xref: /openbmc/linux/mm/shmem.c (revision cbb3a19f090d5a41b822caf9ff2058e1c6bc7ea3)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/hugetlb.h>
38 #include <linux/fs_parser.h>
39 #include <linux/swapfile.h>
40 #include "swap.h"
41 
42 static struct vfsmount *shm_mnt;
43 
44 #ifdef CONFIG_SHMEM
45 /*
46  * This virtual memory filesystem is heavily based on the ramfs. It
47  * extends ramfs by the ability to use swap and honor resource limits
48  * which makes it a completely usable filesystem.
49  */
50 
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
80 
81 #include <linux/uaccess.h>
82 
83 #include "internal.h"
84 
85 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
86 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
87 
88 /* Pretend that each entry is of this size in directory's i_size */
89 #define BOGO_DIRENT_SIZE 20
90 
91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
92 #define SHORT_SYMLINK_LEN 128
93 
94 /*
95  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
96  * inode->i_private (with i_rwsem making sure that it has only one user at
97  * a time): we would prefer not to enlarge the shmem inode just for that.
98  */
99 struct shmem_falloc {
100 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
101 	pgoff_t start;		/* start of range currently being fallocated */
102 	pgoff_t next;		/* the next page offset to be fallocated */
103 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
104 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
105 };
106 
107 struct shmem_options {
108 	unsigned long long blocks;
109 	unsigned long long inodes;
110 	struct mempolicy *mpol;
111 	kuid_t uid;
112 	kgid_t gid;
113 	umode_t mode;
114 	bool full_inums;
115 	int huge;
116 	int seen;
117 #define SHMEM_SEEN_BLOCKS 1
118 #define SHMEM_SEEN_INODES 2
119 #define SHMEM_SEEN_HUGE 4
120 #define SHMEM_SEEN_INUMS 8
121 };
122 
123 #ifdef CONFIG_TMPFS
124 static unsigned long shmem_default_max_blocks(void)
125 {
126 	return totalram_pages() / 2;
127 }
128 
129 static unsigned long shmem_default_max_inodes(void)
130 {
131 	unsigned long nr_pages = totalram_pages();
132 
133 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
134 }
135 #endif
136 
137 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
138 			     struct folio **foliop, enum sgp_type sgp,
139 			     gfp_t gfp, struct vm_area_struct *vma,
140 			     vm_fault_t *fault_type);
141 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
142 		struct page **pagep, enum sgp_type sgp,
143 		gfp_t gfp, struct vm_area_struct *vma,
144 		struct vm_fault *vmf, vm_fault_t *fault_type);
145 
146 int shmem_getpage(struct inode *inode, pgoff_t index,
147 		struct page **pagep, enum sgp_type sgp)
148 {
149 	return shmem_getpage_gfp(inode, index, pagep, sgp,
150 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
151 }
152 
153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 {
155 	return sb->s_fs_info;
156 }
157 
158 /*
159  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160  * for shared memory and for shared anonymous (/dev/zero) mappings
161  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162  * consistent with the pre-accounting of private mappings ...
163  */
164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 {
166 	return (flags & VM_NORESERVE) ?
167 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
168 }
169 
170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 {
172 	if (!(flags & VM_NORESERVE))
173 		vm_unacct_memory(VM_ACCT(size));
174 }
175 
176 static inline int shmem_reacct_size(unsigned long flags,
177 		loff_t oldsize, loff_t newsize)
178 {
179 	if (!(flags & VM_NORESERVE)) {
180 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181 			return security_vm_enough_memory_mm(current->mm,
182 					VM_ACCT(newsize) - VM_ACCT(oldsize));
183 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185 	}
186 	return 0;
187 }
188 
189 /*
190  * ... whereas tmpfs objects are accounted incrementally as
191  * pages are allocated, in order to allow large sparse files.
192  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
193  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194  */
195 static inline int shmem_acct_block(unsigned long flags, long pages)
196 {
197 	if (!(flags & VM_NORESERVE))
198 		return 0;
199 
200 	return security_vm_enough_memory_mm(current->mm,
201 			pages * VM_ACCT(PAGE_SIZE));
202 }
203 
204 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205 {
206 	if (flags & VM_NORESERVE)
207 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
208 }
209 
210 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
211 {
212 	struct shmem_inode_info *info = SHMEM_I(inode);
213 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214 
215 	if (shmem_acct_block(info->flags, pages))
216 		return false;
217 
218 	if (sbinfo->max_blocks) {
219 		if (percpu_counter_compare(&sbinfo->used_blocks,
220 					   sbinfo->max_blocks - pages) > 0)
221 			goto unacct;
222 		percpu_counter_add(&sbinfo->used_blocks, pages);
223 	}
224 
225 	return true;
226 
227 unacct:
228 	shmem_unacct_blocks(info->flags, pages);
229 	return false;
230 }
231 
232 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
233 {
234 	struct shmem_inode_info *info = SHMEM_I(inode);
235 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
236 
237 	if (sbinfo->max_blocks)
238 		percpu_counter_sub(&sbinfo->used_blocks, pages);
239 	shmem_unacct_blocks(info->flags, pages);
240 }
241 
242 static const struct super_operations shmem_ops;
243 const struct address_space_operations shmem_aops;
244 static const struct file_operations shmem_file_operations;
245 static const struct inode_operations shmem_inode_operations;
246 static const struct inode_operations shmem_dir_inode_operations;
247 static const struct inode_operations shmem_special_inode_operations;
248 static const struct vm_operations_struct shmem_vm_ops;
249 static struct file_system_type shmem_fs_type;
250 
251 bool vma_is_shmem(struct vm_area_struct *vma)
252 {
253 	return vma->vm_ops == &shmem_vm_ops;
254 }
255 
256 static LIST_HEAD(shmem_swaplist);
257 static DEFINE_MUTEX(shmem_swaplist_mutex);
258 
259 /*
260  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
261  * produces a novel ino for the newly allocated inode.
262  *
263  * It may also be called when making a hard link to permit the space needed by
264  * each dentry. However, in that case, no new inode number is needed since that
265  * internally draws from another pool of inode numbers (currently global
266  * get_next_ino()). This case is indicated by passing NULL as inop.
267  */
268 #define SHMEM_INO_BATCH 1024
269 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
270 {
271 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
272 	ino_t ino;
273 
274 	if (!(sb->s_flags & SB_KERNMOUNT)) {
275 		raw_spin_lock(&sbinfo->stat_lock);
276 		if (sbinfo->max_inodes) {
277 			if (!sbinfo->free_inodes) {
278 				raw_spin_unlock(&sbinfo->stat_lock);
279 				return -ENOSPC;
280 			}
281 			sbinfo->free_inodes--;
282 		}
283 		if (inop) {
284 			ino = sbinfo->next_ino++;
285 			if (unlikely(is_zero_ino(ino)))
286 				ino = sbinfo->next_ino++;
287 			if (unlikely(!sbinfo->full_inums &&
288 				     ino > UINT_MAX)) {
289 				/*
290 				 * Emulate get_next_ino uint wraparound for
291 				 * compatibility
292 				 */
293 				if (IS_ENABLED(CONFIG_64BIT))
294 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
295 						__func__, MINOR(sb->s_dev));
296 				sbinfo->next_ino = 1;
297 				ino = sbinfo->next_ino++;
298 			}
299 			*inop = ino;
300 		}
301 		raw_spin_unlock(&sbinfo->stat_lock);
302 	} else if (inop) {
303 		/*
304 		 * __shmem_file_setup, one of our callers, is lock-free: it
305 		 * doesn't hold stat_lock in shmem_reserve_inode since
306 		 * max_inodes is always 0, and is called from potentially
307 		 * unknown contexts. As such, use a per-cpu batched allocator
308 		 * which doesn't require the per-sb stat_lock unless we are at
309 		 * the batch boundary.
310 		 *
311 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
312 		 * shmem mounts are not exposed to userspace, so we don't need
313 		 * to worry about things like glibc compatibility.
314 		 */
315 		ino_t *next_ino;
316 
317 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
318 		ino = *next_ino;
319 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
320 			raw_spin_lock(&sbinfo->stat_lock);
321 			ino = sbinfo->next_ino;
322 			sbinfo->next_ino += SHMEM_INO_BATCH;
323 			raw_spin_unlock(&sbinfo->stat_lock);
324 			if (unlikely(is_zero_ino(ino)))
325 				ino++;
326 		}
327 		*inop = ino;
328 		*next_ino = ++ino;
329 		put_cpu();
330 	}
331 
332 	return 0;
333 }
334 
335 static void shmem_free_inode(struct super_block *sb)
336 {
337 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
338 	if (sbinfo->max_inodes) {
339 		raw_spin_lock(&sbinfo->stat_lock);
340 		sbinfo->free_inodes++;
341 		raw_spin_unlock(&sbinfo->stat_lock);
342 	}
343 }
344 
345 /**
346  * shmem_recalc_inode - recalculate the block usage of an inode
347  * @inode: inode to recalc
348  *
349  * We have to calculate the free blocks since the mm can drop
350  * undirtied hole pages behind our back.
351  *
352  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
353  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
354  *
355  * It has to be called with the spinlock held.
356  */
357 static void shmem_recalc_inode(struct inode *inode)
358 {
359 	struct shmem_inode_info *info = SHMEM_I(inode);
360 	long freed;
361 
362 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
363 	if (freed > 0) {
364 		info->alloced -= freed;
365 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
366 		shmem_inode_unacct_blocks(inode, freed);
367 	}
368 }
369 
370 bool shmem_charge(struct inode *inode, long pages)
371 {
372 	struct shmem_inode_info *info = SHMEM_I(inode);
373 	unsigned long flags;
374 
375 	if (!shmem_inode_acct_block(inode, pages))
376 		return false;
377 
378 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
379 	inode->i_mapping->nrpages += pages;
380 
381 	spin_lock_irqsave(&info->lock, flags);
382 	info->alloced += pages;
383 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
384 	shmem_recalc_inode(inode);
385 	spin_unlock_irqrestore(&info->lock, flags);
386 
387 	return true;
388 }
389 
390 void shmem_uncharge(struct inode *inode, long pages)
391 {
392 	struct shmem_inode_info *info = SHMEM_I(inode);
393 	unsigned long flags;
394 
395 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
396 
397 	spin_lock_irqsave(&info->lock, flags);
398 	info->alloced -= pages;
399 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
400 	shmem_recalc_inode(inode);
401 	spin_unlock_irqrestore(&info->lock, flags);
402 
403 	shmem_inode_unacct_blocks(inode, pages);
404 }
405 
406 /*
407  * Replace item expected in xarray by a new item, while holding xa_lock.
408  */
409 static int shmem_replace_entry(struct address_space *mapping,
410 			pgoff_t index, void *expected, void *replacement)
411 {
412 	XA_STATE(xas, &mapping->i_pages, index);
413 	void *item;
414 
415 	VM_BUG_ON(!expected);
416 	VM_BUG_ON(!replacement);
417 	item = xas_load(&xas);
418 	if (item != expected)
419 		return -ENOENT;
420 	xas_store(&xas, replacement);
421 	return 0;
422 }
423 
424 /*
425  * Sometimes, before we decide whether to proceed or to fail, we must check
426  * that an entry was not already brought back from swap by a racing thread.
427  *
428  * Checking page is not enough: by the time a SwapCache page is locked, it
429  * might be reused, and again be SwapCache, using the same swap as before.
430  */
431 static bool shmem_confirm_swap(struct address_space *mapping,
432 			       pgoff_t index, swp_entry_t swap)
433 {
434 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
435 }
436 
437 /*
438  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
439  *
440  * SHMEM_HUGE_NEVER:
441  *	disables huge pages for the mount;
442  * SHMEM_HUGE_ALWAYS:
443  *	enables huge pages for the mount;
444  * SHMEM_HUGE_WITHIN_SIZE:
445  *	only allocate huge pages if the page will be fully within i_size,
446  *	also respect fadvise()/madvise() hints;
447  * SHMEM_HUGE_ADVISE:
448  *	only allocate huge pages if requested with fadvise()/madvise();
449  */
450 
451 #define SHMEM_HUGE_NEVER	0
452 #define SHMEM_HUGE_ALWAYS	1
453 #define SHMEM_HUGE_WITHIN_SIZE	2
454 #define SHMEM_HUGE_ADVISE	3
455 
456 /*
457  * Special values.
458  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
459  *
460  * SHMEM_HUGE_DENY:
461  *	disables huge on shm_mnt and all mounts, for emergency use;
462  * SHMEM_HUGE_FORCE:
463  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
464  *
465  */
466 #define SHMEM_HUGE_DENY		(-1)
467 #define SHMEM_HUGE_FORCE	(-2)
468 
469 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
470 /* ifdef here to avoid bloating shmem.o when not necessary */
471 
472 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
473 
474 bool shmem_is_huge(struct vm_area_struct *vma,
475 		   struct inode *inode, pgoff_t index)
476 {
477 	loff_t i_size;
478 
479 	if (!S_ISREG(inode->i_mode))
480 		return false;
481 	if (shmem_huge == SHMEM_HUGE_DENY)
482 		return false;
483 	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
484 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
485 		return false;
486 	if (shmem_huge == SHMEM_HUGE_FORCE)
487 		return true;
488 
489 	switch (SHMEM_SB(inode->i_sb)->huge) {
490 	case SHMEM_HUGE_ALWAYS:
491 		return true;
492 	case SHMEM_HUGE_WITHIN_SIZE:
493 		index = round_up(index + 1, HPAGE_PMD_NR);
494 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
495 		if (i_size >> PAGE_SHIFT >= index)
496 			return true;
497 		fallthrough;
498 	case SHMEM_HUGE_ADVISE:
499 		if (vma && (vma->vm_flags & VM_HUGEPAGE))
500 			return true;
501 		fallthrough;
502 	default:
503 		return false;
504 	}
505 }
506 
507 #if defined(CONFIG_SYSFS)
508 static int shmem_parse_huge(const char *str)
509 {
510 	if (!strcmp(str, "never"))
511 		return SHMEM_HUGE_NEVER;
512 	if (!strcmp(str, "always"))
513 		return SHMEM_HUGE_ALWAYS;
514 	if (!strcmp(str, "within_size"))
515 		return SHMEM_HUGE_WITHIN_SIZE;
516 	if (!strcmp(str, "advise"))
517 		return SHMEM_HUGE_ADVISE;
518 	if (!strcmp(str, "deny"))
519 		return SHMEM_HUGE_DENY;
520 	if (!strcmp(str, "force"))
521 		return SHMEM_HUGE_FORCE;
522 	return -EINVAL;
523 }
524 #endif
525 
526 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
527 static const char *shmem_format_huge(int huge)
528 {
529 	switch (huge) {
530 	case SHMEM_HUGE_NEVER:
531 		return "never";
532 	case SHMEM_HUGE_ALWAYS:
533 		return "always";
534 	case SHMEM_HUGE_WITHIN_SIZE:
535 		return "within_size";
536 	case SHMEM_HUGE_ADVISE:
537 		return "advise";
538 	case SHMEM_HUGE_DENY:
539 		return "deny";
540 	case SHMEM_HUGE_FORCE:
541 		return "force";
542 	default:
543 		VM_BUG_ON(1);
544 		return "bad_val";
545 	}
546 }
547 #endif
548 
549 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
550 		struct shrink_control *sc, unsigned long nr_to_split)
551 {
552 	LIST_HEAD(list), *pos, *next;
553 	LIST_HEAD(to_remove);
554 	struct inode *inode;
555 	struct shmem_inode_info *info;
556 	struct folio *folio;
557 	unsigned long batch = sc ? sc->nr_to_scan : 128;
558 	int split = 0;
559 
560 	if (list_empty(&sbinfo->shrinklist))
561 		return SHRINK_STOP;
562 
563 	spin_lock(&sbinfo->shrinklist_lock);
564 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
565 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
566 
567 		/* pin the inode */
568 		inode = igrab(&info->vfs_inode);
569 
570 		/* inode is about to be evicted */
571 		if (!inode) {
572 			list_del_init(&info->shrinklist);
573 			goto next;
574 		}
575 
576 		/* Check if there's anything to gain */
577 		if (round_up(inode->i_size, PAGE_SIZE) ==
578 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
579 			list_move(&info->shrinklist, &to_remove);
580 			goto next;
581 		}
582 
583 		list_move(&info->shrinklist, &list);
584 next:
585 		sbinfo->shrinklist_len--;
586 		if (!--batch)
587 			break;
588 	}
589 	spin_unlock(&sbinfo->shrinklist_lock);
590 
591 	list_for_each_safe(pos, next, &to_remove) {
592 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
593 		inode = &info->vfs_inode;
594 		list_del_init(&info->shrinklist);
595 		iput(inode);
596 	}
597 
598 	list_for_each_safe(pos, next, &list) {
599 		int ret;
600 		pgoff_t index;
601 
602 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
603 		inode = &info->vfs_inode;
604 
605 		if (nr_to_split && split >= nr_to_split)
606 			goto move_back;
607 
608 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
609 		folio = filemap_get_folio(inode->i_mapping, index);
610 		if (!folio)
611 			goto drop;
612 
613 		/* No huge page at the end of the file: nothing to split */
614 		if (!folio_test_large(folio)) {
615 			folio_put(folio);
616 			goto drop;
617 		}
618 
619 		/*
620 		 * Move the inode on the list back to shrinklist if we failed
621 		 * to lock the page at this time.
622 		 *
623 		 * Waiting for the lock may lead to deadlock in the
624 		 * reclaim path.
625 		 */
626 		if (!folio_trylock(folio)) {
627 			folio_put(folio);
628 			goto move_back;
629 		}
630 
631 		ret = split_huge_page(&folio->page);
632 		folio_unlock(folio);
633 		folio_put(folio);
634 
635 		/* If split failed move the inode on the list back to shrinklist */
636 		if (ret)
637 			goto move_back;
638 
639 		split++;
640 drop:
641 		list_del_init(&info->shrinklist);
642 		goto put;
643 move_back:
644 		/*
645 		 * Make sure the inode is either on the global list or deleted
646 		 * from any local list before iput() since it could be deleted
647 		 * in another thread once we put the inode (then the local list
648 		 * is corrupted).
649 		 */
650 		spin_lock(&sbinfo->shrinklist_lock);
651 		list_move(&info->shrinklist, &sbinfo->shrinklist);
652 		sbinfo->shrinklist_len++;
653 		spin_unlock(&sbinfo->shrinklist_lock);
654 put:
655 		iput(inode);
656 	}
657 
658 	return split;
659 }
660 
661 static long shmem_unused_huge_scan(struct super_block *sb,
662 		struct shrink_control *sc)
663 {
664 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
665 
666 	if (!READ_ONCE(sbinfo->shrinklist_len))
667 		return SHRINK_STOP;
668 
669 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
670 }
671 
672 static long shmem_unused_huge_count(struct super_block *sb,
673 		struct shrink_control *sc)
674 {
675 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
676 	return READ_ONCE(sbinfo->shrinklist_len);
677 }
678 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
679 
680 #define shmem_huge SHMEM_HUGE_DENY
681 
682 bool shmem_is_huge(struct vm_area_struct *vma,
683 		   struct inode *inode, pgoff_t index)
684 {
685 	return false;
686 }
687 
688 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
689 		struct shrink_control *sc, unsigned long nr_to_split)
690 {
691 	return 0;
692 }
693 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
694 
695 /*
696  * Like add_to_page_cache_locked, but error if expected item has gone.
697  */
698 static int shmem_add_to_page_cache(struct folio *folio,
699 				   struct address_space *mapping,
700 				   pgoff_t index, void *expected, gfp_t gfp,
701 				   struct mm_struct *charge_mm)
702 {
703 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
704 	long nr = folio_nr_pages(folio);
705 	int error;
706 
707 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
708 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
709 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
710 	VM_BUG_ON(expected && folio_test_large(folio));
711 
712 	folio_ref_add(folio, nr);
713 	folio->mapping = mapping;
714 	folio->index = index;
715 
716 	if (!folio_test_swapcache(folio)) {
717 		error = mem_cgroup_charge(folio, charge_mm, gfp);
718 		if (error) {
719 			if (folio_test_pmd_mappable(folio)) {
720 				count_vm_event(THP_FILE_FALLBACK);
721 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
722 			}
723 			goto error;
724 		}
725 	}
726 	folio_throttle_swaprate(folio, gfp);
727 
728 	do {
729 		xas_lock_irq(&xas);
730 		if (expected != xas_find_conflict(&xas)) {
731 			xas_set_err(&xas, -EEXIST);
732 			goto unlock;
733 		}
734 		if (expected && xas_find_conflict(&xas)) {
735 			xas_set_err(&xas, -EEXIST);
736 			goto unlock;
737 		}
738 		xas_store(&xas, folio);
739 		if (xas_error(&xas))
740 			goto unlock;
741 		if (folio_test_pmd_mappable(folio)) {
742 			count_vm_event(THP_FILE_ALLOC);
743 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
744 		}
745 		mapping->nrpages += nr;
746 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
747 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
748 unlock:
749 		xas_unlock_irq(&xas);
750 	} while (xas_nomem(&xas, gfp));
751 
752 	if (xas_error(&xas)) {
753 		error = xas_error(&xas);
754 		goto error;
755 	}
756 
757 	return 0;
758 error:
759 	folio->mapping = NULL;
760 	folio_ref_sub(folio, nr);
761 	return error;
762 }
763 
764 /*
765  * Like delete_from_page_cache, but substitutes swap for page.
766  */
767 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
768 {
769 	struct address_space *mapping = page->mapping;
770 	int error;
771 
772 	VM_BUG_ON_PAGE(PageCompound(page), page);
773 
774 	xa_lock_irq(&mapping->i_pages);
775 	error = shmem_replace_entry(mapping, page->index, page, radswap);
776 	page->mapping = NULL;
777 	mapping->nrpages--;
778 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
779 	__dec_lruvec_page_state(page, NR_SHMEM);
780 	xa_unlock_irq(&mapping->i_pages);
781 	put_page(page);
782 	BUG_ON(error);
783 }
784 
785 /*
786  * Remove swap entry from page cache, free the swap and its page cache.
787  */
788 static int shmem_free_swap(struct address_space *mapping,
789 			   pgoff_t index, void *radswap)
790 {
791 	void *old;
792 
793 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
794 	if (old != radswap)
795 		return -ENOENT;
796 	free_swap_and_cache(radix_to_swp_entry(radswap));
797 	return 0;
798 }
799 
800 /*
801  * Determine (in bytes) how many of the shmem object's pages mapped by the
802  * given offsets are swapped out.
803  *
804  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
805  * as long as the inode doesn't go away and racy results are not a problem.
806  */
807 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
808 						pgoff_t start, pgoff_t end)
809 {
810 	XA_STATE(xas, &mapping->i_pages, start);
811 	struct page *page;
812 	unsigned long swapped = 0;
813 
814 	rcu_read_lock();
815 	xas_for_each(&xas, page, end - 1) {
816 		if (xas_retry(&xas, page))
817 			continue;
818 		if (xa_is_value(page))
819 			swapped++;
820 
821 		if (need_resched()) {
822 			xas_pause(&xas);
823 			cond_resched_rcu();
824 		}
825 	}
826 
827 	rcu_read_unlock();
828 
829 	return swapped << PAGE_SHIFT;
830 }
831 
832 /*
833  * Determine (in bytes) how many of the shmem object's pages mapped by the
834  * given vma is swapped out.
835  *
836  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
837  * as long as the inode doesn't go away and racy results are not a problem.
838  */
839 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
840 {
841 	struct inode *inode = file_inode(vma->vm_file);
842 	struct shmem_inode_info *info = SHMEM_I(inode);
843 	struct address_space *mapping = inode->i_mapping;
844 	unsigned long swapped;
845 
846 	/* Be careful as we don't hold info->lock */
847 	swapped = READ_ONCE(info->swapped);
848 
849 	/*
850 	 * The easier cases are when the shmem object has nothing in swap, or
851 	 * the vma maps it whole. Then we can simply use the stats that we
852 	 * already track.
853 	 */
854 	if (!swapped)
855 		return 0;
856 
857 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
858 		return swapped << PAGE_SHIFT;
859 
860 	/* Here comes the more involved part */
861 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
862 					vma->vm_pgoff + vma_pages(vma));
863 }
864 
865 /*
866  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
867  */
868 void shmem_unlock_mapping(struct address_space *mapping)
869 {
870 	struct pagevec pvec;
871 	pgoff_t index = 0;
872 
873 	pagevec_init(&pvec);
874 	/*
875 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
876 	 */
877 	while (!mapping_unevictable(mapping)) {
878 		if (!pagevec_lookup(&pvec, mapping, &index))
879 			break;
880 		check_move_unevictable_pages(&pvec);
881 		pagevec_release(&pvec);
882 		cond_resched();
883 	}
884 }
885 
886 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
887 {
888 	struct folio *folio;
889 	struct page *page;
890 
891 	/*
892 	 * At first avoid shmem_getpage(,,,SGP_READ): that fails
893 	 * beyond i_size, and reports fallocated pages as holes.
894 	 */
895 	folio = __filemap_get_folio(inode->i_mapping, index,
896 					FGP_ENTRY | FGP_LOCK, 0);
897 	if (!xa_is_value(folio))
898 		return folio;
899 	/*
900 	 * But read a page back from swap if any of it is within i_size
901 	 * (although in some cases this is just a waste of time).
902 	 */
903 	page = NULL;
904 	shmem_getpage(inode, index, &page, SGP_READ);
905 	return page ? page_folio(page) : NULL;
906 }
907 
908 /*
909  * Remove range of pages and swap entries from page cache, and free them.
910  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
911  */
912 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
913 								 bool unfalloc)
914 {
915 	struct address_space *mapping = inode->i_mapping;
916 	struct shmem_inode_info *info = SHMEM_I(inode);
917 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
918 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
919 	struct folio_batch fbatch;
920 	pgoff_t indices[PAGEVEC_SIZE];
921 	struct folio *folio;
922 	bool same_folio;
923 	long nr_swaps_freed = 0;
924 	pgoff_t index;
925 	int i;
926 
927 	if (lend == -1)
928 		end = -1;	/* unsigned, so actually very big */
929 
930 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
931 		info->fallocend = start;
932 
933 	folio_batch_init(&fbatch);
934 	index = start;
935 	while (index < end && find_lock_entries(mapping, index, end - 1,
936 			&fbatch, indices)) {
937 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
938 			folio = fbatch.folios[i];
939 
940 			index = indices[i];
941 
942 			if (xa_is_value(folio)) {
943 				if (unfalloc)
944 					continue;
945 				nr_swaps_freed += !shmem_free_swap(mapping,
946 								index, folio);
947 				continue;
948 			}
949 			index += folio_nr_pages(folio) - 1;
950 
951 			if (!unfalloc || !folio_test_uptodate(folio))
952 				truncate_inode_folio(mapping, folio);
953 			folio_unlock(folio);
954 		}
955 		folio_batch_remove_exceptionals(&fbatch);
956 		folio_batch_release(&fbatch);
957 		cond_resched();
958 		index++;
959 	}
960 
961 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
962 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
963 	if (folio) {
964 		same_folio = lend < folio_pos(folio) + folio_size(folio);
965 		folio_mark_dirty(folio);
966 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
967 			start = folio->index + folio_nr_pages(folio);
968 			if (same_folio)
969 				end = folio->index;
970 		}
971 		folio_unlock(folio);
972 		folio_put(folio);
973 		folio = NULL;
974 	}
975 
976 	if (!same_folio)
977 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
978 	if (folio) {
979 		folio_mark_dirty(folio);
980 		if (!truncate_inode_partial_folio(folio, lstart, lend))
981 			end = folio->index;
982 		folio_unlock(folio);
983 		folio_put(folio);
984 	}
985 
986 	index = start;
987 	while (index < end) {
988 		cond_resched();
989 
990 		if (!find_get_entries(mapping, index, end - 1, &fbatch,
991 				indices)) {
992 			/* If all gone or hole-punch or unfalloc, we're done */
993 			if (index == start || end != -1)
994 				break;
995 			/* But if truncating, restart to make sure all gone */
996 			index = start;
997 			continue;
998 		}
999 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1000 			folio = fbatch.folios[i];
1001 
1002 			index = indices[i];
1003 			if (xa_is_value(folio)) {
1004 				if (unfalloc)
1005 					continue;
1006 				if (shmem_free_swap(mapping, index, folio)) {
1007 					/* Swap was replaced by page: retry */
1008 					index--;
1009 					break;
1010 				}
1011 				nr_swaps_freed++;
1012 				continue;
1013 			}
1014 
1015 			folio_lock(folio);
1016 
1017 			if (!unfalloc || !folio_test_uptodate(folio)) {
1018 				if (folio_mapping(folio) != mapping) {
1019 					/* Page was replaced by swap: retry */
1020 					folio_unlock(folio);
1021 					index--;
1022 					break;
1023 				}
1024 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1025 						folio);
1026 				truncate_inode_folio(mapping, folio);
1027 			}
1028 			index = folio->index + folio_nr_pages(folio) - 1;
1029 			folio_unlock(folio);
1030 		}
1031 		folio_batch_remove_exceptionals(&fbatch);
1032 		folio_batch_release(&fbatch);
1033 		index++;
1034 	}
1035 
1036 	spin_lock_irq(&info->lock);
1037 	info->swapped -= nr_swaps_freed;
1038 	shmem_recalc_inode(inode);
1039 	spin_unlock_irq(&info->lock);
1040 }
1041 
1042 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1043 {
1044 	shmem_undo_range(inode, lstart, lend, false);
1045 	inode->i_ctime = inode->i_mtime = current_time(inode);
1046 }
1047 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1048 
1049 static int shmem_getattr(struct user_namespace *mnt_userns,
1050 			 const struct path *path, struct kstat *stat,
1051 			 u32 request_mask, unsigned int query_flags)
1052 {
1053 	struct inode *inode = path->dentry->d_inode;
1054 	struct shmem_inode_info *info = SHMEM_I(inode);
1055 
1056 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1057 		spin_lock_irq(&info->lock);
1058 		shmem_recalc_inode(inode);
1059 		spin_unlock_irq(&info->lock);
1060 	}
1061 	generic_fillattr(&init_user_ns, inode, stat);
1062 
1063 	if (shmem_is_huge(NULL, inode, 0))
1064 		stat->blksize = HPAGE_PMD_SIZE;
1065 
1066 	if (request_mask & STATX_BTIME) {
1067 		stat->result_mask |= STATX_BTIME;
1068 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1069 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1070 	}
1071 
1072 	return 0;
1073 }
1074 
1075 static int shmem_setattr(struct user_namespace *mnt_userns,
1076 			 struct dentry *dentry, struct iattr *attr)
1077 {
1078 	struct inode *inode = d_inode(dentry);
1079 	struct shmem_inode_info *info = SHMEM_I(inode);
1080 	int error;
1081 
1082 	error = setattr_prepare(&init_user_ns, dentry, attr);
1083 	if (error)
1084 		return error;
1085 
1086 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1087 		loff_t oldsize = inode->i_size;
1088 		loff_t newsize = attr->ia_size;
1089 
1090 		/* protected by i_rwsem */
1091 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1092 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1093 			return -EPERM;
1094 
1095 		if (newsize != oldsize) {
1096 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1097 					oldsize, newsize);
1098 			if (error)
1099 				return error;
1100 			i_size_write(inode, newsize);
1101 			inode->i_ctime = inode->i_mtime = current_time(inode);
1102 		}
1103 		if (newsize <= oldsize) {
1104 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1105 			if (oldsize > holebegin)
1106 				unmap_mapping_range(inode->i_mapping,
1107 							holebegin, 0, 1);
1108 			if (info->alloced)
1109 				shmem_truncate_range(inode,
1110 							newsize, (loff_t)-1);
1111 			/* unmap again to remove racily COWed private pages */
1112 			if (oldsize > holebegin)
1113 				unmap_mapping_range(inode->i_mapping,
1114 							holebegin, 0, 1);
1115 		}
1116 	}
1117 
1118 	setattr_copy(&init_user_ns, inode, attr);
1119 	if (attr->ia_valid & ATTR_MODE)
1120 		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1121 	return error;
1122 }
1123 
1124 static void shmem_evict_inode(struct inode *inode)
1125 {
1126 	struct shmem_inode_info *info = SHMEM_I(inode);
1127 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1128 
1129 	if (shmem_mapping(inode->i_mapping)) {
1130 		shmem_unacct_size(info->flags, inode->i_size);
1131 		inode->i_size = 0;
1132 		mapping_set_exiting(inode->i_mapping);
1133 		shmem_truncate_range(inode, 0, (loff_t)-1);
1134 		if (!list_empty(&info->shrinklist)) {
1135 			spin_lock(&sbinfo->shrinklist_lock);
1136 			if (!list_empty(&info->shrinklist)) {
1137 				list_del_init(&info->shrinklist);
1138 				sbinfo->shrinklist_len--;
1139 			}
1140 			spin_unlock(&sbinfo->shrinklist_lock);
1141 		}
1142 		while (!list_empty(&info->swaplist)) {
1143 			/* Wait while shmem_unuse() is scanning this inode... */
1144 			wait_var_event(&info->stop_eviction,
1145 				       !atomic_read(&info->stop_eviction));
1146 			mutex_lock(&shmem_swaplist_mutex);
1147 			/* ...but beware of the race if we peeked too early */
1148 			if (!atomic_read(&info->stop_eviction))
1149 				list_del_init(&info->swaplist);
1150 			mutex_unlock(&shmem_swaplist_mutex);
1151 		}
1152 	}
1153 
1154 	simple_xattrs_free(&info->xattrs);
1155 	WARN_ON(inode->i_blocks);
1156 	shmem_free_inode(inode->i_sb);
1157 	clear_inode(inode);
1158 }
1159 
1160 static int shmem_find_swap_entries(struct address_space *mapping,
1161 				   pgoff_t start, struct folio_batch *fbatch,
1162 				   pgoff_t *indices, unsigned int type)
1163 {
1164 	XA_STATE(xas, &mapping->i_pages, start);
1165 	struct folio *folio;
1166 	swp_entry_t entry;
1167 
1168 	rcu_read_lock();
1169 	xas_for_each(&xas, folio, ULONG_MAX) {
1170 		if (xas_retry(&xas, folio))
1171 			continue;
1172 
1173 		if (!xa_is_value(folio))
1174 			continue;
1175 
1176 		entry = radix_to_swp_entry(folio);
1177 		/*
1178 		 * swapin error entries can be found in the mapping. But they're
1179 		 * deliberately ignored here as we've done everything we can do.
1180 		 */
1181 		if (swp_type(entry) != type)
1182 			continue;
1183 
1184 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1185 		if (!folio_batch_add(fbatch, folio))
1186 			break;
1187 
1188 		if (need_resched()) {
1189 			xas_pause(&xas);
1190 			cond_resched_rcu();
1191 		}
1192 	}
1193 	rcu_read_unlock();
1194 
1195 	return xas.xa_index;
1196 }
1197 
1198 /*
1199  * Move the swapped pages for an inode to page cache. Returns the count
1200  * of pages swapped in, or the error in case of failure.
1201  */
1202 static int shmem_unuse_swap_entries(struct inode *inode,
1203 		struct folio_batch *fbatch, pgoff_t *indices)
1204 {
1205 	int i = 0;
1206 	int ret = 0;
1207 	int error = 0;
1208 	struct address_space *mapping = inode->i_mapping;
1209 
1210 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1211 		struct folio *folio = fbatch->folios[i];
1212 
1213 		if (!xa_is_value(folio))
1214 			continue;
1215 		error = shmem_swapin_folio(inode, indices[i],
1216 					  &folio, SGP_CACHE,
1217 					  mapping_gfp_mask(mapping),
1218 					  NULL, NULL);
1219 		if (error == 0) {
1220 			folio_unlock(folio);
1221 			folio_put(folio);
1222 			ret++;
1223 		}
1224 		if (error == -ENOMEM)
1225 			break;
1226 		error = 0;
1227 	}
1228 	return error ? error : ret;
1229 }
1230 
1231 /*
1232  * If swap found in inode, free it and move page from swapcache to filecache.
1233  */
1234 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1235 {
1236 	struct address_space *mapping = inode->i_mapping;
1237 	pgoff_t start = 0;
1238 	struct folio_batch fbatch;
1239 	pgoff_t indices[PAGEVEC_SIZE];
1240 	int ret = 0;
1241 
1242 	do {
1243 		folio_batch_init(&fbatch);
1244 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1245 		if (folio_batch_count(&fbatch) == 0) {
1246 			ret = 0;
1247 			break;
1248 		}
1249 
1250 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1251 		if (ret < 0)
1252 			break;
1253 
1254 		start = indices[folio_batch_count(&fbatch) - 1];
1255 	} while (true);
1256 
1257 	return ret;
1258 }
1259 
1260 /*
1261  * Read all the shared memory data that resides in the swap
1262  * device 'type' back into memory, so the swap device can be
1263  * unused.
1264  */
1265 int shmem_unuse(unsigned int type)
1266 {
1267 	struct shmem_inode_info *info, *next;
1268 	int error = 0;
1269 
1270 	if (list_empty(&shmem_swaplist))
1271 		return 0;
1272 
1273 	mutex_lock(&shmem_swaplist_mutex);
1274 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1275 		if (!info->swapped) {
1276 			list_del_init(&info->swaplist);
1277 			continue;
1278 		}
1279 		/*
1280 		 * Drop the swaplist mutex while searching the inode for swap;
1281 		 * but before doing so, make sure shmem_evict_inode() will not
1282 		 * remove placeholder inode from swaplist, nor let it be freed
1283 		 * (igrab() would protect from unlink, but not from unmount).
1284 		 */
1285 		atomic_inc(&info->stop_eviction);
1286 		mutex_unlock(&shmem_swaplist_mutex);
1287 
1288 		error = shmem_unuse_inode(&info->vfs_inode, type);
1289 		cond_resched();
1290 
1291 		mutex_lock(&shmem_swaplist_mutex);
1292 		next = list_next_entry(info, swaplist);
1293 		if (!info->swapped)
1294 			list_del_init(&info->swaplist);
1295 		if (atomic_dec_and_test(&info->stop_eviction))
1296 			wake_up_var(&info->stop_eviction);
1297 		if (error)
1298 			break;
1299 	}
1300 	mutex_unlock(&shmem_swaplist_mutex);
1301 
1302 	return error;
1303 }
1304 
1305 /*
1306  * Move the page from the page cache to the swap cache.
1307  */
1308 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1309 {
1310 	struct folio *folio = page_folio(page);
1311 	struct shmem_inode_info *info;
1312 	struct address_space *mapping;
1313 	struct inode *inode;
1314 	swp_entry_t swap;
1315 	pgoff_t index;
1316 
1317 	/*
1318 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1319 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1320 	 * and its shmem_writeback() needs them to be split when swapping.
1321 	 */
1322 	if (PageTransCompound(page)) {
1323 		/* Ensure the subpages are still dirty */
1324 		SetPageDirty(page);
1325 		if (split_huge_page(page) < 0)
1326 			goto redirty;
1327 		ClearPageDirty(page);
1328 	}
1329 
1330 	BUG_ON(!PageLocked(page));
1331 	mapping = page->mapping;
1332 	index = page->index;
1333 	inode = mapping->host;
1334 	info = SHMEM_I(inode);
1335 	if (info->flags & VM_LOCKED)
1336 		goto redirty;
1337 	if (!total_swap_pages)
1338 		goto redirty;
1339 
1340 	/*
1341 	 * Our capabilities prevent regular writeback or sync from ever calling
1342 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1343 	 * its underlying filesystem, in which case tmpfs should write out to
1344 	 * swap only in response to memory pressure, and not for the writeback
1345 	 * threads or sync.
1346 	 */
1347 	if (!wbc->for_reclaim) {
1348 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1349 		goto redirty;
1350 	}
1351 
1352 	/*
1353 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1354 	 * value into swapfile.c, the only way we can correctly account for a
1355 	 * fallocated page arriving here is now to initialize it and write it.
1356 	 *
1357 	 * That's okay for a page already fallocated earlier, but if we have
1358 	 * not yet completed the fallocation, then (a) we want to keep track
1359 	 * of this page in case we have to undo it, and (b) it may not be a
1360 	 * good idea to continue anyway, once we're pushing into swap.  So
1361 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1362 	 */
1363 	if (!PageUptodate(page)) {
1364 		if (inode->i_private) {
1365 			struct shmem_falloc *shmem_falloc;
1366 			spin_lock(&inode->i_lock);
1367 			shmem_falloc = inode->i_private;
1368 			if (shmem_falloc &&
1369 			    !shmem_falloc->waitq &&
1370 			    index >= shmem_falloc->start &&
1371 			    index < shmem_falloc->next)
1372 				shmem_falloc->nr_unswapped++;
1373 			else
1374 				shmem_falloc = NULL;
1375 			spin_unlock(&inode->i_lock);
1376 			if (shmem_falloc)
1377 				goto redirty;
1378 		}
1379 		clear_highpage(page);
1380 		flush_dcache_page(page);
1381 		SetPageUptodate(page);
1382 	}
1383 
1384 	swap = folio_alloc_swap(folio);
1385 	if (!swap.val)
1386 		goto redirty;
1387 
1388 	/*
1389 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1390 	 * if it's not already there.  Do it now before the page is
1391 	 * moved to swap cache, when its pagelock no longer protects
1392 	 * the inode from eviction.  But don't unlock the mutex until
1393 	 * we've incremented swapped, because shmem_unuse_inode() will
1394 	 * prune a !swapped inode from the swaplist under this mutex.
1395 	 */
1396 	mutex_lock(&shmem_swaplist_mutex);
1397 	if (list_empty(&info->swaplist))
1398 		list_add(&info->swaplist, &shmem_swaplist);
1399 
1400 	if (add_to_swap_cache(page, swap,
1401 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1402 			NULL) == 0) {
1403 		spin_lock_irq(&info->lock);
1404 		shmem_recalc_inode(inode);
1405 		info->swapped++;
1406 		spin_unlock_irq(&info->lock);
1407 
1408 		swap_shmem_alloc(swap);
1409 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1410 
1411 		mutex_unlock(&shmem_swaplist_mutex);
1412 		BUG_ON(page_mapped(page));
1413 		swap_writepage(page, wbc);
1414 		return 0;
1415 	}
1416 
1417 	mutex_unlock(&shmem_swaplist_mutex);
1418 	put_swap_page(page, swap);
1419 redirty:
1420 	set_page_dirty(page);
1421 	if (wbc->for_reclaim)
1422 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1423 	unlock_page(page);
1424 	return 0;
1425 }
1426 
1427 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1428 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1429 {
1430 	char buffer[64];
1431 
1432 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1433 		return;		/* show nothing */
1434 
1435 	mpol_to_str(buffer, sizeof(buffer), mpol);
1436 
1437 	seq_printf(seq, ",mpol=%s", buffer);
1438 }
1439 
1440 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1441 {
1442 	struct mempolicy *mpol = NULL;
1443 	if (sbinfo->mpol) {
1444 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1445 		mpol = sbinfo->mpol;
1446 		mpol_get(mpol);
1447 		raw_spin_unlock(&sbinfo->stat_lock);
1448 	}
1449 	return mpol;
1450 }
1451 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1452 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1453 {
1454 }
1455 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1456 {
1457 	return NULL;
1458 }
1459 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1460 #ifndef CONFIG_NUMA
1461 #define vm_policy vm_private_data
1462 #endif
1463 
1464 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1465 		struct shmem_inode_info *info, pgoff_t index)
1466 {
1467 	/* Create a pseudo vma that just contains the policy */
1468 	vma_init(vma, NULL);
1469 	/* Bias interleave by inode number to distribute better across nodes */
1470 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1471 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1472 }
1473 
1474 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1475 {
1476 	/* Drop reference taken by mpol_shared_policy_lookup() */
1477 	mpol_cond_put(vma->vm_policy);
1478 }
1479 
1480 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1481 			struct shmem_inode_info *info, pgoff_t index)
1482 {
1483 	struct vm_area_struct pvma;
1484 	struct page *page;
1485 	struct vm_fault vmf = {
1486 		.vma = &pvma,
1487 	};
1488 
1489 	shmem_pseudo_vma_init(&pvma, info, index);
1490 	page = swap_cluster_readahead(swap, gfp, &vmf);
1491 	shmem_pseudo_vma_destroy(&pvma);
1492 
1493 	return page;
1494 }
1495 
1496 /*
1497  * Make sure huge_gfp is always more limited than limit_gfp.
1498  * Some of the flags set permissions, while others set limitations.
1499  */
1500 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1501 {
1502 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1503 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1504 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1505 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1506 
1507 	/* Allow allocations only from the originally specified zones. */
1508 	result |= zoneflags;
1509 
1510 	/*
1511 	 * Minimize the result gfp by taking the union with the deny flags,
1512 	 * and the intersection of the allow flags.
1513 	 */
1514 	result |= (limit_gfp & denyflags);
1515 	result |= (huge_gfp & limit_gfp) & allowflags;
1516 
1517 	return result;
1518 }
1519 
1520 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1521 		struct shmem_inode_info *info, pgoff_t index)
1522 {
1523 	struct vm_area_struct pvma;
1524 	struct address_space *mapping = info->vfs_inode.i_mapping;
1525 	pgoff_t hindex;
1526 	struct folio *folio;
1527 
1528 	hindex = round_down(index, HPAGE_PMD_NR);
1529 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1530 								XA_PRESENT))
1531 		return NULL;
1532 
1533 	shmem_pseudo_vma_init(&pvma, info, hindex);
1534 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1535 	shmem_pseudo_vma_destroy(&pvma);
1536 	if (!folio)
1537 		count_vm_event(THP_FILE_FALLBACK);
1538 	return folio;
1539 }
1540 
1541 static struct folio *shmem_alloc_folio(gfp_t gfp,
1542 			struct shmem_inode_info *info, pgoff_t index)
1543 {
1544 	struct vm_area_struct pvma;
1545 	struct folio *folio;
1546 
1547 	shmem_pseudo_vma_init(&pvma, info, index);
1548 	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1549 	shmem_pseudo_vma_destroy(&pvma);
1550 
1551 	return folio;
1552 }
1553 
1554 static struct page *shmem_alloc_page(gfp_t gfp,
1555 			struct shmem_inode_info *info, pgoff_t index)
1556 {
1557 	return &shmem_alloc_folio(gfp, info, index)->page;
1558 }
1559 
1560 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1561 		pgoff_t index, bool huge)
1562 {
1563 	struct shmem_inode_info *info = SHMEM_I(inode);
1564 	struct folio *folio;
1565 	int nr;
1566 	int err = -ENOSPC;
1567 
1568 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1569 		huge = false;
1570 	nr = huge ? HPAGE_PMD_NR : 1;
1571 
1572 	if (!shmem_inode_acct_block(inode, nr))
1573 		goto failed;
1574 
1575 	if (huge)
1576 		folio = shmem_alloc_hugefolio(gfp, info, index);
1577 	else
1578 		folio = shmem_alloc_folio(gfp, info, index);
1579 	if (folio) {
1580 		__folio_set_locked(folio);
1581 		__folio_set_swapbacked(folio);
1582 		return folio;
1583 	}
1584 
1585 	err = -ENOMEM;
1586 	shmem_inode_unacct_blocks(inode, nr);
1587 failed:
1588 	return ERR_PTR(err);
1589 }
1590 
1591 /*
1592  * When a page is moved from swapcache to shmem filecache (either by the
1593  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1594  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1595  * ignorance of the mapping it belongs to.  If that mapping has special
1596  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1597  * we may need to copy to a suitable page before moving to filecache.
1598  *
1599  * In a future release, this may well be extended to respect cpuset and
1600  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1601  * but for now it is a simple matter of zone.
1602  */
1603 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1604 {
1605 	return folio_zonenum(folio) > gfp_zone(gfp);
1606 }
1607 
1608 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1609 				struct shmem_inode_info *info, pgoff_t index)
1610 {
1611 	struct page *oldpage, *newpage;
1612 	struct folio *old, *new;
1613 	struct address_space *swap_mapping;
1614 	swp_entry_t entry;
1615 	pgoff_t swap_index;
1616 	int error;
1617 
1618 	oldpage = *pagep;
1619 	entry.val = page_private(oldpage);
1620 	swap_index = swp_offset(entry);
1621 	swap_mapping = page_mapping(oldpage);
1622 
1623 	/*
1624 	 * We have arrived here because our zones are constrained, so don't
1625 	 * limit chance of success by further cpuset and node constraints.
1626 	 */
1627 	gfp &= ~GFP_CONSTRAINT_MASK;
1628 	newpage = shmem_alloc_page(gfp, info, index);
1629 	if (!newpage)
1630 		return -ENOMEM;
1631 
1632 	get_page(newpage);
1633 	copy_highpage(newpage, oldpage);
1634 	flush_dcache_page(newpage);
1635 
1636 	__SetPageLocked(newpage);
1637 	__SetPageSwapBacked(newpage);
1638 	SetPageUptodate(newpage);
1639 	set_page_private(newpage, entry.val);
1640 	SetPageSwapCache(newpage);
1641 
1642 	/*
1643 	 * Our caller will very soon move newpage out of swapcache, but it's
1644 	 * a nice clean interface for us to replace oldpage by newpage there.
1645 	 */
1646 	xa_lock_irq(&swap_mapping->i_pages);
1647 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1648 	if (!error) {
1649 		old = page_folio(oldpage);
1650 		new = page_folio(newpage);
1651 		mem_cgroup_migrate(old, new);
1652 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1653 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1654 	}
1655 	xa_unlock_irq(&swap_mapping->i_pages);
1656 
1657 	if (unlikely(error)) {
1658 		/*
1659 		 * Is this possible?  I think not, now that our callers check
1660 		 * both PageSwapCache and page_private after getting page lock;
1661 		 * but be defensive.  Reverse old to newpage for clear and free.
1662 		 */
1663 		oldpage = newpage;
1664 	} else {
1665 		lru_cache_add(newpage);
1666 		*pagep = newpage;
1667 	}
1668 
1669 	ClearPageSwapCache(oldpage);
1670 	set_page_private(oldpage, 0);
1671 
1672 	unlock_page(oldpage);
1673 	put_page(oldpage);
1674 	put_page(oldpage);
1675 	return error;
1676 }
1677 
1678 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1679 					 struct folio *folio, swp_entry_t swap)
1680 {
1681 	struct address_space *mapping = inode->i_mapping;
1682 	struct shmem_inode_info *info = SHMEM_I(inode);
1683 	swp_entry_t swapin_error;
1684 	void *old;
1685 
1686 	swapin_error = make_swapin_error_entry(&folio->page);
1687 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1688 			     swp_to_radix_entry(swap),
1689 			     swp_to_radix_entry(swapin_error), 0);
1690 	if (old != swp_to_radix_entry(swap))
1691 		return;
1692 
1693 	folio_wait_writeback(folio);
1694 	delete_from_swap_cache(&folio->page);
1695 	spin_lock_irq(&info->lock);
1696 	/*
1697 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1698 	 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1699 	 * shmem_evict_inode.
1700 	 */
1701 	info->alloced--;
1702 	info->swapped--;
1703 	shmem_recalc_inode(inode);
1704 	spin_unlock_irq(&info->lock);
1705 	swap_free(swap);
1706 }
1707 
1708 /*
1709  * Swap in the page pointed to by *pagep.
1710  * Caller has to make sure that *pagep contains a valid swapped page.
1711  * Returns 0 and the page in pagep if success. On failure, returns the
1712  * error code and NULL in *pagep.
1713  */
1714 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1715 			     struct folio **foliop, enum sgp_type sgp,
1716 			     gfp_t gfp, struct vm_area_struct *vma,
1717 			     vm_fault_t *fault_type)
1718 {
1719 	struct address_space *mapping = inode->i_mapping;
1720 	struct shmem_inode_info *info = SHMEM_I(inode);
1721 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1722 	struct page *page;
1723 	struct folio *folio = NULL;
1724 	swp_entry_t swap;
1725 	int error;
1726 
1727 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1728 	swap = radix_to_swp_entry(*foliop);
1729 	*foliop = NULL;
1730 
1731 	if (is_swapin_error_entry(swap))
1732 		return -EIO;
1733 
1734 	/* Look it up and read it in.. */
1735 	page = lookup_swap_cache(swap, NULL, 0);
1736 	if (!page) {
1737 		/* Or update major stats only when swapin succeeds?? */
1738 		if (fault_type) {
1739 			*fault_type |= VM_FAULT_MAJOR;
1740 			count_vm_event(PGMAJFAULT);
1741 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1742 		}
1743 		/* Here we actually start the io */
1744 		page = shmem_swapin(swap, gfp, info, index);
1745 		if (!page) {
1746 			error = -ENOMEM;
1747 			goto failed;
1748 		}
1749 	}
1750 	folio = page_folio(page);
1751 
1752 	/* We have to do this with page locked to prevent races */
1753 	folio_lock(folio);
1754 	if (!folio_test_swapcache(folio) ||
1755 	    folio_swap_entry(folio).val != swap.val ||
1756 	    !shmem_confirm_swap(mapping, index, swap)) {
1757 		error = -EEXIST;
1758 		goto unlock;
1759 	}
1760 	if (!folio_test_uptodate(folio)) {
1761 		error = -EIO;
1762 		goto failed;
1763 	}
1764 	folio_wait_writeback(folio);
1765 
1766 	/*
1767 	 * Some architectures may have to restore extra metadata to the
1768 	 * folio after reading from swap.
1769 	 */
1770 	arch_swap_restore(swap, folio);
1771 
1772 	if (shmem_should_replace_folio(folio, gfp)) {
1773 		error = shmem_replace_page(&page, gfp, info, index);
1774 		if (error)
1775 			goto failed;
1776 	}
1777 
1778 	error = shmem_add_to_page_cache(folio, mapping, index,
1779 					swp_to_radix_entry(swap), gfp,
1780 					charge_mm);
1781 	if (error)
1782 		goto failed;
1783 
1784 	spin_lock_irq(&info->lock);
1785 	info->swapped--;
1786 	shmem_recalc_inode(inode);
1787 	spin_unlock_irq(&info->lock);
1788 
1789 	if (sgp == SGP_WRITE)
1790 		folio_mark_accessed(folio);
1791 
1792 	delete_from_swap_cache(&folio->page);
1793 	folio_mark_dirty(folio);
1794 	swap_free(swap);
1795 
1796 	*foliop = folio;
1797 	return 0;
1798 failed:
1799 	if (!shmem_confirm_swap(mapping, index, swap))
1800 		error = -EEXIST;
1801 	if (error == -EIO)
1802 		shmem_set_folio_swapin_error(inode, index, folio, swap);
1803 unlock:
1804 	if (folio) {
1805 		folio_unlock(folio);
1806 		folio_put(folio);
1807 	}
1808 
1809 	return error;
1810 }
1811 
1812 /*
1813  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1814  *
1815  * If we allocate a new one we do not mark it dirty. That's up to the
1816  * vm. If we swap it in we mark it dirty since we also free the swap
1817  * entry since a page cannot live in both the swap and page cache.
1818  *
1819  * vma, vmf, and fault_type are only supplied by shmem_fault:
1820  * otherwise they are NULL.
1821  */
1822 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1823 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1824 	struct vm_area_struct *vma, struct vm_fault *vmf,
1825 			vm_fault_t *fault_type)
1826 {
1827 	struct address_space *mapping = inode->i_mapping;
1828 	struct shmem_inode_info *info = SHMEM_I(inode);
1829 	struct shmem_sb_info *sbinfo;
1830 	struct mm_struct *charge_mm;
1831 	struct folio *folio;
1832 	pgoff_t hindex = index;
1833 	gfp_t huge_gfp;
1834 	int error;
1835 	int once = 0;
1836 	int alloced = 0;
1837 
1838 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1839 		return -EFBIG;
1840 repeat:
1841 	if (sgp <= SGP_CACHE &&
1842 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1843 		return -EINVAL;
1844 	}
1845 
1846 	sbinfo = SHMEM_SB(inode->i_sb);
1847 	charge_mm = vma ? vma->vm_mm : NULL;
1848 
1849 	folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1850 	if (folio && vma && userfaultfd_minor(vma)) {
1851 		if (!xa_is_value(folio)) {
1852 			folio_unlock(folio);
1853 			folio_put(folio);
1854 		}
1855 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1856 		return 0;
1857 	}
1858 
1859 	if (xa_is_value(folio)) {
1860 		error = shmem_swapin_folio(inode, index, &folio,
1861 					  sgp, gfp, vma, fault_type);
1862 		if (error == -EEXIST)
1863 			goto repeat;
1864 
1865 		*pagep = &folio->page;
1866 		return error;
1867 	}
1868 
1869 	if (folio) {
1870 		hindex = folio->index;
1871 		if (sgp == SGP_WRITE)
1872 			folio_mark_accessed(folio);
1873 		if (folio_test_uptodate(folio))
1874 			goto out;
1875 		/* fallocated page */
1876 		if (sgp != SGP_READ)
1877 			goto clear;
1878 		folio_unlock(folio);
1879 		folio_put(folio);
1880 	}
1881 
1882 	/*
1883 	 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1884 	 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1885 	 */
1886 	*pagep = NULL;
1887 	if (sgp == SGP_READ)
1888 		return 0;
1889 	if (sgp == SGP_NOALLOC)
1890 		return -ENOENT;
1891 
1892 	/*
1893 	 * Fast cache lookup and swap lookup did not find it: allocate.
1894 	 */
1895 
1896 	if (vma && userfaultfd_missing(vma)) {
1897 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1898 		return 0;
1899 	}
1900 
1901 	if (!shmem_is_huge(vma, inode, index))
1902 		goto alloc_nohuge;
1903 
1904 	huge_gfp = vma_thp_gfp_mask(vma);
1905 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1906 	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1907 	if (IS_ERR(folio)) {
1908 alloc_nohuge:
1909 		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1910 	}
1911 	if (IS_ERR(folio)) {
1912 		int retry = 5;
1913 
1914 		error = PTR_ERR(folio);
1915 		folio = NULL;
1916 		if (error != -ENOSPC)
1917 			goto unlock;
1918 		/*
1919 		 * Try to reclaim some space by splitting a huge page
1920 		 * beyond i_size on the filesystem.
1921 		 */
1922 		while (retry--) {
1923 			int ret;
1924 
1925 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1926 			if (ret == SHRINK_STOP)
1927 				break;
1928 			if (ret)
1929 				goto alloc_nohuge;
1930 		}
1931 		goto unlock;
1932 	}
1933 
1934 	hindex = round_down(index, folio_nr_pages(folio));
1935 
1936 	if (sgp == SGP_WRITE)
1937 		__folio_set_referenced(folio);
1938 
1939 	error = shmem_add_to_page_cache(folio, mapping, hindex,
1940 					NULL, gfp & GFP_RECLAIM_MASK,
1941 					charge_mm);
1942 	if (error)
1943 		goto unacct;
1944 	folio_add_lru(folio);
1945 
1946 	spin_lock_irq(&info->lock);
1947 	info->alloced += folio_nr_pages(folio);
1948 	inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1949 	shmem_recalc_inode(inode);
1950 	spin_unlock_irq(&info->lock);
1951 	alloced = true;
1952 
1953 	if (folio_test_pmd_mappable(folio) &&
1954 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1955 			hindex + HPAGE_PMD_NR - 1) {
1956 		/*
1957 		 * Part of the huge page is beyond i_size: subject
1958 		 * to shrink under memory pressure.
1959 		 */
1960 		spin_lock(&sbinfo->shrinklist_lock);
1961 		/*
1962 		 * _careful to defend against unlocked access to
1963 		 * ->shrink_list in shmem_unused_huge_shrink()
1964 		 */
1965 		if (list_empty_careful(&info->shrinklist)) {
1966 			list_add_tail(&info->shrinklist,
1967 				      &sbinfo->shrinklist);
1968 			sbinfo->shrinklist_len++;
1969 		}
1970 		spin_unlock(&sbinfo->shrinklist_lock);
1971 	}
1972 
1973 	/*
1974 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1975 	 */
1976 	if (sgp == SGP_FALLOC)
1977 		sgp = SGP_WRITE;
1978 clear:
1979 	/*
1980 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1981 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1982 	 * it now, lest undo on failure cancel our earlier guarantee.
1983 	 */
1984 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
1985 		long i, n = folio_nr_pages(folio);
1986 
1987 		for (i = 0; i < n; i++)
1988 			clear_highpage(folio_page(folio, i));
1989 		flush_dcache_folio(folio);
1990 		folio_mark_uptodate(folio);
1991 	}
1992 
1993 	/* Perhaps the file has been truncated since we checked */
1994 	if (sgp <= SGP_CACHE &&
1995 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1996 		if (alloced) {
1997 			folio_clear_dirty(folio);
1998 			filemap_remove_folio(folio);
1999 			spin_lock_irq(&info->lock);
2000 			shmem_recalc_inode(inode);
2001 			spin_unlock_irq(&info->lock);
2002 		}
2003 		error = -EINVAL;
2004 		goto unlock;
2005 	}
2006 out:
2007 	*pagep = folio_page(folio, index - hindex);
2008 	return 0;
2009 
2010 	/*
2011 	 * Error recovery.
2012 	 */
2013 unacct:
2014 	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2015 
2016 	if (folio_test_large(folio)) {
2017 		folio_unlock(folio);
2018 		folio_put(folio);
2019 		goto alloc_nohuge;
2020 	}
2021 unlock:
2022 	if (folio) {
2023 		folio_unlock(folio);
2024 		folio_put(folio);
2025 	}
2026 	if (error == -ENOSPC && !once++) {
2027 		spin_lock_irq(&info->lock);
2028 		shmem_recalc_inode(inode);
2029 		spin_unlock_irq(&info->lock);
2030 		goto repeat;
2031 	}
2032 	if (error == -EEXIST)
2033 		goto repeat;
2034 	return error;
2035 }
2036 
2037 /*
2038  * This is like autoremove_wake_function, but it removes the wait queue
2039  * entry unconditionally - even if something else had already woken the
2040  * target.
2041  */
2042 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2043 {
2044 	int ret = default_wake_function(wait, mode, sync, key);
2045 	list_del_init(&wait->entry);
2046 	return ret;
2047 }
2048 
2049 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2050 {
2051 	struct vm_area_struct *vma = vmf->vma;
2052 	struct inode *inode = file_inode(vma->vm_file);
2053 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2054 	int err;
2055 	vm_fault_t ret = VM_FAULT_LOCKED;
2056 
2057 	/*
2058 	 * Trinity finds that probing a hole which tmpfs is punching can
2059 	 * prevent the hole-punch from ever completing: which in turn
2060 	 * locks writers out with its hold on i_rwsem.  So refrain from
2061 	 * faulting pages into the hole while it's being punched.  Although
2062 	 * shmem_undo_range() does remove the additions, it may be unable to
2063 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2064 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2065 	 *
2066 	 * It does not matter if we sometimes reach this check just before the
2067 	 * hole-punch begins, so that one fault then races with the punch:
2068 	 * we just need to make racing faults a rare case.
2069 	 *
2070 	 * The implementation below would be much simpler if we just used a
2071 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2072 	 * and bloating every shmem inode for this unlikely case would be sad.
2073 	 */
2074 	if (unlikely(inode->i_private)) {
2075 		struct shmem_falloc *shmem_falloc;
2076 
2077 		spin_lock(&inode->i_lock);
2078 		shmem_falloc = inode->i_private;
2079 		if (shmem_falloc &&
2080 		    shmem_falloc->waitq &&
2081 		    vmf->pgoff >= shmem_falloc->start &&
2082 		    vmf->pgoff < shmem_falloc->next) {
2083 			struct file *fpin;
2084 			wait_queue_head_t *shmem_falloc_waitq;
2085 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2086 
2087 			ret = VM_FAULT_NOPAGE;
2088 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2089 			if (fpin)
2090 				ret = VM_FAULT_RETRY;
2091 
2092 			shmem_falloc_waitq = shmem_falloc->waitq;
2093 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2094 					TASK_UNINTERRUPTIBLE);
2095 			spin_unlock(&inode->i_lock);
2096 			schedule();
2097 
2098 			/*
2099 			 * shmem_falloc_waitq points into the shmem_fallocate()
2100 			 * stack of the hole-punching task: shmem_falloc_waitq
2101 			 * is usually invalid by the time we reach here, but
2102 			 * finish_wait() does not dereference it in that case;
2103 			 * though i_lock needed lest racing with wake_up_all().
2104 			 */
2105 			spin_lock(&inode->i_lock);
2106 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2107 			spin_unlock(&inode->i_lock);
2108 
2109 			if (fpin)
2110 				fput(fpin);
2111 			return ret;
2112 		}
2113 		spin_unlock(&inode->i_lock);
2114 	}
2115 
2116 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2117 				  gfp, vma, vmf, &ret);
2118 	if (err)
2119 		return vmf_error(err);
2120 	return ret;
2121 }
2122 
2123 unsigned long shmem_get_unmapped_area(struct file *file,
2124 				      unsigned long uaddr, unsigned long len,
2125 				      unsigned long pgoff, unsigned long flags)
2126 {
2127 	unsigned long (*get_area)(struct file *,
2128 		unsigned long, unsigned long, unsigned long, unsigned long);
2129 	unsigned long addr;
2130 	unsigned long offset;
2131 	unsigned long inflated_len;
2132 	unsigned long inflated_addr;
2133 	unsigned long inflated_offset;
2134 
2135 	if (len > TASK_SIZE)
2136 		return -ENOMEM;
2137 
2138 	get_area = current->mm->get_unmapped_area;
2139 	addr = get_area(file, uaddr, len, pgoff, flags);
2140 
2141 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2142 		return addr;
2143 	if (IS_ERR_VALUE(addr))
2144 		return addr;
2145 	if (addr & ~PAGE_MASK)
2146 		return addr;
2147 	if (addr > TASK_SIZE - len)
2148 		return addr;
2149 
2150 	if (shmem_huge == SHMEM_HUGE_DENY)
2151 		return addr;
2152 	if (len < HPAGE_PMD_SIZE)
2153 		return addr;
2154 	if (flags & MAP_FIXED)
2155 		return addr;
2156 	/*
2157 	 * Our priority is to support MAP_SHARED mapped hugely;
2158 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2159 	 * But if caller specified an address hint and we allocated area there
2160 	 * successfully, respect that as before.
2161 	 */
2162 	if (uaddr == addr)
2163 		return addr;
2164 
2165 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2166 		struct super_block *sb;
2167 
2168 		if (file) {
2169 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2170 			sb = file_inode(file)->i_sb;
2171 		} else {
2172 			/*
2173 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2174 			 * for "/dev/zero", to create a shared anonymous object.
2175 			 */
2176 			if (IS_ERR(shm_mnt))
2177 				return addr;
2178 			sb = shm_mnt->mnt_sb;
2179 		}
2180 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2181 			return addr;
2182 	}
2183 
2184 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2185 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2186 		return addr;
2187 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2188 		return addr;
2189 
2190 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2191 	if (inflated_len > TASK_SIZE)
2192 		return addr;
2193 	if (inflated_len < len)
2194 		return addr;
2195 
2196 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2197 	if (IS_ERR_VALUE(inflated_addr))
2198 		return addr;
2199 	if (inflated_addr & ~PAGE_MASK)
2200 		return addr;
2201 
2202 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2203 	inflated_addr += offset - inflated_offset;
2204 	if (inflated_offset > offset)
2205 		inflated_addr += HPAGE_PMD_SIZE;
2206 
2207 	if (inflated_addr > TASK_SIZE - len)
2208 		return addr;
2209 	return inflated_addr;
2210 }
2211 
2212 #ifdef CONFIG_NUMA
2213 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2214 {
2215 	struct inode *inode = file_inode(vma->vm_file);
2216 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2217 }
2218 
2219 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2220 					  unsigned long addr)
2221 {
2222 	struct inode *inode = file_inode(vma->vm_file);
2223 	pgoff_t index;
2224 
2225 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2226 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2227 }
2228 #endif
2229 
2230 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2231 {
2232 	struct inode *inode = file_inode(file);
2233 	struct shmem_inode_info *info = SHMEM_I(inode);
2234 	int retval = -ENOMEM;
2235 
2236 	/*
2237 	 * What serializes the accesses to info->flags?
2238 	 * ipc_lock_object() when called from shmctl_do_lock(),
2239 	 * no serialization needed when called from shm_destroy().
2240 	 */
2241 	if (lock && !(info->flags & VM_LOCKED)) {
2242 		if (!user_shm_lock(inode->i_size, ucounts))
2243 			goto out_nomem;
2244 		info->flags |= VM_LOCKED;
2245 		mapping_set_unevictable(file->f_mapping);
2246 	}
2247 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2248 		user_shm_unlock(inode->i_size, ucounts);
2249 		info->flags &= ~VM_LOCKED;
2250 		mapping_clear_unevictable(file->f_mapping);
2251 	}
2252 	retval = 0;
2253 
2254 out_nomem:
2255 	return retval;
2256 }
2257 
2258 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2259 {
2260 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2261 	int ret;
2262 
2263 	ret = seal_check_future_write(info->seals, vma);
2264 	if (ret)
2265 		return ret;
2266 
2267 	/* arm64 - allow memory tagging on RAM-based files */
2268 	vma->vm_flags |= VM_MTE_ALLOWED;
2269 
2270 	file_accessed(file);
2271 	vma->vm_ops = &shmem_vm_ops;
2272 	return 0;
2273 }
2274 
2275 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2276 				     umode_t mode, dev_t dev, unsigned long flags)
2277 {
2278 	struct inode *inode;
2279 	struct shmem_inode_info *info;
2280 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2281 	ino_t ino;
2282 
2283 	if (shmem_reserve_inode(sb, &ino))
2284 		return NULL;
2285 
2286 	inode = new_inode(sb);
2287 	if (inode) {
2288 		inode->i_ino = ino;
2289 		inode_init_owner(&init_user_ns, inode, dir, mode);
2290 		inode->i_blocks = 0;
2291 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2292 		inode->i_generation = prandom_u32();
2293 		info = SHMEM_I(inode);
2294 		memset(info, 0, (char *)inode - (char *)info);
2295 		spin_lock_init(&info->lock);
2296 		atomic_set(&info->stop_eviction, 0);
2297 		info->seals = F_SEAL_SEAL;
2298 		info->flags = flags & VM_NORESERVE;
2299 		info->i_crtime = inode->i_mtime;
2300 		INIT_LIST_HEAD(&info->shrinklist);
2301 		INIT_LIST_HEAD(&info->swaplist);
2302 		simple_xattrs_init(&info->xattrs);
2303 		cache_no_acl(inode);
2304 		mapping_set_large_folios(inode->i_mapping);
2305 
2306 		switch (mode & S_IFMT) {
2307 		default:
2308 			inode->i_op = &shmem_special_inode_operations;
2309 			init_special_inode(inode, mode, dev);
2310 			break;
2311 		case S_IFREG:
2312 			inode->i_mapping->a_ops = &shmem_aops;
2313 			inode->i_op = &shmem_inode_operations;
2314 			inode->i_fop = &shmem_file_operations;
2315 			mpol_shared_policy_init(&info->policy,
2316 						 shmem_get_sbmpol(sbinfo));
2317 			break;
2318 		case S_IFDIR:
2319 			inc_nlink(inode);
2320 			/* Some things misbehave if size == 0 on a directory */
2321 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2322 			inode->i_op = &shmem_dir_inode_operations;
2323 			inode->i_fop = &simple_dir_operations;
2324 			break;
2325 		case S_IFLNK:
2326 			/*
2327 			 * Must not load anything in the rbtree,
2328 			 * mpol_free_shared_policy will not be called.
2329 			 */
2330 			mpol_shared_policy_init(&info->policy, NULL);
2331 			break;
2332 		}
2333 
2334 		lockdep_annotate_inode_mutex_key(inode);
2335 	} else
2336 		shmem_free_inode(sb);
2337 	return inode;
2338 }
2339 
2340 #ifdef CONFIG_USERFAULTFD
2341 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2342 			   pmd_t *dst_pmd,
2343 			   struct vm_area_struct *dst_vma,
2344 			   unsigned long dst_addr,
2345 			   unsigned long src_addr,
2346 			   bool zeropage, bool wp_copy,
2347 			   struct page **pagep)
2348 {
2349 	struct inode *inode = file_inode(dst_vma->vm_file);
2350 	struct shmem_inode_info *info = SHMEM_I(inode);
2351 	struct address_space *mapping = inode->i_mapping;
2352 	gfp_t gfp = mapping_gfp_mask(mapping);
2353 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2354 	void *page_kaddr;
2355 	struct folio *folio;
2356 	struct page *page;
2357 	int ret;
2358 	pgoff_t max_off;
2359 
2360 	if (!shmem_inode_acct_block(inode, 1)) {
2361 		/*
2362 		 * We may have got a page, returned -ENOENT triggering a retry,
2363 		 * and now we find ourselves with -ENOMEM. Release the page, to
2364 		 * avoid a BUG_ON in our caller.
2365 		 */
2366 		if (unlikely(*pagep)) {
2367 			put_page(*pagep);
2368 			*pagep = NULL;
2369 		}
2370 		return -ENOMEM;
2371 	}
2372 
2373 	if (!*pagep) {
2374 		ret = -ENOMEM;
2375 		page = shmem_alloc_page(gfp, info, pgoff);
2376 		if (!page)
2377 			goto out_unacct_blocks;
2378 
2379 		if (!zeropage) {	/* COPY */
2380 			page_kaddr = kmap_atomic(page);
2381 			ret = copy_from_user(page_kaddr,
2382 					     (const void __user *)src_addr,
2383 					     PAGE_SIZE);
2384 			kunmap_atomic(page_kaddr);
2385 
2386 			/* fallback to copy_from_user outside mmap_lock */
2387 			if (unlikely(ret)) {
2388 				*pagep = page;
2389 				ret = -ENOENT;
2390 				/* don't free the page */
2391 				goto out_unacct_blocks;
2392 			}
2393 
2394 			flush_dcache_page(page);
2395 		} else {		/* ZEROPAGE */
2396 			clear_user_highpage(page, dst_addr);
2397 		}
2398 	} else {
2399 		page = *pagep;
2400 		*pagep = NULL;
2401 	}
2402 
2403 	VM_BUG_ON(PageLocked(page));
2404 	VM_BUG_ON(PageSwapBacked(page));
2405 	__SetPageLocked(page);
2406 	__SetPageSwapBacked(page);
2407 	__SetPageUptodate(page);
2408 
2409 	ret = -EFAULT;
2410 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2411 	if (unlikely(pgoff >= max_off))
2412 		goto out_release;
2413 
2414 	folio = page_folio(page);
2415 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2416 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2417 	if (ret)
2418 		goto out_release;
2419 
2420 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2421 				       page, true, wp_copy);
2422 	if (ret)
2423 		goto out_delete_from_cache;
2424 
2425 	spin_lock_irq(&info->lock);
2426 	info->alloced++;
2427 	inode->i_blocks += BLOCKS_PER_PAGE;
2428 	shmem_recalc_inode(inode);
2429 	spin_unlock_irq(&info->lock);
2430 
2431 	unlock_page(page);
2432 	return 0;
2433 out_delete_from_cache:
2434 	delete_from_page_cache(page);
2435 out_release:
2436 	unlock_page(page);
2437 	put_page(page);
2438 out_unacct_blocks:
2439 	shmem_inode_unacct_blocks(inode, 1);
2440 	return ret;
2441 }
2442 #endif /* CONFIG_USERFAULTFD */
2443 
2444 #ifdef CONFIG_TMPFS
2445 static const struct inode_operations shmem_symlink_inode_operations;
2446 static const struct inode_operations shmem_short_symlink_operations;
2447 
2448 #ifdef CONFIG_TMPFS_XATTR
2449 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2450 #else
2451 #define shmem_initxattrs NULL
2452 #endif
2453 
2454 static int
2455 shmem_write_begin(struct file *file, struct address_space *mapping,
2456 			loff_t pos, unsigned len,
2457 			struct page **pagep, void **fsdata)
2458 {
2459 	struct inode *inode = mapping->host;
2460 	struct shmem_inode_info *info = SHMEM_I(inode);
2461 	pgoff_t index = pos >> PAGE_SHIFT;
2462 	int ret = 0;
2463 
2464 	/* i_rwsem is held by caller */
2465 	if (unlikely(info->seals & (F_SEAL_GROW |
2466 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2467 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2468 			return -EPERM;
2469 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2470 			return -EPERM;
2471 	}
2472 
2473 	ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2474 
2475 	if (ret)
2476 		return ret;
2477 
2478 	if (PageHWPoison(*pagep)) {
2479 		unlock_page(*pagep);
2480 		put_page(*pagep);
2481 		*pagep = NULL;
2482 		return -EIO;
2483 	}
2484 
2485 	return 0;
2486 }
2487 
2488 static int
2489 shmem_write_end(struct file *file, struct address_space *mapping,
2490 			loff_t pos, unsigned len, unsigned copied,
2491 			struct page *page, void *fsdata)
2492 {
2493 	struct inode *inode = mapping->host;
2494 
2495 	if (pos + copied > inode->i_size)
2496 		i_size_write(inode, pos + copied);
2497 
2498 	if (!PageUptodate(page)) {
2499 		struct page *head = compound_head(page);
2500 		if (PageTransCompound(page)) {
2501 			int i;
2502 
2503 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2504 				if (head + i == page)
2505 					continue;
2506 				clear_highpage(head + i);
2507 				flush_dcache_page(head + i);
2508 			}
2509 		}
2510 		if (copied < PAGE_SIZE) {
2511 			unsigned from = pos & (PAGE_SIZE - 1);
2512 			zero_user_segments(page, 0, from,
2513 					from + copied, PAGE_SIZE);
2514 		}
2515 		SetPageUptodate(head);
2516 	}
2517 	set_page_dirty(page);
2518 	unlock_page(page);
2519 	put_page(page);
2520 
2521 	return copied;
2522 }
2523 
2524 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2525 {
2526 	struct file *file = iocb->ki_filp;
2527 	struct inode *inode = file_inode(file);
2528 	struct address_space *mapping = inode->i_mapping;
2529 	pgoff_t index;
2530 	unsigned long offset;
2531 	int error = 0;
2532 	ssize_t retval = 0;
2533 	loff_t *ppos = &iocb->ki_pos;
2534 
2535 	index = *ppos >> PAGE_SHIFT;
2536 	offset = *ppos & ~PAGE_MASK;
2537 
2538 	for (;;) {
2539 		struct page *page = NULL;
2540 		pgoff_t end_index;
2541 		unsigned long nr, ret;
2542 		loff_t i_size = i_size_read(inode);
2543 
2544 		end_index = i_size >> PAGE_SHIFT;
2545 		if (index > end_index)
2546 			break;
2547 		if (index == end_index) {
2548 			nr = i_size & ~PAGE_MASK;
2549 			if (nr <= offset)
2550 				break;
2551 		}
2552 
2553 		error = shmem_getpage(inode, index, &page, SGP_READ);
2554 		if (error) {
2555 			if (error == -EINVAL)
2556 				error = 0;
2557 			break;
2558 		}
2559 		if (page) {
2560 			unlock_page(page);
2561 
2562 			if (PageHWPoison(page)) {
2563 				put_page(page);
2564 				error = -EIO;
2565 				break;
2566 			}
2567 		}
2568 
2569 		/*
2570 		 * We must evaluate after, since reads (unlike writes)
2571 		 * are called without i_rwsem protection against truncate
2572 		 */
2573 		nr = PAGE_SIZE;
2574 		i_size = i_size_read(inode);
2575 		end_index = i_size >> PAGE_SHIFT;
2576 		if (index == end_index) {
2577 			nr = i_size & ~PAGE_MASK;
2578 			if (nr <= offset) {
2579 				if (page)
2580 					put_page(page);
2581 				break;
2582 			}
2583 		}
2584 		nr -= offset;
2585 
2586 		if (page) {
2587 			/*
2588 			 * If users can be writing to this page using arbitrary
2589 			 * virtual addresses, take care about potential aliasing
2590 			 * before reading the page on the kernel side.
2591 			 */
2592 			if (mapping_writably_mapped(mapping))
2593 				flush_dcache_page(page);
2594 			/*
2595 			 * Mark the page accessed if we read the beginning.
2596 			 */
2597 			if (!offset)
2598 				mark_page_accessed(page);
2599 			/*
2600 			 * Ok, we have the page, and it's up-to-date, so
2601 			 * now we can copy it to user space...
2602 			 */
2603 			ret = copy_page_to_iter(page, offset, nr, to);
2604 			put_page(page);
2605 
2606 		} else if (iter_is_iovec(to)) {
2607 			/*
2608 			 * Copy to user tends to be so well optimized, but
2609 			 * clear_user() not so much, that it is noticeably
2610 			 * faster to copy the zero page instead of clearing.
2611 			 */
2612 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2613 		} else {
2614 			/*
2615 			 * But submitting the same page twice in a row to
2616 			 * splice() - or others? - can result in confusion:
2617 			 * so don't attempt that optimization on pipes etc.
2618 			 */
2619 			ret = iov_iter_zero(nr, to);
2620 		}
2621 
2622 		retval += ret;
2623 		offset += ret;
2624 		index += offset >> PAGE_SHIFT;
2625 		offset &= ~PAGE_MASK;
2626 
2627 		if (!iov_iter_count(to))
2628 			break;
2629 		if (ret < nr) {
2630 			error = -EFAULT;
2631 			break;
2632 		}
2633 		cond_resched();
2634 	}
2635 
2636 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2637 	file_accessed(file);
2638 	return retval ? retval : error;
2639 }
2640 
2641 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2642 {
2643 	struct address_space *mapping = file->f_mapping;
2644 	struct inode *inode = mapping->host;
2645 
2646 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2647 		return generic_file_llseek_size(file, offset, whence,
2648 					MAX_LFS_FILESIZE, i_size_read(inode));
2649 	if (offset < 0)
2650 		return -ENXIO;
2651 
2652 	inode_lock(inode);
2653 	/* We're holding i_rwsem so we can access i_size directly */
2654 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2655 	if (offset >= 0)
2656 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2657 	inode_unlock(inode);
2658 	return offset;
2659 }
2660 
2661 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2662 							 loff_t len)
2663 {
2664 	struct inode *inode = file_inode(file);
2665 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2666 	struct shmem_inode_info *info = SHMEM_I(inode);
2667 	struct shmem_falloc shmem_falloc;
2668 	pgoff_t start, index, end, undo_fallocend;
2669 	int error;
2670 
2671 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2672 		return -EOPNOTSUPP;
2673 
2674 	inode_lock(inode);
2675 
2676 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2677 		struct address_space *mapping = file->f_mapping;
2678 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2679 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2680 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2681 
2682 		/* protected by i_rwsem */
2683 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2684 			error = -EPERM;
2685 			goto out;
2686 		}
2687 
2688 		shmem_falloc.waitq = &shmem_falloc_waitq;
2689 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2690 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2691 		spin_lock(&inode->i_lock);
2692 		inode->i_private = &shmem_falloc;
2693 		spin_unlock(&inode->i_lock);
2694 
2695 		if ((u64)unmap_end > (u64)unmap_start)
2696 			unmap_mapping_range(mapping, unmap_start,
2697 					    1 + unmap_end - unmap_start, 0);
2698 		shmem_truncate_range(inode, offset, offset + len - 1);
2699 		/* No need to unmap again: hole-punching leaves COWed pages */
2700 
2701 		spin_lock(&inode->i_lock);
2702 		inode->i_private = NULL;
2703 		wake_up_all(&shmem_falloc_waitq);
2704 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2705 		spin_unlock(&inode->i_lock);
2706 		error = 0;
2707 		goto out;
2708 	}
2709 
2710 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2711 	error = inode_newsize_ok(inode, offset + len);
2712 	if (error)
2713 		goto out;
2714 
2715 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2716 		error = -EPERM;
2717 		goto out;
2718 	}
2719 
2720 	start = offset >> PAGE_SHIFT;
2721 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2722 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2723 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2724 		error = -ENOSPC;
2725 		goto out;
2726 	}
2727 
2728 	shmem_falloc.waitq = NULL;
2729 	shmem_falloc.start = start;
2730 	shmem_falloc.next  = start;
2731 	shmem_falloc.nr_falloced = 0;
2732 	shmem_falloc.nr_unswapped = 0;
2733 	spin_lock(&inode->i_lock);
2734 	inode->i_private = &shmem_falloc;
2735 	spin_unlock(&inode->i_lock);
2736 
2737 	/*
2738 	 * info->fallocend is only relevant when huge pages might be
2739 	 * involved: to prevent split_huge_page() freeing fallocated
2740 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2741 	 */
2742 	undo_fallocend = info->fallocend;
2743 	if (info->fallocend < end)
2744 		info->fallocend = end;
2745 
2746 	for (index = start; index < end; ) {
2747 		struct page *page;
2748 
2749 		/*
2750 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2751 		 * been interrupted because we are using up too much memory.
2752 		 */
2753 		if (signal_pending(current))
2754 			error = -EINTR;
2755 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2756 			error = -ENOMEM;
2757 		else
2758 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2759 		if (error) {
2760 			info->fallocend = undo_fallocend;
2761 			/* Remove the !PageUptodate pages we added */
2762 			if (index > start) {
2763 				shmem_undo_range(inode,
2764 				    (loff_t)start << PAGE_SHIFT,
2765 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2766 			}
2767 			goto undone;
2768 		}
2769 
2770 		index++;
2771 		/*
2772 		 * Here is a more important optimization than it appears:
2773 		 * a second SGP_FALLOC on the same huge page will clear it,
2774 		 * making it PageUptodate and un-undoable if we fail later.
2775 		 */
2776 		if (PageTransCompound(page)) {
2777 			index = round_up(index, HPAGE_PMD_NR);
2778 			/* Beware 32-bit wraparound */
2779 			if (!index)
2780 				index--;
2781 		}
2782 
2783 		/*
2784 		 * Inform shmem_writepage() how far we have reached.
2785 		 * No need for lock or barrier: we have the page lock.
2786 		 */
2787 		if (!PageUptodate(page))
2788 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2789 		shmem_falloc.next = index;
2790 
2791 		/*
2792 		 * If !PageUptodate, leave it that way so that freeable pages
2793 		 * can be recognized if we need to rollback on error later.
2794 		 * But set_page_dirty so that memory pressure will swap rather
2795 		 * than free the pages we are allocating (and SGP_CACHE pages
2796 		 * might still be clean: we now need to mark those dirty too).
2797 		 */
2798 		set_page_dirty(page);
2799 		unlock_page(page);
2800 		put_page(page);
2801 		cond_resched();
2802 	}
2803 
2804 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2805 		i_size_write(inode, offset + len);
2806 	inode->i_ctime = current_time(inode);
2807 undone:
2808 	spin_lock(&inode->i_lock);
2809 	inode->i_private = NULL;
2810 	spin_unlock(&inode->i_lock);
2811 out:
2812 	inode_unlock(inode);
2813 	return error;
2814 }
2815 
2816 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2817 {
2818 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2819 
2820 	buf->f_type = TMPFS_MAGIC;
2821 	buf->f_bsize = PAGE_SIZE;
2822 	buf->f_namelen = NAME_MAX;
2823 	if (sbinfo->max_blocks) {
2824 		buf->f_blocks = sbinfo->max_blocks;
2825 		buf->f_bavail =
2826 		buf->f_bfree  = sbinfo->max_blocks -
2827 				percpu_counter_sum(&sbinfo->used_blocks);
2828 	}
2829 	if (sbinfo->max_inodes) {
2830 		buf->f_files = sbinfo->max_inodes;
2831 		buf->f_ffree = sbinfo->free_inodes;
2832 	}
2833 	/* else leave those fields 0 like simple_statfs */
2834 
2835 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2836 
2837 	return 0;
2838 }
2839 
2840 /*
2841  * File creation. Allocate an inode, and we're done..
2842  */
2843 static int
2844 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2845 	    struct dentry *dentry, umode_t mode, dev_t dev)
2846 {
2847 	struct inode *inode;
2848 	int error = -ENOSPC;
2849 
2850 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2851 	if (inode) {
2852 		error = simple_acl_create(dir, inode);
2853 		if (error)
2854 			goto out_iput;
2855 		error = security_inode_init_security(inode, dir,
2856 						     &dentry->d_name,
2857 						     shmem_initxattrs, NULL);
2858 		if (error && error != -EOPNOTSUPP)
2859 			goto out_iput;
2860 
2861 		error = 0;
2862 		dir->i_size += BOGO_DIRENT_SIZE;
2863 		dir->i_ctime = dir->i_mtime = current_time(dir);
2864 		d_instantiate(dentry, inode);
2865 		dget(dentry); /* Extra count - pin the dentry in core */
2866 	}
2867 	return error;
2868 out_iput:
2869 	iput(inode);
2870 	return error;
2871 }
2872 
2873 static int
2874 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2875 	      struct dentry *dentry, umode_t mode)
2876 {
2877 	struct inode *inode;
2878 	int error = -ENOSPC;
2879 
2880 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2881 	if (inode) {
2882 		error = security_inode_init_security(inode, dir,
2883 						     NULL,
2884 						     shmem_initxattrs, NULL);
2885 		if (error && error != -EOPNOTSUPP)
2886 			goto out_iput;
2887 		error = simple_acl_create(dir, inode);
2888 		if (error)
2889 			goto out_iput;
2890 		d_tmpfile(dentry, inode);
2891 	}
2892 	return error;
2893 out_iput:
2894 	iput(inode);
2895 	return error;
2896 }
2897 
2898 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2899 		       struct dentry *dentry, umode_t mode)
2900 {
2901 	int error;
2902 
2903 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2904 				 mode | S_IFDIR, 0)))
2905 		return error;
2906 	inc_nlink(dir);
2907 	return 0;
2908 }
2909 
2910 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2911 			struct dentry *dentry, umode_t mode, bool excl)
2912 {
2913 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2914 }
2915 
2916 /*
2917  * Link a file..
2918  */
2919 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2920 {
2921 	struct inode *inode = d_inode(old_dentry);
2922 	int ret = 0;
2923 
2924 	/*
2925 	 * No ordinary (disk based) filesystem counts links as inodes;
2926 	 * but each new link needs a new dentry, pinning lowmem, and
2927 	 * tmpfs dentries cannot be pruned until they are unlinked.
2928 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2929 	 * first link must skip that, to get the accounting right.
2930 	 */
2931 	if (inode->i_nlink) {
2932 		ret = shmem_reserve_inode(inode->i_sb, NULL);
2933 		if (ret)
2934 			goto out;
2935 	}
2936 
2937 	dir->i_size += BOGO_DIRENT_SIZE;
2938 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2939 	inc_nlink(inode);
2940 	ihold(inode);	/* New dentry reference */
2941 	dget(dentry);		/* Extra pinning count for the created dentry */
2942 	d_instantiate(dentry, inode);
2943 out:
2944 	return ret;
2945 }
2946 
2947 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2948 {
2949 	struct inode *inode = d_inode(dentry);
2950 
2951 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2952 		shmem_free_inode(inode->i_sb);
2953 
2954 	dir->i_size -= BOGO_DIRENT_SIZE;
2955 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2956 	drop_nlink(inode);
2957 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2958 	return 0;
2959 }
2960 
2961 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2962 {
2963 	if (!simple_empty(dentry))
2964 		return -ENOTEMPTY;
2965 
2966 	drop_nlink(d_inode(dentry));
2967 	drop_nlink(dir);
2968 	return shmem_unlink(dir, dentry);
2969 }
2970 
2971 static int shmem_whiteout(struct user_namespace *mnt_userns,
2972 			  struct inode *old_dir, struct dentry *old_dentry)
2973 {
2974 	struct dentry *whiteout;
2975 	int error;
2976 
2977 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2978 	if (!whiteout)
2979 		return -ENOMEM;
2980 
2981 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2982 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2983 	dput(whiteout);
2984 	if (error)
2985 		return error;
2986 
2987 	/*
2988 	 * Cheat and hash the whiteout while the old dentry is still in
2989 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2990 	 *
2991 	 * d_lookup() will consistently find one of them at this point,
2992 	 * not sure which one, but that isn't even important.
2993 	 */
2994 	d_rehash(whiteout);
2995 	return 0;
2996 }
2997 
2998 /*
2999  * The VFS layer already does all the dentry stuff for rename,
3000  * we just have to decrement the usage count for the target if
3001  * it exists so that the VFS layer correctly free's it when it
3002  * gets overwritten.
3003  */
3004 static int shmem_rename2(struct user_namespace *mnt_userns,
3005 			 struct inode *old_dir, struct dentry *old_dentry,
3006 			 struct inode *new_dir, struct dentry *new_dentry,
3007 			 unsigned int flags)
3008 {
3009 	struct inode *inode = d_inode(old_dentry);
3010 	int they_are_dirs = S_ISDIR(inode->i_mode);
3011 
3012 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3013 		return -EINVAL;
3014 
3015 	if (flags & RENAME_EXCHANGE)
3016 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3017 
3018 	if (!simple_empty(new_dentry))
3019 		return -ENOTEMPTY;
3020 
3021 	if (flags & RENAME_WHITEOUT) {
3022 		int error;
3023 
3024 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3025 		if (error)
3026 			return error;
3027 	}
3028 
3029 	if (d_really_is_positive(new_dentry)) {
3030 		(void) shmem_unlink(new_dir, new_dentry);
3031 		if (they_are_dirs) {
3032 			drop_nlink(d_inode(new_dentry));
3033 			drop_nlink(old_dir);
3034 		}
3035 	} else if (they_are_dirs) {
3036 		drop_nlink(old_dir);
3037 		inc_nlink(new_dir);
3038 	}
3039 
3040 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3041 	new_dir->i_size += BOGO_DIRENT_SIZE;
3042 	old_dir->i_ctime = old_dir->i_mtime =
3043 	new_dir->i_ctime = new_dir->i_mtime =
3044 	inode->i_ctime = current_time(old_dir);
3045 	return 0;
3046 }
3047 
3048 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3049 			 struct dentry *dentry, const char *symname)
3050 {
3051 	int error;
3052 	int len;
3053 	struct inode *inode;
3054 	struct page *page;
3055 
3056 	len = strlen(symname) + 1;
3057 	if (len > PAGE_SIZE)
3058 		return -ENAMETOOLONG;
3059 
3060 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3061 				VM_NORESERVE);
3062 	if (!inode)
3063 		return -ENOSPC;
3064 
3065 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3066 					     shmem_initxattrs, NULL);
3067 	if (error && error != -EOPNOTSUPP) {
3068 		iput(inode);
3069 		return error;
3070 	}
3071 
3072 	inode->i_size = len-1;
3073 	if (len <= SHORT_SYMLINK_LEN) {
3074 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3075 		if (!inode->i_link) {
3076 			iput(inode);
3077 			return -ENOMEM;
3078 		}
3079 		inode->i_op = &shmem_short_symlink_operations;
3080 	} else {
3081 		inode_nohighmem(inode);
3082 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3083 		if (error) {
3084 			iput(inode);
3085 			return error;
3086 		}
3087 		inode->i_mapping->a_ops = &shmem_aops;
3088 		inode->i_op = &shmem_symlink_inode_operations;
3089 		memcpy(page_address(page), symname, len);
3090 		SetPageUptodate(page);
3091 		set_page_dirty(page);
3092 		unlock_page(page);
3093 		put_page(page);
3094 	}
3095 	dir->i_size += BOGO_DIRENT_SIZE;
3096 	dir->i_ctime = dir->i_mtime = current_time(dir);
3097 	d_instantiate(dentry, inode);
3098 	dget(dentry);
3099 	return 0;
3100 }
3101 
3102 static void shmem_put_link(void *arg)
3103 {
3104 	mark_page_accessed(arg);
3105 	put_page(arg);
3106 }
3107 
3108 static const char *shmem_get_link(struct dentry *dentry,
3109 				  struct inode *inode,
3110 				  struct delayed_call *done)
3111 {
3112 	struct page *page = NULL;
3113 	int error;
3114 	if (!dentry) {
3115 		page = find_get_page(inode->i_mapping, 0);
3116 		if (!page)
3117 			return ERR_PTR(-ECHILD);
3118 		if (PageHWPoison(page) ||
3119 		    !PageUptodate(page)) {
3120 			put_page(page);
3121 			return ERR_PTR(-ECHILD);
3122 		}
3123 	} else {
3124 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3125 		if (error)
3126 			return ERR_PTR(error);
3127 		if (!page)
3128 			return ERR_PTR(-ECHILD);
3129 		if (PageHWPoison(page)) {
3130 			unlock_page(page);
3131 			put_page(page);
3132 			return ERR_PTR(-ECHILD);
3133 		}
3134 		unlock_page(page);
3135 	}
3136 	set_delayed_call(done, shmem_put_link, page);
3137 	return page_address(page);
3138 }
3139 
3140 #ifdef CONFIG_TMPFS_XATTR
3141 /*
3142  * Superblocks without xattr inode operations may get some security.* xattr
3143  * support from the LSM "for free". As soon as we have any other xattrs
3144  * like ACLs, we also need to implement the security.* handlers at
3145  * filesystem level, though.
3146  */
3147 
3148 /*
3149  * Callback for security_inode_init_security() for acquiring xattrs.
3150  */
3151 static int shmem_initxattrs(struct inode *inode,
3152 			    const struct xattr *xattr_array,
3153 			    void *fs_info)
3154 {
3155 	struct shmem_inode_info *info = SHMEM_I(inode);
3156 	const struct xattr *xattr;
3157 	struct simple_xattr *new_xattr;
3158 	size_t len;
3159 
3160 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3161 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3162 		if (!new_xattr)
3163 			return -ENOMEM;
3164 
3165 		len = strlen(xattr->name) + 1;
3166 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3167 					  GFP_KERNEL);
3168 		if (!new_xattr->name) {
3169 			kvfree(new_xattr);
3170 			return -ENOMEM;
3171 		}
3172 
3173 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3174 		       XATTR_SECURITY_PREFIX_LEN);
3175 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3176 		       xattr->name, len);
3177 
3178 		simple_xattr_list_add(&info->xattrs, new_xattr);
3179 	}
3180 
3181 	return 0;
3182 }
3183 
3184 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3185 				   struct dentry *unused, struct inode *inode,
3186 				   const char *name, void *buffer, size_t size)
3187 {
3188 	struct shmem_inode_info *info = SHMEM_I(inode);
3189 
3190 	name = xattr_full_name(handler, name);
3191 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3192 }
3193 
3194 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3195 				   struct user_namespace *mnt_userns,
3196 				   struct dentry *unused, struct inode *inode,
3197 				   const char *name, const void *value,
3198 				   size_t size, int flags)
3199 {
3200 	struct shmem_inode_info *info = SHMEM_I(inode);
3201 
3202 	name = xattr_full_name(handler, name);
3203 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3204 }
3205 
3206 static const struct xattr_handler shmem_security_xattr_handler = {
3207 	.prefix = XATTR_SECURITY_PREFIX,
3208 	.get = shmem_xattr_handler_get,
3209 	.set = shmem_xattr_handler_set,
3210 };
3211 
3212 static const struct xattr_handler shmem_trusted_xattr_handler = {
3213 	.prefix = XATTR_TRUSTED_PREFIX,
3214 	.get = shmem_xattr_handler_get,
3215 	.set = shmem_xattr_handler_set,
3216 };
3217 
3218 static const struct xattr_handler *shmem_xattr_handlers[] = {
3219 #ifdef CONFIG_TMPFS_POSIX_ACL
3220 	&posix_acl_access_xattr_handler,
3221 	&posix_acl_default_xattr_handler,
3222 #endif
3223 	&shmem_security_xattr_handler,
3224 	&shmem_trusted_xattr_handler,
3225 	NULL
3226 };
3227 
3228 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3229 {
3230 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3231 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3232 }
3233 #endif /* CONFIG_TMPFS_XATTR */
3234 
3235 static const struct inode_operations shmem_short_symlink_operations = {
3236 	.getattr	= shmem_getattr,
3237 	.get_link	= simple_get_link,
3238 #ifdef CONFIG_TMPFS_XATTR
3239 	.listxattr	= shmem_listxattr,
3240 #endif
3241 };
3242 
3243 static const struct inode_operations shmem_symlink_inode_operations = {
3244 	.getattr	= shmem_getattr,
3245 	.get_link	= shmem_get_link,
3246 #ifdef CONFIG_TMPFS_XATTR
3247 	.listxattr	= shmem_listxattr,
3248 #endif
3249 };
3250 
3251 static struct dentry *shmem_get_parent(struct dentry *child)
3252 {
3253 	return ERR_PTR(-ESTALE);
3254 }
3255 
3256 static int shmem_match(struct inode *ino, void *vfh)
3257 {
3258 	__u32 *fh = vfh;
3259 	__u64 inum = fh[2];
3260 	inum = (inum << 32) | fh[1];
3261 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3262 }
3263 
3264 /* Find any alias of inode, but prefer a hashed alias */
3265 static struct dentry *shmem_find_alias(struct inode *inode)
3266 {
3267 	struct dentry *alias = d_find_alias(inode);
3268 
3269 	return alias ?: d_find_any_alias(inode);
3270 }
3271 
3272 
3273 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3274 		struct fid *fid, int fh_len, int fh_type)
3275 {
3276 	struct inode *inode;
3277 	struct dentry *dentry = NULL;
3278 	u64 inum;
3279 
3280 	if (fh_len < 3)
3281 		return NULL;
3282 
3283 	inum = fid->raw[2];
3284 	inum = (inum << 32) | fid->raw[1];
3285 
3286 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3287 			shmem_match, fid->raw);
3288 	if (inode) {
3289 		dentry = shmem_find_alias(inode);
3290 		iput(inode);
3291 	}
3292 
3293 	return dentry;
3294 }
3295 
3296 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3297 				struct inode *parent)
3298 {
3299 	if (*len < 3) {
3300 		*len = 3;
3301 		return FILEID_INVALID;
3302 	}
3303 
3304 	if (inode_unhashed(inode)) {
3305 		/* Unfortunately insert_inode_hash is not idempotent,
3306 		 * so as we hash inodes here rather than at creation
3307 		 * time, we need a lock to ensure we only try
3308 		 * to do it once
3309 		 */
3310 		static DEFINE_SPINLOCK(lock);
3311 		spin_lock(&lock);
3312 		if (inode_unhashed(inode))
3313 			__insert_inode_hash(inode,
3314 					    inode->i_ino + inode->i_generation);
3315 		spin_unlock(&lock);
3316 	}
3317 
3318 	fh[0] = inode->i_generation;
3319 	fh[1] = inode->i_ino;
3320 	fh[2] = ((__u64)inode->i_ino) >> 32;
3321 
3322 	*len = 3;
3323 	return 1;
3324 }
3325 
3326 static const struct export_operations shmem_export_ops = {
3327 	.get_parent     = shmem_get_parent,
3328 	.encode_fh      = shmem_encode_fh,
3329 	.fh_to_dentry	= shmem_fh_to_dentry,
3330 };
3331 
3332 enum shmem_param {
3333 	Opt_gid,
3334 	Opt_huge,
3335 	Opt_mode,
3336 	Opt_mpol,
3337 	Opt_nr_blocks,
3338 	Opt_nr_inodes,
3339 	Opt_size,
3340 	Opt_uid,
3341 	Opt_inode32,
3342 	Opt_inode64,
3343 };
3344 
3345 static const struct constant_table shmem_param_enums_huge[] = {
3346 	{"never",	SHMEM_HUGE_NEVER },
3347 	{"always",	SHMEM_HUGE_ALWAYS },
3348 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3349 	{"advise",	SHMEM_HUGE_ADVISE },
3350 	{}
3351 };
3352 
3353 const struct fs_parameter_spec shmem_fs_parameters[] = {
3354 	fsparam_u32   ("gid",		Opt_gid),
3355 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3356 	fsparam_u32oct("mode",		Opt_mode),
3357 	fsparam_string("mpol",		Opt_mpol),
3358 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3359 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3360 	fsparam_string("size",		Opt_size),
3361 	fsparam_u32   ("uid",		Opt_uid),
3362 	fsparam_flag  ("inode32",	Opt_inode32),
3363 	fsparam_flag  ("inode64",	Opt_inode64),
3364 	{}
3365 };
3366 
3367 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3368 {
3369 	struct shmem_options *ctx = fc->fs_private;
3370 	struct fs_parse_result result;
3371 	unsigned long long size;
3372 	char *rest;
3373 	int opt;
3374 
3375 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3376 	if (opt < 0)
3377 		return opt;
3378 
3379 	switch (opt) {
3380 	case Opt_size:
3381 		size = memparse(param->string, &rest);
3382 		if (*rest == '%') {
3383 			size <<= PAGE_SHIFT;
3384 			size *= totalram_pages();
3385 			do_div(size, 100);
3386 			rest++;
3387 		}
3388 		if (*rest)
3389 			goto bad_value;
3390 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3391 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3392 		break;
3393 	case Opt_nr_blocks:
3394 		ctx->blocks = memparse(param->string, &rest);
3395 		if (*rest)
3396 			goto bad_value;
3397 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3398 		break;
3399 	case Opt_nr_inodes:
3400 		ctx->inodes = memparse(param->string, &rest);
3401 		if (*rest)
3402 			goto bad_value;
3403 		ctx->seen |= SHMEM_SEEN_INODES;
3404 		break;
3405 	case Opt_mode:
3406 		ctx->mode = result.uint_32 & 07777;
3407 		break;
3408 	case Opt_uid:
3409 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3410 		if (!uid_valid(ctx->uid))
3411 			goto bad_value;
3412 		break;
3413 	case Opt_gid:
3414 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3415 		if (!gid_valid(ctx->gid))
3416 			goto bad_value;
3417 		break;
3418 	case Opt_huge:
3419 		ctx->huge = result.uint_32;
3420 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3421 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3422 		      has_transparent_hugepage()))
3423 			goto unsupported_parameter;
3424 		ctx->seen |= SHMEM_SEEN_HUGE;
3425 		break;
3426 	case Opt_mpol:
3427 		if (IS_ENABLED(CONFIG_NUMA)) {
3428 			mpol_put(ctx->mpol);
3429 			ctx->mpol = NULL;
3430 			if (mpol_parse_str(param->string, &ctx->mpol))
3431 				goto bad_value;
3432 			break;
3433 		}
3434 		goto unsupported_parameter;
3435 	case Opt_inode32:
3436 		ctx->full_inums = false;
3437 		ctx->seen |= SHMEM_SEEN_INUMS;
3438 		break;
3439 	case Opt_inode64:
3440 		if (sizeof(ino_t) < 8) {
3441 			return invalfc(fc,
3442 				       "Cannot use inode64 with <64bit inums in kernel\n");
3443 		}
3444 		ctx->full_inums = true;
3445 		ctx->seen |= SHMEM_SEEN_INUMS;
3446 		break;
3447 	}
3448 	return 0;
3449 
3450 unsupported_parameter:
3451 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3452 bad_value:
3453 	return invalfc(fc, "Bad value for '%s'", param->key);
3454 }
3455 
3456 static int shmem_parse_options(struct fs_context *fc, void *data)
3457 {
3458 	char *options = data;
3459 
3460 	if (options) {
3461 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3462 		if (err)
3463 			return err;
3464 	}
3465 
3466 	while (options != NULL) {
3467 		char *this_char = options;
3468 		for (;;) {
3469 			/*
3470 			 * NUL-terminate this option: unfortunately,
3471 			 * mount options form a comma-separated list,
3472 			 * but mpol's nodelist may also contain commas.
3473 			 */
3474 			options = strchr(options, ',');
3475 			if (options == NULL)
3476 				break;
3477 			options++;
3478 			if (!isdigit(*options)) {
3479 				options[-1] = '\0';
3480 				break;
3481 			}
3482 		}
3483 		if (*this_char) {
3484 			char *value = strchr(this_char, '=');
3485 			size_t len = 0;
3486 			int err;
3487 
3488 			if (value) {
3489 				*value++ = '\0';
3490 				len = strlen(value);
3491 			}
3492 			err = vfs_parse_fs_string(fc, this_char, value, len);
3493 			if (err < 0)
3494 				return err;
3495 		}
3496 	}
3497 	return 0;
3498 }
3499 
3500 /*
3501  * Reconfigure a shmem filesystem.
3502  *
3503  * Note that we disallow change from limited->unlimited blocks/inodes while any
3504  * are in use; but we must separately disallow unlimited->limited, because in
3505  * that case we have no record of how much is already in use.
3506  */
3507 static int shmem_reconfigure(struct fs_context *fc)
3508 {
3509 	struct shmem_options *ctx = fc->fs_private;
3510 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3511 	unsigned long inodes;
3512 	struct mempolicy *mpol = NULL;
3513 	const char *err;
3514 
3515 	raw_spin_lock(&sbinfo->stat_lock);
3516 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3517 	if (ctx->blocks > S64_MAX) {
3518 		err = "Number of blocks too large";
3519 		goto out;
3520 	}
3521 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3522 		if (!sbinfo->max_blocks) {
3523 			err = "Cannot retroactively limit size";
3524 			goto out;
3525 		}
3526 		if (percpu_counter_compare(&sbinfo->used_blocks,
3527 					   ctx->blocks) > 0) {
3528 			err = "Too small a size for current use";
3529 			goto out;
3530 		}
3531 	}
3532 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3533 		if (!sbinfo->max_inodes) {
3534 			err = "Cannot retroactively limit inodes";
3535 			goto out;
3536 		}
3537 		if (ctx->inodes < inodes) {
3538 			err = "Too few inodes for current use";
3539 			goto out;
3540 		}
3541 	}
3542 
3543 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3544 	    sbinfo->next_ino > UINT_MAX) {
3545 		err = "Current inum too high to switch to 32-bit inums";
3546 		goto out;
3547 	}
3548 
3549 	if (ctx->seen & SHMEM_SEEN_HUGE)
3550 		sbinfo->huge = ctx->huge;
3551 	if (ctx->seen & SHMEM_SEEN_INUMS)
3552 		sbinfo->full_inums = ctx->full_inums;
3553 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3554 		sbinfo->max_blocks  = ctx->blocks;
3555 	if (ctx->seen & SHMEM_SEEN_INODES) {
3556 		sbinfo->max_inodes  = ctx->inodes;
3557 		sbinfo->free_inodes = ctx->inodes - inodes;
3558 	}
3559 
3560 	/*
3561 	 * Preserve previous mempolicy unless mpol remount option was specified.
3562 	 */
3563 	if (ctx->mpol) {
3564 		mpol = sbinfo->mpol;
3565 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3566 		ctx->mpol = NULL;
3567 	}
3568 	raw_spin_unlock(&sbinfo->stat_lock);
3569 	mpol_put(mpol);
3570 	return 0;
3571 out:
3572 	raw_spin_unlock(&sbinfo->stat_lock);
3573 	return invalfc(fc, "%s", err);
3574 }
3575 
3576 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3577 {
3578 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3579 
3580 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3581 		seq_printf(seq, ",size=%luk",
3582 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3583 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3584 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3585 	if (sbinfo->mode != (0777 | S_ISVTX))
3586 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3587 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3588 		seq_printf(seq, ",uid=%u",
3589 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3590 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3591 		seq_printf(seq, ",gid=%u",
3592 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3593 
3594 	/*
3595 	 * Showing inode{64,32} might be useful even if it's the system default,
3596 	 * since then people don't have to resort to checking both here and
3597 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3598 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3599 	 *
3600 	 * We hide it when inode64 isn't the default and we are using 32-bit
3601 	 * inodes, since that probably just means the feature isn't even under
3602 	 * consideration.
3603 	 *
3604 	 * As such:
3605 	 *
3606 	 *                     +-----------------+-----------------+
3607 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3608 	 *  +------------------+-----------------+-----------------+
3609 	 *  | full_inums=true  | show            | show            |
3610 	 *  | full_inums=false | show            | hide            |
3611 	 *  +------------------+-----------------+-----------------+
3612 	 *
3613 	 */
3614 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3615 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3616 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3617 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3618 	if (sbinfo->huge)
3619 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3620 #endif
3621 	shmem_show_mpol(seq, sbinfo->mpol);
3622 	return 0;
3623 }
3624 
3625 #endif /* CONFIG_TMPFS */
3626 
3627 static void shmem_put_super(struct super_block *sb)
3628 {
3629 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3630 
3631 	free_percpu(sbinfo->ino_batch);
3632 	percpu_counter_destroy(&sbinfo->used_blocks);
3633 	mpol_put(sbinfo->mpol);
3634 	kfree(sbinfo);
3635 	sb->s_fs_info = NULL;
3636 }
3637 
3638 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3639 {
3640 	struct shmem_options *ctx = fc->fs_private;
3641 	struct inode *inode;
3642 	struct shmem_sb_info *sbinfo;
3643 
3644 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3645 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3646 				L1_CACHE_BYTES), GFP_KERNEL);
3647 	if (!sbinfo)
3648 		return -ENOMEM;
3649 
3650 	sb->s_fs_info = sbinfo;
3651 
3652 #ifdef CONFIG_TMPFS
3653 	/*
3654 	 * Per default we only allow half of the physical ram per
3655 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3656 	 * but the internal instance is left unlimited.
3657 	 */
3658 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3659 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3660 			ctx->blocks = shmem_default_max_blocks();
3661 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3662 			ctx->inodes = shmem_default_max_inodes();
3663 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3664 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3665 	} else {
3666 		sb->s_flags |= SB_NOUSER;
3667 	}
3668 	sb->s_export_op = &shmem_export_ops;
3669 	sb->s_flags |= SB_NOSEC;
3670 #else
3671 	sb->s_flags |= SB_NOUSER;
3672 #endif
3673 	sbinfo->max_blocks = ctx->blocks;
3674 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3675 	if (sb->s_flags & SB_KERNMOUNT) {
3676 		sbinfo->ino_batch = alloc_percpu(ino_t);
3677 		if (!sbinfo->ino_batch)
3678 			goto failed;
3679 	}
3680 	sbinfo->uid = ctx->uid;
3681 	sbinfo->gid = ctx->gid;
3682 	sbinfo->full_inums = ctx->full_inums;
3683 	sbinfo->mode = ctx->mode;
3684 	sbinfo->huge = ctx->huge;
3685 	sbinfo->mpol = ctx->mpol;
3686 	ctx->mpol = NULL;
3687 
3688 	raw_spin_lock_init(&sbinfo->stat_lock);
3689 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3690 		goto failed;
3691 	spin_lock_init(&sbinfo->shrinklist_lock);
3692 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3693 
3694 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3695 	sb->s_blocksize = PAGE_SIZE;
3696 	sb->s_blocksize_bits = PAGE_SHIFT;
3697 	sb->s_magic = TMPFS_MAGIC;
3698 	sb->s_op = &shmem_ops;
3699 	sb->s_time_gran = 1;
3700 #ifdef CONFIG_TMPFS_XATTR
3701 	sb->s_xattr = shmem_xattr_handlers;
3702 #endif
3703 #ifdef CONFIG_TMPFS_POSIX_ACL
3704 	sb->s_flags |= SB_POSIXACL;
3705 #endif
3706 	uuid_gen(&sb->s_uuid);
3707 
3708 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3709 	if (!inode)
3710 		goto failed;
3711 	inode->i_uid = sbinfo->uid;
3712 	inode->i_gid = sbinfo->gid;
3713 	sb->s_root = d_make_root(inode);
3714 	if (!sb->s_root)
3715 		goto failed;
3716 	return 0;
3717 
3718 failed:
3719 	shmem_put_super(sb);
3720 	return -ENOMEM;
3721 }
3722 
3723 static int shmem_get_tree(struct fs_context *fc)
3724 {
3725 	return get_tree_nodev(fc, shmem_fill_super);
3726 }
3727 
3728 static void shmem_free_fc(struct fs_context *fc)
3729 {
3730 	struct shmem_options *ctx = fc->fs_private;
3731 
3732 	if (ctx) {
3733 		mpol_put(ctx->mpol);
3734 		kfree(ctx);
3735 	}
3736 }
3737 
3738 static const struct fs_context_operations shmem_fs_context_ops = {
3739 	.free			= shmem_free_fc,
3740 	.get_tree		= shmem_get_tree,
3741 #ifdef CONFIG_TMPFS
3742 	.parse_monolithic	= shmem_parse_options,
3743 	.parse_param		= shmem_parse_one,
3744 	.reconfigure		= shmem_reconfigure,
3745 #endif
3746 };
3747 
3748 static struct kmem_cache *shmem_inode_cachep;
3749 
3750 static struct inode *shmem_alloc_inode(struct super_block *sb)
3751 {
3752 	struct shmem_inode_info *info;
3753 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3754 	if (!info)
3755 		return NULL;
3756 	return &info->vfs_inode;
3757 }
3758 
3759 static void shmem_free_in_core_inode(struct inode *inode)
3760 {
3761 	if (S_ISLNK(inode->i_mode))
3762 		kfree(inode->i_link);
3763 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3764 }
3765 
3766 static void shmem_destroy_inode(struct inode *inode)
3767 {
3768 	if (S_ISREG(inode->i_mode))
3769 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3770 }
3771 
3772 static void shmem_init_inode(void *foo)
3773 {
3774 	struct shmem_inode_info *info = foo;
3775 	inode_init_once(&info->vfs_inode);
3776 }
3777 
3778 static void shmem_init_inodecache(void)
3779 {
3780 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3781 				sizeof(struct shmem_inode_info),
3782 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3783 }
3784 
3785 static void shmem_destroy_inodecache(void)
3786 {
3787 	kmem_cache_destroy(shmem_inode_cachep);
3788 }
3789 
3790 /* Keep the page in page cache instead of truncating it */
3791 static int shmem_error_remove_page(struct address_space *mapping,
3792 				   struct page *page)
3793 {
3794 	return 0;
3795 }
3796 
3797 const struct address_space_operations shmem_aops = {
3798 	.writepage	= shmem_writepage,
3799 	.dirty_folio	= noop_dirty_folio,
3800 #ifdef CONFIG_TMPFS
3801 	.write_begin	= shmem_write_begin,
3802 	.write_end	= shmem_write_end,
3803 #endif
3804 #ifdef CONFIG_MIGRATION
3805 	.migratepage	= migrate_page,
3806 #endif
3807 	.error_remove_page = shmem_error_remove_page,
3808 };
3809 EXPORT_SYMBOL(shmem_aops);
3810 
3811 static const struct file_operations shmem_file_operations = {
3812 	.mmap		= shmem_mmap,
3813 	.get_unmapped_area = shmem_get_unmapped_area,
3814 #ifdef CONFIG_TMPFS
3815 	.llseek		= shmem_file_llseek,
3816 	.read_iter	= shmem_file_read_iter,
3817 	.write_iter	= generic_file_write_iter,
3818 	.fsync		= noop_fsync,
3819 	.splice_read	= generic_file_splice_read,
3820 	.splice_write	= iter_file_splice_write,
3821 	.fallocate	= shmem_fallocate,
3822 #endif
3823 };
3824 
3825 static const struct inode_operations shmem_inode_operations = {
3826 	.getattr	= shmem_getattr,
3827 	.setattr	= shmem_setattr,
3828 #ifdef CONFIG_TMPFS_XATTR
3829 	.listxattr	= shmem_listxattr,
3830 	.set_acl	= simple_set_acl,
3831 #endif
3832 };
3833 
3834 static const struct inode_operations shmem_dir_inode_operations = {
3835 #ifdef CONFIG_TMPFS
3836 	.getattr	= shmem_getattr,
3837 	.create		= shmem_create,
3838 	.lookup		= simple_lookup,
3839 	.link		= shmem_link,
3840 	.unlink		= shmem_unlink,
3841 	.symlink	= shmem_symlink,
3842 	.mkdir		= shmem_mkdir,
3843 	.rmdir		= shmem_rmdir,
3844 	.mknod		= shmem_mknod,
3845 	.rename		= shmem_rename2,
3846 	.tmpfile	= shmem_tmpfile,
3847 #endif
3848 #ifdef CONFIG_TMPFS_XATTR
3849 	.listxattr	= shmem_listxattr,
3850 #endif
3851 #ifdef CONFIG_TMPFS_POSIX_ACL
3852 	.setattr	= shmem_setattr,
3853 	.set_acl	= simple_set_acl,
3854 #endif
3855 };
3856 
3857 static const struct inode_operations shmem_special_inode_operations = {
3858 	.getattr	= shmem_getattr,
3859 #ifdef CONFIG_TMPFS_XATTR
3860 	.listxattr	= shmem_listxattr,
3861 #endif
3862 #ifdef CONFIG_TMPFS_POSIX_ACL
3863 	.setattr	= shmem_setattr,
3864 	.set_acl	= simple_set_acl,
3865 #endif
3866 };
3867 
3868 static const struct super_operations shmem_ops = {
3869 	.alloc_inode	= shmem_alloc_inode,
3870 	.free_inode	= shmem_free_in_core_inode,
3871 	.destroy_inode	= shmem_destroy_inode,
3872 #ifdef CONFIG_TMPFS
3873 	.statfs		= shmem_statfs,
3874 	.show_options	= shmem_show_options,
3875 #endif
3876 	.evict_inode	= shmem_evict_inode,
3877 	.drop_inode	= generic_delete_inode,
3878 	.put_super	= shmem_put_super,
3879 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3880 	.nr_cached_objects	= shmem_unused_huge_count,
3881 	.free_cached_objects	= shmem_unused_huge_scan,
3882 #endif
3883 };
3884 
3885 static const struct vm_operations_struct shmem_vm_ops = {
3886 	.fault		= shmem_fault,
3887 	.map_pages	= filemap_map_pages,
3888 #ifdef CONFIG_NUMA
3889 	.set_policy     = shmem_set_policy,
3890 	.get_policy     = shmem_get_policy,
3891 #endif
3892 };
3893 
3894 int shmem_init_fs_context(struct fs_context *fc)
3895 {
3896 	struct shmem_options *ctx;
3897 
3898 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3899 	if (!ctx)
3900 		return -ENOMEM;
3901 
3902 	ctx->mode = 0777 | S_ISVTX;
3903 	ctx->uid = current_fsuid();
3904 	ctx->gid = current_fsgid();
3905 
3906 	fc->fs_private = ctx;
3907 	fc->ops = &shmem_fs_context_ops;
3908 	return 0;
3909 }
3910 
3911 static struct file_system_type shmem_fs_type = {
3912 	.owner		= THIS_MODULE,
3913 	.name		= "tmpfs",
3914 	.init_fs_context = shmem_init_fs_context,
3915 #ifdef CONFIG_TMPFS
3916 	.parameters	= shmem_fs_parameters,
3917 #endif
3918 	.kill_sb	= kill_litter_super,
3919 	.fs_flags	= FS_USERNS_MOUNT,
3920 };
3921 
3922 void __init shmem_init(void)
3923 {
3924 	int error;
3925 
3926 	shmem_init_inodecache();
3927 
3928 	error = register_filesystem(&shmem_fs_type);
3929 	if (error) {
3930 		pr_err("Could not register tmpfs\n");
3931 		goto out2;
3932 	}
3933 
3934 	shm_mnt = kern_mount(&shmem_fs_type);
3935 	if (IS_ERR(shm_mnt)) {
3936 		error = PTR_ERR(shm_mnt);
3937 		pr_err("Could not kern_mount tmpfs\n");
3938 		goto out1;
3939 	}
3940 
3941 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3942 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3943 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3944 	else
3945 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3946 #endif
3947 	return;
3948 
3949 out1:
3950 	unregister_filesystem(&shmem_fs_type);
3951 out2:
3952 	shmem_destroy_inodecache();
3953 	shm_mnt = ERR_PTR(error);
3954 }
3955 
3956 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3957 static ssize_t shmem_enabled_show(struct kobject *kobj,
3958 				  struct kobj_attribute *attr, char *buf)
3959 {
3960 	static const int values[] = {
3961 		SHMEM_HUGE_ALWAYS,
3962 		SHMEM_HUGE_WITHIN_SIZE,
3963 		SHMEM_HUGE_ADVISE,
3964 		SHMEM_HUGE_NEVER,
3965 		SHMEM_HUGE_DENY,
3966 		SHMEM_HUGE_FORCE,
3967 	};
3968 	int len = 0;
3969 	int i;
3970 
3971 	for (i = 0; i < ARRAY_SIZE(values); i++) {
3972 		len += sysfs_emit_at(buf, len,
3973 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3974 				     i ? " " : "",
3975 				     shmem_format_huge(values[i]));
3976 	}
3977 
3978 	len += sysfs_emit_at(buf, len, "\n");
3979 
3980 	return len;
3981 }
3982 
3983 static ssize_t shmem_enabled_store(struct kobject *kobj,
3984 		struct kobj_attribute *attr, const char *buf, size_t count)
3985 {
3986 	char tmp[16];
3987 	int huge;
3988 
3989 	if (count + 1 > sizeof(tmp))
3990 		return -EINVAL;
3991 	memcpy(tmp, buf, count);
3992 	tmp[count] = '\0';
3993 	if (count && tmp[count - 1] == '\n')
3994 		tmp[count - 1] = '\0';
3995 
3996 	huge = shmem_parse_huge(tmp);
3997 	if (huge == -EINVAL)
3998 		return -EINVAL;
3999 	if (!has_transparent_hugepage() &&
4000 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4001 		return -EINVAL;
4002 
4003 	shmem_huge = huge;
4004 	if (shmem_huge > SHMEM_HUGE_DENY)
4005 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4006 	return count;
4007 }
4008 
4009 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4010 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4011 
4012 #else /* !CONFIG_SHMEM */
4013 
4014 /*
4015  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4016  *
4017  * This is intended for small system where the benefits of the full
4018  * shmem code (swap-backed and resource-limited) are outweighed by
4019  * their complexity. On systems without swap this code should be
4020  * effectively equivalent, but much lighter weight.
4021  */
4022 
4023 static struct file_system_type shmem_fs_type = {
4024 	.name		= "tmpfs",
4025 	.init_fs_context = ramfs_init_fs_context,
4026 	.parameters	= ramfs_fs_parameters,
4027 	.kill_sb	= kill_litter_super,
4028 	.fs_flags	= FS_USERNS_MOUNT,
4029 };
4030 
4031 void __init shmem_init(void)
4032 {
4033 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4034 
4035 	shm_mnt = kern_mount(&shmem_fs_type);
4036 	BUG_ON(IS_ERR(shm_mnt));
4037 }
4038 
4039 int shmem_unuse(unsigned int type)
4040 {
4041 	return 0;
4042 }
4043 
4044 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4045 {
4046 	return 0;
4047 }
4048 
4049 void shmem_unlock_mapping(struct address_space *mapping)
4050 {
4051 }
4052 
4053 #ifdef CONFIG_MMU
4054 unsigned long shmem_get_unmapped_area(struct file *file,
4055 				      unsigned long addr, unsigned long len,
4056 				      unsigned long pgoff, unsigned long flags)
4057 {
4058 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4059 }
4060 #endif
4061 
4062 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4063 {
4064 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4065 }
4066 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4067 
4068 #define shmem_vm_ops				generic_file_vm_ops
4069 #define shmem_file_operations			ramfs_file_operations
4070 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4071 #define shmem_acct_size(flags, size)		0
4072 #define shmem_unacct_size(flags, size)		do {} while (0)
4073 
4074 #endif /* CONFIG_SHMEM */
4075 
4076 /* common code */
4077 
4078 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4079 				       unsigned long flags, unsigned int i_flags)
4080 {
4081 	struct inode *inode;
4082 	struct file *res;
4083 
4084 	if (IS_ERR(mnt))
4085 		return ERR_CAST(mnt);
4086 
4087 	if (size < 0 || size > MAX_LFS_FILESIZE)
4088 		return ERR_PTR(-EINVAL);
4089 
4090 	if (shmem_acct_size(flags, size))
4091 		return ERR_PTR(-ENOMEM);
4092 
4093 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4094 				flags);
4095 	if (unlikely(!inode)) {
4096 		shmem_unacct_size(flags, size);
4097 		return ERR_PTR(-ENOSPC);
4098 	}
4099 	inode->i_flags |= i_flags;
4100 	inode->i_size = size;
4101 	clear_nlink(inode);	/* It is unlinked */
4102 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4103 	if (!IS_ERR(res))
4104 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4105 				&shmem_file_operations);
4106 	if (IS_ERR(res))
4107 		iput(inode);
4108 	return res;
4109 }
4110 
4111 /**
4112  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4113  * 	kernel internal.  There will be NO LSM permission checks against the
4114  * 	underlying inode.  So users of this interface must do LSM checks at a
4115  *	higher layer.  The users are the big_key and shm implementations.  LSM
4116  *	checks are provided at the key or shm level rather than the inode.
4117  * @name: name for dentry (to be seen in /proc/<pid>/maps
4118  * @size: size to be set for the file
4119  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4120  */
4121 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4122 {
4123 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4124 }
4125 
4126 /**
4127  * shmem_file_setup - get an unlinked file living in tmpfs
4128  * @name: name for dentry (to be seen in /proc/<pid>/maps
4129  * @size: size to be set for the file
4130  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4131  */
4132 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4133 {
4134 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4135 }
4136 EXPORT_SYMBOL_GPL(shmem_file_setup);
4137 
4138 /**
4139  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4140  * @mnt: the tmpfs mount where the file will be created
4141  * @name: name for dentry (to be seen in /proc/<pid>/maps
4142  * @size: size to be set for the file
4143  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4144  */
4145 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4146 				       loff_t size, unsigned long flags)
4147 {
4148 	return __shmem_file_setup(mnt, name, size, flags, 0);
4149 }
4150 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4151 
4152 /**
4153  * shmem_zero_setup - setup a shared anonymous mapping
4154  * @vma: the vma to be mmapped is prepared by do_mmap
4155  */
4156 int shmem_zero_setup(struct vm_area_struct *vma)
4157 {
4158 	struct file *file;
4159 	loff_t size = vma->vm_end - vma->vm_start;
4160 
4161 	/*
4162 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4163 	 * between XFS directory reading and selinux: since this file is only
4164 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4165 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4166 	 */
4167 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4168 	if (IS_ERR(file))
4169 		return PTR_ERR(file);
4170 
4171 	if (vma->vm_file)
4172 		fput(vma->vm_file);
4173 	vma->vm_file = file;
4174 	vma->vm_ops = &shmem_vm_ops;
4175 
4176 	return 0;
4177 }
4178 
4179 /**
4180  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4181  * @mapping:	the page's address_space
4182  * @index:	the page index
4183  * @gfp:	the page allocator flags to use if allocating
4184  *
4185  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4186  * with any new page allocations done using the specified allocation flags.
4187  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4188  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4189  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4190  *
4191  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4192  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4193  */
4194 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4195 					 pgoff_t index, gfp_t gfp)
4196 {
4197 #ifdef CONFIG_SHMEM
4198 	struct inode *inode = mapping->host;
4199 	struct page *page;
4200 	int error;
4201 
4202 	BUG_ON(!shmem_mapping(mapping));
4203 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4204 				  gfp, NULL, NULL, NULL);
4205 	if (error)
4206 		return ERR_PTR(error);
4207 
4208 	unlock_page(page);
4209 	if (PageHWPoison(page)) {
4210 		put_page(page);
4211 		return ERR_PTR(-EIO);
4212 	}
4213 
4214 	return page;
4215 #else
4216 	/*
4217 	 * The tiny !SHMEM case uses ramfs without swap
4218 	 */
4219 	return read_cache_page_gfp(mapping, index, gfp);
4220 #endif
4221 }
4222 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4223