static const struct inode_operations shmem_special_inode_operations;
249 static const struct vm_operations_struct shmem_vm_ops;
250 static struct file_system_type shmem_fs_type;
251 
252 bool vma_is_shmem(struct vm_area_struct *vma)
253 {
254 	return vma->vm_ops == &shmem_vm_ops;
255 }
256 
257 static LIST_HEAD(shmem_swaplist);
258 static DEFINE_MUTEX(shmem_swaplist_mutex);
259 
260 /*
261  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
262  * produces a novel ino for the newly allocated inode.
263  *
264  * It may also be called when making a hard link to permit the space needed by
265  * each dentry. However, in that case, no new inode number is needed since that
266  * internally draws from another pool of inode numbers (currently global
267  * get_next_ino()). This case is indicated by passing NULL as inop.
268  */
269 #define SHMEM_INO_BATCH 1024
270 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
271 {
272 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
273 	ino_t ino;
274 
275 	if (!(sb->s_flags & SB_KERNMOUNT)) {
276 		raw_spin_lock(&sbinfo->stat_lock);
277 		if (sbinfo->max_inodes) {
278 			if (!sbinfo->free_inodes) {
279 				raw_spin_unlock(&sbinfo->stat_lock);
280 				return -ENOSPC;
281 			}
282 			sbinfo->free_inodes--;
283 		}
284 		if (inop) {
285 			ino = sbinfo->next_ino++;
286 			if (unlikely(is_zero_ino(ino)))
287 				ino = sbinfo->next_ino++;
288 			if (unlikely(!sbinfo->full_inums &&
289 				     ino > UINT_MAX)) {
290 				/*
291 				 * Emulate get_next_ino uint wraparound for
292 				 * compatibility
293 				 */
294 				if (IS_ENABLED(CONFIG_64BIT))
295 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
296 						__func__, MINOR(sb->s_dev));
297 				sbinfo->next_ino = 1;
298 				ino = sbinfo->next_ino++;
299 			}
300 			*inop = ino;
301 		}
302 		raw_spin_unlock(&sbinfo->stat_lock);
303 	} else if (inop) {
304 		/*
305 		 * __shmem_file_setup, one of our callers, is lock-free: it
306 		 * doesn't hold stat_lock in shmem_reserve_inode since
307 		 * max_inodes is always 0, and is called from potentially
308 		 * unknown contexts. As such, use a per-cpu batched allocator
309 		 * which doesn't require the per-sb stat_lock unless we are at
310 		 * the batch boundary.
311 		 *
312 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
313 		 * shmem mounts are not exposed to userspace, so we don't need
314 		 * to worry about things like glibc compatibility.
315 		 */
316 		ino_t *next_ino;
317 
318 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
319 		ino = *next_ino;
320 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
321 			raw_spin_lock(&sbinfo->stat_lock);
322 			ino = sbinfo->next_ino;
323 			sbinfo->next_ino += SHMEM_INO_BATCH;
324 			raw_spin_unlock(&sbinfo->stat_lock);
325 			if (unlikely(is_zero_ino(ino)))
326 				ino++;
327 		}
328 		*inop = ino;
329 		*next_ino = ++ino;
330 		put_cpu();
331 	}
332 
333 	return 0;
334 }
335 
336 static void shmem_free_inode(struct super_block *sb)
337 {
338 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
339 	if (sbinfo->max_inodes) {
340 		raw_spin_lock(&sbinfo->stat_lock);
341 		sbinfo->free_inodes++;
342 		raw_spin_unlock(&sbinfo->stat_lock);
343 	}
344 }
345 
346 /**
347  * shmem_recalc_inode - recalculate the block usage of an inode
348  * @inode: inode to recalc
349  *
350  * We have to calculate the free blocks since the mm can drop
351  * undirtied hole pages behind our back.
352  *
353  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
354  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
355  *
356  * It has to be called with the spinlock held.
357  */
358 static void shmem_recalc_inode(struct inode *inode)
359 {
360 	struct shmem_inode_info *info = SHMEM_I(inode);
361 	long freed;
362 
363 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
364 	if (freed > 0) {
365 		info->alloced -= freed;
366 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
367 		shmem_inode_unacct_blocks(inode, freed);
368 	}
369 }
370 
371 bool shmem_charge(struct inode *inode, long pages)
372 {
373 	struct shmem_inode_info *info = SHMEM_I(inode);
374 	unsigned long flags;
375 
376 	if (!shmem_inode_acct_block(inode, pages))
377 		return false;
378 
379 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
380 	inode->i_mapping->nrpages += pages;
381 
382 	spin_lock_irqsave(&info->lock, flags);
383 	info->alloced += pages;
384 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
385 	shmem_recalc_inode(inode);
386 	spin_unlock_irqrestore(&info->lock, flags);
387 
388 	return true;
389 }
390 
391 void shmem_uncharge(struct inode *inode, long pages)
392 {
393 	struct shmem_inode_info *info = SHMEM_I(inode);
394 	unsigned long flags;
395 
396 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
397 
398 	spin_lock_irqsave(&info->lock, flags);
399 	info->alloced -= pages;
400 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
401 	shmem_recalc_inode(inode);
402 	spin_unlock_irqrestore(&info->lock, flags);
403 
404 	shmem_inode_unacct_blocks(inode, pages);
405 }
406 
407 /*
408  * Replace item expected in xarray by a new item, while holding xa_lock.
409  */
410 static int shmem_replace_entry(struct address_space *mapping,
411 			pgoff_t index, void *expected, void *replacement)
412 {
413 	XA_STATE(xas, &mapping->i_pages, index);
414 	void *item;
415 
416 	VM_BUG_ON(!expected);
417 	VM_BUG_ON(!replacement);
418 	item = xas_load(&xas);
419 	if (item != expected)
420 		return -ENOENT;
421 	xas_store(&xas, replacement);
422 	return 0;
423 }
424 
425 /*
426  * Sometimes, before we decide whether to proceed or to fail, we must check
427  * that an entry was not already brought back from swap by a racing thread.
428  *
429  * Checking page is not enough: by the time a SwapCache page is locked, it
430  * might be reused, and again be SwapCache, using the same swap as before.
431  */
432 static bool shmem_confirm_swap(struct address_space *mapping,
433 			       pgoff_t index, swp_entry_t swap)
434 {
435 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
436 }
437 
438 /*
439  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
440  *
441  * SHMEM_HUGE_NEVER:
442  *	disables huge pages for the mount;
443  * SHMEM_HUGE_ALWAYS:
444  *	enables huge pages for the mount;
445  * SHMEM_HUGE_WITHIN_SIZE:
446  *	only allocate huge pages if the page will be fully within i_size,
447  *	also respect fadvise()/madvise() hints;
448  * SHMEM_HUGE_ADVISE:
449  *	only allocate huge pages if requested with fadvise()/madvise();
450  */
451 
452 #define SHMEM_HUGE_NEVER	0
453 #define SHMEM_HUGE_ALWAYS	1
454 #define SHMEM_HUGE_WITHIN_SIZE	2
455 #define SHMEM_HUGE_ADVISE	3
456 
457 /*
458  * Special values.
459  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
460  *
461  * SHMEM_HUGE_DENY:
462  *	disables huge on shm_mnt and all mounts, for emergency use;
463  * SHMEM_HUGE_FORCE:
464  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
465  *
466  */
467 #define SHMEM_HUGE_DENY		(-1)
468 #define SHMEM_HUGE_FORCE	(-2)
469 
470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
471 /* ifdef here to avoid bloating shmem.o when not necessary */
472 
473 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
474 
475 bool shmem_is_huge(struct vm_area_struct *vma,
476 		   struct inode *inode, pgoff_t index)
477 {
478 	loff_t i_size;
479 
480 	if (!S_ISREG(inode->i_mode))
481 		return false;
482 	if (shmem_huge == SHMEM_HUGE_DENY)
483 		return false;
484 	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
485 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
486 		return false;
487 	if (shmem_huge == SHMEM_HUGE_FORCE)
488 		return true;
489 
490 	switch (SHMEM_SB(inode->i_sb)->huge) {
491 	case SHMEM_HUGE_ALWAYS:
492 		return true;
493 	case SHMEM_HUGE_WITHIN_SIZE:
494 		index = round_up(index + 1, HPAGE_PMD_NR);
495 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
496 		if (i_size >> PAGE_SHIFT >= index)
497 			return true;
498 		fallthrough;
499 	case SHMEM_HUGE_ADVISE:
500 		if (vma && (vma->vm_flags & VM_HUGEPAGE))
501 			return true;
502 		fallthrough;
503 	default:
504 		return false;
505 	}
506 }
507 
508 #if defined(CONFIG_SYSFS)
509 static int shmem_parse_huge(const char *str)
510 {
511 	if (!strcmp(str, "never"))
512 		return SHMEM_HUGE_NEVER;
513 	if (!strcmp(str, "always"))
514 		return SHMEM_HUGE_ALWAYS;
515 	if (!strcmp(str, "within_size"))
516 		return SHMEM_HUGE_WITHIN_SIZE;
517 	if (!strcmp(str, "advise"))
518 		return SHMEM_HUGE_ADVISE;
519 	if (!strcmp(str, "deny"))
520 		return SHMEM_HUGE_DENY;
521 	if (!strcmp(str, "force"))
522 		return SHMEM_HUGE_FORCE;
523 	return -EINVAL;
524 }
525 #endif
526 
527 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
528 static const char *shmem_format_huge(int huge)
529 {
530 	switch (huge) {
531 	case SHMEM_HUGE_NEVER:
532 		return "never";
533 	case SHMEM_HUGE_ALWAYS:
534 		return "always";
535 	case SHMEM_HUGE_WITHIN_SIZE:
536 		return "within_size";
537 	case SHMEM_HUGE_ADVISE:
538 		return "advise";
539 	case SHMEM_HUGE_DENY:
540 		return "deny";
541 	case SHMEM_HUGE_FORCE:
542 		return "force";
543 	default:
544 		VM_BUG_ON(1);
545 		return "bad_val";
546 	}
547 }
548 #endif
549 
550 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
551 		struct shrink_control *sc, unsigned long nr_to_split)
552 {
553 	LIST_HEAD(list), *pos, *next;
554 	LIST_HEAD(to_remove);
555 	struct inode *inode;
556 	struct shmem_inode_info *info;
557 	struct folio *folio;
558 	unsigned long batch = sc ? sc->nr_to_scan : 128;
559 	int split = 0;
560 
561 	if (list_empty(&sbinfo->shrinklist))
562 		return SHRINK_STOP;
563 
564 	spin_lock(&sbinfo->shrinklist_lock);
565 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
566 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
567 
568 		/* pin the inode */
569 		inode = igrab(&info->vfs_inode);
570 
571 		/* inode is about to be evicted */
572 		if (!inode) {
573 			list_del_init(&info->shrinklist);
574 			goto next;
575 		}
576 
577 		/* Check if there's anything to gain */
578 		if (round_up(inode->i_size, PAGE_SIZE) ==
579 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
580 			list_move(&info->shrinklist, &to_remove);
581 			goto next;
582 		}
583 
584 		list_move(&info->shrinklist, &list);
585 next:
586 		sbinfo->shrinklist_len--;
587 		if (!--batch)
588 			break;
589 	}
590 	spin_unlock(&sbinfo->shrinklist_lock);
591 
592 	list_for_each_safe(pos, next, &to_remove) {
593 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
594 		inode = &info->vfs_inode;
595 		list_del_init(&info->shrinklist);
596 		iput(inode);
597 	}
598 
599 	list_for_each_safe(pos, next, &list) {
600 		int ret;
601 		pgoff_t index;
602 
603 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
604 		inode = &info->vfs_inode;
605 
606 		if (nr_to_split && split >= nr_to_split)
607 			goto move_back;
608 
609 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
610 		folio = filemap_get_folio(inode->i_mapping, index);
611 		if (!folio)
612 			goto drop;
613 
614 		/* No huge page at the end of the file: nothing to split */
615 		if (!folio_test_large(folio)) {
616 			folio_put(folio);
617 			goto drop;
618 		}
619 
620 		/*
621 		 * Move the inode on the list back to shrinklist if we failed
622 		 * to lock the page at this time.
623 		 *
624 		 * Waiting for the lock may lead to deadlock in the
625 		 * reclaim path.
626 		 */
627 		if (!folio_trylock(folio)) {
628 			folio_put(folio);
629 			goto move_back;
630 		}
631 
632 		ret = split_huge_page(&folio->page);
633 		folio_unlock(folio);
634 		folio_put(folio);
635 
636 		/* If split failed move the inode on the list back to shrinklist */
637 		if (ret)
638 			goto move_back;
639 
640 		split++;
641 drop:
642 		list_del_init(&info->shrinklist);
643 		goto put;
644 move_back:
645 		/*
646 		 * Make sure the inode is either on the global list or deleted
647 		 * from any local list before iput() since it could be deleted
648 		 * in another thread once we put the inode (then the local list
649 		 * is corrupted).
650 		 */
651 		spin_lock(&sbinfo->shrinklist_lock);
652 		list_move(&info->shrinklist, &sbinfo->shrinklist);
653 		sbinfo->shrinklist_len++;
654 		spin_unlock(&sbinfo->shrinklist_lock);
655 put:
656 		iput(inode);
657 	}
658 
659 	return split;
660 }
661 
662 static long shmem_unused_huge_scan(struct super_block *sb,
663 		struct shrink_control *sc)
664 {
665 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
666 
667 	if (!READ_ONCE(sbinfo->shrinklist_len))
668 		return SHRINK_STOP;
669 
670 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
671 }
672 
673 static long shmem_unused_huge_count(struct super_block *sb,
674 		struct shrink_control *sc)
675 {
676 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
677 	return READ_ONCE(sbinfo->shrinklist_len);
678 }
679 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
680 
681 #define shmem_huge SHMEM_HUGE_DENY
682 
683 bool shmem_is_huge(struct vm_area_struct *vma,
684 		   struct inode *inode, pgoff_t index)
685 {
686 	return false;
687 }
688 
689 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
690 		struct shrink_control *sc, unsigned long nr_to_split)
691 {
692 	return 0;
693 }
694 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
695 
696 /*
697  * Like add_to_page_cache_locked, but error if expected item has gone.
698  */
699 static int shmem_add_to_page_cache(struct folio *folio,
700 				   struct address_space *mapping,
701 				   pgoff_t index, void *expected, gfp_t gfp,
702 				   struct mm_struct *charge_mm)
703 {
704 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
705 	long nr = folio_nr_pages(folio);
706 	int error;
707 
708 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
709 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
710 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
711 	VM_BUG_ON(expected && folio_test_large(folio));
712 
713 	folio_ref_add(folio, nr);
714 	folio->mapping = mapping;
715 	folio->index = index;
716 
717 	if (!folio_test_swapcache(folio)) {
718 		error = mem_cgroup_charge(folio, charge_mm, gfp);
719 		if (error) {
720 			if (folio_test_pmd_mappable(folio)) {
721 				count_vm_event(THP_FILE_FALLBACK);
722 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
723 			}
724 			goto error;
725 		}
726 	}
727 	folio_throttle_swaprate(folio, gfp);
728 
729 	do {
730 		xas_lock_irq(&xas);
731 		if (expected != xas_find_conflict(&xas)) {
732 			xas_set_err(&xas, -EEXIST);
733 			goto unlock;
734 		}
735 		if (expected && xas_find_conflict(&xas)) {
736 			xas_set_err(&xas, -EEXIST);
737 			goto unlock;
738 		}
739 		xas_store(&xas, folio);
740 		if (xas_error(&xas))
741 			goto unlock;
742 		if (folio_test_pmd_mappable(folio)) {
743 			count_vm_event(THP_FILE_ALLOC);
744 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
745 		}
746 		mapping->nrpages += nr;
747 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
748 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
749 unlock:
750 		xas_unlock_irq(&xas);
751 	} while (xas_nomem(&xas, gfp));
752 
753 	if (xas_error(&xas)) {
754 		error = xas_error(&xas);
755 		goto error;
756 	}
757 
758 	return 0;
759 error:
760 	folio->mapping = NULL;
761 	folio_ref_sub(folio, nr);
762 	return error;
763 }
764 
765 /*
766  * Like delete_from_page_cache, but substitutes swap for page.
767  */
768 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
769 {
770 	struct address_space *mapping = page->mapping;
771 	int error;
772 
773 	VM_BUG_ON_PAGE(PageCompound(page), page);
774 
775 	xa_lock_irq(&mapping->i_pages);
776 	error = shmem_replace_entry(mapping, page->index, page, radswap);
777 	page->mapping = NULL;
778 	mapping->nrpages--;
779 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
780 	__dec_lruvec_page_state(page, NR_SHMEM);
781 	xa_unlock_irq(&mapping->i_pages);
782 	put_page(page);
783 	BUG_ON(error);
784 }
785 
786 /*
787  * Remove swap entry from page cache, free the swap and its page cache.
788  */
789 static int shmem_free_swap(struct address_space *mapping,
790 			   pgoff_t index, void *radswap)
791 {
792 	void *old;
793 
794 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
795 	if (old != radswap)
796 		return -ENOENT;
797 	free_swap_and_cache(radix_to_swp_entry(radswap));
798 	return 0;
799 }
800 
801 /*
802  * Determine (in bytes) how many of the shmem object's pages mapped by the
803  * given offsets are swapped out.
804  *
805  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
806  * as long as the inode doesn't go away and racy results are not a problem.
807  */
808 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
809 						pgoff_t start, pgoff_t end)
810 {
811 	XA_STATE(xas, &mapping->i_pages, start);
812 	struct page *page;
813 	unsigned long swapped = 0;
814 
815 	rcu_read_lock();
816 	xas_for_each(&xas, page, end - 1) {
817 		if (xas_retry(&xas, page))
818 			continue;
819 		if (xa_is_value(page))
820 			swapped++;
821 
822 		if (need_resched()) {
823 			xas_pause(&xas);
824 			cond_resched_rcu();
825 		}
826 	}
827 
828 	rcu_read_unlock();
829 
830 	return swapped << PAGE_SHIFT;
831 }
832 
833 /*
834  * Determine (in bytes) how many of the shmem object's pages mapped by the
835  * given vma is swapped out.
836  *
837  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
838  * as long as the inode doesn't go away and racy results are not a problem.
839  */
840 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
841 {
842 	struct inode *inode = file_inode(vma->vm_file);
843 	struct shmem_inode_info *info = SHMEM_I(inode);
844 	struct address_space *mapping = inode->i_mapping;
845 	unsigned long swapped;
846 
847 	/* Be careful as we don't hold info->lock */
848 	swapped = READ_ONCE(info->swapped);
849 
850 	/*
851 	 * The easier cases are when the shmem object has nothing in swap, or
852 	 * the vma maps it whole. Then we can simply use the stats that we
853 	 * already track.
854 	 */
855 	if (!swapped)
856 		return 0;
857 
858 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
859 		return swapped << PAGE_SHIFT;
860 
861 	/* Here comes the more involved part */
862 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
863 					vma->vm_pgoff + vma_pages(vma));
864 }
865 
866 /*
867  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
868  */
869 void shmem_unlock_mapping(struct address_space *mapping)
870 {
871 	struct pagevec pvec;
872 	pgoff_t index = 0;
873 
874 	pagevec_init(&pvec);
875 	/*
876 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
877 	 */
878 	while (!mapping_unevictable(mapping)) {
879 		if (!pagevec_lookup(&pvec, mapping, &index))
880 			break;
881 		check_move_unevictable_pages(&pvec);
882 		pagevec_release(&pvec);
883 		cond_resched();
884 	}
885 }
886 
887 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
888 {
889 	struct folio *folio;
890 	struct page *page;
891 
892 	/*
893 	 * At first avoid shmem_getpage(,,,SGP_READ): that fails
894 	 * beyond i_size, and reports fallocated pages as holes.
895 	 */
896 	folio = __filemap_get_folio(inode->i_mapping, index,
897 					FGP_ENTRY | FGP_LOCK, 0);
898 	if (!xa_is_value(folio))
899 		return folio;
900 	/*
901 	 * But read a page back from swap if any of it is within i_size
902 	 * (although in some cases this is just a waste of time).
903 	 */
904 	page = NULL;
905 	shmem_getpage(inode, index, &page, SGP_READ);
906 	return page ? page_folio(page) : NULL;
907 }
908 
909 /*
910  * Remove range of pages and swap entries from page cache, and free them.
911  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
912  */
913 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
914 								 bool unfalloc)
915 {
916 	struct address_space *mapping = inode->i_mapping;
917 	struct shmem_inode_info *info = SHMEM_I(inode);
918 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
919 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
920 	struct folio_batch fbatch;
921 	pgoff_t indices[PAGEVEC_SIZE];
922 	struct folio *folio;
923 	bool same_folio;
924 	long nr_swaps_freed = 0;
925 	pgoff_t index;
926 	int i;
927 
928 	if (lend == -1)
929 		end = -1;	/* unsigned, so actually very big */
930 
931 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
932 		info->fallocend = start;
933 
934 	folio_batch_init(&fbatch);
935 	index = start;
936 	while (index < end && find_lock_entries(mapping, index, end - 1,
937 			&fbatch, indices)) {
938 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
939 			folio = fbatch.folios[i];
940 
941 			index = indices[i];
942 
943 			if (xa_is_value(folio)) {
944 				if (unfalloc)
945 					continue;
946 				nr_swaps_freed += !shmem_free_swap(mapping,
947 								index, folio);
948 				continue;
949 			}
950 			index += folio_nr_pages(folio) - 1;
951 
952 			if (!unfalloc || !folio_test_uptodate(folio))
953 				truncate_inode_folio(mapping, folio);
954 			folio_unlock(folio);
955 		}
956 		folio_batch_remove_exceptionals(&fbatch);
957 		folio_batch_release(&fbatch);
958 		cond_resched();
959 		index++;
960 	}
961 
962 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
963 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
964 	if (folio) {
965 		same_folio = lend < folio_pos(folio) + folio_size(folio);
966 		folio_mark_dirty(folio);
967 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
968 			start = folio->index + folio_nr_pages(folio);
969 			if (same_folio)
970 				end = folio->index;
971 		}
972 		folio_unlock(folio);
973 		folio_put(folio);
974 		folio = NULL;
975 	}
976 
977 	if (!same_folio)
978 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
979 	if (folio) {
980 		folio_mark_dirty(folio);
981 		if (!truncate_inode_partial_folio(folio, lstart, lend))
982 			end = folio->index;
983 		folio_unlock(folio);
984 		folio_put(folio);
985 	}
986 
987 	index = start;
988 	while (index < end) {
989 		cond_resched();
990 
991 		if (!find_get_entries(mapping, index, end - 1, &fbatch,
992 				indices)) {
993 			/* If all gone or hole-punch or unfalloc, we're done */
994 			if (index == start || end != -1)
995 				break;
996 			/* But if truncating, restart to make sure all gone */
997 			index = start;
998 			continue;
999 		}
1000 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1001 			folio = fbatch.folios[i];
1002 
1003 			index = indices[i];
1004 			if (xa_is_value(folio)) {
1005 				if (unfalloc)
1006 					continue;
1007 				if (shmem_free_swap(mapping, index, folio)) {
1008 					/* Swap was replaced by page: retry */
1009 					index--;
1010 					break;
1011 				}
1012 				nr_swaps_freed++;
1013 				continue;
1014 			}
1015 
1016 			folio_lock(folio);
1017 
1018 			if (!unfalloc || !folio_test_uptodate(folio)) {
1019 				if (folio_mapping(folio) != mapping) {
1020 					/* Page was replaced by swap: retry */
1021 					folio_unlock(folio);
1022 					index--;
1023 					break;
1024 				}
1025 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1026 						folio);
1027 				truncate_inode_folio(mapping, folio);
1028 			}
1029 			index = folio->index + folio_nr_pages(folio) - 1;
1030 			folio_unlock(folio);
1031 		}
1032 		folio_batch_remove_exceptionals(&fbatch);
1033 		folio_batch_release(&fbatch);
1034 		index++;
1035 	}
1036 
1037 	spin_lock_irq(&info->lock);
1038 	info->swapped -= nr_swaps_freed;
1039 	shmem_recalc_inode(inode);
1040 	spin_unlock_irq(&info->lock);
1041 }
1042 
1043 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1044 {
1045 	shmem_undo_range(inode, lstart, lend, false);
1046 	inode->i_ctime = inode->i_mtime = current_time(inode);
1047 }
1048 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1049 
1050 static int shmem_getattr(struct user_namespace *mnt_userns,
1051 			 const struct path *path, struct kstat *stat,
1052 			 u32 request_mask, unsigned int query_flags)
1053 {
1054 	struct inode *inode = path->dentry->d_inode;
1055 	struct shmem_inode_info *info = SHMEM_I(inode);
1056 
1057 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1058 		spin_lock_irq(&info->lock);
1059 		shmem_recalc_inode(inode);
1060 		spin_unlock_irq(&info->lock);
1061 	}
1062 	if (info->fsflags & FS_APPEND_FL)
1063 		stat->attributes |= STATX_ATTR_APPEND;
1064 	if (info->fsflags & FS_IMMUTABLE_FL)
1065 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1066 	if (info->fsflags & FS_NODUMP_FL)
1067 		stat->attributes |= STATX_ATTR_NODUMP;
1068 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1069 			STATX_ATTR_IMMUTABLE |
1070 			STATX_ATTR_NODUMP);
1071 	generic_fillattr(&init_user_ns, inode, stat);
1072 
1073 	if (shmem_is_huge(NULL, inode, 0))
1074 		stat->blksize = HPAGE_PMD_SIZE;
1075 
1076 	if (request_mask & STATX_BTIME) {
1077 		stat->result_mask |= STATX_BTIME;
1078 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1079 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1080 	}
1081 
1082 	return 0;
1083 }
1084 
1085 static int shmem_setattr(struct user_namespace *mnt_userns,
1086 			 struct dentry *dentry, struct iattr *attr)
1087 {
1088 	struct inode *inode = d_inode(dentry);
1089 	struct shmem_inode_info *info = SHMEM_I(inode);
1090 	int error;
1091 
1092 	error = setattr_prepare(&init_user_ns, dentry, attr);
1093 	if (error)
1094 		return error;
1095 
1096 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1097 		loff_t oldsize = inode->i_size;
1098 		loff_t newsize = attr->ia_size;
1099 
1100 		/* protected by i_rwsem */
1101 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1102 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1103 			return -EPERM;
1104 
1105 		if (newsize != oldsize) {
1106 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1107 					oldsize, newsize);
1108 			if (error)
1109 				return error;
1110 			i_size_write(inode, newsize);
1111 			inode->i_ctime = inode->i_mtime = current_time(inode);
1112 		}
1113 		if (newsize <= oldsize) {
1114 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1115 			if (oldsize > holebegin)
1116 				unmap_mapping_range(inode->i_mapping,
1117 							holebegin, 0, 1);
1118 			if (info->alloced)
1119 				shmem_truncate_range(inode,
1120 							newsize, (loff_t)-1);
1121 			/* unmap again to remove racily COWed private pages */
1122 			if (oldsize > holebegin)
1123 				unmap_mapping_range(inode->i_mapping,
1124 							holebegin, 0, 1);
1125 		}
1126 	}
1127 
1128 	setattr_copy(&init_user_ns, inode, attr);
1129 	if (attr->ia_valid & ATTR_MODE)
1130 		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1131 	return error;
1132 }
1133 
1134 static void shmem_evict_inode(struct inode *inode)
1135 {
1136 	struct shmem_inode_info *info = SHMEM_I(inode);
1137 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1138 
1139 	if (shmem_mapping(inode->i_mapping)) {
1140 		shmem_unacct_size(info->flags, inode->i_size);
1141 		inode->i_size = 0;
1142 		mapping_set_exiting(inode->i_mapping);
1143 		shmem_truncate_range(inode, 0, (loff_t)-1);
1144 		if (!list_empty(&info->shrinklist)) {
1145 			spin_lock(&sbinfo->shrinklist_lock);
1146 			if (!list_empty(&info->shrinklist)) {
1147 				list_del_init(&info->shrinklist);
1148 				sbinfo->shrinklist_len--;
1149 			}
1150 			spin_unlock(&sbinfo->shrinklist_lock);
1151 		}
1152 		while (!list_empty(&info->swaplist)) {
1153 			/* Wait while shmem_unuse() is scanning this inode... */
1154 			wait_var_event(&info->stop_eviction,
1155 				       !atomic_read(&info->stop_eviction));
1156 			mutex_lock(&shmem_swaplist_mutex);
1157 			/* ...but beware of the race if we peeked too early */
1158 			if (!atomic_read(&info->stop_eviction))
1159 				list_del_init(&info->swaplist);
1160 			mutex_unlock(&shmem_swaplist_mutex);
1161 		}
1162 	}
1163 
1164 	simple_xattrs_free(&info->xattrs);
1165 	WARN_ON(inode->i_blocks);
1166 	shmem_free_inode(inode->i_sb);
1167 	clear_inode(inode);
1168 }
1169 
1170 static int shmem_find_swap_entries(struct address_space *mapping,
1171 				   pgoff_t start, struct folio_batch *fbatch,
1172 				   pgoff_t *indices, unsigned int type)
1173 {
1174 	XA_STATE(xas, &mapping->i_pages, start);
1175 	struct folio *folio;
1176 	swp_entry_t entry;
1177 
1178 	rcu_read_lock();
1179 	xas_for_each(&xas, folio, ULONG_MAX) {
1180 		if (xas_retry(&xas, folio))
1181 			continue;
1182 
1183 		if (!xa_is_value(folio))
1184 			continue;
1185 
1186 		entry = radix_to_swp_entry(folio);
1187 		/*
1188 		 * swapin error entries can be found in the mapping. But they're
1189 		 * deliberately ignored here as we've done everything we can do.
1190 		 */
1191 		if (swp_type(entry) != type)
1192 			continue;
1193 
1194 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1195 		if (!folio_batch_add(fbatch, folio))
1196 			break;
1197 
1198 		if (need_resched()) {
1199 			xas_pause(&xas);
1200 			cond_resched_rcu();
1201 		}
1202 	}
1203 	rcu_read_unlock();
1204 
1205 	return xas.xa_index;
1206 }
1207 
1208 /*
1209  * Move the swapped pages for an inode to page cache. Returns the count
1210  * of pages swapped in, or the error in case of failure.
1211  */
1212 static int shmem_unuse_swap_entries(struct inode *inode,
1213 		struct folio_batch *fbatch, pgoff_t *indices)
1214 {
1215 	int i = 0;
1216 	int ret = 0;
1217 	int error = 0;
1218 	struct address_space *mapping = inode->i_mapping;
1219 
1220 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1221 		struct folio *folio = fbatch->folios[i];
1222 
1223 		if (!xa_is_value(folio))
1224 			continue;
1225 		error = shmem_swapin_folio(inode, indices[i],
1226 					  &folio, SGP_CACHE,
1227 					  mapping_gfp_mask(mapping),
1228 					  NULL, NULL);
1229 		if (error == 0) {
1230 			folio_unlock(folio);
1231 			folio_put(folio);
1232 			ret++;
1233 		}
1234 		if (error == -ENOMEM)
1235 			break;
1236 		error = 0;
1237 	}
1238 	return error ? error : ret;
1239 }
1240 
1241 /*
1242  * If swap found in inode, free it and move page from swapcache to filecache.
1243  */
1244 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1245 {
1246 	struct address_space *mapping = inode->i_mapping;
1247 	pgoff_t start = 0;
1248 	struct folio_batch fbatch;
1249 	pgoff_t indices[PAGEVEC_SIZE];
1250 	int ret = 0;
1251 
1252 	do {
1253 		folio_batch_init(&fbatch);
1254 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1255 		if (folio_batch_count(&fbatch) == 0) {
1256 			ret = 0;
1257 			break;
1258 		}
1259 
1260 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1261 		if (ret < 0)
1262 			break;
1263 
1264 		start = indices[folio_batch_count(&fbatch) - 1];
1265 	} while (true);
1266 
1267 	return ret;
1268 }
1269 
1270 /*
1271  * Read all the shared memory data that resides in the swap
1272  * device 'type' back into memory, so the swap device can be
1273  * unused.
1274  */
1275 int shmem_unuse(unsigned int type)
1276 {
1277 	struct shmem_inode_info *info, *next;
1278 	int error = 0;
1279 
1280 	if (list_empty(&shmem_swaplist))
1281 		return 0;
1282 
1283 	mutex_lock(&shmem_swaplist_mutex);
1284 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1285 		if (!info->swapped) {
1286 			list_del_init(&info->swaplist);
1287 			continue;
1288 		}
1289 		/*
1290 		 * Drop the swaplist mutex while searching the inode for swap;
1291 		 * but before doing so, make sure shmem_evict_inode() will not
1292 		 * remove placeholder inode from swaplist, nor let it be freed
1293 		 * (igrab() would protect from unlink, but not from unmount).
1294 		 */
1295 		atomic_inc(&info->stop_eviction);
1296 		mutex_unlock(&shmem_swaplist_mutex);
1297 
1298 		error = shmem_unuse_inode(&info->vfs_inode, type);
1299 		cond_resched();
1300 
1301 		mutex_lock(&shmem_swaplist_mutex);
1302 		next = list_next_entry(info, swaplist);
1303 		if (!info->swapped)
1304 			list_del_init(&info->swaplist);
1305 		if (atomic_dec_and_test(&info->stop_eviction))
1306 			wake_up_var(&info->stop_eviction);
1307 		if (error)
1308 			break;
1309 	}
1310 	mutex_unlock(&shmem_swaplist_mutex);
1311 
1312 	return error;
1313 }
1314 
1315 /*
1316  * Move the page from the page cache to the swap cache.
1317  */
1318 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1319 {
1320 	struct folio *folio = page_folio(page);
1321 	struct shmem_inode_info *info;
1322 	struct address_space *mapping;
1323 	struct inode *inode;
1324 	swp_entry_t swap;
1325 	pgoff_t index;
1326 
1327 	/*
1328 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1329 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1330 	 * and its shmem_writeback() needs them to be split when swapping.
1331 	 */
1332 	if (PageTransCompound(page)) {
1333 		/* Ensure the subpages are still dirty */
1334 		SetPageDirty(page);
1335 		if (split_huge_page(page) < 0)
1336 			goto redirty;
1337 		ClearPageDirty(page);
1338 	}
1339 
1340 	BUG_ON(!PageLocked(page));
1341 	mapping = page->mapping;
1342 	index = page->index;
1343 	inode = mapping->host;
1344 	info = SHMEM_I(inode);
1345 	if (info->flags & VM_LOCKED)
1346 		goto redirty;
1347 	if (!total_swap_pages)
1348 		goto redirty;
1349 
1350 	/*
1351 	 * Our capabilities prevent regular writeback or sync from ever calling
1352 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1353 	 * its underlying filesystem, in which case tmpfs should write out to
1354 	 * swap only in response to memory pressure, and not for the writeback
1355 	 * threads or sync.
1356 	 */
1357 	if (!wbc->for_reclaim) {
1358 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1359 		goto redirty;
1360 	}
1361 
1362 	/*
1363 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1364 	 * value into swapfile.c, the only way we can correctly account for a
1365 	 * fallocated page arriving here is now to initialize it and write it.
1366 	 *
1367 	 * That's okay for a page already fallocated earlier, but if we have
1368 	 * not yet completed the fallocation, then (a) we want to keep track
1369 	 * of this page in case we have to undo it, and (b) it may not be a
1370 	 * good idea to continue anyway, once we're pushing into swap.  So
1371 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1372 	 */
1373 	if (!PageUptodate(page)) {
1374 		if (inode->i_private) {
1375 			struct shmem_falloc *shmem_falloc;
1376 			spin_lock(&inode->i_lock);
1377 			shmem_falloc = inode->i_private;
1378 			if (shmem_falloc &&
1379 			    !shmem_falloc->waitq &&
1380 			    index >= shmem_falloc->start &&
1381 			    index < shmem_falloc->next)
1382 				shmem_falloc->nr_unswapped++;
1383 			else
1384 				shmem_falloc = NULL;
1385 			spin_unlock(&inode->i_lock);
1386 			if (shmem_falloc)
1387 				goto redirty;
1388 		}
1389 		clear_highpage(page);
1390 		flush_dcache_page(page);
1391 		SetPageUptodate(page);
1392 	}
1393 
1394 	swap = folio_alloc_swap(folio);
1395 	if (!swap.val)
1396 		goto redirty;
1397 
1398 	/*
1399 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1400 	 * if it's not already there.  Do it now before the page is
1401 	 * moved to swap cache, when its pagelock no longer protects
1402 	 * the inode from eviction.  But don't unlock the mutex until
1403 	 * we've incremented swapped, because shmem_unuse_inode() will
1404 	 * prune a !swapped inode from the swaplist under this mutex.
1405 	 */
1406 	mutex_lock(&shmem_swaplist_mutex);
1407 	if (list_empty(&info->swaplist))
1408 		list_add(&info->swaplist, &shmem_swaplist);
1409 
1410 	if (add_to_swap_cache(page, swap,
1411 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1412 			NULL) == 0) {
1413 		spin_lock_irq(&info->lock);
1414 		shmem_recalc_inode(inode);
1415 		info->swapped++;
1416 		spin_unlock_irq(&info->lock);
1417 
1418 		swap_shmem_alloc(swap);
1419 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1420 
1421 		mutex_unlock(&shmem_swaplist_mutex);
1422 		BUG_ON(page_mapped(page));
1423 		swap_writepage(page, wbc);
1424 		return 0;
1425 	}
1426 
1427 	mutex_unlock(&shmem_swaplist_mutex);
1428 	put_swap_page(page, swap);
1429 redirty:
1430 	set_page_dirty(page);
1431 	if (wbc->for_reclaim)
1432 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1433 	unlock_page(page);
1434 	return 0;
1435 }
1436 
1437 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1438 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1439 {
1440 	char buffer[64];
1441 
1442 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1443 		return;		/* show nothing */
1444 
1445 	mpol_to_str(buffer, sizeof(buffer), mpol);
1446 
1447 	seq_printf(seq, ",mpol=%s", buffer);
1448 }
1449 
1450 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1451 {
1452 	struct mempolicy *mpol = NULL;
1453 	if (sbinfo->mpol) {
1454 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1455 		mpol = sbinfo->mpol;
1456 		mpol_get(mpol);
1457 		raw_spin_unlock(&sbinfo->stat_lock);
1458 	}
1459 	return mpol;
1460 }
1461 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1462 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1463 {
1464 }
1465 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1466 {
1467 	return NULL;
1468 }
1469 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1470 #ifndef CONFIG_NUMA
1471 #define vm_policy vm_private_data
1472 #endif
1473 
1474 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1475 		struct shmem_inode_info *info, pgoff_t index)
1476 {
1477 	/* Create a pseudo vma that just contains the policy */
1478 	vma_init(vma, NULL);
1479 	/* Bias interleave by inode number to distribute better across nodes */
1480 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1481 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1482 }
1483 
1484 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1485 {
1486 	/* Drop reference taken by mpol_shared_policy_lookup() */
1487 	mpol_cond_put(vma->vm_policy);
1488 }
1489 
1490 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1491 			struct shmem_inode_info *info, pgoff_t index)
1492 {
1493 	struct vm_area_struct pvma;
1494 	struct page *page;
1495 	struct vm_fault vmf = {
1496 		.vma = &pvma,
1497 	};
1498 
1499 	shmem_pseudo_vma_init(&pvma, info, index);
1500 	page = swap_cluster_readahead(swap, gfp, &vmf);
1501 	shmem_pseudo_vma_destroy(&pvma);
1502 
1503 	return page;
1504 }
1505 
1506 /*
1507  * Make sure huge_gfp is always more limited than limit_gfp.
1508  * Some of the flags set permissions, while others set limitations.
1509  */
1510 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1511 {
1512 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1513 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1514 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1515 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1516 
1517 	/* Allow allocations only from the originally specified zones. */
1518 	result |= zoneflags;
1519 
1520 	/*
1521 	 * Minimize the result gfp by taking the union with the deny flags,
1522 	 * and the intersection of the allow flags.
1523 	 */
1524 	result |= (limit_gfp & denyflags);
1525 	result |= (huge_gfp & limit_gfp) & allowflags;
1526 
1527 	return result;
1528 }
1529 
1530 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1531 		struct shmem_inode_info *info, pgoff_t index)
1532 {
1533 	struct vm_area_struct pvma;
1534 	struct address_space *mapping = info->vfs_inode.i_mapping;
1535 	pgoff_t hindex;
1536 	struct folio *folio;
1537 
1538 	hindex = round_down(index, HPAGE_PMD_NR);
1539 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1540 								XA_PRESENT))
1541 		return NULL;
1542 
1543 	shmem_pseudo_vma_init(&pvma, info, hindex);
1544 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1545 	shmem_pseudo_vma_destroy(&pvma);
1546 	if (!folio)
1547 		count_vm_event(THP_FILE_FALLBACK);
1548 	return folio;
1549 }
1550 
1551 static struct folio *shmem_alloc_folio(gfp_t gfp,
1552 			struct shmem_inode_info *info, pgoff_t index)
1553 {
1554 	struct vm_area_struct pvma;
1555 	struct folio *folio;
1556 
1557 	shmem_pseudo_vma_init(&pvma, info, index);
1558 	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1559 	shmem_pseudo_vma_destroy(&pvma);
1560 
1561 	return folio;
1562 }
1563 
1564 static struct page *shmem_alloc_page(gfp_t gfp,
1565 			struct shmem_inode_info *info, pgoff_t index)
1566 {
1567 	return &shmem_alloc_folio(gfp, info, index)->page;
1568 }
1569 
1570 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1571 		pgoff_t index, bool huge)
1572 {
1573 	struct shmem_inode_info *info = SHMEM_I(inode);
1574 	struct folio *folio;
1575 	int nr;
1576 	int err = -ENOSPC;
1577 
1578 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1579 		huge = false;
1580 	nr = huge ? HPAGE_PMD_NR : 1;
1581 
1582 	if (!shmem_inode_acct_block(inode, nr))
1583 		goto failed;
1584 
1585 	if (huge)
1586 		folio = shmem_alloc_hugefolio(gfp, info, index);
1587 	else
1588 		folio = shmem_alloc_folio(gfp, info, index);
1589 	if (folio) {
1590 		__folio_set_locked(folio);
1591 		__folio_set_swapbacked(folio);
1592 		return folio;
1593 	}
1594 
1595 	err = -ENOMEM;
1596 	shmem_inode_unacct_blocks(inode, nr);
1597 failed:
1598 	return ERR_PTR(err);
1599 }
1600 
1601 /*
1602  * When a page is moved from swapcache to shmem filecache (either by the
1603  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1604  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1605  * ignorance of the mapping it belongs to.  If that mapping has special
1606  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1607  * we may need to copy to a suitable page before moving to filecache.
1608  *
1609  * In a future release, this may well be extended to respect cpuset and
1610  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1611  * but for now it is a simple matter of zone.
1612  */
1613 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1614 {
1615 	return folio_zonenum(folio) > gfp_zone(gfp);
1616 }
1617 
1618 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1619 				struct shmem_inode_info *info, pgoff_t index)
1620 {
1621 	struct page *oldpage, *newpage;
1622 	struct folio *old, *new;
1623 	struct address_space *swap_mapping;
1624 	swp_entry_t entry;
1625 	pgoff_t swap_index;
1626 	int error;
1627 
1628 	oldpage = *pagep;
1629 	entry.val = page_private(oldpage);
1630 	swap_index = swp_offset(entry);
1631 	swap_mapping = page_mapping(oldpage);
1632 
1633 	/*
1634 	 * We have arrived here because our zones are constrained, so don't
1635 	 * limit chance of success by further cpuset and node constraints.
1636 	 */
1637 	gfp &= ~GFP_CONSTRAINT_MASK;
1638 	newpage = shmem_alloc_page(gfp, info, index);
1639 	if (!newpage)
1640 		return -ENOMEM;
1641 
1642 	get_page(newpage);
1643 	copy_highpage(newpage, oldpage);
1644 	flush_dcache_page(newpage);
1645 
1646 	__SetPageLocked(newpage);
1647 	__SetPageSwapBacked(newpage);
1648 	SetPageUptodate(newpage);
1649 	set_page_private(newpage, entry.val);
1650 	SetPageSwapCache(newpage);
1651 
1652 	/*
1653 	 * Our caller will very soon move newpage out of swapcache, but it's
1654 	 * a nice clean interface for us to replace oldpage by newpage there.
1655 	 */
1656 	xa_lock_irq(&swap_mapping->i_pages);
1657 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1658 	if (!error) {
1659 		old = page_folio(oldpage);
1660 		new = page_folio(newpage);
1661 		mem_cgroup_migrate(old, new);
1662 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1663 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1664 	}
1665 	xa_unlock_irq(&swap_mapping->i_pages);
1666 
1667 	if (unlikely(error)) {
1668 		/*
1669 		 * Is this possible?  I think not, now that our callers check
1670 		 * both PageSwapCache and page_private after getting page lock;
1671 		 * but be defensive.  Reverse old to newpage for clear and free.
1672 		 */
1673 		oldpage = newpage;
1674 	} else {
1675 		lru_cache_add(newpage);
1676 		*pagep = newpage;
1677 	}
1678 
1679 	ClearPageSwapCache(oldpage);
1680 	set_page_private(oldpage, 0);
1681 
1682 	unlock_page(oldpage);
1683 	put_page(oldpage);
1684 	put_page(oldpage);
1685 	return error;
1686 }
1687 
1688 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1689 					 struct folio *folio, swp_entry_t swap)
1690 {
1691 	struct address_space *mapping = inode->i_mapping;
1692 	struct shmem_inode_info *info = SHMEM_I(inode);
1693 	swp_entry_t swapin_error;
1694 	void *old;
1695 
1696 	swapin_error = make_swapin_error_entry(&folio->page);
1697 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1698 			     swp_to_radix_entry(swap),
1699 			     swp_to_radix_entry(swapin_error), 0);
1700 	if (old != swp_to_radix_entry(swap))
1701 		return;
1702 
1703 	folio_wait_writeback(folio);
1704 	delete_from_swap_cache(folio);
1705 	spin_lock_irq(&info->lock);
1706 	/*
1707 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1708 	 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1709 	 * shmem_evict_inode.
1710 	 */
1711 	info->alloced--;
1712 	info->swapped--;
1713 	shmem_recalc_inode(inode);
1714 	spin_unlock_irq(&info->lock);
1715 	swap_free(swap);
1716 }
1717 
1718 /*
1719  * Swap in the folio pointed to by *foliop.
1720  * Caller has to make sure that *foliop contains a valid swapped folio.
1721  * Returns 0 and the folio in foliop if success. On failure, returns the
1722  * error code and NULL in *foliop.
1723  */
1724 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1725 			     struct folio **foliop, enum sgp_type sgp,
1726 			     gfp_t gfp, struct vm_area_struct *vma,
1727 			     vm_fault_t *fault_type)
1728 {
1729 	struct address_space *mapping = inode->i_mapping;
1730 	struct shmem_inode_info *info = SHMEM_I(inode);
1731 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1732 	struct page *page;
1733 	struct folio *folio = NULL;
1734 	swp_entry_t swap;
1735 	int error;
1736 
1737 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1738 	swap = radix_to_swp_entry(*foliop);
1739 	*foliop = NULL;
1740 
1741 	if (is_swapin_error_entry(swap))
1742 		return -EIO;
1743 
1744 	/* Look it up and read it in.. */
1745 	page = lookup_swap_cache(swap, NULL, 0);
1746 	if (!page) {
1747 		/* Or update major stats only when swapin succeeds?? */
1748 		if (fault_type) {
1749 			*fault_type |= VM_FAULT_MAJOR;
1750 			count_vm_event(PGMAJFAULT);
1751 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1752 		}
1753 		/* Here we actually start the io */
1754 		page = shmem_swapin(swap, gfp, info, index);
1755 		if (!page) {
1756 			error = -ENOMEM;
1757 			goto failed;
1758 		}
1759 	}
1760 	folio = page_folio(page);
1761 
1762 	/* We have to do this with folio locked to prevent races */
1763 	folio_lock(folio);
1764 	if (!folio_test_swapcache(folio) ||
1765 	    folio_swap_entry(folio).val != swap.val ||
1766 	    !shmem_confirm_swap(mapping, index, swap)) {
1767 		error = -EEXIST;
1768 		goto unlock;
1769 	}
1770 	if (!folio_test_uptodate(folio)) {
1771 		error = -EIO;
1772 		goto failed;
1773 	}
1774 	folio_wait_writeback(folio);
1775 
1776 	/*
1777 	 * Some architectures may have to restore extra metadata to the
1778 	 * folio after reading from swap.
1779 	 */
1780 	arch_swap_restore(swap, folio);
1781 
1782 	if (shmem_should_replace_folio(folio, gfp)) {
1783 		error = shmem_replace_page(&page, gfp, info, index);
1784 		if (error)
1785 			goto failed;
1786 	}
1787 
1788 	error = shmem_add_to_page_cache(folio, mapping, index,
1789 					swp_to_radix_entry(swap), gfp,
1790 					charge_mm);
1791 	if (error)
1792 		goto failed;
1793 
1794 	spin_lock_irq(&info->lock);
1795 	info->swapped--;
1796 	shmem_recalc_inode(inode);
1797 	spin_unlock_irq(&info->lock);
1798 
1799 	if (sgp == SGP_WRITE)
1800 		folio_mark_accessed(folio);
1801 
1802 	delete_from_swap_cache(folio);
1803 	folio_mark_dirty(folio);
1804 	swap_free(swap);
1805 
1806 	*foliop = folio;
1807 	return 0;
1808 failed:
1809 	if (!shmem_confirm_swap(mapping, index, swap))
1810 		error = -EEXIST;
1811 	if (error == -EIO)
1812 		shmem_set_folio_swapin_error(inode, index, folio, swap);
1813 unlock:
1814 	if (folio) {
1815 		folio_unlock(folio);
1816 		folio_put(folio);
1817 	}
1818 
1819 	return error;
1820 }
1821 
1822 /*
1823  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1824  *
1825  * If we allocate a new one we do not mark it dirty. That's up to the
1826  * vm. If we swap it in we mark it dirty since we also free the swap
1827  * entry since a page cannot live in both the swap and page cache.
1828  *
1829  * vma, vmf, and fault_type are only supplied by shmem_fault:
1830  * otherwise they are NULL.
1831  */
1832 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1833 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1834 	struct vm_area_struct *vma, struct vm_fault *vmf,
1835 			vm_fault_t *fault_type)
1836 {
1837 	struct address_space *mapping = inode->i_mapping;
1838 	struct shmem_inode_info *info = SHMEM_I(inode);
1839 	struct shmem_sb_info *sbinfo;
1840 	struct mm_struct *charge_mm;
1841 	struct folio *folio;
1842 	pgoff_t hindex = index;
1843 	gfp_t huge_gfp;
1844 	int error;
1845 	int once = 0;
1846 	int alloced = 0;
1847 
1848 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1849 		return -EFBIG;
1850 repeat:
1851 	if (sgp <= SGP_CACHE &&
1852 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1853 		return -EINVAL;
1854 	}
1855 
1856 	sbinfo = SHMEM_SB(inode->i_sb);
1857 	charge_mm = vma ? vma->vm_mm : NULL;
1858 
1859 	folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1860 	if (folio && vma && userfaultfd_minor(vma)) {
1861 		if (!xa_is_value(folio)) {
1862 			folio_unlock(folio);
1863 			folio_put(folio);
1864 		}
1865 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1866 		return 0;
1867 	}
1868 
1869 	if (xa_is_value(folio)) {
1870 		error = shmem_swapin_folio(inode, index, &folio,
1871 					  sgp, gfp, vma, fault_type);
1872 		if (error == -EEXIST)
1873 			goto repeat;
1874 
1875 		*pagep = &folio->page;
1876 		return error;
1877 	}
1878 
1879 	if (folio) {
1880 		hindex = folio->index;
1881 		if (sgp == SGP_WRITE)
1882 			folio_mark_accessed(folio);
1883 		if (folio_test_uptodate(folio))
1884 			goto out;
1885 		/* fallocated page */
1886 		if (sgp != SGP_READ)
1887 			goto clear;
1888 		folio_unlock(folio);
1889 		folio_put(folio);
1890 	}
1891 
1892 	/*
1893 	 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1894 	 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1895 	 */
1896 	*pagep = NULL;
1897 	if (sgp == SGP_READ)
1898 		return 0;
1899 	if (sgp == SGP_NOALLOC)
1900 		return -ENOENT;
1901 
1902 	/*
1903 	 * Fast cache lookup and swap lookup did not find it: allocate.
1904 	 */
1905 
1906 	if (vma && userfaultfd_missing(vma)) {
1907 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1908 		return 0;
1909 	}
1910 
1911 	if (!shmem_is_huge(vma, inode, index))
1912 		goto alloc_nohuge;
1913 
1914 	huge_gfp = vma_thp_gfp_mask(vma);
1915 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1916 	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1917 	if (IS_ERR(folio)) {
1918 alloc_nohuge:
1919 		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1920 	}
1921 	if (IS_ERR(folio)) {
1922 		int retry = 5;
1923 
1924 		error = PTR_ERR(folio);
1925 		folio = NULL;
1926 		if (error != -ENOSPC)
1927 			goto unlock;
1928 		/*
1929 		 * Try to reclaim some space by splitting a huge page
1930 		 * beyond i_size on the filesystem.
1931 		 */
1932 		while (retry--) {
1933 			int ret;
1934 
1935 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1936 			if (ret == SHRINK_STOP)
1937 				break;
1938 			if (ret)
1939 				goto alloc_nohuge;
1940 		}
1941 		goto unlock;
1942 	}
1943 
1944 	hindex = round_down(index, folio_nr_pages(folio));
1945 
1946 	if (sgp == SGP_WRITE)
1947 		__folio_set_referenced(folio);
1948 
1949 	error = shmem_add_to_page_cache(folio, mapping, hindex,
1950 					NULL, gfp & GFP_RECLAIM_MASK,
1951 					charge_mm);
1952 	if (error)
1953 		goto unacct;
1954 	folio_add_lru(folio);
1955 
1956 	spin_lock_irq(&info->lock);
1957 	info->alloced += folio_nr_pages(folio);
1958 	inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1959 	shmem_recalc_inode(inode);
1960 	spin_unlock_irq(&info->lock);
1961 	alloced = true;
1962 
1963 	if (folio_test_pmd_mappable(folio) &&
1964 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1965 			hindex + HPAGE_PMD_NR - 1) {
1966 		/*
1967 		 * Part of the huge page is beyond i_size: subject
1968 		 * to shrink under memory pressure.
1969 		 */
1970 		spin_lock(&sbinfo->shrinklist_lock);
1971 		/*
1972 		 * _careful to defend against unlocked access to
1973 		 * ->shrink_list in shmem_unused_huge_shrink()
1974 		 */
1975 		if (list_empty_careful(&info->shrinklist)) {
1976 			list_add_tail(&info->shrinklist,
1977 				      &sbinfo->shrinklist);
1978 			sbinfo->shrinklist_len++;
1979 		}
1980 		spin_unlock(&sbinfo->shrinklist_lock);
1981 	}
1982 
1983 	/*
1984 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1985 	 */
1986 	if (sgp == SGP_FALLOC)
1987 		sgp = SGP_WRITE;
1988 clear:
1989 	/*
1990 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1991 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1992 	 * it now, lest undo on failure cancel our earlier guarantee.
1993 	 */
1994 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
1995 		long i, n = folio_nr_pages(folio);
1996 
1997 		for (i = 0; i < n; i++)
1998 			clear_highpage(folio_page(folio, i));
1999 		flush_dcache_folio(folio);
2000 		folio_mark_uptodate(folio);
2001 	}
2002 
2003 	/* Perhaps the file has been truncated since we checked */
2004 	if (sgp <= SGP_CACHE &&
2005 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2006 		if (alloced) {
2007 			folio_clear_dirty(folio);
2008 			filemap_remove_folio(folio);
2009 			spin_lock_irq(&info->lock);
2010 			shmem_recalc_inode(inode);
2011 			spin_unlock_irq(&info->lock);
2012 		}
2013 		error = -EINVAL;
2014 		goto unlock;
2015 	}
2016 out:
2017 	*pagep = folio_page(folio, index - hindex);
2018 	return 0;
2019 
2020 	/*
2021 	 * Error recovery.
2022 	 */
2023 unacct:
2024 	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2025 
2026 	if (folio_test_large(folio)) {
2027 		folio_unlock(folio);
2028 		folio_put(folio);
2029 		goto alloc_nohuge;
2030 	}
2031 unlock:
2032 	if (folio) {
2033 		folio_unlock(folio);
2034 		folio_put(folio);
2035 	}
2036 	if (error == -ENOSPC && !once++) {
2037 		spin_lock_irq(&info->lock);
2038 		shmem_recalc_inode(inode);
2039 		spin_unlock_irq(&info->lock);
2040 		goto repeat;
2041 	}
2042 	if (error == -EEXIST)
2043 		goto repeat;
2044 	return error;
2045 }
2046 
2047 /*
2048  * This is like autoremove_wake_function, but it removes the wait queue
2049  * entry unconditionally - even if something else had already woken the
2050  * target.
2051  */
2052 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2053 {
2054 	int ret = default_wake_function(wait, mode, sync, key);
2055 	list_del_init(&wait->entry);
2056 	return ret;
2057 }
2058 
2059 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2060 {
2061 	struct vm_area_struct *vma = vmf->vma;
2062 	struct inode *inode = file_inode(vma->vm_file);
2063 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2064 	int err;
2065 	vm_fault_t ret = VM_FAULT_LOCKED;
2066 
2067 	/*
2068 	 * Trinity finds that probing a hole which tmpfs is punching can
2069 	 * prevent the hole-punch from ever completing: which in turn
2070 	 * locks writers out with its hold on i_rwsem.  So refrain from
2071 	 * faulting pages into the hole while it's being punched.  Although
2072 	 * shmem_undo_range() does remove the additions, it may be unable to
2073 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2074 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2075 	 *
2076 	 * It does not matter if we sometimes reach this check just before the
2077 	 * hole-punch begins, so that one fault then races with the punch:
2078 	 * we just need to make racing faults a rare case.
2079 	 *
2080 	 * The implementation below would be much simpler if we just used a
2081 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2082 	 * and bloating every shmem inode for this unlikely case would be sad.
2083 	 */
2084 	if (unlikely(inode->i_private)) {
2085 		struct shmem_falloc *shmem_falloc;
2086 
2087 		spin_lock(&inode->i_lock);
2088 		shmem_falloc = inode->i_private;
2089 		if (shmem_falloc &&
2090 		    shmem_falloc->waitq &&
2091 		    vmf->pgoff >= shmem_falloc->start &&
2092 		    vmf->pgoff < shmem_falloc->next) {
2093 			struct file *fpin;
2094 			wait_queue_head_t *shmem_falloc_waitq;
2095 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2096 
2097 			ret = VM_FAULT_NOPAGE;
2098 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2099 			if (fpin)
2100 				ret = VM_FAULT_RETRY;
2101 
2102 			shmem_falloc_waitq = shmem_falloc->waitq;
2103 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2104 					TASK_UNINTERRUPTIBLE);
2105 			spin_unlock(&inode->i_lock);
2106 			schedule();
2107 
2108 			/*
2109 			 * shmem_falloc_waitq points into the shmem_fallocate()
2110 			 * stack of the hole-punching task: shmem_falloc_waitq
2111 			 * is usually invalid by the time we reach here, but
2112 			 * finish_wait() does not dereference it in that case;
2113 			 * though i_lock needed lest racing with wake_up_all().
2114 			 */
2115 			spin_lock(&inode->i_lock);
2116 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2117 			spin_unlock(&inode->i_lock);
2118 
2119 			if (fpin)
2120 				fput(fpin);
2121 			return ret;
2122 		}
2123 		spin_unlock(&inode->i_lock);
2124 	}
2125 
2126 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2127 				  gfp, vma, vmf, &ret);
2128 	if (err)
2129 		return vmf_error(err);
2130 	return ret;
2131 }
2132 
2133 unsigned long shmem_get_unmapped_area(struct file *file,
2134 				      unsigned long uaddr, unsigned long len,
2135 				      unsigned long pgoff, unsigned long flags)
2136 {
2137 	unsigned long (*get_area)(struct file *,
2138 		unsigned long, unsigned long, unsigned long, unsigned long);
2139 	unsigned long addr;
2140 	unsigned long offset;
2141 	unsigned long inflated_len;
2142 	unsigned long inflated_addr;
2143 	unsigned long inflated_offset;
2144 
2145 	if (len > TASK_SIZE)
2146 		return -ENOMEM;
2147 
2148 	get_area = current->mm->get_unmapped_area;
2149 	addr = get_area(file, uaddr, len, pgoff, flags);
2150 
2151 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2152 		return addr;
2153 	if (IS_ERR_VALUE(addr))
2154 		return addr;
2155 	if (addr & ~PAGE_MASK)
2156 		return addr;
2157 	if (addr > TASK_SIZE - len)
2158 		return addr;
2159 
2160 	if (shmem_huge == SHMEM_HUGE_DENY)
2161 		return addr;
2162 	if (len < HPAGE_PMD_SIZE)
2163 		return addr;
2164 	if (flags & MAP_FIXED)
2165 		return addr;
2166 	/*
2167 	 * Our priority is to support MAP_SHARED mapped hugely;
2168 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2169 	 * But if caller specified an address hint and we allocated area there
2170 	 * successfully, respect that as before.
2171 	 */
2172 	if (uaddr == addr)
2173 		return addr;
2174 
2175 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2176 		struct super_block *sb;
2177 
2178 		if (file) {
2179 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2180 			sb = file_inode(file)->i_sb;
2181 		} else {
2182 			/*
2183 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2184 			 * for "/dev/zero", to create a shared anonymous object.
2185 			 */
2186 			if (IS_ERR(shm_mnt))
2187 				return addr;
2188 			sb = shm_mnt->mnt_sb;
2189 		}
2190 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2191 			return addr;
2192 	}
2193 
2194 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2195 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2196 		return addr;
2197 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2198 		return addr;
2199 
2200 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2201 	if (inflated_len > TASK_SIZE)
2202 		return addr;
2203 	if (inflated_len < len)
2204 		return addr;
2205 
2206 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2207 	if (IS_ERR_VALUE(inflated_addr))
2208 		return addr;
2209 	if (inflated_addr & ~PAGE_MASK)
2210 		return addr;
2211 
2212 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2213 	inflated_addr += offset - inflated_offset;
2214 	if (inflated_offset > offset)
2215 		inflated_addr += HPAGE_PMD_SIZE;
2216 
2217 	if (inflated_addr > TASK_SIZE - len)
2218 		return addr;
2219 	return inflated_addr;
2220 }
2221 
2222 #ifdef CONFIG_NUMA
2223 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2224 {
2225 	struct inode *inode = file_inode(vma->vm_file);
2226 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2227 }
2228 
2229 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2230 					  unsigned long addr)
2231 {
2232 	struct inode *inode = file_inode(vma->vm_file);
2233 	pgoff_t index;
2234 
2235 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2236 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2237 }
2238 #endif
2239 
2240 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2241 {
2242 	struct inode *inode = file_inode(file);
2243 	struct shmem_inode_info *info = SHMEM_I(inode);
2244 	int retval = -ENOMEM;
2245 
2246 	/*
2247 	 * What serializes the accesses to info->flags?
2248 	 * ipc_lock_object() when called from shmctl_do_lock(),
2249 	 * no serialization needed when called from shm_destroy().
2250 	 */
2251 	if (lock && !(info->flags & VM_LOCKED)) {
2252 		if (!user_shm_lock(inode->i_size, ucounts))
2253 			goto out_nomem;
2254 		info->flags |= VM_LOCKED;
2255 		mapping_set_unevictable(file->f_mapping);
2256 	}
2257 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2258 		user_shm_unlock(inode->i_size, ucounts);
2259 		info->flags &= ~VM_LOCKED;
2260 		mapping_clear_unevictable(file->f_mapping);
2261 	}
2262 	retval = 0;
2263 
2264 out_nomem:
2265 	return retval;
2266 }
2267 
2268 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2269 {
2270 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2271 	int ret;
2272 
2273 	ret = seal_check_future_write(info->seals, vma);
2274 	if (ret)
2275 		return ret;
2276 
2277 	/* arm64 - allow memory tagging on RAM-based files */
2278 	vma->vm_flags |= VM_MTE_ALLOWED;
2279 
2280 	file_accessed(file);
2281 	vma->vm_ops = &shmem_vm_ops;
2282 	return 0;
2283 }
2284 
2285 /* Mask out flags that are inappropriate for the given type of inode. */
2286 static unsigned shmem_mask_flags(umode_t mode, __u32 flags)
2287 {
2288 	if (S_ISDIR(mode))
2289 		return flags;
2290 	else if (S_ISREG(mode))
2291 		return flags & SHMEM_REG_FLMASK;
2292 	else
2293 		return flags & SHMEM_OTHER_FLMASK;
2294 }
2295 
2296 static struct inode *shmem_get_inode(struct super_block *sb, struct inode *dir,
2297 				     umode_t mode, dev_t dev, unsigned long flags)
2298 {
2299 	struct inode *inode;
2300 	struct shmem_inode_info *info;
2301 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2302 	ino_t ino;
2303 
2304 	if (shmem_reserve_inode(sb, &ino))
2305 		return NULL;
2306 
2307 	inode = new_inode(sb);
2308 	if (inode) {
2309 		inode->i_ino = ino;
2310 		inode_init_owner(&init_user_ns, inode, dir, mode);
2311 		inode->i_blocks = 0;
2312 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2313 		inode->i_generation = prandom_u32();
2314 		info = SHMEM_I(inode);
2315 		memset(info, 0, (char *)inode - (char *)info);
2316 		spin_lock_init(&info->lock);
2317 		atomic_set(&info->stop_eviction, 0);
2318 		info->seals = F_SEAL_SEAL;
2319 		info->flags = flags & VM_NORESERVE;
2320 		info->i_crtime = inode->i_mtime;
2321 		info->fsflags = (dir == NULL) ? 0 :
2322 			SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2323 		info->fsflags = shmem_mask_flags(mode, info->fsflags);
2324 		INIT_LIST_HEAD(&info->shrinklist);
2325 		INIT_LIST_HEAD(&info->swaplist);
2326 		simple_xattrs_init(&info->xattrs);
2327 		cache_no_acl(inode);
2328 		mapping_set_large_folios(inode->i_mapping);
2329 
2330 		switch (mode & S_IFMT) {
2331 		default:
2332 			inode->i_op = &shmem_special_inode_operations;
2333 			init_special_inode(inode, mode, dev);
2334 			break;
2335 		case S_IFREG:
2336 			inode->i_mapping->a_ops = &shmem_aops;
2337 			inode->i_op = &shmem_inode_operations;
2338 			inode->i_fop = &shmem_file_operations;
2339 			mpol_shared_policy_init(&info->policy,
2340 						 shmem_get_sbmpol(sbinfo));
2341 			break;
2342 		case S_IFDIR:
2343 			inc_nlink(inode);
2344 			/* Some things misbehave if size == 0 on a directory */
2345 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2346 			inode->i_op = &shmem_dir_inode_operations;
2347 			inode->i_fop = &simple_dir_operations;
2348 			break;
2349 		case S_IFLNK:
2350 			/*
2351 			 * Must not load anything in the rbtree,
2352 			 * mpol_free_shared_policy will not be called.
2353 			 */
2354 			mpol_shared_policy_init(&info->policy, NULL);
2355 			break;
2356 		}
2357 
2358 		lockdep_annotate_inode_mutex_key(inode);
2359 	} else
2360 		shmem_free_inode(sb);
2361 	return inode;
2362 }
2363 
2364 #ifdef CONFIG_USERFAULTFD
2365 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2366 			   pmd_t *dst_pmd,
2367 			   struct vm_area_struct *dst_vma,
2368 			   unsigned long dst_addr,
2369 			   unsigned long src_addr,
2370 			   bool zeropage, bool wp_copy,
2371 			   struct page **pagep)
2372 {
2373 	struct inode *inode = file_inode(dst_vma->vm_file);
2374 	struct shmem_inode_info *info = SHMEM_I(inode);
2375 	struct address_space *mapping = inode->i_mapping;
2376 	gfp_t gfp = mapping_gfp_mask(mapping);
2377 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2378 	void *page_kaddr;
2379 	struct folio *folio;
2380 	struct page *page;
2381 	int ret;
2382 	pgoff_t max_off;
2383 
2384 	if (!shmem_inode_acct_block(inode, 1)) {
2385 		/*
2386 		 * We may have got a page, returned -ENOENT triggering a retry,
2387 		 * and now we find ourselves with -ENOMEM. Release the page, to
2388 		 * avoid a BUG_ON in our caller.
2389 		 */
2390 		if (unlikely(*pagep)) {
2391 			put_page(*pagep);
2392 			*pagep = NULL;
2393 		}
2394 		return -ENOMEM;
2395 	}
2396 
2397 	if (!*pagep) {
2398 		ret = -ENOMEM;
2399 		page = shmem_alloc_page(gfp, info, pgoff);
2400 		if (!page)
2401 			goto out_unacct_blocks;
2402 
2403 		if (!zeropage) {	/* COPY */
2404 			page_kaddr = kmap_atomic(page);
2405 			ret = copy_from_user(page_kaddr,
2406 					     (const void __user *)src_addr,
2407 					     PAGE_SIZE);
2408 			kunmap_atomic(page_kaddr);
2409 
2410 			/* fallback to copy_from_user outside mmap_lock */
2411 			if (unlikely(ret)) {
2412 				*pagep = page;
2413 				ret = -ENOENT;
2414 				/* don't free the page */
2415 				goto out_unacct_blocks;
2416 			}
2417 
2418 			flush_dcache_page(page);
2419 		} else {		/* ZEROPAGE */
2420 			clear_user_highpage(page, dst_addr);
2421 		}
2422 	} else {
2423 		page = *pagep;
2424 		*pagep = NULL;
2425 	}
2426 
2427 	VM_BUG_ON(PageLocked(page));
2428 	VM_BUG_ON(PageSwapBacked(page));
2429 	__SetPageLocked(page);
2430 	__SetPageSwapBacked(page);
2431 	__SetPageUptodate(page);
2432 
2433 	ret = -EFAULT;
2434 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2435 	if (unlikely(pgoff >= max_off))
2436 		goto out_release;
2437 
2438 	folio = page_folio(page);
2439 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2440 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2441 	if (ret)
2442 		goto out_release;
2443 
2444 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2445 				       page, true, wp_copy);
2446 	if (ret)
2447 		goto out_delete_from_cache;
2448 
2449 	spin_lock_irq(&info->lock);
2450 	info->alloced++;
2451 	inode->i_blocks += BLOCKS_PER_PAGE;
2452 	shmem_recalc_inode(inode);
2453 	spin_unlock_irq(&info->lock);
2454 
2455 	unlock_page(page);
2456 	return 0;
2457 out_delete_from_cache:
2458 	delete_from_page_cache(page);
2459 out_release:
2460 	unlock_page(page);
2461 	put_page(page);
2462 out_unacct_blocks:
2463 	shmem_inode_unacct_blocks(inode, 1);
2464 	return ret;
2465 }
2466 #endif /* CONFIG_USERFAULTFD */
2467 
2468 #ifdef CONFIG_TMPFS
2469 static const struct inode_operations shmem_symlink_inode_operations;
2470 static const struct inode_operations shmem_short_symlink_operations;
2471 
2472 #ifdef CONFIG_TMPFS_XATTR
2473 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2474 #else
2475 #define shmem_initxattrs NULL
2476 #endif
2477 
2478 static int
2479 shmem_write_begin(struct file *file, struct address_space *mapping,
2480 			loff_t pos, unsigned len,
2481 			struct page **pagep, void **fsdata)
2482 {
2483 	struct inode *inode = mapping->host;
2484 	struct shmem_inode_info *info = SHMEM_I(inode);
2485 	pgoff_t index = pos >> PAGE_SHIFT;
2486 	int ret = 0;
2487 
2488 	/* i_rwsem is held by caller */
2489 	if (unlikely(info->seals & (F_SEAL_GROW |
2490 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2491 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2492 			return -EPERM;
2493 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2494 			return -EPERM;
2495 	}
2496 
2497 	ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2498 
2499 	if (ret)
2500 		return ret;
2501 
2502 	if (PageHWPoison(*pagep)) {
2503 		unlock_page(*pagep);
2504 		put_page(*pagep);
2505 		*pagep = NULL;
2506 		return -EIO;
2507 	}
2508 
2509 	return 0;
2510 }
2511 
2512 static int
2513 shmem_write_end(struct file *file, struct address_space *mapping,
2514 			loff_t pos, unsigned len, unsigned copied,
2515 			struct page *page, void *fsdata)
2516 {
2517 	struct inode *inode = mapping->host;
2518 
2519 	if (pos + copied > inode->i_size)
2520 		i_size_write(inode, pos + copied);
2521 
2522 	if (!PageUptodate(page)) {
2523 		struct page *head = compound_head(page);
2524 		if (PageTransCompound(page)) {
2525 			int i;
2526 
2527 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2528 				if (head + i == page)
2529 					continue;
2530 				clear_highpage(head + i);
2531 				flush_dcache_page(head + i);
2532 			}
2533 		}
2534 		if (copied < PAGE_SIZE) {
2535 			unsigned from = pos & (PAGE_SIZE - 1);
2536 			zero_user_segments(page, 0, from,
2537 					from + copied, PAGE_SIZE);
2538 		}
2539 		SetPageUptodate(head);
2540 	}
2541 	set_page_dirty(page);
2542 	unlock_page(page);
2543 	put_page(page);
2544 
2545 	return copied;
2546 }
2547 
2548 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2549 {
2550 	struct file *file = iocb->ki_filp;
2551 	struct inode *inode = file_inode(file);
2552 	struct address_space *mapping = inode->i_mapping;
2553 	pgoff_t index;
2554 	unsigned long offset;
2555 	int error = 0;
2556 	ssize_t retval = 0;
2557 	loff_t *ppos = &iocb->ki_pos;
2558 
2559 	index = *ppos >> PAGE_SHIFT;
2560 	offset = *ppos & ~PAGE_MASK;
2561 
2562 	for (;;) {
2563 		struct page *page = NULL;
2564 		pgoff_t end_index;
2565 		unsigned long nr, ret;
2566 		loff_t i_size = i_size_read(inode);
2567 
2568 		end_index = i_size >> PAGE_SHIFT;
2569 		if (index > end_index)
2570 			break;
2571 		if (index == end_index) {
2572 			nr = i_size & ~PAGE_MASK;
2573 			if (nr <= offset)
2574 				break;
2575 		}
2576 
2577 		error = shmem_getpage(inode, index, &page, SGP_READ);
2578 		if (error) {
2579 			if (error == -EINVAL)
2580 				error = 0;
2581 			break;
2582 		}
2583 		if (page) {
2584 			unlock_page(page);
2585 
2586 			if (PageHWPoison(page)) {
2587 				put_page(page);
2588 				error = -EIO;
2589 				break;
2590 			}
2591 		}
2592 
2593 		/*
2594 		 * We must evaluate after, since reads (unlike writes)
2595 		 * are called without i_rwsem protection against truncate
2596 		 */
2597 		nr = PAGE_SIZE;
2598 		i_size = i_size_read(inode);
2599 		end_index = i_size >> PAGE_SHIFT;
2600 		if (index == end_index) {
2601 			nr = i_size & ~PAGE_MASK;
2602 			if (nr <= offset) {
2603 				if (page)
2604 					put_page(page);
2605 				break;
2606 			}
2607 		}
2608 		nr -= offset;
2609 
2610 		if (page) {
2611 			/*
2612 			 * If users can be writing to this page using arbitrary
2613 			 * virtual addresses, take care about potential aliasing
2614 			 * before reading the page on the kernel side.
2615 			 */
2616 			if (mapping_writably_mapped(mapping))
2617 				flush_dcache_page(page);
2618 			/*
2619 			 * Mark the page accessed if we read the beginning.
2620 			 */
2621 			if (!offset)
2622 				mark_page_accessed(page);
2623 			/*
2624 			 * Ok, we have the page, and it's up-to-date, so
2625 			 * now we can copy it to user space...
2626 			 */
2627 			ret = copy_page_to_iter(page, offset, nr, to);
2628 			put_page(page);
2629 
2630 		} else if (iter_is_iovec(to)) {
2631 			/*
2632 			 * Copy to user tends to be so well optimized, but
2633 			 * clear_user() not so much, that it is noticeably
2634 			 * faster to copy the zero page instead of clearing.
2635 			 */
2636 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2637 		} else {
2638 			/*
2639 			 * But submitting the same page twice in a row to
2640 			 * splice() - or others? - can result in confusion:
2641 			 * so don't attempt that optimization on pipes etc.
2642 			 */
2643 			ret = iov_iter_zero(nr, to);
2644 		}
2645 
2646 		retval += ret;
2647 		offset += ret;
2648 		index += offset >> PAGE_SHIFT;
2649 		offset &= ~PAGE_MASK;
2650 
2651 		if (!iov_iter_count(to))
2652 			break;
2653 		if (ret < nr) {
2654 			error = -EFAULT;
2655 			break;
2656 		}
2657 		cond_resched();
2658 	}
2659 
2660 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2661 	file_accessed(file);
2662 	return retval ? retval : error;
2663 }
2664 
2665 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2666 {
2667 	struct address_space *mapping = file->f_mapping;
2668 	struct inode *inode = mapping->host;
2669 
2670 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2671 		return generic_file_llseek_size(file, offset, whence,
2672 					MAX_LFS_FILESIZE, i_size_read(inode));
2673 	if (offset < 0)
2674 		return -ENXIO;
2675 
2676 	inode_lock(inode);
2677 	/* We're holding i_rwsem so we can access i_size directly */
2678 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2679 	if (offset >= 0)
2680 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2681 	inode_unlock(inode);
2682 	return offset;
2683 }
2684 
2685 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2686 							 loff_t len)
2687 {
2688 	struct inode *inode = file_inode(file);
2689 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2690 	struct shmem_inode_info *info = SHMEM_I(inode);
2691 	struct shmem_falloc shmem_falloc;
2692 	pgoff_t start, index, end, undo_fallocend;
2693 	int error;
2694 
2695 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2696 		return -EOPNOTSUPP;
2697 
2698 	inode_lock(inode);
2699 
2700 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2701 		struct address_space *mapping = file->f_mapping;
2702 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2703 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2704 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2705 
2706 		/* protected by i_rwsem */
2707 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2708 			error = -EPERM;
2709 			goto out;
2710 		}
2711 
2712 		shmem_falloc.waitq = &shmem_falloc_waitq;
2713 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2714 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2715 		spin_lock(&inode->i_lock);
2716 		inode->i_private = &shmem_falloc;
2717 		spin_unlock(&inode->i_lock);
2718 
2719 		if ((u64)unmap_end > (u64)unmap_start)
2720 			unmap_mapping_range(mapping, unmap_start,
2721 					    1 + unmap_end - unmap_start, 0);
2722 		shmem_truncate_range(inode, offset, offset + len - 1);
2723 		/* No need to unmap again: hole-punching leaves COWed pages */
2724 
2725 		spin_lock(&inode->i_lock);
2726 		inode->i_private = NULL;
2727 		wake_up_all(&shmem_falloc_waitq);
2728 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2729 		spin_unlock(&inode->i_lock);
2730 		error = 0;
2731 		goto out;
2732 	}
2733 
2734 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2735 	error = inode_newsize_ok(inode, offset + len);
2736 	if (error)
2737 		goto out;
2738 
2739 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2740 		error = -EPERM;
2741 		goto out;
2742 	}
2743 
2744 	start = offset >> PAGE_SHIFT;
2745 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2746 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2747 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2748 		error = -ENOSPC;
2749 		goto out;
2750 	}
2751 
2752 	shmem_falloc.waitq = NULL;
2753 	shmem_falloc.start = start;
2754 	shmem_falloc.next  = start;
2755 	shmem_falloc.nr_falloced = 0;
2756 	shmem_falloc.nr_unswapped = 0;
2757 	spin_lock(&inode->i_lock);
2758 	inode->i_private = &shmem_falloc;
2759 	spin_unlock(&inode->i_lock);
2760 
2761 	/*
2762 	 * info->fallocend is only relevant when huge pages might be
2763 	 * involved: to prevent split_huge_page() freeing fallocated
2764 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2765 	 */
2766 	undo_fallocend = info->fallocend;
2767 	if (info->fallocend < end)
2768 		info->fallocend = end;
2769 
2770 	for (index = start; index < end; ) {
2771 		struct page *page;
2772 
2773 		/*
2774 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2775 		 * been interrupted because we are using up too much memory.
2776 		 */
2777 		if (signal_pending(current))
2778 			error = -EINTR;
2779 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2780 			error = -ENOMEM;
2781 		else
2782 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2783 		if (error) {
2784 			info->fallocend = undo_fallocend;
2785 			/* Remove the !PageUptodate pages we added */
2786 			if (index > start) {
2787 				shmem_undo_range(inode,
2788 				    (loff_t)start << PAGE_SHIFT,
2789 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2790 			}
2791 			goto undone;
2792 		}
2793 
2794 		index++;
2795 		/*
2796 		 * Here is a more important optimization than it appears:
2797 		 * a second SGP_FALLOC on the same huge page will clear it,
2798 		 * making it PageUptodate and un-undoable if we fail later.
2799 		 */
2800 		if (PageTransCompound(page)) {
2801 			index = round_up(index, HPAGE_PMD_NR);
2802 			/* Beware 32-bit wraparound */
2803 			if (!index)
2804 				index--;
2805 		}
2806 
2807 		/*
2808 		 * Inform shmem_writepage() how far we have reached.
2809 		 * No need for lock or barrier: we have the page lock.
2810 		 */
2811 		if (!PageUptodate(page))
2812 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2813 		shmem_falloc.next = index;
2814 
2815 		/*
2816 		 * If !PageUptodate, leave it that way so that freeable pages
2817 		 * can be recognized if we need to rollback on error later.
2818 		 * But set_page_dirty so that memory pressure will swap rather
2819 		 * than free the pages we are allocating (and SGP_CACHE pages
2820 		 * might still be clean: we now need to mark those dirty too).
2821 		 */
2822 		set_page_dirty(page);
2823 		unlock_page(page);
2824 		put_page(page);
2825 		cond_resched();
2826 	}
2827 
2828 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2829 		i_size_write(inode, offset + len);
2830 	inode->i_ctime = current_time(inode);
2831 undone:
2832 	spin_lock(&inode->i_lock);
2833 	inode->i_private = NULL;
2834 	spin_unlock(&inode->i_lock);
2835 out:
2836 	inode_unlock(inode);
2837 	return error;
2838 }
2839 
2840 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2841 {
2842 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2843 
2844 	buf->f_type = TMPFS_MAGIC;
2845 	buf->f_bsize = PAGE_SIZE;
2846 	buf->f_namelen = NAME_MAX;
2847 	if (sbinfo->max_blocks) {
2848 		buf->f_blocks = sbinfo->max_blocks;
2849 		buf->f_bavail =
2850 		buf->f_bfree  = sbinfo->max_blocks -
2851 				percpu_counter_sum(&sbinfo->used_blocks);
2852 	}
2853 	if (sbinfo->max_inodes) {
2854 		buf->f_files = sbinfo->max_inodes;
2855 		buf->f_ffree = sbinfo->free_inodes;
2856 	}
2857 	/* else leave those fields 0 like simple_statfs */
2858 
2859 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2860 
2861 	return 0;
2862 }
2863 
2864 /*
2865  * File creation. Allocate an inode, and we're done..
2866  */
2867 static int
2868 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2869 	    struct dentry *dentry, umode_t mode, dev_t dev)
2870 {
2871 	struct inode *inode;
2872 	int error = -ENOSPC;
2873 
2874 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2875 	if (inode) {
2876 		error = simple_acl_create(dir, inode);
2877 		if (error)
2878 			goto out_iput;
2879 		error = security_inode_init_security(inode, dir,
2880 						     &dentry->d_name,
2881 						     shmem_initxattrs, NULL);
2882 		if (error && error != -EOPNOTSUPP)
2883 			goto out_iput;
2884 
2885 		error = 0;
2886 		dir->i_size += BOGO_DIRENT_SIZE;
2887 		dir->i_ctime = dir->i_mtime = current_time(dir);
2888 		d_instantiate(dentry, inode);
2889 		dget(dentry); /* Extra count - pin the dentry in core */
2890 	}
2891 	return error;
2892 out_iput:
2893 	iput(inode);
2894 	return error;
2895 }
2896 
2897 static int
2898 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2899 	      struct dentry *dentry, umode_t mode)
2900 {
2901 	struct inode *inode;
2902 	int error = -ENOSPC;
2903 
2904 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2905 	if (inode) {
2906 		error = security_inode_init_security(inode, dir,
2907 						     NULL,
2908 						     shmem_initxattrs, NULL);
2909 		if (error && error != -EOPNOTSUPP)
2910 			goto out_iput;
2911 		error = simple_acl_create(dir, inode);
2912 		if (error)
2913 			goto out_iput;
2914 		d_tmpfile(dentry, inode);
2915 	}
2916 	return error;
2917 out_iput:
2918 	iput(inode);
2919 	return error;
2920 }
2921 
2922 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2923 		       struct dentry *dentry, umode_t mode)
2924 {
2925 	int error;
2926 
2927 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2928 				 mode | S_IFDIR, 0)))
2929 		return error;
2930 	inc_nlink(dir);
2931 	return 0;
2932 }
2933 
2934 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2935 			struct dentry *dentry, umode_t mode, bool excl)
2936 {
2937 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2938 }
2939 
2940 /*
2941  * Link a file..
2942  */
2943 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2944 {
2945 	struct inode *inode = d_inode(old_dentry);
2946 	int ret = 0;
2947 
2948 	/*
2949 	 * No ordinary (disk based) filesystem counts links as inodes;
2950 	 * but each new link needs a new dentry, pinning lowmem, and
2951 	 * tmpfs dentries cannot be pruned until they are unlinked.
2952 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2953 	 * first link must skip that, to get the accounting right.
2954 	 */
2955 	if (inode->i_nlink) {
2956 		ret = shmem_reserve_inode(inode->i_sb, NULL);
2957 		if (ret)
2958 			goto out;
2959 	}
2960 
2961 	dir->i_size += BOGO_DIRENT_SIZE;
2962 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2963 	inc_nlink(inode);
2964 	ihold(inode);	/* New dentry reference */
2965 	dget(dentry);		/* Extra pinning count for the created dentry */
2966 	d_instantiate(dentry, inode);
2967 out:
2968 	return ret;
2969 }
2970 
2971 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2972 {
2973 	struct inode *inode = d_inode(dentry);
2974 
2975 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2976 		shmem_free_inode(inode->i_sb);
2977 
2978 	dir->i_size -= BOGO_DIRENT_SIZE;
2979 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2980 	drop_nlink(inode);
2981 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2982 	return 0;
2983 }
2984 
2985 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2986 {
2987 	if (!simple_empty(dentry))
2988 		return -ENOTEMPTY;
2989 
2990 	drop_nlink(d_inode(dentry));
2991 	drop_nlink(dir);
2992 	return shmem_unlink(dir, dentry);
2993 }
2994 
2995 static int shmem_whiteout(struct user_namespace *mnt_userns,
2996 			  struct inode *old_dir, struct dentry *old_dentry)
2997 {
2998 	struct dentry *whiteout;
2999 	int error;
3000 
3001 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3002 	if (!whiteout)
3003 		return -ENOMEM;
3004 
3005 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3006 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3007 	dput(whiteout);
3008 	if (error)
3009 		return error;
3010 
3011 	/*
3012 	 * Cheat and hash the whiteout while the old dentry is still in
3013 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3014 	 *
3015 	 * d_lookup() will consistently find one of them at this point,
3016 	 * not sure which one, but that isn't even important.
3017 	 */
3018 	d_rehash(whiteout);
3019 	return 0;
3020 }
3021 
3022 /*
3023  * The VFS layer already does all the dentry stuff for rename,
3024  * we just have to decrement the usage count for the target if
3025  * it exists so that the VFS layer correctly free's it when it
3026  * gets overwritten.
3027  */
3028 static int shmem_rename2(struct user_namespace *mnt_userns,
3029 			 struct inode *old_dir, struct dentry *old_dentry,
3030 			 struct inode *new_dir, struct dentry *new_dentry,
3031 			 unsigned int flags)
3032 {
3033 	struct inode *inode = d_inode(old_dentry);
3034 	int they_are_dirs = S_ISDIR(inode->i_mode);
3035 
3036 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3037 		return -EINVAL;
3038 
3039 	if (flags & RENAME_EXCHANGE)
3040 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3041 
3042 	if (!simple_empty(new_dentry))
3043 		return -ENOTEMPTY;
3044 
3045 	if (flags & RENAME_WHITEOUT) {
3046 		int error;
3047 
3048 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3049 		if (error)
3050 			return error;
3051 	}
3052 
3053 	if (d_really_is_positive(new_dentry)) {
3054 		(void) shmem_unlink(new_dir, new_dentry);
3055 		if (they_are_dirs) {
3056 			drop_nlink(d_inode(new_dentry));
3057 			drop_nlink(old_dir);
3058 		}
3059 	} else if (they_are_dirs) {
3060 		drop_nlink(old_dir);
3061 		inc_nlink(new_dir);
3062 	}
3063 
3064 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3065 	new_dir->i_size += BOGO_DIRENT_SIZE;
3066 	old_dir->i_ctime = old_dir->i_mtime =
3067 	new_dir->i_ctime = new_dir->i_mtime =
3068 	inode->i_ctime = current_time(old_dir);
3069 	return 0;
3070 }
3071 
3072 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3073 			 struct dentry *dentry, const char *symname)
3074 {
3075 	int error;
3076 	int len;
3077 	struct inode *inode;
3078 	struct page *page;
3079 
3080 	len = strlen(symname) + 1;
3081 	if (len > PAGE_SIZE)
3082 		return -ENAMETOOLONG;
3083 
3084 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3085 				VM_NORESERVE);
3086 	if (!inode)
3087 		return -ENOSPC;
3088 
3089 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3090 					     shmem_initxattrs, NULL);
3091 	if (error && error != -EOPNOTSUPP) {
3092 		iput(inode);
3093 		return error;
3094 	}
3095 
3096 	inode->i_size = len-1;
3097 	if (len <= SHORT_SYMLINK_LEN) {
3098 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3099 		if (!inode->i_link) {
3100 			iput(inode);
3101 			return -ENOMEM;
3102 		}
3103 		inode->i_op = &shmem_short_symlink_operations;
3104 	} else {
3105 		inode_nohighmem(inode);
3106 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3107 		if (error) {
3108 			iput(inode);
3109 			return error;
3110 		}
3111 		inode->i_mapping->a_ops = &shmem_aops;
3112 		inode->i_op = &shmem_symlink_inode_operations;
3113 		memcpy(page_address(page), symname, len);
3114 		SetPageUptodate(page);
3115 		set_page_dirty(page);
3116 		unlock_page(page);
3117 		put_page(page);
3118 	}
3119 	dir->i_size += BOGO_DIRENT_SIZE;
3120 	dir->i_ctime = dir->i_mtime = current_time(dir);
3121 	d_instantiate(dentry, inode);
3122 	dget(dentry);
3123 	return 0;
3124 }
3125 
3126 static void shmem_put_link(void *arg)
3127 {
3128 	mark_page_accessed(arg);
3129 	put_page(arg);
3130 }
3131 
3132 static const char *shmem_get_link(struct dentry *dentry,
3133 				  struct inode *inode,
3134 				  struct delayed_call *done)
3135 {
3136 	struct page *page = NULL;
3137 	int error;
3138 	if (!dentry) {
3139 		page = find_get_page(inode->i_mapping, 0);
3140 		if (!page)
3141 			return ERR_PTR(-ECHILD);
3142 		if (PageHWPoison(page) ||
3143 		    !PageUptodate(page)) {
3144 			put_page(page);
3145 			return ERR_PTR(-ECHILD);
3146 		}
3147 	} else {
3148 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3149 		if (error)
3150 			return ERR_PTR(error);
3151 		if (!page)
3152 			return ERR_PTR(-ECHILD);
3153 		if (PageHWPoison(page)) {
3154 			unlock_page(page);
3155 			put_page(page);
3156 			return ERR_PTR(-ECHILD);
3157 		}
3158 		unlock_page(page);
3159 	}
3160 	set_delayed_call(done, shmem_put_link, page);
3161 	return page_address(page);
3162 }
3163 
3164 #ifdef CONFIG_TMPFS_XATTR
3165 
3166 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3167 {
3168 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3169 
3170 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3171 
3172 	return 0;
3173 }
3174 
3175 static int shmem_fileattr_set(struct user_namespace *mnt_userns,
3176 			      struct dentry *dentry, struct fileattr *fa)
3177 {
3178 	struct inode *inode = d_inode(dentry);
3179 	struct shmem_inode_info *info = SHMEM_I(inode);
3180 
3181 	if (fileattr_has_fsx(fa))
3182 		return -EOPNOTSUPP;
3183 
3184 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3185 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3186 
3187 	inode->i_flags &= ~(S_APPEND | S_IMMUTABLE | S_NOATIME);
3188 	if (info->fsflags & FS_APPEND_FL)
3189 		inode->i_flags |= S_APPEND;
3190 	if (info->fsflags & FS_IMMUTABLE_FL)
3191 		inode->i_flags |= S_IMMUTABLE;
3192 	if (info->fsflags & FS_NOATIME_FL)
3193 		inode->i_flags |= S_NOATIME;
3194 
3195 	inode->i_ctime = current_time(inode);
3196 	return 0;
3197 }
3198 
3199 /*
3200  * Superblocks without xattr inode operations may get some security.* xattr
3201  * support from the LSM "for free". As soon as we have any other xattrs
3202  * like ACLs, we also need to implement the security.* handlers at
3203  * filesystem level, though.
3204  */
3205 
3206 /*
3207  * Callback for security_inode_init_security() for acquiring xattrs.
3208  */
3209 static int shmem_initxattrs(struct inode *inode,
3210 			    const struct xattr *xattr_array,
3211 			    void *fs_info)
3212 {
3213 	struct shmem_inode_info *info = SHMEM_I(inode);
3214 	const struct xattr *xattr;
3215 	struct simple_xattr *new_xattr;
3216 	size_t len;
3217 
3218 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3219 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3220 		if (!new_xattr)
3221 			return -ENOMEM;
3222 
3223 		len = strlen(xattr->name) + 1;
3224 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3225 					  GFP_KERNEL);
3226 		if (!new_xattr->name) {
3227 			kvfree(new_xattr);
3228 			return -ENOMEM;
3229 		}
3230 
3231 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3232 		       XATTR_SECURITY_PREFIX_LEN);
3233 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3234 		       xattr->name, len);
3235 
3236 		simple_xattr_list_add(&info->xattrs, new_xattr);
3237 	}
3238 
3239 	return 0;
3240 }
3241 
3242 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3243 				   struct dentry *unused, struct inode *inode,
3244 				   const char *name, void *buffer, size_t size)
3245 {
3246 	struct shmem_inode_info *info = SHMEM_I(inode);
3247 
3248 	name = xattr_full_name(handler, name);
3249 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3250 }
3251 
3252 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3253 				   struct user_namespace *mnt_userns,
3254 				   struct dentry *unused, struct inode *inode,
3255 				   const char *name, const void *value,
3256 				   size_t size, int flags)
3257 {
3258 	struct shmem_inode_info *info = SHMEM_I(inode);
3259 
3260 	name = xattr_full_name(handler, name);
3261 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3262 }
3263 
3264 static const struct xattr_handler shmem_security_xattr_handler = {
3265 	.prefix = XATTR_SECURITY_PREFIX,
3266 	.get = shmem_xattr_handler_get,
3267 	.set = shmem_xattr_handler_set,
3268 };
3269 
3270 static const struct xattr_handler shmem_trusted_xattr_handler = {
3271 	.prefix = XATTR_TRUSTED_PREFIX,
3272 	.get = shmem_xattr_handler_get,
3273 	.set = shmem_xattr_handler_set,
3274 };
3275 
3276 static const struct xattr_handler *shmem_xattr_handlers[] = {
3277 #ifdef CONFIG_TMPFS_POSIX_ACL
3278 	&posix_acl_access_xattr_handler,
3279 	&posix_acl_default_xattr_handler,
3280 #endif
3281 	&shmem_security_xattr_handler,
3282 	&shmem_trusted_xattr_handler,
3283 	NULL
3284 };
3285 
3286 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3287 {
3288 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3289 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3290 }
3291 #endif /* CONFIG_TMPFS_XATTR */
3292 
3293 static const struct inode_operations shmem_short_symlink_operations = {
3294 	.getattr	= shmem_getattr,
3295 	.get_link	= simple_get_link,
3296 #ifdef CONFIG_TMPFS_XATTR
3297 	.listxattr	= shmem_listxattr,
3298 #endif
3299 };
3300 
3301 static const struct inode_operations shmem_symlink_inode_operations = {
3302 	.getattr	= shmem_getattr,
3303 	.get_link	= shmem_get_link,
3304 #ifdef CONFIG_TMPFS_XATTR
3305 	.listxattr	= shmem_listxattr,
3306 #endif
3307 };
3308 
3309 static struct dentry *shmem_get_parent(struct dentry *child)
3310 {
3311 	return ERR_PTR(-ESTALE);
3312 }
3313 
3314 static int shmem_match(struct inode *ino, void *vfh)
3315 {
3316 	__u32 *fh = vfh;
3317 	__u64 inum = fh[2];
3318 	inum = (inum << 32) | fh[1];
3319 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3320 }
3321 
3322 /* Find any alias of inode, but prefer a hashed alias */
3323 static struct dentry *shmem_find_alias(struct inode *inode)
3324 {
3325 	struct dentry *alias = d_find_alias(inode);
3326 
3327 	return alias ?: d_find_any_alias(inode);
3328 }
3329 
3330 
3331 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3332 		struct fid *fid, int fh_len, int fh_type)
3333 {
3334 	struct inode *inode;
3335 	struct dentry *dentry = NULL;
3336 	u64 inum;
3337 
3338 	if (fh_len < 3)
3339 		return NULL;
3340 
3341 	inum = fid->raw[2];
3342 	inum = (inum << 32) | fid->raw[1];
3343 
3344 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3345 			shmem_match, fid->raw);
3346 	if (inode) {
3347 		dentry = shmem_find_alias(inode);
3348 		iput(inode);
3349 	}
3350 
3351 	return dentry;
3352 }
3353 
3354 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3355 				struct inode *parent)
3356 {
3357 	if (*len < 3) {
3358 		*len = 3;
3359 		return FILEID_INVALID;
3360 	}
3361 
3362 	if (inode_unhashed(inode)) {
3363 		/* Unfortunately insert_inode_hash is not idempotent,
3364 		 * so as we hash inodes here rather than at creation
3365 		 * time, we need a lock to ensure we only try
3366 		 * to do it once
3367 		 */
3368 		static DEFINE_SPINLOCK(lock);
3369 		spin_lock(&lock);
3370 		if (inode_unhashed(inode))
3371 			__insert_inode_hash(inode,
3372 					    inode->i_ino + inode->i_generation);
3373 		spin_unlock(&lock);
3374 	}
3375 
3376 	fh[0] = inode->i_generation;
3377 	fh[1] = inode->i_ino;
3378 	fh[2] = ((__u64)inode->i_ino) >> 32;
3379 
3380 	*len = 3;
3381 	return 1;
3382 }
3383 
3384 static const struct export_operations shmem_export_ops = {
3385 	.get_parent     = shmem_get_parent,
3386 	.encode_fh      = shmem_encode_fh,
3387 	.fh_to_dentry	= shmem_fh_to_dentry,
3388 };
3389 
3390 enum shmem_param {
3391 	Opt_gid,
3392 	Opt_huge,
3393 	Opt_mode,
3394 	Opt_mpol,
3395 	Opt_nr_blocks,
3396 	Opt_nr_inodes,
3397 	Opt_size,
3398 	Opt_uid,
3399 	Opt_inode32,
3400 	Opt_inode64,
3401 };
3402 
3403 static const struct constant_table shmem_param_enums_huge[] = {
3404 	{"never",	SHMEM_HUGE_NEVER },
3405 	{"always",	SHMEM_HUGE_ALWAYS },
3406 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3407 	{"advise",	SHMEM_HUGE_ADVISE },
3408 	{}
3409 };
3410 
3411 const struct fs_parameter_spec shmem_fs_parameters[] = {
3412 	fsparam_u32   ("gid",		Opt_gid),
3413 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3414 	fsparam_u32oct("mode",		Opt_mode),
3415 	fsparam_string("mpol",		Opt_mpol),
3416 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3417 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3418 	fsparam_string("size",		Opt_size),
3419 	fsparam_u32   ("uid",		Opt_uid),
3420 	fsparam_flag  ("inode32",	Opt_inode32),
3421 	fsparam_flag  ("inode64",	Opt_inode64),
3422 	{}
3423 };
3424 
3425 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3426 {
3427 	struct shmem_options *ctx = fc->fs_private;
3428 	struct fs_parse_result result;
3429 	unsigned long long size;
3430 	char *rest;
3431 	int opt;
3432 
3433 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3434 	if (opt < 0)
3435 		return opt;
3436 
3437 	switch (opt) {
3438 	case Opt_size:
3439 		size = memparse(param->string, &rest);
3440 		if (*rest == '%') {
3441 			size <<= PAGE_SHIFT;
3442 			size *= totalram_pages();
3443 			do_div(size, 100);
3444 			rest++;
3445 		}
3446 		if (*rest)
3447 			goto bad_value;
3448 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3449 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3450 		break;
3451 	case Opt_nr_blocks:
3452 		ctx->blocks = memparse(param->string, &rest);
3453 		if (*rest)
3454 			goto bad_value;
3455 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3456 		break;
3457 	case Opt_nr_inodes:
3458 		ctx->inodes = memparse(param->string, &rest);
3459 		if (*rest)
3460 			goto bad_value;
3461 		ctx->seen |= SHMEM_SEEN_INODES;
3462 		break;
3463 	case Opt_mode:
3464 		ctx->mode = result.uint_32 & 07777;
3465 		break;
3466 	case Opt_uid:
3467 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3468 		if (!uid_valid(ctx->uid))
3469 			goto bad_value;
3470 		break;
3471 	case Opt_gid:
3472 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3473 		if (!gid_valid(ctx->gid))
3474 			goto bad_value;
3475 		break;
3476 	case Opt_huge:
3477 		ctx->huge = result.uint_32;
3478 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3479 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3480 		      has_transparent_hugepage()))
3481 			goto unsupported_parameter;
3482 		ctx->seen |= SHMEM_SEEN_HUGE;
3483 		break;
3484 	case Opt_mpol:
3485 		if (IS_ENABLED(CONFIG_NUMA)) {
3486 			mpol_put(ctx->mpol);
3487 			ctx->mpol = NULL;
3488 			if (mpol_parse_str(param->string, &ctx->mpol))
3489 				goto bad_value;
3490 			break;
3491 		}
3492 		goto unsupported_parameter;
3493 	case Opt_inode32:
3494 		ctx->full_inums = false;
3495 		ctx->seen |= SHMEM_SEEN_INUMS;
3496 		break;
3497 	case Opt_inode64:
3498 		if (sizeof(ino_t) < 8) {
3499 			return invalfc(fc,
3500 				       "Cannot use inode64 with <64bit inums in kernel\n");
3501 		}
3502 		ctx->full_inums = true;
3503 		ctx->seen |= SHMEM_SEEN_INUMS;
3504 		break;
3505 	}
3506 	return 0;
3507 
3508 unsupported_parameter:
3509 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3510 bad_value:
3511 	return invalfc(fc, "Bad value for '%s'", param->key);
3512 }
3513 
3514 static int shmem_parse_options(struct fs_context *fc, void *data)
3515 {
3516 	char *options = data;
3517 
3518 	if (options) {
3519 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3520 		if (err)
3521 			return err;
3522 	}
3523 
3524 	while (options != NULL) {
3525 		char *this_char = options;
3526 		for (;;) {
3527 			/*
3528 			 * NUL-terminate this option: unfortunately,
3529 			 * mount options form a comma-separated list,
3530 			 * but mpol's nodelist may also contain commas.
3531 			 */
3532 			options = strchr(options, ',');
3533 			if (options == NULL)
3534 				break;
3535 			options++;
3536 			if (!isdigit(*options)) {
3537 				options[-1] = '\0';
3538 				break;
3539 			}
3540 		}
3541 		if (*this_char) {
3542 			char *value = strchr(this_char, '=');
3543 			size_t len = 0;
3544 			int err;
3545 
3546 			if (value) {
3547 				*value++ = '\0';
3548 				len = strlen(value);
3549 			}
3550 			err = vfs_parse_fs_string(fc, this_char, value, len);
3551 			if (err < 0)
3552 				return err;
3553 		}
3554 	}
3555 	return 0;
3556 }
3557 
3558 /*
3559  * Reconfigure a shmem filesystem.
3560  *
3561  * Note that we disallow change from limited->unlimited blocks/inodes while any
3562  * are in use; but we must separately disallow unlimited->limited, because in
3563  * that case we have no record of how much is already in use.
3564  */
3565 static int shmem_reconfigure(struct fs_context *fc)
3566 {
3567 	struct shmem_options *ctx = fc->fs_private;
3568 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3569 	unsigned long inodes;
3570 	struct mempolicy *mpol = NULL;
3571 	const char *err;
3572 
3573 	raw_spin_lock(&sbinfo->stat_lock);
3574 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3575 	if (ctx->blocks > S64_MAX) {
3576 		err = "Number of blocks too large";
3577 		goto out;
3578 	}
3579 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3580 		if (!sbinfo->max_blocks) {
3581 			err = "Cannot retroactively limit size";
3582 			goto out;
3583 		}
3584 		if (percpu_counter_compare(&sbinfo->used_blocks,
3585 					   ctx->blocks) > 0) {
3586 			err = "Too small a size for current use";
3587 			goto out;
3588 		}
3589 	}
3590 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3591 		if (!sbinfo->max_inodes) {
3592 			err = "Cannot retroactively limit inodes";
3593 			goto out;
3594 		}
3595 		if (ctx->inodes < inodes) {
3596 			err = "Too few inodes for current use";
3597 			goto out;
3598 		}
3599 	}
3600 
3601 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3602 	    sbinfo->next_ino > UINT_MAX) {
3603 		err = "Current inum too high to switch to 32-bit inums";
3604 		goto out;
3605 	}
3606 
3607 	if (ctx->seen & SHMEM_SEEN_HUGE)
3608 		sbinfo->huge = ctx->huge;
3609 	if (ctx->seen & SHMEM_SEEN_INUMS)
3610 		sbinfo->full_inums = ctx->full_inums;
3611 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3612 		sbinfo->max_blocks  = ctx->blocks;
3613 	if (ctx->seen & SHMEM_SEEN_INODES) {
3614 		sbinfo->max_inodes  = ctx->inodes;
3615 		sbinfo->free_inodes = ctx->inodes - inodes;
3616 	}
3617 
3618 	/*
3619 	 * Preserve previous mempolicy unless mpol remount option was specified.
3620 	 */
3621 	if (ctx->mpol) {
3622 		mpol = sbinfo->mpol;
3623 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3624 		ctx->mpol = NULL;
3625 	}
3626 	raw_spin_unlock(&sbinfo->stat_lock);
3627 	mpol_put(mpol);
3628 	return 0;
3629 out:
3630 	raw_spin_unlock(&sbinfo->stat_lock);
3631 	return invalfc(fc, "%s", err);
3632 }
3633 
3634 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3635 {
3636 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3637 
3638 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3639 		seq_printf(seq, ",size=%luk",
3640 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3641 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3642 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3643 	if (sbinfo->mode != (0777 | S_ISVTX))
3644 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3645 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3646 		seq_printf(seq, ",uid=%u",
3647 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3648 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3649 		seq_printf(seq, ",gid=%u",
3650 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3651 
3652 	/*
3653 	 * Showing inode{64,32} might be useful even if it's the system default,
3654 	 * since then people don't have to resort to checking both here and
3655 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3656 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3657 	 *
3658 	 * We hide it when inode64 isn't the default and we are using 32-bit
3659 	 * inodes, since that probably just means the feature isn't even under
3660 	 * consideration.
3661 	 *
3662 	 * As such:
3663 	 *
3664 	 *                     +-----------------+-----------------+
3665 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3666 	 *  +------------------+-----------------+-----------------+
3667 	 *  | full_inums=true  | show            | show            |
3668 	 *  | full_inums=false | show            | hide            |
3669 	 *  +------------------+-----------------+-----------------+
3670 	 *
3671 	 */
3672 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3673 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3674 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3675 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3676 	if (sbinfo->huge)
3677 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3678 #endif
3679 	shmem_show_mpol(seq, sbinfo->mpol);
3680 	return 0;
3681 }
3682 
3683 #endif /* CONFIG_TMPFS */
3684 
3685 static void shmem_put_super(struct super_block *sb)
3686 {
3687 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3688 
3689 	free_percpu(sbinfo->ino_batch);
3690 	percpu_counter_destroy(&sbinfo->used_blocks);
3691 	mpol_put(sbinfo->mpol);
3692 	kfree(sbinfo);
3693 	sb->s_fs_info = NULL;
3694 }
3695 
3696 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3697 {
3698 	struct shmem_options *ctx = fc->fs_private;
3699 	struct inode *inode;
3700 	struct shmem_sb_info *sbinfo;
3701 
3702 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3703 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3704 				L1_CACHE_BYTES), GFP_KERNEL);
3705 	if (!sbinfo)
3706 		return -ENOMEM;
3707 
3708 	sb->s_fs_info = sbinfo;
3709 
3710 #ifdef CONFIG_TMPFS
3711 	/*
3712 	 * Per default we only allow half of the physical ram per
3713 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3714 	 * but the internal instance is left unlimited.
3715 	 */
3716 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3717 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3718 			ctx->blocks = shmem_default_max_blocks();
3719 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3720 			ctx->inodes = shmem_default_max_inodes();
3721 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3722 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3723 	} else {
3724 		sb->s_flags |= SB_NOUSER;
3725 	}
3726 	sb->s_export_op = &shmem_export_ops;
3727 	sb->s_flags |= SB_NOSEC;
3728 #else
3729 	sb->s_flags |= SB_NOUSER;
3730 #endif
3731 	sbinfo->max_blocks = ctx->blocks;
3732 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3733 	if (sb->s_flags & SB_KERNMOUNT) {
3734 		sbinfo->ino_batch = alloc_percpu(ino_t);
3735 		if (!sbinfo->ino_batch)
3736 			goto failed;
3737 	}
3738 	sbinfo->uid = ctx->uid;
3739 	sbinfo->gid = ctx->gid;
3740 	sbinfo->full_inums = ctx->full_inums;
3741 	sbinfo->mode = ctx->mode;
3742 	sbinfo->huge = ctx->huge;
3743 	sbinfo->mpol = ctx->mpol;
3744 	ctx->mpol = NULL;
3745 
3746 	raw_spin_lock_init(&sbinfo->stat_lock);
3747 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3748 		goto failed;
3749 	spin_lock_init(&sbinfo->shrinklist_lock);
3750 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3751 
3752 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3753 	sb->s_blocksize = PAGE_SIZE;
3754 	sb->s_blocksize_bits = PAGE_SHIFT;
3755 	sb->s_magic = TMPFS_MAGIC;
3756 	sb->s_op = &shmem_ops;
3757 	sb->s_time_gran = 1;
3758 #ifdef CONFIG_TMPFS_XATTR
3759 	sb->s_xattr = shmem_xattr_handlers;
3760 #endif
3761 #ifdef CONFIG_TMPFS_POSIX_ACL
3762 	sb->s_flags |= SB_POSIXACL;
3763 #endif
3764 	uuid_gen(&sb->s_uuid);
3765 
3766 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3767 	if (!inode)
3768 		goto failed;
3769 	inode->i_uid = sbinfo->uid;
3770 	inode->i_gid = sbinfo->gid;
3771 	sb->s_root = d_make_root(inode);
3772 	if (!sb->s_root)
3773 		goto failed;
3774 	return 0;
3775 
3776 failed:
3777 	shmem_put_super(sb);
3778 	return -ENOMEM;
3779 }
3780 
3781 static int shmem_get_tree(struct fs_context *fc)
3782 {
3783 	return get_tree_nodev(fc, shmem_fill_super);
3784 }
3785 
3786 static void shmem_free_fc(struct fs_context *fc)
3787 {
3788 	struct shmem_options *ctx = fc->fs_private;
3789 
3790 	if (ctx) {
3791 		mpol_put(ctx->mpol);
3792 		kfree(ctx);
3793 	}
3794 }
3795 
3796 static const struct fs_context_operations shmem_fs_context_ops = {
3797 	.free			= shmem_free_fc,
3798 	.get_tree		= shmem_get_tree,
3799 #ifdef CONFIG_TMPFS
3800 	.parse_monolithic	= shmem_parse_options,
3801 	.parse_param		= shmem_parse_one,
3802 	.reconfigure		= shmem_reconfigure,
3803 #endif
3804 };
3805 
3806 static struct kmem_cache *shmem_inode_cachep;
3807 
3808 static struct inode *shmem_alloc_inode(struct super_block *sb)
3809 {
3810 	struct shmem_inode_info *info;
3811 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3812 	if (!info)
3813 		return NULL;
3814 	return &info->vfs_inode;
3815 }
3816 
3817 static void shmem_free_in_core_inode(struct inode *inode)
3818 {
3819 	if (S_ISLNK(inode->i_mode))
3820 		kfree(inode->i_link);
3821 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3822 }
3823 
3824 static void shmem_destroy_inode(struct inode *inode)
3825 {
3826 	if (S_ISREG(inode->i_mode))
3827 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3828 }
3829 
3830 static void shmem_init_inode(void *foo)
3831 {
3832 	struct shmem_inode_info *info = foo;
3833 	inode_init_once(&info->vfs_inode);
3834 }
3835 
3836 static void shmem_init_inodecache(void)
3837 {
3838 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3839 				sizeof(struct shmem_inode_info),
3840 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3841 }
3842 
3843 static void shmem_destroy_inodecache(void)
3844 {
3845 	kmem_cache_destroy(shmem_inode_cachep);
3846 }
3847 
3848 /* Keep the page in page cache instead of truncating it */
3849 static int shmem_error_remove_page(struct address_space *mapping,
3850 				   struct page *page)
3851 {
3852 	return 0;
3853 }
3854 
3855 const struct address_space_operations shmem_aops = {
3856 	.writepage	= shmem_writepage,
3857 	.dirty_folio	= noop_dirty_folio,
3858 #ifdef CONFIG_TMPFS
3859 	.write_begin	= shmem_write_begin,
3860 	.write_end	= shmem_write_end,
3861 #endif
3862 #ifdef CONFIG_MIGRATION
3863 	.migratepage	= migrate_page,
3864 #endif
3865 	.error_remove_page = shmem_error_remove_page,
3866 };
3867 EXPORT_SYMBOL(shmem_aops);
3868 
3869 static const struct file_operations shmem_file_operations = {
3870 	.mmap		= shmem_mmap,
3871 	.get_unmapped_area = shmem_get_unmapped_area,
3872 #ifdef CONFIG_TMPFS
3873 	.llseek		= shmem_file_llseek,
3874 	.read_iter	= shmem_file_read_iter,
3875 	.write_iter	= generic_file_write_iter,
3876 	.fsync		= noop_fsync,
3877 	.splice_read	= generic_file_splice_read,
3878 	.splice_write	= iter_file_splice_write,
3879 	.fallocate	= shmem_fallocate,
3880 #endif
3881 };
3882 
3883 static const struct inode_operations shmem_inode_operations = {
3884 	.getattr	= shmem_getattr,
3885 	.setattr	= shmem_setattr,
3886 #ifdef CONFIG_TMPFS_XATTR
3887 	.listxattr	= shmem_listxattr,
3888 	.set_acl	= simple_set_acl,
3889 	.fileattr_get	= shmem_fileattr_get,
3890 	.fileattr_set	= shmem_fileattr_set,
3891 #endif
3892 };
3893 
3894 static const struct inode_operations shmem_dir_inode_operations = {
3895 #ifdef CONFIG_TMPFS
3896 	.getattr	= shmem_getattr,
3897 	.create		= shmem_create,
3898 	.lookup		= simple_lookup,
3899 	.link		= shmem_link,
3900 	.unlink		= shmem_unlink,
3901 	.symlink	= shmem_symlink,
3902 	.mkdir		= shmem_mkdir,
3903 	.rmdir		= shmem_rmdir,
3904 	.mknod		= shmem_mknod,
3905 	.rename		= shmem_rename2,
3906 	.tmpfile	= shmem_tmpfile,
3907 #endif
3908 #ifdef CONFIG_TMPFS_XATTR
3909 	.listxattr	= shmem_listxattr,
3910 	.fileattr_get	= shmem_fileattr_get,
3911 	.fileattr_set	= shmem_fileattr_set,
3912 #endif
3913 #ifdef CONFIG_TMPFS_POSIX_ACL
3914 	.setattr	= shmem_setattr,
3915 	.set_acl	= simple_set_acl,
3916 #endif
3917 };
3918 
3919 static const struct inode_operations shmem_special_inode_operations = {
3920 	.getattr	= shmem_getattr,
3921 #ifdef CONFIG_TMPFS_XATTR
3922 	.listxattr	= shmem_listxattr,
3923 #endif
3924 #ifdef CONFIG_TMPFS_POSIX_ACL
3925 	.setattr	= shmem_setattr,
3926 	.set_acl	= simple_set_acl,
3927 #endif
3928 };
3929 
3930 static const struct super_operations shmem_ops = {
3931 	.alloc_inode	= shmem_alloc_inode,
3932 	.free_inode	= shmem_free_in_core_inode,
3933 	.destroy_inode	= shmem_destroy_inode,
3934 #ifdef CONFIG_TMPFS
3935 	.statfs		= shmem_statfs,
3936 	.show_options	= shmem_show_options,
3937 #endif
3938 	.evict_inode	= shmem_evict_inode,
3939 	.drop_inode	= generic_delete_inode,
3940 	.put_super	= shmem_put_super,
3941 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3942 	.nr_cached_objects	= shmem_unused_huge_count,
3943 	.free_cached_objects	= shmem_unused_huge_scan,
3944 #endif
3945 };
3946 
3947 static const struct vm_operations_struct shmem_vm_ops = {
3948 	.fault		= shmem_fault,
3949 	.map_pages	= filemap_map_pages,
3950 #ifdef CONFIG_NUMA
3951 	.set_policy     = shmem_set_policy,
3952 	.get_policy     = shmem_get_policy,
3953 #endif
3954 };
3955 
3956 int shmem_init_fs_context(struct fs_context *fc)
3957 {
3958 	struct shmem_options *ctx;
3959 
3960 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3961 	if (!ctx)
3962 		return -ENOMEM;
3963 
3964 	ctx->mode = 0777 | S_ISVTX;
3965 	ctx->uid = current_fsuid();
3966 	ctx->gid = current_fsgid();
3967 
3968 	fc->fs_private = ctx;
3969 	fc->ops = &shmem_fs_context_ops;
3970 	return 0;
3971 }
3972 
3973 static struct file_system_type shmem_fs_type = {
3974 	.owner		= THIS_MODULE,
3975 	.name		= "tmpfs",
3976 	.init_fs_context = shmem_init_fs_context,
3977 #ifdef CONFIG_TMPFS
3978 	.parameters	= shmem_fs_parameters,
3979 #endif
3980 	.kill_sb	= kill_litter_super,
3981 	.fs_flags	= FS_USERNS_MOUNT,
3982 };
3983 
3984 void __init shmem_init(void)
3985 {
3986 	int error;
3987 
3988 	shmem_init_inodecache();
3989 
3990 	error = register_filesystem(&shmem_fs_type);
3991 	if (error) {
3992 		pr_err("Could not register tmpfs\n");
3993 		goto out2;
3994 	}
3995 
3996 	shm_mnt = kern_mount(&shmem_fs_type);
3997 	if (IS_ERR(shm_mnt)) {
3998 		error = PTR_ERR(shm_mnt);
3999 		pr_err("Could not kern_mount tmpfs\n");
4000 		goto out1;
4001 	}
4002 
4003 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4004 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4005 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4006 	else
4007 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4008 #endif
4009 	return;
4010 
4011 out1:
4012 	unregister_filesystem(&shmem_fs_type);
4013 out2:
4014 	shmem_destroy_inodecache();
4015 	shm_mnt = ERR_PTR(error);
4016 }
4017 
4018 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4019 static ssize_t shmem_enabled_show(struct kobject *kobj,
4020 				  struct kobj_attribute *attr, char *buf)
4021 {
4022 	static const int values[] = {
4023 		SHMEM_HUGE_ALWAYS,
4024 		SHMEM_HUGE_WITHIN_SIZE,
4025 		SHMEM_HUGE_ADVISE,
4026 		SHMEM_HUGE_NEVER,
4027 		SHMEM_HUGE_DENY,
4028 		SHMEM_HUGE_FORCE,
4029 	};
4030 	int len = 0;
4031 	int i;
4032 
4033 	for (i = 0; i < ARRAY_SIZE(values); i++) {
4034 		len += sysfs_emit_at(buf, len,
4035 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4036 				     i ? " " : "",
4037 				     shmem_format_huge(values[i]));
4038 	}
4039 
4040 	len += sysfs_emit_at(buf, len, "\n");
4041 
4042 	return len;
4043 }
4044 
4045 static ssize_t shmem_enabled_store(struct kobject *kobj,
4046 		struct kobj_attribute *attr, const char *buf, size_t count)
4047 {
4048 	char tmp[16];
4049 	int huge;
4050 
4051 	if (count + 1 > sizeof(tmp))
4052 		return -EINVAL;
4053 	memcpy(tmp, buf, count);
4054 	tmp[count] = '\0';
4055 	if (count && tmp[count - 1] == '\n')
4056 		tmp[count - 1] = '\0';
4057 
4058 	huge = shmem_parse_huge(tmp);
4059 	if (huge == -EINVAL)
4060 		return -EINVAL;
4061 	if (!has_transparent_hugepage() &&
4062 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4063 		return -EINVAL;
4064 
4065 	shmem_huge = huge;
4066 	if (shmem_huge > SHMEM_HUGE_DENY)
4067 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4068 	return count;
4069 }
4070 
4071 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4072 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4073 
4074 #else /* !CONFIG_SHMEM */
4075 
4076 /*
4077  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4078  *
4079  * This is intended for small system where the benefits of the full
4080  * shmem code (swap-backed and resource-limited) are outweighed by
4081  * their complexity. On systems without swap this code should be
4082  * effectively equivalent, but much lighter weight.
4083  */
4084 
4085 static struct file_system_type shmem_fs_type = {
4086 	.name		= "tmpfs",
4087 	.init_fs_context = ramfs_init_fs_context,
4088 	.parameters	= ramfs_fs_parameters,
4089 	.kill_sb	= kill_litter_super,
4090 	.fs_flags	= FS_USERNS_MOUNT,
4091 };
4092 
4093 void __init shmem_init(void)
4094 {
4095 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4096 
4097 	shm_mnt = kern_mount(&shmem_fs_type);
4098 	BUG_ON(IS_ERR(shm_mnt));
4099 }
4100 
4101 int shmem_unuse(unsigned int type)
4102 {
4103 	return 0;
4104 }
4105 
4106 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4107 {
4108 	return 0;
4109 }
4110 
4111 void shmem_unlock_mapping(struct address_space *mapping)
4112 {
4113 }
4114 
4115 #ifdef CONFIG_MMU
4116 unsigned long shmem_get_unmapped_area(struct file *file,
4117 				      unsigned long addr, unsigned long len,
4118 				      unsigned long pgoff, unsigned long flags)
4119 {
4120 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4121 }
4122 #endif
4123 
4124 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4125 {
4126 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4127 }
4128 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4129 
4130 #define shmem_vm_ops				generic_file_vm_ops
4131 #define shmem_file_operations			ramfs_file_operations
4132 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4133 #define shmem_acct_size(flags, size)		0
4134 #define shmem_unacct_size(flags, size)		do {} while (0)
4135 
4136 #endif /* CONFIG_SHMEM */
4137 
4138 /* common code */
4139 
4140 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4141 				       unsigned long flags, unsigned int i_flags)
4142 {
4143 	struct inode *inode;
4144 	struct file *res;
4145 
4146 	if (IS_ERR(mnt))
4147 		return ERR_CAST(mnt);
4148 
4149 	if (size < 0 || size > MAX_LFS_FILESIZE)
4150 		return ERR_PTR(-EINVAL);
4151 
4152 	if (shmem_acct_size(flags, size))
4153 		return ERR_PTR(-ENOMEM);
4154 
4155 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4156 				flags);
4157 	if (unlikely(!inode)) {
4158 		shmem_unacct_size(flags, size);
4159 		return ERR_PTR(-ENOSPC);
4160 	}
4161 	inode->i_flags |= i_flags;
4162 	inode->i_size = size;
4163 	clear_nlink(inode);	/* It is unlinked */
4164 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4165 	if (!IS_ERR(res))
4166 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4167 				&shmem_file_operations);
4168 	if (IS_ERR(res))
4169 		iput(inode);
4170 	return res;
4171 }
4172 
4173 /**
4174  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4175  * 	kernel internal.  There will be NO LSM permission checks against the
4176  * 	underlying inode.  So users of this interface must do LSM checks at a
4177  *	higher layer.  The users are the big_key and shm implementations.  LSM
4178  *	checks are provided at the key or shm level rather than the inode.
4179  * @name: name for dentry (to be seen in /proc/<pid>/maps
4180  * @size: size to be set for the file
4181  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4182  */
4183 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4184 {
4185 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4186 }
4187 
4188 /**
4189  * shmem_file_setup - get an unlinked file living in tmpfs
4190  * @name: name for dentry (to be seen in /proc/<pid>/maps
4191  * @size: size to be set for the file
4192  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4193  */
4194 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4195 {
4196 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4197 }
4198 EXPORT_SYMBOL_GPL(shmem_file_setup);
4199 
4200 /**
4201  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4202  * @mnt: the tmpfs mount where the file will be created
4203  * @name: name for dentry (to be seen in /proc/<pid>/maps
4204  * @size: size to be set for the file
4205  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4206  */
4207 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4208 				       loff_t size, unsigned long flags)
4209 {
4210 	return __shmem_file_setup(mnt, name, size, flags, 0);
4211 }
4212 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4213 
4214 /**
4215  * shmem_zero_setup - setup a shared anonymous mapping
4216  * @vma: the vma to be mmapped is prepared by do_mmap
4217  */
4218 int shmem_zero_setup(struct vm_area_struct *vma)
4219 {
4220 	struct file *file;
4221 	loff_t size = vma->vm_end - vma->vm_start;
4222 
4223 	/*
4224 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4225 	 * between XFS directory reading and selinux: since this file is only
4226 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4227 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4228 	 */
4229 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4230 	if (IS_ERR(file))
4231 		return PTR_ERR(file);
4232 
4233 	if (vma->vm_file)
4234 		fput(vma->vm_file);
4235 	vma->vm_file = file;
4236 	vma->vm_ops = &shmem_vm_ops;
4237 
4238 	return 0;
4239 }
4240 
4241 /**
4242  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4243  * @mapping:	the page's address_space
4244  * @index:	the page index
4245  * @gfp:	the page allocator flags to use if allocating
4246  *
4247  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4248  * with any new page allocations done using the specified allocation flags.
4249  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4250  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4251  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4252  *
4253  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4254  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4255  */
4256 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4257 					 pgoff_t index, gfp_t gfp)
4258 {
4259 #ifdef CONFIG_SHMEM
4260 	struct inode *inode = mapping->host;
4261 	struct page *page;
4262 	int error;
4263 
4264 	BUG_ON(!shmem_mapping(mapping));
4265 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4266 				  gfp, NULL, NULL, NULL);
4267 	if (error)
4268 		return ERR_PTR(error);
4269 
4270 	unlock_page(page);
4271 	if (PageHWPoison(page)) {
4272 		put_page(page);
4273 		return ERR_PTR(-EIO);
4274 	}
4275 
4276 	return page;
4277 #else
4278 	/*
4279 	 * The tiny !SHMEM case uses ramfs without swap
4280 	 */
4281 	return read_cache_page_gfp(mapping, index, gfp);
4282 #endif
4283 }
4284 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4285