1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/swap.h> 37 #include <linux/uio.h> 38 #include <linux/hugetlb.h> 39 #include <linux/fs_parser.h> 40 #include <linux/swapfile.h> 41 #include <linux/iversion.h> 42 #include "swap.h" 43 44 static struct vfsmount *shm_mnt; 45 46 #ifdef CONFIG_SHMEM 47 /* 48 * This virtual memory filesystem is heavily based on the ramfs. It 49 * extends ramfs by the ability to use swap and honor resource limits 50 * which makes it a completely usable filesystem. 51 */ 52 53 #include <linux/xattr.h> 54 #include <linux/exportfs.h> 55 #include <linux/posix_acl.h> 56 #include <linux/posix_acl_xattr.h> 57 #include <linux/mman.h> 58 #include <linux/string.h> 59 #include <linux/slab.h> 60 #include <linux/backing-dev.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/writeback.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/userfaultfd_k.h> 80 #include <linux/rmap.h> 81 #include <linux/uuid.h> 82 83 #include <linux/uaccess.h> 84 85 #include "internal.h" 86 87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 89 90 /* Pretend that each entry is of this size in directory's i_size */ 91 #define BOGO_DIRENT_SIZE 20 92 93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 94 #define SHORT_SYMLINK_LEN 128 95 96 /* 97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 98 * inode->i_private (with i_rwsem making sure that it has only one user at 99 * a time): we would prefer not to enlarge the shmem inode just for that. 100 */ 101 struct shmem_falloc { 102 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 103 pgoff_t start; /* start of range currently being fallocated */ 104 pgoff_t next; /* the next page offset to be fallocated */ 105 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 106 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 107 }; 108 109 struct shmem_options { 110 unsigned long long blocks; 111 unsigned long long inodes; 112 struct mempolicy *mpol; 113 kuid_t uid; 114 kgid_t gid; 115 umode_t mode; 116 bool full_inums; 117 int huge; 118 int seen; 119 #define SHMEM_SEEN_BLOCKS 1 120 #define SHMEM_SEEN_INODES 2 121 #define SHMEM_SEEN_HUGE 4 122 #define SHMEM_SEEN_INUMS 8 123 }; 124 125 #ifdef CONFIG_TMPFS 126 static unsigned long shmem_default_max_blocks(void) 127 { 128 return totalram_pages() / 2; 129 } 130 131 static unsigned long shmem_default_max_inodes(void) 132 { 133 unsigned long nr_pages = totalram_pages(); 134 135 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 136 } 137 #endif 138 139 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 140 struct folio **foliop, enum sgp_type sgp, 141 gfp_t gfp, struct vm_area_struct *vma, 142 vm_fault_t *fault_type); 143 144 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 145 { 146 return sb->s_fs_info; 147 } 148 149 /* 150 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 151 * for shared memory and for shared anonymous (/dev/zero) mappings 152 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 153 * consistent with the pre-accounting of private mappings ... 154 */ 155 static inline int shmem_acct_size(unsigned long flags, loff_t size) 156 { 157 return (flags & VM_NORESERVE) ? 158 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 159 } 160 161 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 162 { 163 if (!(flags & VM_NORESERVE)) 164 vm_unacct_memory(VM_ACCT(size)); 165 } 166 167 static inline int shmem_reacct_size(unsigned long flags, 168 loff_t oldsize, loff_t newsize) 169 { 170 if (!(flags & VM_NORESERVE)) { 171 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 172 return security_vm_enough_memory_mm(current->mm, 173 VM_ACCT(newsize) - VM_ACCT(oldsize)); 174 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 175 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 176 } 177 return 0; 178 } 179 180 /* 181 * ... whereas tmpfs objects are accounted incrementally as 182 * pages are allocated, in order to allow large sparse files. 183 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 184 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 185 */ 186 static inline int shmem_acct_block(unsigned long flags, long pages) 187 { 188 if (!(flags & VM_NORESERVE)) 189 return 0; 190 191 return security_vm_enough_memory_mm(current->mm, 192 pages * VM_ACCT(PAGE_SIZE)); 193 } 194 195 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 196 { 197 if (flags & VM_NORESERVE) 198 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 199 } 200 201 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 202 { 203 struct shmem_inode_info *info = SHMEM_I(inode); 204 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 205 206 if (shmem_acct_block(info->flags, pages)) 207 return false; 208 209 if (sbinfo->max_blocks) { 210 if (percpu_counter_compare(&sbinfo->used_blocks, 211 sbinfo->max_blocks - pages) > 0) 212 goto unacct; 213 percpu_counter_add(&sbinfo->used_blocks, pages); 214 } 215 216 return true; 217 218 unacct: 219 shmem_unacct_blocks(info->flags, pages); 220 return false; 221 } 222 223 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 224 { 225 struct shmem_inode_info *info = SHMEM_I(inode); 226 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 227 228 if (sbinfo->max_blocks) 229 percpu_counter_sub(&sbinfo->used_blocks, pages); 230 shmem_unacct_blocks(info->flags, pages); 231 } 232 233 static const struct super_operations shmem_ops; 234 const struct address_space_operations shmem_aops; 235 static const struct file_operations shmem_file_operations; 236 static const struct inode_operations shmem_inode_operations; 237 static const struct inode_operations shmem_dir_inode_operations; 238 static const struct inode_operations shmem_special_inode_operations; 239 static const struct vm_operations_struct shmem_vm_ops; 240 static const struct vm_operations_struct shmem_anon_vm_ops; 241 static struct file_system_type shmem_fs_type; 242 243 bool vma_is_anon_shmem(struct vm_area_struct *vma) 244 { 245 return vma->vm_ops == &shmem_anon_vm_ops; 246 } 247 248 bool vma_is_shmem(struct vm_area_struct *vma) 249 { 250 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 251 } 252 253 static LIST_HEAD(shmem_swaplist); 254 static DEFINE_MUTEX(shmem_swaplist_mutex); 255 256 /* 257 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 258 * produces a novel ino for the newly allocated inode. 259 * 260 * It may also be called when making a hard link to permit the space needed by 261 * each dentry. However, in that case, no new inode number is needed since that 262 * internally draws from another pool of inode numbers (currently global 263 * get_next_ino()). This case is indicated by passing NULL as inop. 264 */ 265 #define SHMEM_INO_BATCH 1024 266 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 267 { 268 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 269 ino_t ino; 270 271 if (!(sb->s_flags & SB_KERNMOUNT)) { 272 raw_spin_lock(&sbinfo->stat_lock); 273 if (sbinfo->max_inodes) { 274 if (!sbinfo->free_inodes) { 275 raw_spin_unlock(&sbinfo->stat_lock); 276 return -ENOSPC; 277 } 278 sbinfo->free_inodes--; 279 } 280 if (inop) { 281 ino = sbinfo->next_ino++; 282 if (unlikely(is_zero_ino(ino))) 283 ino = sbinfo->next_ino++; 284 if (unlikely(!sbinfo->full_inums && 285 ino > UINT_MAX)) { 286 /* 287 * Emulate get_next_ino uint wraparound for 288 * compatibility 289 */ 290 if (IS_ENABLED(CONFIG_64BIT)) 291 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 292 __func__, MINOR(sb->s_dev)); 293 sbinfo->next_ino = 1; 294 ino = sbinfo->next_ino++; 295 } 296 *inop = ino; 297 } 298 raw_spin_unlock(&sbinfo->stat_lock); 299 } else if (inop) { 300 /* 301 * __shmem_file_setup, one of our callers, is lock-free: it 302 * doesn't hold stat_lock in shmem_reserve_inode since 303 * max_inodes is always 0, and is called from potentially 304 * unknown contexts. As such, use a per-cpu batched allocator 305 * which doesn't require the per-sb stat_lock unless we are at 306 * the batch boundary. 307 * 308 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 309 * shmem mounts are not exposed to userspace, so we don't need 310 * to worry about things like glibc compatibility. 311 */ 312 ino_t *next_ino; 313 314 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 315 ino = *next_ino; 316 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 317 raw_spin_lock(&sbinfo->stat_lock); 318 ino = sbinfo->next_ino; 319 sbinfo->next_ino += SHMEM_INO_BATCH; 320 raw_spin_unlock(&sbinfo->stat_lock); 321 if (unlikely(is_zero_ino(ino))) 322 ino++; 323 } 324 *inop = ino; 325 *next_ino = ++ino; 326 put_cpu(); 327 } 328 329 return 0; 330 } 331 332 static void shmem_free_inode(struct super_block *sb) 333 { 334 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 335 if (sbinfo->max_inodes) { 336 raw_spin_lock(&sbinfo->stat_lock); 337 sbinfo->free_inodes++; 338 raw_spin_unlock(&sbinfo->stat_lock); 339 } 340 } 341 342 /** 343 * shmem_recalc_inode - recalculate the block usage of an inode 344 * @inode: inode to recalc 345 * 346 * We have to calculate the free blocks since the mm can drop 347 * undirtied hole pages behind our back. 348 * 349 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 350 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 351 * 352 * It has to be called with the spinlock held. 353 */ 354 static void shmem_recalc_inode(struct inode *inode) 355 { 356 struct shmem_inode_info *info = SHMEM_I(inode); 357 long freed; 358 359 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 360 if (freed > 0) { 361 info->alloced -= freed; 362 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 363 shmem_inode_unacct_blocks(inode, freed); 364 } 365 } 366 367 bool shmem_charge(struct inode *inode, long pages) 368 { 369 struct shmem_inode_info *info = SHMEM_I(inode); 370 unsigned long flags; 371 372 if (!shmem_inode_acct_block(inode, pages)) 373 return false; 374 375 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 376 inode->i_mapping->nrpages += pages; 377 378 spin_lock_irqsave(&info->lock, flags); 379 info->alloced += pages; 380 inode->i_blocks += pages * BLOCKS_PER_PAGE; 381 shmem_recalc_inode(inode); 382 spin_unlock_irqrestore(&info->lock, flags); 383 384 return true; 385 } 386 387 void shmem_uncharge(struct inode *inode, long pages) 388 { 389 struct shmem_inode_info *info = SHMEM_I(inode); 390 unsigned long flags; 391 392 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 393 394 spin_lock_irqsave(&info->lock, flags); 395 info->alloced -= pages; 396 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 397 shmem_recalc_inode(inode); 398 spin_unlock_irqrestore(&info->lock, flags); 399 400 shmem_inode_unacct_blocks(inode, pages); 401 } 402 403 /* 404 * Replace item expected in xarray by a new item, while holding xa_lock. 405 */ 406 static int shmem_replace_entry(struct address_space *mapping, 407 pgoff_t index, void *expected, void *replacement) 408 { 409 XA_STATE(xas, &mapping->i_pages, index); 410 void *item; 411 412 VM_BUG_ON(!expected); 413 VM_BUG_ON(!replacement); 414 item = xas_load(&xas); 415 if (item != expected) 416 return -ENOENT; 417 xas_store(&xas, replacement); 418 return 0; 419 } 420 421 /* 422 * Sometimes, before we decide whether to proceed or to fail, we must check 423 * that an entry was not already brought back from swap by a racing thread. 424 * 425 * Checking page is not enough: by the time a SwapCache page is locked, it 426 * might be reused, and again be SwapCache, using the same swap as before. 427 */ 428 static bool shmem_confirm_swap(struct address_space *mapping, 429 pgoff_t index, swp_entry_t swap) 430 { 431 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 432 } 433 434 /* 435 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 436 * 437 * SHMEM_HUGE_NEVER: 438 * disables huge pages for the mount; 439 * SHMEM_HUGE_ALWAYS: 440 * enables huge pages for the mount; 441 * SHMEM_HUGE_WITHIN_SIZE: 442 * only allocate huge pages if the page will be fully within i_size, 443 * also respect fadvise()/madvise() hints; 444 * SHMEM_HUGE_ADVISE: 445 * only allocate huge pages if requested with fadvise()/madvise(); 446 */ 447 448 #define SHMEM_HUGE_NEVER 0 449 #define SHMEM_HUGE_ALWAYS 1 450 #define SHMEM_HUGE_WITHIN_SIZE 2 451 #define SHMEM_HUGE_ADVISE 3 452 453 /* 454 * Special values. 455 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 456 * 457 * SHMEM_HUGE_DENY: 458 * disables huge on shm_mnt and all mounts, for emergency use; 459 * SHMEM_HUGE_FORCE: 460 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 461 * 462 */ 463 #define SHMEM_HUGE_DENY (-1) 464 #define SHMEM_HUGE_FORCE (-2) 465 466 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 467 /* ifdef here to avoid bloating shmem.o when not necessary */ 468 469 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 470 471 bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode, 472 pgoff_t index, bool shmem_huge_force) 473 { 474 loff_t i_size; 475 476 if (!S_ISREG(inode->i_mode)) 477 return false; 478 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) || 479 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))) 480 return false; 481 if (shmem_huge_force) 482 return true; 483 if (shmem_huge == SHMEM_HUGE_FORCE) 484 return true; 485 if (shmem_huge == SHMEM_HUGE_DENY) 486 return false; 487 488 switch (SHMEM_SB(inode->i_sb)->huge) { 489 case SHMEM_HUGE_ALWAYS: 490 return true; 491 case SHMEM_HUGE_WITHIN_SIZE: 492 index = round_up(index + 1, HPAGE_PMD_NR); 493 i_size = round_up(i_size_read(inode), PAGE_SIZE); 494 if (i_size >> PAGE_SHIFT >= index) 495 return true; 496 fallthrough; 497 case SHMEM_HUGE_ADVISE: 498 if (vma && (vma->vm_flags & VM_HUGEPAGE)) 499 return true; 500 fallthrough; 501 default: 502 return false; 503 } 504 } 505 506 #if defined(CONFIG_SYSFS) 507 static int shmem_parse_huge(const char *str) 508 { 509 if (!strcmp(str, "never")) 510 return SHMEM_HUGE_NEVER; 511 if (!strcmp(str, "always")) 512 return SHMEM_HUGE_ALWAYS; 513 if (!strcmp(str, "within_size")) 514 return SHMEM_HUGE_WITHIN_SIZE; 515 if (!strcmp(str, "advise")) 516 return SHMEM_HUGE_ADVISE; 517 if (!strcmp(str, "deny")) 518 return SHMEM_HUGE_DENY; 519 if (!strcmp(str, "force")) 520 return SHMEM_HUGE_FORCE; 521 return -EINVAL; 522 } 523 #endif 524 525 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 526 static const char *shmem_format_huge(int huge) 527 { 528 switch (huge) { 529 case SHMEM_HUGE_NEVER: 530 return "never"; 531 case SHMEM_HUGE_ALWAYS: 532 return "always"; 533 case SHMEM_HUGE_WITHIN_SIZE: 534 return "within_size"; 535 case SHMEM_HUGE_ADVISE: 536 return "advise"; 537 case SHMEM_HUGE_DENY: 538 return "deny"; 539 case SHMEM_HUGE_FORCE: 540 return "force"; 541 default: 542 VM_BUG_ON(1); 543 return "bad_val"; 544 } 545 } 546 #endif 547 548 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 549 struct shrink_control *sc, unsigned long nr_to_split) 550 { 551 LIST_HEAD(list), *pos, *next; 552 LIST_HEAD(to_remove); 553 struct inode *inode; 554 struct shmem_inode_info *info; 555 struct folio *folio; 556 unsigned long batch = sc ? sc->nr_to_scan : 128; 557 int split = 0; 558 559 if (list_empty(&sbinfo->shrinklist)) 560 return SHRINK_STOP; 561 562 spin_lock(&sbinfo->shrinklist_lock); 563 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 564 info = list_entry(pos, struct shmem_inode_info, shrinklist); 565 566 /* pin the inode */ 567 inode = igrab(&info->vfs_inode); 568 569 /* inode is about to be evicted */ 570 if (!inode) { 571 list_del_init(&info->shrinklist); 572 goto next; 573 } 574 575 /* Check if there's anything to gain */ 576 if (round_up(inode->i_size, PAGE_SIZE) == 577 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 578 list_move(&info->shrinklist, &to_remove); 579 goto next; 580 } 581 582 list_move(&info->shrinklist, &list); 583 next: 584 sbinfo->shrinklist_len--; 585 if (!--batch) 586 break; 587 } 588 spin_unlock(&sbinfo->shrinklist_lock); 589 590 list_for_each_safe(pos, next, &to_remove) { 591 info = list_entry(pos, struct shmem_inode_info, shrinklist); 592 inode = &info->vfs_inode; 593 list_del_init(&info->shrinklist); 594 iput(inode); 595 } 596 597 list_for_each_safe(pos, next, &list) { 598 int ret; 599 pgoff_t index; 600 601 info = list_entry(pos, struct shmem_inode_info, shrinklist); 602 inode = &info->vfs_inode; 603 604 if (nr_to_split && split >= nr_to_split) 605 goto move_back; 606 607 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT; 608 folio = filemap_get_folio(inode->i_mapping, index); 609 if (!folio) 610 goto drop; 611 612 /* No huge page at the end of the file: nothing to split */ 613 if (!folio_test_large(folio)) { 614 folio_put(folio); 615 goto drop; 616 } 617 618 /* 619 * Move the inode on the list back to shrinklist if we failed 620 * to lock the page at this time. 621 * 622 * Waiting for the lock may lead to deadlock in the 623 * reclaim path. 624 */ 625 if (!folio_trylock(folio)) { 626 folio_put(folio); 627 goto move_back; 628 } 629 630 ret = split_folio(folio); 631 folio_unlock(folio); 632 folio_put(folio); 633 634 /* If split failed move the inode on the list back to shrinklist */ 635 if (ret) 636 goto move_back; 637 638 split++; 639 drop: 640 list_del_init(&info->shrinklist); 641 goto put; 642 move_back: 643 /* 644 * Make sure the inode is either on the global list or deleted 645 * from any local list before iput() since it could be deleted 646 * in another thread once we put the inode (then the local list 647 * is corrupted). 648 */ 649 spin_lock(&sbinfo->shrinklist_lock); 650 list_move(&info->shrinklist, &sbinfo->shrinklist); 651 sbinfo->shrinklist_len++; 652 spin_unlock(&sbinfo->shrinklist_lock); 653 put: 654 iput(inode); 655 } 656 657 return split; 658 } 659 660 static long shmem_unused_huge_scan(struct super_block *sb, 661 struct shrink_control *sc) 662 { 663 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 664 665 if (!READ_ONCE(sbinfo->shrinklist_len)) 666 return SHRINK_STOP; 667 668 return shmem_unused_huge_shrink(sbinfo, sc, 0); 669 } 670 671 static long shmem_unused_huge_count(struct super_block *sb, 672 struct shrink_control *sc) 673 { 674 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 675 return READ_ONCE(sbinfo->shrinklist_len); 676 } 677 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 678 679 #define shmem_huge SHMEM_HUGE_DENY 680 681 bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode, 682 pgoff_t index, bool shmem_huge_force) 683 { 684 return false; 685 } 686 687 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 688 struct shrink_control *sc, unsigned long nr_to_split) 689 { 690 return 0; 691 } 692 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 693 694 /* 695 * Like filemap_add_folio, but error if expected item has gone. 696 */ 697 static int shmem_add_to_page_cache(struct folio *folio, 698 struct address_space *mapping, 699 pgoff_t index, void *expected, gfp_t gfp, 700 struct mm_struct *charge_mm) 701 { 702 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 703 long nr = folio_nr_pages(folio); 704 int error; 705 706 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 707 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 708 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 709 VM_BUG_ON(expected && folio_test_large(folio)); 710 711 folio_ref_add(folio, nr); 712 folio->mapping = mapping; 713 folio->index = index; 714 715 if (!folio_test_swapcache(folio)) { 716 error = mem_cgroup_charge(folio, charge_mm, gfp); 717 if (error) { 718 if (folio_test_pmd_mappable(folio)) { 719 count_vm_event(THP_FILE_FALLBACK); 720 count_vm_event(THP_FILE_FALLBACK_CHARGE); 721 } 722 goto error; 723 } 724 } 725 folio_throttle_swaprate(folio, gfp); 726 727 do { 728 xas_lock_irq(&xas); 729 if (expected != xas_find_conflict(&xas)) { 730 xas_set_err(&xas, -EEXIST); 731 goto unlock; 732 } 733 if (expected && xas_find_conflict(&xas)) { 734 xas_set_err(&xas, -EEXIST); 735 goto unlock; 736 } 737 xas_store(&xas, folio); 738 if (xas_error(&xas)) 739 goto unlock; 740 if (folio_test_pmd_mappable(folio)) { 741 count_vm_event(THP_FILE_ALLOC); 742 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 743 } 744 mapping->nrpages += nr; 745 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 746 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 747 unlock: 748 xas_unlock_irq(&xas); 749 } while (xas_nomem(&xas, gfp)); 750 751 if (xas_error(&xas)) { 752 error = xas_error(&xas); 753 goto error; 754 } 755 756 return 0; 757 error: 758 folio->mapping = NULL; 759 folio_ref_sub(folio, nr); 760 return error; 761 } 762 763 /* 764 * Like delete_from_page_cache, but substitutes swap for @folio. 765 */ 766 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 767 { 768 struct address_space *mapping = folio->mapping; 769 long nr = folio_nr_pages(folio); 770 int error; 771 772 xa_lock_irq(&mapping->i_pages); 773 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 774 folio->mapping = NULL; 775 mapping->nrpages -= nr; 776 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 777 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 778 xa_unlock_irq(&mapping->i_pages); 779 folio_put(folio); 780 BUG_ON(error); 781 } 782 783 /* 784 * Remove swap entry from page cache, free the swap and its page cache. 785 */ 786 static int shmem_free_swap(struct address_space *mapping, 787 pgoff_t index, void *radswap) 788 { 789 void *old; 790 791 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 792 if (old != radswap) 793 return -ENOENT; 794 free_swap_and_cache(radix_to_swp_entry(radswap)); 795 return 0; 796 } 797 798 /* 799 * Determine (in bytes) how many of the shmem object's pages mapped by the 800 * given offsets are swapped out. 801 * 802 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 803 * as long as the inode doesn't go away and racy results are not a problem. 804 */ 805 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 806 pgoff_t start, pgoff_t end) 807 { 808 XA_STATE(xas, &mapping->i_pages, start); 809 struct page *page; 810 unsigned long swapped = 0; 811 812 rcu_read_lock(); 813 xas_for_each(&xas, page, end - 1) { 814 if (xas_retry(&xas, page)) 815 continue; 816 if (xa_is_value(page)) 817 swapped++; 818 819 if (need_resched()) { 820 xas_pause(&xas); 821 cond_resched_rcu(); 822 } 823 } 824 825 rcu_read_unlock(); 826 827 return swapped << PAGE_SHIFT; 828 } 829 830 /* 831 * Determine (in bytes) how many of the shmem object's pages mapped by the 832 * given vma is swapped out. 833 * 834 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 835 * as long as the inode doesn't go away and racy results are not a problem. 836 */ 837 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 838 { 839 struct inode *inode = file_inode(vma->vm_file); 840 struct shmem_inode_info *info = SHMEM_I(inode); 841 struct address_space *mapping = inode->i_mapping; 842 unsigned long swapped; 843 844 /* Be careful as we don't hold info->lock */ 845 swapped = READ_ONCE(info->swapped); 846 847 /* 848 * The easier cases are when the shmem object has nothing in swap, or 849 * the vma maps it whole. Then we can simply use the stats that we 850 * already track. 851 */ 852 if (!swapped) 853 return 0; 854 855 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 856 return swapped << PAGE_SHIFT; 857 858 /* Here comes the more involved part */ 859 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 860 vma->vm_pgoff + vma_pages(vma)); 861 } 862 863 /* 864 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 865 */ 866 void shmem_unlock_mapping(struct address_space *mapping) 867 { 868 struct folio_batch fbatch; 869 pgoff_t index = 0; 870 871 folio_batch_init(&fbatch); 872 /* 873 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 874 */ 875 while (!mapping_unevictable(mapping) && 876 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 877 check_move_unevictable_folios(&fbatch); 878 folio_batch_release(&fbatch); 879 cond_resched(); 880 } 881 } 882 883 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 884 { 885 struct folio *folio; 886 887 /* 888 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 889 * beyond i_size, and reports fallocated pages as holes. 890 */ 891 folio = __filemap_get_folio(inode->i_mapping, index, 892 FGP_ENTRY | FGP_LOCK, 0); 893 if (!xa_is_value(folio)) 894 return folio; 895 /* 896 * But read a page back from swap if any of it is within i_size 897 * (although in some cases this is just a waste of time). 898 */ 899 folio = NULL; 900 shmem_get_folio(inode, index, &folio, SGP_READ); 901 return folio; 902 } 903 904 /* 905 * Remove range of pages and swap entries from page cache, and free them. 906 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 907 */ 908 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 909 bool unfalloc) 910 { 911 struct address_space *mapping = inode->i_mapping; 912 struct shmem_inode_info *info = SHMEM_I(inode); 913 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 914 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 915 struct folio_batch fbatch; 916 pgoff_t indices[PAGEVEC_SIZE]; 917 struct folio *folio; 918 bool same_folio; 919 long nr_swaps_freed = 0; 920 pgoff_t index; 921 int i; 922 923 if (lend == -1) 924 end = -1; /* unsigned, so actually very big */ 925 926 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 927 info->fallocend = start; 928 929 folio_batch_init(&fbatch); 930 index = start; 931 while (index < end && find_lock_entries(mapping, &index, end - 1, 932 &fbatch, indices)) { 933 for (i = 0; i < folio_batch_count(&fbatch); i++) { 934 folio = fbatch.folios[i]; 935 936 if (xa_is_value(folio)) { 937 if (unfalloc) 938 continue; 939 nr_swaps_freed += !shmem_free_swap(mapping, 940 indices[i], folio); 941 continue; 942 } 943 944 if (!unfalloc || !folio_test_uptodate(folio)) 945 truncate_inode_folio(mapping, folio); 946 folio_unlock(folio); 947 } 948 folio_batch_remove_exceptionals(&fbatch); 949 folio_batch_release(&fbatch); 950 cond_resched(); 951 } 952 953 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 954 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 955 if (folio) { 956 same_folio = lend < folio_pos(folio) + folio_size(folio); 957 folio_mark_dirty(folio); 958 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 959 start = folio->index + folio_nr_pages(folio); 960 if (same_folio) 961 end = folio->index; 962 } 963 folio_unlock(folio); 964 folio_put(folio); 965 folio = NULL; 966 } 967 968 if (!same_folio) 969 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 970 if (folio) { 971 folio_mark_dirty(folio); 972 if (!truncate_inode_partial_folio(folio, lstart, lend)) 973 end = folio->index; 974 folio_unlock(folio); 975 folio_put(folio); 976 } 977 978 index = start; 979 while (index < end) { 980 cond_resched(); 981 982 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 983 indices)) { 984 /* If all gone or hole-punch or unfalloc, we're done */ 985 if (index == start || end != -1) 986 break; 987 /* But if truncating, restart to make sure all gone */ 988 index = start; 989 continue; 990 } 991 for (i = 0; i < folio_batch_count(&fbatch); i++) { 992 folio = fbatch.folios[i]; 993 994 if (xa_is_value(folio)) { 995 if (unfalloc) 996 continue; 997 if (shmem_free_swap(mapping, indices[i], folio)) { 998 /* Swap was replaced by page: retry */ 999 index = indices[i]; 1000 break; 1001 } 1002 nr_swaps_freed++; 1003 continue; 1004 } 1005 1006 folio_lock(folio); 1007 1008 if (!unfalloc || !folio_test_uptodate(folio)) { 1009 if (folio_mapping(folio) != mapping) { 1010 /* Page was replaced by swap: retry */ 1011 folio_unlock(folio); 1012 index = indices[i]; 1013 break; 1014 } 1015 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1016 folio); 1017 truncate_inode_folio(mapping, folio); 1018 } 1019 folio_unlock(folio); 1020 } 1021 folio_batch_remove_exceptionals(&fbatch); 1022 folio_batch_release(&fbatch); 1023 } 1024 1025 spin_lock_irq(&info->lock); 1026 info->swapped -= nr_swaps_freed; 1027 shmem_recalc_inode(inode); 1028 spin_unlock_irq(&info->lock); 1029 } 1030 1031 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1032 { 1033 shmem_undo_range(inode, lstart, lend, false); 1034 inode->i_ctime = inode->i_mtime = current_time(inode); 1035 inode_inc_iversion(inode); 1036 } 1037 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1038 1039 static int shmem_getattr(struct user_namespace *mnt_userns, 1040 const struct path *path, struct kstat *stat, 1041 u32 request_mask, unsigned int query_flags) 1042 { 1043 struct inode *inode = path->dentry->d_inode; 1044 struct shmem_inode_info *info = SHMEM_I(inode); 1045 1046 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1047 spin_lock_irq(&info->lock); 1048 shmem_recalc_inode(inode); 1049 spin_unlock_irq(&info->lock); 1050 } 1051 if (info->fsflags & FS_APPEND_FL) 1052 stat->attributes |= STATX_ATTR_APPEND; 1053 if (info->fsflags & FS_IMMUTABLE_FL) 1054 stat->attributes |= STATX_ATTR_IMMUTABLE; 1055 if (info->fsflags & FS_NODUMP_FL) 1056 stat->attributes |= STATX_ATTR_NODUMP; 1057 stat->attributes_mask |= (STATX_ATTR_APPEND | 1058 STATX_ATTR_IMMUTABLE | 1059 STATX_ATTR_NODUMP); 1060 generic_fillattr(&init_user_ns, inode, stat); 1061 1062 if (shmem_is_huge(NULL, inode, 0, false)) 1063 stat->blksize = HPAGE_PMD_SIZE; 1064 1065 if (request_mask & STATX_BTIME) { 1066 stat->result_mask |= STATX_BTIME; 1067 stat->btime.tv_sec = info->i_crtime.tv_sec; 1068 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1069 } 1070 1071 return 0; 1072 } 1073 1074 static int shmem_setattr(struct user_namespace *mnt_userns, 1075 struct dentry *dentry, struct iattr *attr) 1076 { 1077 struct inode *inode = d_inode(dentry); 1078 struct shmem_inode_info *info = SHMEM_I(inode); 1079 int error; 1080 bool update_mtime = false; 1081 bool update_ctime = true; 1082 1083 error = setattr_prepare(&init_user_ns, dentry, attr); 1084 if (error) 1085 return error; 1086 1087 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1088 loff_t oldsize = inode->i_size; 1089 loff_t newsize = attr->ia_size; 1090 1091 /* protected by i_rwsem */ 1092 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1093 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1094 return -EPERM; 1095 1096 if (newsize != oldsize) { 1097 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1098 oldsize, newsize); 1099 if (error) 1100 return error; 1101 i_size_write(inode, newsize); 1102 update_mtime = true; 1103 } else { 1104 update_ctime = false; 1105 } 1106 if (newsize <= oldsize) { 1107 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1108 if (oldsize > holebegin) 1109 unmap_mapping_range(inode->i_mapping, 1110 holebegin, 0, 1); 1111 if (info->alloced) 1112 shmem_truncate_range(inode, 1113 newsize, (loff_t)-1); 1114 /* unmap again to remove racily COWed private pages */ 1115 if (oldsize > holebegin) 1116 unmap_mapping_range(inode->i_mapping, 1117 holebegin, 0, 1); 1118 } 1119 } 1120 1121 setattr_copy(&init_user_ns, inode, attr); 1122 if (attr->ia_valid & ATTR_MODE) 1123 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode); 1124 if (!error && update_ctime) { 1125 inode->i_ctime = current_time(inode); 1126 if (update_mtime) 1127 inode->i_mtime = inode->i_ctime; 1128 inode_inc_iversion(inode); 1129 } 1130 return error; 1131 } 1132 1133 static void shmem_evict_inode(struct inode *inode) 1134 { 1135 struct shmem_inode_info *info = SHMEM_I(inode); 1136 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1137 1138 if (shmem_mapping(inode->i_mapping)) { 1139 shmem_unacct_size(info->flags, inode->i_size); 1140 inode->i_size = 0; 1141 mapping_set_exiting(inode->i_mapping); 1142 shmem_truncate_range(inode, 0, (loff_t)-1); 1143 if (!list_empty(&info->shrinklist)) { 1144 spin_lock(&sbinfo->shrinklist_lock); 1145 if (!list_empty(&info->shrinklist)) { 1146 list_del_init(&info->shrinklist); 1147 sbinfo->shrinklist_len--; 1148 } 1149 spin_unlock(&sbinfo->shrinklist_lock); 1150 } 1151 while (!list_empty(&info->swaplist)) { 1152 /* Wait while shmem_unuse() is scanning this inode... */ 1153 wait_var_event(&info->stop_eviction, 1154 !atomic_read(&info->stop_eviction)); 1155 mutex_lock(&shmem_swaplist_mutex); 1156 /* ...but beware of the race if we peeked too early */ 1157 if (!atomic_read(&info->stop_eviction)) 1158 list_del_init(&info->swaplist); 1159 mutex_unlock(&shmem_swaplist_mutex); 1160 } 1161 } 1162 1163 simple_xattrs_free(&info->xattrs); 1164 WARN_ON(inode->i_blocks); 1165 shmem_free_inode(inode->i_sb); 1166 clear_inode(inode); 1167 } 1168 1169 static int shmem_find_swap_entries(struct address_space *mapping, 1170 pgoff_t start, struct folio_batch *fbatch, 1171 pgoff_t *indices, unsigned int type) 1172 { 1173 XA_STATE(xas, &mapping->i_pages, start); 1174 struct folio *folio; 1175 swp_entry_t entry; 1176 1177 rcu_read_lock(); 1178 xas_for_each(&xas, folio, ULONG_MAX) { 1179 if (xas_retry(&xas, folio)) 1180 continue; 1181 1182 if (!xa_is_value(folio)) 1183 continue; 1184 1185 entry = radix_to_swp_entry(folio); 1186 /* 1187 * swapin error entries can be found in the mapping. But they're 1188 * deliberately ignored here as we've done everything we can do. 1189 */ 1190 if (swp_type(entry) != type) 1191 continue; 1192 1193 indices[folio_batch_count(fbatch)] = xas.xa_index; 1194 if (!folio_batch_add(fbatch, folio)) 1195 break; 1196 1197 if (need_resched()) { 1198 xas_pause(&xas); 1199 cond_resched_rcu(); 1200 } 1201 } 1202 rcu_read_unlock(); 1203 1204 return xas.xa_index; 1205 } 1206 1207 /* 1208 * Move the swapped pages for an inode to page cache. Returns the count 1209 * of pages swapped in, or the error in case of failure. 1210 */ 1211 static int shmem_unuse_swap_entries(struct inode *inode, 1212 struct folio_batch *fbatch, pgoff_t *indices) 1213 { 1214 int i = 0; 1215 int ret = 0; 1216 int error = 0; 1217 struct address_space *mapping = inode->i_mapping; 1218 1219 for (i = 0; i < folio_batch_count(fbatch); i++) { 1220 struct folio *folio = fbatch->folios[i]; 1221 1222 if (!xa_is_value(folio)) 1223 continue; 1224 error = shmem_swapin_folio(inode, indices[i], 1225 &folio, SGP_CACHE, 1226 mapping_gfp_mask(mapping), 1227 NULL, NULL); 1228 if (error == 0) { 1229 folio_unlock(folio); 1230 folio_put(folio); 1231 ret++; 1232 } 1233 if (error == -ENOMEM) 1234 break; 1235 error = 0; 1236 } 1237 return error ? error : ret; 1238 } 1239 1240 /* 1241 * If swap found in inode, free it and move page from swapcache to filecache. 1242 */ 1243 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1244 { 1245 struct address_space *mapping = inode->i_mapping; 1246 pgoff_t start = 0; 1247 struct folio_batch fbatch; 1248 pgoff_t indices[PAGEVEC_SIZE]; 1249 int ret = 0; 1250 1251 do { 1252 folio_batch_init(&fbatch); 1253 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1254 if (folio_batch_count(&fbatch) == 0) { 1255 ret = 0; 1256 break; 1257 } 1258 1259 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1260 if (ret < 0) 1261 break; 1262 1263 start = indices[folio_batch_count(&fbatch) - 1]; 1264 } while (true); 1265 1266 return ret; 1267 } 1268 1269 /* 1270 * Read all the shared memory data that resides in the swap 1271 * device 'type' back into memory, so the swap device can be 1272 * unused. 1273 */ 1274 int shmem_unuse(unsigned int type) 1275 { 1276 struct shmem_inode_info *info, *next; 1277 int error = 0; 1278 1279 if (list_empty(&shmem_swaplist)) 1280 return 0; 1281 1282 mutex_lock(&shmem_swaplist_mutex); 1283 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1284 if (!info->swapped) { 1285 list_del_init(&info->swaplist); 1286 continue; 1287 } 1288 /* 1289 * Drop the swaplist mutex while searching the inode for swap; 1290 * but before doing so, make sure shmem_evict_inode() will not 1291 * remove placeholder inode from swaplist, nor let it be freed 1292 * (igrab() would protect from unlink, but not from unmount). 1293 */ 1294 atomic_inc(&info->stop_eviction); 1295 mutex_unlock(&shmem_swaplist_mutex); 1296 1297 error = shmem_unuse_inode(&info->vfs_inode, type); 1298 cond_resched(); 1299 1300 mutex_lock(&shmem_swaplist_mutex); 1301 next = list_next_entry(info, swaplist); 1302 if (!info->swapped) 1303 list_del_init(&info->swaplist); 1304 if (atomic_dec_and_test(&info->stop_eviction)) 1305 wake_up_var(&info->stop_eviction); 1306 if (error) 1307 break; 1308 } 1309 mutex_unlock(&shmem_swaplist_mutex); 1310 1311 return error; 1312 } 1313 1314 /* 1315 * Move the page from the page cache to the swap cache. 1316 */ 1317 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1318 { 1319 struct folio *folio = page_folio(page); 1320 struct shmem_inode_info *info; 1321 struct address_space *mapping; 1322 struct inode *inode; 1323 swp_entry_t swap; 1324 pgoff_t index; 1325 1326 /* 1327 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1328 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1329 * and its shmem_writeback() needs them to be split when swapping. 1330 */ 1331 if (folio_test_large(folio)) { 1332 /* Ensure the subpages are still dirty */ 1333 folio_test_set_dirty(folio); 1334 if (split_huge_page(page) < 0) 1335 goto redirty; 1336 folio = page_folio(page); 1337 folio_clear_dirty(folio); 1338 } 1339 1340 BUG_ON(!folio_test_locked(folio)); 1341 mapping = folio->mapping; 1342 index = folio->index; 1343 inode = mapping->host; 1344 info = SHMEM_I(inode); 1345 if (info->flags & VM_LOCKED) 1346 goto redirty; 1347 if (!total_swap_pages) 1348 goto redirty; 1349 1350 /* 1351 * Our capabilities prevent regular writeback or sync from ever calling 1352 * shmem_writepage; but a stacking filesystem might use ->writepage of 1353 * its underlying filesystem, in which case tmpfs should write out to 1354 * swap only in response to memory pressure, and not for the writeback 1355 * threads or sync. 1356 */ 1357 if (!wbc->for_reclaim) { 1358 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1359 goto redirty; 1360 } 1361 1362 /* 1363 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1364 * value into swapfile.c, the only way we can correctly account for a 1365 * fallocated folio arriving here is now to initialize it and write it. 1366 * 1367 * That's okay for a folio already fallocated earlier, but if we have 1368 * not yet completed the fallocation, then (a) we want to keep track 1369 * of this folio in case we have to undo it, and (b) it may not be a 1370 * good idea to continue anyway, once we're pushing into swap. So 1371 * reactivate the folio, and let shmem_fallocate() quit when too many. 1372 */ 1373 if (!folio_test_uptodate(folio)) { 1374 if (inode->i_private) { 1375 struct shmem_falloc *shmem_falloc; 1376 spin_lock(&inode->i_lock); 1377 shmem_falloc = inode->i_private; 1378 if (shmem_falloc && 1379 !shmem_falloc->waitq && 1380 index >= shmem_falloc->start && 1381 index < shmem_falloc->next) 1382 shmem_falloc->nr_unswapped++; 1383 else 1384 shmem_falloc = NULL; 1385 spin_unlock(&inode->i_lock); 1386 if (shmem_falloc) 1387 goto redirty; 1388 } 1389 folio_zero_range(folio, 0, folio_size(folio)); 1390 flush_dcache_folio(folio); 1391 folio_mark_uptodate(folio); 1392 } 1393 1394 swap = folio_alloc_swap(folio); 1395 if (!swap.val) 1396 goto redirty; 1397 1398 /* 1399 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1400 * if it's not already there. Do it now before the folio is 1401 * moved to swap cache, when its pagelock no longer protects 1402 * the inode from eviction. But don't unlock the mutex until 1403 * we've incremented swapped, because shmem_unuse_inode() will 1404 * prune a !swapped inode from the swaplist under this mutex. 1405 */ 1406 mutex_lock(&shmem_swaplist_mutex); 1407 if (list_empty(&info->swaplist)) 1408 list_add(&info->swaplist, &shmem_swaplist); 1409 1410 if (add_to_swap_cache(folio, swap, 1411 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1412 NULL) == 0) { 1413 spin_lock_irq(&info->lock); 1414 shmem_recalc_inode(inode); 1415 info->swapped++; 1416 spin_unlock_irq(&info->lock); 1417 1418 swap_shmem_alloc(swap); 1419 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1420 1421 mutex_unlock(&shmem_swaplist_mutex); 1422 BUG_ON(folio_mapped(folio)); 1423 swap_writepage(&folio->page, wbc); 1424 return 0; 1425 } 1426 1427 mutex_unlock(&shmem_swaplist_mutex); 1428 put_swap_folio(folio, swap); 1429 redirty: 1430 folio_mark_dirty(folio); 1431 if (wbc->for_reclaim) 1432 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1433 folio_unlock(folio); 1434 return 0; 1435 } 1436 1437 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1438 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1439 { 1440 char buffer[64]; 1441 1442 if (!mpol || mpol->mode == MPOL_DEFAULT) 1443 return; /* show nothing */ 1444 1445 mpol_to_str(buffer, sizeof(buffer), mpol); 1446 1447 seq_printf(seq, ",mpol=%s", buffer); 1448 } 1449 1450 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1451 { 1452 struct mempolicy *mpol = NULL; 1453 if (sbinfo->mpol) { 1454 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1455 mpol = sbinfo->mpol; 1456 mpol_get(mpol); 1457 raw_spin_unlock(&sbinfo->stat_lock); 1458 } 1459 return mpol; 1460 } 1461 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1462 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1463 { 1464 } 1465 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1466 { 1467 return NULL; 1468 } 1469 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1470 #ifndef CONFIG_NUMA 1471 #define vm_policy vm_private_data 1472 #endif 1473 1474 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1475 struct shmem_inode_info *info, pgoff_t index) 1476 { 1477 /* Create a pseudo vma that just contains the policy */ 1478 vma_init(vma, NULL); 1479 /* Bias interleave by inode number to distribute better across nodes */ 1480 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1481 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1482 } 1483 1484 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1485 { 1486 /* Drop reference taken by mpol_shared_policy_lookup() */ 1487 mpol_cond_put(vma->vm_policy); 1488 } 1489 1490 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1491 struct shmem_inode_info *info, pgoff_t index) 1492 { 1493 struct vm_area_struct pvma; 1494 struct page *page; 1495 struct vm_fault vmf = { 1496 .vma = &pvma, 1497 }; 1498 1499 shmem_pseudo_vma_init(&pvma, info, index); 1500 page = swap_cluster_readahead(swap, gfp, &vmf); 1501 shmem_pseudo_vma_destroy(&pvma); 1502 1503 if (!page) 1504 return NULL; 1505 return page_folio(page); 1506 } 1507 1508 /* 1509 * Make sure huge_gfp is always more limited than limit_gfp. 1510 * Some of the flags set permissions, while others set limitations. 1511 */ 1512 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1513 { 1514 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1515 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1516 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1517 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1518 1519 /* Allow allocations only from the originally specified zones. */ 1520 result |= zoneflags; 1521 1522 /* 1523 * Minimize the result gfp by taking the union with the deny flags, 1524 * and the intersection of the allow flags. 1525 */ 1526 result |= (limit_gfp & denyflags); 1527 result |= (huge_gfp & limit_gfp) & allowflags; 1528 1529 return result; 1530 } 1531 1532 static struct folio *shmem_alloc_hugefolio(gfp_t gfp, 1533 struct shmem_inode_info *info, pgoff_t index) 1534 { 1535 struct vm_area_struct pvma; 1536 struct address_space *mapping = info->vfs_inode.i_mapping; 1537 pgoff_t hindex; 1538 struct folio *folio; 1539 1540 hindex = round_down(index, HPAGE_PMD_NR); 1541 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1542 XA_PRESENT)) 1543 return NULL; 1544 1545 shmem_pseudo_vma_init(&pvma, info, hindex); 1546 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true); 1547 shmem_pseudo_vma_destroy(&pvma); 1548 if (!folio) 1549 count_vm_event(THP_FILE_FALLBACK); 1550 return folio; 1551 } 1552 1553 static struct folio *shmem_alloc_folio(gfp_t gfp, 1554 struct shmem_inode_info *info, pgoff_t index) 1555 { 1556 struct vm_area_struct pvma; 1557 struct folio *folio; 1558 1559 shmem_pseudo_vma_init(&pvma, info, index); 1560 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false); 1561 shmem_pseudo_vma_destroy(&pvma); 1562 1563 return folio; 1564 } 1565 1566 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode, 1567 pgoff_t index, bool huge) 1568 { 1569 struct shmem_inode_info *info = SHMEM_I(inode); 1570 struct folio *folio; 1571 int nr; 1572 int err = -ENOSPC; 1573 1574 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1575 huge = false; 1576 nr = huge ? HPAGE_PMD_NR : 1; 1577 1578 if (!shmem_inode_acct_block(inode, nr)) 1579 goto failed; 1580 1581 if (huge) 1582 folio = shmem_alloc_hugefolio(gfp, info, index); 1583 else 1584 folio = shmem_alloc_folio(gfp, info, index); 1585 if (folio) { 1586 __folio_set_locked(folio); 1587 __folio_set_swapbacked(folio); 1588 return folio; 1589 } 1590 1591 err = -ENOMEM; 1592 shmem_inode_unacct_blocks(inode, nr); 1593 failed: 1594 return ERR_PTR(err); 1595 } 1596 1597 /* 1598 * When a page is moved from swapcache to shmem filecache (either by the 1599 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 1600 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1601 * ignorance of the mapping it belongs to. If that mapping has special 1602 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1603 * we may need to copy to a suitable page before moving to filecache. 1604 * 1605 * In a future release, this may well be extended to respect cpuset and 1606 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1607 * but for now it is a simple matter of zone. 1608 */ 1609 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1610 { 1611 return folio_zonenum(folio) > gfp_zone(gfp); 1612 } 1613 1614 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 1615 struct shmem_inode_info *info, pgoff_t index) 1616 { 1617 struct folio *old, *new; 1618 struct address_space *swap_mapping; 1619 swp_entry_t entry; 1620 pgoff_t swap_index; 1621 int error; 1622 1623 old = *foliop; 1624 entry = folio_swap_entry(old); 1625 swap_index = swp_offset(entry); 1626 swap_mapping = swap_address_space(entry); 1627 1628 /* 1629 * We have arrived here because our zones are constrained, so don't 1630 * limit chance of success by further cpuset and node constraints. 1631 */ 1632 gfp &= ~GFP_CONSTRAINT_MASK; 1633 VM_BUG_ON_FOLIO(folio_test_large(old), old); 1634 new = shmem_alloc_folio(gfp, info, index); 1635 if (!new) 1636 return -ENOMEM; 1637 1638 folio_get(new); 1639 folio_copy(new, old); 1640 flush_dcache_folio(new); 1641 1642 __folio_set_locked(new); 1643 __folio_set_swapbacked(new); 1644 folio_mark_uptodate(new); 1645 folio_set_swap_entry(new, entry); 1646 folio_set_swapcache(new); 1647 1648 /* 1649 * Our caller will very soon move newpage out of swapcache, but it's 1650 * a nice clean interface for us to replace oldpage by newpage there. 1651 */ 1652 xa_lock_irq(&swap_mapping->i_pages); 1653 error = shmem_replace_entry(swap_mapping, swap_index, old, new); 1654 if (!error) { 1655 mem_cgroup_migrate(old, new); 1656 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1); 1657 __lruvec_stat_mod_folio(new, NR_SHMEM, 1); 1658 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1); 1659 __lruvec_stat_mod_folio(old, NR_SHMEM, -1); 1660 } 1661 xa_unlock_irq(&swap_mapping->i_pages); 1662 1663 if (unlikely(error)) { 1664 /* 1665 * Is this possible? I think not, now that our callers check 1666 * both PageSwapCache and page_private after getting page lock; 1667 * but be defensive. Reverse old to newpage for clear and free. 1668 */ 1669 old = new; 1670 } else { 1671 folio_add_lru(new); 1672 *foliop = new; 1673 } 1674 1675 folio_clear_swapcache(old); 1676 old->private = NULL; 1677 1678 folio_unlock(old); 1679 folio_put_refs(old, 2); 1680 return error; 1681 } 1682 1683 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1684 struct folio *folio, swp_entry_t swap) 1685 { 1686 struct address_space *mapping = inode->i_mapping; 1687 struct shmem_inode_info *info = SHMEM_I(inode); 1688 swp_entry_t swapin_error; 1689 void *old; 1690 1691 swapin_error = make_swapin_error_entry(); 1692 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1693 swp_to_radix_entry(swap), 1694 swp_to_radix_entry(swapin_error), 0); 1695 if (old != swp_to_radix_entry(swap)) 1696 return; 1697 1698 folio_wait_writeback(folio); 1699 delete_from_swap_cache(folio); 1700 spin_lock_irq(&info->lock); 1701 /* 1702 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't 1703 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in 1704 * shmem_evict_inode. 1705 */ 1706 info->alloced--; 1707 info->swapped--; 1708 shmem_recalc_inode(inode); 1709 spin_unlock_irq(&info->lock); 1710 swap_free(swap); 1711 } 1712 1713 /* 1714 * Swap in the folio pointed to by *foliop. 1715 * Caller has to make sure that *foliop contains a valid swapped folio. 1716 * Returns 0 and the folio in foliop if success. On failure, returns the 1717 * error code and NULL in *foliop. 1718 */ 1719 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 1720 struct folio **foliop, enum sgp_type sgp, 1721 gfp_t gfp, struct vm_area_struct *vma, 1722 vm_fault_t *fault_type) 1723 { 1724 struct address_space *mapping = inode->i_mapping; 1725 struct shmem_inode_info *info = SHMEM_I(inode); 1726 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1727 struct folio *folio = NULL; 1728 swp_entry_t swap; 1729 int error; 1730 1731 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 1732 swap = radix_to_swp_entry(*foliop); 1733 *foliop = NULL; 1734 1735 if (is_swapin_error_entry(swap)) 1736 return -EIO; 1737 1738 /* Look it up and read it in.. */ 1739 folio = swap_cache_get_folio(swap, NULL, 0); 1740 if (!folio) { 1741 /* Or update major stats only when swapin succeeds?? */ 1742 if (fault_type) { 1743 *fault_type |= VM_FAULT_MAJOR; 1744 count_vm_event(PGMAJFAULT); 1745 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1746 } 1747 /* Here we actually start the io */ 1748 folio = shmem_swapin(swap, gfp, info, index); 1749 if (!folio) { 1750 error = -ENOMEM; 1751 goto failed; 1752 } 1753 } 1754 1755 /* We have to do this with folio locked to prevent races */ 1756 folio_lock(folio); 1757 if (!folio_test_swapcache(folio) || 1758 folio_swap_entry(folio).val != swap.val || 1759 !shmem_confirm_swap(mapping, index, swap)) { 1760 error = -EEXIST; 1761 goto unlock; 1762 } 1763 if (!folio_test_uptodate(folio)) { 1764 error = -EIO; 1765 goto failed; 1766 } 1767 folio_wait_writeback(folio); 1768 1769 /* 1770 * Some architectures may have to restore extra metadata to the 1771 * folio after reading from swap. 1772 */ 1773 arch_swap_restore(swap, folio); 1774 1775 if (shmem_should_replace_folio(folio, gfp)) { 1776 error = shmem_replace_folio(&folio, gfp, info, index); 1777 if (error) 1778 goto failed; 1779 } 1780 1781 error = shmem_add_to_page_cache(folio, mapping, index, 1782 swp_to_radix_entry(swap), gfp, 1783 charge_mm); 1784 if (error) 1785 goto failed; 1786 1787 spin_lock_irq(&info->lock); 1788 info->swapped--; 1789 shmem_recalc_inode(inode); 1790 spin_unlock_irq(&info->lock); 1791 1792 if (sgp == SGP_WRITE) 1793 folio_mark_accessed(folio); 1794 1795 delete_from_swap_cache(folio); 1796 folio_mark_dirty(folio); 1797 swap_free(swap); 1798 1799 *foliop = folio; 1800 return 0; 1801 failed: 1802 if (!shmem_confirm_swap(mapping, index, swap)) 1803 error = -EEXIST; 1804 if (error == -EIO) 1805 shmem_set_folio_swapin_error(inode, index, folio, swap); 1806 unlock: 1807 if (folio) { 1808 folio_unlock(folio); 1809 folio_put(folio); 1810 } 1811 1812 return error; 1813 } 1814 1815 /* 1816 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 1817 * 1818 * If we allocate a new one we do not mark it dirty. That's up to the 1819 * vm. If we swap it in we mark it dirty since we also free the swap 1820 * entry since a page cannot live in both the swap and page cache. 1821 * 1822 * vma, vmf, and fault_type are only supplied by shmem_fault: 1823 * otherwise they are NULL. 1824 */ 1825 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 1826 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 1827 struct vm_area_struct *vma, struct vm_fault *vmf, 1828 vm_fault_t *fault_type) 1829 { 1830 struct address_space *mapping = inode->i_mapping; 1831 struct shmem_inode_info *info = SHMEM_I(inode); 1832 struct shmem_sb_info *sbinfo; 1833 struct mm_struct *charge_mm; 1834 struct folio *folio; 1835 pgoff_t hindex; 1836 gfp_t huge_gfp; 1837 int error; 1838 int once = 0; 1839 int alloced = 0; 1840 1841 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1842 return -EFBIG; 1843 repeat: 1844 if (sgp <= SGP_CACHE && 1845 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1846 return -EINVAL; 1847 } 1848 1849 sbinfo = SHMEM_SB(inode->i_sb); 1850 charge_mm = vma ? vma->vm_mm : NULL; 1851 1852 folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0); 1853 if (folio && vma && userfaultfd_minor(vma)) { 1854 if (!xa_is_value(folio)) { 1855 folio_unlock(folio); 1856 folio_put(folio); 1857 } 1858 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1859 return 0; 1860 } 1861 1862 if (xa_is_value(folio)) { 1863 error = shmem_swapin_folio(inode, index, &folio, 1864 sgp, gfp, vma, fault_type); 1865 if (error == -EEXIST) 1866 goto repeat; 1867 1868 *foliop = folio; 1869 return error; 1870 } 1871 1872 if (folio) { 1873 if (sgp == SGP_WRITE) 1874 folio_mark_accessed(folio); 1875 if (folio_test_uptodate(folio)) 1876 goto out; 1877 /* fallocated folio */ 1878 if (sgp != SGP_READ) 1879 goto clear; 1880 folio_unlock(folio); 1881 folio_put(folio); 1882 } 1883 1884 /* 1885 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 1886 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 1887 */ 1888 *foliop = NULL; 1889 if (sgp == SGP_READ) 1890 return 0; 1891 if (sgp == SGP_NOALLOC) 1892 return -ENOENT; 1893 1894 /* 1895 * Fast cache lookup and swap lookup did not find it: allocate. 1896 */ 1897 1898 if (vma && userfaultfd_missing(vma)) { 1899 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1900 return 0; 1901 } 1902 1903 if (!shmem_is_huge(vma, inode, index, false)) 1904 goto alloc_nohuge; 1905 1906 huge_gfp = vma_thp_gfp_mask(vma); 1907 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 1908 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true); 1909 if (IS_ERR(folio)) { 1910 alloc_nohuge: 1911 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false); 1912 } 1913 if (IS_ERR(folio)) { 1914 int retry = 5; 1915 1916 error = PTR_ERR(folio); 1917 folio = NULL; 1918 if (error != -ENOSPC) 1919 goto unlock; 1920 /* 1921 * Try to reclaim some space by splitting a large folio 1922 * beyond i_size on the filesystem. 1923 */ 1924 while (retry--) { 1925 int ret; 1926 1927 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1928 if (ret == SHRINK_STOP) 1929 break; 1930 if (ret) 1931 goto alloc_nohuge; 1932 } 1933 goto unlock; 1934 } 1935 1936 hindex = round_down(index, folio_nr_pages(folio)); 1937 1938 if (sgp == SGP_WRITE) 1939 __folio_set_referenced(folio); 1940 1941 error = shmem_add_to_page_cache(folio, mapping, hindex, 1942 NULL, gfp & GFP_RECLAIM_MASK, 1943 charge_mm); 1944 if (error) 1945 goto unacct; 1946 folio_add_lru(folio); 1947 1948 spin_lock_irq(&info->lock); 1949 info->alloced += folio_nr_pages(folio); 1950 inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio); 1951 shmem_recalc_inode(inode); 1952 spin_unlock_irq(&info->lock); 1953 alloced = true; 1954 1955 if (folio_test_pmd_mappable(folio) && 1956 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1957 folio_next_index(folio) - 1) { 1958 /* 1959 * Part of the large folio is beyond i_size: subject 1960 * to shrink under memory pressure. 1961 */ 1962 spin_lock(&sbinfo->shrinklist_lock); 1963 /* 1964 * _careful to defend against unlocked access to 1965 * ->shrink_list in shmem_unused_huge_shrink() 1966 */ 1967 if (list_empty_careful(&info->shrinklist)) { 1968 list_add_tail(&info->shrinklist, 1969 &sbinfo->shrinklist); 1970 sbinfo->shrinklist_len++; 1971 } 1972 spin_unlock(&sbinfo->shrinklist_lock); 1973 } 1974 1975 /* 1976 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 1977 */ 1978 if (sgp == SGP_FALLOC) 1979 sgp = SGP_WRITE; 1980 clear: 1981 /* 1982 * Let SGP_WRITE caller clear ends if write does not fill folio; 1983 * but SGP_FALLOC on a folio fallocated earlier must initialize 1984 * it now, lest undo on failure cancel our earlier guarantee. 1985 */ 1986 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 1987 long i, n = folio_nr_pages(folio); 1988 1989 for (i = 0; i < n; i++) 1990 clear_highpage(folio_page(folio, i)); 1991 flush_dcache_folio(folio); 1992 folio_mark_uptodate(folio); 1993 } 1994 1995 /* Perhaps the file has been truncated since we checked */ 1996 if (sgp <= SGP_CACHE && 1997 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1998 if (alloced) { 1999 folio_clear_dirty(folio); 2000 filemap_remove_folio(folio); 2001 spin_lock_irq(&info->lock); 2002 shmem_recalc_inode(inode); 2003 spin_unlock_irq(&info->lock); 2004 } 2005 error = -EINVAL; 2006 goto unlock; 2007 } 2008 out: 2009 *foliop = folio; 2010 return 0; 2011 2012 /* 2013 * Error recovery. 2014 */ 2015 unacct: 2016 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio)); 2017 2018 if (folio_test_large(folio)) { 2019 folio_unlock(folio); 2020 folio_put(folio); 2021 goto alloc_nohuge; 2022 } 2023 unlock: 2024 if (folio) { 2025 folio_unlock(folio); 2026 folio_put(folio); 2027 } 2028 if (error == -ENOSPC && !once++) { 2029 spin_lock_irq(&info->lock); 2030 shmem_recalc_inode(inode); 2031 spin_unlock_irq(&info->lock); 2032 goto repeat; 2033 } 2034 if (error == -EEXIST) 2035 goto repeat; 2036 return error; 2037 } 2038 2039 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop, 2040 enum sgp_type sgp) 2041 { 2042 return shmem_get_folio_gfp(inode, index, foliop, sgp, 2043 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 2044 } 2045 2046 /* 2047 * This is like autoremove_wake_function, but it removes the wait queue 2048 * entry unconditionally - even if something else had already woken the 2049 * target. 2050 */ 2051 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2052 { 2053 int ret = default_wake_function(wait, mode, sync, key); 2054 list_del_init(&wait->entry); 2055 return ret; 2056 } 2057 2058 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2059 { 2060 struct vm_area_struct *vma = vmf->vma; 2061 struct inode *inode = file_inode(vma->vm_file); 2062 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2063 struct folio *folio = NULL; 2064 int err; 2065 vm_fault_t ret = VM_FAULT_LOCKED; 2066 2067 /* 2068 * Trinity finds that probing a hole which tmpfs is punching can 2069 * prevent the hole-punch from ever completing: which in turn 2070 * locks writers out with its hold on i_rwsem. So refrain from 2071 * faulting pages into the hole while it's being punched. Although 2072 * shmem_undo_range() does remove the additions, it may be unable to 2073 * keep up, as each new page needs its own unmap_mapping_range() call, 2074 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2075 * 2076 * It does not matter if we sometimes reach this check just before the 2077 * hole-punch begins, so that one fault then races with the punch: 2078 * we just need to make racing faults a rare case. 2079 * 2080 * The implementation below would be much simpler if we just used a 2081 * standard mutex or completion: but we cannot take i_rwsem in fault, 2082 * and bloating every shmem inode for this unlikely case would be sad. 2083 */ 2084 if (unlikely(inode->i_private)) { 2085 struct shmem_falloc *shmem_falloc; 2086 2087 spin_lock(&inode->i_lock); 2088 shmem_falloc = inode->i_private; 2089 if (shmem_falloc && 2090 shmem_falloc->waitq && 2091 vmf->pgoff >= shmem_falloc->start && 2092 vmf->pgoff < shmem_falloc->next) { 2093 struct file *fpin; 2094 wait_queue_head_t *shmem_falloc_waitq; 2095 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2096 2097 ret = VM_FAULT_NOPAGE; 2098 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2099 if (fpin) 2100 ret = VM_FAULT_RETRY; 2101 2102 shmem_falloc_waitq = shmem_falloc->waitq; 2103 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2104 TASK_UNINTERRUPTIBLE); 2105 spin_unlock(&inode->i_lock); 2106 schedule(); 2107 2108 /* 2109 * shmem_falloc_waitq points into the shmem_fallocate() 2110 * stack of the hole-punching task: shmem_falloc_waitq 2111 * is usually invalid by the time we reach here, but 2112 * finish_wait() does not dereference it in that case; 2113 * though i_lock needed lest racing with wake_up_all(). 2114 */ 2115 spin_lock(&inode->i_lock); 2116 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2117 spin_unlock(&inode->i_lock); 2118 2119 if (fpin) 2120 fput(fpin); 2121 return ret; 2122 } 2123 spin_unlock(&inode->i_lock); 2124 } 2125 2126 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE, 2127 gfp, vma, vmf, &ret); 2128 if (err) 2129 return vmf_error(err); 2130 if (folio) 2131 vmf->page = folio_file_page(folio, vmf->pgoff); 2132 return ret; 2133 } 2134 2135 unsigned long shmem_get_unmapped_area(struct file *file, 2136 unsigned long uaddr, unsigned long len, 2137 unsigned long pgoff, unsigned long flags) 2138 { 2139 unsigned long (*get_area)(struct file *, 2140 unsigned long, unsigned long, unsigned long, unsigned long); 2141 unsigned long addr; 2142 unsigned long offset; 2143 unsigned long inflated_len; 2144 unsigned long inflated_addr; 2145 unsigned long inflated_offset; 2146 2147 if (len > TASK_SIZE) 2148 return -ENOMEM; 2149 2150 get_area = current->mm->get_unmapped_area; 2151 addr = get_area(file, uaddr, len, pgoff, flags); 2152 2153 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2154 return addr; 2155 if (IS_ERR_VALUE(addr)) 2156 return addr; 2157 if (addr & ~PAGE_MASK) 2158 return addr; 2159 if (addr > TASK_SIZE - len) 2160 return addr; 2161 2162 if (shmem_huge == SHMEM_HUGE_DENY) 2163 return addr; 2164 if (len < HPAGE_PMD_SIZE) 2165 return addr; 2166 if (flags & MAP_FIXED) 2167 return addr; 2168 /* 2169 * Our priority is to support MAP_SHARED mapped hugely; 2170 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2171 * But if caller specified an address hint and we allocated area there 2172 * successfully, respect that as before. 2173 */ 2174 if (uaddr == addr) 2175 return addr; 2176 2177 if (shmem_huge != SHMEM_HUGE_FORCE) { 2178 struct super_block *sb; 2179 2180 if (file) { 2181 VM_BUG_ON(file->f_op != &shmem_file_operations); 2182 sb = file_inode(file)->i_sb; 2183 } else { 2184 /* 2185 * Called directly from mm/mmap.c, or drivers/char/mem.c 2186 * for "/dev/zero", to create a shared anonymous object. 2187 */ 2188 if (IS_ERR(shm_mnt)) 2189 return addr; 2190 sb = shm_mnt->mnt_sb; 2191 } 2192 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2193 return addr; 2194 } 2195 2196 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2197 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2198 return addr; 2199 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2200 return addr; 2201 2202 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2203 if (inflated_len > TASK_SIZE) 2204 return addr; 2205 if (inflated_len < len) 2206 return addr; 2207 2208 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2209 if (IS_ERR_VALUE(inflated_addr)) 2210 return addr; 2211 if (inflated_addr & ~PAGE_MASK) 2212 return addr; 2213 2214 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2215 inflated_addr += offset - inflated_offset; 2216 if (inflated_offset > offset) 2217 inflated_addr += HPAGE_PMD_SIZE; 2218 2219 if (inflated_addr > TASK_SIZE - len) 2220 return addr; 2221 return inflated_addr; 2222 } 2223 2224 #ifdef CONFIG_NUMA 2225 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2226 { 2227 struct inode *inode = file_inode(vma->vm_file); 2228 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2229 } 2230 2231 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2232 unsigned long addr) 2233 { 2234 struct inode *inode = file_inode(vma->vm_file); 2235 pgoff_t index; 2236 2237 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2238 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2239 } 2240 #endif 2241 2242 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2243 { 2244 struct inode *inode = file_inode(file); 2245 struct shmem_inode_info *info = SHMEM_I(inode); 2246 int retval = -ENOMEM; 2247 2248 /* 2249 * What serializes the accesses to info->flags? 2250 * ipc_lock_object() when called from shmctl_do_lock(), 2251 * no serialization needed when called from shm_destroy(). 2252 */ 2253 if (lock && !(info->flags & VM_LOCKED)) { 2254 if (!user_shm_lock(inode->i_size, ucounts)) 2255 goto out_nomem; 2256 info->flags |= VM_LOCKED; 2257 mapping_set_unevictable(file->f_mapping); 2258 } 2259 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2260 user_shm_unlock(inode->i_size, ucounts); 2261 info->flags &= ~VM_LOCKED; 2262 mapping_clear_unevictable(file->f_mapping); 2263 } 2264 retval = 0; 2265 2266 out_nomem: 2267 return retval; 2268 } 2269 2270 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2271 { 2272 struct inode *inode = file_inode(file); 2273 struct shmem_inode_info *info = SHMEM_I(inode); 2274 int ret; 2275 2276 ret = seal_check_future_write(info->seals, vma); 2277 if (ret) 2278 return ret; 2279 2280 /* arm64 - allow memory tagging on RAM-based files */ 2281 vma->vm_flags |= VM_MTE_ALLOWED; 2282 2283 file_accessed(file); 2284 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2285 if (inode->i_nlink) 2286 vma->vm_ops = &shmem_vm_ops; 2287 else 2288 vma->vm_ops = &shmem_anon_vm_ops; 2289 return 0; 2290 } 2291 2292 #ifdef CONFIG_TMPFS_XATTR 2293 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2294 2295 /* 2296 * chattr's fsflags are unrelated to extended attributes, 2297 * but tmpfs has chosen to enable them under the same config option. 2298 */ 2299 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2300 { 2301 unsigned int i_flags = 0; 2302 2303 if (fsflags & FS_NOATIME_FL) 2304 i_flags |= S_NOATIME; 2305 if (fsflags & FS_APPEND_FL) 2306 i_flags |= S_APPEND; 2307 if (fsflags & FS_IMMUTABLE_FL) 2308 i_flags |= S_IMMUTABLE; 2309 /* 2310 * But FS_NODUMP_FL does not require any action in i_flags. 2311 */ 2312 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE); 2313 } 2314 #else 2315 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2316 { 2317 } 2318 #define shmem_initxattrs NULL 2319 #endif 2320 2321 static struct inode *shmem_get_inode(struct super_block *sb, struct inode *dir, 2322 umode_t mode, dev_t dev, unsigned long flags) 2323 { 2324 struct inode *inode; 2325 struct shmem_inode_info *info; 2326 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2327 ino_t ino; 2328 2329 if (shmem_reserve_inode(sb, &ino)) 2330 return NULL; 2331 2332 inode = new_inode(sb); 2333 if (inode) { 2334 inode->i_ino = ino; 2335 inode_init_owner(&init_user_ns, inode, dir, mode); 2336 inode->i_blocks = 0; 2337 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2338 inode->i_generation = get_random_u32(); 2339 info = SHMEM_I(inode); 2340 memset(info, 0, (char *)inode - (char *)info); 2341 spin_lock_init(&info->lock); 2342 atomic_set(&info->stop_eviction, 0); 2343 info->seals = F_SEAL_SEAL; 2344 info->flags = flags & VM_NORESERVE; 2345 info->i_crtime = inode->i_mtime; 2346 info->fsflags = (dir == NULL) ? 0 : 2347 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2348 if (info->fsflags) 2349 shmem_set_inode_flags(inode, info->fsflags); 2350 INIT_LIST_HEAD(&info->shrinklist); 2351 INIT_LIST_HEAD(&info->swaplist); 2352 simple_xattrs_init(&info->xattrs); 2353 cache_no_acl(inode); 2354 mapping_set_large_folios(inode->i_mapping); 2355 2356 switch (mode & S_IFMT) { 2357 default: 2358 inode->i_op = &shmem_special_inode_operations; 2359 init_special_inode(inode, mode, dev); 2360 break; 2361 case S_IFREG: 2362 inode->i_mapping->a_ops = &shmem_aops; 2363 inode->i_op = &shmem_inode_operations; 2364 inode->i_fop = &shmem_file_operations; 2365 mpol_shared_policy_init(&info->policy, 2366 shmem_get_sbmpol(sbinfo)); 2367 break; 2368 case S_IFDIR: 2369 inc_nlink(inode); 2370 /* Some things misbehave if size == 0 on a directory */ 2371 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2372 inode->i_op = &shmem_dir_inode_operations; 2373 inode->i_fop = &simple_dir_operations; 2374 break; 2375 case S_IFLNK: 2376 /* 2377 * Must not load anything in the rbtree, 2378 * mpol_free_shared_policy will not be called. 2379 */ 2380 mpol_shared_policy_init(&info->policy, NULL); 2381 break; 2382 } 2383 2384 lockdep_annotate_inode_mutex_key(inode); 2385 } else 2386 shmem_free_inode(sb); 2387 return inode; 2388 } 2389 2390 #ifdef CONFIG_USERFAULTFD 2391 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2392 pmd_t *dst_pmd, 2393 struct vm_area_struct *dst_vma, 2394 unsigned long dst_addr, 2395 unsigned long src_addr, 2396 bool zeropage, bool wp_copy, 2397 struct page **pagep) 2398 { 2399 struct inode *inode = file_inode(dst_vma->vm_file); 2400 struct shmem_inode_info *info = SHMEM_I(inode); 2401 struct address_space *mapping = inode->i_mapping; 2402 gfp_t gfp = mapping_gfp_mask(mapping); 2403 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2404 void *page_kaddr; 2405 struct folio *folio; 2406 int ret; 2407 pgoff_t max_off; 2408 2409 if (!shmem_inode_acct_block(inode, 1)) { 2410 /* 2411 * We may have got a page, returned -ENOENT triggering a retry, 2412 * and now we find ourselves with -ENOMEM. Release the page, to 2413 * avoid a BUG_ON in our caller. 2414 */ 2415 if (unlikely(*pagep)) { 2416 put_page(*pagep); 2417 *pagep = NULL; 2418 } 2419 return -ENOMEM; 2420 } 2421 2422 if (!*pagep) { 2423 ret = -ENOMEM; 2424 folio = shmem_alloc_folio(gfp, info, pgoff); 2425 if (!folio) 2426 goto out_unacct_blocks; 2427 2428 if (!zeropage) { /* COPY */ 2429 page_kaddr = kmap_local_folio(folio, 0); 2430 /* 2431 * The read mmap_lock is held here. Despite the 2432 * mmap_lock being read recursive a deadlock is still 2433 * possible if a writer has taken a lock. For example: 2434 * 2435 * process A thread 1 takes read lock on own mmap_lock 2436 * process A thread 2 calls mmap, blocks taking write lock 2437 * process B thread 1 takes page fault, read lock on own mmap lock 2438 * process B thread 2 calls mmap, blocks taking write lock 2439 * process A thread 1 blocks taking read lock on process B 2440 * process B thread 1 blocks taking read lock on process A 2441 * 2442 * Disable page faults to prevent potential deadlock 2443 * and retry the copy outside the mmap_lock. 2444 */ 2445 pagefault_disable(); 2446 ret = copy_from_user(page_kaddr, 2447 (const void __user *)src_addr, 2448 PAGE_SIZE); 2449 pagefault_enable(); 2450 kunmap_local(page_kaddr); 2451 2452 /* fallback to copy_from_user outside mmap_lock */ 2453 if (unlikely(ret)) { 2454 *pagep = &folio->page; 2455 ret = -ENOENT; 2456 /* don't free the page */ 2457 goto out_unacct_blocks; 2458 } 2459 2460 flush_dcache_folio(folio); 2461 } else { /* ZEROPAGE */ 2462 clear_user_highpage(&folio->page, dst_addr); 2463 } 2464 } else { 2465 folio = page_folio(*pagep); 2466 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2467 *pagep = NULL; 2468 } 2469 2470 VM_BUG_ON(folio_test_locked(folio)); 2471 VM_BUG_ON(folio_test_swapbacked(folio)); 2472 __folio_set_locked(folio); 2473 __folio_set_swapbacked(folio); 2474 __folio_mark_uptodate(folio); 2475 2476 ret = -EFAULT; 2477 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2478 if (unlikely(pgoff >= max_off)) 2479 goto out_release; 2480 2481 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, 2482 gfp & GFP_RECLAIM_MASK, dst_mm); 2483 if (ret) 2484 goto out_release; 2485 2486 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr, 2487 &folio->page, true, wp_copy); 2488 if (ret) 2489 goto out_delete_from_cache; 2490 2491 spin_lock_irq(&info->lock); 2492 info->alloced++; 2493 inode->i_blocks += BLOCKS_PER_PAGE; 2494 shmem_recalc_inode(inode); 2495 spin_unlock_irq(&info->lock); 2496 2497 folio_unlock(folio); 2498 return 0; 2499 out_delete_from_cache: 2500 filemap_remove_folio(folio); 2501 out_release: 2502 folio_unlock(folio); 2503 folio_put(folio); 2504 out_unacct_blocks: 2505 shmem_inode_unacct_blocks(inode, 1); 2506 return ret; 2507 } 2508 #endif /* CONFIG_USERFAULTFD */ 2509 2510 #ifdef CONFIG_TMPFS 2511 static const struct inode_operations shmem_symlink_inode_operations; 2512 static const struct inode_operations shmem_short_symlink_operations; 2513 2514 static int 2515 shmem_write_begin(struct file *file, struct address_space *mapping, 2516 loff_t pos, unsigned len, 2517 struct page **pagep, void **fsdata) 2518 { 2519 struct inode *inode = mapping->host; 2520 struct shmem_inode_info *info = SHMEM_I(inode); 2521 pgoff_t index = pos >> PAGE_SHIFT; 2522 struct folio *folio; 2523 int ret = 0; 2524 2525 /* i_rwsem is held by caller */ 2526 if (unlikely(info->seals & (F_SEAL_GROW | 2527 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2528 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2529 return -EPERM; 2530 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2531 return -EPERM; 2532 } 2533 2534 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE); 2535 2536 if (ret) 2537 return ret; 2538 2539 *pagep = folio_file_page(folio, index); 2540 if (PageHWPoison(*pagep)) { 2541 folio_unlock(folio); 2542 folio_put(folio); 2543 *pagep = NULL; 2544 return -EIO; 2545 } 2546 2547 return 0; 2548 } 2549 2550 static int 2551 shmem_write_end(struct file *file, struct address_space *mapping, 2552 loff_t pos, unsigned len, unsigned copied, 2553 struct page *page, void *fsdata) 2554 { 2555 struct inode *inode = mapping->host; 2556 2557 if (pos + copied > inode->i_size) 2558 i_size_write(inode, pos + copied); 2559 2560 if (!PageUptodate(page)) { 2561 struct page *head = compound_head(page); 2562 if (PageTransCompound(page)) { 2563 int i; 2564 2565 for (i = 0; i < HPAGE_PMD_NR; i++) { 2566 if (head + i == page) 2567 continue; 2568 clear_highpage(head + i); 2569 flush_dcache_page(head + i); 2570 } 2571 } 2572 if (copied < PAGE_SIZE) { 2573 unsigned from = pos & (PAGE_SIZE - 1); 2574 zero_user_segments(page, 0, from, 2575 from + copied, PAGE_SIZE); 2576 } 2577 SetPageUptodate(head); 2578 } 2579 set_page_dirty(page); 2580 unlock_page(page); 2581 put_page(page); 2582 2583 return copied; 2584 } 2585 2586 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2587 { 2588 struct file *file = iocb->ki_filp; 2589 struct inode *inode = file_inode(file); 2590 struct address_space *mapping = inode->i_mapping; 2591 pgoff_t index; 2592 unsigned long offset; 2593 int error = 0; 2594 ssize_t retval = 0; 2595 loff_t *ppos = &iocb->ki_pos; 2596 2597 index = *ppos >> PAGE_SHIFT; 2598 offset = *ppos & ~PAGE_MASK; 2599 2600 for (;;) { 2601 struct folio *folio = NULL; 2602 struct page *page = NULL; 2603 pgoff_t end_index; 2604 unsigned long nr, ret; 2605 loff_t i_size = i_size_read(inode); 2606 2607 end_index = i_size >> PAGE_SHIFT; 2608 if (index > end_index) 2609 break; 2610 if (index == end_index) { 2611 nr = i_size & ~PAGE_MASK; 2612 if (nr <= offset) 2613 break; 2614 } 2615 2616 error = shmem_get_folio(inode, index, &folio, SGP_READ); 2617 if (error) { 2618 if (error == -EINVAL) 2619 error = 0; 2620 break; 2621 } 2622 if (folio) { 2623 folio_unlock(folio); 2624 2625 page = folio_file_page(folio, index); 2626 if (PageHWPoison(page)) { 2627 folio_put(folio); 2628 error = -EIO; 2629 break; 2630 } 2631 } 2632 2633 /* 2634 * We must evaluate after, since reads (unlike writes) 2635 * are called without i_rwsem protection against truncate 2636 */ 2637 nr = PAGE_SIZE; 2638 i_size = i_size_read(inode); 2639 end_index = i_size >> PAGE_SHIFT; 2640 if (index == end_index) { 2641 nr = i_size & ~PAGE_MASK; 2642 if (nr <= offset) { 2643 if (folio) 2644 folio_put(folio); 2645 break; 2646 } 2647 } 2648 nr -= offset; 2649 2650 if (folio) { 2651 /* 2652 * If users can be writing to this page using arbitrary 2653 * virtual addresses, take care about potential aliasing 2654 * before reading the page on the kernel side. 2655 */ 2656 if (mapping_writably_mapped(mapping)) 2657 flush_dcache_page(page); 2658 /* 2659 * Mark the page accessed if we read the beginning. 2660 */ 2661 if (!offset) 2662 folio_mark_accessed(folio); 2663 /* 2664 * Ok, we have the page, and it's up-to-date, so 2665 * now we can copy it to user space... 2666 */ 2667 ret = copy_page_to_iter(page, offset, nr, to); 2668 folio_put(folio); 2669 2670 } else if (user_backed_iter(to)) { 2671 /* 2672 * Copy to user tends to be so well optimized, but 2673 * clear_user() not so much, that it is noticeably 2674 * faster to copy the zero page instead of clearing. 2675 */ 2676 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 2677 } else { 2678 /* 2679 * But submitting the same page twice in a row to 2680 * splice() - or others? - can result in confusion: 2681 * so don't attempt that optimization on pipes etc. 2682 */ 2683 ret = iov_iter_zero(nr, to); 2684 } 2685 2686 retval += ret; 2687 offset += ret; 2688 index += offset >> PAGE_SHIFT; 2689 offset &= ~PAGE_MASK; 2690 2691 if (!iov_iter_count(to)) 2692 break; 2693 if (ret < nr) { 2694 error = -EFAULT; 2695 break; 2696 } 2697 cond_resched(); 2698 } 2699 2700 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2701 file_accessed(file); 2702 return retval ? retval : error; 2703 } 2704 2705 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2706 { 2707 struct address_space *mapping = file->f_mapping; 2708 struct inode *inode = mapping->host; 2709 2710 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2711 return generic_file_llseek_size(file, offset, whence, 2712 MAX_LFS_FILESIZE, i_size_read(inode)); 2713 if (offset < 0) 2714 return -ENXIO; 2715 2716 inode_lock(inode); 2717 /* We're holding i_rwsem so we can access i_size directly */ 2718 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 2719 if (offset >= 0) 2720 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2721 inode_unlock(inode); 2722 return offset; 2723 } 2724 2725 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2726 loff_t len) 2727 { 2728 struct inode *inode = file_inode(file); 2729 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2730 struct shmem_inode_info *info = SHMEM_I(inode); 2731 struct shmem_falloc shmem_falloc; 2732 pgoff_t start, index, end, undo_fallocend; 2733 int error; 2734 2735 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2736 return -EOPNOTSUPP; 2737 2738 inode_lock(inode); 2739 2740 if (mode & FALLOC_FL_PUNCH_HOLE) { 2741 struct address_space *mapping = file->f_mapping; 2742 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2743 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2744 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2745 2746 /* protected by i_rwsem */ 2747 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2748 error = -EPERM; 2749 goto out; 2750 } 2751 2752 shmem_falloc.waitq = &shmem_falloc_waitq; 2753 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2754 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2755 spin_lock(&inode->i_lock); 2756 inode->i_private = &shmem_falloc; 2757 spin_unlock(&inode->i_lock); 2758 2759 if ((u64)unmap_end > (u64)unmap_start) 2760 unmap_mapping_range(mapping, unmap_start, 2761 1 + unmap_end - unmap_start, 0); 2762 shmem_truncate_range(inode, offset, offset + len - 1); 2763 /* No need to unmap again: hole-punching leaves COWed pages */ 2764 2765 spin_lock(&inode->i_lock); 2766 inode->i_private = NULL; 2767 wake_up_all(&shmem_falloc_waitq); 2768 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2769 spin_unlock(&inode->i_lock); 2770 error = 0; 2771 goto out; 2772 } 2773 2774 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2775 error = inode_newsize_ok(inode, offset + len); 2776 if (error) 2777 goto out; 2778 2779 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2780 error = -EPERM; 2781 goto out; 2782 } 2783 2784 start = offset >> PAGE_SHIFT; 2785 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2786 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2787 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2788 error = -ENOSPC; 2789 goto out; 2790 } 2791 2792 shmem_falloc.waitq = NULL; 2793 shmem_falloc.start = start; 2794 shmem_falloc.next = start; 2795 shmem_falloc.nr_falloced = 0; 2796 shmem_falloc.nr_unswapped = 0; 2797 spin_lock(&inode->i_lock); 2798 inode->i_private = &shmem_falloc; 2799 spin_unlock(&inode->i_lock); 2800 2801 /* 2802 * info->fallocend is only relevant when huge pages might be 2803 * involved: to prevent split_huge_page() freeing fallocated 2804 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 2805 */ 2806 undo_fallocend = info->fallocend; 2807 if (info->fallocend < end) 2808 info->fallocend = end; 2809 2810 for (index = start; index < end; ) { 2811 struct folio *folio; 2812 2813 /* 2814 * Good, the fallocate(2) manpage permits EINTR: we may have 2815 * been interrupted because we are using up too much memory. 2816 */ 2817 if (signal_pending(current)) 2818 error = -EINTR; 2819 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2820 error = -ENOMEM; 2821 else 2822 error = shmem_get_folio(inode, index, &folio, 2823 SGP_FALLOC); 2824 if (error) { 2825 info->fallocend = undo_fallocend; 2826 /* Remove the !uptodate folios we added */ 2827 if (index > start) { 2828 shmem_undo_range(inode, 2829 (loff_t)start << PAGE_SHIFT, 2830 ((loff_t)index << PAGE_SHIFT) - 1, true); 2831 } 2832 goto undone; 2833 } 2834 2835 /* 2836 * Here is a more important optimization than it appears: 2837 * a second SGP_FALLOC on the same large folio will clear it, 2838 * making it uptodate and un-undoable if we fail later. 2839 */ 2840 index = folio_next_index(folio); 2841 /* Beware 32-bit wraparound */ 2842 if (!index) 2843 index--; 2844 2845 /* 2846 * Inform shmem_writepage() how far we have reached. 2847 * No need for lock or barrier: we have the page lock. 2848 */ 2849 if (!folio_test_uptodate(folio)) 2850 shmem_falloc.nr_falloced += index - shmem_falloc.next; 2851 shmem_falloc.next = index; 2852 2853 /* 2854 * If !uptodate, leave it that way so that freeable folios 2855 * can be recognized if we need to rollback on error later. 2856 * But mark it dirty so that memory pressure will swap rather 2857 * than free the folios we are allocating (and SGP_CACHE folios 2858 * might still be clean: we now need to mark those dirty too). 2859 */ 2860 folio_mark_dirty(folio); 2861 folio_unlock(folio); 2862 folio_put(folio); 2863 cond_resched(); 2864 } 2865 2866 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2867 i_size_write(inode, offset + len); 2868 undone: 2869 spin_lock(&inode->i_lock); 2870 inode->i_private = NULL; 2871 spin_unlock(&inode->i_lock); 2872 out: 2873 if (!error) 2874 file_modified(file); 2875 inode_unlock(inode); 2876 return error; 2877 } 2878 2879 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2880 { 2881 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2882 2883 buf->f_type = TMPFS_MAGIC; 2884 buf->f_bsize = PAGE_SIZE; 2885 buf->f_namelen = NAME_MAX; 2886 if (sbinfo->max_blocks) { 2887 buf->f_blocks = sbinfo->max_blocks; 2888 buf->f_bavail = 2889 buf->f_bfree = sbinfo->max_blocks - 2890 percpu_counter_sum(&sbinfo->used_blocks); 2891 } 2892 if (sbinfo->max_inodes) { 2893 buf->f_files = sbinfo->max_inodes; 2894 buf->f_ffree = sbinfo->free_inodes; 2895 } 2896 /* else leave those fields 0 like simple_statfs */ 2897 2898 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 2899 2900 return 0; 2901 } 2902 2903 /* 2904 * File creation. Allocate an inode, and we're done.. 2905 */ 2906 static int 2907 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir, 2908 struct dentry *dentry, umode_t mode, dev_t dev) 2909 { 2910 struct inode *inode; 2911 int error = -ENOSPC; 2912 2913 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2914 if (inode) { 2915 error = simple_acl_create(dir, inode); 2916 if (error) 2917 goto out_iput; 2918 error = security_inode_init_security(inode, dir, 2919 &dentry->d_name, 2920 shmem_initxattrs, NULL); 2921 if (error && error != -EOPNOTSUPP) 2922 goto out_iput; 2923 2924 error = 0; 2925 dir->i_size += BOGO_DIRENT_SIZE; 2926 dir->i_ctime = dir->i_mtime = current_time(dir); 2927 inode_inc_iversion(dir); 2928 d_instantiate(dentry, inode); 2929 dget(dentry); /* Extra count - pin the dentry in core */ 2930 } 2931 return error; 2932 out_iput: 2933 iput(inode); 2934 return error; 2935 } 2936 2937 static int 2938 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 2939 struct file *file, umode_t mode) 2940 { 2941 struct inode *inode; 2942 int error = -ENOSPC; 2943 2944 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2945 if (inode) { 2946 error = security_inode_init_security(inode, dir, 2947 NULL, 2948 shmem_initxattrs, NULL); 2949 if (error && error != -EOPNOTSUPP) 2950 goto out_iput; 2951 error = simple_acl_create(dir, inode); 2952 if (error) 2953 goto out_iput; 2954 d_tmpfile(file, inode); 2955 } 2956 return finish_open_simple(file, error); 2957 out_iput: 2958 iput(inode); 2959 return error; 2960 } 2961 2962 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 2963 struct dentry *dentry, umode_t mode) 2964 { 2965 int error; 2966 2967 if ((error = shmem_mknod(&init_user_ns, dir, dentry, 2968 mode | S_IFDIR, 0))) 2969 return error; 2970 inc_nlink(dir); 2971 return 0; 2972 } 2973 2974 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir, 2975 struct dentry *dentry, umode_t mode, bool excl) 2976 { 2977 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 2978 } 2979 2980 /* 2981 * Link a file.. 2982 */ 2983 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2984 { 2985 struct inode *inode = d_inode(old_dentry); 2986 int ret = 0; 2987 2988 /* 2989 * No ordinary (disk based) filesystem counts links as inodes; 2990 * but each new link needs a new dentry, pinning lowmem, and 2991 * tmpfs dentries cannot be pruned until they are unlinked. 2992 * But if an O_TMPFILE file is linked into the tmpfs, the 2993 * first link must skip that, to get the accounting right. 2994 */ 2995 if (inode->i_nlink) { 2996 ret = shmem_reserve_inode(inode->i_sb, NULL); 2997 if (ret) 2998 goto out; 2999 } 3000 3001 dir->i_size += BOGO_DIRENT_SIZE; 3002 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3003 inode_inc_iversion(dir); 3004 inc_nlink(inode); 3005 ihold(inode); /* New dentry reference */ 3006 dget(dentry); /* Extra pinning count for the created dentry */ 3007 d_instantiate(dentry, inode); 3008 out: 3009 return ret; 3010 } 3011 3012 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3013 { 3014 struct inode *inode = d_inode(dentry); 3015 3016 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3017 shmem_free_inode(inode->i_sb); 3018 3019 dir->i_size -= BOGO_DIRENT_SIZE; 3020 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3021 inode_inc_iversion(dir); 3022 drop_nlink(inode); 3023 dput(dentry); /* Undo the count from "create" - this does all the work */ 3024 return 0; 3025 } 3026 3027 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3028 { 3029 if (!simple_empty(dentry)) 3030 return -ENOTEMPTY; 3031 3032 drop_nlink(d_inode(dentry)); 3033 drop_nlink(dir); 3034 return shmem_unlink(dir, dentry); 3035 } 3036 3037 static int shmem_whiteout(struct user_namespace *mnt_userns, 3038 struct inode *old_dir, struct dentry *old_dentry) 3039 { 3040 struct dentry *whiteout; 3041 int error; 3042 3043 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3044 if (!whiteout) 3045 return -ENOMEM; 3046 3047 error = shmem_mknod(&init_user_ns, old_dir, whiteout, 3048 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3049 dput(whiteout); 3050 if (error) 3051 return error; 3052 3053 /* 3054 * Cheat and hash the whiteout while the old dentry is still in 3055 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3056 * 3057 * d_lookup() will consistently find one of them at this point, 3058 * not sure which one, but that isn't even important. 3059 */ 3060 d_rehash(whiteout); 3061 return 0; 3062 } 3063 3064 /* 3065 * The VFS layer already does all the dentry stuff for rename, 3066 * we just have to decrement the usage count for the target if 3067 * it exists so that the VFS layer correctly free's it when it 3068 * gets overwritten. 3069 */ 3070 static int shmem_rename2(struct user_namespace *mnt_userns, 3071 struct inode *old_dir, struct dentry *old_dentry, 3072 struct inode *new_dir, struct dentry *new_dentry, 3073 unsigned int flags) 3074 { 3075 struct inode *inode = d_inode(old_dentry); 3076 int they_are_dirs = S_ISDIR(inode->i_mode); 3077 3078 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3079 return -EINVAL; 3080 3081 if (flags & RENAME_EXCHANGE) 3082 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 3083 3084 if (!simple_empty(new_dentry)) 3085 return -ENOTEMPTY; 3086 3087 if (flags & RENAME_WHITEOUT) { 3088 int error; 3089 3090 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry); 3091 if (error) 3092 return error; 3093 } 3094 3095 if (d_really_is_positive(new_dentry)) { 3096 (void) shmem_unlink(new_dir, new_dentry); 3097 if (they_are_dirs) { 3098 drop_nlink(d_inode(new_dentry)); 3099 drop_nlink(old_dir); 3100 } 3101 } else if (they_are_dirs) { 3102 drop_nlink(old_dir); 3103 inc_nlink(new_dir); 3104 } 3105 3106 old_dir->i_size -= BOGO_DIRENT_SIZE; 3107 new_dir->i_size += BOGO_DIRENT_SIZE; 3108 old_dir->i_ctime = old_dir->i_mtime = 3109 new_dir->i_ctime = new_dir->i_mtime = 3110 inode->i_ctime = current_time(old_dir); 3111 inode_inc_iversion(old_dir); 3112 inode_inc_iversion(new_dir); 3113 return 0; 3114 } 3115 3116 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir, 3117 struct dentry *dentry, const char *symname) 3118 { 3119 int error; 3120 int len; 3121 struct inode *inode; 3122 struct folio *folio; 3123 3124 len = strlen(symname) + 1; 3125 if (len > PAGE_SIZE) 3126 return -ENAMETOOLONG; 3127 3128 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3129 VM_NORESERVE); 3130 if (!inode) 3131 return -ENOSPC; 3132 3133 error = security_inode_init_security(inode, dir, &dentry->d_name, 3134 shmem_initxattrs, NULL); 3135 if (error && error != -EOPNOTSUPP) { 3136 iput(inode); 3137 return error; 3138 } 3139 3140 inode->i_size = len-1; 3141 if (len <= SHORT_SYMLINK_LEN) { 3142 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3143 if (!inode->i_link) { 3144 iput(inode); 3145 return -ENOMEM; 3146 } 3147 inode->i_op = &shmem_short_symlink_operations; 3148 } else { 3149 inode_nohighmem(inode); 3150 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE); 3151 if (error) { 3152 iput(inode); 3153 return error; 3154 } 3155 inode->i_mapping->a_ops = &shmem_aops; 3156 inode->i_op = &shmem_symlink_inode_operations; 3157 memcpy(folio_address(folio), symname, len); 3158 folio_mark_uptodate(folio); 3159 folio_mark_dirty(folio); 3160 folio_unlock(folio); 3161 folio_put(folio); 3162 } 3163 dir->i_size += BOGO_DIRENT_SIZE; 3164 dir->i_ctime = dir->i_mtime = current_time(dir); 3165 inode_inc_iversion(dir); 3166 d_instantiate(dentry, inode); 3167 dget(dentry); 3168 return 0; 3169 } 3170 3171 static void shmem_put_link(void *arg) 3172 { 3173 folio_mark_accessed(arg); 3174 folio_put(arg); 3175 } 3176 3177 static const char *shmem_get_link(struct dentry *dentry, 3178 struct inode *inode, 3179 struct delayed_call *done) 3180 { 3181 struct folio *folio = NULL; 3182 int error; 3183 3184 if (!dentry) { 3185 folio = filemap_get_folio(inode->i_mapping, 0); 3186 if (!folio) 3187 return ERR_PTR(-ECHILD); 3188 if (PageHWPoison(folio_page(folio, 0)) || 3189 !folio_test_uptodate(folio)) { 3190 folio_put(folio); 3191 return ERR_PTR(-ECHILD); 3192 } 3193 } else { 3194 error = shmem_get_folio(inode, 0, &folio, SGP_READ); 3195 if (error) 3196 return ERR_PTR(error); 3197 if (!folio) 3198 return ERR_PTR(-ECHILD); 3199 if (PageHWPoison(folio_page(folio, 0))) { 3200 folio_unlock(folio); 3201 folio_put(folio); 3202 return ERR_PTR(-ECHILD); 3203 } 3204 folio_unlock(folio); 3205 } 3206 set_delayed_call(done, shmem_put_link, folio); 3207 return folio_address(folio); 3208 } 3209 3210 #ifdef CONFIG_TMPFS_XATTR 3211 3212 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3213 { 3214 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3215 3216 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 3217 3218 return 0; 3219 } 3220 3221 static int shmem_fileattr_set(struct user_namespace *mnt_userns, 3222 struct dentry *dentry, struct fileattr *fa) 3223 { 3224 struct inode *inode = d_inode(dentry); 3225 struct shmem_inode_info *info = SHMEM_I(inode); 3226 3227 if (fileattr_has_fsx(fa)) 3228 return -EOPNOTSUPP; 3229 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 3230 return -EOPNOTSUPP; 3231 3232 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 3233 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 3234 3235 shmem_set_inode_flags(inode, info->fsflags); 3236 inode->i_ctime = current_time(inode); 3237 inode_inc_iversion(inode); 3238 return 0; 3239 } 3240 3241 /* 3242 * Superblocks without xattr inode operations may get some security.* xattr 3243 * support from the LSM "for free". As soon as we have any other xattrs 3244 * like ACLs, we also need to implement the security.* handlers at 3245 * filesystem level, though. 3246 */ 3247 3248 /* 3249 * Callback for security_inode_init_security() for acquiring xattrs. 3250 */ 3251 static int shmem_initxattrs(struct inode *inode, 3252 const struct xattr *xattr_array, 3253 void *fs_info) 3254 { 3255 struct shmem_inode_info *info = SHMEM_I(inode); 3256 const struct xattr *xattr; 3257 struct simple_xattr *new_xattr; 3258 size_t len; 3259 3260 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3261 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3262 if (!new_xattr) 3263 return -ENOMEM; 3264 3265 len = strlen(xattr->name) + 1; 3266 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3267 GFP_KERNEL); 3268 if (!new_xattr->name) { 3269 kvfree(new_xattr); 3270 return -ENOMEM; 3271 } 3272 3273 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3274 XATTR_SECURITY_PREFIX_LEN); 3275 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3276 xattr->name, len); 3277 3278 simple_xattr_list_add(&info->xattrs, new_xattr); 3279 } 3280 3281 return 0; 3282 } 3283 3284 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3285 struct dentry *unused, struct inode *inode, 3286 const char *name, void *buffer, size_t size) 3287 { 3288 struct shmem_inode_info *info = SHMEM_I(inode); 3289 3290 name = xattr_full_name(handler, name); 3291 return simple_xattr_get(&info->xattrs, name, buffer, size); 3292 } 3293 3294 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3295 struct user_namespace *mnt_userns, 3296 struct dentry *unused, struct inode *inode, 3297 const char *name, const void *value, 3298 size_t size, int flags) 3299 { 3300 struct shmem_inode_info *info = SHMEM_I(inode); 3301 int err; 3302 3303 name = xattr_full_name(handler, name); 3304 err = simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3305 if (!err) { 3306 inode->i_ctime = current_time(inode); 3307 inode_inc_iversion(inode); 3308 } 3309 return err; 3310 } 3311 3312 static const struct xattr_handler shmem_security_xattr_handler = { 3313 .prefix = XATTR_SECURITY_PREFIX, 3314 .get = shmem_xattr_handler_get, 3315 .set = shmem_xattr_handler_set, 3316 }; 3317 3318 static const struct xattr_handler shmem_trusted_xattr_handler = { 3319 .prefix = XATTR_TRUSTED_PREFIX, 3320 .get = shmem_xattr_handler_get, 3321 .set = shmem_xattr_handler_set, 3322 }; 3323 3324 static const struct xattr_handler *shmem_xattr_handlers[] = { 3325 #ifdef CONFIG_TMPFS_POSIX_ACL 3326 &posix_acl_access_xattr_handler, 3327 &posix_acl_default_xattr_handler, 3328 #endif 3329 &shmem_security_xattr_handler, 3330 &shmem_trusted_xattr_handler, 3331 NULL 3332 }; 3333 3334 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3335 { 3336 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3337 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3338 } 3339 #endif /* CONFIG_TMPFS_XATTR */ 3340 3341 static const struct inode_operations shmem_short_symlink_operations = { 3342 .getattr = shmem_getattr, 3343 .get_link = simple_get_link, 3344 #ifdef CONFIG_TMPFS_XATTR 3345 .listxattr = shmem_listxattr, 3346 #endif 3347 }; 3348 3349 static const struct inode_operations shmem_symlink_inode_operations = { 3350 .getattr = shmem_getattr, 3351 .get_link = shmem_get_link, 3352 #ifdef CONFIG_TMPFS_XATTR 3353 .listxattr = shmem_listxattr, 3354 #endif 3355 }; 3356 3357 static struct dentry *shmem_get_parent(struct dentry *child) 3358 { 3359 return ERR_PTR(-ESTALE); 3360 } 3361 3362 static int shmem_match(struct inode *ino, void *vfh) 3363 { 3364 __u32 *fh = vfh; 3365 __u64 inum = fh[2]; 3366 inum = (inum << 32) | fh[1]; 3367 return ino->i_ino == inum && fh[0] == ino->i_generation; 3368 } 3369 3370 /* Find any alias of inode, but prefer a hashed alias */ 3371 static struct dentry *shmem_find_alias(struct inode *inode) 3372 { 3373 struct dentry *alias = d_find_alias(inode); 3374 3375 return alias ?: d_find_any_alias(inode); 3376 } 3377 3378 3379 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3380 struct fid *fid, int fh_len, int fh_type) 3381 { 3382 struct inode *inode; 3383 struct dentry *dentry = NULL; 3384 u64 inum; 3385 3386 if (fh_len < 3) 3387 return NULL; 3388 3389 inum = fid->raw[2]; 3390 inum = (inum << 32) | fid->raw[1]; 3391 3392 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3393 shmem_match, fid->raw); 3394 if (inode) { 3395 dentry = shmem_find_alias(inode); 3396 iput(inode); 3397 } 3398 3399 return dentry; 3400 } 3401 3402 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3403 struct inode *parent) 3404 { 3405 if (*len < 3) { 3406 *len = 3; 3407 return FILEID_INVALID; 3408 } 3409 3410 if (inode_unhashed(inode)) { 3411 /* Unfortunately insert_inode_hash is not idempotent, 3412 * so as we hash inodes here rather than at creation 3413 * time, we need a lock to ensure we only try 3414 * to do it once 3415 */ 3416 static DEFINE_SPINLOCK(lock); 3417 spin_lock(&lock); 3418 if (inode_unhashed(inode)) 3419 __insert_inode_hash(inode, 3420 inode->i_ino + inode->i_generation); 3421 spin_unlock(&lock); 3422 } 3423 3424 fh[0] = inode->i_generation; 3425 fh[1] = inode->i_ino; 3426 fh[2] = ((__u64)inode->i_ino) >> 32; 3427 3428 *len = 3; 3429 return 1; 3430 } 3431 3432 static const struct export_operations shmem_export_ops = { 3433 .get_parent = shmem_get_parent, 3434 .encode_fh = shmem_encode_fh, 3435 .fh_to_dentry = shmem_fh_to_dentry, 3436 }; 3437 3438 enum shmem_param { 3439 Opt_gid, 3440 Opt_huge, 3441 Opt_mode, 3442 Opt_mpol, 3443 Opt_nr_blocks, 3444 Opt_nr_inodes, 3445 Opt_size, 3446 Opt_uid, 3447 Opt_inode32, 3448 Opt_inode64, 3449 }; 3450 3451 static const struct constant_table shmem_param_enums_huge[] = { 3452 {"never", SHMEM_HUGE_NEVER }, 3453 {"always", SHMEM_HUGE_ALWAYS }, 3454 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3455 {"advise", SHMEM_HUGE_ADVISE }, 3456 {} 3457 }; 3458 3459 const struct fs_parameter_spec shmem_fs_parameters[] = { 3460 fsparam_u32 ("gid", Opt_gid), 3461 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3462 fsparam_u32oct("mode", Opt_mode), 3463 fsparam_string("mpol", Opt_mpol), 3464 fsparam_string("nr_blocks", Opt_nr_blocks), 3465 fsparam_string("nr_inodes", Opt_nr_inodes), 3466 fsparam_string("size", Opt_size), 3467 fsparam_u32 ("uid", Opt_uid), 3468 fsparam_flag ("inode32", Opt_inode32), 3469 fsparam_flag ("inode64", Opt_inode64), 3470 {} 3471 }; 3472 3473 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3474 { 3475 struct shmem_options *ctx = fc->fs_private; 3476 struct fs_parse_result result; 3477 unsigned long long size; 3478 char *rest; 3479 int opt; 3480 3481 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3482 if (opt < 0) 3483 return opt; 3484 3485 switch (opt) { 3486 case Opt_size: 3487 size = memparse(param->string, &rest); 3488 if (*rest == '%') { 3489 size <<= PAGE_SHIFT; 3490 size *= totalram_pages(); 3491 do_div(size, 100); 3492 rest++; 3493 } 3494 if (*rest) 3495 goto bad_value; 3496 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3497 ctx->seen |= SHMEM_SEEN_BLOCKS; 3498 break; 3499 case Opt_nr_blocks: 3500 ctx->blocks = memparse(param->string, &rest); 3501 if (*rest || ctx->blocks > S64_MAX) 3502 goto bad_value; 3503 ctx->seen |= SHMEM_SEEN_BLOCKS; 3504 break; 3505 case Opt_nr_inodes: 3506 ctx->inodes = memparse(param->string, &rest); 3507 if (*rest) 3508 goto bad_value; 3509 ctx->seen |= SHMEM_SEEN_INODES; 3510 break; 3511 case Opt_mode: 3512 ctx->mode = result.uint_32 & 07777; 3513 break; 3514 case Opt_uid: 3515 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3516 if (!uid_valid(ctx->uid)) 3517 goto bad_value; 3518 break; 3519 case Opt_gid: 3520 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3521 if (!gid_valid(ctx->gid)) 3522 goto bad_value; 3523 break; 3524 case Opt_huge: 3525 ctx->huge = result.uint_32; 3526 if (ctx->huge != SHMEM_HUGE_NEVER && 3527 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3528 has_transparent_hugepage())) 3529 goto unsupported_parameter; 3530 ctx->seen |= SHMEM_SEEN_HUGE; 3531 break; 3532 case Opt_mpol: 3533 if (IS_ENABLED(CONFIG_NUMA)) { 3534 mpol_put(ctx->mpol); 3535 ctx->mpol = NULL; 3536 if (mpol_parse_str(param->string, &ctx->mpol)) 3537 goto bad_value; 3538 break; 3539 } 3540 goto unsupported_parameter; 3541 case Opt_inode32: 3542 ctx->full_inums = false; 3543 ctx->seen |= SHMEM_SEEN_INUMS; 3544 break; 3545 case Opt_inode64: 3546 if (sizeof(ino_t) < 8) { 3547 return invalfc(fc, 3548 "Cannot use inode64 with <64bit inums in kernel\n"); 3549 } 3550 ctx->full_inums = true; 3551 ctx->seen |= SHMEM_SEEN_INUMS; 3552 break; 3553 } 3554 return 0; 3555 3556 unsupported_parameter: 3557 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3558 bad_value: 3559 return invalfc(fc, "Bad value for '%s'", param->key); 3560 } 3561 3562 static int shmem_parse_options(struct fs_context *fc, void *data) 3563 { 3564 char *options = data; 3565 3566 if (options) { 3567 int err = security_sb_eat_lsm_opts(options, &fc->security); 3568 if (err) 3569 return err; 3570 } 3571 3572 while (options != NULL) { 3573 char *this_char = options; 3574 for (;;) { 3575 /* 3576 * NUL-terminate this option: unfortunately, 3577 * mount options form a comma-separated list, 3578 * but mpol's nodelist may also contain commas. 3579 */ 3580 options = strchr(options, ','); 3581 if (options == NULL) 3582 break; 3583 options++; 3584 if (!isdigit(*options)) { 3585 options[-1] = '\0'; 3586 break; 3587 } 3588 } 3589 if (*this_char) { 3590 char *value = strchr(this_char, '='); 3591 size_t len = 0; 3592 int err; 3593 3594 if (value) { 3595 *value++ = '\0'; 3596 len = strlen(value); 3597 } 3598 err = vfs_parse_fs_string(fc, this_char, value, len); 3599 if (err < 0) 3600 return err; 3601 } 3602 } 3603 return 0; 3604 } 3605 3606 /* 3607 * Reconfigure a shmem filesystem. 3608 * 3609 * Note that we disallow change from limited->unlimited blocks/inodes while any 3610 * are in use; but we must separately disallow unlimited->limited, because in 3611 * that case we have no record of how much is already in use. 3612 */ 3613 static int shmem_reconfigure(struct fs_context *fc) 3614 { 3615 struct shmem_options *ctx = fc->fs_private; 3616 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3617 unsigned long inodes; 3618 struct mempolicy *mpol = NULL; 3619 const char *err; 3620 3621 raw_spin_lock(&sbinfo->stat_lock); 3622 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3623 3624 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3625 if (!sbinfo->max_blocks) { 3626 err = "Cannot retroactively limit size"; 3627 goto out; 3628 } 3629 if (percpu_counter_compare(&sbinfo->used_blocks, 3630 ctx->blocks) > 0) { 3631 err = "Too small a size for current use"; 3632 goto out; 3633 } 3634 } 3635 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3636 if (!sbinfo->max_inodes) { 3637 err = "Cannot retroactively limit inodes"; 3638 goto out; 3639 } 3640 if (ctx->inodes < inodes) { 3641 err = "Too few inodes for current use"; 3642 goto out; 3643 } 3644 } 3645 3646 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 3647 sbinfo->next_ino > UINT_MAX) { 3648 err = "Current inum too high to switch to 32-bit inums"; 3649 goto out; 3650 } 3651 3652 if (ctx->seen & SHMEM_SEEN_HUGE) 3653 sbinfo->huge = ctx->huge; 3654 if (ctx->seen & SHMEM_SEEN_INUMS) 3655 sbinfo->full_inums = ctx->full_inums; 3656 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3657 sbinfo->max_blocks = ctx->blocks; 3658 if (ctx->seen & SHMEM_SEEN_INODES) { 3659 sbinfo->max_inodes = ctx->inodes; 3660 sbinfo->free_inodes = ctx->inodes - inodes; 3661 } 3662 3663 /* 3664 * Preserve previous mempolicy unless mpol remount option was specified. 3665 */ 3666 if (ctx->mpol) { 3667 mpol = sbinfo->mpol; 3668 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3669 ctx->mpol = NULL; 3670 } 3671 raw_spin_unlock(&sbinfo->stat_lock); 3672 mpol_put(mpol); 3673 return 0; 3674 out: 3675 raw_spin_unlock(&sbinfo->stat_lock); 3676 return invalfc(fc, "%s", err); 3677 } 3678 3679 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3680 { 3681 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3682 3683 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3684 seq_printf(seq, ",size=%luk", 3685 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3686 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3687 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3688 if (sbinfo->mode != (0777 | S_ISVTX)) 3689 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3690 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3691 seq_printf(seq, ",uid=%u", 3692 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3693 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3694 seq_printf(seq, ",gid=%u", 3695 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3696 3697 /* 3698 * Showing inode{64,32} might be useful even if it's the system default, 3699 * since then people don't have to resort to checking both here and 3700 * /proc/config.gz to confirm 64-bit inums were successfully applied 3701 * (which may not even exist if IKCONFIG_PROC isn't enabled). 3702 * 3703 * We hide it when inode64 isn't the default and we are using 32-bit 3704 * inodes, since that probably just means the feature isn't even under 3705 * consideration. 3706 * 3707 * As such: 3708 * 3709 * +-----------------+-----------------+ 3710 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 3711 * +------------------+-----------------+-----------------+ 3712 * | full_inums=true | show | show | 3713 * | full_inums=false | show | hide | 3714 * +------------------+-----------------+-----------------+ 3715 * 3716 */ 3717 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 3718 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 3719 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3720 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3721 if (sbinfo->huge) 3722 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3723 #endif 3724 shmem_show_mpol(seq, sbinfo->mpol); 3725 return 0; 3726 } 3727 3728 #endif /* CONFIG_TMPFS */ 3729 3730 static void shmem_put_super(struct super_block *sb) 3731 { 3732 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3733 3734 free_percpu(sbinfo->ino_batch); 3735 percpu_counter_destroy(&sbinfo->used_blocks); 3736 mpol_put(sbinfo->mpol); 3737 kfree(sbinfo); 3738 sb->s_fs_info = NULL; 3739 } 3740 3741 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3742 { 3743 struct shmem_options *ctx = fc->fs_private; 3744 struct inode *inode; 3745 struct shmem_sb_info *sbinfo; 3746 3747 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3748 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3749 L1_CACHE_BYTES), GFP_KERNEL); 3750 if (!sbinfo) 3751 return -ENOMEM; 3752 3753 sb->s_fs_info = sbinfo; 3754 3755 #ifdef CONFIG_TMPFS 3756 /* 3757 * Per default we only allow half of the physical ram per 3758 * tmpfs instance, limiting inodes to one per page of lowmem; 3759 * but the internal instance is left unlimited. 3760 */ 3761 if (!(sb->s_flags & SB_KERNMOUNT)) { 3762 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3763 ctx->blocks = shmem_default_max_blocks(); 3764 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3765 ctx->inodes = shmem_default_max_inodes(); 3766 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 3767 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 3768 } else { 3769 sb->s_flags |= SB_NOUSER; 3770 } 3771 sb->s_export_op = &shmem_export_ops; 3772 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 3773 #else 3774 sb->s_flags |= SB_NOUSER; 3775 #endif 3776 sbinfo->max_blocks = ctx->blocks; 3777 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3778 if (sb->s_flags & SB_KERNMOUNT) { 3779 sbinfo->ino_batch = alloc_percpu(ino_t); 3780 if (!sbinfo->ino_batch) 3781 goto failed; 3782 } 3783 sbinfo->uid = ctx->uid; 3784 sbinfo->gid = ctx->gid; 3785 sbinfo->full_inums = ctx->full_inums; 3786 sbinfo->mode = ctx->mode; 3787 sbinfo->huge = ctx->huge; 3788 sbinfo->mpol = ctx->mpol; 3789 ctx->mpol = NULL; 3790 3791 raw_spin_lock_init(&sbinfo->stat_lock); 3792 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3793 goto failed; 3794 spin_lock_init(&sbinfo->shrinklist_lock); 3795 INIT_LIST_HEAD(&sbinfo->shrinklist); 3796 3797 sb->s_maxbytes = MAX_LFS_FILESIZE; 3798 sb->s_blocksize = PAGE_SIZE; 3799 sb->s_blocksize_bits = PAGE_SHIFT; 3800 sb->s_magic = TMPFS_MAGIC; 3801 sb->s_op = &shmem_ops; 3802 sb->s_time_gran = 1; 3803 #ifdef CONFIG_TMPFS_XATTR 3804 sb->s_xattr = shmem_xattr_handlers; 3805 #endif 3806 #ifdef CONFIG_TMPFS_POSIX_ACL 3807 sb->s_flags |= SB_POSIXACL; 3808 #endif 3809 uuid_gen(&sb->s_uuid); 3810 3811 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3812 if (!inode) 3813 goto failed; 3814 inode->i_uid = sbinfo->uid; 3815 inode->i_gid = sbinfo->gid; 3816 sb->s_root = d_make_root(inode); 3817 if (!sb->s_root) 3818 goto failed; 3819 return 0; 3820 3821 failed: 3822 shmem_put_super(sb); 3823 return -ENOMEM; 3824 } 3825 3826 static int shmem_get_tree(struct fs_context *fc) 3827 { 3828 return get_tree_nodev(fc, shmem_fill_super); 3829 } 3830 3831 static void shmem_free_fc(struct fs_context *fc) 3832 { 3833 struct shmem_options *ctx = fc->fs_private; 3834 3835 if (ctx) { 3836 mpol_put(ctx->mpol); 3837 kfree(ctx); 3838 } 3839 } 3840 3841 static const struct fs_context_operations shmem_fs_context_ops = { 3842 .free = shmem_free_fc, 3843 .get_tree = shmem_get_tree, 3844 #ifdef CONFIG_TMPFS 3845 .parse_monolithic = shmem_parse_options, 3846 .parse_param = shmem_parse_one, 3847 .reconfigure = shmem_reconfigure, 3848 #endif 3849 }; 3850 3851 static struct kmem_cache *shmem_inode_cachep; 3852 3853 static struct inode *shmem_alloc_inode(struct super_block *sb) 3854 { 3855 struct shmem_inode_info *info; 3856 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 3857 if (!info) 3858 return NULL; 3859 return &info->vfs_inode; 3860 } 3861 3862 static void shmem_free_in_core_inode(struct inode *inode) 3863 { 3864 if (S_ISLNK(inode->i_mode)) 3865 kfree(inode->i_link); 3866 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3867 } 3868 3869 static void shmem_destroy_inode(struct inode *inode) 3870 { 3871 if (S_ISREG(inode->i_mode)) 3872 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3873 } 3874 3875 static void shmem_init_inode(void *foo) 3876 { 3877 struct shmem_inode_info *info = foo; 3878 inode_init_once(&info->vfs_inode); 3879 } 3880 3881 static void shmem_init_inodecache(void) 3882 { 3883 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3884 sizeof(struct shmem_inode_info), 3885 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3886 } 3887 3888 static void shmem_destroy_inodecache(void) 3889 { 3890 kmem_cache_destroy(shmem_inode_cachep); 3891 } 3892 3893 /* Keep the page in page cache instead of truncating it */ 3894 static int shmem_error_remove_page(struct address_space *mapping, 3895 struct page *page) 3896 { 3897 return 0; 3898 } 3899 3900 const struct address_space_operations shmem_aops = { 3901 .writepage = shmem_writepage, 3902 .dirty_folio = noop_dirty_folio, 3903 #ifdef CONFIG_TMPFS 3904 .write_begin = shmem_write_begin, 3905 .write_end = shmem_write_end, 3906 #endif 3907 #ifdef CONFIG_MIGRATION 3908 .migrate_folio = migrate_folio, 3909 #endif 3910 .error_remove_page = shmem_error_remove_page, 3911 }; 3912 EXPORT_SYMBOL(shmem_aops); 3913 3914 static const struct file_operations shmem_file_operations = { 3915 .mmap = shmem_mmap, 3916 .open = generic_file_open, 3917 .get_unmapped_area = shmem_get_unmapped_area, 3918 #ifdef CONFIG_TMPFS 3919 .llseek = shmem_file_llseek, 3920 .read_iter = shmem_file_read_iter, 3921 .write_iter = generic_file_write_iter, 3922 .fsync = noop_fsync, 3923 .splice_read = generic_file_splice_read, 3924 .splice_write = iter_file_splice_write, 3925 .fallocate = shmem_fallocate, 3926 #endif 3927 }; 3928 3929 static const struct inode_operations shmem_inode_operations = { 3930 .getattr = shmem_getattr, 3931 .setattr = shmem_setattr, 3932 #ifdef CONFIG_TMPFS_XATTR 3933 .listxattr = shmem_listxattr, 3934 .set_acl = simple_set_acl, 3935 .fileattr_get = shmem_fileattr_get, 3936 .fileattr_set = shmem_fileattr_set, 3937 #endif 3938 }; 3939 3940 static const struct inode_operations shmem_dir_inode_operations = { 3941 #ifdef CONFIG_TMPFS 3942 .getattr = shmem_getattr, 3943 .create = shmem_create, 3944 .lookup = simple_lookup, 3945 .link = shmem_link, 3946 .unlink = shmem_unlink, 3947 .symlink = shmem_symlink, 3948 .mkdir = shmem_mkdir, 3949 .rmdir = shmem_rmdir, 3950 .mknod = shmem_mknod, 3951 .rename = shmem_rename2, 3952 .tmpfile = shmem_tmpfile, 3953 #endif 3954 #ifdef CONFIG_TMPFS_XATTR 3955 .listxattr = shmem_listxattr, 3956 .fileattr_get = shmem_fileattr_get, 3957 .fileattr_set = shmem_fileattr_set, 3958 #endif 3959 #ifdef CONFIG_TMPFS_POSIX_ACL 3960 .setattr = shmem_setattr, 3961 .set_acl = simple_set_acl, 3962 #endif 3963 }; 3964 3965 static const struct inode_operations shmem_special_inode_operations = { 3966 .getattr = shmem_getattr, 3967 #ifdef CONFIG_TMPFS_XATTR 3968 .listxattr = shmem_listxattr, 3969 #endif 3970 #ifdef CONFIG_TMPFS_POSIX_ACL 3971 .setattr = shmem_setattr, 3972 .set_acl = simple_set_acl, 3973 #endif 3974 }; 3975 3976 static const struct super_operations shmem_ops = { 3977 .alloc_inode = shmem_alloc_inode, 3978 .free_inode = shmem_free_in_core_inode, 3979 .destroy_inode = shmem_destroy_inode, 3980 #ifdef CONFIG_TMPFS 3981 .statfs = shmem_statfs, 3982 .show_options = shmem_show_options, 3983 #endif 3984 .evict_inode = shmem_evict_inode, 3985 .drop_inode = generic_delete_inode, 3986 .put_super = shmem_put_super, 3987 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3988 .nr_cached_objects = shmem_unused_huge_count, 3989 .free_cached_objects = shmem_unused_huge_scan, 3990 #endif 3991 }; 3992 3993 static const struct vm_operations_struct shmem_vm_ops = { 3994 .fault = shmem_fault, 3995 .map_pages = filemap_map_pages, 3996 #ifdef CONFIG_NUMA 3997 .set_policy = shmem_set_policy, 3998 .get_policy = shmem_get_policy, 3999 #endif 4000 }; 4001 4002 static const struct vm_operations_struct shmem_anon_vm_ops = { 4003 .fault = shmem_fault, 4004 .map_pages = filemap_map_pages, 4005 #ifdef CONFIG_NUMA 4006 .set_policy = shmem_set_policy, 4007 .get_policy = shmem_get_policy, 4008 #endif 4009 }; 4010 4011 int shmem_init_fs_context(struct fs_context *fc) 4012 { 4013 struct shmem_options *ctx; 4014 4015 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 4016 if (!ctx) 4017 return -ENOMEM; 4018 4019 ctx->mode = 0777 | S_ISVTX; 4020 ctx->uid = current_fsuid(); 4021 ctx->gid = current_fsgid(); 4022 4023 fc->fs_private = ctx; 4024 fc->ops = &shmem_fs_context_ops; 4025 return 0; 4026 } 4027 4028 static struct file_system_type shmem_fs_type = { 4029 .owner = THIS_MODULE, 4030 .name = "tmpfs", 4031 .init_fs_context = shmem_init_fs_context, 4032 #ifdef CONFIG_TMPFS 4033 .parameters = shmem_fs_parameters, 4034 #endif 4035 .kill_sb = kill_litter_super, 4036 .fs_flags = FS_USERNS_MOUNT, 4037 }; 4038 4039 void __init shmem_init(void) 4040 { 4041 int error; 4042 4043 shmem_init_inodecache(); 4044 4045 error = register_filesystem(&shmem_fs_type); 4046 if (error) { 4047 pr_err("Could not register tmpfs\n"); 4048 goto out2; 4049 } 4050 4051 shm_mnt = kern_mount(&shmem_fs_type); 4052 if (IS_ERR(shm_mnt)) { 4053 error = PTR_ERR(shm_mnt); 4054 pr_err("Could not kern_mount tmpfs\n"); 4055 goto out1; 4056 } 4057 4058 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4059 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4060 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4061 else 4062 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 4063 #endif 4064 return; 4065 4066 out1: 4067 unregister_filesystem(&shmem_fs_type); 4068 out2: 4069 shmem_destroy_inodecache(); 4070 shm_mnt = ERR_PTR(error); 4071 } 4072 4073 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4074 static ssize_t shmem_enabled_show(struct kobject *kobj, 4075 struct kobj_attribute *attr, char *buf) 4076 { 4077 static const int values[] = { 4078 SHMEM_HUGE_ALWAYS, 4079 SHMEM_HUGE_WITHIN_SIZE, 4080 SHMEM_HUGE_ADVISE, 4081 SHMEM_HUGE_NEVER, 4082 SHMEM_HUGE_DENY, 4083 SHMEM_HUGE_FORCE, 4084 }; 4085 int len = 0; 4086 int i; 4087 4088 for (i = 0; i < ARRAY_SIZE(values); i++) { 4089 len += sysfs_emit_at(buf, len, 4090 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 4091 i ? " " : "", 4092 shmem_format_huge(values[i])); 4093 } 4094 4095 len += sysfs_emit_at(buf, len, "\n"); 4096 4097 return len; 4098 } 4099 4100 static ssize_t shmem_enabled_store(struct kobject *kobj, 4101 struct kobj_attribute *attr, const char *buf, size_t count) 4102 { 4103 char tmp[16]; 4104 int huge; 4105 4106 if (count + 1 > sizeof(tmp)) 4107 return -EINVAL; 4108 memcpy(tmp, buf, count); 4109 tmp[count] = '\0'; 4110 if (count && tmp[count - 1] == '\n') 4111 tmp[count - 1] = '\0'; 4112 4113 huge = shmem_parse_huge(tmp); 4114 if (huge == -EINVAL) 4115 return -EINVAL; 4116 if (!has_transparent_hugepage() && 4117 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4118 return -EINVAL; 4119 4120 shmem_huge = huge; 4121 if (shmem_huge > SHMEM_HUGE_DENY) 4122 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4123 return count; 4124 } 4125 4126 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 4127 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4128 4129 #else /* !CONFIG_SHMEM */ 4130 4131 /* 4132 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4133 * 4134 * This is intended for small system where the benefits of the full 4135 * shmem code (swap-backed and resource-limited) are outweighed by 4136 * their complexity. On systems without swap this code should be 4137 * effectively equivalent, but much lighter weight. 4138 */ 4139 4140 static struct file_system_type shmem_fs_type = { 4141 .name = "tmpfs", 4142 .init_fs_context = ramfs_init_fs_context, 4143 .parameters = ramfs_fs_parameters, 4144 .kill_sb = kill_litter_super, 4145 .fs_flags = FS_USERNS_MOUNT, 4146 }; 4147 4148 void __init shmem_init(void) 4149 { 4150 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4151 4152 shm_mnt = kern_mount(&shmem_fs_type); 4153 BUG_ON(IS_ERR(shm_mnt)); 4154 } 4155 4156 int shmem_unuse(unsigned int type) 4157 { 4158 return 0; 4159 } 4160 4161 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4162 { 4163 return 0; 4164 } 4165 4166 void shmem_unlock_mapping(struct address_space *mapping) 4167 { 4168 } 4169 4170 #ifdef CONFIG_MMU 4171 unsigned long shmem_get_unmapped_area(struct file *file, 4172 unsigned long addr, unsigned long len, 4173 unsigned long pgoff, unsigned long flags) 4174 { 4175 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4176 } 4177 #endif 4178 4179 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4180 { 4181 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4182 } 4183 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4184 4185 #define shmem_vm_ops generic_file_vm_ops 4186 #define shmem_anon_vm_ops generic_file_vm_ops 4187 #define shmem_file_operations ramfs_file_operations 4188 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4189 #define shmem_acct_size(flags, size) 0 4190 #define shmem_unacct_size(flags, size) do {} while (0) 4191 4192 #endif /* CONFIG_SHMEM */ 4193 4194 /* common code */ 4195 4196 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4197 unsigned long flags, unsigned int i_flags) 4198 { 4199 struct inode *inode; 4200 struct file *res; 4201 4202 if (IS_ERR(mnt)) 4203 return ERR_CAST(mnt); 4204 4205 if (size < 0 || size > MAX_LFS_FILESIZE) 4206 return ERR_PTR(-EINVAL); 4207 4208 if (shmem_acct_size(flags, size)) 4209 return ERR_PTR(-ENOMEM); 4210 4211 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4212 flags); 4213 if (unlikely(!inode)) { 4214 shmem_unacct_size(flags, size); 4215 return ERR_PTR(-ENOSPC); 4216 } 4217 inode->i_flags |= i_flags; 4218 inode->i_size = size; 4219 clear_nlink(inode); /* It is unlinked */ 4220 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4221 if (!IS_ERR(res)) 4222 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4223 &shmem_file_operations); 4224 if (IS_ERR(res)) 4225 iput(inode); 4226 return res; 4227 } 4228 4229 /** 4230 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4231 * kernel internal. There will be NO LSM permission checks against the 4232 * underlying inode. So users of this interface must do LSM checks at a 4233 * higher layer. The users are the big_key and shm implementations. LSM 4234 * checks are provided at the key or shm level rather than the inode. 4235 * @name: name for dentry (to be seen in /proc/<pid>/maps 4236 * @size: size to be set for the file 4237 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4238 */ 4239 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4240 { 4241 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4242 } 4243 4244 /** 4245 * shmem_file_setup - get an unlinked file living in tmpfs 4246 * @name: name for dentry (to be seen in /proc/<pid>/maps 4247 * @size: size to be set for the file 4248 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4249 */ 4250 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4251 { 4252 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4253 } 4254 EXPORT_SYMBOL_GPL(shmem_file_setup); 4255 4256 /** 4257 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4258 * @mnt: the tmpfs mount where the file will be created 4259 * @name: name for dentry (to be seen in /proc/<pid>/maps 4260 * @size: size to be set for the file 4261 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4262 */ 4263 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4264 loff_t size, unsigned long flags) 4265 { 4266 return __shmem_file_setup(mnt, name, size, flags, 0); 4267 } 4268 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4269 4270 /** 4271 * shmem_zero_setup - setup a shared anonymous mapping 4272 * @vma: the vma to be mmapped is prepared by do_mmap 4273 */ 4274 int shmem_zero_setup(struct vm_area_struct *vma) 4275 { 4276 struct file *file; 4277 loff_t size = vma->vm_end - vma->vm_start; 4278 4279 /* 4280 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4281 * between XFS directory reading and selinux: since this file is only 4282 * accessible to the user through its mapping, use S_PRIVATE flag to 4283 * bypass file security, in the same way as shmem_kernel_file_setup(). 4284 */ 4285 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4286 if (IS_ERR(file)) 4287 return PTR_ERR(file); 4288 4289 if (vma->vm_file) 4290 fput(vma->vm_file); 4291 vma->vm_file = file; 4292 vma->vm_ops = &shmem_anon_vm_ops; 4293 4294 return 0; 4295 } 4296 4297 /** 4298 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4299 * @mapping: the page's address_space 4300 * @index: the page index 4301 * @gfp: the page allocator flags to use if allocating 4302 * 4303 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4304 * with any new page allocations done using the specified allocation flags. 4305 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 4306 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4307 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4308 * 4309 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4310 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4311 */ 4312 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4313 pgoff_t index, gfp_t gfp) 4314 { 4315 #ifdef CONFIG_SHMEM 4316 struct inode *inode = mapping->host; 4317 struct folio *folio; 4318 struct page *page; 4319 int error; 4320 4321 BUG_ON(!shmem_mapping(mapping)); 4322 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE, 4323 gfp, NULL, NULL, NULL); 4324 if (error) 4325 return ERR_PTR(error); 4326 4327 folio_unlock(folio); 4328 page = folio_file_page(folio, index); 4329 if (PageHWPoison(page)) { 4330 folio_put(folio); 4331 return ERR_PTR(-EIO); 4332 } 4333 4334 return page; 4335 #else 4336 /* 4337 * The tiny !SHMEM case uses ramfs without swap 4338 */ 4339 return read_cache_page_gfp(mapping, index, gfp); 4340 #endif 4341 } 4342 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4343